xref: /linux/drivers/tty/serial/imx.c (revision 9b50fe117d60f5109473ffab38368e191a7686d8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/circ_buf.h>
12 #include <linux/module.h>
13 #include <linux/ioport.h>
14 #include <linux/init.h>
15 #include <linux/console.h>
16 #include <linux/sysrq.h>
17 #include <linux/platform_device.h>
18 #include <linux/tty.h>
19 #include <linux/tty_flip.h>
20 #include <linux/serial_core.h>
21 #include <linux/serial.h>
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/ktime.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/rational.h>
27 #include <linux/slab.h>
28 #include <linux/of.h>
29 #include <linux/io.h>
30 #include <linux/iopoll.h>
31 #include <linux/dma-mapping.h>
32 
33 #include <asm/irq.h>
34 #include <linux/dma/imx-dma.h>
35 
36 #include "serial_mctrl_gpio.h"
37 
38 /* Register definitions */
39 #define URXD0 0x0  /* Receiver Register */
40 #define URTX0 0x40 /* Transmitter Register */
41 #define UCR1  0x80 /* Control Register 1 */
42 #define UCR2  0x84 /* Control Register 2 */
43 #define UCR3  0x88 /* Control Register 3 */
44 #define UCR4  0x8c /* Control Register 4 */
45 #define UFCR  0x90 /* FIFO Control Register */
46 #define USR1  0x94 /* Status Register 1 */
47 #define USR2  0x98 /* Status Register 2 */
48 #define UESC  0x9c /* Escape Character Register */
49 #define UTIM  0xa0 /* Escape Timer Register */
50 #define UBIR  0xa4 /* BRM Incremental Register */
51 #define UBMR  0xa8 /* BRM Modulator Register */
52 #define UBRC  0xac /* Baud Rate Count Register */
53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
56 
57 /* UART Control Register Bit Fields.*/
58 #define URXD_DUMMY_READ (1<<16)
59 #define URXD_CHARRDY	(1<<15)
60 #define URXD_ERR	(1<<14)
61 #define URXD_OVRRUN	(1<<13)
62 #define URXD_FRMERR	(1<<12)
63 #define URXD_BRK	(1<<11)
64 #define URXD_PRERR	(1<<10)
65 #define URXD_RX_DATA	(0xFF<<0)
66 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
67 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
68 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
69 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
71 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
72 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
73 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
74 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
75 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
76 #define UCR1_SNDBRK	(1<<4)	/* Send break */
77 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
79 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
80 #define UCR1_DOZE	(1<<1)	/* Doze */
81 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
82 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
83 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
84 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
85 #define UCR2_CTS	(1<<12)	/* Clear to send */
86 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
87 #define UCR2_PREN	(1<<8)	/* Parity enable */
88 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
89 #define UCR2_STPB	(1<<6)	/* Stop */
90 #define UCR2_WS		(1<<5)	/* Word size */
91 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
92 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
93 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
94 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
95 #define UCR2_SRST	(1<<0)	/* SW reset */
96 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
97 #define UCR3_PARERREN	(1<<12) /* Parity enable */
98 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
99 #define UCR3_DSR	(1<<10) /* Data set ready */
100 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
101 #define UCR3_RI		(1<<8)	/* Ring indicator */
102 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
103 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
104 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
105 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
106 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
107 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
108 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
109 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
110 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
111 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
112 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
113 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
114 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
115 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
116 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
117 #define UCR4_IRSC	(1<<5)	/* IR special case */
118 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
119 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
120 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
121 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
122 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
123 #define UFCR_RXTL_MASK	0x3F	/* Receiver trigger 6 bits wide */
124 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
125 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
126 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
127 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
128 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
129 #define USR1_RTSS	(1<<14) /* RTS pin status */
130 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
131 #define USR1_RTSD	(1<<12) /* RTS delta */
132 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
133 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
134 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
135 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
136 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
137 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
138 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
139 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
140 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
141 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
142 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
143 #define USR2_IDLE	 (1<<12) /* Idle condition */
144 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
145 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
146 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
147 #define USR2_WAKE	 (1<<7)	 /* Wake */
148 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
149 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
150 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
151 #define USR2_BRCD	 (1<<2)	 /* Break condition */
152 #define USR2_ORE	(1<<1)	 /* Overrun error */
153 #define USR2_RDR	(1<<0)	 /* Recv data ready */
154 #define UTS_FRCPERR	(1<<13) /* Force parity error */
155 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
156 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
157 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
158 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
159 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
160 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
161 
162 /* We've been assigned a range on the "Low-density serial ports" major */
163 #define SERIAL_IMX_MAJOR	207
164 #define MINOR_START		16
165 #define DEV_NAME		"ttymxc"
166 
167 /*
168  * This determines how often we check the modem status signals
169  * for any change.  They generally aren't connected to an IRQ
170  * so we have to poll them.  We also check immediately before
171  * filling the TX fifo incase CTS has been dropped.
172  */
173 #define MCTRL_TIMEOUT	(250*HZ/1000)
174 
175 #define DRIVER_NAME "IMX-uart"
176 
177 #define UART_NR 8
178 
179 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
180 enum imx_uart_type {
181 	IMX1_UART,
182 	IMX21_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* counter to stop 0xff flood */
214 	int idle_counter;
215 
216 	/* DMA fields */
217 	unsigned int		dma_is_enabled:1;
218 	unsigned int		dma_is_rxing:1;
219 	unsigned int		dma_is_txing:1;
220 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
221 	struct scatterlist	rx_sgl, tx_sgl[2];
222 	void			*rx_buf;
223 	struct circ_buf		rx_ring;
224 	unsigned int		rx_buf_size;
225 	unsigned int		rx_period_length;
226 	unsigned int		rx_periods;
227 	dma_cookie_t		rx_cookie;
228 	unsigned int		tx_bytes;
229 	unsigned int		dma_tx_nents;
230 	unsigned int            saved_reg[10];
231 	bool			context_saved;
232 
233 	enum imx_tx_state	tx_state;
234 	struct hrtimer		trigger_start_tx;
235 	struct hrtimer		trigger_stop_tx;
236 };
237 
238 struct imx_port_ucrs {
239 	unsigned int	ucr1;
240 	unsigned int	ucr2;
241 	unsigned int	ucr3;
242 };
243 
244 static const struct imx_uart_data imx_uart_imx1_devdata = {
245 	.uts_reg = IMX1_UTS,
246 	.devtype = IMX1_UART,
247 };
248 
249 static const struct imx_uart_data imx_uart_imx21_devdata = {
250 	.uts_reg = IMX21_UTS,
251 	.devtype = IMX21_UART,
252 };
253 
254 static const struct of_device_id imx_uart_dt_ids[] = {
255 	/*
256 	 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are
257 	 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the
258 	 * original imx6q's UART is compatible to fsl,imx21-uart. This driver
259 	 * doesn't make any distinction between these two variants.
260 	 */
261 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, },
262 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, },
263 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, },
264 	{ /* sentinel */ }
265 };
266 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
267 
268 static inline struct imx_port *to_imx_port(struct uart_port *port)
269 {
270         return container_of(port, struct imx_port, port);
271 }
272 
273 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
274 {
275 	writel(val, sport->port.membase + offset);
276 }
277 
278 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
279 {
280 	return readl(sport->port.membase + offset);
281 }
282 
283 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
284 {
285 	return sport->devdata->uts_reg;
286 }
287 
288 static inline int imx_uart_is_imx1(struct imx_port *sport)
289 {
290 	return sport->devdata->devtype == IMX1_UART;
291 }
292 
293 /*
294  * Save and restore functions for UCR1, UCR2 and UCR3 registers
295  */
296 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
297 static void imx_uart_ucrs_save(struct imx_port *sport,
298 			       struct imx_port_ucrs *ucr)
299 {
300 	/* save control registers */
301 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
302 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
303 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
304 }
305 
306 static void imx_uart_ucrs_restore(struct imx_port *sport,
307 				  struct imx_port_ucrs *ucr)
308 {
309 	/* restore control registers */
310 	imx_uart_writel(sport, ucr->ucr1, UCR1);
311 	imx_uart_writel(sport, ucr->ucr2, UCR2);
312 	imx_uart_writel(sport, ucr->ucr3, UCR3);
313 }
314 #endif
315 
316 /* called with port.lock taken and irqs caller dependent */
317 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
318 {
319 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
320 
321 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
322 }
323 
324 /* called with port.lock taken and irqs caller dependent */
325 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
326 {
327 	*ucr2 &= ~UCR2_CTSC;
328 	*ucr2 |= UCR2_CTS;
329 
330 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
331 }
332 
333 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
334 {
335        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
336 }
337 
338 /* called with port.lock taken and irqs off */
339 static void imx_uart_soft_reset(struct imx_port *sport)
340 {
341 	int i = 10;
342 	u32 ucr2, ubir, ubmr, uts;
343 
344 	/*
345 	 * According to the Reference Manual description of the UART SRST bit:
346 	 *
347 	 * "Reset the transmit and receive state machines,
348 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
349 	 * and UTS[6-3]".
350 	 *
351 	 * We don't need to restore the old values from USR1, USR2, URXD and
352 	 * UTXD. UBRC is read only, so only save/restore the other three
353 	 * registers.
354 	 */
355 	ubir = imx_uart_readl(sport, UBIR);
356 	ubmr = imx_uart_readl(sport, UBMR);
357 	uts = imx_uart_readl(sport, IMX21_UTS);
358 
359 	ucr2 = imx_uart_readl(sport, UCR2);
360 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
361 
362 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
363 		udelay(1);
364 
365 	/* Restore the registers */
366 	imx_uart_writel(sport, ubir, UBIR);
367 	imx_uart_writel(sport, ubmr, UBMR);
368 	imx_uart_writel(sport, uts, IMX21_UTS);
369 
370 	sport->idle_counter = 0;
371 }
372 
373 static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
374 {
375 	unsigned int uts;
376 
377 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
378 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
379 	uts &= ~UTS_LOOP;
380 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
381 }
382 
383 /* called with port.lock taken and irqs off */
384 static void imx_uart_start_rx(struct uart_port *port)
385 {
386 	struct imx_port *sport = to_imx_port(port);
387 	unsigned int ucr1, ucr2;
388 
389 	ucr1 = imx_uart_readl(sport, UCR1);
390 	ucr2 = imx_uart_readl(sport, UCR2);
391 
392 	ucr2 |= UCR2_RXEN;
393 
394 	if (sport->dma_is_enabled) {
395 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
396 	} else {
397 		ucr1 |= UCR1_RRDYEN;
398 		ucr2 |= UCR2_ATEN;
399 	}
400 
401 	/* Write UCR2 first as it includes RXEN */
402 	imx_uart_writel(sport, ucr2, UCR2);
403 	imx_uart_writel(sport, ucr1, UCR1);
404 	imx_uart_disable_loopback_rs485(sport);
405 }
406 
407 /* called with port.lock taken and irqs off */
408 static void imx_uart_stop_tx(struct uart_port *port)
409 {
410 	struct imx_port *sport = to_imx_port(port);
411 	u32 ucr1, ucr4, usr2;
412 
413 	if (sport->tx_state == OFF)
414 		return;
415 
416 	/*
417 	 * We are maybe in the SMP context, so if the DMA TX thread is running
418 	 * on other cpu, we have to wait for it to finish.
419 	 */
420 	if (sport->dma_is_txing)
421 		return;
422 
423 	ucr1 = imx_uart_readl(sport, UCR1);
424 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
425 
426 	ucr4 = imx_uart_readl(sport, UCR4);
427 	usr2 = imx_uart_readl(sport, USR2);
428 	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
429 		/* The shifter is still busy, so retry once TC triggers */
430 		return;
431 	}
432 
433 	ucr4 &= ~UCR4_TCEN;
434 	imx_uart_writel(sport, ucr4, UCR4);
435 
436 	/* in rs485 mode disable transmitter */
437 	if (port->rs485.flags & SER_RS485_ENABLED) {
438 		if (sport->tx_state == SEND) {
439 			sport->tx_state = WAIT_AFTER_SEND;
440 
441 			if (port->rs485.delay_rts_after_send > 0) {
442 				start_hrtimer_ms(&sport->trigger_stop_tx,
443 					 port->rs485.delay_rts_after_send);
444 				return;
445 			}
446 
447 			/* continue without any delay */
448 		}
449 
450 		if (sport->tx_state == WAIT_AFTER_RTS ||
451 		    sport->tx_state == WAIT_AFTER_SEND) {
452 			u32 ucr2;
453 
454 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
455 
456 			ucr2 = imx_uart_readl(sport, UCR2);
457 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
458 				imx_uart_rts_active(sport, &ucr2);
459 			else
460 				imx_uart_rts_inactive(sport, &ucr2);
461 			imx_uart_writel(sport, ucr2, UCR2);
462 
463 			if (!port->rs485_rx_during_tx_gpio)
464 				imx_uart_start_rx(port);
465 
466 			sport->tx_state = OFF;
467 		}
468 	} else {
469 		sport->tx_state = OFF;
470 	}
471 }
472 
473 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback)
474 {
475 	struct imx_port *sport = to_imx_port(port);
476 	u32 ucr1, ucr2, ucr4, uts;
477 
478 	ucr1 = imx_uart_readl(sport, UCR1);
479 	ucr2 = imx_uart_readl(sport, UCR2);
480 	ucr4 = imx_uart_readl(sport, UCR4);
481 
482 	if (sport->dma_is_enabled) {
483 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
484 	} else {
485 		ucr1 &= ~UCR1_RRDYEN;
486 		ucr2 &= ~UCR2_ATEN;
487 		ucr4 &= ~UCR4_OREN;
488 	}
489 	imx_uart_writel(sport, ucr1, UCR1);
490 	imx_uart_writel(sport, ucr4, UCR4);
491 
492 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
493 	if (port->rs485.flags & SER_RS485_ENABLED &&
494 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
495 	    sport->have_rtscts && !sport->have_rtsgpio && loopback) {
496 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
497 		uts |= UTS_LOOP;
498 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
499 		ucr2 |= UCR2_RXEN;
500 	} else {
501 		ucr2 &= ~UCR2_RXEN;
502 	}
503 
504 	imx_uart_writel(sport, ucr2, UCR2);
505 }
506 
507 /* called with port.lock taken and irqs off */
508 static void imx_uart_stop_rx(struct uart_port *port)
509 {
510 	/*
511 	 * Stop RX and enable loopback in order to make sure RS485 bus
512 	 * is not blocked. Se comment in imx_uart_probe().
513 	 */
514 	imx_uart_stop_rx_with_loopback_ctrl(port, true);
515 }
516 
517 /* called with port.lock taken and irqs off */
518 static void imx_uart_enable_ms(struct uart_port *port)
519 {
520 	struct imx_port *sport = to_imx_port(port);
521 
522 	mod_timer(&sport->timer, jiffies);
523 
524 	mctrl_gpio_enable_ms(sport->gpios);
525 }
526 
527 static void imx_uart_dma_tx(struct imx_port *sport);
528 
529 /* called with port.lock taken and irqs off */
530 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
531 {
532 	struct tty_port *tport = &sport->port.state->port;
533 	unsigned char c;
534 
535 	if (sport->port.x_char) {
536 		/* Send next char */
537 		imx_uart_writel(sport, sport->port.x_char, URTX0);
538 		sport->port.icount.tx++;
539 		sport->port.x_char = 0;
540 		return;
541 	}
542 
543 	if (kfifo_is_empty(&tport->xmit_fifo) ||
544 			uart_tx_stopped(&sport->port)) {
545 		imx_uart_stop_tx(&sport->port);
546 		return;
547 	}
548 
549 	if (sport->dma_is_enabled) {
550 		u32 ucr1;
551 		/*
552 		 * We've just sent a X-char Ensure the TX DMA is enabled
553 		 * and the TX IRQ is disabled.
554 		 **/
555 		ucr1 = imx_uart_readl(sport, UCR1);
556 		ucr1 &= ~UCR1_TRDYEN;
557 		if (sport->dma_is_txing) {
558 			ucr1 |= UCR1_TXDMAEN;
559 			imx_uart_writel(sport, ucr1, UCR1);
560 		} else {
561 			imx_uart_writel(sport, ucr1, UCR1);
562 			imx_uart_dma_tx(sport);
563 		}
564 
565 		return;
566 	}
567 
568 	while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) &&
569 			uart_fifo_get(&sport->port, &c))
570 		imx_uart_writel(sport, c, URTX0);
571 
572 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
573 		uart_write_wakeup(&sport->port);
574 
575 	if (kfifo_is_empty(&tport->xmit_fifo))
576 		imx_uart_stop_tx(&sport->port);
577 }
578 
579 static void imx_uart_dma_tx_callback(void *data)
580 {
581 	struct imx_port *sport = data;
582 	struct tty_port *tport = &sport->port.state->port;
583 	struct scatterlist *sgl = &sport->tx_sgl[0];
584 	unsigned long flags;
585 	u32 ucr1;
586 
587 	uart_port_lock_irqsave(&sport->port, &flags);
588 
589 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
590 
591 	ucr1 = imx_uart_readl(sport, UCR1);
592 	ucr1 &= ~UCR1_TXDMAEN;
593 	imx_uart_writel(sport, ucr1, UCR1);
594 
595 	uart_xmit_advance(&sport->port, sport->tx_bytes);
596 
597 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
598 
599 	sport->dma_is_txing = 0;
600 
601 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
602 		uart_write_wakeup(&sport->port);
603 
604 	if (!kfifo_is_empty(&tport->xmit_fifo) &&
605 			!uart_tx_stopped(&sport->port))
606 		imx_uart_dma_tx(sport);
607 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
608 		u32 ucr4 = imx_uart_readl(sport, UCR4);
609 		ucr4 |= UCR4_TCEN;
610 		imx_uart_writel(sport, ucr4, UCR4);
611 	}
612 
613 	uart_port_unlock_irqrestore(&sport->port, flags);
614 }
615 
616 /* called with port.lock taken and irqs off */
617 static void imx_uart_dma_tx(struct imx_port *sport)
618 {
619 	struct tty_port *tport = &sport->port.state->port;
620 	struct scatterlist *sgl = sport->tx_sgl;
621 	struct dma_async_tx_descriptor *desc;
622 	struct dma_chan	*chan = sport->dma_chan_tx;
623 	struct device *dev = sport->port.dev;
624 	u32 ucr1, ucr4;
625 	int ret;
626 
627 	if (sport->dma_is_txing)
628 		return;
629 
630 	ucr4 = imx_uart_readl(sport, UCR4);
631 	ucr4 &= ~UCR4_TCEN;
632 	imx_uart_writel(sport, ucr4, UCR4);
633 
634 	sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl));
635 	sport->tx_bytes = kfifo_len(&tport->xmit_fifo);
636 	sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl,
637 			ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes);
638 
639 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
640 	if (ret == 0) {
641 		dev_err(dev, "DMA mapping error for TX.\n");
642 		return;
643 	}
644 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
645 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
646 	if (!desc) {
647 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
648 			     DMA_TO_DEVICE);
649 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
650 		return;
651 	}
652 	desc->callback = imx_uart_dma_tx_callback;
653 	desc->callback_param = sport;
654 
655 	dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes);
656 
657 	ucr1 = imx_uart_readl(sport, UCR1);
658 	ucr1 |= UCR1_TXDMAEN;
659 	imx_uart_writel(sport, ucr1, UCR1);
660 
661 	/* fire it */
662 	sport->dma_is_txing = 1;
663 	dmaengine_submit(desc);
664 	dma_async_issue_pending(chan);
665 	return;
666 }
667 
668 /* called with port.lock taken and irqs off */
669 static void imx_uart_start_tx(struct uart_port *port)
670 {
671 	struct imx_port *sport = to_imx_port(port);
672 	struct tty_port *tport = &sport->port.state->port;
673 	u32 ucr1;
674 
675 	if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo))
676 		return;
677 
678 	/*
679 	 * We cannot simply do nothing here if sport->tx_state == SEND already
680 	 * because UCR1_TXMPTYEN might already have been cleared in
681 	 * imx_uart_stop_tx(), but tx_state is still SEND.
682 	 */
683 
684 	if (port->rs485.flags & SER_RS485_ENABLED) {
685 		if (sport->tx_state == OFF) {
686 			u32 ucr2 = imx_uart_readl(sport, UCR2);
687 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
688 				imx_uart_rts_active(sport, &ucr2);
689 			else
690 				imx_uart_rts_inactive(sport, &ucr2);
691 			imx_uart_writel(sport, ucr2, UCR2);
692 
693 			/*
694 			 * Since we are about to transmit we can not stop RX
695 			 * with loopback enabled because that will make our
696 			 * transmitted data being just looped to RX.
697 			 */
698 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
699 			    !port->rs485_rx_during_tx_gpio)
700 				imx_uart_stop_rx_with_loopback_ctrl(port, false);
701 
702 			sport->tx_state = WAIT_AFTER_RTS;
703 
704 			if (port->rs485.delay_rts_before_send > 0) {
705 				start_hrtimer_ms(&sport->trigger_start_tx,
706 					 port->rs485.delay_rts_before_send);
707 				return;
708 			}
709 
710 			/* continue without any delay */
711 		}
712 
713 		if (sport->tx_state == WAIT_AFTER_SEND
714 		    || sport->tx_state == WAIT_AFTER_RTS) {
715 
716 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
717 
718 			/*
719 			 * Enable transmitter and shifter empty irq only if DMA
720 			 * is off.  In the DMA case this is done in the
721 			 * tx-callback.
722 			 */
723 			if (!sport->dma_is_enabled) {
724 				u32 ucr4 = imx_uart_readl(sport, UCR4);
725 				ucr4 |= UCR4_TCEN;
726 				imx_uart_writel(sport, ucr4, UCR4);
727 			}
728 
729 			sport->tx_state = SEND;
730 		}
731 	} else {
732 		sport->tx_state = SEND;
733 	}
734 
735 	if (!sport->dma_is_enabled) {
736 		ucr1 = imx_uart_readl(sport, UCR1);
737 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
738 	}
739 
740 	if (sport->dma_is_enabled) {
741 		if (sport->port.x_char) {
742 			/* We have X-char to send, so enable TX IRQ and
743 			 * disable TX DMA to let TX interrupt to send X-char */
744 			ucr1 = imx_uart_readl(sport, UCR1);
745 			ucr1 &= ~UCR1_TXDMAEN;
746 			ucr1 |= UCR1_TRDYEN;
747 			imx_uart_writel(sport, ucr1, UCR1);
748 			return;
749 		}
750 
751 		if (!kfifo_is_empty(&tport->xmit_fifo) &&
752 		    !uart_tx_stopped(port))
753 			imx_uart_dma_tx(sport);
754 		return;
755 	}
756 }
757 
758 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
759 {
760 	struct imx_port *sport = dev_id;
761 	u32 usr1;
762 
763 	imx_uart_writel(sport, USR1_RTSD, USR1);
764 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
765 	/*
766 	 * Update sport->old_status here, so any follow-up calls to
767 	 * imx_uart_mctrl_check() will be able to recognize that RTS
768 	 * state changed since last imx_uart_mctrl_check() call.
769 	 *
770 	 * In case RTS has been detected as asserted here and later on
771 	 * deasserted by the time imx_uart_mctrl_check() was called,
772 	 * imx_uart_mctrl_check() can detect the RTS state change and
773 	 * trigger uart_handle_cts_change() to unblock the port for
774 	 * further TX transfers.
775 	 */
776 	if (usr1 & USR1_RTSS)
777 		sport->old_status |= TIOCM_CTS;
778 	else
779 		sport->old_status &= ~TIOCM_CTS;
780 	uart_handle_cts_change(&sport->port, usr1);
781 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
782 
783 	return IRQ_HANDLED;
784 }
785 
786 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
787 {
788 	struct imx_port *sport = dev_id;
789 	irqreturn_t ret;
790 
791 	uart_port_lock(&sport->port);
792 
793 	ret = __imx_uart_rtsint(irq, dev_id);
794 
795 	uart_port_unlock(&sport->port);
796 
797 	return ret;
798 }
799 
800 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
801 {
802 	struct imx_port *sport = dev_id;
803 
804 	uart_port_lock(&sport->port);
805 	imx_uart_transmit_buffer(sport);
806 	uart_port_unlock(&sport->port);
807 	return IRQ_HANDLED;
808 }
809 
810 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
811  * This is to be called from Rx ISRs only when some bytes were actually
812  * received.
813  *
814  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
815  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
816  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
817  * that is terminated by any activity on RxD line, or could be stopped by
818  * issuing soft reset to the UART (just stop/start of RX does not help). Note
819  * that what we do here is sending isolated start bit about 2.4 times shorter
820  * than it is to be on UART configured baud rate.
821  */
822 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
823 {
824 	/* To detect hardware 0xff flood we monitor RxD line between RX
825 	 * interrupts to isolate "receiving" of char(s) with no activity
826 	 * on RxD line, that'd never happen on actual data transfers.
827 	 *
828 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
829 	 * race here if we clear USR2_WAKE when receiving of a char is in
830 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
831 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
832 	 * detected no activity, this race may hide actual activity only once.
833 	 *
834 	 * Yet another case where receive interrupt may occur without RxD
835 	 * activity is expiration of aging timer, so we consider this as well.
836 	 *
837 	 * We use 'idle_counter' to ensure that we got at least so many RX
838 	 * interrupts without any detected activity on RxD line. 2 cases
839 	 * described plus 1 to be on the safe side gives us a margin of 3,
840 	 * below. In practice I was not able to produce a false positive to
841 	 * induce soft reset at regular data transfers even using 1 as the
842 	 * margin, so 3 is actually very strong.
843 	 *
844 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
845 	 */
846 
847 	if (usr2 & USR2_WAKE) {
848 		imx_uart_writel(sport, USR2_WAKE, USR2);
849 		sport->idle_counter = 0;
850 	} else if (++sport->idle_counter > 3) {
851 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
852 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
853 	}
854 }
855 
856 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
857 {
858 	struct imx_port *sport = dev_id;
859 	struct tty_port *port = &sport->port.state->port;
860 	u32 usr2, rx;
861 
862 	/* If we received something, check for 0xff flood */
863 	usr2 = imx_uart_readl(sport, USR2);
864 	if (usr2 & USR2_RDR)
865 		imx_uart_check_flood(sport, usr2);
866 
867 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
868 		unsigned int flg = TTY_NORMAL;
869 		sport->port.icount.rx++;
870 
871 		if (unlikely(rx & URXD_ERR)) {
872 			if (rx & URXD_BRK) {
873 				sport->port.icount.brk++;
874 				if (uart_handle_break(&sport->port))
875 					continue;
876 			}
877 			else if (rx & URXD_PRERR)
878 				sport->port.icount.parity++;
879 			else if (rx & URXD_FRMERR)
880 				sport->port.icount.frame++;
881 			if (rx & URXD_OVRRUN)
882 				sport->port.icount.overrun++;
883 
884 			if (rx & sport->port.ignore_status_mask)
885 				continue;
886 
887 			rx &= (sport->port.read_status_mask | 0xFF);
888 
889 			if (rx & URXD_BRK)
890 				flg = TTY_BREAK;
891 			else if (rx & URXD_PRERR)
892 				flg = TTY_PARITY;
893 			else if (rx & URXD_FRMERR)
894 				flg = TTY_FRAME;
895 			if (rx & URXD_OVRRUN)
896 				flg = TTY_OVERRUN;
897 
898 			sport->port.sysrq = 0;
899 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
900 			continue;
901 		}
902 
903 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
904 			continue;
905 
906 		if (tty_insert_flip_char(port, rx, flg) == 0)
907 			sport->port.icount.buf_overrun++;
908 	}
909 
910 	tty_flip_buffer_push(port);
911 
912 	return IRQ_HANDLED;
913 }
914 
915 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
916 {
917 	struct imx_port *sport = dev_id;
918 	irqreturn_t ret;
919 
920 	uart_port_lock(&sport->port);
921 
922 	ret = __imx_uart_rxint(irq, dev_id);
923 
924 	uart_port_unlock(&sport->port);
925 
926 	return ret;
927 }
928 
929 static void imx_uart_clear_rx_errors(struct imx_port *sport);
930 
931 /*
932  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
933  */
934 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
935 {
936 	unsigned int tmp = TIOCM_DSR;
937 	unsigned usr1 = imx_uart_readl(sport, USR1);
938 	unsigned usr2 = imx_uart_readl(sport, USR2);
939 
940 	if (usr1 & USR1_RTSS)
941 		tmp |= TIOCM_CTS;
942 
943 	/* in DCE mode DCDIN is always 0 */
944 	if (!(usr2 & USR2_DCDIN))
945 		tmp |= TIOCM_CAR;
946 
947 	if (sport->dte_mode)
948 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
949 			tmp |= TIOCM_RI;
950 
951 	return tmp;
952 }
953 
954 /*
955  * Handle any change of modem status signal since we were last called.
956  */
957 static void imx_uart_mctrl_check(struct imx_port *sport)
958 {
959 	unsigned int status, changed;
960 
961 	status = imx_uart_get_hwmctrl(sport);
962 	changed = status ^ sport->old_status;
963 
964 	if (changed == 0)
965 		return;
966 
967 	sport->old_status = status;
968 
969 	if (changed & TIOCM_RI && status & TIOCM_RI)
970 		sport->port.icount.rng++;
971 	if (changed & TIOCM_DSR)
972 		sport->port.icount.dsr++;
973 	if (changed & TIOCM_CAR)
974 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
975 	if (changed & TIOCM_CTS)
976 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
977 
978 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
979 }
980 
981 static irqreturn_t imx_uart_int(int irq, void *dev_id)
982 {
983 	struct imx_port *sport = dev_id;
984 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
985 	irqreturn_t ret = IRQ_NONE;
986 
987 	uart_port_lock(&sport->port);
988 
989 	usr1 = imx_uart_readl(sport, USR1);
990 	usr2 = imx_uart_readl(sport, USR2);
991 	ucr1 = imx_uart_readl(sport, UCR1);
992 	ucr2 = imx_uart_readl(sport, UCR2);
993 	ucr3 = imx_uart_readl(sport, UCR3);
994 	ucr4 = imx_uart_readl(sport, UCR4);
995 
996 	/*
997 	 * Even if a condition is true that can trigger an irq only handle it if
998 	 * the respective irq source is enabled. This prevents some undesired
999 	 * actions, for example if a character that sits in the RX FIFO and that
1000 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
1001 	 * receiver is currently off and so reading from URXD0 results in an
1002 	 * exception. So just mask the (raw) status bits for disabled irqs.
1003 	 */
1004 	if ((ucr1 & UCR1_RRDYEN) == 0)
1005 		usr1 &= ~USR1_RRDY;
1006 	if ((ucr2 & UCR2_ATEN) == 0)
1007 		usr1 &= ~USR1_AGTIM;
1008 	if ((ucr1 & UCR1_TRDYEN) == 0)
1009 		usr1 &= ~USR1_TRDY;
1010 	if ((ucr4 & UCR4_TCEN) == 0)
1011 		usr2 &= ~USR2_TXDC;
1012 	if ((ucr3 & UCR3_DTRDEN) == 0)
1013 		usr1 &= ~USR1_DTRD;
1014 	if ((ucr1 & UCR1_RTSDEN) == 0)
1015 		usr1 &= ~USR1_RTSD;
1016 	if ((ucr3 & UCR3_AWAKEN) == 0)
1017 		usr1 &= ~USR1_AWAKE;
1018 	if ((ucr4 & UCR4_OREN) == 0)
1019 		usr2 &= ~USR2_ORE;
1020 
1021 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1022 		imx_uart_writel(sport, USR1_AGTIM, USR1);
1023 
1024 		__imx_uart_rxint(irq, dev_id);
1025 		ret = IRQ_HANDLED;
1026 	}
1027 
1028 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1029 		imx_uart_transmit_buffer(sport);
1030 		ret = IRQ_HANDLED;
1031 	}
1032 
1033 	if (usr1 & USR1_DTRD) {
1034 		imx_uart_writel(sport, USR1_DTRD, USR1);
1035 
1036 		imx_uart_mctrl_check(sport);
1037 
1038 		ret = IRQ_HANDLED;
1039 	}
1040 
1041 	if (usr1 & USR1_RTSD) {
1042 		__imx_uart_rtsint(irq, dev_id);
1043 		ret = IRQ_HANDLED;
1044 	}
1045 
1046 	if (usr1 & USR1_AWAKE) {
1047 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1048 		ret = IRQ_HANDLED;
1049 	}
1050 
1051 	if (usr2 & USR2_ORE) {
1052 		sport->port.icount.overrun++;
1053 		imx_uart_writel(sport, USR2_ORE, USR2);
1054 		ret = IRQ_HANDLED;
1055 	}
1056 
1057 	uart_port_unlock(&sport->port);
1058 
1059 	return ret;
1060 }
1061 
1062 /*
1063  * Return TIOCSER_TEMT when transmitter is not busy.
1064  */
1065 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1066 {
1067 	struct imx_port *sport = to_imx_port(port);
1068 	unsigned int ret;
1069 
1070 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1071 
1072 	/* If the TX DMA is working, return 0. */
1073 	if (sport->dma_is_txing)
1074 		ret = 0;
1075 
1076 	return ret;
1077 }
1078 
1079 /* called with port.lock taken and irqs off */
1080 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1081 {
1082 	struct imx_port *sport = to_imx_port(port);
1083 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1084 
1085 	mctrl_gpio_get(sport->gpios, &ret);
1086 
1087 	return ret;
1088 }
1089 
1090 /* called with port.lock taken and irqs off */
1091 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1092 {
1093 	struct imx_port *sport = to_imx_port(port);
1094 	u32 ucr3, uts;
1095 
1096 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1097 		u32 ucr2;
1098 
1099 		/*
1100 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1101 		 * setting if RTS is raised.
1102 		 */
1103 		ucr2 = imx_uart_readl(sport, UCR2);
1104 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1105 		if (mctrl & TIOCM_RTS) {
1106 			ucr2 |= UCR2_CTS;
1107 			/*
1108 			 * UCR2_IRTS is unset if and only if the port is
1109 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1110 			 * to get the state to restore to.
1111 			 */
1112 			if (!(ucr2 & UCR2_IRTS))
1113 				ucr2 |= UCR2_CTSC;
1114 		}
1115 		imx_uart_writel(sport, ucr2, UCR2);
1116 	}
1117 
1118 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1119 	if (!(mctrl & TIOCM_DTR))
1120 		ucr3 |= UCR3_DSR;
1121 	imx_uart_writel(sport, ucr3, UCR3);
1122 
1123 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1124 	if (mctrl & TIOCM_LOOP)
1125 		uts |= UTS_LOOP;
1126 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1127 
1128 	mctrl_gpio_set(sport->gpios, mctrl);
1129 }
1130 
1131 /*
1132  * Interrupts always disabled.
1133  */
1134 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1135 {
1136 	struct imx_port *sport = to_imx_port(port);
1137 	unsigned long flags;
1138 	u32 ucr1;
1139 
1140 	uart_port_lock_irqsave(&sport->port, &flags);
1141 
1142 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1143 
1144 	if (break_state != 0)
1145 		ucr1 |= UCR1_SNDBRK;
1146 
1147 	imx_uart_writel(sport, ucr1, UCR1);
1148 
1149 	uart_port_unlock_irqrestore(&sport->port, flags);
1150 }
1151 
1152 /*
1153  * This is our per-port timeout handler, for checking the
1154  * modem status signals.
1155  */
1156 static void imx_uart_timeout(struct timer_list *t)
1157 {
1158 	struct imx_port *sport = from_timer(sport, t, timer);
1159 	unsigned long flags;
1160 
1161 	if (sport->port.state) {
1162 		uart_port_lock_irqsave(&sport->port, &flags);
1163 		imx_uart_mctrl_check(sport);
1164 		uart_port_unlock_irqrestore(&sport->port, flags);
1165 
1166 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1167 	}
1168 }
1169 
1170 /*
1171  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1172  *   [1] the RX DMA buffer is full.
1173  *   [2] the aging timer expires
1174  *
1175  * Condition [2] is triggered when a character has been sitting in the FIFO
1176  * for at least 8 byte durations.
1177  */
1178 static void imx_uart_dma_rx_callback(void *data)
1179 {
1180 	struct imx_port *sport = data;
1181 	struct dma_chan	*chan = sport->dma_chan_rx;
1182 	struct scatterlist *sgl = &sport->rx_sgl;
1183 	struct tty_port *port = &sport->port.state->port;
1184 	struct dma_tx_state state;
1185 	struct circ_buf *rx_ring = &sport->rx_ring;
1186 	enum dma_status status;
1187 	unsigned int w_bytes = 0;
1188 	unsigned int r_bytes;
1189 	unsigned int bd_size;
1190 
1191 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1192 
1193 	if (status == DMA_ERROR) {
1194 		uart_port_lock(&sport->port);
1195 		imx_uart_clear_rx_errors(sport);
1196 		uart_port_unlock(&sport->port);
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * The state-residue variable represents the empty space
1202 	 * relative to the entire buffer. Taking this in consideration
1203 	 * the head is always calculated base on the buffer total
1204 	 * length - DMA transaction residue. The UART script from the
1205 	 * SDMA firmware will jump to the next buffer descriptor,
1206 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1207 	 * Taking this in consideration the tail is always at the
1208 	 * beginning of the buffer descriptor that contains the head.
1209 	 */
1210 
1211 	/* Calculate the head */
1212 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1213 
1214 	/* Calculate the tail. */
1215 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1216 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1217 
1218 	if (rx_ring->head <= sg_dma_len(sgl) &&
1219 	    rx_ring->head > rx_ring->tail) {
1220 
1221 		/* Move data from tail to head */
1222 		r_bytes = rx_ring->head - rx_ring->tail;
1223 
1224 		/* If we received something, check for 0xff flood */
1225 		uart_port_lock(&sport->port);
1226 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1227 		uart_port_unlock(&sport->port);
1228 
1229 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1230 
1231 			/* CPU claims ownership of RX DMA buffer */
1232 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1233 					    DMA_FROM_DEVICE);
1234 
1235 			w_bytes = tty_insert_flip_string(port,
1236 							 sport->rx_buf + rx_ring->tail, r_bytes);
1237 
1238 			/* UART retrieves ownership of RX DMA buffer */
1239 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1240 					       DMA_FROM_DEVICE);
1241 
1242 			if (w_bytes != r_bytes)
1243 				sport->port.icount.buf_overrun++;
1244 
1245 			sport->port.icount.rx += w_bytes;
1246 		}
1247 	} else	{
1248 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1249 		WARN_ON(rx_ring->head <= rx_ring->tail);
1250 	}
1251 
1252 	if (w_bytes) {
1253 		tty_flip_buffer_push(port);
1254 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1255 	}
1256 }
1257 
1258 static int imx_uart_start_rx_dma(struct imx_port *sport)
1259 {
1260 	struct scatterlist *sgl = &sport->rx_sgl;
1261 	struct dma_chan	*chan = sport->dma_chan_rx;
1262 	struct device *dev = sport->port.dev;
1263 	struct dma_async_tx_descriptor *desc;
1264 	int ret;
1265 
1266 	sport->rx_ring.head = 0;
1267 	sport->rx_ring.tail = 0;
1268 
1269 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1270 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1271 	if (ret == 0) {
1272 		dev_err(dev, "DMA mapping error for RX.\n");
1273 		return -EINVAL;
1274 	}
1275 
1276 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1277 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1278 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1279 
1280 	if (!desc) {
1281 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1282 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1283 		return -EINVAL;
1284 	}
1285 	desc->callback = imx_uart_dma_rx_callback;
1286 	desc->callback_param = sport;
1287 
1288 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1289 	sport->dma_is_rxing = 1;
1290 	sport->rx_cookie = dmaengine_submit(desc);
1291 	dma_async_issue_pending(chan);
1292 	return 0;
1293 }
1294 
1295 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1296 {
1297 	struct tty_port *port = &sport->port.state->port;
1298 	u32 usr1, usr2;
1299 
1300 	usr1 = imx_uart_readl(sport, USR1);
1301 	usr2 = imx_uart_readl(sport, USR2);
1302 
1303 	if (usr2 & USR2_BRCD) {
1304 		sport->port.icount.brk++;
1305 		imx_uart_writel(sport, USR2_BRCD, USR2);
1306 		uart_handle_break(&sport->port);
1307 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1308 			sport->port.icount.buf_overrun++;
1309 		tty_flip_buffer_push(port);
1310 	} else {
1311 		if (usr1 & USR1_FRAMERR) {
1312 			sport->port.icount.frame++;
1313 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1314 		} else if (usr1 & USR1_PARITYERR) {
1315 			sport->port.icount.parity++;
1316 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1317 		}
1318 	}
1319 
1320 	if (usr2 & USR2_ORE) {
1321 		sport->port.icount.overrun++;
1322 		imx_uart_writel(sport, USR2_ORE, USR2);
1323 	}
1324 
1325 	sport->idle_counter = 0;
1326 
1327 }
1328 
1329 #define TXTL_DEFAULT 8
1330 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1331 #define TXTL_DMA 8 /* DMA burst setting */
1332 #define RXTL_DMA 9 /* DMA burst setting */
1333 
1334 static void imx_uart_setup_ufcr(struct imx_port *sport,
1335 				unsigned char txwl, unsigned char rxwl)
1336 {
1337 	unsigned int val;
1338 
1339 	/* set receiver / transmitter trigger level */
1340 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1341 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1342 	imx_uart_writel(sport, val, UFCR);
1343 }
1344 
1345 static void imx_uart_dma_exit(struct imx_port *sport)
1346 {
1347 	if (sport->dma_chan_rx) {
1348 		dmaengine_terminate_sync(sport->dma_chan_rx);
1349 		dma_release_channel(sport->dma_chan_rx);
1350 		sport->dma_chan_rx = NULL;
1351 		sport->rx_cookie = -EINVAL;
1352 		kfree(sport->rx_buf);
1353 		sport->rx_buf = NULL;
1354 	}
1355 
1356 	if (sport->dma_chan_tx) {
1357 		dmaengine_terminate_sync(sport->dma_chan_tx);
1358 		dma_release_channel(sport->dma_chan_tx);
1359 		sport->dma_chan_tx = NULL;
1360 	}
1361 }
1362 
1363 static int imx_uart_dma_init(struct imx_port *sport)
1364 {
1365 	struct dma_slave_config slave_config = {};
1366 	struct device *dev = sport->port.dev;
1367 	struct dma_chan *chan;
1368 	int ret;
1369 
1370 	/* Prepare for RX : */
1371 	chan = dma_request_chan(dev, "rx");
1372 	if (IS_ERR(chan)) {
1373 		dev_dbg(dev, "cannot get the DMA channel.\n");
1374 		sport->dma_chan_rx = NULL;
1375 		ret = PTR_ERR(chan);
1376 		goto err;
1377 	}
1378 	sport->dma_chan_rx = chan;
1379 
1380 	slave_config.direction = DMA_DEV_TO_MEM;
1381 	slave_config.src_addr = sport->port.mapbase + URXD0;
1382 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1383 	/* one byte less than the watermark level to enable the aging timer */
1384 	slave_config.src_maxburst = RXTL_DMA - 1;
1385 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1386 	if (ret) {
1387 		dev_err(dev, "error in RX dma configuration.\n");
1388 		goto err;
1389 	}
1390 
1391 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1392 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1393 	if (!sport->rx_buf) {
1394 		ret = -ENOMEM;
1395 		goto err;
1396 	}
1397 	sport->rx_ring.buf = sport->rx_buf;
1398 
1399 	/* Prepare for TX : */
1400 	chan = dma_request_chan(dev, "tx");
1401 	if (IS_ERR(chan)) {
1402 		dev_err(dev, "cannot get the TX DMA channel!\n");
1403 		sport->dma_chan_tx = NULL;
1404 		ret = PTR_ERR(chan);
1405 		goto err;
1406 	}
1407 	sport->dma_chan_tx = chan;
1408 
1409 	slave_config.direction = DMA_MEM_TO_DEV;
1410 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1411 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1412 	slave_config.dst_maxburst = TXTL_DMA;
1413 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1414 	if (ret) {
1415 		dev_err(dev, "error in TX dma configuration.");
1416 		goto err;
1417 	}
1418 
1419 	return 0;
1420 err:
1421 	imx_uart_dma_exit(sport);
1422 	return ret;
1423 }
1424 
1425 static void imx_uart_enable_dma(struct imx_port *sport)
1426 {
1427 	u32 ucr1;
1428 
1429 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1430 
1431 	/* set UCR1 */
1432 	ucr1 = imx_uart_readl(sport, UCR1);
1433 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1434 	imx_uart_writel(sport, ucr1, UCR1);
1435 
1436 	sport->dma_is_enabled = 1;
1437 }
1438 
1439 static void imx_uart_disable_dma(struct imx_port *sport)
1440 {
1441 	u32 ucr1;
1442 
1443 	/* clear UCR1 */
1444 	ucr1 = imx_uart_readl(sport, UCR1);
1445 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1446 	imx_uart_writel(sport, ucr1, UCR1);
1447 
1448 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1449 
1450 	sport->dma_is_enabled = 0;
1451 }
1452 
1453 /* half the RX buffer size */
1454 #define CTSTL 16
1455 
1456 static int imx_uart_startup(struct uart_port *port)
1457 {
1458 	struct imx_port *sport = to_imx_port(port);
1459 	int retval;
1460 	unsigned long flags;
1461 	int dma_is_inited = 0;
1462 	u32 ucr1, ucr2, ucr3, ucr4;
1463 
1464 	retval = clk_prepare_enable(sport->clk_per);
1465 	if (retval)
1466 		return retval;
1467 	retval = clk_prepare_enable(sport->clk_ipg);
1468 	if (retval) {
1469 		clk_disable_unprepare(sport->clk_per);
1470 		return retval;
1471 	}
1472 
1473 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1474 
1475 	/* disable the DREN bit (Data Ready interrupt enable) before
1476 	 * requesting IRQs
1477 	 */
1478 	ucr4 = imx_uart_readl(sport, UCR4);
1479 
1480 	/* set the trigger level for CTS */
1481 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1482 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1483 
1484 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1485 
1486 	/* Can we enable the DMA support? */
1487 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0) {
1488 		lockdep_set_subclass(&port->lock, 1);
1489 		dma_is_inited = 1;
1490 	}
1491 
1492 	uart_port_lock_irqsave(&sport->port, &flags);
1493 
1494 	/* Reset fifo's and state machines */
1495 	imx_uart_soft_reset(sport);
1496 
1497 	/*
1498 	 * Finally, clear and enable interrupts
1499 	 */
1500 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1501 	imx_uart_writel(sport, USR2_ORE, USR2);
1502 
1503 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1504 	ucr1 |= UCR1_UARTEN;
1505 	if (sport->have_rtscts)
1506 		ucr1 |= UCR1_RTSDEN;
1507 
1508 	imx_uart_writel(sport, ucr1, UCR1);
1509 
1510 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1511 	if (!dma_is_inited)
1512 		ucr4 |= UCR4_OREN;
1513 	if (sport->inverted_rx)
1514 		ucr4 |= UCR4_INVR;
1515 	imx_uart_writel(sport, ucr4, UCR4);
1516 
1517 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1518 	/*
1519 	 * configure tx polarity before enabling tx
1520 	 */
1521 	if (sport->inverted_tx)
1522 		ucr3 |= UCR3_INVT;
1523 
1524 	if (!imx_uart_is_imx1(sport)) {
1525 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1526 
1527 		if (sport->dte_mode)
1528 			/* disable broken interrupts */
1529 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1530 	}
1531 	imx_uart_writel(sport, ucr3, UCR3);
1532 
1533 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1534 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1535 	if (!sport->have_rtscts)
1536 		ucr2 |= UCR2_IRTS;
1537 	/*
1538 	 * make sure the edge sensitive RTS-irq is disabled,
1539 	 * we're using RTSD instead.
1540 	 */
1541 	if (!imx_uart_is_imx1(sport))
1542 		ucr2 &= ~UCR2_RTSEN;
1543 	imx_uart_writel(sport, ucr2, UCR2);
1544 
1545 	/*
1546 	 * Enable modem status interrupts
1547 	 */
1548 	imx_uart_enable_ms(&sport->port);
1549 
1550 	if (dma_is_inited) {
1551 		imx_uart_enable_dma(sport);
1552 		imx_uart_start_rx_dma(sport);
1553 	} else {
1554 		ucr1 = imx_uart_readl(sport, UCR1);
1555 		ucr1 |= UCR1_RRDYEN;
1556 		imx_uart_writel(sport, ucr1, UCR1);
1557 
1558 		ucr2 = imx_uart_readl(sport, UCR2);
1559 		ucr2 |= UCR2_ATEN;
1560 		imx_uart_writel(sport, ucr2, UCR2);
1561 	}
1562 
1563 	imx_uart_disable_loopback_rs485(sport);
1564 
1565 	uart_port_unlock_irqrestore(&sport->port, flags);
1566 
1567 	return 0;
1568 }
1569 
1570 static void imx_uart_shutdown(struct uart_port *port)
1571 {
1572 	struct imx_port *sport = to_imx_port(port);
1573 	unsigned long flags;
1574 	u32 ucr1, ucr2, ucr4, uts;
1575 	int loops;
1576 
1577 	if (sport->dma_is_enabled) {
1578 		dmaengine_terminate_sync(sport->dma_chan_tx);
1579 		if (sport->dma_is_txing) {
1580 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1581 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1582 			sport->dma_is_txing = 0;
1583 		}
1584 		dmaengine_terminate_sync(sport->dma_chan_rx);
1585 		if (sport->dma_is_rxing) {
1586 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1587 				     1, DMA_FROM_DEVICE);
1588 			sport->dma_is_rxing = 0;
1589 		}
1590 
1591 		uart_port_lock_irqsave(&sport->port, &flags);
1592 		imx_uart_stop_tx(port);
1593 		imx_uart_stop_rx(port);
1594 		imx_uart_disable_dma(sport);
1595 		uart_port_unlock_irqrestore(&sport->port, flags);
1596 		imx_uart_dma_exit(sport);
1597 	}
1598 
1599 	mctrl_gpio_disable_ms(sport->gpios);
1600 
1601 	uart_port_lock_irqsave(&sport->port, &flags);
1602 	ucr2 = imx_uart_readl(sport, UCR2);
1603 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1604 	imx_uart_writel(sport, ucr2, UCR2);
1605 	uart_port_unlock_irqrestore(&sport->port, flags);
1606 
1607 	/*
1608 	 * Stop our timer.
1609 	 */
1610 	del_timer_sync(&sport->timer);
1611 
1612 	/*
1613 	 * Disable all interrupts, port and break condition.
1614 	 */
1615 
1616 	uart_port_lock_irqsave(&sport->port, &flags);
1617 
1618 	ucr1 = imx_uart_readl(sport, UCR1);
1619 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1620 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1621 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1622 	if (port->rs485.flags & SER_RS485_ENABLED &&
1623 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1624 	    sport->have_rtscts && !sport->have_rtsgpio) {
1625 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1626 		uts |= UTS_LOOP;
1627 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1628 		ucr1 |= UCR1_UARTEN;
1629 	} else {
1630 		ucr1 &= ~UCR1_UARTEN;
1631 	}
1632 	imx_uart_writel(sport, ucr1, UCR1);
1633 
1634 	ucr4 = imx_uart_readl(sport, UCR4);
1635 	ucr4 &= ~UCR4_TCEN;
1636 	imx_uart_writel(sport, ucr4, UCR4);
1637 
1638 	/*
1639 	 * We have to ensure the tx state machine ends up in OFF. This
1640 	 * is especially important for rs485 where we must not leave
1641 	 * the RTS signal high, blocking the bus indefinitely.
1642 	 *
1643 	 * All interrupts are now disabled, so imx_uart_stop_tx() will
1644 	 * no longer be called from imx_uart_transmit_buffer(). It may
1645 	 * still be called via the hrtimers, and if those are in play,
1646 	 * we have to honour the delays.
1647 	 */
1648 	if (sport->tx_state == WAIT_AFTER_RTS || sport->tx_state == SEND)
1649 		imx_uart_stop_tx(port);
1650 
1651 	/*
1652 	 * In many cases (rs232 mode, or if tx_state was
1653 	 * WAIT_AFTER_RTS, or if tx_state was SEND and there is no
1654 	 * delay_rts_after_send), this will have moved directly to
1655 	 * OFF. In rs485 mode, tx_state might already have been
1656 	 * WAIT_AFTER_SEND and the hrtimer thus already started, or
1657 	 * the above imx_uart_stop_tx() call could have started it. In
1658 	 * those cases, we have to wait for the hrtimer to fire and
1659 	 * complete the transition to OFF.
1660 	 */
1661 	loops = port->rs485.flags & SER_RS485_ENABLED ?
1662 		port->rs485.delay_rts_after_send : 0;
1663 	while (sport->tx_state != OFF && loops--) {
1664 		uart_port_unlock_irqrestore(&sport->port, flags);
1665 		msleep(1);
1666 		uart_port_lock_irqsave(&sport->port, &flags);
1667 	}
1668 
1669 	if (sport->tx_state != OFF) {
1670 		dev_warn(sport->port.dev, "unexpected tx_state %d\n",
1671 			 sport->tx_state);
1672 		/*
1673 		 * This machine may be busted, but ensure the RTS
1674 		 * signal is inactive in order not to block other
1675 		 * devices.
1676 		 */
1677 		if (port->rs485.flags & SER_RS485_ENABLED) {
1678 			ucr2 = imx_uart_readl(sport, UCR2);
1679 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1680 				imx_uart_rts_active(sport, &ucr2);
1681 			else
1682 				imx_uart_rts_inactive(sport, &ucr2);
1683 			imx_uart_writel(sport, ucr2, UCR2);
1684 		}
1685 		sport->tx_state = OFF;
1686 	}
1687 
1688 	uart_port_unlock_irqrestore(&sport->port, flags);
1689 
1690 	clk_disable_unprepare(sport->clk_per);
1691 	clk_disable_unprepare(sport->clk_ipg);
1692 }
1693 
1694 /* called with port.lock taken and irqs off */
1695 static void imx_uart_flush_buffer(struct uart_port *port)
1696 {
1697 	struct imx_port *sport = to_imx_port(port);
1698 	struct scatterlist *sgl = &sport->tx_sgl[0];
1699 
1700 	if (!sport->dma_chan_tx)
1701 		return;
1702 
1703 	sport->tx_bytes = 0;
1704 	dmaengine_terminate_all(sport->dma_chan_tx);
1705 	if (sport->dma_is_txing) {
1706 		u32 ucr1;
1707 
1708 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1709 			     DMA_TO_DEVICE);
1710 		ucr1 = imx_uart_readl(sport, UCR1);
1711 		ucr1 &= ~UCR1_TXDMAEN;
1712 		imx_uart_writel(sport, ucr1, UCR1);
1713 		sport->dma_is_txing = 0;
1714 	}
1715 
1716 	imx_uart_soft_reset(sport);
1717 
1718 }
1719 
1720 static void
1721 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1722 		     const struct ktermios *old)
1723 {
1724 	struct imx_port *sport = to_imx_port(port);
1725 	unsigned long flags;
1726 	u32 ucr2, old_ucr2, ufcr;
1727 	unsigned int baud, quot;
1728 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1729 	unsigned long div;
1730 	unsigned long num, denom, old_ubir, old_ubmr;
1731 	uint64_t tdiv64;
1732 
1733 	/*
1734 	 * We only support CS7 and CS8.
1735 	 */
1736 	while ((termios->c_cflag & CSIZE) != CS7 &&
1737 	       (termios->c_cflag & CSIZE) != CS8) {
1738 		termios->c_cflag &= ~CSIZE;
1739 		termios->c_cflag |= old_csize;
1740 		old_csize = CS8;
1741 	}
1742 
1743 	del_timer_sync(&sport->timer);
1744 
1745 	/*
1746 	 * Ask the core to calculate the divisor for us.
1747 	 */
1748 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1749 	quot = uart_get_divisor(port, baud);
1750 
1751 	uart_port_lock_irqsave(&sport->port, &flags);
1752 
1753 	/*
1754 	 * Read current UCR2 and save it for future use, then clear all the bits
1755 	 * except those we will or may need to preserve.
1756 	 */
1757 	old_ucr2 = imx_uart_readl(sport, UCR2);
1758 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1759 
1760 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1761 	if ((termios->c_cflag & CSIZE) == CS8)
1762 		ucr2 |= UCR2_WS;
1763 
1764 	if (!sport->have_rtscts)
1765 		termios->c_cflag &= ~CRTSCTS;
1766 
1767 	if (port->rs485.flags & SER_RS485_ENABLED) {
1768 		/*
1769 		 * RTS is mandatory for rs485 operation, so keep
1770 		 * it under manual control and keep transmitter
1771 		 * disabled.
1772 		 */
1773 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1774 			imx_uart_rts_active(sport, &ucr2);
1775 		else
1776 			imx_uart_rts_inactive(sport, &ucr2);
1777 
1778 	} else if (termios->c_cflag & CRTSCTS) {
1779 		/*
1780 		 * Only let receiver control RTS output if we were not requested
1781 		 * to have RTS inactive (which then should take precedence).
1782 		 */
1783 		if (ucr2 & UCR2_CTS)
1784 			ucr2 |= UCR2_CTSC;
1785 	}
1786 
1787 	if (termios->c_cflag & CRTSCTS)
1788 		ucr2 &= ~UCR2_IRTS;
1789 	if (termios->c_cflag & CSTOPB)
1790 		ucr2 |= UCR2_STPB;
1791 	if (termios->c_cflag & PARENB) {
1792 		ucr2 |= UCR2_PREN;
1793 		if (termios->c_cflag & PARODD)
1794 			ucr2 |= UCR2_PROE;
1795 	}
1796 
1797 	sport->port.read_status_mask = 0;
1798 	if (termios->c_iflag & INPCK)
1799 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1800 	if (termios->c_iflag & (BRKINT | PARMRK))
1801 		sport->port.read_status_mask |= URXD_BRK;
1802 
1803 	/*
1804 	 * Characters to ignore
1805 	 */
1806 	sport->port.ignore_status_mask = 0;
1807 	if (termios->c_iflag & IGNPAR)
1808 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1809 	if (termios->c_iflag & IGNBRK) {
1810 		sport->port.ignore_status_mask |= URXD_BRK;
1811 		/*
1812 		 * If we're ignoring parity and break indicators,
1813 		 * ignore overruns too (for real raw support).
1814 		 */
1815 		if (termios->c_iflag & IGNPAR)
1816 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1817 	}
1818 
1819 	if ((termios->c_cflag & CREAD) == 0)
1820 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1821 
1822 	/*
1823 	 * Update the per-port timeout.
1824 	 */
1825 	uart_update_timeout(port, termios->c_cflag, baud);
1826 
1827 	/* custom-baudrate handling */
1828 	div = sport->port.uartclk / (baud * 16);
1829 	if (baud == 38400 && quot != div)
1830 		baud = sport->port.uartclk / (quot * 16);
1831 
1832 	div = sport->port.uartclk / (baud * 16);
1833 	if (div > 7)
1834 		div = 7;
1835 	if (!div)
1836 		div = 1;
1837 
1838 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1839 		1 << 16, 1 << 16, &num, &denom);
1840 
1841 	tdiv64 = sport->port.uartclk;
1842 	tdiv64 *= num;
1843 	do_div(tdiv64, denom * 16 * div);
1844 	tty_termios_encode_baud_rate(termios,
1845 				(speed_t)tdiv64, (speed_t)tdiv64);
1846 
1847 	num -= 1;
1848 	denom -= 1;
1849 
1850 	ufcr = imx_uart_readl(sport, UFCR);
1851 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1852 	imx_uart_writel(sport, ufcr, UFCR);
1853 
1854 	/*
1855 	 *  Two registers below should always be written both and in this
1856 	 *  particular order. One consequence is that we need to check if any of
1857 	 *  them changes and then update both. We do need the check for change
1858 	 *  as even writing the same values seem to "restart"
1859 	 *  transmission/receiving logic in the hardware, that leads to data
1860 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1861 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1862 	 */
1863 	old_ubir = imx_uart_readl(sport, UBIR);
1864 	old_ubmr = imx_uart_readl(sport, UBMR);
1865 	if (old_ubir != num || old_ubmr != denom) {
1866 		imx_uart_writel(sport, num, UBIR);
1867 		imx_uart_writel(sport, denom, UBMR);
1868 	}
1869 
1870 	if (!imx_uart_is_imx1(sport))
1871 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1872 				IMX21_ONEMS);
1873 
1874 	imx_uart_writel(sport, ucr2, UCR2);
1875 
1876 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1877 		imx_uart_enable_ms(&sport->port);
1878 
1879 	uart_port_unlock_irqrestore(&sport->port, flags);
1880 }
1881 
1882 static const char *imx_uart_type(struct uart_port *port)
1883 {
1884 	return port->type == PORT_IMX ? "IMX" : NULL;
1885 }
1886 
1887 /*
1888  * Configure/autoconfigure the port.
1889  */
1890 static void imx_uart_config_port(struct uart_port *port, int flags)
1891 {
1892 	if (flags & UART_CONFIG_TYPE)
1893 		port->type = PORT_IMX;
1894 }
1895 
1896 /*
1897  * Verify the new serial_struct (for TIOCSSERIAL).
1898  * The only change we allow are to the flags and type, and
1899  * even then only between PORT_IMX and PORT_UNKNOWN
1900  */
1901 static int
1902 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1903 {
1904 	int ret = 0;
1905 
1906 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1907 		ret = -EINVAL;
1908 	if (port->irq != ser->irq)
1909 		ret = -EINVAL;
1910 	if (ser->io_type != UPIO_MEM)
1911 		ret = -EINVAL;
1912 	if (port->uartclk / 16 != ser->baud_base)
1913 		ret = -EINVAL;
1914 	if (port->mapbase != (unsigned long)ser->iomem_base)
1915 		ret = -EINVAL;
1916 	if (port->iobase != ser->port)
1917 		ret = -EINVAL;
1918 	if (ser->hub6 != 0)
1919 		ret = -EINVAL;
1920 	return ret;
1921 }
1922 
1923 #if defined(CONFIG_CONSOLE_POLL)
1924 
1925 static int imx_uart_poll_init(struct uart_port *port)
1926 {
1927 	struct imx_port *sport = to_imx_port(port);
1928 	unsigned long flags;
1929 	u32 ucr1, ucr2;
1930 	int retval;
1931 
1932 	retval = clk_prepare_enable(sport->clk_ipg);
1933 	if (retval)
1934 		return retval;
1935 	retval = clk_prepare_enable(sport->clk_per);
1936 	if (retval)
1937 		clk_disable_unprepare(sport->clk_ipg);
1938 
1939 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1940 
1941 	uart_port_lock_irqsave(&sport->port, &flags);
1942 
1943 	/*
1944 	 * Be careful about the order of enabling bits here. First enable the
1945 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1946 	 * This prevents that a character that already sits in the RX fifo is
1947 	 * triggering an irq but the try to fetch it from there results in an
1948 	 * exception because UARTEN or RXEN is still off.
1949 	 */
1950 	ucr1 = imx_uart_readl(sport, UCR1);
1951 	ucr2 = imx_uart_readl(sport, UCR2);
1952 
1953 	if (imx_uart_is_imx1(sport))
1954 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1955 
1956 	ucr1 |= UCR1_UARTEN;
1957 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1958 
1959 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1960 	ucr2 &= ~UCR2_ATEN;
1961 
1962 	imx_uart_writel(sport, ucr1, UCR1);
1963 	imx_uart_writel(sport, ucr2, UCR2);
1964 
1965 	/* now enable irqs */
1966 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1967 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1968 
1969 	uart_port_unlock_irqrestore(&sport->port, flags);
1970 
1971 	return 0;
1972 }
1973 
1974 static int imx_uart_poll_get_char(struct uart_port *port)
1975 {
1976 	struct imx_port *sport = to_imx_port(port);
1977 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1978 		return NO_POLL_CHAR;
1979 
1980 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1981 }
1982 
1983 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1984 {
1985 	struct imx_port *sport = to_imx_port(port);
1986 	unsigned int status;
1987 
1988 	/* drain */
1989 	do {
1990 		status = imx_uart_readl(sport, USR1);
1991 	} while (~status & USR1_TRDY);
1992 
1993 	/* write */
1994 	imx_uart_writel(sport, c, URTX0);
1995 
1996 	/* flush */
1997 	do {
1998 		status = imx_uart_readl(sport, USR2);
1999 	} while (~status & USR2_TXDC);
2000 }
2001 #endif
2002 
2003 /* called with port.lock taken and irqs off or from .probe without locking */
2004 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
2005 				 struct serial_rs485 *rs485conf)
2006 {
2007 	struct imx_port *sport = to_imx_port(port);
2008 	u32 ucr2, ufcr;
2009 
2010 	if (rs485conf->flags & SER_RS485_ENABLED) {
2011 		/* Enable receiver if low-active RTS signal is requested */
2012 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
2013 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
2014 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
2015 
2016 		/* disable transmitter */
2017 		ucr2 = imx_uart_readl(sport, UCR2);
2018 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
2019 			imx_uart_rts_active(sport, &ucr2);
2020 		else
2021 			imx_uart_rts_inactive(sport, &ucr2);
2022 		imx_uart_writel(sport, ucr2, UCR2);
2023 	}
2024 
2025 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
2026 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
2027 	    rs485conf->flags & SER_RS485_RX_DURING_TX) {
2028 		/* If the receiver trigger is 0, set it to a default value */
2029 		ufcr = imx_uart_readl(sport, UFCR);
2030 		if ((ufcr & UFCR_RXTL_MASK) == 0)
2031 			imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2032 		imx_uart_start_rx(port);
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 static const struct uart_ops imx_uart_pops = {
2039 	.tx_empty	= imx_uart_tx_empty,
2040 	.set_mctrl	= imx_uart_set_mctrl,
2041 	.get_mctrl	= imx_uart_get_mctrl,
2042 	.stop_tx	= imx_uart_stop_tx,
2043 	.start_tx	= imx_uart_start_tx,
2044 	.stop_rx	= imx_uart_stop_rx,
2045 	.enable_ms	= imx_uart_enable_ms,
2046 	.break_ctl	= imx_uart_break_ctl,
2047 	.startup	= imx_uart_startup,
2048 	.shutdown	= imx_uart_shutdown,
2049 	.flush_buffer	= imx_uart_flush_buffer,
2050 	.set_termios	= imx_uart_set_termios,
2051 	.type		= imx_uart_type,
2052 	.config_port	= imx_uart_config_port,
2053 	.verify_port	= imx_uart_verify_port,
2054 #if defined(CONFIG_CONSOLE_POLL)
2055 	.poll_init      = imx_uart_poll_init,
2056 	.poll_get_char  = imx_uart_poll_get_char,
2057 	.poll_put_char  = imx_uart_poll_put_char,
2058 #endif
2059 };
2060 
2061 static struct imx_port *imx_uart_ports[UART_NR];
2062 
2063 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
2064 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
2065 {
2066 	struct imx_port *sport = to_imx_port(port);
2067 
2068 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
2069 		barrier();
2070 
2071 	imx_uart_writel(sport, ch, URTX0);
2072 }
2073 
2074 /*
2075  * Interrupts are disabled on entering
2076  */
2077 static void
2078 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2079 {
2080 	struct imx_port *sport = imx_uart_ports[co->index];
2081 	struct imx_port_ucrs old_ucr;
2082 	unsigned long flags;
2083 	unsigned int ucr1, usr2;
2084 	int locked = 1;
2085 
2086 	if (sport->port.sysrq)
2087 		locked = 0;
2088 	else if (oops_in_progress)
2089 		locked = uart_port_trylock_irqsave(&sport->port, &flags);
2090 	else
2091 		uart_port_lock_irqsave(&sport->port, &flags);
2092 
2093 	/*
2094 	 *	First, save UCR1/2/3 and then disable interrupts
2095 	 */
2096 	imx_uart_ucrs_save(sport, &old_ucr);
2097 	ucr1 = old_ucr.ucr1;
2098 
2099 	if (imx_uart_is_imx1(sport))
2100 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2101 	ucr1 |= UCR1_UARTEN;
2102 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2103 
2104 	imx_uart_writel(sport, ucr1, UCR1);
2105 
2106 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2107 
2108 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2109 
2110 	/*
2111 	 *	Finally, wait for transmitter to become empty
2112 	 *	and restore UCR1/2/3
2113 	 */
2114 	read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC,
2115 				 0, USEC_PER_SEC, false, sport, USR2);
2116 	imx_uart_ucrs_restore(sport, &old_ucr);
2117 
2118 	if (locked)
2119 		uart_port_unlock_irqrestore(&sport->port, flags);
2120 }
2121 
2122 /*
2123  * If the port was already initialised (eg, by a boot loader),
2124  * try to determine the current setup.
2125  */
2126 static void
2127 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2128 			     int *parity, int *bits)
2129 {
2130 
2131 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2132 		/* ok, the port was enabled */
2133 		unsigned int ucr2, ubir, ubmr, uartclk;
2134 		unsigned int baud_raw;
2135 		unsigned int ucfr_rfdiv;
2136 
2137 		ucr2 = imx_uart_readl(sport, UCR2);
2138 
2139 		*parity = 'n';
2140 		if (ucr2 & UCR2_PREN) {
2141 			if (ucr2 & UCR2_PROE)
2142 				*parity = 'o';
2143 			else
2144 				*parity = 'e';
2145 		}
2146 
2147 		if (ucr2 & UCR2_WS)
2148 			*bits = 8;
2149 		else
2150 			*bits = 7;
2151 
2152 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2153 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2154 
2155 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2156 		if (ucfr_rfdiv == 6)
2157 			ucfr_rfdiv = 7;
2158 		else
2159 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2160 
2161 		uartclk = clk_get_rate(sport->clk_per);
2162 		uartclk /= ucfr_rfdiv;
2163 
2164 		{	/*
2165 			 * The next code provides exact computation of
2166 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2167 			 * without need of float support or long long division,
2168 			 * which would be required to prevent 32bit arithmetic overflow
2169 			 */
2170 			unsigned int mul = ubir + 1;
2171 			unsigned int div = 16 * (ubmr + 1);
2172 			unsigned int rem = uartclk % div;
2173 
2174 			baud_raw = (uartclk / div) * mul;
2175 			baud_raw += (rem * mul + div / 2) / div;
2176 			*baud = (baud_raw + 50) / 100 * 100;
2177 		}
2178 
2179 		if (*baud != baud_raw)
2180 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2181 				baud_raw, *baud);
2182 	}
2183 }
2184 
2185 static int
2186 imx_uart_console_setup(struct console *co, char *options)
2187 {
2188 	struct imx_port *sport;
2189 	int baud = 9600;
2190 	int bits = 8;
2191 	int parity = 'n';
2192 	int flow = 'n';
2193 	int retval;
2194 
2195 	/*
2196 	 * Check whether an invalid uart number has been specified, and
2197 	 * if so, search for the first available port that does have
2198 	 * console support.
2199 	 */
2200 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2201 		co->index = 0;
2202 	sport = imx_uart_ports[co->index];
2203 	if (sport == NULL)
2204 		return -ENODEV;
2205 
2206 	/* For setting the registers, we only need to enable the ipg clock. */
2207 	retval = clk_prepare_enable(sport->clk_ipg);
2208 	if (retval)
2209 		goto error_console;
2210 
2211 	if (options)
2212 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2213 	else
2214 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2215 
2216 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2217 
2218 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2219 
2220 	if (retval) {
2221 		clk_disable_unprepare(sport->clk_ipg);
2222 		goto error_console;
2223 	}
2224 
2225 	retval = clk_prepare_enable(sport->clk_per);
2226 	if (retval)
2227 		clk_disable_unprepare(sport->clk_ipg);
2228 
2229 error_console:
2230 	return retval;
2231 }
2232 
2233 static int
2234 imx_uart_console_exit(struct console *co)
2235 {
2236 	struct imx_port *sport = imx_uart_ports[co->index];
2237 
2238 	clk_disable_unprepare(sport->clk_per);
2239 	clk_disable_unprepare(sport->clk_ipg);
2240 
2241 	return 0;
2242 }
2243 
2244 static struct uart_driver imx_uart_uart_driver;
2245 static struct console imx_uart_console = {
2246 	.name		= DEV_NAME,
2247 	.write		= imx_uart_console_write,
2248 	.device		= uart_console_device,
2249 	.setup		= imx_uart_console_setup,
2250 	.exit		= imx_uart_console_exit,
2251 	.flags		= CON_PRINTBUFFER,
2252 	.index		= -1,
2253 	.data		= &imx_uart_uart_driver,
2254 };
2255 
2256 #define IMX_CONSOLE	&imx_uart_console
2257 
2258 #else
2259 #define IMX_CONSOLE	NULL
2260 #endif
2261 
2262 static struct uart_driver imx_uart_uart_driver = {
2263 	.owner          = THIS_MODULE,
2264 	.driver_name    = DRIVER_NAME,
2265 	.dev_name       = DEV_NAME,
2266 	.major          = SERIAL_IMX_MAJOR,
2267 	.minor          = MINOR_START,
2268 	.nr             = ARRAY_SIZE(imx_uart_ports),
2269 	.cons           = IMX_CONSOLE,
2270 };
2271 
2272 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2273 {
2274 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2275 	unsigned long flags;
2276 
2277 	uart_port_lock_irqsave(&sport->port, &flags);
2278 	if (sport->tx_state == WAIT_AFTER_RTS)
2279 		imx_uart_start_tx(&sport->port);
2280 	uart_port_unlock_irqrestore(&sport->port, flags);
2281 
2282 	return HRTIMER_NORESTART;
2283 }
2284 
2285 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2286 {
2287 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2288 	unsigned long flags;
2289 
2290 	uart_port_lock_irqsave(&sport->port, &flags);
2291 	if (sport->tx_state == WAIT_AFTER_SEND)
2292 		imx_uart_stop_tx(&sport->port);
2293 	uart_port_unlock_irqrestore(&sport->port, flags);
2294 
2295 	return HRTIMER_NORESTART;
2296 }
2297 
2298 static const struct serial_rs485 imx_rs485_supported = {
2299 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2300 		 SER_RS485_RX_DURING_TX,
2301 	.delay_rts_before_send = 1,
2302 	.delay_rts_after_send = 1,
2303 };
2304 
2305 /* Default RX DMA buffer configuration */
2306 #define RX_DMA_PERIODS		16
2307 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2308 
2309 static int imx_uart_probe(struct platform_device *pdev)
2310 {
2311 	struct device_node *np = pdev->dev.of_node;
2312 	struct imx_port *sport;
2313 	void __iomem *base;
2314 	u32 dma_buf_conf[2];
2315 	int ret = 0;
2316 	u32 ucr1, ucr2, uts;
2317 	struct resource *res;
2318 	int txirq, rxirq, rtsirq;
2319 
2320 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2321 	if (!sport)
2322 		return -ENOMEM;
2323 
2324 	sport->devdata = of_device_get_match_data(&pdev->dev);
2325 
2326 	ret = of_alias_get_id(np, "serial");
2327 	if (ret < 0) {
2328 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2329 		return ret;
2330 	}
2331 	sport->port.line = ret;
2332 
2333 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2334 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2335 
2336 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2337 
2338 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2339 
2340 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2341 
2342 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2343 
2344 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2345 		sport->rx_period_length = dma_buf_conf[0];
2346 		sport->rx_periods = dma_buf_conf[1];
2347 	} else {
2348 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2349 		sport->rx_periods = RX_DMA_PERIODS;
2350 	}
2351 
2352 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2353 		dev_err(&pdev->dev, "serial%d out of range\n",
2354 			sport->port.line);
2355 		return -EINVAL;
2356 	}
2357 
2358 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2359 	if (IS_ERR(base))
2360 		return PTR_ERR(base);
2361 
2362 	rxirq = platform_get_irq(pdev, 0);
2363 	if (rxirq < 0)
2364 		return rxirq;
2365 	txirq = platform_get_irq_optional(pdev, 1);
2366 	rtsirq = platform_get_irq_optional(pdev, 2);
2367 
2368 	sport->port.dev = &pdev->dev;
2369 	sport->port.mapbase = res->start;
2370 	sport->port.membase = base;
2371 	sport->port.type = PORT_IMX;
2372 	sport->port.iotype = UPIO_MEM;
2373 	sport->port.irq = rxirq;
2374 	sport->port.fifosize = 32;
2375 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2376 	sport->port.ops = &imx_uart_pops;
2377 	sport->port.rs485_config = imx_uart_rs485_config;
2378 	/* RTS is required to control the RS485 transmitter */
2379 	if (sport->have_rtscts || sport->have_rtsgpio)
2380 		sport->port.rs485_supported = imx_rs485_supported;
2381 	sport->port.flags = UPF_BOOT_AUTOCONF;
2382 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2383 
2384 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2385 	if (IS_ERR(sport->gpios))
2386 		return PTR_ERR(sport->gpios);
2387 
2388 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2389 	if (IS_ERR(sport->clk_ipg)) {
2390 		ret = PTR_ERR(sport->clk_ipg);
2391 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2392 		return ret;
2393 	}
2394 
2395 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2396 	if (IS_ERR(sport->clk_per)) {
2397 		ret = PTR_ERR(sport->clk_per);
2398 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2399 		return ret;
2400 	}
2401 
2402 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2403 
2404 	/* For register access, we only need to enable the ipg clock. */
2405 	ret = clk_prepare_enable(sport->clk_ipg);
2406 	if (ret) {
2407 		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2408 		return ret;
2409 	}
2410 
2411 	ret = uart_get_rs485_mode(&sport->port);
2412 	if (ret)
2413 		goto err_clk;
2414 
2415 	/*
2416 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2417 	 * signal cannot be set low during transmission in case the
2418 	 * receiver is off (limitation of the i.MX UART IP).
2419 	 */
2420 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2421 	    sport->have_rtscts && !sport->have_rtsgpio &&
2422 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2423 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2424 		dev_err(&pdev->dev,
2425 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2426 
2427 	/* Disable interrupts before requesting them */
2428 	ucr1 = imx_uart_readl(sport, UCR1);
2429 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2430 	imx_uart_writel(sport, ucr1, UCR1);
2431 
2432 	/* Disable Ageing Timer interrupt */
2433 	ucr2 = imx_uart_readl(sport, UCR2);
2434 	ucr2 &= ~UCR2_ATEN;
2435 	imx_uart_writel(sport, ucr2, UCR2);
2436 
2437 	/*
2438 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2439 	 * is used to control CTS signal. Keep both the UART and Receiver
2440 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2441 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2442 	 * data from being fed into the RX FIFO, enable loopback mode in
2443 	 * UTS register, which disconnects the RX path from external RXD
2444 	 * pin and connects it to the Transceiver, which is disabled, so
2445 	 * no data can be fed to the RX FIFO that way.
2446 	 */
2447 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2448 	    sport->have_rtscts && !sport->have_rtsgpio) {
2449 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2450 		uts |= UTS_LOOP;
2451 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2452 
2453 		ucr1 = imx_uart_readl(sport, UCR1);
2454 		ucr1 |= UCR1_UARTEN;
2455 		imx_uart_writel(sport, ucr1, UCR1);
2456 
2457 		ucr2 = imx_uart_readl(sport, UCR2);
2458 		ucr2 |= UCR2_RXEN;
2459 		imx_uart_writel(sport, ucr2, UCR2);
2460 	}
2461 
2462 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2463 		/*
2464 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2465 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2466 		 * and DCD (when they are outputs) or enables the respective
2467 		 * irqs. So set this bit early, i.e. before requesting irqs.
2468 		 */
2469 		u32 ufcr = imx_uart_readl(sport, UFCR);
2470 		if (!(ufcr & UFCR_DCEDTE))
2471 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2472 
2473 		/*
2474 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2475 		 * enabled later because they cannot be cleared
2476 		 * (confirmed on i.MX25) which makes them unusable.
2477 		 */
2478 		imx_uart_writel(sport,
2479 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2480 				UCR3);
2481 
2482 	} else {
2483 		u32 ucr3 = UCR3_DSR;
2484 		u32 ufcr = imx_uart_readl(sport, UFCR);
2485 		if (ufcr & UFCR_DCEDTE)
2486 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2487 
2488 		if (!imx_uart_is_imx1(sport))
2489 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2490 		imx_uart_writel(sport, ucr3, UCR3);
2491 	}
2492 
2493 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2494 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2495 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2496 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2497 
2498 	/*
2499 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2500 	 * chips only have one interrupt.
2501 	 */
2502 	if (txirq > 0) {
2503 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2504 				       dev_name(&pdev->dev), sport);
2505 		if (ret) {
2506 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2507 				ret);
2508 			goto err_clk;
2509 		}
2510 
2511 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2512 				       dev_name(&pdev->dev), sport);
2513 		if (ret) {
2514 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2515 				ret);
2516 			goto err_clk;
2517 		}
2518 
2519 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2520 				       dev_name(&pdev->dev), sport);
2521 		if (ret) {
2522 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2523 				ret);
2524 			goto err_clk;
2525 		}
2526 	} else {
2527 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2528 				       dev_name(&pdev->dev), sport);
2529 		if (ret) {
2530 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2531 			goto err_clk;
2532 		}
2533 	}
2534 
2535 	imx_uart_ports[sport->port.line] = sport;
2536 
2537 	platform_set_drvdata(pdev, sport);
2538 
2539 	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2540 
2541 err_clk:
2542 	clk_disable_unprepare(sport->clk_ipg);
2543 
2544 	return ret;
2545 }
2546 
2547 static void imx_uart_remove(struct platform_device *pdev)
2548 {
2549 	struct imx_port *sport = platform_get_drvdata(pdev);
2550 
2551 	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2552 }
2553 
2554 static void imx_uart_restore_context(struct imx_port *sport)
2555 {
2556 	unsigned long flags;
2557 
2558 	uart_port_lock_irqsave(&sport->port, &flags);
2559 	if (!sport->context_saved) {
2560 		uart_port_unlock_irqrestore(&sport->port, flags);
2561 		return;
2562 	}
2563 
2564 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2565 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2566 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2567 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2568 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2569 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2570 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2571 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2572 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2573 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2574 	sport->context_saved = false;
2575 	uart_port_unlock_irqrestore(&sport->port, flags);
2576 }
2577 
2578 static void imx_uart_save_context(struct imx_port *sport)
2579 {
2580 	unsigned long flags;
2581 
2582 	/* Save necessary regs */
2583 	uart_port_lock_irqsave(&sport->port, &flags);
2584 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2585 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2586 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2587 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2588 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2589 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2590 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2591 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2592 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2593 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2594 	sport->context_saved = true;
2595 	uart_port_unlock_irqrestore(&sport->port, flags);
2596 }
2597 
2598 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2599 {
2600 	u32 ucr3;
2601 
2602 	ucr3 = imx_uart_readl(sport, UCR3);
2603 	if (on) {
2604 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2605 		ucr3 |= UCR3_AWAKEN;
2606 	} else {
2607 		ucr3 &= ~UCR3_AWAKEN;
2608 	}
2609 	imx_uart_writel(sport, ucr3, UCR3);
2610 
2611 	if (sport->have_rtscts) {
2612 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2613 		if (on) {
2614 			imx_uart_writel(sport, USR1_RTSD, USR1);
2615 			ucr1 |= UCR1_RTSDEN;
2616 		} else {
2617 			ucr1 &= ~UCR1_RTSDEN;
2618 		}
2619 		imx_uart_writel(sport, ucr1, UCR1);
2620 	}
2621 }
2622 
2623 static int imx_uart_suspend_noirq(struct device *dev)
2624 {
2625 	struct imx_port *sport = dev_get_drvdata(dev);
2626 
2627 	imx_uart_save_context(sport);
2628 
2629 	clk_disable(sport->clk_ipg);
2630 
2631 	pinctrl_pm_select_sleep_state(dev);
2632 
2633 	return 0;
2634 }
2635 
2636 static int imx_uart_resume_noirq(struct device *dev)
2637 {
2638 	struct imx_port *sport = dev_get_drvdata(dev);
2639 	int ret;
2640 
2641 	pinctrl_pm_select_default_state(dev);
2642 
2643 	ret = clk_enable(sport->clk_ipg);
2644 	if (ret)
2645 		return ret;
2646 
2647 	imx_uart_restore_context(sport);
2648 
2649 	return 0;
2650 }
2651 
2652 static int imx_uart_suspend(struct device *dev)
2653 {
2654 	struct imx_port *sport = dev_get_drvdata(dev);
2655 	int ret;
2656 
2657 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2658 	disable_irq(sport->port.irq);
2659 
2660 	ret = clk_prepare_enable(sport->clk_ipg);
2661 	if (ret)
2662 		return ret;
2663 
2664 	/* enable wakeup from i.MX UART */
2665 	imx_uart_enable_wakeup(sport, true);
2666 
2667 	return 0;
2668 }
2669 
2670 static int imx_uart_resume(struct device *dev)
2671 {
2672 	struct imx_port *sport = dev_get_drvdata(dev);
2673 
2674 	/* disable wakeup from i.MX UART */
2675 	imx_uart_enable_wakeup(sport, false);
2676 
2677 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2678 	enable_irq(sport->port.irq);
2679 
2680 	clk_disable_unprepare(sport->clk_ipg);
2681 
2682 	return 0;
2683 }
2684 
2685 static int imx_uart_freeze(struct device *dev)
2686 {
2687 	struct imx_port *sport = dev_get_drvdata(dev);
2688 
2689 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2690 
2691 	return clk_prepare_enable(sport->clk_ipg);
2692 }
2693 
2694 static int imx_uart_thaw(struct device *dev)
2695 {
2696 	struct imx_port *sport = dev_get_drvdata(dev);
2697 
2698 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2699 
2700 	clk_disable_unprepare(sport->clk_ipg);
2701 
2702 	return 0;
2703 }
2704 
2705 static const struct dev_pm_ops imx_uart_pm_ops = {
2706 	.suspend_noirq = imx_uart_suspend_noirq,
2707 	.resume_noirq = imx_uart_resume_noirq,
2708 	.freeze_noirq = imx_uart_suspend_noirq,
2709 	.thaw_noirq = imx_uart_resume_noirq,
2710 	.restore_noirq = imx_uart_resume_noirq,
2711 	.suspend = imx_uart_suspend,
2712 	.resume = imx_uart_resume,
2713 	.freeze = imx_uart_freeze,
2714 	.thaw = imx_uart_thaw,
2715 	.restore = imx_uart_thaw,
2716 };
2717 
2718 static struct platform_driver imx_uart_platform_driver = {
2719 	.probe = imx_uart_probe,
2720 	.remove_new = imx_uart_remove,
2721 
2722 	.driver = {
2723 		.name = "imx-uart",
2724 		.of_match_table = imx_uart_dt_ids,
2725 		.pm = &imx_uart_pm_ops,
2726 	},
2727 };
2728 
2729 static int __init imx_uart_init(void)
2730 {
2731 	int ret = uart_register_driver(&imx_uart_uart_driver);
2732 
2733 	if (ret)
2734 		return ret;
2735 
2736 	ret = platform_driver_register(&imx_uart_platform_driver);
2737 	if (ret != 0)
2738 		uart_unregister_driver(&imx_uart_uart_driver);
2739 
2740 	return ret;
2741 }
2742 
2743 static void __exit imx_uart_exit(void)
2744 {
2745 	platform_driver_unregister(&imx_uart_platform_driver);
2746 	uart_unregister_driver(&imx_uart_uart_driver);
2747 }
2748 
2749 module_init(imx_uart_init);
2750 module_exit(imx_uart_exit);
2751 
2752 MODULE_AUTHOR("Sascha Hauer");
2753 MODULE_DESCRIPTION("IMX generic serial port driver");
2754 MODULE_LICENSE("GPL");
2755 MODULE_ALIAS("platform:imx-uart");
2756