xref: /linux/drivers/tty/serial/imx.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/circ_buf.h>
12 #include <linux/module.h>
13 #include <linux/ioport.h>
14 #include <linux/init.h>
15 #include <linux/console.h>
16 #include <linux/sysrq.h>
17 #include <linux/platform_device.h>
18 #include <linux/tty.h>
19 #include <linux/tty_flip.h>
20 #include <linux/serial_core.h>
21 #include <linux/serial.h>
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/ktime.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/rational.h>
27 #include <linux/slab.h>
28 #include <linux/of.h>
29 #include <linux/io.h>
30 #include <linux/iopoll.h>
31 #include <linux/dma-mapping.h>
32 
33 #include <asm/irq.h>
34 #include <linux/dma/imx-dma.h>
35 
36 #include "serial_mctrl_gpio.h"
37 
38 /* Register definitions */
39 #define URXD0 0x0  /* Receiver Register */
40 #define URTX0 0x40 /* Transmitter Register */
41 #define UCR1  0x80 /* Control Register 1 */
42 #define UCR2  0x84 /* Control Register 2 */
43 #define UCR3  0x88 /* Control Register 3 */
44 #define UCR4  0x8c /* Control Register 4 */
45 #define UFCR  0x90 /* FIFO Control Register */
46 #define USR1  0x94 /* Status Register 1 */
47 #define USR2  0x98 /* Status Register 2 */
48 #define UESC  0x9c /* Escape Character Register */
49 #define UTIM  0xa0 /* Escape Timer Register */
50 #define UBIR  0xa4 /* BRM Incremental Register */
51 #define UBMR  0xa8 /* BRM Modulator Register */
52 #define UBRC  0xac /* Baud Rate Count Register */
53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
56 
57 /* UART Control Register Bit Fields.*/
58 #define URXD_DUMMY_READ (1<<16)
59 #define URXD_CHARRDY	(1<<15)
60 #define URXD_ERR	(1<<14)
61 #define URXD_OVRRUN	(1<<13)
62 #define URXD_FRMERR	(1<<12)
63 #define URXD_BRK	(1<<11)
64 #define URXD_PRERR	(1<<10)
65 #define URXD_RX_DATA	(0xFF<<0)
66 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
67 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
68 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
69 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
71 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
72 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
73 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
74 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
75 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
76 #define UCR1_SNDBRK	(1<<4)	/* Send break */
77 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
79 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
80 #define UCR1_DOZE	(1<<1)	/* Doze */
81 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
82 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
83 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
84 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
85 #define UCR2_CTS	(1<<12)	/* Clear to send */
86 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
87 #define UCR2_PREN	(1<<8)	/* Parity enable */
88 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
89 #define UCR2_STPB	(1<<6)	/* Stop */
90 #define UCR2_WS		(1<<5)	/* Word size */
91 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
92 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
93 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
94 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
95 #define UCR2_SRST	(1<<0)	/* SW reset */
96 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
97 #define UCR3_PARERREN	(1<<12) /* Parity enable */
98 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
99 #define UCR3_DSR	(1<<10) /* Data set ready */
100 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
101 #define UCR3_RI		(1<<8)	/* Ring indicator */
102 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
103 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
104 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
105 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
106 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
107 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
108 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
109 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
110 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
111 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
112 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
113 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
114 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
115 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
116 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
117 #define UCR4_IRSC	(1<<5)	/* IR special case */
118 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
119 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
120 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
121 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
122 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
123 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
124 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
125 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
126 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
127 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
128 #define USR1_RTSS	(1<<14) /* RTS pin status */
129 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
130 #define USR1_RTSD	(1<<12) /* RTS delta */
131 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
132 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
133 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
134 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
135 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
136 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
137 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
138 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
139 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
140 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
141 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
142 #define USR2_IDLE	 (1<<12) /* Idle condition */
143 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
144 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
145 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
146 #define USR2_WAKE	 (1<<7)	 /* Wake */
147 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
148 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
149 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
150 #define USR2_BRCD	 (1<<2)	 /* Break condition */
151 #define USR2_ORE	(1<<1)	 /* Overrun error */
152 #define USR2_RDR	(1<<0)	 /* Recv data ready */
153 #define UTS_FRCPERR	(1<<13) /* Force parity error */
154 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
155 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
156 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
157 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
158 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
159 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
160 
161 /* We've been assigned a range on the "Low-density serial ports" major */
162 #define SERIAL_IMX_MAJOR	207
163 #define MINOR_START		16
164 #define DEV_NAME		"ttymxc"
165 
166 /*
167  * This determines how often we check the modem status signals
168  * for any change.  They generally aren't connected to an IRQ
169  * so we have to poll them.  We also check immediately before
170  * filling the TX fifo incase CTS has been dropped.
171  */
172 #define MCTRL_TIMEOUT	(250*HZ/1000)
173 
174 #define DRIVER_NAME "IMX-uart"
175 
176 #define UART_NR 8
177 
178 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
179 enum imx_uart_type {
180 	IMX1_UART,
181 	IMX21_UART,
182 };
183 
184 /* device type dependent stuff */
185 struct imx_uart_data {
186 	unsigned uts_reg;
187 	enum imx_uart_type devtype;
188 };
189 
190 enum imx_tx_state {
191 	OFF,
192 	WAIT_AFTER_RTS,
193 	SEND,
194 	WAIT_AFTER_SEND,
195 };
196 
197 struct imx_port {
198 	struct uart_port	port;
199 	struct timer_list	timer;
200 	unsigned int		old_status;
201 	unsigned int		have_rtscts:1;
202 	unsigned int		have_rtsgpio:1;
203 	unsigned int		dte_mode:1;
204 	unsigned int		inverted_tx:1;
205 	unsigned int		inverted_rx:1;
206 	struct clk		*clk_ipg;
207 	struct clk		*clk_per;
208 	const struct imx_uart_data *devdata;
209 
210 	struct mctrl_gpios *gpios;
211 
212 	/* counter to stop 0xff flood */
213 	int idle_counter;
214 
215 	/* DMA fields */
216 	unsigned int		dma_is_enabled:1;
217 	unsigned int		dma_is_rxing:1;
218 	unsigned int		dma_is_txing:1;
219 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
220 	struct scatterlist	rx_sgl, tx_sgl[2];
221 	void			*rx_buf;
222 	struct circ_buf		rx_ring;
223 	unsigned int		rx_buf_size;
224 	unsigned int		rx_period_length;
225 	unsigned int		rx_periods;
226 	dma_cookie_t		rx_cookie;
227 	unsigned int		tx_bytes;
228 	unsigned int		dma_tx_nents;
229 	unsigned int            saved_reg[10];
230 	bool			context_saved;
231 
232 	enum imx_tx_state	tx_state;
233 	struct hrtimer		trigger_start_tx;
234 	struct hrtimer		trigger_stop_tx;
235 };
236 
237 struct imx_port_ucrs {
238 	unsigned int	ucr1;
239 	unsigned int	ucr2;
240 	unsigned int	ucr3;
241 };
242 
243 static const struct imx_uart_data imx_uart_imx1_devdata = {
244 	.uts_reg = IMX1_UTS,
245 	.devtype = IMX1_UART,
246 };
247 
248 static const struct imx_uart_data imx_uart_imx21_devdata = {
249 	.uts_reg = IMX21_UTS,
250 	.devtype = IMX21_UART,
251 };
252 
253 static const struct of_device_id imx_uart_dt_ids[] = {
254 	/*
255 	 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are
256 	 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the
257 	 * original imx6q's UART is compatible to fsl,imx21-uart. This driver
258 	 * doesn't make any distinction between these two variants.
259 	 */
260 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, },
261 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, },
262 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, },
263 	{ /* sentinel */ }
264 };
265 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
266 
267 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
268 {
269 	writel(val, sport->port.membase + offset);
270 }
271 
272 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
273 {
274 	return readl(sport->port.membase + offset);
275 }
276 
277 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
278 {
279 	return sport->devdata->uts_reg;
280 }
281 
282 static inline int imx_uart_is_imx1(struct imx_port *sport)
283 {
284 	return sport->devdata->devtype == IMX1_UART;
285 }
286 
287 /*
288  * Save and restore functions for UCR1, UCR2 and UCR3 registers
289  */
290 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
291 static void imx_uart_ucrs_save(struct imx_port *sport,
292 			       struct imx_port_ucrs *ucr)
293 {
294 	/* save control registers */
295 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
296 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
297 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
298 }
299 
300 static void imx_uart_ucrs_restore(struct imx_port *sport,
301 				  struct imx_port_ucrs *ucr)
302 {
303 	/* restore control registers */
304 	imx_uart_writel(sport, ucr->ucr1, UCR1);
305 	imx_uart_writel(sport, ucr->ucr2, UCR2);
306 	imx_uart_writel(sport, ucr->ucr3, UCR3);
307 }
308 #endif
309 
310 /* called with port.lock taken and irqs caller dependent */
311 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
312 {
313 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
314 
315 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
316 }
317 
318 /* called with port.lock taken and irqs caller dependent */
319 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
320 {
321 	*ucr2 &= ~UCR2_CTSC;
322 	*ucr2 |= UCR2_CTS;
323 
324 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
325 }
326 
327 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
328 {
329        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
330 }
331 
332 /* called with port.lock taken and irqs off */
333 static void imx_uart_soft_reset(struct imx_port *sport)
334 {
335 	int i = 10;
336 	u32 ucr2, ubir, ubmr, uts;
337 
338 	/*
339 	 * According to the Reference Manual description of the UART SRST bit:
340 	 *
341 	 * "Reset the transmit and receive state machines,
342 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
343 	 * and UTS[6-3]".
344 	 *
345 	 * We don't need to restore the old values from USR1, USR2, URXD and
346 	 * UTXD. UBRC is read only, so only save/restore the other three
347 	 * registers.
348 	 */
349 	ubir = imx_uart_readl(sport, UBIR);
350 	ubmr = imx_uart_readl(sport, UBMR);
351 	uts = imx_uart_readl(sport, IMX21_UTS);
352 
353 	ucr2 = imx_uart_readl(sport, UCR2);
354 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
355 
356 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
357 		udelay(1);
358 
359 	/* Restore the registers */
360 	imx_uart_writel(sport, ubir, UBIR);
361 	imx_uart_writel(sport, ubmr, UBMR);
362 	imx_uart_writel(sport, uts, IMX21_UTS);
363 
364 	sport->idle_counter = 0;
365 }
366 
367 static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
368 {
369 	unsigned int uts;
370 
371 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
372 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
373 	uts &= ~UTS_LOOP;
374 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
375 }
376 
377 /* called with port.lock taken and irqs off */
378 static void imx_uart_start_rx(struct uart_port *port)
379 {
380 	struct imx_port *sport = (struct imx_port *)port;
381 	unsigned int ucr1, ucr2;
382 
383 	ucr1 = imx_uart_readl(sport, UCR1);
384 	ucr2 = imx_uart_readl(sport, UCR2);
385 
386 	ucr2 |= UCR2_RXEN;
387 
388 	if (sport->dma_is_enabled) {
389 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
390 	} else {
391 		ucr1 |= UCR1_RRDYEN;
392 		ucr2 |= UCR2_ATEN;
393 	}
394 
395 	/* Write UCR2 first as it includes RXEN */
396 	imx_uart_writel(sport, ucr2, UCR2);
397 	imx_uart_writel(sport, ucr1, UCR1);
398 	imx_uart_disable_loopback_rs485(sport);
399 }
400 
401 /* called with port.lock taken and irqs off */
402 static void imx_uart_stop_tx(struct uart_port *port)
403 {
404 	struct imx_port *sport = (struct imx_port *)port;
405 	u32 ucr1, ucr4, usr2;
406 
407 	if (sport->tx_state == OFF)
408 		return;
409 
410 	/*
411 	 * We are maybe in the SMP context, so if the DMA TX thread is running
412 	 * on other cpu, we have to wait for it to finish.
413 	 */
414 	if (sport->dma_is_txing)
415 		return;
416 
417 	ucr1 = imx_uart_readl(sport, UCR1);
418 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
419 
420 	ucr4 = imx_uart_readl(sport, UCR4);
421 	usr2 = imx_uart_readl(sport, USR2);
422 	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
423 		/* The shifter is still busy, so retry once TC triggers */
424 		return;
425 	}
426 
427 	ucr4 &= ~UCR4_TCEN;
428 	imx_uart_writel(sport, ucr4, UCR4);
429 
430 	/* in rs485 mode disable transmitter */
431 	if (port->rs485.flags & SER_RS485_ENABLED) {
432 		if (sport->tx_state == SEND) {
433 			sport->tx_state = WAIT_AFTER_SEND;
434 
435 			if (port->rs485.delay_rts_after_send > 0) {
436 				start_hrtimer_ms(&sport->trigger_stop_tx,
437 					 port->rs485.delay_rts_after_send);
438 				return;
439 			}
440 
441 			/* continue without any delay */
442 		}
443 
444 		if (sport->tx_state == WAIT_AFTER_RTS ||
445 		    sport->tx_state == WAIT_AFTER_SEND) {
446 			u32 ucr2;
447 
448 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
449 
450 			ucr2 = imx_uart_readl(sport, UCR2);
451 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
452 				imx_uart_rts_active(sport, &ucr2);
453 			else
454 				imx_uart_rts_inactive(sport, &ucr2);
455 			imx_uart_writel(sport, ucr2, UCR2);
456 
457 			if (!port->rs485_rx_during_tx_gpio)
458 				imx_uart_start_rx(port);
459 
460 			sport->tx_state = OFF;
461 		}
462 	} else {
463 		sport->tx_state = OFF;
464 	}
465 }
466 
467 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback)
468 {
469 	struct imx_port *sport = (struct imx_port *)port;
470 	u32 ucr1, ucr2, ucr4, uts;
471 
472 	ucr1 = imx_uart_readl(sport, UCR1);
473 	ucr2 = imx_uart_readl(sport, UCR2);
474 	ucr4 = imx_uart_readl(sport, UCR4);
475 
476 	if (sport->dma_is_enabled) {
477 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
478 	} else {
479 		ucr1 &= ~UCR1_RRDYEN;
480 		ucr2 &= ~UCR2_ATEN;
481 		ucr4 &= ~UCR4_OREN;
482 	}
483 	imx_uart_writel(sport, ucr1, UCR1);
484 	imx_uart_writel(sport, ucr4, UCR4);
485 
486 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
487 	if (port->rs485.flags & SER_RS485_ENABLED &&
488 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
489 	    sport->have_rtscts && !sport->have_rtsgpio && loopback) {
490 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
491 		uts |= UTS_LOOP;
492 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
493 		ucr2 |= UCR2_RXEN;
494 	} else {
495 		ucr2 &= ~UCR2_RXEN;
496 	}
497 
498 	imx_uart_writel(sport, ucr2, UCR2);
499 }
500 
501 /* called with port.lock taken and irqs off */
502 static void imx_uart_stop_rx(struct uart_port *port)
503 {
504 	/*
505 	 * Stop RX and enable loopback in order to make sure RS485 bus
506 	 * is not blocked. Se comment in imx_uart_probe().
507 	 */
508 	imx_uart_stop_rx_with_loopback_ctrl(port, true);
509 }
510 
511 /* called with port.lock taken and irqs off */
512 static void imx_uart_enable_ms(struct uart_port *port)
513 {
514 	struct imx_port *sport = (struct imx_port *)port;
515 
516 	mod_timer(&sport->timer, jiffies);
517 
518 	mctrl_gpio_enable_ms(sport->gpios);
519 }
520 
521 static void imx_uart_dma_tx(struct imx_port *sport);
522 
523 /* called with port.lock taken and irqs off */
524 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
525 {
526 	struct tty_port *tport = &sport->port.state->port;
527 	unsigned char c;
528 
529 	if (sport->port.x_char) {
530 		/* Send next char */
531 		imx_uart_writel(sport, sport->port.x_char, URTX0);
532 		sport->port.icount.tx++;
533 		sport->port.x_char = 0;
534 		return;
535 	}
536 
537 	if (kfifo_is_empty(&tport->xmit_fifo) ||
538 			uart_tx_stopped(&sport->port)) {
539 		imx_uart_stop_tx(&sport->port);
540 		return;
541 	}
542 
543 	if (sport->dma_is_enabled) {
544 		u32 ucr1;
545 		/*
546 		 * We've just sent a X-char Ensure the TX DMA is enabled
547 		 * and the TX IRQ is disabled.
548 		 **/
549 		ucr1 = imx_uart_readl(sport, UCR1);
550 		ucr1 &= ~UCR1_TRDYEN;
551 		if (sport->dma_is_txing) {
552 			ucr1 |= UCR1_TXDMAEN;
553 			imx_uart_writel(sport, ucr1, UCR1);
554 		} else {
555 			imx_uart_writel(sport, ucr1, UCR1);
556 			imx_uart_dma_tx(sport);
557 		}
558 
559 		return;
560 	}
561 
562 	while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) &&
563 			uart_fifo_get(&sport->port, &c))
564 		imx_uart_writel(sport, c, URTX0);
565 
566 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
567 		uart_write_wakeup(&sport->port);
568 
569 	if (kfifo_is_empty(&tport->xmit_fifo))
570 		imx_uart_stop_tx(&sport->port);
571 }
572 
573 static void imx_uart_dma_tx_callback(void *data)
574 {
575 	struct imx_port *sport = data;
576 	struct tty_port *tport = &sport->port.state->port;
577 	struct scatterlist *sgl = &sport->tx_sgl[0];
578 	unsigned long flags;
579 	u32 ucr1;
580 
581 	uart_port_lock_irqsave(&sport->port, &flags);
582 
583 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
584 
585 	ucr1 = imx_uart_readl(sport, UCR1);
586 	ucr1 &= ~UCR1_TXDMAEN;
587 	imx_uart_writel(sport, ucr1, UCR1);
588 
589 	uart_xmit_advance(&sport->port, sport->tx_bytes);
590 
591 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
592 
593 	sport->dma_is_txing = 0;
594 
595 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
596 		uart_write_wakeup(&sport->port);
597 
598 	if (!kfifo_is_empty(&tport->xmit_fifo) &&
599 			!uart_tx_stopped(&sport->port))
600 		imx_uart_dma_tx(sport);
601 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
602 		u32 ucr4 = imx_uart_readl(sport, UCR4);
603 		ucr4 |= UCR4_TCEN;
604 		imx_uart_writel(sport, ucr4, UCR4);
605 	}
606 
607 	uart_port_unlock_irqrestore(&sport->port, flags);
608 }
609 
610 /* called with port.lock taken and irqs off */
611 static void imx_uart_dma_tx(struct imx_port *sport)
612 {
613 	struct tty_port *tport = &sport->port.state->port;
614 	struct scatterlist *sgl = sport->tx_sgl;
615 	struct dma_async_tx_descriptor *desc;
616 	struct dma_chan	*chan = sport->dma_chan_tx;
617 	struct device *dev = sport->port.dev;
618 	u32 ucr1, ucr4;
619 	int ret;
620 
621 	if (sport->dma_is_txing)
622 		return;
623 
624 	ucr4 = imx_uart_readl(sport, UCR4);
625 	ucr4 &= ~UCR4_TCEN;
626 	imx_uart_writel(sport, ucr4, UCR4);
627 
628 	sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl));
629 	sport->tx_bytes = kfifo_len(&tport->xmit_fifo);
630 	sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl,
631 			ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes);
632 
633 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
634 	if (ret == 0) {
635 		dev_err(dev, "DMA mapping error for TX.\n");
636 		return;
637 	}
638 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
639 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
640 	if (!desc) {
641 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
642 			     DMA_TO_DEVICE);
643 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
644 		return;
645 	}
646 	desc->callback = imx_uart_dma_tx_callback;
647 	desc->callback_param = sport;
648 
649 	dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes);
650 
651 	ucr1 = imx_uart_readl(sport, UCR1);
652 	ucr1 |= UCR1_TXDMAEN;
653 	imx_uart_writel(sport, ucr1, UCR1);
654 
655 	/* fire it */
656 	sport->dma_is_txing = 1;
657 	dmaengine_submit(desc);
658 	dma_async_issue_pending(chan);
659 	return;
660 }
661 
662 /* called with port.lock taken and irqs off */
663 static void imx_uart_start_tx(struct uart_port *port)
664 {
665 	struct imx_port *sport = (struct imx_port *)port;
666 	struct tty_port *tport = &sport->port.state->port;
667 	u32 ucr1;
668 
669 	if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo))
670 		return;
671 
672 	/*
673 	 * We cannot simply do nothing here if sport->tx_state == SEND already
674 	 * because UCR1_TXMPTYEN might already have been cleared in
675 	 * imx_uart_stop_tx(), but tx_state is still SEND.
676 	 */
677 
678 	if (port->rs485.flags & SER_RS485_ENABLED) {
679 		if (sport->tx_state == OFF) {
680 			u32 ucr2 = imx_uart_readl(sport, UCR2);
681 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
682 				imx_uart_rts_active(sport, &ucr2);
683 			else
684 				imx_uart_rts_inactive(sport, &ucr2);
685 			imx_uart_writel(sport, ucr2, UCR2);
686 
687 			/*
688 			 * Since we are about to transmit we can not stop RX
689 			 * with loopback enabled because that will make our
690 			 * transmitted data being just looped to RX.
691 			 */
692 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
693 			    !port->rs485_rx_during_tx_gpio)
694 				imx_uart_stop_rx_with_loopback_ctrl(port, false);
695 
696 			sport->tx_state = WAIT_AFTER_RTS;
697 
698 			if (port->rs485.delay_rts_before_send > 0) {
699 				start_hrtimer_ms(&sport->trigger_start_tx,
700 					 port->rs485.delay_rts_before_send);
701 				return;
702 			}
703 
704 			/* continue without any delay */
705 		}
706 
707 		if (sport->tx_state == WAIT_AFTER_SEND
708 		    || sport->tx_state == WAIT_AFTER_RTS) {
709 
710 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
711 
712 			/*
713 			 * Enable transmitter and shifter empty irq only if DMA
714 			 * is off.  In the DMA case this is done in the
715 			 * tx-callback.
716 			 */
717 			if (!sport->dma_is_enabled) {
718 				u32 ucr4 = imx_uart_readl(sport, UCR4);
719 				ucr4 |= UCR4_TCEN;
720 				imx_uart_writel(sport, ucr4, UCR4);
721 			}
722 
723 			sport->tx_state = SEND;
724 		}
725 	} else {
726 		sport->tx_state = SEND;
727 	}
728 
729 	if (!sport->dma_is_enabled) {
730 		ucr1 = imx_uart_readl(sport, UCR1);
731 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
732 	}
733 
734 	if (sport->dma_is_enabled) {
735 		if (sport->port.x_char) {
736 			/* We have X-char to send, so enable TX IRQ and
737 			 * disable TX DMA to let TX interrupt to send X-char */
738 			ucr1 = imx_uart_readl(sport, UCR1);
739 			ucr1 &= ~UCR1_TXDMAEN;
740 			ucr1 |= UCR1_TRDYEN;
741 			imx_uart_writel(sport, ucr1, UCR1);
742 			return;
743 		}
744 
745 		if (!kfifo_is_empty(&tport->xmit_fifo) &&
746 		    !uart_tx_stopped(port))
747 			imx_uart_dma_tx(sport);
748 		return;
749 	}
750 }
751 
752 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
753 {
754 	struct imx_port *sport = dev_id;
755 	u32 usr1;
756 
757 	imx_uart_writel(sport, USR1_RTSD, USR1);
758 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
759 	uart_handle_cts_change(&sport->port, usr1);
760 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
761 
762 	return IRQ_HANDLED;
763 }
764 
765 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
766 {
767 	struct imx_port *sport = dev_id;
768 	irqreturn_t ret;
769 
770 	uart_port_lock(&sport->port);
771 
772 	ret = __imx_uart_rtsint(irq, dev_id);
773 
774 	uart_port_unlock(&sport->port);
775 
776 	return ret;
777 }
778 
779 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
780 {
781 	struct imx_port *sport = dev_id;
782 
783 	uart_port_lock(&sport->port);
784 	imx_uart_transmit_buffer(sport);
785 	uart_port_unlock(&sport->port);
786 	return IRQ_HANDLED;
787 }
788 
789 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
790  * This is to be called from Rx ISRs only when some bytes were actually
791  * received.
792  *
793  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
794  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
795  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
796  * that is terminated by any activity on RxD line, or could be stopped by
797  * issuing soft reset to the UART (just stop/start of RX does not help). Note
798  * that what we do here is sending isolated start bit about 2.4 times shorter
799  * than it is to be on UART configured baud rate.
800  */
801 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
802 {
803 	/* To detect hardware 0xff flood we monitor RxD line between RX
804 	 * interrupts to isolate "receiving" of char(s) with no activity
805 	 * on RxD line, that'd never happen on actual data transfers.
806 	 *
807 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
808 	 * race here if we clear USR2_WAKE when receiving of a char is in
809 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
810 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
811 	 * detected no activity, this race may hide actual activity only once.
812 	 *
813 	 * Yet another case where receive interrupt may occur without RxD
814 	 * activity is expiration of aging timer, so we consider this as well.
815 	 *
816 	 * We use 'idle_counter' to ensure that we got at least so many RX
817 	 * interrupts without any detected activity on RxD line. 2 cases
818 	 * described plus 1 to be on the safe side gives us a margin of 3,
819 	 * below. In practice I was not able to produce a false positive to
820 	 * induce soft reset at regular data transfers even using 1 as the
821 	 * margin, so 3 is actually very strong.
822 	 *
823 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
824 	 */
825 
826 	if (usr2 & USR2_WAKE) {
827 		imx_uart_writel(sport, USR2_WAKE, USR2);
828 		sport->idle_counter = 0;
829 	} else if (++sport->idle_counter > 3) {
830 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
831 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
832 	}
833 }
834 
835 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
836 {
837 	struct imx_port *sport = dev_id;
838 	struct tty_port *port = &sport->port.state->port;
839 	u32 usr2, rx;
840 
841 	/* If we received something, check for 0xff flood */
842 	usr2 = imx_uart_readl(sport, USR2);
843 	if (usr2 & USR2_RDR)
844 		imx_uart_check_flood(sport, usr2);
845 
846 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
847 		unsigned int flg = TTY_NORMAL;
848 		sport->port.icount.rx++;
849 
850 		if (unlikely(rx & URXD_ERR)) {
851 			if (rx & URXD_BRK) {
852 				sport->port.icount.brk++;
853 				if (uart_handle_break(&sport->port))
854 					continue;
855 			}
856 			else if (rx & URXD_PRERR)
857 				sport->port.icount.parity++;
858 			else if (rx & URXD_FRMERR)
859 				sport->port.icount.frame++;
860 			if (rx & URXD_OVRRUN)
861 				sport->port.icount.overrun++;
862 
863 			if (rx & sport->port.ignore_status_mask)
864 				continue;
865 
866 			rx &= (sport->port.read_status_mask | 0xFF);
867 
868 			if (rx & URXD_BRK)
869 				flg = TTY_BREAK;
870 			else if (rx & URXD_PRERR)
871 				flg = TTY_PARITY;
872 			else if (rx & URXD_FRMERR)
873 				flg = TTY_FRAME;
874 			if (rx & URXD_OVRRUN)
875 				flg = TTY_OVERRUN;
876 
877 			sport->port.sysrq = 0;
878 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
879 			continue;
880 		}
881 
882 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
883 			continue;
884 
885 		if (tty_insert_flip_char(port, rx, flg) == 0)
886 			sport->port.icount.buf_overrun++;
887 	}
888 
889 	tty_flip_buffer_push(port);
890 
891 	return IRQ_HANDLED;
892 }
893 
894 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
895 {
896 	struct imx_port *sport = dev_id;
897 	irqreturn_t ret;
898 
899 	uart_port_lock(&sport->port);
900 
901 	ret = __imx_uart_rxint(irq, dev_id);
902 
903 	uart_port_unlock(&sport->port);
904 
905 	return ret;
906 }
907 
908 static void imx_uart_clear_rx_errors(struct imx_port *sport);
909 
910 /*
911  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
912  */
913 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
914 {
915 	unsigned int tmp = TIOCM_DSR;
916 	unsigned usr1 = imx_uart_readl(sport, USR1);
917 	unsigned usr2 = imx_uart_readl(sport, USR2);
918 
919 	if (usr1 & USR1_RTSS)
920 		tmp |= TIOCM_CTS;
921 
922 	/* in DCE mode DCDIN is always 0 */
923 	if (!(usr2 & USR2_DCDIN))
924 		tmp |= TIOCM_CAR;
925 
926 	if (sport->dte_mode)
927 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
928 			tmp |= TIOCM_RI;
929 
930 	return tmp;
931 }
932 
933 /*
934  * Handle any change of modem status signal since we were last called.
935  */
936 static void imx_uart_mctrl_check(struct imx_port *sport)
937 {
938 	unsigned int status, changed;
939 
940 	status = imx_uart_get_hwmctrl(sport);
941 	changed = status ^ sport->old_status;
942 
943 	if (changed == 0)
944 		return;
945 
946 	sport->old_status = status;
947 
948 	if (changed & TIOCM_RI && status & TIOCM_RI)
949 		sport->port.icount.rng++;
950 	if (changed & TIOCM_DSR)
951 		sport->port.icount.dsr++;
952 	if (changed & TIOCM_CAR)
953 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
954 	if (changed & TIOCM_CTS)
955 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
956 
957 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
958 }
959 
960 static irqreturn_t imx_uart_int(int irq, void *dev_id)
961 {
962 	struct imx_port *sport = dev_id;
963 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
964 	irqreturn_t ret = IRQ_NONE;
965 
966 	uart_port_lock(&sport->port);
967 
968 	usr1 = imx_uart_readl(sport, USR1);
969 	usr2 = imx_uart_readl(sport, USR2);
970 	ucr1 = imx_uart_readl(sport, UCR1);
971 	ucr2 = imx_uart_readl(sport, UCR2);
972 	ucr3 = imx_uart_readl(sport, UCR3);
973 	ucr4 = imx_uart_readl(sport, UCR4);
974 
975 	/*
976 	 * Even if a condition is true that can trigger an irq only handle it if
977 	 * the respective irq source is enabled. This prevents some undesired
978 	 * actions, for example if a character that sits in the RX FIFO and that
979 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
980 	 * receiver is currently off and so reading from URXD0 results in an
981 	 * exception. So just mask the (raw) status bits for disabled irqs.
982 	 */
983 	if ((ucr1 & UCR1_RRDYEN) == 0)
984 		usr1 &= ~USR1_RRDY;
985 	if ((ucr2 & UCR2_ATEN) == 0)
986 		usr1 &= ~USR1_AGTIM;
987 	if ((ucr1 & UCR1_TRDYEN) == 0)
988 		usr1 &= ~USR1_TRDY;
989 	if ((ucr4 & UCR4_TCEN) == 0)
990 		usr2 &= ~USR2_TXDC;
991 	if ((ucr3 & UCR3_DTRDEN) == 0)
992 		usr1 &= ~USR1_DTRD;
993 	if ((ucr1 & UCR1_RTSDEN) == 0)
994 		usr1 &= ~USR1_RTSD;
995 	if ((ucr3 & UCR3_AWAKEN) == 0)
996 		usr1 &= ~USR1_AWAKE;
997 	if ((ucr4 & UCR4_OREN) == 0)
998 		usr2 &= ~USR2_ORE;
999 
1000 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1001 		imx_uart_writel(sport, USR1_AGTIM, USR1);
1002 
1003 		__imx_uart_rxint(irq, dev_id);
1004 		ret = IRQ_HANDLED;
1005 	}
1006 
1007 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1008 		imx_uart_transmit_buffer(sport);
1009 		ret = IRQ_HANDLED;
1010 	}
1011 
1012 	if (usr1 & USR1_DTRD) {
1013 		imx_uart_writel(sport, USR1_DTRD, USR1);
1014 
1015 		imx_uart_mctrl_check(sport);
1016 
1017 		ret = IRQ_HANDLED;
1018 	}
1019 
1020 	if (usr1 & USR1_RTSD) {
1021 		__imx_uart_rtsint(irq, dev_id);
1022 		ret = IRQ_HANDLED;
1023 	}
1024 
1025 	if (usr1 & USR1_AWAKE) {
1026 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1027 		ret = IRQ_HANDLED;
1028 	}
1029 
1030 	if (usr2 & USR2_ORE) {
1031 		sport->port.icount.overrun++;
1032 		imx_uart_writel(sport, USR2_ORE, USR2);
1033 		ret = IRQ_HANDLED;
1034 	}
1035 
1036 	uart_port_unlock(&sport->port);
1037 
1038 	return ret;
1039 }
1040 
1041 /*
1042  * Return TIOCSER_TEMT when transmitter is not busy.
1043  */
1044 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1045 {
1046 	struct imx_port *sport = (struct imx_port *)port;
1047 	unsigned int ret;
1048 
1049 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1050 
1051 	/* If the TX DMA is working, return 0. */
1052 	if (sport->dma_is_txing)
1053 		ret = 0;
1054 
1055 	return ret;
1056 }
1057 
1058 /* called with port.lock taken and irqs off */
1059 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1060 {
1061 	struct imx_port *sport = (struct imx_port *)port;
1062 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1063 
1064 	mctrl_gpio_get(sport->gpios, &ret);
1065 
1066 	return ret;
1067 }
1068 
1069 /* called with port.lock taken and irqs off */
1070 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1071 {
1072 	struct imx_port *sport = (struct imx_port *)port;
1073 	u32 ucr3, uts;
1074 
1075 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1076 		u32 ucr2;
1077 
1078 		/*
1079 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1080 		 * setting if RTS is raised.
1081 		 */
1082 		ucr2 = imx_uart_readl(sport, UCR2);
1083 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1084 		if (mctrl & TIOCM_RTS) {
1085 			ucr2 |= UCR2_CTS;
1086 			/*
1087 			 * UCR2_IRTS is unset if and only if the port is
1088 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1089 			 * to get the state to restore to.
1090 			 */
1091 			if (!(ucr2 & UCR2_IRTS))
1092 				ucr2 |= UCR2_CTSC;
1093 		}
1094 		imx_uart_writel(sport, ucr2, UCR2);
1095 	}
1096 
1097 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1098 	if (!(mctrl & TIOCM_DTR))
1099 		ucr3 |= UCR3_DSR;
1100 	imx_uart_writel(sport, ucr3, UCR3);
1101 
1102 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1103 	if (mctrl & TIOCM_LOOP)
1104 		uts |= UTS_LOOP;
1105 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1106 
1107 	mctrl_gpio_set(sport->gpios, mctrl);
1108 }
1109 
1110 /*
1111  * Interrupts always disabled.
1112  */
1113 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1114 {
1115 	struct imx_port *sport = (struct imx_port *)port;
1116 	unsigned long flags;
1117 	u32 ucr1;
1118 
1119 	uart_port_lock_irqsave(&sport->port, &flags);
1120 
1121 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1122 
1123 	if (break_state != 0)
1124 		ucr1 |= UCR1_SNDBRK;
1125 
1126 	imx_uart_writel(sport, ucr1, UCR1);
1127 
1128 	uart_port_unlock_irqrestore(&sport->port, flags);
1129 }
1130 
1131 /*
1132  * This is our per-port timeout handler, for checking the
1133  * modem status signals.
1134  */
1135 static void imx_uart_timeout(struct timer_list *t)
1136 {
1137 	struct imx_port *sport = from_timer(sport, t, timer);
1138 	unsigned long flags;
1139 
1140 	if (sport->port.state) {
1141 		uart_port_lock_irqsave(&sport->port, &flags);
1142 		imx_uart_mctrl_check(sport);
1143 		uart_port_unlock_irqrestore(&sport->port, flags);
1144 
1145 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1146 	}
1147 }
1148 
1149 /*
1150  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1151  *   [1] the RX DMA buffer is full.
1152  *   [2] the aging timer expires
1153  *
1154  * Condition [2] is triggered when a character has been sitting in the FIFO
1155  * for at least 8 byte durations.
1156  */
1157 static void imx_uart_dma_rx_callback(void *data)
1158 {
1159 	struct imx_port *sport = data;
1160 	struct dma_chan	*chan = sport->dma_chan_rx;
1161 	struct scatterlist *sgl = &sport->rx_sgl;
1162 	struct tty_port *port = &sport->port.state->port;
1163 	struct dma_tx_state state;
1164 	struct circ_buf *rx_ring = &sport->rx_ring;
1165 	enum dma_status status;
1166 	unsigned int w_bytes = 0;
1167 	unsigned int r_bytes;
1168 	unsigned int bd_size;
1169 
1170 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1171 
1172 	if (status == DMA_ERROR) {
1173 		uart_port_lock(&sport->port);
1174 		imx_uart_clear_rx_errors(sport);
1175 		uart_port_unlock(&sport->port);
1176 		return;
1177 	}
1178 
1179 	/*
1180 	 * The state-residue variable represents the empty space
1181 	 * relative to the entire buffer. Taking this in consideration
1182 	 * the head is always calculated base on the buffer total
1183 	 * length - DMA transaction residue. The UART script from the
1184 	 * SDMA firmware will jump to the next buffer descriptor,
1185 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1186 	 * Taking this in consideration the tail is always at the
1187 	 * beginning of the buffer descriptor that contains the head.
1188 	 */
1189 
1190 	/* Calculate the head */
1191 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1192 
1193 	/* Calculate the tail. */
1194 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1195 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1196 
1197 	if (rx_ring->head <= sg_dma_len(sgl) &&
1198 	    rx_ring->head > rx_ring->tail) {
1199 
1200 		/* Move data from tail to head */
1201 		r_bytes = rx_ring->head - rx_ring->tail;
1202 
1203 		/* If we received something, check for 0xff flood */
1204 		uart_port_lock(&sport->port);
1205 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1206 		uart_port_unlock(&sport->port);
1207 
1208 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1209 
1210 			/* CPU claims ownership of RX DMA buffer */
1211 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1212 					    DMA_FROM_DEVICE);
1213 
1214 			w_bytes = tty_insert_flip_string(port,
1215 							 sport->rx_buf + rx_ring->tail, r_bytes);
1216 
1217 			/* UART retrieves ownership of RX DMA buffer */
1218 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1219 					       DMA_FROM_DEVICE);
1220 
1221 			if (w_bytes != r_bytes)
1222 				sport->port.icount.buf_overrun++;
1223 
1224 			sport->port.icount.rx += w_bytes;
1225 		}
1226 	} else	{
1227 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1228 		WARN_ON(rx_ring->head <= rx_ring->tail);
1229 	}
1230 
1231 	if (w_bytes) {
1232 		tty_flip_buffer_push(port);
1233 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1234 	}
1235 }
1236 
1237 static int imx_uart_start_rx_dma(struct imx_port *sport)
1238 {
1239 	struct scatterlist *sgl = &sport->rx_sgl;
1240 	struct dma_chan	*chan = sport->dma_chan_rx;
1241 	struct device *dev = sport->port.dev;
1242 	struct dma_async_tx_descriptor *desc;
1243 	int ret;
1244 
1245 	sport->rx_ring.head = 0;
1246 	sport->rx_ring.tail = 0;
1247 
1248 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1249 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1250 	if (ret == 0) {
1251 		dev_err(dev, "DMA mapping error for RX.\n");
1252 		return -EINVAL;
1253 	}
1254 
1255 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1256 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1257 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1258 
1259 	if (!desc) {
1260 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1261 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1262 		return -EINVAL;
1263 	}
1264 	desc->callback = imx_uart_dma_rx_callback;
1265 	desc->callback_param = sport;
1266 
1267 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1268 	sport->dma_is_rxing = 1;
1269 	sport->rx_cookie = dmaengine_submit(desc);
1270 	dma_async_issue_pending(chan);
1271 	return 0;
1272 }
1273 
1274 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1275 {
1276 	struct tty_port *port = &sport->port.state->port;
1277 	u32 usr1, usr2;
1278 
1279 	usr1 = imx_uart_readl(sport, USR1);
1280 	usr2 = imx_uart_readl(sport, USR2);
1281 
1282 	if (usr2 & USR2_BRCD) {
1283 		sport->port.icount.brk++;
1284 		imx_uart_writel(sport, USR2_BRCD, USR2);
1285 		uart_handle_break(&sport->port);
1286 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1287 			sport->port.icount.buf_overrun++;
1288 		tty_flip_buffer_push(port);
1289 	} else {
1290 		if (usr1 & USR1_FRAMERR) {
1291 			sport->port.icount.frame++;
1292 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1293 		} else if (usr1 & USR1_PARITYERR) {
1294 			sport->port.icount.parity++;
1295 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1296 		}
1297 	}
1298 
1299 	if (usr2 & USR2_ORE) {
1300 		sport->port.icount.overrun++;
1301 		imx_uart_writel(sport, USR2_ORE, USR2);
1302 	}
1303 
1304 	sport->idle_counter = 0;
1305 
1306 }
1307 
1308 #define TXTL_DEFAULT 8
1309 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1310 #define TXTL_DMA 8 /* DMA burst setting */
1311 #define RXTL_DMA 9 /* DMA burst setting */
1312 
1313 static void imx_uart_setup_ufcr(struct imx_port *sport,
1314 				unsigned char txwl, unsigned char rxwl)
1315 {
1316 	unsigned int val;
1317 
1318 	/* set receiver / transmitter trigger level */
1319 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1320 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1321 	imx_uart_writel(sport, val, UFCR);
1322 }
1323 
1324 static void imx_uart_dma_exit(struct imx_port *sport)
1325 {
1326 	if (sport->dma_chan_rx) {
1327 		dmaengine_terminate_sync(sport->dma_chan_rx);
1328 		dma_release_channel(sport->dma_chan_rx);
1329 		sport->dma_chan_rx = NULL;
1330 		sport->rx_cookie = -EINVAL;
1331 		kfree(sport->rx_buf);
1332 		sport->rx_buf = NULL;
1333 	}
1334 
1335 	if (sport->dma_chan_tx) {
1336 		dmaengine_terminate_sync(sport->dma_chan_tx);
1337 		dma_release_channel(sport->dma_chan_tx);
1338 		sport->dma_chan_tx = NULL;
1339 	}
1340 }
1341 
1342 static int imx_uart_dma_init(struct imx_port *sport)
1343 {
1344 	struct dma_slave_config slave_config = {};
1345 	struct device *dev = sport->port.dev;
1346 	struct dma_chan *chan;
1347 	int ret;
1348 
1349 	/* Prepare for RX : */
1350 	chan = dma_request_chan(dev, "rx");
1351 	if (IS_ERR(chan)) {
1352 		dev_dbg(dev, "cannot get the DMA channel.\n");
1353 		sport->dma_chan_rx = NULL;
1354 		ret = PTR_ERR(chan);
1355 		goto err;
1356 	}
1357 	sport->dma_chan_rx = chan;
1358 
1359 	slave_config.direction = DMA_DEV_TO_MEM;
1360 	slave_config.src_addr = sport->port.mapbase + URXD0;
1361 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1362 	/* one byte less than the watermark level to enable the aging timer */
1363 	slave_config.src_maxburst = RXTL_DMA - 1;
1364 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1365 	if (ret) {
1366 		dev_err(dev, "error in RX dma configuration.\n");
1367 		goto err;
1368 	}
1369 
1370 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1371 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1372 	if (!sport->rx_buf) {
1373 		ret = -ENOMEM;
1374 		goto err;
1375 	}
1376 	sport->rx_ring.buf = sport->rx_buf;
1377 
1378 	/* Prepare for TX : */
1379 	chan = dma_request_chan(dev, "tx");
1380 	if (IS_ERR(chan)) {
1381 		dev_err(dev, "cannot get the TX DMA channel!\n");
1382 		sport->dma_chan_tx = NULL;
1383 		ret = PTR_ERR(chan);
1384 		goto err;
1385 	}
1386 	sport->dma_chan_tx = chan;
1387 
1388 	slave_config.direction = DMA_MEM_TO_DEV;
1389 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1390 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1391 	slave_config.dst_maxburst = TXTL_DMA;
1392 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1393 	if (ret) {
1394 		dev_err(dev, "error in TX dma configuration.");
1395 		goto err;
1396 	}
1397 
1398 	return 0;
1399 err:
1400 	imx_uart_dma_exit(sport);
1401 	return ret;
1402 }
1403 
1404 static void imx_uart_enable_dma(struct imx_port *sport)
1405 {
1406 	u32 ucr1;
1407 
1408 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1409 
1410 	/* set UCR1 */
1411 	ucr1 = imx_uart_readl(sport, UCR1);
1412 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1413 	imx_uart_writel(sport, ucr1, UCR1);
1414 
1415 	sport->dma_is_enabled = 1;
1416 }
1417 
1418 static void imx_uart_disable_dma(struct imx_port *sport)
1419 {
1420 	u32 ucr1;
1421 
1422 	/* clear UCR1 */
1423 	ucr1 = imx_uart_readl(sport, UCR1);
1424 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1425 	imx_uart_writel(sport, ucr1, UCR1);
1426 
1427 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1428 
1429 	sport->dma_is_enabled = 0;
1430 }
1431 
1432 /* half the RX buffer size */
1433 #define CTSTL 16
1434 
1435 static int imx_uart_startup(struct uart_port *port)
1436 {
1437 	struct imx_port *sport = (struct imx_port *)port;
1438 	int retval;
1439 	unsigned long flags;
1440 	int dma_is_inited = 0;
1441 	u32 ucr1, ucr2, ucr3, ucr4;
1442 
1443 	retval = clk_prepare_enable(sport->clk_per);
1444 	if (retval)
1445 		return retval;
1446 	retval = clk_prepare_enable(sport->clk_ipg);
1447 	if (retval) {
1448 		clk_disable_unprepare(sport->clk_per);
1449 		return retval;
1450 	}
1451 
1452 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1453 
1454 	/* disable the DREN bit (Data Ready interrupt enable) before
1455 	 * requesting IRQs
1456 	 */
1457 	ucr4 = imx_uart_readl(sport, UCR4);
1458 
1459 	/* set the trigger level for CTS */
1460 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1461 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1462 
1463 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1464 
1465 	/* Can we enable the DMA support? */
1466 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0) {
1467 		lockdep_set_subclass(&port->lock, 1);
1468 		dma_is_inited = 1;
1469 	}
1470 
1471 	uart_port_lock_irqsave(&sport->port, &flags);
1472 
1473 	/* Reset fifo's and state machines */
1474 	imx_uart_soft_reset(sport);
1475 
1476 	/*
1477 	 * Finally, clear and enable interrupts
1478 	 */
1479 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1480 	imx_uart_writel(sport, USR2_ORE, USR2);
1481 
1482 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1483 	ucr1 |= UCR1_UARTEN;
1484 	if (sport->have_rtscts)
1485 		ucr1 |= UCR1_RTSDEN;
1486 
1487 	imx_uart_writel(sport, ucr1, UCR1);
1488 
1489 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1490 	if (!dma_is_inited)
1491 		ucr4 |= UCR4_OREN;
1492 	if (sport->inverted_rx)
1493 		ucr4 |= UCR4_INVR;
1494 	imx_uart_writel(sport, ucr4, UCR4);
1495 
1496 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1497 	/*
1498 	 * configure tx polarity before enabling tx
1499 	 */
1500 	if (sport->inverted_tx)
1501 		ucr3 |= UCR3_INVT;
1502 
1503 	if (!imx_uart_is_imx1(sport)) {
1504 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1505 
1506 		if (sport->dte_mode)
1507 			/* disable broken interrupts */
1508 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1509 	}
1510 	imx_uart_writel(sport, ucr3, UCR3);
1511 
1512 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1513 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1514 	if (!sport->have_rtscts)
1515 		ucr2 |= UCR2_IRTS;
1516 	/*
1517 	 * make sure the edge sensitive RTS-irq is disabled,
1518 	 * we're using RTSD instead.
1519 	 */
1520 	if (!imx_uart_is_imx1(sport))
1521 		ucr2 &= ~UCR2_RTSEN;
1522 	imx_uart_writel(sport, ucr2, UCR2);
1523 
1524 	/*
1525 	 * Enable modem status interrupts
1526 	 */
1527 	imx_uart_enable_ms(&sport->port);
1528 
1529 	if (dma_is_inited) {
1530 		imx_uart_enable_dma(sport);
1531 		imx_uart_start_rx_dma(sport);
1532 	} else {
1533 		ucr1 = imx_uart_readl(sport, UCR1);
1534 		ucr1 |= UCR1_RRDYEN;
1535 		imx_uart_writel(sport, ucr1, UCR1);
1536 
1537 		ucr2 = imx_uart_readl(sport, UCR2);
1538 		ucr2 |= UCR2_ATEN;
1539 		imx_uart_writel(sport, ucr2, UCR2);
1540 	}
1541 
1542 	imx_uart_disable_loopback_rs485(sport);
1543 
1544 	uart_port_unlock_irqrestore(&sport->port, flags);
1545 
1546 	return 0;
1547 }
1548 
1549 static void imx_uart_shutdown(struct uart_port *port)
1550 {
1551 	struct imx_port *sport = (struct imx_port *)port;
1552 	unsigned long flags;
1553 	u32 ucr1, ucr2, ucr4, uts;
1554 
1555 	if (sport->dma_is_enabled) {
1556 		dmaengine_terminate_sync(sport->dma_chan_tx);
1557 		if (sport->dma_is_txing) {
1558 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1559 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1560 			sport->dma_is_txing = 0;
1561 		}
1562 		dmaengine_terminate_sync(sport->dma_chan_rx);
1563 		if (sport->dma_is_rxing) {
1564 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1565 				     1, DMA_FROM_DEVICE);
1566 			sport->dma_is_rxing = 0;
1567 		}
1568 
1569 		uart_port_lock_irqsave(&sport->port, &flags);
1570 		imx_uart_stop_tx(port);
1571 		imx_uart_stop_rx(port);
1572 		imx_uart_disable_dma(sport);
1573 		uart_port_unlock_irqrestore(&sport->port, flags);
1574 		imx_uart_dma_exit(sport);
1575 	}
1576 
1577 	mctrl_gpio_disable_ms(sport->gpios);
1578 
1579 	uart_port_lock_irqsave(&sport->port, &flags);
1580 	ucr2 = imx_uart_readl(sport, UCR2);
1581 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1582 	imx_uart_writel(sport, ucr2, UCR2);
1583 	uart_port_unlock_irqrestore(&sport->port, flags);
1584 
1585 	/*
1586 	 * Stop our timer.
1587 	 */
1588 	del_timer_sync(&sport->timer);
1589 
1590 	/*
1591 	 * Disable all interrupts, port and break condition.
1592 	 */
1593 
1594 	uart_port_lock_irqsave(&sport->port, &flags);
1595 
1596 	ucr1 = imx_uart_readl(sport, UCR1);
1597 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1598 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1599 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1600 	if (port->rs485.flags & SER_RS485_ENABLED &&
1601 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1602 	    sport->have_rtscts && !sport->have_rtsgpio) {
1603 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1604 		uts |= UTS_LOOP;
1605 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1606 		ucr1 |= UCR1_UARTEN;
1607 	} else {
1608 		ucr1 &= ~UCR1_UARTEN;
1609 	}
1610 	imx_uart_writel(sport, ucr1, UCR1);
1611 
1612 	ucr4 = imx_uart_readl(sport, UCR4);
1613 	ucr4 &= ~UCR4_TCEN;
1614 	imx_uart_writel(sport, ucr4, UCR4);
1615 
1616 	uart_port_unlock_irqrestore(&sport->port, flags);
1617 
1618 	clk_disable_unprepare(sport->clk_per);
1619 	clk_disable_unprepare(sport->clk_ipg);
1620 }
1621 
1622 /* called with port.lock taken and irqs off */
1623 static void imx_uart_flush_buffer(struct uart_port *port)
1624 {
1625 	struct imx_port *sport = (struct imx_port *)port;
1626 	struct scatterlist *sgl = &sport->tx_sgl[0];
1627 
1628 	if (!sport->dma_chan_tx)
1629 		return;
1630 
1631 	sport->tx_bytes = 0;
1632 	dmaengine_terminate_all(sport->dma_chan_tx);
1633 	if (sport->dma_is_txing) {
1634 		u32 ucr1;
1635 
1636 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1637 			     DMA_TO_DEVICE);
1638 		ucr1 = imx_uart_readl(sport, UCR1);
1639 		ucr1 &= ~UCR1_TXDMAEN;
1640 		imx_uart_writel(sport, ucr1, UCR1);
1641 		sport->dma_is_txing = 0;
1642 	}
1643 
1644 	imx_uart_soft_reset(sport);
1645 
1646 }
1647 
1648 static void
1649 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1650 		     const struct ktermios *old)
1651 {
1652 	struct imx_port *sport = (struct imx_port *)port;
1653 	unsigned long flags;
1654 	u32 ucr2, old_ucr2, ufcr;
1655 	unsigned int baud, quot;
1656 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1657 	unsigned long div;
1658 	unsigned long num, denom, old_ubir, old_ubmr;
1659 	uint64_t tdiv64;
1660 
1661 	/*
1662 	 * We only support CS7 and CS8.
1663 	 */
1664 	while ((termios->c_cflag & CSIZE) != CS7 &&
1665 	       (termios->c_cflag & CSIZE) != CS8) {
1666 		termios->c_cflag &= ~CSIZE;
1667 		termios->c_cflag |= old_csize;
1668 		old_csize = CS8;
1669 	}
1670 
1671 	del_timer_sync(&sport->timer);
1672 
1673 	/*
1674 	 * Ask the core to calculate the divisor for us.
1675 	 */
1676 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1677 	quot = uart_get_divisor(port, baud);
1678 
1679 	uart_port_lock_irqsave(&sport->port, &flags);
1680 
1681 	/*
1682 	 * Read current UCR2 and save it for future use, then clear all the bits
1683 	 * except those we will or may need to preserve.
1684 	 */
1685 	old_ucr2 = imx_uart_readl(sport, UCR2);
1686 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1687 
1688 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1689 	if ((termios->c_cflag & CSIZE) == CS8)
1690 		ucr2 |= UCR2_WS;
1691 
1692 	if (!sport->have_rtscts)
1693 		termios->c_cflag &= ~CRTSCTS;
1694 
1695 	if (port->rs485.flags & SER_RS485_ENABLED) {
1696 		/*
1697 		 * RTS is mandatory for rs485 operation, so keep
1698 		 * it under manual control and keep transmitter
1699 		 * disabled.
1700 		 */
1701 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1702 			imx_uart_rts_active(sport, &ucr2);
1703 		else
1704 			imx_uart_rts_inactive(sport, &ucr2);
1705 
1706 	} else if (termios->c_cflag & CRTSCTS) {
1707 		/*
1708 		 * Only let receiver control RTS output if we were not requested
1709 		 * to have RTS inactive (which then should take precedence).
1710 		 */
1711 		if (ucr2 & UCR2_CTS)
1712 			ucr2 |= UCR2_CTSC;
1713 	}
1714 
1715 	if (termios->c_cflag & CRTSCTS)
1716 		ucr2 &= ~UCR2_IRTS;
1717 	if (termios->c_cflag & CSTOPB)
1718 		ucr2 |= UCR2_STPB;
1719 	if (termios->c_cflag & PARENB) {
1720 		ucr2 |= UCR2_PREN;
1721 		if (termios->c_cflag & PARODD)
1722 			ucr2 |= UCR2_PROE;
1723 	}
1724 
1725 	sport->port.read_status_mask = 0;
1726 	if (termios->c_iflag & INPCK)
1727 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1728 	if (termios->c_iflag & (BRKINT | PARMRK))
1729 		sport->port.read_status_mask |= URXD_BRK;
1730 
1731 	/*
1732 	 * Characters to ignore
1733 	 */
1734 	sport->port.ignore_status_mask = 0;
1735 	if (termios->c_iflag & IGNPAR)
1736 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1737 	if (termios->c_iflag & IGNBRK) {
1738 		sport->port.ignore_status_mask |= URXD_BRK;
1739 		/*
1740 		 * If we're ignoring parity and break indicators,
1741 		 * ignore overruns too (for real raw support).
1742 		 */
1743 		if (termios->c_iflag & IGNPAR)
1744 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1745 	}
1746 
1747 	if ((termios->c_cflag & CREAD) == 0)
1748 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1749 
1750 	/*
1751 	 * Update the per-port timeout.
1752 	 */
1753 	uart_update_timeout(port, termios->c_cflag, baud);
1754 
1755 	/* custom-baudrate handling */
1756 	div = sport->port.uartclk / (baud * 16);
1757 	if (baud == 38400 && quot != div)
1758 		baud = sport->port.uartclk / (quot * 16);
1759 
1760 	div = sport->port.uartclk / (baud * 16);
1761 	if (div > 7)
1762 		div = 7;
1763 	if (!div)
1764 		div = 1;
1765 
1766 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1767 		1 << 16, 1 << 16, &num, &denom);
1768 
1769 	tdiv64 = sport->port.uartclk;
1770 	tdiv64 *= num;
1771 	do_div(tdiv64, denom * 16 * div);
1772 	tty_termios_encode_baud_rate(termios,
1773 				(speed_t)tdiv64, (speed_t)tdiv64);
1774 
1775 	num -= 1;
1776 	denom -= 1;
1777 
1778 	ufcr = imx_uart_readl(sport, UFCR);
1779 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1780 	imx_uart_writel(sport, ufcr, UFCR);
1781 
1782 	/*
1783 	 *  Two registers below should always be written both and in this
1784 	 *  particular order. One consequence is that we need to check if any of
1785 	 *  them changes and then update both. We do need the check for change
1786 	 *  as even writing the same values seem to "restart"
1787 	 *  transmission/receiving logic in the hardware, that leads to data
1788 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1789 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1790 	 */
1791 	old_ubir = imx_uart_readl(sport, UBIR);
1792 	old_ubmr = imx_uart_readl(sport, UBMR);
1793 	if (old_ubir != num || old_ubmr != denom) {
1794 		imx_uart_writel(sport, num, UBIR);
1795 		imx_uart_writel(sport, denom, UBMR);
1796 	}
1797 
1798 	if (!imx_uart_is_imx1(sport))
1799 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1800 				IMX21_ONEMS);
1801 
1802 	imx_uart_writel(sport, ucr2, UCR2);
1803 
1804 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1805 		imx_uart_enable_ms(&sport->port);
1806 
1807 	uart_port_unlock_irqrestore(&sport->port, flags);
1808 }
1809 
1810 static const char *imx_uart_type(struct uart_port *port)
1811 {
1812 	return port->type == PORT_IMX ? "IMX" : NULL;
1813 }
1814 
1815 /*
1816  * Configure/autoconfigure the port.
1817  */
1818 static void imx_uart_config_port(struct uart_port *port, int flags)
1819 {
1820 	if (flags & UART_CONFIG_TYPE)
1821 		port->type = PORT_IMX;
1822 }
1823 
1824 /*
1825  * Verify the new serial_struct (for TIOCSSERIAL).
1826  * The only change we allow are to the flags and type, and
1827  * even then only between PORT_IMX and PORT_UNKNOWN
1828  */
1829 static int
1830 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1831 {
1832 	int ret = 0;
1833 
1834 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1835 		ret = -EINVAL;
1836 	if (port->irq != ser->irq)
1837 		ret = -EINVAL;
1838 	if (ser->io_type != UPIO_MEM)
1839 		ret = -EINVAL;
1840 	if (port->uartclk / 16 != ser->baud_base)
1841 		ret = -EINVAL;
1842 	if (port->mapbase != (unsigned long)ser->iomem_base)
1843 		ret = -EINVAL;
1844 	if (port->iobase != ser->port)
1845 		ret = -EINVAL;
1846 	if (ser->hub6 != 0)
1847 		ret = -EINVAL;
1848 	return ret;
1849 }
1850 
1851 #if defined(CONFIG_CONSOLE_POLL)
1852 
1853 static int imx_uart_poll_init(struct uart_port *port)
1854 {
1855 	struct imx_port *sport = (struct imx_port *)port;
1856 	unsigned long flags;
1857 	u32 ucr1, ucr2;
1858 	int retval;
1859 
1860 	retval = clk_prepare_enable(sport->clk_ipg);
1861 	if (retval)
1862 		return retval;
1863 	retval = clk_prepare_enable(sport->clk_per);
1864 	if (retval)
1865 		clk_disable_unprepare(sport->clk_ipg);
1866 
1867 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1868 
1869 	uart_port_lock_irqsave(&sport->port, &flags);
1870 
1871 	/*
1872 	 * Be careful about the order of enabling bits here. First enable the
1873 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1874 	 * This prevents that a character that already sits in the RX fifo is
1875 	 * triggering an irq but the try to fetch it from there results in an
1876 	 * exception because UARTEN or RXEN is still off.
1877 	 */
1878 	ucr1 = imx_uart_readl(sport, UCR1);
1879 	ucr2 = imx_uart_readl(sport, UCR2);
1880 
1881 	if (imx_uart_is_imx1(sport))
1882 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1883 
1884 	ucr1 |= UCR1_UARTEN;
1885 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1886 
1887 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1888 	ucr2 &= ~UCR2_ATEN;
1889 
1890 	imx_uart_writel(sport, ucr1, UCR1);
1891 	imx_uart_writel(sport, ucr2, UCR2);
1892 
1893 	/* now enable irqs */
1894 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1895 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1896 
1897 	uart_port_unlock_irqrestore(&sport->port, flags);
1898 
1899 	return 0;
1900 }
1901 
1902 static int imx_uart_poll_get_char(struct uart_port *port)
1903 {
1904 	struct imx_port *sport = (struct imx_port *)port;
1905 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1906 		return NO_POLL_CHAR;
1907 
1908 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1909 }
1910 
1911 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1912 {
1913 	struct imx_port *sport = (struct imx_port *)port;
1914 	unsigned int status;
1915 
1916 	/* drain */
1917 	do {
1918 		status = imx_uart_readl(sport, USR1);
1919 	} while (~status & USR1_TRDY);
1920 
1921 	/* write */
1922 	imx_uart_writel(sport, c, URTX0);
1923 
1924 	/* flush */
1925 	do {
1926 		status = imx_uart_readl(sport, USR2);
1927 	} while (~status & USR2_TXDC);
1928 }
1929 #endif
1930 
1931 /* called with port.lock taken and irqs off or from .probe without locking */
1932 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1933 				 struct serial_rs485 *rs485conf)
1934 {
1935 	struct imx_port *sport = (struct imx_port *)port;
1936 	u32 ucr2;
1937 
1938 	if (rs485conf->flags & SER_RS485_ENABLED) {
1939 		/* Enable receiver if low-active RTS signal is requested */
1940 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1941 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1942 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1943 
1944 		/* disable transmitter */
1945 		ucr2 = imx_uart_readl(sport, UCR2);
1946 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1947 			imx_uart_rts_active(sport, &ucr2);
1948 		else
1949 			imx_uart_rts_inactive(sport, &ucr2);
1950 		imx_uart_writel(sport, ucr2, UCR2);
1951 	}
1952 
1953 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1954 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1955 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1956 		imx_uart_start_rx(port);
1957 
1958 	return 0;
1959 }
1960 
1961 static const struct uart_ops imx_uart_pops = {
1962 	.tx_empty	= imx_uart_tx_empty,
1963 	.set_mctrl	= imx_uart_set_mctrl,
1964 	.get_mctrl	= imx_uart_get_mctrl,
1965 	.stop_tx	= imx_uart_stop_tx,
1966 	.start_tx	= imx_uart_start_tx,
1967 	.stop_rx	= imx_uart_stop_rx,
1968 	.enable_ms	= imx_uart_enable_ms,
1969 	.break_ctl	= imx_uart_break_ctl,
1970 	.startup	= imx_uart_startup,
1971 	.shutdown	= imx_uart_shutdown,
1972 	.flush_buffer	= imx_uart_flush_buffer,
1973 	.set_termios	= imx_uart_set_termios,
1974 	.type		= imx_uart_type,
1975 	.config_port	= imx_uart_config_port,
1976 	.verify_port	= imx_uart_verify_port,
1977 #if defined(CONFIG_CONSOLE_POLL)
1978 	.poll_init      = imx_uart_poll_init,
1979 	.poll_get_char  = imx_uart_poll_get_char,
1980 	.poll_put_char  = imx_uart_poll_put_char,
1981 #endif
1982 };
1983 
1984 static struct imx_port *imx_uart_ports[UART_NR];
1985 
1986 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1987 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1988 {
1989 	struct imx_port *sport = (struct imx_port *)port;
1990 
1991 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1992 		barrier();
1993 
1994 	imx_uart_writel(sport, ch, URTX0);
1995 }
1996 
1997 /*
1998  * Interrupts are disabled on entering
1999  */
2000 static void
2001 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2002 {
2003 	struct imx_port *sport = imx_uart_ports[co->index];
2004 	struct imx_port_ucrs old_ucr;
2005 	unsigned long flags;
2006 	unsigned int ucr1, usr2;
2007 	int locked = 1;
2008 
2009 	if (sport->port.sysrq)
2010 		locked = 0;
2011 	else if (oops_in_progress)
2012 		locked = uart_port_trylock_irqsave(&sport->port, &flags);
2013 	else
2014 		uart_port_lock_irqsave(&sport->port, &flags);
2015 
2016 	/*
2017 	 *	First, save UCR1/2/3 and then disable interrupts
2018 	 */
2019 	imx_uart_ucrs_save(sport, &old_ucr);
2020 	ucr1 = old_ucr.ucr1;
2021 
2022 	if (imx_uart_is_imx1(sport))
2023 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2024 	ucr1 |= UCR1_UARTEN;
2025 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2026 
2027 	imx_uart_writel(sport, ucr1, UCR1);
2028 
2029 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2030 
2031 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2032 
2033 	/*
2034 	 *	Finally, wait for transmitter to become empty
2035 	 *	and restore UCR1/2/3
2036 	 */
2037 	read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC,
2038 				 0, USEC_PER_SEC, false, sport, USR2);
2039 	imx_uart_ucrs_restore(sport, &old_ucr);
2040 
2041 	if (locked)
2042 		uart_port_unlock_irqrestore(&sport->port, flags);
2043 }
2044 
2045 /*
2046  * If the port was already initialised (eg, by a boot loader),
2047  * try to determine the current setup.
2048  */
2049 static void
2050 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2051 			     int *parity, int *bits)
2052 {
2053 
2054 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2055 		/* ok, the port was enabled */
2056 		unsigned int ucr2, ubir, ubmr, uartclk;
2057 		unsigned int baud_raw;
2058 		unsigned int ucfr_rfdiv;
2059 
2060 		ucr2 = imx_uart_readl(sport, UCR2);
2061 
2062 		*parity = 'n';
2063 		if (ucr2 & UCR2_PREN) {
2064 			if (ucr2 & UCR2_PROE)
2065 				*parity = 'o';
2066 			else
2067 				*parity = 'e';
2068 		}
2069 
2070 		if (ucr2 & UCR2_WS)
2071 			*bits = 8;
2072 		else
2073 			*bits = 7;
2074 
2075 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2076 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2077 
2078 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2079 		if (ucfr_rfdiv == 6)
2080 			ucfr_rfdiv = 7;
2081 		else
2082 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2083 
2084 		uartclk = clk_get_rate(sport->clk_per);
2085 		uartclk /= ucfr_rfdiv;
2086 
2087 		{	/*
2088 			 * The next code provides exact computation of
2089 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2090 			 * without need of float support or long long division,
2091 			 * which would be required to prevent 32bit arithmetic overflow
2092 			 */
2093 			unsigned int mul = ubir + 1;
2094 			unsigned int div = 16 * (ubmr + 1);
2095 			unsigned int rem = uartclk % div;
2096 
2097 			baud_raw = (uartclk / div) * mul;
2098 			baud_raw += (rem * mul + div / 2) / div;
2099 			*baud = (baud_raw + 50) / 100 * 100;
2100 		}
2101 
2102 		if (*baud != baud_raw)
2103 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2104 				baud_raw, *baud);
2105 	}
2106 }
2107 
2108 static int
2109 imx_uart_console_setup(struct console *co, char *options)
2110 {
2111 	struct imx_port *sport;
2112 	int baud = 9600;
2113 	int bits = 8;
2114 	int parity = 'n';
2115 	int flow = 'n';
2116 	int retval;
2117 
2118 	/*
2119 	 * Check whether an invalid uart number has been specified, and
2120 	 * if so, search for the first available port that does have
2121 	 * console support.
2122 	 */
2123 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2124 		co->index = 0;
2125 	sport = imx_uart_ports[co->index];
2126 	if (sport == NULL)
2127 		return -ENODEV;
2128 
2129 	/* For setting the registers, we only need to enable the ipg clock. */
2130 	retval = clk_prepare_enable(sport->clk_ipg);
2131 	if (retval)
2132 		goto error_console;
2133 
2134 	if (options)
2135 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2136 	else
2137 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2138 
2139 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2140 
2141 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2142 
2143 	if (retval) {
2144 		clk_disable_unprepare(sport->clk_ipg);
2145 		goto error_console;
2146 	}
2147 
2148 	retval = clk_prepare_enable(sport->clk_per);
2149 	if (retval)
2150 		clk_disable_unprepare(sport->clk_ipg);
2151 
2152 error_console:
2153 	return retval;
2154 }
2155 
2156 static int
2157 imx_uart_console_exit(struct console *co)
2158 {
2159 	struct imx_port *sport = imx_uart_ports[co->index];
2160 
2161 	clk_disable_unprepare(sport->clk_per);
2162 	clk_disable_unprepare(sport->clk_ipg);
2163 
2164 	return 0;
2165 }
2166 
2167 static struct uart_driver imx_uart_uart_driver;
2168 static struct console imx_uart_console = {
2169 	.name		= DEV_NAME,
2170 	.write		= imx_uart_console_write,
2171 	.device		= uart_console_device,
2172 	.setup		= imx_uart_console_setup,
2173 	.exit		= imx_uart_console_exit,
2174 	.flags		= CON_PRINTBUFFER,
2175 	.index		= -1,
2176 	.data		= &imx_uart_uart_driver,
2177 };
2178 
2179 #define IMX_CONSOLE	&imx_uart_console
2180 
2181 #else
2182 #define IMX_CONSOLE	NULL
2183 #endif
2184 
2185 static struct uart_driver imx_uart_uart_driver = {
2186 	.owner          = THIS_MODULE,
2187 	.driver_name    = DRIVER_NAME,
2188 	.dev_name       = DEV_NAME,
2189 	.major          = SERIAL_IMX_MAJOR,
2190 	.minor          = MINOR_START,
2191 	.nr             = ARRAY_SIZE(imx_uart_ports),
2192 	.cons           = IMX_CONSOLE,
2193 };
2194 
2195 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2196 {
2197 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2198 	unsigned long flags;
2199 
2200 	uart_port_lock_irqsave(&sport->port, &flags);
2201 	if (sport->tx_state == WAIT_AFTER_RTS)
2202 		imx_uart_start_tx(&sport->port);
2203 	uart_port_unlock_irqrestore(&sport->port, flags);
2204 
2205 	return HRTIMER_NORESTART;
2206 }
2207 
2208 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2209 {
2210 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2211 	unsigned long flags;
2212 
2213 	uart_port_lock_irqsave(&sport->port, &flags);
2214 	if (sport->tx_state == WAIT_AFTER_SEND)
2215 		imx_uart_stop_tx(&sport->port);
2216 	uart_port_unlock_irqrestore(&sport->port, flags);
2217 
2218 	return HRTIMER_NORESTART;
2219 }
2220 
2221 static const struct serial_rs485 imx_rs485_supported = {
2222 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2223 		 SER_RS485_RX_DURING_TX,
2224 	.delay_rts_before_send = 1,
2225 	.delay_rts_after_send = 1,
2226 };
2227 
2228 /* Default RX DMA buffer configuration */
2229 #define RX_DMA_PERIODS		16
2230 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2231 
2232 static int imx_uart_probe(struct platform_device *pdev)
2233 {
2234 	struct device_node *np = pdev->dev.of_node;
2235 	struct imx_port *sport;
2236 	void __iomem *base;
2237 	u32 dma_buf_conf[2];
2238 	int ret = 0;
2239 	u32 ucr1, ucr2, uts;
2240 	struct resource *res;
2241 	int txirq, rxirq, rtsirq;
2242 
2243 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2244 	if (!sport)
2245 		return -ENOMEM;
2246 
2247 	sport->devdata = of_device_get_match_data(&pdev->dev);
2248 
2249 	ret = of_alias_get_id(np, "serial");
2250 	if (ret < 0) {
2251 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2252 		return ret;
2253 	}
2254 	sport->port.line = ret;
2255 
2256 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2257 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2258 
2259 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2260 
2261 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2262 
2263 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2264 
2265 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2266 
2267 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2268 		sport->rx_period_length = dma_buf_conf[0];
2269 		sport->rx_periods = dma_buf_conf[1];
2270 	} else {
2271 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2272 		sport->rx_periods = RX_DMA_PERIODS;
2273 	}
2274 
2275 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2276 		dev_err(&pdev->dev, "serial%d out of range\n",
2277 			sport->port.line);
2278 		return -EINVAL;
2279 	}
2280 
2281 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2282 	if (IS_ERR(base))
2283 		return PTR_ERR(base);
2284 
2285 	rxirq = platform_get_irq(pdev, 0);
2286 	if (rxirq < 0)
2287 		return rxirq;
2288 	txirq = platform_get_irq_optional(pdev, 1);
2289 	rtsirq = platform_get_irq_optional(pdev, 2);
2290 
2291 	sport->port.dev = &pdev->dev;
2292 	sport->port.mapbase = res->start;
2293 	sport->port.membase = base;
2294 	sport->port.type = PORT_IMX;
2295 	sport->port.iotype = UPIO_MEM;
2296 	sport->port.irq = rxirq;
2297 	sport->port.fifosize = 32;
2298 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2299 	sport->port.ops = &imx_uart_pops;
2300 	sport->port.rs485_config = imx_uart_rs485_config;
2301 	/* RTS is required to control the RS485 transmitter */
2302 	if (sport->have_rtscts || sport->have_rtsgpio)
2303 		sport->port.rs485_supported = imx_rs485_supported;
2304 	sport->port.flags = UPF_BOOT_AUTOCONF;
2305 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2306 
2307 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2308 	if (IS_ERR(sport->gpios))
2309 		return PTR_ERR(sport->gpios);
2310 
2311 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2312 	if (IS_ERR(sport->clk_ipg)) {
2313 		ret = PTR_ERR(sport->clk_ipg);
2314 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2315 		return ret;
2316 	}
2317 
2318 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2319 	if (IS_ERR(sport->clk_per)) {
2320 		ret = PTR_ERR(sport->clk_per);
2321 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2322 		return ret;
2323 	}
2324 
2325 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2326 
2327 	/* For register access, we only need to enable the ipg clock. */
2328 	ret = clk_prepare_enable(sport->clk_ipg);
2329 	if (ret) {
2330 		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2331 		return ret;
2332 	}
2333 
2334 	ret = uart_get_rs485_mode(&sport->port);
2335 	if (ret)
2336 		goto err_clk;
2337 
2338 	/*
2339 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2340 	 * signal cannot be set low during transmission in case the
2341 	 * receiver is off (limitation of the i.MX UART IP).
2342 	 */
2343 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2344 	    sport->have_rtscts && !sport->have_rtsgpio &&
2345 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2346 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2347 		dev_err(&pdev->dev,
2348 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2349 
2350 	/* Disable interrupts before requesting them */
2351 	ucr1 = imx_uart_readl(sport, UCR1);
2352 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2353 	imx_uart_writel(sport, ucr1, UCR1);
2354 
2355 	/* Disable Ageing Timer interrupt */
2356 	ucr2 = imx_uart_readl(sport, UCR2);
2357 	ucr2 &= ~UCR2_ATEN;
2358 	imx_uart_writel(sport, ucr2, UCR2);
2359 
2360 	/*
2361 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2362 	 * is used to control CTS signal. Keep both the UART and Receiver
2363 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2364 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2365 	 * data from being fed into the RX FIFO, enable loopback mode in
2366 	 * UTS register, which disconnects the RX path from external RXD
2367 	 * pin and connects it to the Transceiver, which is disabled, so
2368 	 * no data can be fed to the RX FIFO that way.
2369 	 */
2370 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2371 	    sport->have_rtscts && !sport->have_rtsgpio) {
2372 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2373 		uts |= UTS_LOOP;
2374 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2375 
2376 		ucr1 = imx_uart_readl(sport, UCR1);
2377 		ucr1 |= UCR1_UARTEN;
2378 		imx_uart_writel(sport, ucr1, UCR1);
2379 
2380 		ucr2 = imx_uart_readl(sport, UCR2);
2381 		ucr2 |= UCR2_RXEN;
2382 		imx_uart_writel(sport, ucr2, UCR2);
2383 	}
2384 
2385 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2386 		/*
2387 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2388 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2389 		 * and DCD (when they are outputs) or enables the respective
2390 		 * irqs. So set this bit early, i.e. before requesting irqs.
2391 		 */
2392 		u32 ufcr = imx_uart_readl(sport, UFCR);
2393 		if (!(ufcr & UFCR_DCEDTE))
2394 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2395 
2396 		/*
2397 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2398 		 * enabled later because they cannot be cleared
2399 		 * (confirmed on i.MX25) which makes them unusable.
2400 		 */
2401 		imx_uart_writel(sport,
2402 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2403 				UCR3);
2404 
2405 	} else {
2406 		u32 ucr3 = UCR3_DSR;
2407 		u32 ufcr = imx_uart_readl(sport, UFCR);
2408 		if (ufcr & UFCR_DCEDTE)
2409 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2410 
2411 		if (!imx_uart_is_imx1(sport))
2412 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2413 		imx_uart_writel(sport, ucr3, UCR3);
2414 	}
2415 
2416 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2417 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2418 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2419 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2420 
2421 	/*
2422 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2423 	 * chips only have one interrupt.
2424 	 */
2425 	if (txirq > 0) {
2426 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2427 				       dev_name(&pdev->dev), sport);
2428 		if (ret) {
2429 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2430 				ret);
2431 			goto err_clk;
2432 		}
2433 
2434 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2435 				       dev_name(&pdev->dev), sport);
2436 		if (ret) {
2437 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2438 				ret);
2439 			goto err_clk;
2440 		}
2441 
2442 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2443 				       dev_name(&pdev->dev), sport);
2444 		if (ret) {
2445 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2446 				ret);
2447 			goto err_clk;
2448 		}
2449 	} else {
2450 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2451 				       dev_name(&pdev->dev), sport);
2452 		if (ret) {
2453 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2454 			goto err_clk;
2455 		}
2456 	}
2457 
2458 	imx_uart_ports[sport->port.line] = sport;
2459 
2460 	platform_set_drvdata(pdev, sport);
2461 
2462 	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2463 
2464 err_clk:
2465 	clk_disable_unprepare(sport->clk_ipg);
2466 
2467 	return ret;
2468 }
2469 
2470 static void imx_uart_remove(struct platform_device *pdev)
2471 {
2472 	struct imx_port *sport = platform_get_drvdata(pdev);
2473 
2474 	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2475 }
2476 
2477 static void imx_uart_restore_context(struct imx_port *sport)
2478 {
2479 	unsigned long flags;
2480 
2481 	uart_port_lock_irqsave(&sport->port, &flags);
2482 	if (!sport->context_saved) {
2483 		uart_port_unlock_irqrestore(&sport->port, flags);
2484 		return;
2485 	}
2486 
2487 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2488 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2489 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2490 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2491 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2492 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2493 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2494 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2495 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2496 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2497 	sport->context_saved = false;
2498 	uart_port_unlock_irqrestore(&sport->port, flags);
2499 }
2500 
2501 static void imx_uart_save_context(struct imx_port *sport)
2502 {
2503 	unsigned long flags;
2504 
2505 	/* Save necessary regs */
2506 	uart_port_lock_irqsave(&sport->port, &flags);
2507 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2508 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2509 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2510 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2511 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2512 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2513 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2514 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2515 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2516 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2517 	sport->context_saved = true;
2518 	uart_port_unlock_irqrestore(&sport->port, flags);
2519 }
2520 
2521 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2522 {
2523 	u32 ucr3;
2524 
2525 	ucr3 = imx_uart_readl(sport, UCR3);
2526 	if (on) {
2527 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2528 		ucr3 |= UCR3_AWAKEN;
2529 	} else {
2530 		ucr3 &= ~UCR3_AWAKEN;
2531 	}
2532 	imx_uart_writel(sport, ucr3, UCR3);
2533 
2534 	if (sport->have_rtscts) {
2535 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2536 		if (on) {
2537 			imx_uart_writel(sport, USR1_RTSD, USR1);
2538 			ucr1 |= UCR1_RTSDEN;
2539 		} else {
2540 			ucr1 &= ~UCR1_RTSDEN;
2541 		}
2542 		imx_uart_writel(sport, ucr1, UCR1);
2543 	}
2544 }
2545 
2546 static int imx_uart_suspend_noirq(struct device *dev)
2547 {
2548 	struct imx_port *sport = dev_get_drvdata(dev);
2549 
2550 	imx_uart_save_context(sport);
2551 
2552 	clk_disable(sport->clk_ipg);
2553 
2554 	pinctrl_pm_select_sleep_state(dev);
2555 
2556 	return 0;
2557 }
2558 
2559 static int imx_uart_resume_noirq(struct device *dev)
2560 {
2561 	struct imx_port *sport = dev_get_drvdata(dev);
2562 	int ret;
2563 
2564 	pinctrl_pm_select_default_state(dev);
2565 
2566 	ret = clk_enable(sport->clk_ipg);
2567 	if (ret)
2568 		return ret;
2569 
2570 	imx_uart_restore_context(sport);
2571 
2572 	return 0;
2573 }
2574 
2575 static int imx_uart_suspend(struct device *dev)
2576 {
2577 	struct imx_port *sport = dev_get_drvdata(dev);
2578 	int ret;
2579 
2580 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2581 	disable_irq(sport->port.irq);
2582 
2583 	ret = clk_prepare_enable(sport->clk_ipg);
2584 	if (ret)
2585 		return ret;
2586 
2587 	/* enable wakeup from i.MX UART */
2588 	imx_uart_enable_wakeup(sport, true);
2589 
2590 	return 0;
2591 }
2592 
2593 static int imx_uart_resume(struct device *dev)
2594 {
2595 	struct imx_port *sport = dev_get_drvdata(dev);
2596 
2597 	/* disable wakeup from i.MX UART */
2598 	imx_uart_enable_wakeup(sport, false);
2599 
2600 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2601 	enable_irq(sport->port.irq);
2602 
2603 	clk_disable_unprepare(sport->clk_ipg);
2604 
2605 	return 0;
2606 }
2607 
2608 static int imx_uart_freeze(struct device *dev)
2609 {
2610 	struct imx_port *sport = dev_get_drvdata(dev);
2611 
2612 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2613 
2614 	return clk_prepare_enable(sport->clk_ipg);
2615 }
2616 
2617 static int imx_uart_thaw(struct device *dev)
2618 {
2619 	struct imx_port *sport = dev_get_drvdata(dev);
2620 
2621 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2622 
2623 	clk_disable_unprepare(sport->clk_ipg);
2624 
2625 	return 0;
2626 }
2627 
2628 static const struct dev_pm_ops imx_uart_pm_ops = {
2629 	.suspend_noirq = imx_uart_suspend_noirq,
2630 	.resume_noirq = imx_uart_resume_noirq,
2631 	.freeze_noirq = imx_uart_suspend_noirq,
2632 	.thaw_noirq = imx_uart_resume_noirq,
2633 	.restore_noirq = imx_uart_resume_noirq,
2634 	.suspend = imx_uart_suspend,
2635 	.resume = imx_uart_resume,
2636 	.freeze = imx_uart_freeze,
2637 	.thaw = imx_uart_thaw,
2638 	.restore = imx_uart_thaw,
2639 };
2640 
2641 static struct platform_driver imx_uart_platform_driver = {
2642 	.probe = imx_uart_probe,
2643 	.remove_new = imx_uart_remove,
2644 
2645 	.driver = {
2646 		.name = "imx-uart",
2647 		.of_match_table = imx_uart_dt_ids,
2648 		.pm = &imx_uart_pm_ops,
2649 	},
2650 };
2651 
2652 static int __init imx_uart_init(void)
2653 {
2654 	int ret = uart_register_driver(&imx_uart_uart_driver);
2655 
2656 	if (ret)
2657 		return ret;
2658 
2659 	ret = platform_driver_register(&imx_uart_platform_driver);
2660 	if (ret != 0)
2661 		uart_unregister_driver(&imx_uart_uart_driver);
2662 
2663 	return ret;
2664 }
2665 
2666 static void __exit imx_uart_exit(void)
2667 {
2668 	platform_driver_unregister(&imx_uart_platform_driver);
2669 	uart_unregister_driver(&imx_uart_uart_driver);
2670 }
2671 
2672 module_init(imx_uart_init);
2673 module_exit(imx_uart_exit);
2674 
2675 MODULE_AUTHOR("Sascha Hauer");
2676 MODULE_DESCRIPTION("IMX generic serial port driver");
2677 MODULE_LICENSE("GPL");
2678 MODULE_ALIAS("platform:imx-uart");
2679