1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/io.h> 29 #include <linux/dma-mapping.h> 30 31 #include <asm/irq.h> 32 #include <linux/dma/imx-dma.h> 33 34 #include "serial_mctrl_gpio.h" 35 36 /* Register definitions */ 37 #define URXD0 0x0 /* Receiver Register */ 38 #define URTX0 0x40 /* Transmitter Register */ 39 #define UCR1 0x80 /* Control Register 1 */ 40 #define UCR2 0x84 /* Control Register 2 */ 41 #define UCR3 0x88 /* Control Register 3 */ 42 #define UCR4 0x8c /* Control Register 4 */ 43 #define UFCR 0x90 /* FIFO Control Register */ 44 #define USR1 0x94 /* Status Register 1 */ 45 #define USR2 0x98 /* Status Register 2 */ 46 #define UESC 0x9c /* Escape Character Register */ 47 #define UTIM 0xa0 /* Escape Timer Register */ 48 #define UBIR 0xa4 /* BRM Incremental Register */ 49 #define UBMR 0xa8 /* BRM Modulator Register */ 50 #define UBRC 0xac /* Baud Rate Count Register */ 51 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 52 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 53 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 54 55 /* UART Control Register Bit Fields.*/ 56 #define URXD_DUMMY_READ (1<<16) 57 #define URXD_CHARRDY (1<<15) 58 #define URXD_ERR (1<<14) 59 #define URXD_OVRRUN (1<<13) 60 #define URXD_FRMERR (1<<12) 61 #define URXD_BRK (1<<11) 62 #define URXD_PRERR (1<<10) 63 #define URXD_RX_DATA (0xFF<<0) 64 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 65 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 66 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 67 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 68 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 69 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 70 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 71 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 72 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 73 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 74 #define UCR1_SNDBRK (1<<4) /* Send break */ 75 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 76 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 77 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 78 #define UCR1_DOZE (1<<1) /* Doze */ 79 #define UCR1_UARTEN (1<<0) /* UART enabled */ 80 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 81 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 82 #define UCR2_CTSC (1<<13) /* CTS pin control */ 83 #define UCR2_CTS (1<<12) /* Clear to send */ 84 #define UCR2_ESCEN (1<<11) /* Escape enable */ 85 #define UCR2_PREN (1<<8) /* Parity enable */ 86 #define UCR2_PROE (1<<7) /* Parity odd/even */ 87 #define UCR2_STPB (1<<6) /* Stop */ 88 #define UCR2_WS (1<<5) /* Word size */ 89 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 90 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 91 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 92 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 93 #define UCR2_SRST (1<<0) /* SW reset */ 94 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 95 #define UCR3_PARERREN (1<<12) /* Parity enable */ 96 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 97 #define UCR3_DSR (1<<10) /* Data set ready */ 98 #define UCR3_DCD (1<<9) /* Data carrier detect */ 99 #define UCR3_RI (1<<8) /* Ring indicator */ 100 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 101 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 102 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 103 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 104 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 105 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 106 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 107 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 108 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 109 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 110 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 111 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 112 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 113 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 114 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 115 #define UCR4_IRSC (1<<5) /* IR special case */ 116 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 117 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 118 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 119 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 120 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 121 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 122 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 123 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 124 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 125 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 126 #define USR1_RTSS (1<<14) /* RTS pin status */ 127 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 128 #define USR1_RTSD (1<<12) /* RTS delta */ 129 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 130 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 131 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 132 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 133 #define USR1_DTRD (1<<7) /* DTR Delta */ 134 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 135 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 136 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 137 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 138 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 139 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 140 #define USR2_IDLE (1<<12) /* Idle condition */ 141 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 142 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 143 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 144 #define USR2_WAKE (1<<7) /* Wake */ 145 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 146 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 147 #define USR2_TXDC (1<<3) /* Transmitter complete */ 148 #define USR2_BRCD (1<<2) /* Break condition */ 149 #define USR2_ORE (1<<1) /* Overrun error */ 150 #define USR2_RDR (1<<0) /* Recv data ready */ 151 #define UTS_FRCPERR (1<<13) /* Force parity error */ 152 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 153 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 154 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 155 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 156 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 157 #define UTS_SOFTRST (1<<0) /* Software reset */ 158 159 /* We've been assigned a range on the "Low-density serial ports" major */ 160 #define SERIAL_IMX_MAJOR 207 161 #define MINOR_START 16 162 #define DEV_NAME "ttymxc" 163 164 /* 165 * This determines how often we check the modem status signals 166 * for any change. They generally aren't connected to an IRQ 167 * so we have to poll them. We also check immediately before 168 * filling the TX fifo incase CTS has been dropped. 169 */ 170 #define MCTRL_TIMEOUT (250*HZ/1000) 171 172 #define DRIVER_NAME "IMX-uart" 173 174 #define UART_NR 8 175 176 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 177 enum imx_uart_type { 178 IMX1_UART, 179 IMX21_UART, 180 }; 181 182 /* device type dependent stuff */ 183 struct imx_uart_data { 184 unsigned uts_reg; 185 enum imx_uart_type devtype; 186 }; 187 188 enum imx_tx_state { 189 OFF, 190 WAIT_AFTER_RTS, 191 SEND, 192 WAIT_AFTER_SEND, 193 }; 194 195 struct imx_port { 196 struct uart_port port; 197 struct timer_list timer; 198 unsigned int old_status; 199 unsigned int have_rtscts:1; 200 unsigned int have_rtsgpio:1; 201 unsigned int dte_mode:1; 202 unsigned int inverted_tx:1; 203 unsigned int inverted_rx:1; 204 struct clk *clk_ipg; 205 struct clk *clk_per; 206 const struct imx_uart_data *devdata; 207 208 struct mctrl_gpios *gpios; 209 210 /* counter to stop 0xff flood */ 211 int idle_counter; 212 213 /* DMA fields */ 214 unsigned int dma_is_enabled:1; 215 unsigned int dma_is_rxing:1; 216 unsigned int dma_is_txing:1; 217 struct dma_chan *dma_chan_rx, *dma_chan_tx; 218 struct scatterlist rx_sgl, tx_sgl[2]; 219 void *rx_buf; 220 struct circ_buf rx_ring; 221 unsigned int rx_buf_size; 222 unsigned int rx_period_length; 223 unsigned int rx_periods; 224 dma_cookie_t rx_cookie; 225 unsigned int tx_bytes; 226 unsigned int dma_tx_nents; 227 unsigned int saved_reg[10]; 228 bool context_saved; 229 230 enum imx_tx_state tx_state; 231 struct hrtimer trigger_start_tx; 232 struct hrtimer trigger_stop_tx; 233 }; 234 235 struct imx_port_ucrs { 236 unsigned int ucr1; 237 unsigned int ucr2; 238 unsigned int ucr3; 239 }; 240 241 static const struct imx_uart_data imx_uart_imx1_devdata = { 242 .uts_reg = IMX1_UTS, 243 .devtype = IMX1_UART, 244 }; 245 246 static const struct imx_uart_data imx_uart_imx21_devdata = { 247 .uts_reg = IMX21_UTS, 248 .devtype = IMX21_UART, 249 }; 250 251 static const struct of_device_id imx_uart_dt_ids[] = { 252 /* 253 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are 254 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the 255 * original imx6q's UART is compatible to fsl,imx21-uart. This driver 256 * doesn't make any distinction between these two variants. 257 */ 258 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, }, 259 { .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, }, 260 { .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, }, 261 { /* sentinel */ } 262 }; 263 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 264 265 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 266 { 267 writel(val, sport->port.membase + offset); 268 } 269 270 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 271 { 272 return readl(sport->port.membase + offset); 273 } 274 275 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 276 { 277 return sport->devdata->uts_reg; 278 } 279 280 static inline int imx_uart_is_imx1(struct imx_port *sport) 281 { 282 return sport->devdata->devtype == IMX1_UART; 283 } 284 285 /* 286 * Save and restore functions for UCR1, UCR2 and UCR3 registers 287 */ 288 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 289 static void imx_uart_ucrs_save(struct imx_port *sport, 290 struct imx_port_ucrs *ucr) 291 { 292 /* save control registers */ 293 ucr->ucr1 = imx_uart_readl(sport, UCR1); 294 ucr->ucr2 = imx_uart_readl(sport, UCR2); 295 ucr->ucr3 = imx_uart_readl(sport, UCR3); 296 } 297 298 static void imx_uart_ucrs_restore(struct imx_port *sport, 299 struct imx_port_ucrs *ucr) 300 { 301 /* restore control registers */ 302 imx_uart_writel(sport, ucr->ucr1, UCR1); 303 imx_uart_writel(sport, ucr->ucr2, UCR2); 304 imx_uart_writel(sport, ucr->ucr3, UCR3); 305 } 306 #endif 307 308 /* called with port.lock taken and irqs caller dependent */ 309 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 310 { 311 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 312 313 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 314 } 315 316 /* called with port.lock taken and irqs caller dependent */ 317 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 318 { 319 *ucr2 &= ~UCR2_CTSC; 320 *ucr2 |= UCR2_CTS; 321 322 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 323 } 324 325 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 326 { 327 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 328 } 329 330 /* called with port.lock taken and irqs off */ 331 static void imx_uart_soft_reset(struct imx_port *sport) 332 { 333 int i = 10; 334 u32 ucr2, ubir, ubmr, uts; 335 336 /* 337 * According to the Reference Manual description of the UART SRST bit: 338 * 339 * "Reset the transmit and receive state machines, 340 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 341 * and UTS[6-3]". 342 * 343 * We don't need to restore the old values from USR1, USR2, URXD and 344 * UTXD. UBRC is read only, so only save/restore the other three 345 * registers. 346 */ 347 ubir = imx_uart_readl(sport, UBIR); 348 ubmr = imx_uart_readl(sport, UBMR); 349 uts = imx_uart_readl(sport, IMX21_UTS); 350 351 ucr2 = imx_uart_readl(sport, UCR2); 352 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 353 354 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 355 udelay(1); 356 357 /* Restore the registers */ 358 imx_uart_writel(sport, ubir, UBIR); 359 imx_uart_writel(sport, ubmr, UBMR); 360 imx_uart_writel(sport, uts, IMX21_UTS); 361 362 sport->idle_counter = 0; 363 } 364 365 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 366 { 367 unsigned int uts; 368 369 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 370 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 371 uts &= ~UTS_LOOP; 372 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 373 } 374 375 /* called with port.lock taken and irqs off */ 376 static void imx_uart_start_rx(struct uart_port *port) 377 { 378 struct imx_port *sport = (struct imx_port *)port; 379 unsigned int ucr1, ucr2; 380 381 ucr1 = imx_uart_readl(sport, UCR1); 382 ucr2 = imx_uart_readl(sport, UCR2); 383 384 ucr2 |= UCR2_RXEN; 385 386 if (sport->dma_is_enabled) { 387 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 388 } else { 389 ucr1 |= UCR1_RRDYEN; 390 ucr2 |= UCR2_ATEN; 391 } 392 393 /* Write UCR2 first as it includes RXEN */ 394 imx_uart_writel(sport, ucr2, UCR2); 395 imx_uart_writel(sport, ucr1, UCR1); 396 imx_uart_disable_loopback_rs485(sport); 397 } 398 399 /* called with port.lock taken and irqs off */ 400 static void imx_uart_stop_tx(struct uart_port *port) 401 { 402 struct imx_port *sport = (struct imx_port *)port; 403 u32 ucr1, ucr4, usr2; 404 405 if (sport->tx_state == OFF) 406 return; 407 408 /* 409 * We are maybe in the SMP context, so if the DMA TX thread is running 410 * on other cpu, we have to wait for it to finish. 411 */ 412 if (sport->dma_is_txing) 413 return; 414 415 ucr1 = imx_uart_readl(sport, UCR1); 416 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 417 418 usr2 = imx_uart_readl(sport, USR2); 419 if (!(usr2 & USR2_TXDC)) { 420 /* The shifter is still busy, so retry once TC triggers */ 421 return; 422 } 423 424 ucr4 = imx_uart_readl(sport, UCR4); 425 ucr4 &= ~UCR4_TCEN; 426 imx_uart_writel(sport, ucr4, UCR4); 427 428 /* in rs485 mode disable transmitter */ 429 if (port->rs485.flags & SER_RS485_ENABLED) { 430 if (sport->tx_state == SEND) { 431 sport->tx_state = WAIT_AFTER_SEND; 432 433 if (port->rs485.delay_rts_after_send > 0) { 434 start_hrtimer_ms(&sport->trigger_stop_tx, 435 port->rs485.delay_rts_after_send); 436 return; 437 } 438 439 /* continue without any delay */ 440 } 441 442 if (sport->tx_state == WAIT_AFTER_RTS || 443 sport->tx_state == WAIT_AFTER_SEND) { 444 u32 ucr2; 445 446 hrtimer_try_to_cancel(&sport->trigger_start_tx); 447 448 ucr2 = imx_uart_readl(sport, UCR2); 449 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 450 imx_uart_rts_active(sport, &ucr2); 451 else 452 imx_uart_rts_inactive(sport, &ucr2); 453 imx_uart_writel(sport, ucr2, UCR2); 454 455 if (!port->rs485_rx_during_tx_gpio) 456 imx_uart_start_rx(port); 457 458 sport->tx_state = OFF; 459 } 460 } else { 461 sport->tx_state = OFF; 462 } 463 } 464 465 /* called with port.lock taken and irqs off */ 466 static void imx_uart_stop_rx(struct uart_port *port) 467 { 468 struct imx_port *sport = (struct imx_port *)port; 469 u32 ucr1, ucr2, ucr4, uts; 470 471 ucr1 = imx_uart_readl(sport, UCR1); 472 ucr2 = imx_uart_readl(sport, UCR2); 473 ucr4 = imx_uart_readl(sport, UCR4); 474 475 if (sport->dma_is_enabled) { 476 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 477 } else { 478 ucr1 &= ~UCR1_RRDYEN; 479 ucr2 &= ~UCR2_ATEN; 480 ucr4 &= ~UCR4_OREN; 481 } 482 imx_uart_writel(sport, ucr1, UCR1); 483 imx_uart_writel(sport, ucr4, UCR4); 484 485 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 486 if (port->rs485.flags & SER_RS485_ENABLED && 487 port->rs485.flags & SER_RS485_RTS_ON_SEND && 488 sport->have_rtscts && !sport->have_rtsgpio) { 489 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 490 uts |= UTS_LOOP; 491 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 492 ucr2 |= UCR2_RXEN; 493 } else { 494 ucr2 &= ~UCR2_RXEN; 495 } 496 497 imx_uart_writel(sport, ucr2, UCR2); 498 } 499 500 /* called with port.lock taken and irqs off */ 501 static void imx_uart_enable_ms(struct uart_port *port) 502 { 503 struct imx_port *sport = (struct imx_port *)port; 504 505 mod_timer(&sport->timer, jiffies); 506 507 mctrl_gpio_enable_ms(sport->gpios); 508 } 509 510 static void imx_uart_dma_tx(struct imx_port *sport); 511 512 /* called with port.lock taken and irqs off */ 513 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 514 { 515 struct circ_buf *xmit = &sport->port.state->xmit; 516 517 if (sport->port.x_char) { 518 /* Send next char */ 519 imx_uart_writel(sport, sport->port.x_char, URTX0); 520 sport->port.icount.tx++; 521 sport->port.x_char = 0; 522 return; 523 } 524 525 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 526 imx_uart_stop_tx(&sport->port); 527 return; 528 } 529 530 if (sport->dma_is_enabled) { 531 u32 ucr1; 532 /* 533 * We've just sent a X-char Ensure the TX DMA is enabled 534 * and the TX IRQ is disabled. 535 **/ 536 ucr1 = imx_uart_readl(sport, UCR1); 537 ucr1 &= ~UCR1_TRDYEN; 538 if (sport->dma_is_txing) { 539 ucr1 |= UCR1_TXDMAEN; 540 imx_uart_writel(sport, ucr1, UCR1); 541 } else { 542 imx_uart_writel(sport, ucr1, UCR1); 543 imx_uart_dma_tx(sport); 544 } 545 546 return; 547 } 548 549 while (!uart_circ_empty(xmit) && 550 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 551 /* send xmit->buf[xmit->tail] 552 * out the port here */ 553 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 554 uart_xmit_advance(&sport->port, 1); 555 } 556 557 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 558 uart_write_wakeup(&sport->port); 559 560 if (uart_circ_empty(xmit)) 561 imx_uart_stop_tx(&sport->port); 562 } 563 564 static void imx_uart_dma_tx_callback(void *data) 565 { 566 struct imx_port *sport = data; 567 struct scatterlist *sgl = &sport->tx_sgl[0]; 568 struct circ_buf *xmit = &sport->port.state->xmit; 569 unsigned long flags; 570 u32 ucr1; 571 572 uart_port_lock_irqsave(&sport->port, &flags); 573 574 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 575 576 ucr1 = imx_uart_readl(sport, UCR1); 577 ucr1 &= ~UCR1_TXDMAEN; 578 imx_uart_writel(sport, ucr1, UCR1); 579 580 uart_xmit_advance(&sport->port, sport->tx_bytes); 581 582 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 583 584 sport->dma_is_txing = 0; 585 586 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 587 uart_write_wakeup(&sport->port); 588 589 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 590 imx_uart_dma_tx(sport); 591 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 592 u32 ucr4 = imx_uart_readl(sport, UCR4); 593 ucr4 |= UCR4_TCEN; 594 imx_uart_writel(sport, ucr4, UCR4); 595 } 596 597 uart_port_unlock_irqrestore(&sport->port, flags); 598 } 599 600 /* called with port.lock taken and irqs off */ 601 static void imx_uart_dma_tx(struct imx_port *sport) 602 { 603 struct circ_buf *xmit = &sport->port.state->xmit; 604 struct scatterlist *sgl = sport->tx_sgl; 605 struct dma_async_tx_descriptor *desc; 606 struct dma_chan *chan = sport->dma_chan_tx; 607 struct device *dev = sport->port.dev; 608 u32 ucr1, ucr4; 609 int ret; 610 611 if (sport->dma_is_txing) 612 return; 613 614 ucr4 = imx_uart_readl(sport, UCR4); 615 ucr4 &= ~UCR4_TCEN; 616 imx_uart_writel(sport, ucr4, UCR4); 617 618 sport->tx_bytes = uart_circ_chars_pending(xmit); 619 620 if (xmit->tail < xmit->head || xmit->head == 0) { 621 sport->dma_tx_nents = 1; 622 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 623 } else { 624 sport->dma_tx_nents = 2; 625 sg_init_table(sgl, 2); 626 sg_set_buf(sgl, xmit->buf + xmit->tail, 627 UART_XMIT_SIZE - xmit->tail); 628 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 629 } 630 631 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 632 if (ret == 0) { 633 dev_err(dev, "DMA mapping error for TX.\n"); 634 return; 635 } 636 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 637 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 638 if (!desc) { 639 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 640 DMA_TO_DEVICE); 641 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 642 return; 643 } 644 desc->callback = imx_uart_dma_tx_callback; 645 desc->callback_param = sport; 646 647 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 648 uart_circ_chars_pending(xmit)); 649 650 ucr1 = imx_uart_readl(sport, UCR1); 651 ucr1 |= UCR1_TXDMAEN; 652 imx_uart_writel(sport, ucr1, UCR1); 653 654 /* fire it */ 655 sport->dma_is_txing = 1; 656 dmaengine_submit(desc); 657 dma_async_issue_pending(chan); 658 return; 659 } 660 661 /* called with port.lock taken and irqs off */ 662 static void imx_uart_start_tx(struct uart_port *port) 663 { 664 struct imx_port *sport = (struct imx_port *)port; 665 u32 ucr1; 666 667 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 668 return; 669 670 /* 671 * We cannot simply do nothing here if sport->tx_state == SEND already 672 * because UCR1_TXMPTYEN might already have been cleared in 673 * imx_uart_stop_tx(), but tx_state is still SEND. 674 */ 675 676 if (port->rs485.flags & SER_RS485_ENABLED) { 677 if (sport->tx_state == OFF) { 678 u32 ucr2 = imx_uart_readl(sport, UCR2); 679 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 680 imx_uart_rts_active(sport, &ucr2); 681 else 682 imx_uart_rts_inactive(sport, &ucr2); 683 imx_uart_writel(sport, ucr2, UCR2); 684 685 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 686 !port->rs485_rx_during_tx_gpio) 687 imx_uart_stop_rx(port); 688 689 sport->tx_state = WAIT_AFTER_RTS; 690 691 if (port->rs485.delay_rts_before_send > 0) { 692 start_hrtimer_ms(&sport->trigger_start_tx, 693 port->rs485.delay_rts_before_send); 694 return; 695 } 696 697 /* continue without any delay */ 698 } 699 700 if (sport->tx_state == WAIT_AFTER_SEND 701 || sport->tx_state == WAIT_AFTER_RTS) { 702 703 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 704 705 /* 706 * Enable transmitter and shifter empty irq only if DMA 707 * is off. In the DMA case this is done in the 708 * tx-callback. 709 */ 710 if (!sport->dma_is_enabled) { 711 u32 ucr4 = imx_uart_readl(sport, UCR4); 712 ucr4 |= UCR4_TCEN; 713 imx_uart_writel(sport, ucr4, UCR4); 714 } 715 716 sport->tx_state = SEND; 717 } 718 } else { 719 sport->tx_state = SEND; 720 } 721 722 if (!sport->dma_is_enabled) { 723 ucr1 = imx_uart_readl(sport, UCR1); 724 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 725 } 726 727 if (sport->dma_is_enabled) { 728 if (sport->port.x_char) { 729 /* We have X-char to send, so enable TX IRQ and 730 * disable TX DMA to let TX interrupt to send X-char */ 731 ucr1 = imx_uart_readl(sport, UCR1); 732 ucr1 &= ~UCR1_TXDMAEN; 733 ucr1 |= UCR1_TRDYEN; 734 imx_uart_writel(sport, ucr1, UCR1); 735 return; 736 } 737 738 if (!uart_circ_empty(&port->state->xmit) && 739 !uart_tx_stopped(port)) 740 imx_uart_dma_tx(sport); 741 return; 742 } 743 } 744 745 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 746 { 747 struct imx_port *sport = dev_id; 748 u32 usr1; 749 750 imx_uart_writel(sport, USR1_RTSD, USR1); 751 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 752 uart_handle_cts_change(&sport->port, usr1); 753 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 754 755 return IRQ_HANDLED; 756 } 757 758 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 759 { 760 struct imx_port *sport = dev_id; 761 irqreturn_t ret; 762 763 uart_port_lock(&sport->port); 764 765 ret = __imx_uart_rtsint(irq, dev_id); 766 767 uart_port_unlock(&sport->port); 768 769 return ret; 770 } 771 772 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 773 { 774 struct imx_port *sport = dev_id; 775 776 uart_port_lock(&sport->port); 777 imx_uart_transmit_buffer(sport); 778 uart_port_unlock(&sport->port); 779 return IRQ_HANDLED; 780 } 781 782 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 783 * This is to be called from Rx ISRs only when some bytes were actually 784 * received. 785 * 786 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 787 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 788 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 789 * that is terminated by any activity on RxD line, or could be stopped by 790 * issuing soft reset to the UART (just stop/start of RX does not help). Note 791 * that what we do here is sending isolated start bit about 2.4 times shorter 792 * than it is to be on UART configured baud rate. 793 */ 794 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 795 { 796 /* To detect hardware 0xff flood we monitor RxD line between RX 797 * interrupts to isolate "receiving" of char(s) with no activity 798 * on RxD line, that'd never happen on actual data transfers. 799 * 800 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 801 * race here if we clear USR2_WAKE when receiving of a char is in 802 * progress, so we might get RX interrupt later with USR2_WAKE bit 803 * cleared. Note though that as we don't try to clear USR2_WAKE when we 804 * detected no activity, this race may hide actual activity only once. 805 * 806 * Yet another case where receive interrupt may occur without RxD 807 * activity is expiration of aging timer, so we consider this as well. 808 * 809 * We use 'idle_counter' to ensure that we got at least so many RX 810 * interrupts without any detected activity on RxD line. 2 cases 811 * described plus 1 to be on the safe side gives us a margin of 3, 812 * below. In practice I was not able to produce a false positive to 813 * induce soft reset at regular data transfers even using 1 as the 814 * margin, so 3 is actually very strong. 815 * 816 * We count interrupts, not chars in 'idle-counter' for simplicity. 817 */ 818 819 if (usr2 & USR2_WAKE) { 820 imx_uart_writel(sport, USR2_WAKE, USR2); 821 sport->idle_counter = 0; 822 } else if (++sport->idle_counter > 3) { 823 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 824 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 825 } 826 } 827 828 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 829 { 830 struct imx_port *sport = dev_id; 831 struct tty_port *port = &sport->port.state->port; 832 u32 usr2, rx; 833 834 /* If we received something, check for 0xff flood */ 835 usr2 = imx_uart_readl(sport, USR2); 836 if (usr2 & USR2_RDR) 837 imx_uart_check_flood(sport, usr2); 838 839 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 840 unsigned int flg = TTY_NORMAL; 841 sport->port.icount.rx++; 842 843 if (unlikely(rx & URXD_ERR)) { 844 if (rx & URXD_BRK) { 845 sport->port.icount.brk++; 846 if (uart_handle_break(&sport->port)) 847 continue; 848 } 849 else if (rx & URXD_PRERR) 850 sport->port.icount.parity++; 851 else if (rx & URXD_FRMERR) 852 sport->port.icount.frame++; 853 if (rx & URXD_OVRRUN) 854 sport->port.icount.overrun++; 855 856 if (rx & sport->port.ignore_status_mask) 857 continue; 858 859 rx &= (sport->port.read_status_mask | 0xFF); 860 861 if (rx & URXD_BRK) 862 flg = TTY_BREAK; 863 else if (rx & URXD_PRERR) 864 flg = TTY_PARITY; 865 else if (rx & URXD_FRMERR) 866 flg = TTY_FRAME; 867 if (rx & URXD_OVRRUN) 868 flg = TTY_OVERRUN; 869 870 sport->port.sysrq = 0; 871 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 872 continue; 873 } 874 875 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 876 continue; 877 878 if (tty_insert_flip_char(port, rx, flg) == 0) 879 sport->port.icount.buf_overrun++; 880 } 881 882 tty_flip_buffer_push(port); 883 884 return IRQ_HANDLED; 885 } 886 887 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 888 { 889 struct imx_port *sport = dev_id; 890 irqreturn_t ret; 891 892 uart_port_lock(&sport->port); 893 894 ret = __imx_uart_rxint(irq, dev_id); 895 896 uart_port_unlock(&sport->port); 897 898 return ret; 899 } 900 901 static void imx_uart_clear_rx_errors(struct imx_port *sport); 902 903 /* 904 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 905 */ 906 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 907 { 908 unsigned int tmp = TIOCM_DSR; 909 unsigned usr1 = imx_uart_readl(sport, USR1); 910 unsigned usr2 = imx_uart_readl(sport, USR2); 911 912 if (usr1 & USR1_RTSS) 913 tmp |= TIOCM_CTS; 914 915 /* in DCE mode DCDIN is always 0 */ 916 if (!(usr2 & USR2_DCDIN)) 917 tmp |= TIOCM_CAR; 918 919 if (sport->dte_mode) 920 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 921 tmp |= TIOCM_RI; 922 923 return tmp; 924 } 925 926 /* 927 * Handle any change of modem status signal since we were last called. 928 */ 929 static void imx_uart_mctrl_check(struct imx_port *sport) 930 { 931 unsigned int status, changed; 932 933 status = imx_uart_get_hwmctrl(sport); 934 changed = status ^ sport->old_status; 935 936 if (changed == 0) 937 return; 938 939 sport->old_status = status; 940 941 if (changed & TIOCM_RI && status & TIOCM_RI) 942 sport->port.icount.rng++; 943 if (changed & TIOCM_DSR) 944 sport->port.icount.dsr++; 945 if (changed & TIOCM_CAR) 946 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 947 if (changed & TIOCM_CTS) 948 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 949 950 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 951 } 952 953 static irqreturn_t imx_uart_int(int irq, void *dev_id) 954 { 955 struct imx_port *sport = dev_id; 956 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 957 irqreturn_t ret = IRQ_NONE; 958 959 uart_port_lock(&sport->port); 960 961 usr1 = imx_uart_readl(sport, USR1); 962 usr2 = imx_uart_readl(sport, USR2); 963 ucr1 = imx_uart_readl(sport, UCR1); 964 ucr2 = imx_uart_readl(sport, UCR2); 965 ucr3 = imx_uart_readl(sport, UCR3); 966 ucr4 = imx_uart_readl(sport, UCR4); 967 968 /* 969 * Even if a condition is true that can trigger an irq only handle it if 970 * the respective irq source is enabled. This prevents some undesired 971 * actions, for example if a character that sits in the RX FIFO and that 972 * should be fetched via DMA is tried to be fetched using PIO. Or the 973 * receiver is currently off and so reading from URXD0 results in an 974 * exception. So just mask the (raw) status bits for disabled irqs. 975 */ 976 if ((ucr1 & UCR1_RRDYEN) == 0) 977 usr1 &= ~USR1_RRDY; 978 if ((ucr2 & UCR2_ATEN) == 0) 979 usr1 &= ~USR1_AGTIM; 980 if ((ucr1 & UCR1_TRDYEN) == 0) 981 usr1 &= ~USR1_TRDY; 982 if ((ucr4 & UCR4_TCEN) == 0) 983 usr2 &= ~USR2_TXDC; 984 if ((ucr3 & UCR3_DTRDEN) == 0) 985 usr1 &= ~USR1_DTRD; 986 if ((ucr1 & UCR1_RTSDEN) == 0) 987 usr1 &= ~USR1_RTSD; 988 if ((ucr3 & UCR3_AWAKEN) == 0) 989 usr1 &= ~USR1_AWAKE; 990 if ((ucr4 & UCR4_OREN) == 0) 991 usr2 &= ~USR2_ORE; 992 993 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 994 imx_uart_writel(sport, USR1_AGTIM, USR1); 995 996 __imx_uart_rxint(irq, dev_id); 997 ret = IRQ_HANDLED; 998 } 999 1000 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1001 imx_uart_transmit_buffer(sport); 1002 ret = IRQ_HANDLED; 1003 } 1004 1005 if (usr1 & USR1_DTRD) { 1006 imx_uart_writel(sport, USR1_DTRD, USR1); 1007 1008 imx_uart_mctrl_check(sport); 1009 1010 ret = IRQ_HANDLED; 1011 } 1012 1013 if (usr1 & USR1_RTSD) { 1014 __imx_uart_rtsint(irq, dev_id); 1015 ret = IRQ_HANDLED; 1016 } 1017 1018 if (usr1 & USR1_AWAKE) { 1019 imx_uart_writel(sport, USR1_AWAKE, USR1); 1020 ret = IRQ_HANDLED; 1021 } 1022 1023 if (usr2 & USR2_ORE) { 1024 sport->port.icount.overrun++; 1025 imx_uart_writel(sport, USR2_ORE, USR2); 1026 ret = IRQ_HANDLED; 1027 } 1028 1029 uart_port_unlock(&sport->port); 1030 1031 return ret; 1032 } 1033 1034 /* 1035 * Return TIOCSER_TEMT when transmitter is not busy. 1036 */ 1037 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1038 { 1039 struct imx_port *sport = (struct imx_port *)port; 1040 unsigned int ret; 1041 1042 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1043 1044 /* If the TX DMA is working, return 0. */ 1045 if (sport->dma_is_txing) 1046 ret = 0; 1047 1048 return ret; 1049 } 1050 1051 /* called with port.lock taken and irqs off */ 1052 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1053 { 1054 struct imx_port *sport = (struct imx_port *)port; 1055 unsigned int ret = imx_uart_get_hwmctrl(sport); 1056 1057 mctrl_gpio_get(sport->gpios, &ret); 1058 1059 return ret; 1060 } 1061 1062 /* called with port.lock taken and irqs off */ 1063 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1064 { 1065 struct imx_port *sport = (struct imx_port *)port; 1066 u32 ucr3, uts; 1067 1068 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1069 u32 ucr2; 1070 1071 /* 1072 * Turn off autoRTS if RTS is lowered and restore autoRTS 1073 * setting if RTS is raised. 1074 */ 1075 ucr2 = imx_uart_readl(sport, UCR2); 1076 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1077 if (mctrl & TIOCM_RTS) { 1078 ucr2 |= UCR2_CTS; 1079 /* 1080 * UCR2_IRTS is unset if and only if the port is 1081 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1082 * to get the state to restore to. 1083 */ 1084 if (!(ucr2 & UCR2_IRTS)) 1085 ucr2 |= UCR2_CTSC; 1086 } 1087 imx_uart_writel(sport, ucr2, UCR2); 1088 } 1089 1090 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1091 if (!(mctrl & TIOCM_DTR)) 1092 ucr3 |= UCR3_DSR; 1093 imx_uart_writel(sport, ucr3, UCR3); 1094 1095 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1096 if (mctrl & TIOCM_LOOP) 1097 uts |= UTS_LOOP; 1098 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1099 1100 mctrl_gpio_set(sport->gpios, mctrl); 1101 } 1102 1103 /* 1104 * Interrupts always disabled. 1105 */ 1106 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1107 { 1108 struct imx_port *sport = (struct imx_port *)port; 1109 unsigned long flags; 1110 u32 ucr1; 1111 1112 uart_port_lock_irqsave(&sport->port, &flags); 1113 1114 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1115 1116 if (break_state != 0) 1117 ucr1 |= UCR1_SNDBRK; 1118 1119 imx_uart_writel(sport, ucr1, UCR1); 1120 1121 uart_port_unlock_irqrestore(&sport->port, flags); 1122 } 1123 1124 /* 1125 * This is our per-port timeout handler, for checking the 1126 * modem status signals. 1127 */ 1128 static void imx_uart_timeout(struct timer_list *t) 1129 { 1130 struct imx_port *sport = from_timer(sport, t, timer); 1131 unsigned long flags; 1132 1133 if (sport->port.state) { 1134 uart_port_lock_irqsave(&sport->port, &flags); 1135 imx_uart_mctrl_check(sport); 1136 uart_port_unlock_irqrestore(&sport->port, flags); 1137 1138 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1139 } 1140 } 1141 1142 /* 1143 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1144 * [1] the RX DMA buffer is full. 1145 * [2] the aging timer expires 1146 * 1147 * Condition [2] is triggered when a character has been sitting in the FIFO 1148 * for at least 8 byte durations. 1149 */ 1150 static void imx_uart_dma_rx_callback(void *data) 1151 { 1152 struct imx_port *sport = data; 1153 struct dma_chan *chan = sport->dma_chan_rx; 1154 struct scatterlist *sgl = &sport->rx_sgl; 1155 struct tty_port *port = &sport->port.state->port; 1156 struct dma_tx_state state; 1157 struct circ_buf *rx_ring = &sport->rx_ring; 1158 enum dma_status status; 1159 unsigned int w_bytes = 0; 1160 unsigned int r_bytes; 1161 unsigned int bd_size; 1162 1163 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1164 1165 if (status == DMA_ERROR) { 1166 uart_port_lock(&sport->port); 1167 imx_uart_clear_rx_errors(sport); 1168 uart_port_unlock(&sport->port); 1169 return; 1170 } 1171 1172 /* 1173 * The state-residue variable represents the empty space 1174 * relative to the entire buffer. Taking this in consideration 1175 * the head is always calculated base on the buffer total 1176 * length - DMA transaction residue. The UART script from the 1177 * SDMA firmware will jump to the next buffer descriptor, 1178 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1179 * Taking this in consideration the tail is always at the 1180 * beginning of the buffer descriptor that contains the head. 1181 */ 1182 1183 /* Calculate the head */ 1184 rx_ring->head = sg_dma_len(sgl) - state.residue; 1185 1186 /* Calculate the tail. */ 1187 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1188 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1189 1190 if (rx_ring->head <= sg_dma_len(sgl) && 1191 rx_ring->head > rx_ring->tail) { 1192 1193 /* Move data from tail to head */ 1194 r_bytes = rx_ring->head - rx_ring->tail; 1195 1196 /* If we received something, check for 0xff flood */ 1197 uart_port_lock(&sport->port); 1198 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1199 uart_port_unlock(&sport->port); 1200 1201 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1202 1203 /* CPU claims ownership of RX DMA buffer */ 1204 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1205 DMA_FROM_DEVICE); 1206 1207 w_bytes = tty_insert_flip_string(port, 1208 sport->rx_buf + rx_ring->tail, r_bytes); 1209 1210 /* UART retrieves ownership of RX DMA buffer */ 1211 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1212 DMA_FROM_DEVICE); 1213 1214 if (w_bytes != r_bytes) 1215 sport->port.icount.buf_overrun++; 1216 1217 sport->port.icount.rx += w_bytes; 1218 } 1219 } else { 1220 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1221 WARN_ON(rx_ring->head <= rx_ring->tail); 1222 } 1223 1224 if (w_bytes) { 1225 tty_flip_buffer_push(port); 1226 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1227 } 1228 } 1229 1230 static int imx_uart_start_rx_dma(struct imx_port *sport) 1231 { 1232 struct scatterlist *sgl = &sport->rx_sgl; 1233 struct dma_chan *chan = sport->dma_chan_rx; 1234 struct device *dev = sport->port.dev; 1235 struct dma_async_tx_descriptor *desc; 1236 int ret; 1237 1238 sport->rx_ring.head = 0; 1239 sport->rx_ring.tail = 0; 1240 1241 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1242 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1243 if (ret == 0) { 1244 dev_err(dev, "DMA mapping error for RX.\n"); 1245 return -EINVAL; 1246 } 1247 1248 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1249 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1250 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1251 1252 if (!desc) { 1253 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1254 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1255 return -EINVAL; 1256 } 1257 desc->callback = imx_uart_dma_rx_callback; 1258 desc->callback_param = sport; 1259 1260 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1261 sport->dma_is_rxing = 1; 1262 sport->rx_cookie = dmaengine_submit(desc); 1263 dma_async_issue_pending(chan); 1264 return 0; 1265 } 1266 1267 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1268 { 1269 struct tty_port *port = &sport->port.state->port; 1270 u32 usr1, usr2; 1271 1272 usr1 = imx_uart_readl(sport, USR1); 1273 usr2 = imx_uart_readl(sport, USR2); 1274 1275 if (usr2 & USR2_BRCD) { 1276 sport->port.icount.brk++; 1277 imx_uart_writel(sport, USR2_BRCD, USR2); 1278 uart_handle_break(&sport->port); 1279 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1280 sport->port.icount.buf_overrun++; 1281 tty_flip_buffer_push(port); 1282 } else { 1283 if (usr1 & USR1_FRAMERR) { 1284 sport->port.icount.frame++; 1285 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1286 } else if (usr1 & USR1_PARITYERR) { 1287 sport->port.icount.parity++; 1288 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1289 } 1290 } 1291 1292 if (usr2 & USR2_ORE) { 1293 sport->port.icount.overrun++; 1294 imx_uart_writel(sport, USR2_ORE, USR2); 1295 } 1296 1297 sport->idle_counter = 0; 1298 1299 } 1300 1301 #define TXTL_DEFAULT 2 /* reset default */ 1302 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1303 #define TXTL_DMA 8 /* DMA burst setting */ 1304 #define RXTL_DMA 9 /* DMA burst setting */ 1305 1306 static void imx_uart_setup_ufcr(struct imx_port *sport, 1307 unsigned char txwl, unsigned char rxwl) 1308 { 1309 unsigned int val; 1310 1311 /* set receiver / transmitter trigger level */ 1312 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1313 val |= txwl << UFCR_TXTL_SHF | rxwl; 1314 imx_uart_writel(sport, val, UFCR); 1315 } 1316 1317 static void imx_uart_dma_exit(struct imx_port *sport) 1318 { 1319 if (sport->dma_chan_rx) { 1320 dmaengine_terminate_sync(sport->dma_chan_rx); 1321 dma_release_channel(sport->dma_chan_rx); 1322 sport->dma_chan_rx = NULL; 1323 sport->rx_cookie = -EINVAL; 1324 kfree(sport->rx_buf); 1325 sport->rx_buf = NULL; 1326 } 1327 1328 if (sport->dma_chan_tx) { 1329 dmaengine_terminate_sync(sport->dma_chan_tx); 1330 dma_release_channel(sport->dma_chan_tx); 1331 sport->dma_chan_tx = NULL; 1332 } 1333 } 1334 1335 static int imx_uart_dma_init(struct imx_port *sport) 1336 { 1337 struct dma_slave_config slave_config = {}; 1338 struct device *dev = sport->port.dev; 1339 int ret; 1340 1341 /* Prepare for RX : */ 1342 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1343 if (!sport->dma_chan_rx) { 1344 dev_dbg(dev, "cannot get the DMA channel.\n"); 1345 ret = -EINVAL; 1346 goto err; 1347 } 1348 1349 slave_config.direction = DMA_DEV_TO_MEM; 1350 slave_config.src_addr = sport->port.mapbase + URXD0; 1351 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1352 /* one byte less than the watermark level to enable the aging timer */ 1353 slave_config.src_maxburst = RXTL_DMA - 1; 1354 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1355 if (ret) { 1356 dev_err(dev, "error in RX dma configuration.\n"); 1357 goto err; 1358 } 1359 1360 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1361 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1362 if (!sport->rx_buf) { 1363 ret = -ENOMEM; 1364 goto err; 1365 } 1366 sport->rx_ring.buf = sport->rx_buf; 1367 1368 /* Prepare for TX : */ 1369 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1370 if (!sport->dma_chan_tx) { 1371 dev_err(dev, "cannot get the TX DMA channel!\n"); 1372 ret = -EINVAL; 1373 goto err; 1374 } 1375 1376 slave_config.direction = DMA_MEM_TO_DEV; 1377 slave_config.dst_addr = sport->port.mapbase + URTX0; 1378 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1379 slave_config.dst_maxburst = TXTL_DMA; 1380 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1381 if (ret) { 1382 dev_err(dev, "error in TX dma configuration."); 1383 goto err; 1384 } 1385 1386 return 0; 1387 err: 1388 imx_uart_dma_exit(sport); 1389 return ret; 1390 } 1391 1392 static void imx_uart_enable_dma(struct imx_port *sport) 1393 { 1394 u32 ucr1; 1395 1396 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1397 1398 /* set UCR1 */ 1399 ucr1 = imx_uart_readl(sport, UCR1); 1400 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1401 imx_uart_writel(sport, ucr1, UCR1); 1402 1403 sport->dma_is_enabled = 1; 1404 } 1405 1406 static void imx_uart_disable_dma(struct imx_port *sport) 1407 { 1408 u32 ucr1; 1409 1410 /* clear UCR1 */ 1411 ucr1 = imx_uart_readl(sport, UCR1); 1412 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1413 imx_uart_writel(sport, ucr1, UCR1); 1414 1415 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1416 1417 sport->dma_is_enabled = 0; 1418 } 1419 1420 /* half the RX buffer size */ 1421 #define CTSTL 16 1422 1423 static int imx_uart_startup(struct uart_port *port) 1424 { 1425 struct imx_port *sport = (struct imx_port *)port; 1426 int retval; 1427 unsigned long flags; 1428 int dma_is_inited = 0; 1429 u32 ucr1, ucr2, ucr3, ucr4; 1430 1431 retval = clk_prepare_enable(sport->clk_per); 1432 if (retval) 1433 return retval; 1434 retval = clk_prepare_enable(sport->clk_ipg); 1435 if (retval) { 1436 clk_disable_unprepare(sport->clk_per); 1437 return retval; 1438 } 1439 1440 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1441 1442 /* disable the DREN bit (Data Ready interrupt enable) before 1443 * requesting IRQs 1444 */ 1445 ucr4 = imx_uart_readl(sport, UCR4); 1446 1447 /* set the trigger level for CTS */ 1448 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1449 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1450 1451 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1452 1453 /* Can we enable the DMA support? */ 1454 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) { 1455 lockdep_set_subclass(&port->lock, 1); 1456 dma_is_inited = 1; 1457 } 1458 1459 uart_port_lock_irqsave(&sport->port, &flags); 1460 1461 /* Reset fifo's and state machines */ 1462 imx_uart_soft_reset(sport); 1463 1464 /* 1465 * Finally, clear and enable interrupts 1466 */ 1467 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1468 imx_uart_writel(sport, USR2_ORE, USR2); 1469 1470 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1471 ucr1 |= UCR1_UARTEN; 1472 if (sport->have_rtscts) 1473 ucr1 |= UCR1_RTSDEN; 1474 1475 imx_uart_writel(sport, ucr1, UCR1); 1476 1477 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1478 if (!dma_is_inited) 1479 ucr4 |= UCR4_OREN; 1480 if (sport->inverted_rx) 1481 ucr4 |= UCR4_INVR; 1482 imx_uart_writel(sport, ucr4, UCR4); 1483 1484 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1485 /* 1486 * configure tx polarity before enabling tx 1487 */ 1488 if (sport->inverted_tx) 1489 ucr3 |= UCR3_INVT; 1490 1491 if (!imx_uart_is_imx1(sport)) { 1492 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1493 1494 if (sport->dte_mode) 1495 /* disable broken interrupts */ 1496 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1497 } 1498 imx_uart_writel(sport, ucr3, UCR3); 1499 1500 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1501 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1502 if (!sport->have_rtscts) 1503 ucr2 |= UCR2_IRTS; 1504 /* 1505 * make sure the edge sensitive RTS-irq is disabled, 1506 * we're using RTSD instead. 1507 */ 1508 if (!imx_uart_is_imx1(sport)) 1509 ucr2 &= ~UCR2_RTSEN; 1510 imx_uart_writel(sport, ucr2, UCR2); 1511 1512 /* 1513 * Enable modem status interrupts 1514 */ 1515 imx_uart_enable_ms(&sport->port); 1516 1517 if (dma_is_inited) { 1518 imx_uart_enable_dma(sport); 1519 imx_uart_start_rx_dma(sport); 1520 } else { 1521 ucr1 = imx_uart_readl(sport, UCR1); 1522 ucr1 |= UCR1_RRDYEN; 1523 imx_uart_writel(sport, ucr1, UCR1); 1524 1525 ucr2 = imx_uart_readl(sport, UCR2); 1526 ucr2 |= UCR2_ATEN; 1527 imx_uart_writel(sport, ucr2, UCR2); 1528 } 1529 1530 imx_uart_disable_loopback_rs485(sport); 1531 1532 uart_port_unlock_irqrestore(&sport->port, flags); 1533 1534 return 0; 1535 } 1536 1537 static void imx_uart_shutdown(struct uart_port *port) 1538 { 1539 struct imx_port *sport = (struct imx_port *)port; 1540 unsigned long flags; 1541 u32 ucr1, ucr2, ucr4, uts; 1542 1543 if (sport->dma_is_enabled) { 1544 dmaengine_terminate_sync(sport->dma_chan_tx); 1545 if (sport->dma_is_txing) { 1546 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1547 sport->dma_tx_nents, DMA_TO_DEVICE); 1548 sport->dma_is_txing = 0; 1549 } 1550 dmaengine_terminate_sync(sport->dma_chan_rx); 1551 if (sport->dma_is_rxing) { 1552 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1553 1, DMA_FROM_DEVICE); 1554 sport->dma_is_rxing = 0; 1555 } 1556 1557 uart_port_lock_irqsave(&sport->port, &flags); 1558 imx_uart_stop_tx(port); 1559 imx_uart_stop_rx(port); 1560 imx_uart_disable_dma(sport); 1561 uart_port_unlock_irqrestore(&sport->port, flags); 1562 imx_uart_dma_exit(sport); 1563 } 1564 1565 mctrl_gpio_disable_ms(sport->gpios); 1566 1567 uart_port_lock_irqsave(&sport->port, &flags); 1568 ucr2 = imx_uart_readl(sport, UCR2); 1569 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1570 imx_uart_writel(sport, ucr2, UCR2); 1571 uart_port_unlock_irqrestore(&sport->port, flags); 1572 1573 /* 1574 * Stop our timer. 1575 */ 1576 del_timer_sync(&sport->timer); 1577 1578 /* 1579 * Disable all interrupts, port and break condition. 1580 */ 1581 1582 uart_port_lock_irqsave(&sport->port, &flags); 1583 1584 ucr1 = imx_uart_readl(sport, UCR1); 1585 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1586 UCR1_ATDMAEN | UCR1_SNDBRK); 1587 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1588 if (port->rs485.flags & SER_RS485_ENABLED && 1589 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1590 sport->have_rtscts && !sport->have_rtsgpio) { 1591 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1592 uts |= UTS_LOOP; 1593 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1594 ucr1 |= UCR1_UARTEN; 1595 } else { 1596 ucr1 &= ~UCR1_UARTEN; 1597 } 1598 imx_uart_writel(sport, ucr1, UCR1); 1599 1600 ucr4 = imx_uart_readl(sport, UCR4); 1601 ucr4 &= ~UCR4_TCEN; 1602 imx_uart_writel(sport, ucr4, UCR4); 1603 1604 uart_port_unlock_irqrestore(&sport->port, flags); 1605 1606 clk_disable_unprepare(sport->clk_per); 1607 clk_disable_unprepare(sport->clk_ipg); 1608 } 1609 1610 /* called with port.lock taken and irqs off */ 1611 static void imx_uart_flush_buffer(struct uart_port *port) 1612 { 1613 struct imx_port *sport = (struct imx_port *)port; 1614 struct scatterlist *sgl = &sport->tx_sgl[0]; 1615 1616 if (!sport->dma_chan_tx) 1617 return; 1618 1619 sport->tx_bytes = 0; 1620 dmaengine_terminate_all(sport->dma_chan_tx); 1621 if (sport->dma_is_txing) { 1622 u32 ucr1; 1623 1624 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1625 DMA_TO_DEVICE); 1626 ucr1 = imx_uart_readl(sport, UCR1); 1627 ucr1 &= ~UCR1_TXDMAEN; 1628 imx_uart_writel(sport, ucr1, UCR1); 1629 sport->dma_is_txing = 0; 1630 } 1631 1632 imx_uart_soft_reset(sport); 1633 1634 } 1635 1636 static void 1637 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1638 const struct ktermios *old) 1639 { 1640 struct imx_port *sport = (struct imx_port *)port; 1641 unsigned long flags; 1642 u32 ucr2, old_ucr2, ufcr; 1643 unsigned int baud, quot; 1644 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1645 unsigned long div; 1646 unsigned long num, denom, old_ubir, old_ubmr; 1647 uint64_t tdiv64; 1648 1649 /* 1650 * We only support CS7 and CS8. 1651 */ 1652 while ((termios->c_cflag & CSIZE) != CS7 && 1653 (termios->c_cflag & CSIZE) != CS8) { 1654 termios->c_cflag &= ~CSIZE; 1655 termios->c_cflag |= old_csize; 1656 old_csize = CS8; 1657 } 1658 1659 del_timer_sync(&sport->timer); 1660 1661 /* 1662 * Ask the core to calculate the divisor for us. 1663 */ 1664 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1665 quot = uart_get_divisor(port, baud); 1666 1667 uart_port_lock_irqsave(&sport->port, &flags); 1668 1669 /* 1670 * Read current UCR2 and save it for future use, then clear all the bits 1671 * except those we will or may need to preserve. 1672 */ 1673 old_ucr2 = imx_uart_readl(sport, UCR2); 1674 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1675 1676 ucr2 |= UCR2_SRST | UCR2_IRTS; 1677 if ((termios->c_cflag & CSIZE) == CS8) 1678 ucr2 |= UCR2_WS; 1679 1680 if (!sport->have_rtscts) 1681 termios->c_cflag &= ~CRTSCTS; 1682 1683 if (port->rs485.flags & SER_RS485_ENABLED) { 1684 /* 1685 * RTS is mandatory for rs485 operation, so keep 1686 * it under manual control and keep transmitter 1687 * disabled. 1688 */ 1689 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1690 imx_uart_rts_active(sport, &ucr2); 1691 else 1692 imx_uart_rts_inactive(sport, &ucr2); 1693 1694 } else if (termios->c_cflag & CRTSCTS) { 1695 /* 1696 * Only let receiver control RTS output if we were not requested 1697 * to have RTS inactive (which then should take precedence). 1698 */ 1699 if (ucr2 & UCR2_CTS) 1700 ucr2 |= UCR2_CTSC; 1701 } 1702 1703 if (termios->c_cflag & CRTSCTS) 1704 ucr2 &= ~UCR2_IRTS; 1705 if (termios->c_cflag & CSTOPB) 1706 ucr2 |= UCR2_STPB; 1707 if (termios->c_cflag & PARENB) { 1708 ucr2 |= UCR2_PREN; 1709 if (termios->c_cflag & PARODD) 1710 ucr2 |= UCR2_PROE; 1711 } 1712 1713 sport->port.read_status_mask = 0; 1714 if (termios->c_iflag & INPCK) 1715 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1716 if (termios->c_iflag & (BRKINT | PARMRK)) 1717 sport->port.read_status_mask |= URXD_BRK; 1718 1719 /* 1720 * Characters to ignore 1721 */ 1722 sport->port.ignore_status_mask = 0; 1723 if (termios->c_iflag & IGNPAR) 1724 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1725 if (termios->c_iflag & IGNBRK) { 1726 sport->port.ignore_status_mask |= URXD_BRK; 1727 /* 1728 * If we're ignoring parity and break indicators, 1729 * ignore overruns too (for real raw support). 1730 */ 1731 if (termios->c_iflag & IGNPAR) 1732 sport->port.ignore_status_mask |= URXD_OVRRUN; 1733 } 1734 1735 if ((termios->c_cflag & CREAD) == 0) 1736 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1737 1738 /* 1739 * Update the per-port timeout. 1740 */ 1741 uart_update_timeout(port, termios->c_cflag, baud); 1742 1743 /* custom-baudrate handling */ 1744 div = sport->port.uartclk / (baud * 16); 1745 if (baud == 38400 && quot != div) 1746 baud = sport->port.uartclk / (quot * 16); 1747 1748 div = sport->port.uartclk / (baud * 16); 1749 if (div > 7) 1750 div = 7; 1751 if (!div) 1752 div = 1; 1753 1754 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1755 1 << 16, 1 << 16, &num, &denom); 1756 1757 tdiv64 = sport->port.uartclk; 1758 tdiv64 *= num; 1759 do_div(tdiv64, denom * 16 * div); 1760 tty_termios_encode_baud_rate(termios, 1761 (speed_t)tdiv64, (speed_t)tdiv64); 1762 1763 num -= 1; 1764 denom -= 1; 1765 1766 ufcr = imx_uart_readl(sport, UFCR); 1767 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1768 imx_uart_writel(sport, ufcr, UFCR); 1769 1770 /* 1771 * Two registers below should always be written both and in this 1772 * particular order. One consequence is that we need to check if any of 1773 * them changes and then update both. We do need the check for change 1774 * as even writing the same values seem to "restart" 1775 * transmission/receiving logic in the hardware, that leads to data 1776 * breakage even when rate doesn't in fact change. E.g., user switches 1777 * RTS/CTS handshake and suddenly gets broken bytes. 1778 */ 1779 old_ubir = imx_uart_readl(sport, UBIR); 1780 old_ubmr = imx_uart_readl(sport, UBMR); 1781 if (old_ubir != num || old_ubmr != denom) { 1782 imx_uart_writel(sport, num, UBIR); 1783 imx_uart_writel(sport, denom, UBMR); 1784 } 1785 1786 if (!imx_uart_is_imx1(sport)) 1787 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1788 IMX21_ONEMS); 1789 1790 imx_uart_writel(sport, ucr2, UCR2); 1791 1792 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1793 imx_uart_enable_ms(&sport->port); 1794 1795 uart_port_unlock_irqrestore(&sport->port, flags); 1796 } 1797 1798 static const char *imx_uart_type(struct uart_port *port) 1799 { 1800 return port->type == PORT_IMX ? "IMX" : NULL; 1801 } 1802 1803 /* 1804 * Configure/autoconfigure the port. 1805 */ 1806 static void imx_uart_config_port(struct uart_port *port, int flags) 1807 { 1808 if (flags & UART_CONFIG_TYPE) 1809 port->type = PORT_IMX; 1810 } 1811 1812 /* 1813 * Verify the new serial_struct (for TIOCSSERIAL). 1814 * The only change we allow are to the flags and type, and 1815 * even then only between PORT_IMX and PORT_UNKNOWN 1816 */ 1817 static int 1818 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1819 { 1820 int ret = 0; 1821 1822 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1823 ret = -EINVAL; 1824 if (port->irq != ser->irq) 1825 ret = -EINVAL; 1826 if (ser->io_type != UPIO_MEM) 1827 ret = -EINVAL; 1828 if (port->uartclk / 16 != ser->baud_base) 1829 ret = -EINVAL; 1830 if (port->mapbase != (unsigned long)ser->iomem_base) 1831 ret = -EINVAL; 1832 if (port->iobase != ser->port) 1833 ret = -EINVAL; 1834 if (ser->hub6 != 0) 1835 ret = -EINVAL; 1836 return ret; 1837 } 1838 1839 #if defined(CONFIG_CONSOLE_POLL) 1840 1841 static int imx_uart_poll_init(struct uart_port *port) 1842 { 1843 struct imx_port *sport = (struct imx_port *)port; 1844 unsigned long flags; 1845 u32 ucr1, ucr2; 1846 int retval; 1847 1848 retval = clk_prepare_enable(sport->clk_ipg); 1849 if (retval) 1850 return retval; 1851 retval = clk_prepare_enable(sport->clk_per); 1852 if (retval) 1853 clk_disable_unprepare(sport->clk_ipg); 1854 1855 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1856 1857 uart_port_lock_irqsave(&sport->port, &flags); 1858 1859 /* 1860 * Be careful about the order of enabling bits here. First enable the 1861 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1862 * This prevents that a character that already sits in the RX fifo is 1863 * triggering an irq but the try to fetch it from there results in an 1864 * exception because UARTEN or RXEN is still off. 1865 */ 1866 ucr1 = imx_uart_readl(sport, UCR1); 1867 ucr2 = imx_uart_readl(sport, UCR2); 1868 1869 if (imx_uart_is_imx1(sport)) 1870 ucr1 |= IMX1_UCR1_UARTCLKEN; 1871 1872 ucr1 |= UCR1_UARTEN; 1873 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1874 1875 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1876 ucr2 &= ~UCR2_ATEN; 1877 1878 imx_uart_writel(sport, ucr1, UCR1); 1879 imx_uart_writel(sport, ucr2, UCR2); 1880 1881 /* now enable irqs */ 1882 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1883 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1884 1885 uart_port_unlock_irqrestore(&sport->port, flags); 1886 1887 return 0; 1888 } 1889 1890 static int imx_uart_poll_get_char(struct uart_port *port) 1891 { 1892 struct imx_port *sport = (struct imx_port *)port; 1893 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1894 return NO_POLL_CHAR; 1895 1896 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1897 } 1898 1899 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1900 { 1901 struct imx_port *sport = (struct imx_port *)port; 1902 unsigned int status; 1903 1904 /* drain */ 1905 do { 1906 status = imx_uart_readl(sport, USR1); 1907 } while (~status & USR1_TRDY); 1908 1909 /* write */ 1910 imx_uart_writel(sport, c, URTX0); 1911 1912 /* flush */ 1913 do { 1914 status = imx_uart_readl(sport, USR2); 1915 } while (~status & USR2_TXDC); 1916 } 1917 #endif 1918 1919 /* called with port.lock taken and irqs off or from .probe without locking */ 1920 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1921 struct serial_rs485 *rs485conf) 1922 { 1923 struct imx_port *sport = (struct imx_port *)port; 1924 u32 ucr2; 1925 1926 if (rs485conf->flags & SER_RS485_ENABLED) { 1927 /* Enable receiver if low-active RTS signal is requested */ 1928 if (sport->have_rtscts && !sport->have_rtsgpio && 1929 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1930 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1931 1932 /* disable transmitter */ 1933 ucr2 = imx_uart_readl(sport, UCR2); 1934 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1935 imx_uart_rts_active(sport, &ucr2); 1936 else 1937 imx_uart_rts_inactive(sport, &ucr2); 1938 imx_uart_writel(sport, ucr2, UCR2); 1939 } 1940 1941 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1942 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1943 rs485conf->flags & SER_RS485_RX_DURING_TX) 1944 imx_uart_start_rx(port); 1945 1946 if (port->rs485_rx_during_tx_gpio) 1947 gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio, 1948 !!(rs485conf->flags & SER_RS485_RX_DURING_TX)); 1949 1950 return 0; 1951 } 1952 1953 static const struct uart_ops imx_uart_pops = { 1954 .tx_empty = imx_uart_tx_empty, 1955 .set_mctrl = imx_uart_set_mctrl, 1956 .get_mctrl = imx_uart_get_mctrl, 1957 .stop_tx = imx_uart_stop_tx, 1958 .start_tx = imx_uart_start_tx, 1959 .stop_rx = imx_uart_stop_rx, 1960 .enable_ms = imx_uart_enable_ms, 1961 .break_ctl = imx_uart_break_ctl, 1962 .startup = imx_uart_startup, 1963 .shutdown = imx_uart_shutdown, 1964 .flush_buffer = imx_uart_flush_buffer, 1965 .set_termios = imx_uart_set_termios, 1966 .type = imx_uart_type, 1967 .config_port = imx_uart_config_port, 1968 .verify_port = imx_uart_verify_port, 1969 #if defined(CONFIG_CONSOLE_POLL) 1970 .poll_init = imx_uart_poll_init, 1971 .poll_get_char = imx_uart_poll_get_char, 1972 .poll_put_char = imx_uart_poll_put_char, 1973 #endif 1974 }; 1975 1976 static struct imx_port *imx_uart_ports[UART_NR]; 1977 1978 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1979 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1980 { 1981 struct imx_port *sport = (struct imx_port *)port; 1982 1983 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1984 barrier(); 1985 1986 imx_uart_writel(sport, ch, URTX0); 1987 } 1988 1989 /* 1990 * Interrupts are disabled on entering 1991 */ 1992 static void 1993 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1994 { 1995 struct imx_port *sport = imx_uart_ports[co->index]; 1996 struct imx_port_ucrs old_ucr; 1997 unsigned long flags; 1998 unsigned int ucr1; 1999 int locked = 1; 2000 2001 if (sport->port.sysrq) 2002 locked = 0; 2003 else if (oops_in_progress) 2004 locked = uart_port_trylock_irqsave(&sport->port, &flags); 2005 else 2006 uart_port_lock_irqsave(&sport->port, &flags); 2007 2008 /* 2009 * First, save UCR1/2/3 and then disable interrupts 2010 */ 2011 imx_uart_ucrs_save(sport, &old_ucr); 2012 ucr1 = old_ucr.ucr1; 2013 2014 if (imx_uart_is_imx1(sport)) 2015 ucr1 |= IMX1_UCR1_UARTCLKEN; 2016 ucr1 |= UCR1_UARTEN; 2017 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2018 2019 imx_uart_writel(sport, ucr1, UCR1); 2020 2021 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2022 2023 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2024 2025 /* 2026 * Finally, wait for transmitter to become empty 2027 * and restore UCR1/2/3 2028 */ 2029 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 2030 2031 imx_uart_ucrs_restore(sport, &old_ucr); 2032 2033 if (locked) 2034 uart_port_unlock_irqrestore(&sport->port, flags); 2035 } 2036 2037 /* 2038 * If the port was already initialised (eg, by a boot loader), 2039 * try to determine the current setup. 2040 */ 2041 static void 2042 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2043 int *parity, int *bits) 2044 { 2045 2046 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2047 /* ok, the port was enabled */ 2048 unsigned int ucr2, ubir, ubmr, uartclk; 2049 unsigned int baud_raw; 2050 unsigned int ucfr_rfdiv; 2051 2052 ucr2 = imx_uart_readl(sport, UCR2); 2053 2054 *parity = 'n'; 2055 if (ucr2 & UCR2_PREN) { 2056 if (ucr2 & UCR2_PROE) 2057 *parity = 'o'; 2058 else 2059 *parity = 'e'; 2060 } 2061 2062 if (ucr2 & UCR2_WS) 2063 *bits = 8; 2064 else 2065 *bits = 7; 2066 2067 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2068 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2069 2070 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2071 if (ucfr_rfdiv == 6) 2072 ucfr_rfdiv = 7; 2073 else 2074 ucfr_rfdiv = 6 - ucfr_rfdiv; 2075 2076 uartclk = clk_get_rate(sport->clk_per); 2077 uartclk /= ucfr_rfdiv; 2078 2079 { /* 2080 * The next code provides exact computation of 2081 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2082 * without need of float support or long long division, 2083 * which would be required to prevent 32bit arithmetic overflow 2084 */ 2085 unsigned int mul = ubir + 1; 2086 unsigned int div = 16 * (ubmr + 1); 2087 unsigned int rem = uartclk % div; 2088 2089 baud_raw = (uartclk / div) * mul; 2090 baud_raw += (rem * mul + div / 2) / div; 2091 *baud = (baud_raw + 50) / 100 * 100; 2092 } 2093 2094 if (*baud != baud_raw) 2095 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2096 baud_raw, *baud); 2097 } 2098 } 2099 2100 static int 2101 imx_uart_console_setup(struct console *co, char *options) 2102 { 2103 struct imx_port *sport; 2104 int baud = 9600; 2105 int bits = 8; 2106 int parity = 'n'; 2107 int flow = 'n'; 2108 int retval; 2109 2110 /* 2111 * Check whether an invalid uart number has been specified, and 2112 * if so, search for the first available port that does have 2113 * console support. 2114 */ 2115 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2116 co->index = 0; 2117 sport = imx_uart_ports[co->index]; 2118 if (sport == NULL) 2119 return -ENODEV; 2120 2121 /* For setting the registers, we only need to enable the ipg clock. */ 2122 retval = clk_prepare_enable(sport->clk_ipg); 2123 if (retval) 2124 goto error_console; 2125 2126 if (options) 2127 uart_parse_options(options, &baud, &parity, &bits, &flow); 2128 else 2129 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2130 2131 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2132 2133 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2134 2135 if (retval) { 2136 clk_disable_unprepare(sport->clk_ipg); 2137 goto error_console; 2138 } 2139 2140 retval = clk_prepare_enable(sport->clk_per); 2141 if (retval) 2142 clk_disable_unprepare(sport->clk_ipg); 2143 2144 error_console: 2145 return retval; 2146 } 2147 2148 static int 2149 imx_uart_console_exit(struct console *co) 2150 { 2151 struct imx_port *sport = imx_uart_ports[co->index]; 2152 2153 clk_disable_unprepare(sport->clk_per); 2154 clk_disable_unprepare(sport->clk_ipg); 2155 2156 return 0; 2157 } 2158 2159 static struct uart_driver imx_uart_uart_driver; 2160 static struct console imx_uart_console = { 2161 .name = DEV_NAME, 2162 .write = imx_uart_console_write, 2163 .device = uart_console_device, 2164 .setup = imx_uart_console_setup, 2165 .exit = imx_uart_console_exit, 2166 .flags = CON_PRINTBUFFER, 2167 .index = -1, 2168 .data = &imx_uart_uart_driver, 2169 }; 2170 2171 #define IMX_CONSOLE &imx_uart_console 2172 2173 #else 2174 #define IMX_CONSOLE NULL 2175 #endif 2176 2177 static struct uart_driver imx_uart_uart_driver = { 2178 .owner = THIS_MODULE, 2179 .driver_name = DRIVER_NAME, 2180 .dev_name = DEV_NAME, 2181 .major = SERIAL_IMX_MAJOR, 2182 .minor = MINOR_START, 2183 .nr = ARRAY_SIZE(imx_uart_ports), 2184 .cons = IMX_CONSOLE, 2185 }; 2186 2187 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2188 { 2189 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2190 unsigned long flags; 2191 2192 uart_port_lock_irqsave(&sport->port, &flags); 2193 if (sport->tx_state == WAIT_AFTER_RTS) 2194 imx_uart_start_tx(&sport->port); 2195 uart_port_unlock_irqrestore(&sport->port, flags); 2196 2197 return HRTIMER_NORESTART; 2198 } 2199 2200 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2201 { 2202 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2203 unsigned long flags; 2204 2205 uart_port_lock_irqsave(&sport->port, &flags); 2206 if (sport->tx_state == WAIT_AFTER_SEND) 2207 imx_uart_stop_tx(&sport->port); 2208 uart_port_unlock_irqrestore(&sport->port, flags); 2209 2210 return HRTIMER_NORESTART; 2211 } 2212 2213 static const struct serial_rs485 imx_no_rs485 = {}; /* No RS485 if no RTS */ 2214 static const struct serial_rs485 imx_rs485_supported = { 2215 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2216 SER_RS485_RX_DURING_TX, 2217 .delay_rts_before_send = 1, 2218 .delay_rts_after_send = 1, 2219 }; 2220 2221 /* Default RX DMA buffer configuration */ 2222 #define RX_DMA_PERIODS 16 2223 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2224 2225 static int imx_uart_probe(struct platform_device *pdev) 2226 { 2227 struct device_node *np = pdev->dev.of_node; 2228 struct imx_port *sport; 2229 void __iomem *base; 2230 u32 dma_buf_conf[2]; 2231 int ret = 0; 2232 u32 ucr1, ucr2, uts; 2233 struct resource *res; 2234 int txirq, rxirq, rtsirq; 2235 2236 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2237 if (!sport) 2238 return -ENOMEM; 2239 2240 sport->devdata = of_device_get_match_data(&pdev->dev); 2241 2242 ret = of_alias_get_id(np, "serial"); 2243 if (ret < 0) { 2244 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2245 return ret; 2246 } 2247 sport->port.line = ret; 2248 2249 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2250 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2251 2252 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2253 2254 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2255 2256 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2257 2258 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2259 2260 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2261 sport->rx_period_length = dma_buf_conf[0]; 2262 sport->rx_periods = dma_buf_conf[1]; 2263 } else { 2264 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2265 sport->rx_periods = RX_DMA_PERIODS; 2266 } 2267 2268 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2269 dev_err(&pdev->dev, "serial%d out of range\n", 2270 sport->port.line); 2271 return -EINVAL; 2272 } 2273 2274 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2275 if (IS_ERR(base)) 2276 return PTR_ERR(base); 2277 2278 rxirq = platform_get_irq(pdev, 0); 2279 if (rxirq < 0) 2280 return rxirq; 2281 txirq = platform_get_irq_optional(pdev, 1); 2282 rtsirq = platform_get_irq_optional(pdev, 2); 2283 2284 sport->port.dev = &pdev->dev; 2285 sport->port.mapbase = res->start; 2286 sport->port.membase = base; 2287 sport->port.type = PORT_IMX; 2288 sport->port.iotype = UPIO_MEM; 2289 sport->port.irq = rxirq; 2290 sport->port.fifosize = 32; 2291 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2292 sport->port.ops = &imx_uart_pops; 2293 sport->port.rs485_config = imx_uart_rs485_config; 2294 /* RTS is required to control the RS485 transmitter */ 2295 if (sport->have_rtscts || sport->have_rtsgpio) 2296 sport->port.rs485_supported = imx_rs485_supported; 2297 else 2298 sport->port.rs485_supported = imx_no_rs485; 2299 sport->port.flags = UPF_BOOT_AUTOCONF; 2300 timer_setup(&sport->timer, imx_uart_timeout, 0); 2301 2302 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2303 if (IS_ERR(sport->gpios)) 2304 return PTR_ERR(sport->gpios); 2305 2306 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2307 if (IS_ERR(sport->clk_ipg)) { 2308 ret = PTR_ERR(sport->clk_ipg); 2309 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2310 return ret; 2311 } 2312 2313 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2314 if (IS_ERR(sport->clk_per)) { 2315 ret = PTR_ERR(sport->clk_per); 2316 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2317 return ret; 2318 } 2319 2320 sport->port.uartclk = clk_get_rate(sport->clk_per); 2321 2322 /* For register access, we only need to enable the ipg clock. */ 2323 ret = clk_prepare_enable(sport->clk_ipg); 2324 if (ret) { 2325 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2326 return ret; 2327 } 2328 2329 ret = uart_get_rs485_mode(&sport->port); 2330 if (ret) { 2331 clk_disable_unprepare(sport->clk_ipg); 2332 return ret; 2333 } 2334 2335 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2336 (!sport->have_rtscts && !sport->have_rtsgpio)) 2337 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2338 2339 /* 2340 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2341 * signal cannot be set low during transmission in case the 2342 * receiver is off (limitation of the i.MX UART IP). 2343 */ 2344 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2345 sport->have_rtscts && !sport->have_rtsgpio && 2346 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2347 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2348 dev_err(&pdev->dev, 2349 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2350 2351 /* Disable interrupts before requesting them */ 2352 ucr1 = imx_uart_readl(sport, UCR1); 2353 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2354 imx_uart_writel(sport, ucr1, UCR1); 2355 2356 /* Disable Ageing Timer interrupt */ 2357 ucr2 = imx_uart_readl(sport, UCR2); 2358 ucr2 &= ~UCR2_ATEN; 2359 imx_uart_writel(sport, ucr2, UCR2); 2360 2361 /* 2362 * In case RS485 is enabled without GPIO RTS control, the UART IP 2363 * is used to control CTS signal. Keep both the UART and Receiver 2364 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2365 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2366 * data from being fed into the RX FIFO, enable loopback mode in 2367 * UTS register, which disconnects the RX path from external RXD 2368 * pin and connects it to the Transceiver, which is disabled, so 2369 * no data can be fed to the RX FIFO that way. 2370 */ 2371 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2372 sport->have_rtscts && !sport->have_rtsgpio) { 2373 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2374 uts |= UTS_LOOP; 2375 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2376 2377 ucr1 = imx_uart_readl(sport, UCR1); 2378 ucr1 |= UCR1_UARTEN; 2379 imx_uart_writel(sport, ucr1, UCR1); 2380 2381 ucr2 = imx_uart_readl(sport, UCR2); 2382 ucr2 |= UCR2_RXEN; 2383 imx_uart_writel(sport, ucr2, UCR2); 2384 } 2385 2386 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2387 /* 2388 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2389 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2390 * and DCD (when they are outputs) or enables the respective 2391 * irqs. So set this bit early, i.e. before requesting irqs. 2392 */ 2393 u32 ufcr = imx_uart_readl(sport, UFCR); 2394 if (!(ufcr & UFCR_DCEDTE)) 2395 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2396 2397 /* 2398 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2399 * enabled later because they cannot be cleared 2400 * (confirmed on i.MX25) which makes them unusable. 2401 */ 2402 imx_uart_writel(sport, 2403 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2404 UCR3); 2405 2406 } else { 2407 u32 ucr3 = UCR3_DSR; 2408 u32 ufcr = imx_uart_readl(sport, UFCR); 2409 if (ufcr & UFCR_DCEDTE) 2410 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2411 2412 if (!imx_uart_is_imx1(sport)) 2413 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2414 imx_uart_writel(sport, ucr3, UCR3); 2415 } 2416 2417 clk_disable_unprepare(sport->clk_ipg); 2418 2419 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2420 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2421 sport->trigger_start_tx.function = imx_trigger_start_tx; 2422 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2423 2424 /* 2425 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2426 * chips only have one interrupt. 2427 */ 2428 if (txirq > 0) { 2429 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2430 dev_name(&pdev->dev), sport); 2431 if (ret) { 2432 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2433 ret); 2434 return ret; 2435 } 2436 2437 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2438 dev_name(&pdev->dev), sport); 2439 if (ret) { 2440 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2441 ret); 2442 return ret; 2443 } 2444 2445 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2446 dev_name(&pdev->dev), sport); 2447 if (ret) { 2448 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2449 ret); 2450 return ret; 2451 } 2452 } else { 2453 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2454 dev_name(&pdev->dev), sport); 2455 if (ret) { 2456 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2457 return ret; 2458 } 2459 } 2460 2461 imx_uart_ports[sport->port.line] = sport; 2462 2463 platform_set_drvdata(pdev, sport); 2464 2465 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2466 } 2467 2468 static int imx_uart_remove(struct platform_device *pdev) 2469 { 2470 struct imx_port *sport = platform_get_drvdata(pdev); 2471 2472 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2473 2474 return 0; 2475 } 2476 2477 static void imx_uart_restore_context(struct imx_port *sport) 2478 { 2479 unsigned long flags; 2480 2481 uart_port_lock_irqsave(&sport->port, &flags); 2482 if (!sport->context_saved) { 2483 uart_port_unlock_irqrestore(&sport->port, flags); 2484 return; 2485 } 2486 2487 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2488 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2489 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2490 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2491 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2492 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2493 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2494 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2495 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2496 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2497 sport->context_saved = false; 2498 uart_port_unlock_irqrestore(&sport->port, flags); 2499 } 2500 2501 static void imx_uart_save_context(struct imx_port *sport) 2502 { 2503 unsigned long flags; 2504 2505 /* Save necessary regs */ 2506 uart_port_lock_irqsave(&sport->port, &flags); 2507 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2508 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2509 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2510 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2511 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2512 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2513 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2514 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2515 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2516 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2517 sport->context_saved = true; 2518 uart_port_unlock_irqrestore(&sport->port, flags); 2519 } 2520 2521 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2522 { 2523 u32 ucr3; 2524 2525 ucr3 = imx_uart_readl(sport, UCR3); 2526 if (on) { 2527 imx_uart_writel(sport, USR1_AWAKE, USR1); 2528 ucr3 |= UCR3_AWAKEN; 2529 } else { 2530 ucr3 &= ~UCR3_AWAKEN; 2531 } 2532 imx_uart_writel(sport, ucr3, UCR3); 2533 2534 if (sport->have_rtscts) { 2535 u32 ucr1 = imx_uart_readl(sport, UCR1); 2536 if (on) { 2537 imx_uart_writel(sport, USR1_RTSD, USR1); 2538 ucr1 |= UCR1_RTSDEN; 2539 } else { 2540 ucr1 &= ~UCR1_RTSDEN; 2541 } 2542 imx_uart_writel(sport, ucr1, UCR1); 2543 } 2544 } 2545 2546 static int imx_uart_suspend_noirq(struct device *dev) 2547 { 2548 struct imx_port *sport = dev_get_drvdata(dev); 2549 2550 imx_uart_save_context(sport); 2551 2552 clk_disable(sport->clk_ipg); 2553 2554 pinctrl_pm_select_sleep_state(dev); 2555 2556 return 0; 2557 } 2558 2559 static int imx_uart_resume_noirq(struct device *dev) 2560 { 2561 struct imx_port *sport = dev_get_drvdata(dev); 2562 int ret; 2563 2564 pinctrl_pm_select_default_state(dev); 2565 2566 ret = clk_enable(sport->clk_ipg); 2567 if (ret) 2568 return ret; 2569 2570 imx_uart_restore_context(sport); 2571 2572 return 0; 2573 } 2574 2575 static int imx_uart_suspend(struct device *dev) 2576 { 2577 struct imx_port *sport = dev_get_drvdata(dev); 2578 int ret; 2579 2580 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2581 disable_irq(sport->port.irq); 2582 2583 ret = clk_prepare_enable(sport->clk_ipg); 2584 if (ret) 2585 return ret; 2586 2587 /* enable wakeup from i.MX UART */ 2588 imx_uart_enable_wakeup(sport, true); 2589 2590 return 0; 2591 } 2592 2593 static int imx_uart_resume(struct device *dev) 2594 { 2595 struct imx_port *sport = dev_get_drvdata(dev); 2596 2597 /* disable wakeup from i.MX UART */ 2598 imx_uart_enable_wakeup(sport, false); 2599 2600 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2601 enable_irq(sport->port.irq); 2602 2603 clk_disable_unprepare(sport->clk_ipg); 2604 2605 return 0; 2606 } 2607 2608 static int imx_uart_freeze(struct device *dev) 2609 { 2610 struct imx_port *sport = dev_get_drvdata(dev); 2611 2612 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2613 2614 return clk_prepare_enable(sport->clk_ipg); 2615 } 2616 2617 static int imx_uart_thaw(struct device *dev) 2618 { 2619 struct imx_port *sport = dev_get_drvdata(dev); 2620 2621 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2622 2623 clk_disable_unprepare(sport->clk_ipg); 2624 2625 return 0; 2626 } 2627 2628 static const struct dev_pm_ops imx_uart_pm_ops = { 2629 .suspend_noirq = imx_uart_suspend_noirq, 2630 .resume_noirq = imx_uart_resume_noirq, 2631 .freeze_noirq = imx_uart_suspend_noirq, 2632 .thaw_noirq = imx_uart_resume_noirq, 2633 .restore_noirq = imx_uart_resume_noirq, 2634 .suspend = imx_uart_suspend, 2635 .resume = imx_uart_resume, 2636 .freeze = imx_uart_freeze, 2637 .thaw = imx_uart_thaw, 2638 .restore = imx_uart_thaw, 2639 }; 2640 2641 static struct platform_driver imx_uart_platform_driver = { 2642 .probe = imx_uart_probe, 2643 .remove = imx_uart_remove, 2644 2645 .driver = { 2646 .name = "imx-uart", 2647 .of_match_table = imx_uart_dt_ids, 2648 .pm = &imx_uart_pm_ops, 2649 }, 2650 }; 2651 2652 static int __init imx_uart_init(void) 2653 { 2654 int ret = uart_register_driver(&imx_uart_uart_driver); 2655 2656 if (ret) 2657 return ret; 2658 2659 ret = platform_driver_register(&imx_uart_platform_driver); 2660 if (ret != 0) 2661 uart_unregister_driver(&imx_uart_uart_driver); 2662 2663 return ret; 2664 } 2665 2666 static void __exit imx_uart_exit(void) 2667 { 2668 platform_driver_unregister(&imx_uart_platform_driver); 2669 uart_unregister_driver(&imx_uart_uart_driver); 2670 } 2671 2672 module_init(imx_uart_init); 2673 module_exit(imx_uart_exit); 2674 2675 MODULE_AUTHOR("Sascha Hauer"); 2676 MODULE_DESCRIPTION("IMX generic serial port driver"); 2677 MODULE_LICENSE("GPL"); 2678 MODULE_ALIAS("platform:imx-uart"); 2679