xref: /linux/drivers/tty/serial/imx.c (revision 722ecdbce68a87de2d9296f91308f44ea900a039)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/dma/imx-dma.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* shadow registers */
214 	unsigned int ucr1;
215 	unsigned int ucr2;
216 	unsigned int ucr3;
217 	unsigned int ucr4;
218 	unsigned int ufcr;
219 
220 	/* DMA fields */
221 	unsigned int		dma_is_enabled:1;
222 	unsigned int		dma_is_rxing:1;
223 	unsigned int		dma_is_txing:1;
224 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
225 	struct scatterlist	rx_sgl, tx_sgl[2];
226 	void			*rx_buf;
227 	struct circ_buf		rx_ring;
228 	unsigned int		rx_buf_size;
229 	unsigned int		rx_period_length;
230 	unsigned int		rx_periods;
231 	dma_cookie_t		rx_cookie;
232 	unsigned int		tx_bytes;
233 	unsigned int		dma_tx_nents;
234 	unsigned int            saved_reg[10];
235 	bool			context_saved;
236 
237 	enum imx_tx_state	tx_state;
238 	struct hrtimer		trigger_start_tx;
239 	struct hrtimer		trigger_stop_tx;
240 };
241 
242 struct imx_port_ucrs {
243 	unsigned int	ucr1;
244 	unsigned int	ucr2;
245 	unsigned int	ucr3;
246 };
247 
248 static struct imx_uart_data imx_uart_devdata[] = {
249 	[IMX1_UART] = {
250 		.uts_reg = IMX1_UTS,
251 		.devtype = IMX1_UART,
252 	},
253 	[IMX21_UART] = {
254 		.uts_reg = IMX21_UTS,
255 		.devtype = IMX21_UART,
256 	},
257 	[IMX53_UART] = {
258 		.uts_reg = IMX21_UTS,
259 		.devtype = IMX53_UART,
260 	},
261 	[IMX6Q_UART] = {
262 		.uts_reg = IMX21_UTS,
263 		.devtype = IMX6Q_UART,
264 	},
265 };
266 
267 static const struct of_device_id imx_uart_dt_ids[] = {
268 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
269 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
270 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
271 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
272 	{ /* sentinel */ }
273 };
274 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
275 
276 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
277 {
278 	switch (offset) {
279 	case UCR1:
280 		sport->ucr1 = val;
281 		break;
282 	case UCR2:
283 		sport->ucr2 = val;
284 		break;
285 	case UCR3:
286 		sport->ucr3 = val;
287 		break;
288 	case UCR4:
289 		sport->ucr4 = val;
290 		break;
291 	case UFCR:
292 		sport->ufcr = val;
293 		break;
294 	default:
295 		break;
296 	}
297 	writel(val, sport->port.membase + offset);
298 }
299 
300 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
301 {
302 	switch (offset) {
303 	case UCR1:
304 		return sport->ucr1;
305 		break;
306 	case UCR2:
307 		/*
308 		 * UCR2_SRST is the only bit in the cached registers that might
309 		 * differ from the value that was last written. As it only
310 		 * automatically becomes one after being cleared, reread
311 		 * conditionally.
312 		 */
313 		if (!(sport->ucr2 & UCR2_SRST))
314 			sport->ucr2 = readl(sport->port.membase + offset);
315 		return sport->ucr2;
316 		break;
317 	case UCR3:
318 		return sport->ucr3;
319 		break;
320 	case UCR4:
321 		return sport->ucr4;
322 		break;
323 	case UFCR:
324 		return sport->ufcr;
325 		break;
326 	default:
327 		return readl(sport->port.membase + offset);
328 	}
329 }
330 
331 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
332 {
333 	return sport->devdata->uts_reg;
334 }
335 
336 static inline int imx_uart_is_imx1(struct imx_port *sport)
337 {
338 	return sport->devdata->devtype == IMX1_UART;
339 }
340 
341 static inline int imx_uart_is_imx21(struct imx_port *sport)
342 {
343 	return sport->devdata->devtype == IMX21_UART;
344 }
345 
346 static inline int imx_uart_is_imx53(struct imx_port *sport)
347 {
348 	return sport->devdata->devtype == IMX53_UART;
349 }
350 
351 static inline int imx_uart_is_imx6q(struct imx_port *sport)
352 {
353 	return sport->devdata->devtype == IMX6Q_UART;
354 }
355 /*
356  * Save and restore functions for UCR1, UCR2 and UCR3 registers
357  */
358 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
359 static void imx_uart_ucrs_save(struct imx_port *sport,
360 			       struct imx_port_ucrs *ucr)
361 {
362 	/* save control registers */
363 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
364 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
365 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
366 }
367 
368 static void imx_uart_ucrs_restore(struct imx_port *sport,
369 				  struct imx_port_ucrs *ucr)
370 {
371 	/* restore control registers */
372 	imx_uart_writel(sport, ucr->ucr1, UCR1);
373 	imx_uart_writel(sport, ucr->ucr2, UCR2);
374 	imx_uart_writel(sport, ucr->ucr3, UCR3);
375 }
376 #endif
377 
378 /* called with port.lock taken and irqs caller dependent */
379 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
380 {
381 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
382 
383 	sport->port.mctrl |= TIOCM_RTS;
384 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
385 }
386 
387 /* called with port.lock taken and irqs caller dependent */
388 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
389 {
390 	*ucr2 &= ~UCR2_CTSC;
391 	*ucr2 |= UCR2_CTS;
392 
393 	sport->port.mctrl &= ~TIOCM_RTS;
394 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
395 }
396 
397 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
398 {
399        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
400 }
401 
402 /* called with port.lock taken and irqs off */
403 static void imx_uart_start_rx(struct uart_port *port)
404 {
405 	struct imx_port *sport = (struct imx_port *)port;
406 	unsigned int ucr1, ucr2;
407 
408 	ucr1 = imx_uart_readl(sport, UCR1);
409 	ucr2 = imx_uart_readl(sport, UCR2);
410 
411 	ucr2 |= UCR2_RXEN;
412 
413 	if (sport->dma_is_enabled) {
414 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
415 	} else {
416 		ucr1 |= UCR1_RRDYEN;
417 		ucr2 |= UCR2_ATEN;
418 	}
419 
420 	/* Write UCR2 first as it includes RXEN */
421 	imx_uart_writel(sport, ucr2, UCR2);
422 	imx_uart_writel(sport, ucr1, UCR1);
423 }
424 
425 /* called with port.lock taken and irqs off */
426 static void imx_uart_stop_tx(struct uart_port *port)
427 {
428 	struct imx_port *sport = (struct imx_port *)port;
429 	u32 ucr1, ucr4, usr2;
430 
431 	if (sport->tx_state == OFF)
432 		return;
433 
434 	/*
435 	 * We are maybe in the SMP context, so if the DMA TX thread is running
436 	 * on other cpu, we have to wait for it to finish.
437 	 */
438 	if (sport->dma_is_txing)
439 		return;
440 
441 	ucr1 = imx_uart_readl(sport, UCR1);
442 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
443 
444 	usr2 = imx_uart_readl(sport, USR2);
445 	if (!(usr2 & USR2_TXDC)) {
446 		/* The shifter is still busy, so retry once TC triggers */
447 		return;
448 	}
449 
450 	ucr4 = imx_uart_readl(sport, UCR4);
451 	ucr4 &= ~UCR4_TCEN;
452 	imx_uart_writel(sport, ucr4, UCR4);
453 
454 	/* in rs485 mode disable transmitter */
455 	if (port->rs485.flags & SER_RS485_ENABLED) {
456 		if (sport->tx_state == SEND) {
457 			sport->tx_state = WAIT_AFTER_SEND;
458 
459 			if (port->rs485.delay_rts_after_send > 0) {
460 				start_hrtimer_ms(&sport->trigger_stop_tx,
461 					 port->rs485.delay_rts_after_send);
462 				return;
463 			}
464 
465 			/* continue without any delay */
466 		}
467 
468 		if (sport->tx_state == WAIT_AFTER_RTS ||
469 		    sport->tx_state == WAIT_AFTER_SEND) {
470 			u32 ucr2;
471 
472 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
473 
474 			ucr2 = imx_uart_readl(sport, UCR2);
475 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
476 				imx_uart_rts_active(sport, &ucr2);
477 			else
478 				imx_uart_rts_inactive(sport, &ucr2);
479 			imx_uart_writel(sport, ucr2, UCR2);
480 
481 			imx_uart_start_rx(port);
482 
483 			sport->tx_state = OFF;
484 		}
485 	} else {
486 		sport->tx_state = OFF;
487 	}
488 }
489 
490 /* called with port.lock taken and irqs off */
491 static void imx_uart_stop_rx(struct uart_port *port)
492 {
493 	struct imx_port *sport = (struct imx_port *)port;
494 	u32 ucr1, ucr2, ucr4;
495 
496 	ucr1 = imx_uart_readl(sport, UCR1);
497 	ucr2 = imx_uart_readl(sport, UCR2);
498 	ucr4 = imx_uart_readl(sport, UCR4);
499 
500 	if (sport->dma_is_enabled) {
501 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
502 	} else {
503 		ucr1 &= ~UCR1_RRDYEN;
504 		ucr2 &= ~UCR2_ATEN;
505 		ucr4 &= ~UCR4_OREN;
506 	}
507 	imx_uart_writel(sport, ucr1, UCR1);
508 	imx_uart_writel(sport, ucr4, UCR4);
509 
510 	ucr2 &= ~UCR2_RXEN;
511 	imx_uart_writel(sport, ucr2, UCR2);
512 }
513 
514 /* called with port.lock taken and irqs off */
515 static void imx_uart_enable_ms(struct uart_port *port)
516 {
517 	struct imx_port *sport = (struct imx_port *)port;
518 
519 	mod_timer(&sport->timer, jiffies);
520 
521 	mctrl_gpio_enable_ms(sport->gpios);
522 }
523 
524 static void imx_uart_dma_tx(struct imx_port *sport);
525 
526 /* called with port.lock taken and irqs off */
527 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
528 {
529 	struct circ_buf *xmit = &sport->port.state->xmit;
530 
531 	if (sport->port.x_char) {
532 		/* Send next char */
533 		imx_uart_writel(sport, sport->port.x_char, URTX0);
534 		sport->port.icount.tx++;
535 		sport->port.x_char = 0;
536 		return;
537 	}
538 
539 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
540 		imx_uart_stop_tx(&sport->port);
541 		return;
542 	}
543 
544 	if (sport->dma_is_enabled) {
545 		u32 ucr1;
546 		/*
547 		 * We've just sent a X-char Ensure the TX DMA is enabled
548 		 * and the TX IRQ is disabled.
549 		 **/
550 		ucr1 = imx_uart_readl(sport, UCR1);
551 		ucr1 &= ~UCR1_TRDYEN;
552 		if (sport->dma_is_txing) {
553 			ucr1 |= UCR1_TXDMAEN;
554 			imx_uart_writel(sport, ucr1, UCR1);
555 		} else {
556 			imx_uart_writel(sport, ucr1, UCR1);
557 			imx_uart_dma_tx(sport);
558 		}
559 
560 		return;
561 	}
562 
563 	while (!uart_circ_empty(xmit) &&
564 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
565 		/* send xmit->buf[xmit->tail]
566 		 * out the port here */
567 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
568 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
569 		sport->port.icount.tx++;
570 	}
571 
572 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
573 		uart_write_wakeup(&sport->port);
574 
575 	if (uart_circ_empty(xmit))
576 		imx_uart_stop_tx(&sport->port);
577 }
578 
579 static void imx_uart_dma_tx_callback(void *data)
580 {
581 	struct imx_port *sport = data;
582 	struct scatterlist *sgl = &sport->tx_sgl[0];
583 	struct circ_buf *xmit = &sport->port.state->xmit;
584 	unsigned long flags;
585 	u32 ucr1;
586 
587 	spin_lock_irqsave(&sport->port.lock, flags);
588 
589 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
590 
591 	ucr1 = imx_uart_readl(sport, UCR1);
592 	ucr1 &= ~UCR1_TXDMAEN;
593 	imx_uart_writel(sport, ucr1, UCR1);
594 
595 	/* update the stat */
596 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
597 	sport->port.icount.tx += sport->tx_bytes;
598 
599 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
600 
601 	sport->dma_is_txing = 0;
602 
603 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
604 		uart_write_wakeup(&sport->port);
605 
606 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
607 		imx_uart_dma_tx(sport);
608 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
609 		u32 ucr4 = imx_uart_readl(sport, UCR4);
610 		ucr4 |= UCR4_TCEN;
611 		imx_uart_writel(sport, ucr4, UCR4);
612 	}
613 
614 	spin_unlock_irqrestore(&sport->port.lock, flags);
615 }
616 
617 /* called with port.lock taken and irqs off */
618 static void imx_uart_dma_tx(struct imx_port *sport)
619 {
620 	struct circ_buf *xmit = &sport->port.state->xmit;
621 	struct scatterlist *sgl = sport->tx_sgl;
622 	struct dma_async_tx_descriptor *desc;
623 	struct dma_chan	*chan = sport->dma_chan_tx;
624 	struct device *dev = sport->port.dev;
625 	u32 ucr1, ucr4;
626 	int ret;
627 
628 	if (sport->dma_is_txing)
629 		return;
630 
631 	ucr4 = imx_uart_readl(sport, UCR4);
632 	ucr4 &= ~UCR4_TCEN;
633 	imx_uart_writel(sport, ucr4, UCR4);
634 
635 	sport->tx_bytes = uart_circ_chars_pending(xmit);
636 
637 	if (xmit->tail < xmit->head || xmit->head == 0) {
638 		sport->dma_tx_nents = 1;
639 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
640 	} else {
641 		sport->dma_tx_nents = 2;
642 		sg_init_table(sgl, 2);
643 		sg_set_buf(sgl, xmit->buf + xmit->tail,
644 				UART_XMIT_SIZE - xmit->tail);
645 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
646 	}
647 
648 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
649 	if (ret == 0) {
650 		dev_err(dev, "DMA mapping error for TX.\n");
651 		return;
652 	}
653 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
654 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
655 	if (!desc) {
656 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
657 			     DMA_TO_DEVICE);
658 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
659 		return;
660 	}
661 	desc->callback = imx_uart_dma_tx_callback;
662 	desc->callback_param = sport;
663 
664 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
665 			uart_circ_chars_pending(xmit));
666 
667 	ucr1 = imx_uart_readl(sport, UCR1);
668 	ucr1 |= UCR1_TXDMAEN;
669 	imx_uart_writel(sport, ucr1, UCR1);
670 
671 	/* fire it */
672 	sport->dma_is_txing = 1;
673 	dmaengine_submit(desc);
674 	dma_async_issue_pending(chan);
675 	return;
676 }
677 
678 /* called with port.lock taken and irqs off */
679 static void imx_uart_start_tx(struct uart_port *port)
680 {
681 	struct imx_port *sport = (struct imx_port *)port;
682 	u32 ucr1;
683 
684 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
685 		return;
686 
687 	/*
688 	 * We cannot simply do nothing here if sport->tx_state == SEND already
689 	 * because UCR1_TXMPTYEN might already have been cleared in
690 	 * imx_uart_stop_tx(), but tx_state is still SEND.
691 	 */
692 
693 	if (port->rs485.flags & SER_RS485_ENABLED) {
694 		if (sport->tx_state == OFF) {
695 			u32 ucr2 = imx_uart_readl(sport, UCR2);
696 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
697 				imx_uart_rts_active(sport, &ucr2);
698 			else
699 				imx_uart_rts_inactive(sport, &ucr2);
700 			imx_uart_writel(sport, ucr2, UCR2);
701 
702 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
703 				imx_uart_stop_rx(port);
704 
705 			sport->tx_state = WAIT_AFTER_RTS;
706 
707 			if (port->rs485.delay_rts_before_send > 0) {
708 				start_hrtimer_ms(&sport->trigger_start_tx,
709 					 port->rs485.delay_rts_before_send);
710 				return;
711 			}
712 
713 			/* continue without any delay */
714 		}
715 
716 		if (sport->tx_state == WAIT_AFTER_SEND
717 		    || sport->tx_state == WAIT_AFTER_RTS) {
718 
719 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
720 
721 			/*
722 			 * Enable transmitter and shifter empty irq only if DMA
723 			 * is off.  In the DMA case this is done in the
724 			 * tx-callback.
725 			 */
726 			if (!sport->dma_is_enabled) {
727 				u32 ucr4 = imx_uart_readl(sport, UCR4);
728 				ucr4 |= UCR4_TCEN;
729 				imx_uart_writel(sport, ucr4, UCR4);
730 			}
731 
732 			sport->tx_state = SEND;
733 		}
734 	} else {
735 		sport->tx_state = SEND;
736 	}
737 
738 	if (!sport->dma_is_enabled) {
739 		ucr1 = imx_uart_readl(sport, UCR1);
740 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
741 	}
742 
743 	if (sport->dma_is_enabled) {
744 		if (sport->port.x_char) {
745 			/* We have X-char to send, so enable TX IRQ and
746 			 * disable TX DMA to let TX interrupt to send X-char */
747 			ucr1 = imx_uart_readl(sport, UCR1);
748 			ucr1 &= ~UCR1_TXDMAEN;
749 			ucr1 |= UCR1_TRDYEN;
750 			imx_uart_writel(sport, ucr1, UCR1);
751 			return;
752 		}
753 
754 		if (!uart_circ_empty(&port->state->xmit) &&
755 		    !uart_tx_stopped(port))
756 			imx_uart_dma_tx(sport);
757 		return;
758 	}
759 }
760 
761 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
762 {
763 	struct imx_port *sport = dev_id;
764 	u32 usr1;
765 
766 	imx_uart_writel(sport, USR1_RTSD, USR1);
767 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
768 	uart_handle_cts_change(&sport->port, !!usr1);
769 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
770 
771 	return IRQ_HANDLED;
772 }
773 
774 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
775 {
776 	struct imx_port *sport = dev_id;
777 	irqreturn_t ret;
778 
779 	spin_lock(&sport->port.lock);
780 
781 	ret = __imx_uart_rtsint(irq, dev_id);
782 
783 	spin_unlock(&sport->port.lock);
784 
785 	return ret;
786 }
787 
788 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
789 {
790 	struct imx_port *sport = dev_id;
791 
792 	spin_lock(&sport->port.lock);
793 	imx_uart_transmit_buffer(sport);
794 	spin_unlock(&sport->port.lock);
795 	return IRQ_HANDLED;
796 }
797 
798 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
799 {
800 	struct imx_port *sport = dev_id;
801 	unsigned int rx, flg, ignored = 0;
802 	struct tty_port *port = &sport->port.state->port;
803 
804 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
805 		u32 usr2;
806 
807 		flg = TTY_NORMAL;
808 		sport->port.icount.rx++;
809 
810 		rx = imx_uart_readl(sport, URXD0);
811 
812 		usr2 = imx_uart_readl(sport, USR2);
813 		if (usr2 & USR2_BRCD) {
814 			imx_uart_writel(sport, USR2_BRCD, USR2);
815 			if (uart_handle_break(&sport->port))
816 				continue;
817 		}
818 
819 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
820 			continue;
821 
822 		if (unlikely(rx & URXD_ERR)) {
823 			if (rx & URXD_BRK)
824 				sport->port.icount.brk++;
825 			else if (rx & URXD_PRERR)
826 				sport->port.icount.parity++;
827 			else if (rx & URXD_FRMERR)
828 				sport->port.icount.frame++;
829 			if (rx & URXD_OVRRUN)
830 				sport->port.icount.overrun++;
831 
832 			if (rx & sport->port.ignore_status_mask) {
833 				if (++ignored > 100)
834 					goto out;
835 				continue;
836 			}
837 
838 			rx &= (sport->port.read_status_mask | 0xFF);
839 
840 			if (rx & URXD_BRK)
841 				flg = TTY_BREAK;
842 			else if (rx & URXD_PRERR)
843 				flg = TTY_PARITY;
844 			else if (rx & URXD_FRMERR)
845 				flg = TTY_FRAME;
846 			if (rx & URXD_OVRRUN)
847 				flg = TTY_OVERRUN;
848 
849 			sport->port.sysrq = 0;
850 		}
851 
852 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
853 			goto out;
854 
855 		if (tty_insert_flip_char(port, rx, flg) == 0)
856 			sport->port.icount.buf_overrun++;
857 	}
858 
859 out:
860 	tty_flip_buffer_push(port);
861 
862 	return IRQ_HANDLED;
863 }
864 
865 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
866 {
867 	struct imx_port *sport = dev_id;
868 	irqreturn_t ret;
869 
870 	spin_lock(&sport->port.lock);
871 
872 	ret = __imx_uart_rxint(irq, dev_id);
873 
874 	spin_unlock(&sport->port.lock);
875 
876 	return ret;
877 }
878 
879 static void imx_uart_clear_rx_errors(struct imx_port *sport);
880 
881 /*
882  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
883  */
884 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
885 {
886 	unsigned int tmp = TIOCM_DSR;
887 	unsigned usr1 = imx_uart_readl(sport, USR1);
888 	unsigned usr2 = imx_uart_readl(sport, USR2);
889 
890 	if (usr1 & USR1_RTSS)
891 		tmp |= TIOCM_CTS;
892 
893 	/* in DCE mode DCDIN is always 0 */
894 	if (!(usr2 & USR2_DCDIN))
895 		tmp |= TIOCM_CAR;
896 
897 	if (sport->dte_mode)
898 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
899 			tmp |= TIOCM_RI;
900 
901 	return tmp;
902 }
903 
904 /*
905  * Handle any change of modem status signal since we were last called.
906  */
907 static void imx_uart_mctrl_check(struct imx_port *sport)
908 {
909 	unsigned int status, changed;
910 
911 	status = imx_uart_get_hwmctrl(sport);
912 	changed = status ^ sport->old_status;
913 
914 	if (changed == 0)
915 		return;
916 
917 	sport->old_status = status;
918 
919 	if (changed & TIOCM_RI && status & TIOCM_RI)
920 		sport->port.icount.rng++;
921 	if (changed & TIOCM_DSR)
922 		sport->port.icount.dsr++;
923 	if (changed & TIOCM_CAR)
924 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
925 	if (changed & TIOCM_CTS)
926 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
927 
928 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
929 }
930 
931 static irqreturn_t imx_uart_int(int irq, void *dev_id)
932 {
933 	struct imx_port *sport = dev_id;
934 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
935 	irqreturn_t ret = IRQ_NONE;
936 
937 	spin_lock(&sport->port.lock);
938 
939 	usr1 = imx_uart_readl(sport, USR1);
940 	usr2 = imx_uart_readl(sport, USR2);
941 	ucr1 = imx_uart_readl(sport, UCR1);
942 	ucr2 = imx_uart_readl(sport, UCR2);
943 	ucr3 = imx_uart_readl(sport, UCR3);
944 	ucr4 = imx_uart_readl(sport, UCR4);
945 
946 	/*
947 	 * Even if a condition is true that can trigger an irq only handle it if
948 	 * the respective irq source is enabled. This prevents some undesired
949 	 * actions, for example if a character that sits in the RX FIFO and that
950 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
951 	 * receiver is currently off and so reading from URXD0 results in an
952 	 * exception. So just mask the (raw) status bits for disabled irqs.
953 	 */
954 	if ((ucr1 & UCR1_RRDYEN) == 0)
955 		usr1 &= ~USR1_RRDY;
956 	if ((ucr2 & UCR2_ATEN) == 0)
957 		usr1 &= ~USR1_AGTIM;
958 	if ((ucr1 & UCR1_TRDYEN) == 0)
959 		usr1 &= ~USR1_TRDY;
960 	if ((ucr4 & UCR4_TCEN) == 0)
961 		usr2 &= ~USR2_TXDC;
962 	if ((ucr3 & UCR3_DTRDEN) == 0)
963 		usr1 &= ~USR1_DTRD;
964 	if ((ucr1 & UCR1_RTSDEN) == 0)
965 		usr1 &= ~USR1_RTSD;
966 	if ((ucr3 & UCR3_AWAKEN) == 0)
967 		usr1 &= ~USR1_AWAKE;
968 	if ((ucr4 & UCR4_OREN) == 0)
969 		usr2 &= ~USR2_ORE;
970 
971 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
972 		imx_uart_writel(sport, USR1_AGTIM, USR1);
973 
974 		__imx_uart_rxint(irq, dev_id);
975 		ret = IRQ_HANDLED;
976 	}
977 
978 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
979 		imx_uart_transmit_buffer(sport);
980 		ret = IRQ_HANDLED;
981 	}
982 
983 	if (usr1 & USR1_DTRD) {
984 		imx_uart_writel(sport, USR1_DTRD, USR1);
985 
986 		imx_uart_mctrl_check(sport);
987 
988 		ret = IRQ_HANDLED;
989 	}
990 
991 	if (usr1 & USR1_RTSD) {
992 		__imx_uart_rtsint(irq, dev_id);
993 		ret = IRQ_HANDLED;
994 	}
995 
996 	if (usr1 & USR1_AWAKE) {
997 		imx_uart_writel(sport, USR1_AWAKE, USR1);
998 		ret = IRQ_HANDLED;
999 	}
1000 
1001 	if (usr2 & USR2_ORE) {
1002 		sport->port.icount.overrun++;
1003 		imx_uart_writel(sport, USR2_ORE, USR2);
1004 		ret = IRQ_HANDLED;
1005 	}
1006 
1007 	spin_unlock(&sport->port.lock);
1008 
1009 	return ret;
1010 }
1011 
1012 /*
1013  * Return TIOCSER_TEMT when transmitter is not busy.
1014  */
1015 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1016 {
1017 	struct imx_port *sport = (struct imx_port *)port;
1018 	unsigned int ret;
1019 
1020 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1021 
1022 	/* If the TX DMA is working, return 0. */
1023 	if (sport->dma_is_txing)
1024 		ret = 0;
1025 
1026 	return ret;
1027 }
1028 
1029 /* called with port.lock taken and irqs off */
1030 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1031 {
1032 	struct imx_port *sport = (struct imx_port *)port;
1033 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1034 
1035 	mctrl_gpio_get(sport->gpios, &ret);
1036 
1037 	return ret;
1038 }
1039 
1040 /* called with port.lock taken and irqs off */
1041 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1042 {
1043 	struct imx_port *sport = (struct imx_port *)port;
1044 	u32 ucr3, uts;
1045 
1046 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1047 		u32 ucr2;
1048 
1049 		/*
1050 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1051 		 * setting if RTS is raised.
1052 		 */
1053 		ucr2 = imx_uart_readl(sport, UCR2);
1054 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1055 		if (mctrl & TIOCM_RTS) {
1056 			ucr2 |= UCR2_CTS;
1057 			/*
1058 			 * UCR2_IRTS is unset if and only if the port is
1059 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1060 			 * to get the state to restore to.
1061 			 */
1062 			if (!(ucr2 & UCR2_IRTS))
1063 				ucr2 |= UCR2_CTSC;
1064 		}
1065 		imx_uart_writel(sport, ucr2, UCR2);
1066 	}
1067 
1068 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1069 	if (!(mctrl & TIOCM_DTR))
1070 		ucr3 |= UCR3_DSR;
1071 	imx_uart_writel(sport, ucr3, UCR3);
1072 
1073 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1074 	if (mctrl & TIOCM_LOOP)
1075 		uts |= UTS_LOOP;
1076 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1077 
1078 	mctrl_gpio_set(sport->gpios, mctrl);
1079 }
1080 
1081 /*
1082  * Interrupts always disabled.
1083  */
1084 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1085 {
1086 	struct imx_port *sport = (struct imx_port *)port;
1087 	unsigned long flags;
1088 	u32 ucr1;
1089 
1090 	spin_lock_irqsave(&sport->port.lock, flags);
1091 
1092 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1093 
1094 	if (break_state != 0)
1095 		ucr1 |= UCR1_SNDBRK;
1096 
1097 	imx_uart_writel(sport, ucr1, UCR1);
1098 
1099 	spin_unlock_irqrestore(&sport->port.lock, flags);
1100 }
1101 
1102 /*
1103  * This is our per-port timeout handler, for checking the
1104  * modem status signals.
1105  */
1106 static void imx_uart_timeout(struct timer_list *t)
1107 {
1108 	struct imx_port *sport = from_timer(sport, t, timer);
1109 	unsigned long flags;
1110 
1111 	if (sport->port.state) {
1112 		spin_lock_irqsave(&sport->port.lock, flags);
1113 		imx_uart_mctrl_check(sport);
1114 		spin_unlock_irqrestore(&sport->port.lock, flags);
1115 
1116 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1117 	}
1118 }
1119 
1120 /*
1121  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1122  *   [1] the RX DMA buffer is full.
1123  *   [2] the aging timer expires
1124  *
1125  * Condition [2] is triggered when a character has been sitting in the FIFO
1126  * for at least 8 byte durations.
1127  */
1128 static void imx_uart_dma_rx_callback(void *data)
1129 {
1130 	struct imx_port *sport = data;
1131 	struct dma_chan	*chan = sport->dma_chan_rx;
1132 	struct scatterlist *sgl = &sport->rx_sgl;
1133 	struct tty_port *port = &sport->port.state->port;
1134 	struct dma_tx_state state;
1135 	struct circ_buf *rx_ring = &sport->rx_ring;
1136 	enum dma_status status;
1137 	unsigned int w_bytes = 0;
1138 	unsigned int r_bytes;
1139 	unsigned int bd_size;
1140 
1141 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1142 
1143 	if (status == DMA_ERROR) {
1144 		imx_uart_clear_rx_errors(sport);
1145 		return;
1146 	}
1147 
1148 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1149 
1150 		/*
1151 		 * The state-residue variable represents the empty space
1152 		 * relative to the entire buffer. Taking this in consideration
1153 		 * the head is always calculated base on the buffer total
1154 		 * length - DMA transaction residue. The UART script from the
1155 		 * SDMA firmware will jump to the next buffer descriptor,
1156 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1157 		 * Taking this in consideration the tail is always at the
1158 		 * beginning of the buffer descriptor that contains the head.
1159 		 */
1160 
1161 		/* Calculate the head */
1162 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1163 
1164 		/* Calculate the tail. */
1165 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1166 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1167 
1168 		if (rx_ring->head <= sg_dma_len(sgl) &&
1169 		    rx_ring->head > rx_ring->tail) {
1170 
1171 			/* Move data from tail to head */
1172 			r_bytes = rx_ring->head - rx_ring->tail;
1173 
1174 			/* CPU claims ownership of RX DMA buffer */
1175 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1176 				DMA_FROM_DEVICE);
1177 
1178 			w_bytes = tty_insert_flip_string(port,
1179 				sport->rx_buf + rx_ring->tail, r_bytes);
1180 
1181 			/* UART retrieves ownership of RX DMA buffer */
1182 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1183 				DMA_FROM_DEVICE);
1184 
1185 			if (w_bytes != r_bytes)
1186 				sport->port.icount.buf_overrun++;
1187 
1188 			sport->port.icount.rx += w_bytes;
1189 		} else	{
1190 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1191 			WARN_ON(rx_ring->head <= rx_ring->tail);
1192 		}
1193 	}
1194 
1195 	if (w_bytes) {
1196 		tty_flip_buffer_push(port);
1197 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1198 	}
1199 }
1200 
1201 static int imx_uart_start_rx_dma(struct imx_port *sport)
1202 {
1203 	struct scatterlist *sgl = &sport->rx_sgl;
1204 	struct dma_chan	*chan = sport->dma_chan_rx;
1205 	struct device *dev = sport->port.dev;
1206 	struct dma_async_tx_descriptor *desc;
1207 	int ret;
1208 
1209 	sport->rx_ring.head = 0;
1210 	sport->rx_ring.tail = 0;
1211 
1212 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1213 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1214 	if (ret == 0) {
1215 		dev_err(dev, "DMA mapping error for RX.\n");
1216 		return -EINVAL;
1217 	}
1218 
1219 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1220 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1221 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1222 
1223 	if (!desc) {
1224 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1225 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1226 		return -EINVAL;
1227 	}
1228 	desc->callback = imx_uart_dma_rx_callback;
1229 	desc->callback_param = sport;
1230 
1231 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1232 	sport->dma_is_rxing = 1;
1233 	sport->rx_cookie = dmaengine_submit(desc);
1234 	dma_async_issue_pending(chan);
1235 	return 0;
1236 }
1237 
1238 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1239 {
1240 	struct tty_port *port = &sport->port.state->port;
1241 	u32 usr1, usr2;
1242 
1243 	usr1 = imx_uart_readl(sport, USR1);
1244 	usr2 = imx_uart_readl(sport, USR2);
1245 
1246 	if (usr2 & USR2_BRCD) {
1247 		sport->port.icount.brk++;
1248 		imx_uart_writel(sport, USR2_BRCD, USR2);
1249 		uart_handle_break(&sport->port);
1250 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1251 			sport->port.icount.buf_overrun++;
1252 		tty_flip_buffer_push(port);
1253 	} else {
1254 		if (usr1 & USR1_FRAMERR) {
1255 			sport->port.icount.frame++;
1256 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1257 		} else if (usr1 & USR1_PARITYERR) {
1258 			sport->port.icount.parity++;
1259 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1260 		}
1261 	}
1262 
1263 	if (usr2 & USR2_ORE) {
1264 		sport->port.icount.overrun++;
1265 		imx_uart_writel(sport, USR2_ORE, USR2);
1266 	}
1267 
1268 }
1269 
1270 #define TXTL_DEFAULT 2 /* reset default */
1271 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1272 #define TXTL_DMA 8 /* DMA burst setting */
1273 #define RXTL_DMA 9 /* DMA burst setting */
1274 
1275 static void imx_uart_setup_ufcr(struct imx_port *sport,
1276 				unsigned char txwl, unsigned char rxwl)
1277 {
1278 	unsigned int val;
1279 
1280 	/* set receiver / transmitter trigger level */
1281 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1282 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1283 	imx_uart_writel(sport, val, UFCR);
1284 }
1285 
1286 static void imx_uart_dma_exit(struct imx_port *sport)
1287 {
1288 	if (sport->dma_chan_rx) {
1289 		dmaengine_terminate_sync(sport->dma_chan_rx);
1290 		dma_release_channel(sport->dma_chan_rx);
1291 		sport->dma_chan_rx = NULL;
1292 		sport->rx_cookie = -EINVAL;
1293 		kfree(sport->rx_buf);
1294 		sport->rx_buf = NULL;
1295 	}
1296 
1297 	if (sport->dma_chan_tx) {
1298 		dmaengine_terminate_sync(sport->dma_chan_tx);
1299 		dma_release_channel(sport->dma_chan_tx);
1300 		sport->dma_chan_tx = NULL;
1301 	}
1302 }
1303 
1304 static int imx_uart_dma_init(struct imx_port *sport)
1305 {
1306 	struct dma_slave_config slave_config = {};
1307 	struct device *dev = sport->port.dev;
1308 	int ret;
1309 
1310 	/* Prepare for RX : */
1311 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1312 	if (!sport->dma_chan_rx) {
1313 		dev_dbg(dev, "cannot get the DMA channel.\n");
1314 		ret = -EINVAL;
1315 		goto err;
1316 	}
1317 
1318 	slave_config.direction = DMA_DEV_TO_MEM;
1319 	slave_config.src_addr = sport->port.mapbase + URXD0;
1320 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1321 	/* one byte less than the watermark level to enable the aging timer */
1322 	slave_config.src_maxburst = RXTL_DMA - 1;
1323 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1324 	if (ret) {
1325 		dev_err(dev, "error in RX dma configuration.\n");
1326 		goto err;
1327 	}
1328 
1329 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1330 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1331 	if (!sport->rx_buf) {
1332 		ret = -ENOMEM;
1333 		goto err;
1334 	}
1335 	sport->rx_ring.buf = sport->rx_buf;
1336 
1337 	/* Prepare for TX : */
1338 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1339 	if (!sport->dma_chan_tx) {
1340 		dev_err(dev, "cannot get the TX DMA channel!\n");
1341 		ret = -EINVAL;
1342 		goto err;
1343 	}
1344 
1345 	slave_config.direction = DMA_MEM_TO_DEV;
1346 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1347 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1348 	slave_config.dst_maxburst = TXTL_DMA;
1349 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1350 	if (ret) {
1351 		dev_err(dev, "error in TX dma configuration.");
1352 		goto err;
1353 	}
1354 
1355 	return 0;
1356 err:
1357 	imx_uart_dma_exit(sport);
1358 	return ret;
1359 }
1360 
1361 static void imx_uart_enable_dma(struct imx_port *sport)
1362 {
1363 	u32 ucr1;
1364 
1365 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1366 
1367 	/* set UCR1 */
1368 	ucr1 = imx_uart_readl(sport, UCR1);
1369 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1370 	imx_uart_writel(sport, ucr1, UCR1);
1371 
1372 	sport->dma_is_enabled = 1;
1373 }
1374 
1375 static void imx_uart_disable_dma(struct imx_port *sport)
1376 {
1377 	u32 ucr1;
1378 
1379 	/* clear UCR1 */
1380 	ucr1 = imx_uart_readl(sport, UCR1);
1381 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1382 	imx_uart_writel(sport, ucr1, UCR1);
1383 
1384 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1385 
1386 	sport->dma_is_enabled = 0;
1387 }
1388 
1389 /* half the RX buffer size */
1390 #define CTSTL 16
1391 
1392 static int imx_uart_startup(struct uart_port *port)
1393 {
1394 	struct imx_port *sport = (struct imx_port *)port;
1395 	int retval, i;
1396 	unsigned long flags;
1397 	int dma_is_inited = 0;
1398 	u32 ucr1, ucr2, ucr3, ucr4;
1399 
1400 	retval = clk_prepare_enable(sport->clk_per);
1401 	if (retval)
1402 		return retval;
1403 	retval = clk_prepare_enable(sport->clk_ipg);
1404 	if (retval) {
1405 		clk_disable_unprepare(sport->clk_per);
1406 		return retval;
1407 	}
1408 
1409 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1410 
1411 	/* disable the DREN bit (Data Ready interrupt enable) before
1412 	 * requesting IRQs
1413 	 */
1414 	ucr4 = imx_uart_readl(sport, UCR4);
1415 
1416 	/* set the trigger level for CTS */
1417 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1418 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1419 
1420 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1421 
1422 	/* Can we enable the DMA support? */
1423 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1424 		dma_is_inited = 1;
1425 
1426 	spin_lock_irqsave(&sport->port.lock, flags);
1427 	/* Reset fifo's and state machines */
1428 	i = 100;
1429 
1430 	ucr2 = imx_uart_readl(sport, UCR2);
1431 	ucr2 &= ~UCR2_SRST;
1432 	imx_uart_writel(sport, ucr2, UCR2);
1433 
1434 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1435 		udelay(1);
1436 
1437 	/*
1438 	 * Finally, clear and enable interrupts
1439 	 */
1440 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1441 	imx_uart_writel(sport, USR2_ORE, USR2);
1442 
1443 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1444 	ucr1 |= UCR1_UARTEN;
1445 	if (sport->have_rtscts)
1446 		ucr1 |= UCR1_RTSDEN;
1447 
1448 	imx_uart_writel(sport, ucr1, UCR1);
1449 
1450 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1451 	if (!dma_is_inited)
1452 		ucr4 |= UCR4_OREN;
1453 	if (sport->inverted_rx)
1454 		ucr4 |= UCR4_INVR;
1455 	imx_uart_writel(sport, ucr4, UCR4);
1456 
1457 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1458 	/*
1459 	 * configure tx polarity before enabling tx
1460 	 */
1461 	if (sport->inverted_tx)
1462 		ucr3 |= UCR3_INVT;
1463 
1464 	if (!imx_uart_is_imx1(sport)) {
1465 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1466 
1467 		if (sport->dte_mode)
1468 			/* disable broken interrupts */
1469 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1470 	}
1471 	imx_uart_writel(sport, ucr3, UCR3);
1472 
1473 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1474 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1475 	if (!sport->have_rtscts)
1476 		ucr2 |= UCR2_IRTS;
1477 	/*
1478 	 * make sure the edge sensitive RTS-irq is disabled,
1479 	 * we're using RTSD instead.
1480 	 */
1481 	if (!imx_uart_is_imx1(sport))
1482 		ucr2 &= ~UCR2_RTSEN;
1483 	imx_uart_writel(sport, ucr2, UCR2);
1484 
1485 	/*
1486 	 * Enable modem status interrupts
1487 	 */
1488 	imx_uart_enable_ms(&sport->port);
1489 
1490 	if (dma_is_inited) {
1491 		imx_uart_enable_dma(sport);
1492 		imx_uart_start_rx_dma(sport);
1493 	} else {
1494 		ucr1 = imx_uart_readl(sport, UCR1);
1495 		ucr1 |= UCR1_RRDYEN;
1496 		imx_uart_writel(sport, ucr1, UCR1);
1497 
1498 		ucr2 = imx_uart_readl(sport, UCR2);
1499 		ucr2 |= UCR2_ATEN;
1500 		imx_uart_writel(sport, ucr2, UCR2);
1501 	}
1502 
1503 	spin_unlock_irqrestore(&sport->port.lock, flags);
1504 
1505 	return 0;
1506 }
1507 
1508 static void imx_uart_shutdown(struct uart_port *port)
1509 {
1510 	struct imx_port *sport = (struct imx_port *)port;
1511 	unsigned long flags;
1512 	u32 ucr1, ucr2, ucr4;
1513 
1514 	if (sport->dma_is_enabled) {
1515 		dmaengine_terminate_sync(sport->dma_chan_tx);
1516 		if (sport->dma_is_txing) {
1517 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1518 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1519 			sport->dma_is_txing = 0;
1520 		}
1521 		dmaengine_terminate_sync(sport->dma_chan_rx);
1522 		if (sport->dma_is_rxing) {
1523 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1524 				     1, DMA_FROM_DEVICE);
1525 			sport->dma_is_rxing = 0;
1526 		}
1527 
1528 		spin_lock_irqsave(&sport->port.lock, flags);
1529 		imx_uart_stop_tx(port);
1530 		imx_uart_stop_rx(port);
1531 		imx_uart_disable_dma(sport);
1532 		spin_unlock_irqrestore(&sport->port.lock, flags);
1533 		imx_uart_dma_exit(sport);
1534 	}
1535 
1536 	mctrl_gpio_disable_ms(sport->gpios);
1537 
1538 	spin_lock_irqsave(&sport->port.lock, flags);
1539 	ucr2 = imx_uart_readl(sport, UCR2);
1540 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1541 	imx_uart_writel(sport, ucr2, UCR2);
1542 	spin_unlock_irqrestore(&sport->port.lock, flags);
1543 
1544 	/*
1545 	 * Stop our timer.
1546 	 */
1547 	del_timer_sync(&sport->timer);
1548 
1549 	/*
1550 	 * Disable all interrupts, port and break condition.
1551 	 */
1552 
1553 	spin_lock_irqsave(&sport->port.lock, flags);
1554 
1555 	ucr1 = imx_uart_readl(sport, UCR1);
1556 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1557 	imx_uart_writel(sport, ucr1, UCR1);
1558 
1559 	ucr4 = imx_uart_readl(sport, UCR4);
1560 	ucr4 &= ~UCR4_TCEN;
1561 	imx_uart_writel(sport, ucr4, UCR4);
1562 
1563 	spin_unlock_irqrestore(&sport->port.lock, flags);
1564 
1565 	clk_disable_unprepare(sport->clk_per);
1566 	clk_disable_unprepare(sport->clk_ipg);
1567 }
1568 
1569 /* called with port.lock taken and irqs off */
1570 static void imx_uart_flush_buffer(struct uart_port *port)
1571 {
1572 	struct imx_port *sport = (struct imx_port *)port;
1573 	struct scatterlist *sgl = &sport->tx_sgl[0];
1574 	u32 ucr2;
1575 	int i = 100, ubir, ubmr, uts;
1576 
1577 	if (!sport->dma_chan_tx)
1578 		return;
1579 
1580 	sport->tx_bytes = 0;
1581 	dmaengine_terminate_all(sport->dma_chan_tx);
1582 	if (sport->dma_is_txing) {
1583 		u32 ucr1;
1584 
1585 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1586 			     DMA_TO_DEVICE);
1587 		ucr1 = imx_uart_readl(sport, UCR1);
1588 		ucr1 &= ~UCR1_TXDMAEN;
1589 		imx_uart_writel(sport, ucr1, UCR1);
1590 		sport->dma_is_txing = 0;
1591 	}
1592 
1593 	/*
1594 	 * According to the Reference Manual description of the UART SRST bit:
1595 	 *
1596 	 * "Reset the transmit and receive state machines,
1597 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1598 	 * and UTS[6-3]".
1599 	 *
1600 	 * We don't need to restore the old values from USR1, USR2, URXD and
1601 	 * UTXD. UBRC is read only, so only save/restore the other three
1602 	 * registers.
1603 	 */
1604 	ubir = imx_uart_readl(sport, UBIR);
1605 	ubmr = imx_uart_readl(sport, UBMR);
1606 	uts = imx_uart_readl(sport, IMX21_UTS);
1607 
1608 	ucr2 = imx_uart_readl(sport, UCR2);
1609 	ucr2 &= ~UCR2_SRST;
1610 	imx_uart_writel(sport, ucr2, UCR2);
1611 
1612 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1613 		udelay(1);
1614 
1615 	/* Restore the registers */
1616 	imx_uart_writel(sport, ubir, UBIR);
1617 	imx_uart_writel(sport, ubmr, UBMR);
1618 	imx_uart_writel(sport, uts, IMX21_UTS);
1619 }
1620 
1621 static void
1622 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1623 		     struct ktermios *old)
1624 {
1625 	struct imx_port *sport = (struct imx_port *)port;
1626 	unsigned long flags;
1627 	u32 ucr2, old_ucr2, ufcr;
1628 	unsigned int baud, quot;
1629 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1630 	unsigned long div;
1631 	unsigned long num, denom, old_ubir, old_ubmr;
1632 	uint64_t tdiv64;
1633 
1634 	/*
1635 	 * We only support CS7 and CS8.
1636 	 */
1637 	while ((termios->c_cflag & CSIZE) != CS7 &&
1638 	       (termios->c_cflag & CSIZE) != CS8) {
1639 		termios->c_cflag &= ~CSIZE;
1640 		termios->c_cflag |= old_csize;
1641 		old_csize = CS8;
1642 	}
1643 
1644 	del_timer_sync(&sport->timer);
1645 
1646 	/*
1647 	 * Ask the core to calculate the divisor for us.
1648 	 */
1649 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1650 	quot = uart_get_divisor(port, baud);
1651 
1652 	spin_lock_irqsave(&sport->port.lock, flags);
1653 
1654 	/*
1655 	 * Read current UCR2 and save it for future use, then clear all the bits
1656 	 * except those we will or may need to preserve.
1657 	 */
1658 	old_ucr2 = imx_uart_readl(sport, UCR2);
1659 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1660 
1661 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1662 	if ((termios->c_cflag & CSIZE) == CS8)
1663 		ucr2 |= UCR2_WS;
1664 
1665 	if (!sport->have_rtscts)
1666 		termios->c_cflag &= ~CRTSCTS;
1667 
1668 	if (port->rs485.flags & SER_RS485_ENABLED) {
1669 		/*
1670 		 * RTS is mandatory for rs485 operation, so keep
1671 		 * it under manual control and keep transmitter
1672 		 * disabled.
1673 		 */
1674 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1675 			imx_uart_rts_active(sport, &ucr2);
1676 		else
1677 			imx_uart_rts_inactive(sport, &ucr2);
1678 
1679 	} else if (termios->c_cflag & CRTSCTS) {
1680 		/*
1681 		 * Only let receiver control RTS output if we were not requested
1682 		 * to have RTS inactive (which then should take precedence).
1683 		 */
1684 		if (ucr2 & UCR2_CTS)
1685 			ucr2 |= UCR2_CTSC;
1686 	}
1687 
1688 	if (termios->c_cflag & CRTSCTS)
1689 		ucr2 &= ~UCR2_IRTS;
1690 	if (termios->c_cflag & CSTOPB)
1691 		ucr2 |= UCR2_STPB;
1692 	if (termios->c_cflag & PARENB) {
1693 		ucr2 |= UCR2_PREN;
1694 		if (termios->c_cflag & PARODD)
1695 			ucr2 |= UCR2_PROE;
1696 	}
1697 
1698 	sport->port.read_status_mask = 0;
1699 	if (termios->c_iflag & INPCK)
1700 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1701 	if (termios->c_iflag & (BRKINT | PARMRK))
1702 		sport->port.read_status_mask |= URXD_BRK;
1703 
1704 	/*
1705 	 * Characters to ignore
1706 	 */
1707 	sport->port.ignore_status_mask = 0;
1708 	if (termios->c_iflag & IGNPAR)
1709 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1710 	if (termios->c_iflag & IGNBRK) {
1711 		sport->port.ignore_status_mask |= URXD_BRK;
1712 		/*
1713 		 * If we're ignoring parity and break indicators,
1714 		 * ignore overruns too (for real raw support).
1715 		 */
1716 		if (termios->c_iflag & IGNPAR)
1717 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1718 	}
1719 
1720 	if ((termios->c_cflag & CREAD) == 0)
1721 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1722 
1723 	/*
1724 	 * Update the per-port timeout.
1725 	 */
1726 	uart_update_timeout(port, termios->c_cflag, baud);
1727 
1728 	/* custom-baudrate handling */
1729 	div = sport->port.uartclk / (baud * 16);
1730 	if (baud == 38400 && quot != div)
1731 		baud = sport->port.uartclk / (quot * 16);
1732 
1733 	div = sport->port.uartclk / (baud * 16);
1734 	if (div > 7)
1735 		div = 7;
1736 	if (!div)
1737 		div = 1;
1738 
1739 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1740 		1 << 16, 1 << 16, &num, &denom);
1741 
1742 	tdiv64 = sport->port.uartclk;
1743 	tdiv64 *= num;
1744 	do_div(tdiv64, denom * 16 * div);
1745 	tty_termios_encode_baud_rate(termios,
1746 				(speed_t)tdiv64, (speed_t)tdiv64);
1747 
1748 	num -= 1;
1749 	denom -= 1;
1750 
1751 	ufcr = imx_uart_readl(sport, UFCR);
1752 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1753 	imx_uart_writel(sport, ufcr, UFCR);
1754 
1755 	/*
1756 	 *  Two registers below should always be written both and in this
1757 	 *  particular order. One consequence is that we need to check if any of
1758 	 *  them changes and then update both. We do need the check for change
1759 	 *  as even writing the same values seem to "restart"
1760 	 *  transmission/receiving logic in the hardware, that leads to data
1761 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1762 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1763 	 */
1764 	old_ubir = imx_uart_readl(sport, UBIR);
1765 	old_ubmr = imx_uart_readl(sport, UBMR);
1766 	if (old_ubir != num || old_ubmr != denom) {
1767 		imx_uart_writel(sport, num, UBIR);
1768 		imx_uart_writel(sport, denom, UBMR);
1769 	}
1770 
1771 	if (!imx_uart_is_imx1(sport))
1772 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1773 				IMX21_ONEMS);
1774 
1775 	imx_uart_writel(sport, ucr2, UCR2);
1776 
1777 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1778 		imx_uart_enable_ms(&sport->port);
1779 
1780 	spin_unlock_irqrestore(&sport->port.lock, flags);
1781 }
1782 
1783 static const char *imx_uart_type(struct uart_port *port)
1784 {
1785 	struct imx_port *sport = (struct imx_port *)port;
1786 
1787 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1788 }
1789 
1790 /*
1791  * Configure/autoconfigure the port.
1792  */
1793 static void imx_uart_config_port(struct uart_port *port, int flags)
1794 {
1795 	struct imx_port *sport = (struct imx_port *)port;
1796 
1797 	if (flags & UART_CONFIG_TYPE)
1798 		sport->port.type = PORT_IMX;
1799 }
1800 
1801 /*
1802  * Verify the new serial_struct (for TIOCSSERIAL).
1803  * The only change we allow are to the flags and type, and
1804  * even then only between PORT_IMX and PORT_UNKNOWN
1805  */
1806 static int
1807 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1808 {
1809 	struct imx_port *sport = (struct imx_port *)port;
1810 	int ret = 0;
1811 
1812 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1813 		ret = -EINVAL;
1814 	if (sport->port.irq != ser->irq)
1815 		ret = -EINVAL;
1816 	if (ser->io_type != UPIO_MEM)
1817 		ret = -EINVAL;
1818 	if (sport->port.uartclk / 16 != ser->baud_base)
1819 		ret = -EINVAL;
1820 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1821 		ret = -EINVAL;
1822 	if (sport->port.iobase != ser->port)
1823 		ret = -EINVAL;
1824 	if (ser->hub6 != 0)
1825 		ret = -EINVAL;
1826 	return ret;
1827 }
1828 
1829 #if defined(CONFIG_CONSOLE_POLL)
1830 
1831 static int imx_uart_poll_init(struct uart_port *port)
1832 {
1833 	struct imx_port *sport = (struct imx_port *)port;
1834 	unsigned long flags;
1835 	u32 ucr1, ucr2;
1836 	int retval;
1837 
1838 	retval = clk_prepare_enable(sport->clk_ipg);
1839 	if (retval)
1840 		return retval;
1841 	retval = clk_prepare_enable(sport->clk_per);
1842 	if (retval)
1843 		clk_disable_unprepare(sport->clk_ipg);
1844 
1845 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1846 
1847 	spin_lock_irqsave(&sport->port.lock, flags);
1848 
1849 	/*
1850 	 * Be careful about the order of enabling bits here. First enable the
1851 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1852 	 * This prevents that a character that already sits in the RX fifo is
1853 	 * triggering an irq but the try to fetch it from there results in an
1854 	 * exception because UARTEN or RXEN is still off.
1855 	 */
1856 	ucr1 = imx_uart_readl(sport, UCR1);
1857 	ucr2 = imx_uart_readl(sport, UCR2);
1858 
1859 	if (imx_uart_is_imx1(sport))
1860 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1861 
1862 	ucr1 |= UCR1_UARTEN;
1863 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1864 
1865 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1866 	ucr2 &= ~UCR2_ATEN;
1867 
1868 	imx_uart_writel(sport, ucr1, UCR1);
1869 	imx_uart_writel(sport, ucr2, UCR2);
1870 
1871 	/* now enable irqs */
1872 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1873 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1874 
1875 	spin_unlock_irqrestore(&sport->port.lock, flags);
1876 
1877 	return 0;
1878 }
1879 
1880 static int imx_uart_poll_get_char(struct uart_port *port)
1881 {
1882 	struct imx_port *sport = (struct imx_port *)port;
1883 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1884 		return NO_POLL_CHAR;
1885 
1886 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1887 }
1888 
1889 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1890 {
1891 	struct imx_port *sport = (struct imx_port *)port;
1892 	unsigned int status;
1893 
1894 	/* drain */
1895 	do {
1896 		status = imx_uart_readl(sport, USR1);
1897 	} while (~status & USR1_TRDY);
1898 
1899 	/* write */
1900 	imx_uart_writel(sport, c, URTX0);
1901 
1902 	/* flush */
1903 	do {
1904 		status = imx_uart_readl(sport, USR2);
1905 	} while (~status & USR2_TXDC);
1906 }
1907 #endif
1908 
1909 /* called with port.lock taken and irqs off or from .probe without locking */
1910 static int imx_uart_rs485_config(struct uart_port *port,
1911 				 struct serial_rs485 *rs485conf)
1912 {
1913 	struct imx_port *sport = (struct imx_port *)port;
1914 	u32 ucr2;
1915 
1916 	/* RTS is required to control the transmitter */
1917 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1918 		rs485conf->flags &= ~SER_RS485_ENABLED;
1919 
1920 	if (rs485conf->flags & SER_RS485_ENABLED) {
1921 		/* Enable receiver if low-active RTS signal is requested */
1922 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1923 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1924 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1925 
1926 		/* disable transmitter */
1927 		ucr2 = imx_uart_readl(sport, UCR2);
1928 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1929 			imx_uart_rts_active(sport, &ucr2);
1930 		else
1931 			imx_uart_rts_inactive(sport, &ucr2);
1932 		imx_uart_writel(sport, ucr2, UCR2);
1933 	}
1934 
1935 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1936 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1937 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1938 		imx_uart_start_rx(port);
1939 
1940 	return 0;
1941 }
1942 
1943 static const struct uart_ops imx_uart_pops = {
1944 	.tx_empty	= imx_uart_tx_empty,
1945 	.set_mctrl	= imx_uart_set_mctrl,
1946 	.get_mctrl	= imx_uart_get_mctrl,
1947 	.stop_tx	= imx_uart_stop_tx,
1948 	.start_tx	= imx_uart_start_tx,
1949 	.stop_rx	= imx_uart_stop_rx,
1950 	.enable_ms	= imx_uart_enable_ms,
1951 	.break_ctl	= imx_uart_break_ctl,
1952 	.startup	= imx_uart_startup,
1953 	.shutdown	= imx_uart_shutdown,
1954 	.flush_buffer	= imx_uart_flush_buffer,
1955 	.set_termios	= imx_uart_set_termios,
1956 	.type		= imx_uart_type,
1957 	.config_port	= imx_uart_config_port,
1958 	.verify_port	= imx_uart_verify_port,
1959 #if defined(CONFIG_CONSOLE_POLL)
1960 	.poll_init      = imx_uart_poll_init,
1961 	.poll_get_char  = imx_uart_poll_get_char,
1962 	.poll_put_char  = imx_uart_poll_put_char,
1963 #endif
1964 };
1965 
1966 static struct imx_port *imx_uart_ports[UART_NR];
1967 
1968 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1969 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1970 {
1971 	struct imx_port *sport = (struct imx_port *)port;
1972 
1973 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1974 		barrier();
1975 
1976 	imx_uart_writel(sport, ch, URTX0);
1977 }
1978 
1979 /*
1980  * Interrupts are disabled on entering
1981  */
1982 static void
1983 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1984 {
1985 	struct imx_port *sport = imx_uart_ports[co->index];
1986 	struct imx_port_ucrs old_ucr;
1987 	unsigned long flags;
1988 	unsigned int ucr1;
1989 	int locked = 1;
1990 
1991 	if (sport->port.sysrq)
1992 		locked = 0;
1993 	else if (oops_in_progress)
1994 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1995 	else
1996 		spin_lock_irqsave(&sport->port.lock, flags);
1997 
1998 	/*
1999 	 *	First, save UCR1/2/3 and then disable interrupts
2000 	 */
2001 	imx_uart_ucrs_save(sport, &old_ucr);
2002 	ucr1 = old_ucr.ucr1;
2003 
2004 	if (imx_uart_is_imx1(sport))
2005 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2006 	ucr1 |= UCR1_UARTEN;
2007 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2008 
2009 	imx_uart_writel(sport, ucr1, UCR1);
2010 
2011 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2012 
2013 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2014 
2015 	/*
2016 	 *	Finally, wait for transmitter to become empty
2017 	 *	and restore UCR1/2/3
2018 	 */
2019 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2020 
2021 	imx_uart_ucrs_restore(sport, &old_ucr);
2022 
2023 	if (locked)
2024 		spin_unlock_irqrestore(&sport->port.lock, flags);
2025 }
2026 
2027 /*
2028  * If the port was already initialised (eg, by a boot loader),
2029  * try to determine the current setup.
2030  */
2031 static void
2032 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2033 			     int *parity, int *bits)
2034 {
2035 
2036 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2037 		/* ok, the port was enabled */
2038 		unsigned int ucr2, ubir, ubmr, uartclk;
2039 		unsigned int baud_raw;
2040 		unsigned int ucfr_rfdiv;
2041 
2042 		ucr2 = imx_uart_readl(sport, UCR2);
2043 
2044 		*parity = 'n';
2045 		if (ucr2 & UCR2_PREN) {
2046 			if (ucr2 & UCR2_PROE)
2047 				*parity = 'o';
2048 			else
2049 				*parity = 'e';
2050 		}
2051 
2052 		if (ucr2 & UCR2_WS)
2053 			*bits = 8;
2054 		else
2055 			*bits = 7;
2056 
2057 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2058 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2059 
2060 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2061 		if (ucfr_rfdiv == 6)
2062 			ucfr_rfdiv = 7;
2063 		else
2064 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2065 
2066 		uartclk = clk_get_rate(sport->clk_per);
2067 		uartclk /= ucfr_rfdiv;
2068 
2069 		{	/*
2070 			 * The next code provides exact computation of
2071 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2072 			 * without need of float support or long long division,
2073 			 * which would be required to prevent 32bit arithmetic overflow
2074 			 */
2075 			unsigned int mul = ubir + 1;
2076 			unsigned int div = 16 * (ubmr + 1);
2077 			unsigned int rem = uartclk % div;
2078 
2079 			baud_raw = (uartclk / div) * mul;
2080 			baud_raw += (rem * mul + div / 2) / div;
2081 			*baud = (baud_raw + 50) / 100 * 100;
2082 		}
2083 
2084 		if (*baud != baud_raw)
2085 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2086 				baud_raw, *baud);
2087 	}
2088 }
2089 
2090 static int
2091 imx_uart_console_setup(struct console *co, char *options)
2092 {
2093 	struct imx_port *sport;
2094 	int baud = 9600;
2095 	int bits = 8;
2096 	int parity = 'n';
2097 	int flow = 'n';
2098 	int retval;
2099 
2100 	/*
2101 	 * Check whether an invalid uart number has been specified, and
2102 	 * if so, search for the first available port that does have
2103 	 * console support.
2104 	 */
2105 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2106 		co->index = 0;
2107 	sport = imx_uart_ports[co->index];
2108 	if (sport == NULL)
2109 		return -ENODEV;
2110 
2111 	/* For setting the registers, we only need to enable the ipg clock. */
2112 	retval = clk_prepare_enable(sport->clk_ipg);
2113 	if (retval)
2114 		goto error_console;
2115 
2116 	if (options)
2117 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2118 	else
2119 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2120 
2121 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2122 
2123 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2124 
2125 	if (retval) {
2126 		clk_disable_unprepare(sport->clk_ipg);
2127 		goto error_console;
2128 	}
2129 
2130 	retval = clk_prepare_enable(sport->clk_per);
2131 	if (retval)
2132 		clk_disable_unprepare(sport->clk_ipg);
2133 
2134 error_console:
2135 	return retval;
2136 }
2137 
2138 static int
2139 imx_uart_console_exit(struct console *co)
2140 {
2141 	struct imx_port *sport = imx_uart_ports[co->index];
2142 
2143 	clk_disable_unprepare(sport->clk_per);
2144 	clk_disable_unprepare(sport->clk_ipg);
2145 
2146 	return 0;
2147 }
2148 
2149 static struct uart_driver imx_uart_uart_driver;
2150 static struct console imx_uart_console = {
2151 	.name		= DEV_NAME,
2152 	.write		= imx_uart_console_write,
2153 	.device		= uart_console_device,
2154 	.setup		= imx_uart_console_setup,
2155 	.exit		= imx_uart_console_exit,
2156 	.flags		= CON_PRINTBUFFER,
2157 	.index		= -1,
2158 	.data		= &imx_uart_uart_driver,
2159 };
2160 
2161 #define IMX_CONSOLE	&imx_uart_console
2162 
2163 #else
2164 #define IMX_CONSOLE	NULL
2165 #endif
2166 
2167 static struct uart_driver imx_uart_uart_driver = {
2168 	.owner          = THIS_MODULE,
2169 	.driver_name    = DRIVER_NAME,
2170 	.dev_name       = DEV_NAME,
2171 	.major          = SERIAL_IMX_MAJOR,
2172 	.minor          = MINOR_START,
2173 	.nr             = ARRAY_SIZE(imx_uart_ports),
2174 	.cons           = IMX_CONSOLE,
2175 };
2176 
2177 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2178 {
2179 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2180 	unsigned long flags;
2181 
2182 	spin_lock_irqsave(&sport->port.lock, flags);
2183 	if (sport->tx_state == WAIT_AFTER_RTS)
2184 		imx_uart_start_tx(&sport->port);
2185 	spin_unlock_irqrestore(&sport->port.lock, flags);
2186 
2187 	return HRTIMER_NORESTART;
2188 }
2189 
2190 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2191 {
2192 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2193 	unsigned long flags;
2194 
2195 	spin_lock_irqsave(&sport->port.lock, flags);
2196 	if (sport->tx_state == WAIT_AFTER_SEND)
2197 		imx_uart_stop_tx(&sport->port);
2198 	spin_unlock_irqrestore(&sport->port.lock, flags);
2199 
2200 	return HRTIMER_NORESTART;
2201 }
2202 
2203 /* Default RX DMA buffer configuration */
2204 #define RX_DMA_PERIODS		16
2205 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2206 
2207 static int imx_uart_probe(struct platform_device *pdev)
2208 {
2209 	struct device_node *np = pdev->dev.of_node;
2210 	struct imx_port *sport;
2211 	void __iomem *base;
2212 	u32 dma_buf_conf[2];
2213 	int ret = 0;
2214 	u32 ucr1;
2215 	struct resource *res;
2216 	int txirq, rxirq, rtsirq;
2217 
2218 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2219 	if (!sport)
2220 		return -ENOMEM;
2221 
2222 	sport->devdata = of_device_get_match_data(&pdev->dev);
2223 
2224 	ret = of_alias_get_id(np, "serial");
2225 	if (ret < 0) {
2226 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2227 		return ret;
2228 	}
2229 	sport->port.line = ret;
2230 
2231 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2232 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2233 		sport->have_rtscts = 1;
2234 
2235 	if (of_get_property(np, "fsl,dte-mode", NULL))
2236 		sport->dte_mode = 1;
2237 
2238 	if (of_get_property(np, "rts-gpios", NULL))
2239 		sport->have_rtsgpio = 1;
2240 
2241 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2242 		sport->inverted_tx = 1;
2243 
2244 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2245 		sport->inverted_rx = 1;
2246 
2247 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2248 		sport->rx_period_length = dma_buf_conf[0];
2249 		sport->rx_periods = dma_buf_conf[1];
2250 	} else {
2251 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2252 		sport->rx_periods = RX_DMA_PERIODS;
2253 	}
2254 
2255 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2256 		dev_err(&pdev->dev, "serial%d out of range\n",
2257 			sport->port.line);
2258 		return -EINVAL;
2259 	}
2260 
2261 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2262 	base = devm_ioremap_resource(&pdev->dev, res);
2263 	if (IS_ERR(base))
2264 		return PTR_ERR(base);
2265 
2266 	rxirq = platform_get_irq(pdev, 0);
2267 	if (rxirq < 0)
2268 		return rxirq;
2269 	txirq = platform_get_irq_optional(pdev, 1);
2270 	rtsirq = platform_get_irq_optional(pdev, 2);
2271 
2272 	sport->port.dev = &pdev->dev;
2273 	sport->port.mapbase = res->start;
2274 	sport->port.membase = base;
2275 	sport->port.type = PORT_IMX;
2276 	sport->port.iotype = UPIO_MEM;
2277 	sport->port.irq = rxirq;
2278 	sport->port.fifosize = 32;
2279 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2280 	sport->port.ops = &imx_uart_pops;
2281 	sport->port.rs485_config = imx_uart_rs485_config;
2282 	sport->port.flags = UPF_BOOT_AUTOCONF;
2283 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2284 
2285 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2286 	if (IS_ERR(sport->gpios))
2287 		return PTR_ERR(sport->gpios);
2288 
2289 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2290 	if (IS_ERR(sport->clk_ipg)) {
2291 		ret = PTR_ERR(sport->clk_ipg);
2292 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2293 		return ret;
2294 	}
2295 
2296 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2297 	if (IS_ERR(sport->clk_per)) {
2298 		ret = PTR_ERR(sport->clk_per);
2299 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2300 		return ret;
2301 	}
2302 
2303 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2304 
2305 	/* For register access, we only need to enable the ipg clock. */
2306 	ret = clk_prepare_enable(sport->clk_ipg);
2307 	if (ret) {
2308 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2309 		return ret;
2310 	}
2311 
2312 	/* initialize shadow register values */
2313 	sport->ucr1 = readl(sport->port.membase + UCR1);
2314 	sport->ucr2 = readl(sport->port.membase + UCR2);
2315 	sport->ucr3 = readl(sport->port.membase + UCR3);
2316 	sport->ucr4 = readl(sport->port.membase + UCR4);
2317 	sport->ufcr = readl(sport->port.membase + UFCR);
2318 
2319 	ret = uart_get_rs485_mode(&sport->port);
2320 	if (ret) {
2321 		clk_disable_unprepare(sport->clk_ipg);
2322 		return ret;
2323 	}
2324 
2325 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2326 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2327 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2328 
2329 	/*
2330 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2331 	 * signal cannot be set low during transmission in case the
2332 	 * receiver is off (limitation of the i.MX UART IP).
2333 	 */
2334 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2335 	    sport->have_rtscts && !sport->have_rtsgpio &&
2336 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2337 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2338 		dev_err(&pdev->dev,
2339 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2340 
2341 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2342 
2343 	/* Disable interrupts before requesting them */
2344 	ucr1 = imx_uart_readl(sport, UCR1);
2345 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2346 	imx_uart_writel(sport, ucr1, UCR1);
2347 
2348 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2349 		/*
2350 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2351 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2352 		 * and DCD (when they are outputs) or enables the respective
2353 		 * irqs. So set this bit early, i.e. before requesting irqs.
2354 		 */
2355 		u32 ufcr = imx_uart_readl(sport, UFCR);
2356 		if (!(ufcr & UFCR_DCEDTE))
2357 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2358 
2359 		/*
2360 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2361 		 * enabled later because they cannot be cleared
2362 		 * (confirmed on i.MX25) which makes them unusable.
2363 		 */
2364 		imx_uart_writel(sport,
2365 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2366 				UCR3);
2367 
2368 	} else {
2369 		u32 ucr3 = UCR3_DSR;
2370 		u32 ufcr = imx_uart_readl(sport, UFCR);
2371 		if (ufcr & UFCR_DCEDTE)
2372 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2373 
2374 		if (!imx_uart_is_imx1(sport))
2375 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2376 		imx_uart_writel(sport, ucr3, UCR3);
2377 	}
2378 
2379 	clk_disable_unprepare(sport->clk_ipg);
2380 
2381 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2382 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2383 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2384 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2385 
2386 	/*
2387 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2388 	 * chips only have one interrupt.
2389 	 */
2390 	if (txirq > 0) {
2391 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2392 				       dev_name(&pdev->dev), sport);
2393 		if (ret) {
2394 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2395 				ret);
2396 			return ret;
2397 		}
2398 
2399 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2400 				       dev_name(&pdev->dev), sport);
2401 		if (ret) {
2402 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2403 				ret);
2404 			return ret;
2405 		}
2406 
2407 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2408 				       dev_name(&pdev->dev), sport);
2409 		if (ret) {
2410 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2411 				ret);
2412 			return ret;
2413 		}
2414 	} else {
2415 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2416 				       dev_name(&pdev->dev), sport);
2417 		if (ret) {
2418 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2419 			return ret;
2420 		}
2421 	}
2422 
2423 	imx_uart_ports[sport->port.line] = sport;
2424 
2425 	platform_set_drvdata(pdev, sport);
2426 
2427 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2428 }
2429 
2430 static int imx_uart_remove(struct platform_device *pdev)
2431 {
2432 	struct imx_port *sport = platform_get_drvdata(pdev);
2433 
2434 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2435 }
2436 
2437 static void imx_uart_restore_context(struct imx_port *sport)
2438 {
2439 	unsigned long flags;
2440 
2441 	spin_lock_irqsave(&sport->port.lock, flags);
2442 	if (!sport->context_saved) {
2443 		spin_unlock_irqrestore(&sport->port.lock, flags);
2444 		return;
2445 	}
2446 
2447 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2448 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2449 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2450 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2451 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2452 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2453 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2454 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2455 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2456 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2457 	sport->context_saved = false;
2458 	spin_unlock_irqrestore(&sport->port.lock, flags);
2459 }
2460 
2461 static void imx_uart_save_context(struct imx_port *sport)
2462 {
2463 	unsigned long flags;
2464 
2465 	/* Save necessary regs */
2466 	spin_lock_irqsave(&sport->port.lock, flags);
2467 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2468 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2469 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2470 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2471 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2472 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2473 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2474 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2475 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2476 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2477 	sport->context_saved = true;
2478 	spin_unlock_irqrestore(&sport->port.lock, flags);
2479 }
2480 
2481 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2482 {
2483 	u32 ucr3;
2484 
2485 	ucr3 = imx_uart_readl(sport, UCR3);
2486 	if (on) {
2487 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2488 		ucr3 |= UCR3_AWAKEN;
2489 	} else {
2490 		ucr3 &= ~UCR3_AWAKEN;
2491 	}
2492 	imx_uart_writel(sport, ucr3, UCR3);
2493 
2494 	if (sport->have_rtscts) {
2495 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2496 		if (on) {
2497 			imx_uart_writel(sport, USR1_RTSD, USR1);
2498 			ucr1 |= UCR1_RTSDEN;
2499 		} else {
2500 			ucr1 &= ~UCR1_RTSDEN;
2501 		}
2502 		imx_uart_writel(sport, ucr1, UCR1);
2503 	}
2504 }
2505 
2506 static int imx_uart_suspend_noirq(struct device *dev)
2507 {
2508 	struct imx_port *sport = dev_get_drvdata(dev);
2509 
2510 	imx_uart_save_context(sport);
2511 
2512 	clk_disable(sport->clk_ipg);
2513 
2514 	pinctrl_pm_select_sleep_state(dev);
2515 
2516 	return 0;
2517 }
2518 
2519 static int imx_uart_resume_noirq(struct device *dev)
2520 {
2521 	struct imx_port *sport = dev_get_drvdata(dev);
2522 	int ret;
2523 
2524 	pinctrl_pm_select_default_state(dev);
2525 
2526 	ret = clk_enable(sport->clk_ipg);
2527 	if (ret)
2528 		return ret;
2529 
2530 	imx_uart_restore_context(sport);
2531 
2532 	return 0;
2533 }
2534 
2535 static int imx_uart_suspend(struct device *dev)
2536 {
2537 	struct imx_port *sport = dev_get_drvdata(dev);
2538 	int ret;
2539 
2540 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2541 	disable_irq(sport->port.irq);
2542 
2543 	ret = clk_prepare_enable(sport->clk_ipg);
2544 	if (ret)
2545 		return ret;
2546 
2547 	/* enable wakeup from i.MX UART */
2548 	imx_uart_enable_wakeup(sport, true);
2549 
2550 	return 0;
2551 }
2552 
2553 static int imx_uart_resume(struct device *dev)
2554 {
2555 	struct imx_port *sport = dev_get_drvdata(dev);
2556 
2557 	/* disable wakeup from i.MX UART */
2558 	imx_uart_enable_wakeup(sport, false);
2559 
2560 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2561 	enable_irq(sport->port.irq);
2562 
2563 	clk_disable_unprepare(sport->clk_ipg);
2564 
2565 	return 0;
2566 }
2567 
2568 static int imx_uart_freeze(struct device *dev)
2569 {
2570 	struct imx_port *sport = dev_get_drvdata(dev);
2571 
2572 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2573 
2574 	return clk_prepare_enable(sport->clk_ipg);
2575 }
2576 
2577 static int imx_uart_thaw(struct device *dev)
2578 {
2579 	struct imx_port *sport = dev_get_drvdata(dev);
2580 
2581 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2582 
2583 	clk_disable_unprepare(sport->clk_ipg);
2584 
2585 	return 0;
2586 }
2587 
2588 static const struct dev_pm_ops imx_uart_pm_ops = {
2589 	.suspend_noirq = imx_uart_suspend_noirq,
2590 	.resume_noirq = imx_uart_resume_noirq,
2591 	.freeze_noirq = imx_uart_suspend_noirq,
2592 	.restore_noirq = imx_uart_resume_noirq,
2593 	.suspend = imx_uart_suspend,
2594 	.resume = imx_uart_resume,
2595 	.freeze = imx_uart_freeze,
2596 	.thaw = imx_uart_thaw,
2597 	.restore = imx_uart_thaw,
2598 };
2599 
2600 static struct platform_driver imx_uart_platform_driver = {
2601 	.probe = imx_uart_probe,
2602 	.remove = imx_uart_remove,
2603 
2604 	.driver = {
2605 		.name = "imx-uart",
2606 		.of_match_table = imx_uart_dt_ids,
2607 		.pm = &imx_uart_pm_ops,
2608 	},
2609 };
2610 
2611 static int __init imx_uart_init(void)
2612 {
2613 	int ret = uart_register_driver(&imx_uart_uart_driver);
2614 
2615 	if (ret)
2616 		return ret;
2617 
2618 	ret = platform_driver_register(&imx_uart_platform_driver);
2619 	if (ret != 0)
2620 		uart_unregister_driver(&imx_uart_uart_driver);
2621 
2622 	return ret;
2623 }
2624 
2625 static void __exit imx_uart_exit(void)
2626 {
2627 	platform_driver_unregister(&imx_uart_platform_driver);
2628 	uart_unregister_driver(&imx_uart_uart_driver);
2629 }
2630 
2631 module_init(imx_uart_init);
2632 module_exit(imx_uart_exit);
2633 
2634 MODULE_AUTHOR("Sascha Hauer");
2635 MODULE_DESCRIPTION("IMX generic serial port driver");
2636 MODULE_LICENSE("GPL");
2637 MODULE_ALIAS("platform:imx-uart");
2638