xref: /linux/drivers/tty/serial/imx.c (revision 6a34dfa15d6edf7e78b8118d862d2db0889cf669)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/circ_buf.h>
12 #include <linux/module.h>
13 #include <linux/ioport.h>
14 #include <linux/init.h>
15 #include <linux/console.h>
16 #include <linux/sysrq.h>
17 #include <linux/platform_device.h>
18 #include <linux/tty.h>
19 #include <linux/tty_flip.h>
20 #include <linux/serial_core.h>
21 #include <linux/serial.h>
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/ktime.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/rational.h>
27 #include <linux/slab.h>
28 #include <linux/of.h>
29 #include <linux/io.h>
30 #include <linux/iopoll.h>
31 #include <linux/dma-mapping.h>
32 
33 #include <asm/irq.h>
34 #include <linux/dma/imx-dma.h>
35 
36 #include "serial_mctrl_gpio.h"
37 
38 /* Register definitions */
39 #define URXD0 0x0  /* Receiver Register */
40 #define URTX0 0x40 /* Transmitter Register */
41 #define UCR1  0x80 /* Control Register 1 */
42 #define UCR2  0x84 /* Control Register 2 */
43 #define UCR3  0x88 /* Control Register 3 */
44 #define UCR4  0x8c /* Control Register 4 */
45 #define UFCR  0x90 /* FIFO Control Register */
46 #define USR1  0x94 /* Status Register 1 */
47 #define USR2  0x98 /* Status Register 2 */
48 #define UESC  0x9c /* Escape Character Register */
49 #define UTIM  0xa0 /* Escape Timer Register */
50 #define UBIR  0xa4 /* BRM Incremental Register */
51 #define UBMR  0xa8 /* BRM Modulator Register */
52 #define UBRC  0xac /* Baud Rate Count Register */
53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
56 
57 /* UART Control Register Bit Fields.*/
58 #define URXD_DUMMY_READ (1<<16)
59 #define URXD_CHARRDY	(1<<15)
60 #define URXD_ERR	(1<<14)
61 #define URXD_OVRRUN	(1<<13)
62 #define URXD_FRMERR	(1<<12)
63 #define URXD_BRK	(1<<11)
64 #define URXD_PRERR	(1<<10)
65 #define URXD_RX_DATA	(0xFF<<0)
66 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
67 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
68 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
69 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
71 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
72 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
73 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
74 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
75 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
76 #define UCR1_SNDBRK	(1<<4)	/* Send break */
77 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
79 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
80 #define UCR1_DOZE	(1<<1)	/* Doze */
81 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
82 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
83 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
84 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
85 #define UCR2_CTS	(1<<12)	/* Clear to send */
86 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
87 #define UCR2_PREN	(1<<8)	/* Parity enable */
88 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
89 #define UCR2_STPB	(1<<6)	/* Stop */
90 #define UCR2_WS		(1<<5)	/* Word size */
91 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
92 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
93 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
94 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
95 #define UCR2_SRST	(1<<0)	/* SW reset */
96 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
97 #define UCR3_PARERREN	(1<<12) /* Parity enable */
98 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
99 #define UCR3_DSR	(1<<10) /* Data set ready */
100 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
101 #define UCR3_RI		(1<<8)	/* Ring indicator */
102 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
103 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
104 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
105 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
106 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
107 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
108 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
109 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
110 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
111 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
112 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
113 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
114 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
115 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
116 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
117 #define UCR4_IRSC	(1<<5)	/* IR special case */
118 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
119 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
120 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
121 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
122 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
123 #define UFCR_RXTL_MASK	0x3F	/* Receiver trigger 6 bits wide */
124 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
125 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
126 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
127 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
128 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
129 #define USR1_RTSS	(1<<14) /* RTS pin status */
130 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
131 #define USR1_RTSD	(1<<12) /* RTS delta */
132 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
133 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
134 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
135 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
136 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
137 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
138 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
139 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
140 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
141 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
142 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
143 #define USR2_IDLE	 (1<<12) /* Idle condition */
144 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
145 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
146 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
147 #define USR2_WAKE	 (1<<7)	 /* Wake */
148 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
149 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
150 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
151 #define USR2_BRCD	 (1<<2)	 /* Break condition */
152 #define USR2_ORE	(1<<1)	 /* Overrun error */
153 #define USR2_RDR	(1<<0)	 /* Recv data ready */
154 #define UTS_FRCPERR	(1<<13) /* Force parity error */
155 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
156 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
157 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
158 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
159 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
160 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
161 
162 /* We've been assigned a range on the "Low-density serial ports" major */
163 #define SERIAL_IMX_MAJOR	207
164 #define MINOR_START		16
165 #define DEV_NAME		"ttymxc"
166 
167 /*
168  * This determines how often we check the modem status signals
169  * for any change.  They generally aren't connected to an IRQ
170  * so we have to poll them.  We also check immediately before
171  * filling the TX fifo incase CTS has been dropped.
172  */
173 #define MCTRL_TIMEOUT	(250*HZ/1000)
174 
175 #define DRIVER_NAME "IMX-uart"
176 
177 #define UART_NR 8
178 
179 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
180 enum imx_uart_type {
181 	IMX1_UART,
182 	IMX21_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* counter to stop 0xff flood */
214 	int idle_counter;
215 
216 	/* DMA fields */
217 	unsigned int		dma_is_enabled:1;
218 	unsigned int		dma_is_rxing:1;
219 	unsigned int		dma_is_txing:1;
220 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
221 	struct scatterlist	rx_sgl, tx_sgl[2];
222 	void			*rx_buf;
223 	struct circ_buf		rx_ring;
224 	unsigned int		rx_buf_size;
225 	unsigned int		rx_period_length;
226 	unsigned int		rx_periods;
227 	dma_cookie_t		rx_cookie;
228 	unsigned int		tx_bytes;
229 	unsigned int		dma_tx_nents;
230 	unsigned int            saved_reg[10];
231 	bool			context_saved;
232 
233 	bool			last_putchar_was_newline;
234 
235 	enum imx_tx_state	tx_state;
236 	struct hrtimer		trigger_start_tx;
237 	struct hrtimer		trigger_stop_tx;
238 };
239 
240 struct imx_port_ucrs {
241 	unsigned int	ucr1;
242 	unsigned int	ucr2;
243 	unsigned int	ucr3;
244 };
245 
246 static const struct imx_uart_data imx_uart_imx1_devdata = {
247 	.uts_reg = IMX1_UTS,
248 	.devtype = IMX1_UART,
249 };
250 
251 static const struct imx_uart_data imx_uart_imx21_devdata = {
252 	.uts_reg = IMX21_UTS,
253 	.devtype = IMX21_UART,
254 };
255 
256 static const struct of_device_id imx_uart_dt_ids[] = {
257 	/*
258 	 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are
259 	 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the
260 	 * original imx6q's UART is compatible to fsl,imx21-uart. This driver
261 	 * doesn't make any distinction between these two variants.
262 	 */
263 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, },
264 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, },
265 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, },
266 	{ /* sentinel */ }
267 };
268 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
269 
270 static inline struct imx_port *to_imx_port(struct uart_port *port)
271 {
272         return container_of(port, struct imx_port, port);
273 }
274 
275 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
276 {
277 	writel(val, sport->port.membase + offset);
278 }
279 
280 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
281 {
282 	return readl(sport->port.membase + offset);
283 }
284 
285 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
286 {
287 	return sport->devdata->uts_reg;
288 }
289 
290 static inline int imx_uart_is_imx1(struct imx_port *sport)
291 {
292 	return sport->devdata->devtype == IMX1_UART;
293 }
294 
295 /*
296  * Save and restore functions for UCR1, UCR2 and UCR3 registers
297  */
298 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
299 static void imx_uart_ucrs_save(struct imx_port *sport,
300 			       struct imx_port_ucrs *ucr)
301 {
302 	/* save control registers */
303 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
304 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
305 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
306 }
307 
308 static void imx_uart_ucrs_restore(struct imx_port *sport,
309 				  struct imx_port_ucrs *ucr)
310 {
311 	/* restore control registers */
312 	imx_uart_writel(sport, ucr->ucr1, UCR1);
313 	imx_uart_writel(sport, ucr->ucr2, UCR2);
314 	imx_uart_writel(sport, ucr->ucr3, UCR3);
315 }
316 #endif
317 
318 /* called with port.lock taken and irqs caller dependent */
319 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
320 {
321 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
322 
323 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
324 }
325 
326 /* called with port.lock taken and irqs caller dependent */
327 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
328 {
329 	*ucr2 &= ~UCR2_CTSC;
330 	*ucr2 |= UCR2_CTS;
331 
332 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
333 }
334 
335 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
336 {
337        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
338 }
339 
340 /* called with port.lock taken and irqs off */
341 static void imx_uart_soft_reset(struct imx_port *sport)
342 {
343 	int i = 10;
344 	u32 ucr2, ubir, ubmr, uts;
345 
346 	/*
347 	 * According to the Reference Manual description of the UART SRST bit:
348 	 *
349 	 * "Reset the transmit and receive state machines,
350 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
351 	 * and UTS[6-3]".
352 	 *
353 	 * We don't need to restore the old values from USR1, USR2, URXD and
354 	 * UTXD. UBRC is read only, so only save/restore the other three
355 	 * registers.
356 	 */
357 	ubir = imx_uart_readl(sport, UBIR);
358 	ubmr = imx_uart_readl(sport, UBMR);
359 	uts = imx_uart_readl(sport, IMX21_UTS);
360 
361 	ucr2 = imx_uart_readl(sport, UCR2);
362 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
363 
364 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
365 		udelay(1);
366 
367 	/* Restore the registers */
368 	imx_uart_writel(sport, ubir, UBIR);
369 	imx_uart_writel(sport, ubmr, UBMR);
370 	imx_uart_writel(sport, uts, IMX21_UTS);
371 
372 	sport->idle_counter = 0;
373 }
374 
375 /* called with port.lock taken and irqs off */
376 static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
377 {
378 	unsigned int uts;
379 
380 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
381 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
382 	uts &= ~UTS_LOOP;
383 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
384 }
385 
386 /* called with port.lock taken and irqs off */
387 static void imx_uart_start_rx(struct uart_port *port)
388 {
389 	struct imx_port *sport = to_imx_port(port);
390 	unsigned int ucr1, ucr2;
391 
392 	ucr1 = imx_uart_readl(sport, UCR1);
393 	ucr2 = imx_uart_readl(sport, UCR2);
394 
395 	ucr2 |= UCR2_RXEN;
396 
397 	if (sport->dma_is_enabled) {
398 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
399 	} else {
400 		ucr1 |= UCR1_RRDYEN;
401 		ucr2 |= UCR2_ATEN;
402 	}
403 
404 	/* Write UCR2 first as it includes RXEN */
405 	imx_uart_writel(sport, ucr2, UCR2);
406 	imx_uart_writel(sport, ucr1, UCR1);
407 	imx_uart_disable_loopback_rs485(sport);
408 }
409 
410 /* called with port.lock taken and irqs off */
411 static void imx_uart_stop_tx(struct uart_port *port)
412 {
413 	struct imx_port *sport = to_imx_port(port);
414 	u32 ucr1, ucr4, usr2;
415 
416 	if (sport->tx_state == OFF)
417 		return;
418 
419 	/*
420 	 * We are maybe in the SMP context, so if the DMA TX thread is running
421 	 * on other cpu, we have to wait for it to finish.
422 	 */
423 	if (sport->dma_is_txing)
424 		return;
425 
426 	ucr1 = imx_uart_readl(sport, UCR1);
427 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
428 
429 	ucr4 = imx_uart_readl(sport, UCR4);
430 	usr2 = imx_uart_readl(sport, USR2);
431 	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
432 		/* The shifter is still busy, so retry once TC triggers */
433 		return;
434 	}
435 
436 	ucr4 &= ~UCR4_TCEN;
437 	imx_uart_writel(sport, ucr4, UCR4);
438 
439 	/* in rs485 mode disable transmitter */
440 	if (port->rs485.flags & SER_RS485_ENABLED) {
441 		if (sport->tx_state == SEND) {
442 			sport->tx_state = WAIT_AFTER_SEND;
443 
444 			if (port->rs485.delay_rts_after_send > 0) {
445 				start_hrtimer_ms(&sport->trigger_stop_tx,
446 					 port->rs485.delay_rts_after_send);
447 				return;
448 			}
449 
450 			/* continue without any delay */
451 		}
452 
453 		if (sport->tx_state == WAIT_AFTER_RTS ||
454 		    sport->tx_state == WAIT_AFTER_SEND) {
455 			u32 ucr2;
456 
457 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
458 
459 			ucr2 = imx_uart_readl(sport, UCR2);
460 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
461 				imx_uart_rts_active(sport, &ucr2);
462 			else
463 				imx_uart_rts_inactive(sport, &ucr2);
464 			imx_uart_writel(sport, ucr2, UCR2);
465 
466 			if (!port->rs485_rx_during_tx_gpio)
467 				imx_uart_start_rx(port);
468 
469 			sport->tx_state = OFF;
470 		}
471 	} else {
472 		sport->tx_state = OFF;
473 	}
474 }
475 
476 /* called with port.lock taken and irqs off */
477 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback)
478 {
479 	struct imx_port *sport = to_imx_port(port);
480 	u32 ucr1, ucr2, ucr4, uts;
481 
482 	ucr1 = imx_uart_readl(sport, UCR1);
483 	ucr2 = imx_uart_readl(sport, UCR2);
484 	ucr4 = imx_uart_readl(sport, UCR4);
485 
486 	if (sport->dma_is_enabled) {
487 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
488 	} else {
489 		ucr1 &= ~UCR1_RRDYEN;
490 		ucr2 &= ~UCR2_ATEN;
491 		ucr4 &= ~UCR4_OREN;
492 	}
493 	imx_uart_writel(sport, ucr1, UCR1);
494 	imx_uart_writel(sport, ucr4, UCR4);
495 
496 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
497 	if (port->rs485.flags & SER_RS485_ENABLED &&
498 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
499 	    sport->have_rtscts && !sport->have_rtsgpio && loopback) {
500 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
501 		uts |= UTS_LOOP;
502 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
503 		ucr2 |= UCR2_RXEN;
504 	} else {
505 		ucr2 &= ~UCR2_RXEN;
506 	}
507 
508 	imx_uart_writel(sport, ucr2, UCR2);
509 }
510 
511 /* called with port.lock taken and irqs off */
512 static void imx_uart_stop_rx(struct uart_port *port)
513 {
514 	/*
515 	 * Stop RX and enable loopback in order to make sure RS485 bus
516 	 * is not blocked. Se comment in imx_uart_probe().
517 	 */
518 	imx_uart_stop_rx_with_loopback_ctrl(port, true);
519 }
520 
521 /* called with port.lock taken and irqs off */
522 static void imx_uart_enable_ms(struct uart_port *port)
523 {
524 	struct imx_port *sport = to_imx_port(port);
525 
526 	mod_timer(&sport->timer, jiffies);
527 
528 	mctrl_gpio_enable_ms(sport->gpios);
529 }
530 
531 static void imx_uart_dma_tx(struct imx_port *sport);
532 
533 /* called with port.lock taken and irqs off */
534 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
535 {
536 	struct tty_port *tport = &sport->port.state->port;
537 	unsigned char c;
538 
539 	if (sport->port.x_char) {
540 		/* Send next char */
541 		imx_uart_writel(sport, sport->port.x_char, URTX0);
542 		sport->port.icount.tx++;
543 		sport->port.x_char = 0;
544 		return;
545 	}
546 
547 	if (kfifo_is_empty(&tport->xmit_fifo) ||
548 			uart_tx_stopped(&sport->port)) {
549 		imx_uart_stop_tx(&sport->port);
550 		return;
551 	}
552 
553 	if (sport->dma_is_enabled) {
554 		u32 ucr1;
555 		/*
556 		 * We've just sent a X-char Ensure the TX DMA is enabled
557 		 * and the TX IRQ is disabled.
558 		 **/
559 		ucr1 = imx_uart_readl(sport, UCR1);
560 		ucr1 &= ~UCR1_TRDYEN;
561 		if (sport->dma_is_txing) {
562 			ucr1 |= UCR1_TXDMAEN;
563 			imx_uart_writel(sport, ucr1, UCR1);
564 		} else {
565 			imx_uart_writel(sport, ucr1, UCR1);
566 			imx_uart_dma_tx(sport);
567 		}
568 
569 		return;
570 	}
571 
572 	while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) &&
573 			uart_fifo_get(&sport->port, &c))
574 		imx_uart_writel(sport, c, URTX0);
575 
576 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
577 		uart_write_wakeup(&sport->port);
578 
579 	if (kfifo_is_empty(&tport->xmit_fifo))
580 		imx_uart_stop_tx(&sport->port);
581 }
582 
583 static void imx_uart_dma_tx_callback(void *data)
584 {
585 	struct imx_port *sport = data;
586 	struct tty_port *tport = &sport->port.state->port;
587 	struct scatterlist *sgl = &sport->tx_sgl[0];
588 	unsigned long flags;
589 	u32 ucr1;
590 
591 	uart_port_lock_irqsave(&sport->port, &flags);
592 
593 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
594 
595 	ucr1 = imx_uart_readl(sport, UCR1);
596 	ucr1 &= ~UCR1_TXDMAEN;
597 	imx_uart_writel(sport, ucr1, UCR1);
598 
599 	uart_xmit_advance(&sport->port, sport->tx_bytes);
600 
601 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
602 
603 	sport->dma_is_txing = 0;
604 
605 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
606 		uart_write_wakeup(&sport->port);
607 
608 	if (!kfifo_is_empty(&tport->xmit_fifo) &&
609 			!uart_tx_stopped(&sport->port))
610 		imx_uart_dma_tx(sport);
611 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
612 		u32 ucr4 = imx_uart_readl(sport, UCR4);
613 		ucr4 |= UCR4_TCEN;
614 		imx_uart_writel(sport, ucr4, UCR4);
615 	}
616 
617 	uart_port_unlock_irqrestore(&sport->port, flags);
618 }
619 
620 /* called with port.lock taken and irqs off */
621 static void imx_uart_dma_tx(struct imx_port *sport)
622 {
623 	struct tty_port *tport = &sport->port.state->port;
624 	struct scatterlist *sgl = sport->tx_sgl;
625 	struct dma_async_tx_descriptor *desc;
626 	struct dma_chan	*chan = sport->dma_chan_tx;
627 	struct device *dev = sport->port.dev;
628 	u32 ucr1, ucr4;
629 	int ret;
630 
631 	if (sport->dma_is_txing)
632 		return;
633 
634 	ucr4 = imx_uart_readl(sport, UCR4);
635 	ucr4 &= ~UCR4_TCEN;
636 	imx_uart_writel(sport, ucr4, UCR4);
637 
638 	sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl));
639 	sport->tx_bytes = kfifo_len(&tport->xmit_fifo);
640 	sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl,
641 			ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes);
642 
643 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
644 	if (ret == 0) {
645 		dev_err(dev, "DMA mapping error for TX.\n");
646 		return;
647 	}
648 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
649 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
650 	if (!desc) {
651 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
652 			     DMA_TO_DEVICE);
653 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
654 		return;
655 	}
656 	desc->callback = imx_uart_dma_tx_callback;
657 	desc->callback_param = sport;
658 
659 	dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes);
660 
661 	ucr1 = imx_uart_readl(sport, UCR1);
662 	ucr1 |= UCR1_TXDMAEN;
663 	imx_uart_writel(sport, ucr1, UCR1);
664 
665 	/* fire it */
666 	sport->dma_is_txing = 1;
667 	dmaengine_submit(desc);
668 	dma_async_issue_pending(chan);
669 	return;
670 }
671 
672 /* called with port.lock taken and irqs off */
673 static void imx_uart_start_tx(struct uart_port *port)
674 {
675 	struct imx_port *sport = to_imx_port(port);
676 	struct tty_port *tport = &sport->port.state->port;
677 	u32 ucr1;
678 
679 	if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo))
680 		return;
681 
682 	/*
683 	 * We cannot simply do nothing here if sport->tx_state == SEND already
684 	 * because UCR1_TXMPTYEN might already have been cleared in
685 	 * imx_uart_stop_tx(), but tx_state is still SEND.
686 	 */
687 
688 	if (port->rs485.flags & SER_RS485_ENABLED) {
689 		if (sport->tx_state == OFF) {
690 			u32 ucr2 = imx_uart_readl(sport, UCR2);
691 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
692 				imx_uart_rts_active(sport, &ucr2);
693 			else
694 				imx_uart_rts_inactive(sport, &ucr2);
695 			imx_uart_writel(sport, ucr2, UCR2);
696 
697 			/*
698 			 * Since we are about to transmit we can not stop RX
699 			 * with loopback enabled because that will make our
700 			 * transmitted data being just looped to RX.
701 			 */
702 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
703 			    !port->rs485_rx_during_tx_gpio)
704 				imx_uart_stop_rx_with_loopback_ctrl(port, false);
705 
706 			sport->tx_state = WAIT_AFTER_RTS;
707 
708 			if (port->rs485.delay_rts_before_send > 0) {
709 				start_hrtimer_ms(&sport->trigger_start_tx,
710 					 port->rs485.delay_rts_before_send);
711 				return;
712 			}
713 
714 			/* continue without any delay */
715 		}
716 
717 		if (sport->tx_state == WAIT_AFTER_SEND
718 		    || sport->tx_state == WAIT_AFTER_RTS) {
719 
720 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
721 
722 			/*
723 			 * Enable transmitter and shifter empty irq only if DMA
724 			 * is off.  In the DMA case this is done in the
725 			 * tx-callback.
726 			 */
727 			if (!sport->dma_is_enabled) {
728 				u32 ucr4 = imx_uart_readl(sport, UCR4);
729 				ucr4 |= UCR4_TCEN;
730 				imx_uart_writel(sport, ucr4, UCR4);
731 			}
732 
733 			sport->tx_state = SEND;
734 		}
735 	} else {
736 		sport->tx_state = SEND;
737 	}
738 
739 	if (!sport->dma_is_enabled) {
740 		ucr1 = imx_uart_readl(sport, UCR1);
741 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
742 	}
743 
744 	if (sport->dma_is_enabled) {
745 		if (sport->port.x_char) {
746 			/* We have X-char to send, so enable TX IRQ and
747 			 * disable TX DMA to let TX interrupt to send X-char */
748 			ucr1 = imx_uart_readl(sport, UCR1);
749 			ucr1 &= ~UCR1_TXDMAEN;
750 			ucr1 |= UCR1_TRDYEN;
751 			imx_uart_writel(sport, ucr1, UCR1);
752 			return;
753 		}
754 
755 		if (!kfifo_is_empty(&tport->xmit_fifo) &&
756 		    !uart_tx_stopped(port))
757 			imx_uart_dma_tx(sport);
758 		return;
759 	}
760 }
761 
762 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
763 {
764 	struct imx_port *sport = dev_id;
765 	u32 usr1;
766 
767 	imx_uart_writel(sport, USR1_RTSD, USR1);
768 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
769 	/*
770 	 * Update sport->old_status here, so any follow-up calls to
771 	 * imx_uart_mctrl_check() will be able to recognize that RTS
772 	 * state changed since last imx_uart_mctrl_check() call.
773 	 *
774 	 * In case RTS has been detected as asserted here and later on
775 	 * deasserted by the time imx_uart_mctrl_check() was called,
776 	 * imx_uart_mctrl_check() can detect the RTS state change and
777 	 * trigger uart_handle_cts_change() to unblock the port for
778 	 * further TX transfers.
779 	 */
780 	if (usr1 & USR1_RTSS)
781 		sport->old_status |= TIOCM_CTS;
782 	else
783 		sport->old_status &= ~TIOCM_CTS;
784 	uart_handle_cts_change(&sport->port, usr1);
785 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
786 
787 	return IRQ_HANDLED;
788 }
789 
790 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
791 {
792 	struct imx_port *sport = dev_id;
793 	irqreturn_t ret;
794 
795 	uart_port_lock(&sport->port);
796 
797 	ret = __imx_uart_rtsint(irq, dev_id);
798 
799 	uart_port_unlock(&sport->port);
800 
801 	return ret;
802 }
803 
804 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
805 {
806 	struct imx_port *sport = dev_id;
807 
808 	uart_port_lock(&sport->port);
809 	imx_uart_transmit_buffer(sport);
810 	uart_port_unlock(&sport->port);
811 	return IRQ_HANDLED;
812 }
813 
814 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
815  * This is to be called from Rx ISRs only when some bytes were actually
816  * received.
817  *
818  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
819  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
820  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
821  * that is terminated by any activity on RxD line, or could be stopped by
822  * issuing soft reset to the UART (just stop/start of RX does not help). Note
823  * that what we do here is sending isolated start bit about 2.4 times shorter
824  * than it is to be on UART configured baud rate.
825  *
826  * Called with port.lock taken and irqs off.
827  */
828 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
829 {
830 	/* To detect hardware 0xff flood we monitor RxD line between RX
831 	 * interrupts to isolate "receiving" of char(s) with no activity
832 	 * on RxD line, that'd never happen on actual data transfers.
833 	 *
834 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
835 	 * race here if we clear USR2_WAKE when receiving of a char is in
836 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
837 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
838 	 * detected no activity, this race may hide actual activity only once.
839 	 *
840 	 * Yet another case where receive interrupt may occur without RxD
841 	 * activity is expiration of aging timer, so we consider this as well.
842 	 *
843 	 * We use 'idle_counter' to ensure that we got at least so many RX
844 	 * interrupts without any detected activity on RxD line. 2 cases
845 	 * described plus 1 to be on the safe side gives us a margin of 3,
846 	 * below. In practice I was not able to produce a false positive to
847 	 * induce soft reset at regular data transfers even using 1 as the
848 	 * margin, so 3 is actually very strong.
849 	 *
850 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
851 	 */
852 
853 	if (usr2 & USR2_WAKE) {
854 		imx_uart_writel(sport, USR2_WAKE, USR2);
855 		sport->idle_counter = 0;
856 	} else if (++sport->idle_counter > 3) {
857 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
858 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
859 	}
860 }
861 
862 /* called with port.lock taken and irqs off */
863 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
864 {
865 	struct imx_port *sport = dev_id;
866 	struct tty_port *port = &sport->port.state->port;
867 	u32 usr2, rx;
868 
869 	/* If we received something, check for 0xff flood */
870 	usr2 = imx_uart_readl(sport, USR2);
871 	if (usr2 & USR2_RDR)
872 		imx_uart_check_flood(sport, usr2);
873 
874 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
875 		unsigned int flg = TTY_NORMAL;
876 		sport->port.icount.rx++;
877 
878 		if (unlikely(rx & URXD_ERR)) {
879 			if (rx & URXD_BRK) {
880 				sport->port.icount.brk++;
881 				if (uart_handle_break(&sport->port))
882 					continue;
883 			}
884 			else if (rx & URXD_PRERR)
885 				sport->port.icount.parity++;
886 			else if (rx & URXD_FRMERR)
887 				sport->port.icount.frame++;
888 			if (rx & URXD_OVRRUN)
889 				sport->port.icount.overrun++;
890 
891 			if (rx & sport->port.ignore_status_mask)
892 				continue;
893 
894 			rx &= (sport->port.read_status_mask | 0xFF);
895 
896 			if (rx & URXD_BRK)
897 				flg = TTY_BREAK;
898 			else if (rx & URXD_PRERR)
899 				flg = TTY_PARITY;
900 			else if (rx & URXD_FRMERR)
901 				flg = TTY_FRAME;
902 			if (rx & URXD_OVRRUN)
903 				flg = TTY_OVERRUN;
904 
905 			sport->port.sysrq = 0;
906 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
907 			continue;
908 		}
909 
910 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
911 			continue;
912 
913 		if (tty_insert_flip_char(port, rx, flg) == 0)
914 			sport->port.icount.buf_overrun++;
915 	}
916 
917 	tty_flip_buffer_push(port);
918 
919 	return IRQ_HANDLED;
920 }
921 
922 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
923 {
924 	struct imx_port *sport = dev_id;
925 	irqreturn_t ret;
926 
927 	uart_port_lock(&sport->port);
928 
929 	ret = __imx_uart_rxint(irq, dev_id);
930 
931 	uart_port_unlock(&sport->port);
932 
933 	return ret;
934 }
935 
936 static void imx_uart_clear_rx_errors(struct imx_port *sport);
937 
938 /*
939  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
940  */
941 /* called with port.lock taken and irqs off */
942 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
943 {
944 	unsigned int tmp = TIOCM_DSR;
945 	unsigned usr1 = imx_uart_readl(sport, USR1);
946 	unsigned usr2 = imx_uart_readl(sport, USR2);
947 
948 	if (usr1 & USR1_RTSS)
949 		tmp |= TIOCM_CTS;
950 
951 	/* in DCE mode DCDIN is always 0 */
952 	if (!(usr2 & USR2_DCDIN))
953 		tmp |= TIOCM_CAR;
954 
955 	if (sport->dte_mode)
956 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
957 			tmp |= TIOCM_RI;
958 
959 	return tmp;
960 }
961 
962 /*
963  * Handle any change of modem status signal since we were last called.
964  *
965  * Called with port.lock taken and irqs off.
966  */
967 static void imx_uart_mctrl_check(struct imx_port *sport)
968 {
969 	unsigned int status, changed;
970 
971 	status = imx_uart_get_hwmctrl(sport);
972 	changed = status ^ sport->old_status;
973 
974 	if (changed == 0)
975 		return;
976 
977 	sport->old_status = status;
978 
979 	if (changed & TIOCM_RI && status & TIOCM_RI)
980 		sport->port.icount.rng++;
981 	if (changed & TIOCM_DSR)
982 		sport->port.icount.dsr++;
983 	if (changed & TIOCM_CAR)
984 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
985 	if (changed & TIOCM_CTS)
986 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
987 
988 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
989 }
990 
991 static irqreturn_t imx_uart_int(int irq, void *dev_id)
992 {
993 	struct imx_port *sport = dev_id;
994 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
995 	irqreturn_t ret = IRQ_NONE;
996 
997 	uart_port_lock(&sport->port);
998 
999 	usr1 = imx_uart_readl(sport, USR1);
1000 	usr2 = imx_uart_readl(sport, USR2);
1001 	ucr1 = imx_uart_readl(sport, UCR1);
1002 	ucr2 = imx_uart_readl(sport, UCR2);
1003 	ucr3 = imx_uart_readl(sport, UCR3);
1004 	ucr4 = imx_uart_readl(sport, UCR4);
1005 
1006 	/*
1007 	 * Even if a condition is true that can trigger an irq only handle it if
1008 	 * the respective irq source is enabled. This prevents some undesired
1009 	 * actions, for example if a character that sits in the RX FIFO and that
1010 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
1011 	 * receiver is currently off and so reading from URXD0 results in an
1012 	 * exception. So just mask the (raw) status bits for disabled irqs.
1013 	 */
1014 	if ((ucr1 & UCR1_RRDYEN) == 0)
1015 		usr1 &= ~USR1_RRDY;
1016 	if ((ucr2 & UCR2_ATEN) == 0)
1017 		usr1 &= ~USR1_AGTIM;
1018 	if ((ucr1 & UCR1_TRDYEN) == 0)
1019 		usr1 &= ~USR1_TRDY;
1020 	if ((ucr4 & UCR4_TCEN) == 0)
1021 		usr2 &= ~USR2_TXDC;
1022 	if ((ucr3 & UCR3_DTRDEN) == 0)
1023 		usr1 &= ~USR1_DTRD;
1024 	if ((ucr1 & UCR1_RTSDEN) == 0)
1025 		usr1 &= ~USR1_RTSD;
1026 	if ((ucr3 & UCR3_AWAKEN) == 0)
1027 		usr1 &= ~USR1_AWAKE;
1028 	if ((ucr4 & UCR4_OREN) == 0)
1029 		usr2 &= ~USR2_ORE;
1030 
1031 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1032 		imx_uart_writel(sport, USR1_AGTIM, USR1);
1033 
1034 		__imx_uart_rxint(irq, dev_id);
1035 		ret = IRQ_HANDLED;
1036 	}
1037 
1038 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1039 		imx_uart_transmit_buffer(sport);
1040 		ret = IRQ_HANDLED;
1041 	}
1042 
1043 	if (usr1 & USR1_DTRD) {
1044 		imx_uart_writel(sport, USR1_DTRD, USR1);
1045 
1046 		imx_uart_mctrl_check(sport);
1047 
1048 		ret = IRQ_HANDLED;
1049 	}
1050 
1051 	if (usr1 & USR1_RTSD) {
1052 		__imx_uart_rtsint(irq, dev_id);
1053 		ret = IRQ_HANDLED;
1054 	}
1055 
1056 	if (usr1 & USR1_AWAKE) {
1057 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1058 		ret = IRQ_HANDLED;
1059 	}
1060 
1061 	if (usr2 & USR2_ORE) {
1062 		sport->port.icount.overrun++;
1063 		imx_uart_writel(sport, USR2_ORE, USR2);
1064 		ret = IRQ_HANDLED;
1065 	}
1066 
1067 	uart_port_unlock(&sport->port);
1068 
1069 	return ret;
1070 }
1071 
1072 /*
1073  * Return TIOCSER_TEMT when transmitter is not busy.
1074  */
1075 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1076 {
1077 	struct imx_port *sport = to_imx_port(port);
1078 	unsigned int ret;
1079 
1080 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1081 
1082 	/* If the TX DMA is working, return 0. */
1083 	if (sport->dma_is_txing)
1084 		ret = 0;
1085 
1086 	return ret;
1087 }
1088 
1089 /* called with port.lock taken and irqs off */
1090 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1091 {
1092 	struct imx_port *sport = to_imx_port(port);
1093 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1094 
1095 	mctrl_gpio_get(sport->gpios, &ret);
1096 
1097 	return ret;
1098 }
1099 
1100 /* called with port.lock taken and irqs off */
1101 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1102 {
1103 	struct imx_port *sport = to_imx_port(port);
1104 	u32 ucr3, uts;
1105 
1106 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1107 		u32 ucr2;
1108 
1109 		/*
1110 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1111 		 * setting if RTS is raised.
1112 		 */
1113 		ucr2 = imx_uart_readl(sport, UCR2);
1114 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1115 		if (mctrl & TIOCM_RTS) {
1116 			ucr2 |= UCR2_CTS;
1117 			/*
1118 			 * UCR2_IRTS is unset if and only if the port is
1119 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1120 			 * to get the state to restore to.
1121 			 */
1122 			if (!(ucr2 & UCR2_IRTS))
1123 				ucr2 |= UCR2_CTSC;
1124 		}
1125 		imx_uart_writel(sport, ucr2, UCR2);
1126 	}
1127 
1128 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1129 	if (!(mctrl & TIOCM_DTR))
1130 		ucr3 |= UCR3_DSR;
1131 	imx_uart_writel(sport, ucr3, UCR3);
1132 
1133 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1134 	if (mctrl & TIOCM_LOOP)
1135 		uts |= UTS_LOOP;
1136 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1137 
1138 	mctrl_gpio_set(sport->gpios, mctrl);
1139 }
1140 
1141 /*
1142  * Interrupts always disabled.
1143  */
1144 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1145 {
1146 	struct imx_port *sport = to_imx_port(port);
1147 	unsigned long flags;
1148 	u32 ucr1;
1149 
1150 	uart_port_lock_irqsave(&sport->port, &flags);
1151 
1152 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1153 
1154 	if (break_state != 0)
1155 		ucr1 |= UCR1_SNDBRK;
1156 
1157 	imx_uart_writel(sport, ucr1, UCR1);
1158 
1159 	uart_port_unlock_irqrestore(&sport->port, flags);
1160 }
1161 
1162 /*
1163  * This is our per-port timeout handler, for checking the
1164  * modem status signals.
1165  */
1166 static void imx_uart_timeout(struct timer_list *t)
1167 {
1168 	struct imx_port *sport = from_timer(sport, t, timer);
1169 	unsigned long flags;
1170 
1171 	if (sport->port.state) {
1172 		uart_port_lock_irqsave(&sport->port, &flags);
1173 		imx_uart_mctrl_check(sport);
1174 		uart_port_unlock_irqrestore(&sport->port, flags);
1175 
1176 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1177 	}
1178 }
1179 
1180 /*
1181  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1182  *   [1] the RX DMA buffer is full.
1183  *   [2] the aging timer expires
1184  *
1185  * Condition [2] is triggered when a character has been sitting in the FIFO
1186  * for at least 8 byte durations.
1187  */
1188 static void imx_uart_dma_rx_callback(void *data)
1189 {
1190 	struct imx_port *sport = data;
1191 	struct dma_chan	*chan = sport->dma_chan_rx;
1192 	struct scatterlist *sgl = &sport->rx_sgl;
1193 	struct tty_port *port = &sport->port.state->port;
1194 	struct dma_tx_state state;
1195 	struct circ_buf *rx_ring = &sport->rx_ring;
1196 	enum dma_status status;
1197 	unsigned int w_bytes = 0;
1198 	unsigned int r_bytes;
1199 	unsigned int bd_size;
1200 
1201 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1202 
1203 	if (status == DMA_ERROR) {
1204 		uart_port_lock(&sport->port);
1205 		imx_uart_clear_rx_errors(sport);
1206 		uart_port_unlock(&sport->port);
1207 		return;
1208 	}
1209 
1210 	/*
1211 	 * The state-residue variable represents the empty space
1212 	 * relative to the entire buffer. Taking this in consideration
1213 	 * the head is always calculated base on the buffer total
1214 	 * length - DMA transaction residue. The UART script from the
1215 	 * SDMA firmware will jump to the next buffer descriptor,
1216 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1217 	 * Taking this in consideration the tail is always at the
1218 	 * beginning of the buffer descriptor that contains the head.
1219 	 */
1220 
1221 	/* Calculate the head */
1222 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1223 
1224 	/* Calculate the tail. */
1225 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1226 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1227 
1228 	if (rx_ring->head <= sg_dma_len(sgl) &&
1229 	    rx_ring->head > rx_ring->tail) {
1230 
1231 		/* Move data from tail to head */
1232 		r_bytes = rx_ring->head - rx_ring->tail;
1233 
1234 		/* If we received something, check for 0xff flood */
1235 		uart_port_lock(&sport->port);
1236 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1237 		uart_port_unlock(&sport->port);
1238 
1239 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1240 
1241 			/* CPU claims ownership of RX DMA buffer */
1242 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1243 					    DMA_FROM_DEVICE);
1244 
1245 			w_bytes = tty_insert_flip_string(port,
1246 							 sport->rx_buf + rx_ring->tail, r_bytes);
1247 
1248 			/* UART retrieves ownership of RX DMA buffer */
1249 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1250 					       DMA_FROM_DEVICE);
1251 
1252 			if (w_bytes != r_bytes)
1253 				sport->port.icount.buf_overrun++;
1254 
1255 			sport->port.icount.rx += w_bytes;
1256 		}
1257 	} else	{
1258 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1259 		WARN_ON(rx_ring->head <= rx_ring->tail);
1260 	}
1261 
1262 	if (w_bytes) {
1263 		tty_flip_buffer_push(port);
1264 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1265 	}
1266 }
1267 
1268 static int imx_uart_start_rx_dma(struct imx_port *sport)
1269 {
1270 	struct scatterlist *sgl = &sport->rx_sgl;
1271 	struct dma_chan	*chan = sport->dma_chan_rx;
1272 	struct device *dev = sport->port.dev;
1273 	struct dma_async_tx_descriptor *desc;
1274 	int ret;
1275 
1276 	sport->rx_ring.head = 0;
1277 	sport->rx_ring.tail = 0;
1278 
1279 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1280 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1281 	if (ret == 0) {
1282 		dev_err(dev, "DMA mapping error for RX.\n");
1283 		return -EINVAL;
1284 	}
1285 
1286 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1287 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1288 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1289 
1290 	if (!desc) {
1291 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1292 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1293 		return -EINVAL;
1294 	}
1295 	desc->callback = imx_uart_dma_rx_callback;
1296 	desc->callback_param = sport;
1297 
1298 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1299 	sport->dma_is_rxing = 1;
1300 	sport->rx_cookie = dmaengine_submit(desc);
1301 	dma_async_issue_pending(chan);
1302 	return 0;
1303 }
1304 
1305 /* called with port.lock taken and irqs off */
1306 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1307 {
1308 	struct tty_port *port = &sport->port.state->port;
1309 	u32 usr1, usr2;
1310 
1311 	usr1 = imx_uart_readl(sport, USR1);
1312 	usr2 = imx_uart_readl(sport, USR2);
1313 
1314 	if (usr2 & USR2_BRCD) {
1315 		sport->port.icount.brk++;
1316 		imx_uart_writel(sport, USR2_BRCD, USR2);
1317 		uart_handle_break(&sport->port);
1318 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1319 			sport->port.icount.buf_overrun++;
1320 		tty_flip_buffer_push(port);
1321 	} else {
1322 		if (usr1 & USR1_FRAMERR) {
1323 			sport->port.icount.frame++;
1324 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1325 		} else if (usr1 & USR1_PARITYERR) {
1326 			sport->port.icount.parity++;
1327 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1328 		}
1329 	}
1330 
1331 	if (usr2 & USR2_ORE) {
1332 		sport->port.icount.overrun++;
1333 		imx_uart_writel(sport, USR2_ORE, USR2);
1334 	}
1335 
1336 	sport->idle_counter = 0;
1337 
1338 }
1339 
1340 #define TXTL_DEFAULT 8
1341 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1342 #define TXTL_DMA 8 /* DMA burst setting */
1343 #define RXTL_DMA 9 /* DMA burst setting */
1344 
1345 static void imx_uart_setup_ufcr(struct imx_port *sport,
1346 				unsigned char txwl, unsigned char rxwl)
1347 {
1348 	unsigned int val;
1349 
1350 	/* set receiver / transmitter trigger level */
1351 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1352 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1353 	imx_uart_writel(sport, val, UFCR);
1354 }
1355 
1356 static void imx_uart_dma_exit(struct imx_port *sport)
1357 {
1358 	if (sport->dma_chan_rx) {
1359 		dmaengine_terminate_sync(sport->dma_chan_rx);
1360 		dma_release_channel(sport->dma_chan_rx);
1361 		sport->dma_chan_rx = NULL;
1362 		sport->rx_cookie = -EINVAL;
1363 		kfree(sport->rx_buf);
1364 		sport->rx_buf = NULL;
1365 	}
1366 
1367 	if (sport->dma_chan_tx) {
1368 		dmaengine_terminate_sync(sport->dma_chan_tx);
1369 		dma_release_channel(sport->dma_chan_tx);
1370 		sport->dma_chan_tx = NULL;
1371 	}
1372 }
1373 
1374 static int imx_uart_dma_init(struct imx_port *sport)
1375 {
1376 	struct dma_slave_config slave_config = {};
1377 	struct device *dev = sport->port.dev;
1378 	struct dma_chan *chan;
1379 	int ret;
1380 
1381 	/* Prepare for RX : */
1382 	chan = dma_request_chan(dev, "rx");
1383 	if (IS_ERR(chan)) {
1384 		dev_dbg(dev, "cannot get the DMA channel.\n");
1385 		sport->dma_chan_rx = NULL;
1386 		ret = PTR_ERR(chan);
1387 		goto err;
1388 	}
1389 	sport->dma_chan_rx = chan;
1390 
1391 	slave_config.direction = DMA_DEV_TO_MEM;
1392 	slave_config.src_addr = sport->port.mapbase + URXD0;
1393 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1394 	/* one byte less than the watermark level to enable the aging timer */
1395 	slave_config.src_maxburst = RXTL_DMA - 1;
1396 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1397 	if (ret) {
1398 		dev_err(dev, "error in RX dma configuration.\n");
1399 		goto err;
1400 	}
1401 
1402 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1403 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1404 	if (!sport->rx_buf) {
1405 		ret = -ENOMEM;
1406 		goto err;
1407 	}
1408 	sport->rx_ring.buf = sport->rx_buf;
1409 
1410 	/* Prepare for TX : */
1411 	chan = dma_request_chan(dev, "tx");
1412 	if (IS_ERR(chan)) {
1413 		dev_err(dev, "cannot get the TX DMA channel!\n");
1414 		sport->dma_chan_tx = NULL;
1415 		ret = PTR_ERR(chan);
1416 		goto err;
1417 	}
1418 	sport->dma_chan_tx = chan;
1419 
1420 	slave_config.direction = DMA_MEM_TO_DEV;
1421 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1422 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1423 	slave_config.dst_maxburst = TXTL_DMA;
1424 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1425 	if (ret) {
1426 		dev_err(dev, "error in TX dma configuration.");
1427 		goto err;
1428 	}
1429 
1430 	return 0;
1431 err:
1432 	imx_uart_dma_exit(sport);
1433 	return ret;
1434 }
1435 
1436 /* called with port.lock taken and irqs off */
1437 static void imx_uart_enable_dma(struct imx_port *sport)
1438 {
1439 	u32 ucr1;
1440 
1441 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1442 
1443 	/* set UCR1 */
1444 	ucr1 = imx_uart_readl(sport, UCR1);
1445 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1446 	imx_uart_writel(sport, ucr1, UCR1);
1447 
1448 	sport->dma_is_enabled = 1;
1449 }
1450 
1451 static void imx_uart_disable_dma(struct imx_port *sport)
1452 {
1453 	u32 ucr1;
1454 
1455 	/* clear UCR1 */
1456 	ucr1 = imx_uart_readl(sport, UCR1);
1457 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1458 	imx_uart_writel(sport, ucr1, UCR1);
1459 
1460 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1461 
1462 	sport->dma_is_enabled = 0;
1463 }
1464 
1465 /* half the RX buffer size */
1466 #define CTSTL 16
1467 
1468 static int imx_uart_startup(struct uart_port *port)
1469 {
1470 	struct imx_port *sport = to_imx_port(port);
1471 	int retval;
1472 	unsigned long flags;
1473 	int dma_is_inited = 0;
1474 	u32 ucr1, ucr2, ucr3, ucr4;
1475 
1476 	retval = clk_prepare_enable(sport->clk_per);
1477 	if (retval)
1478 		return retval;
1479 	retval = clk_prepare_enable(sport->clk_ipg);
1480 	if (retval) {
1481 		clk_disable_unprepare(sport->clk_per);
1482 		return retval;
1483 	}
1484 
1485 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1486 
1487 	/* disable the DREN bit (Data Ready interrupt enable) before
1488 	 * requesting IRQs
1489 	 */
1490 	ucr4 = imx_uart_readl(sport, UCR4);
1491 
1492 	/* set the trigger level for CTS */
1493 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1494 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1495 
1496 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1497 
1498 	/* Can we enable the DMA support? */
1499 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0) {
1500 		lockdep_set_subclass(&port->lock, 1);
1501 		dma_is_inited = 1;
1502 	}
1503 
1504 	uart_port_lock_irqsave(&sport->port, &flags);
1505 
1506 	/* Reset fifo's and state machines */
1507 	imx_uart_soft_reset(sport);
1508 
1509 	/*
1510 	 * Finally, clear and enable interrupts
1511 	 */
1512 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1513 	imx_uart_writel(sport, USR2_ORE, USR2);
1514 
1515 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1516 	ucr1 |= UCR1_UARTEN;
1517 	if (sport->have_rtscts)
1518 		ucr1 |= UCR1_RTSDEN;
1519 
1520 	imx_uart_writel(sport, ucr1, UCR1);
1521 
1522 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1523 	if (!dma_is_inited)
1524 		ucr4 |= UCR4_OREN;
1525 	if (sport->inverted_rx)
1526 		ucr4 |= UCR4_INVR;
1527 	imx_uart_writel(sport, ucr4, UCR4);
1528 
1529 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1530 	/*
1531 	 * configure tx polarity before enabling tx
1532 	 */
1533 	if (sport->inverted_tx)
1534 		ucr3 |= UCR3_INVT;
1535 
1536 	if (!imx_uart_is_imx1(sport)) {
1537 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1538 
1539 		if (sport->dte_mode)
1540 			/* disable broken interrupts */
1541 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1542 	}
1543 	imx_uart_writel(sport, ucr3, UCR3);
1544 
1545 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1546 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1547 	if (!sport->have_rtscts)
1548 		ucr2 |= UCR2_IRTS;
1549 	/*
1550 	 * make sure the edge sensitive RTS-irq is disabled,
1551 	 * we're using RTSD instead.
1552 	 */
1553 	if (!imx_uart_is_imx1(sport))
1554 		ucr2 &= ~UCR2_RTSEN;
1555 	imx_uart_writel(sport, ucr2, UCR2);
1556 
1557 	/*
1558 	 * Enable modem status interrupts
1559 	 */
1560 	imx_uart_enable_ms(&sport->port);
1561 
1562 	if (dma_is_inited) {
1563 		imx_uart_enable_dma(sport);
1564 		imx_uart_start_rx_dma(sport);
1565 	} else {
1566 		ucr1 = imx_uart_readl(sport, UCR1);
1567 		ucr1 |= UCR1_RRDYEN;
1568 		imx_uart_writel(sport, ucr1, UCR1);
1569 
1570 		ucr2 = imx_uart_readl(sport, UCR2);
1571 		ucr2 |= UCR2_ATEN;
1572 		imx_uart_writel(sport, ucr2, UCR2);
1573 	}
1574 
1575 	imx_uart_disable_loopback_rs485(sport);
1576 
1577 	uart_port_unlock_irqrestore(&sport->port, flags);
1578 
1579 	return 0;
1580 }
1581 
1582 static void imx_uart_shutdown(struct uart_port *port)
1583 {
1584 	struct imx_port *sport = to_imx_port(port);
1585 	unsigned long flags;
1586 	u32 ucr1, ucr2, ucr4, uts;
1587 	int loops;
1588 
1589 	if (sport->dma_is_enabled) {
1590 		dmaengine_terminate_sync(sport->dma_chan_tx);
1591 		if (sport->dma_is_txing) {
1592 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1593 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1594 			sport->dma_is_txing = 0;
1595 		}
1596 		dmaengine_terminate_sync(sport->dma_chan_rx);
1597 		if (sport->dma_is_rxing) {
1598 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1599 				     1, DMA_FROM_DEVICE);
1600 			sport->dma_is_rxing = 0;
1601 		}
1602 
1603 		uart_port_lock_irqsave(&sport->port, &flags);
1604 		imx_uart_stop_tx(port);
1605 		imx_uart_stop_rx(port);
1606 		imx_uart_disable_dma(sport);
1607 		uart_port_unlock_irqrestore(&sport->port, flags);
1608 		imx_uart_dma_exit(sport);
1609 	}
1610 
1611 	mctrl_gpio_disable_ms(sport->gpios);
1612 
1613 	uart_port_lock_irqsave(&sport->port, &flags);
1614 	ucr2 = imx_uart_readl(sport, UCR2);
1615 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1616 	imx_uart_writel(sport, ucr2, UCR2);
1617 	uart_port_unlock_irqrestore(&sport->port, flags);
1618 
1619 	/*
1620 	 * Stop our timer.
1621 	 */
1622 	del_timer_sync(&sport->timer);
1623 
1624 	/*
1625 	 * Disable all interrupts, port and break condition.
1626 	 */
1627 
1628 	uart_port_lock_irqsave(&sport->port, &flags);
1629 
1630 	ucr1 = imx_uart_readl(sport, UCR1);
1631 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1632 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1633 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1634 	if (port->rs485.flags & SER_RS485_ENABLED &&
1635 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1636 	    sport->have_rtscts && !sport->have_rtsgpio) {
1637 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1638 		uts |= UTS_LOOP;
1639 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1640 		ucr1 |= UCR1_UARTEN;
1641 	} else {
1642 		ucr1 &= ~UCR1_UARTEN;
1643 	}
1644 	imx_uart_writel(sport, ucr1, UCR1);
1645 
1646 	ucr4 = imx_uart_readl(sport, UCR4);
1647 	ucr4 &= ~UCR4_TCEN;
1648 	imx_uart_writel(sport, ucr4, UCR4);
1649 
1650 	/*
1651 	 * We have to ensure the tx state machine ends up in OFF. This
1652 	 * is especially important for rs485 where we must not leave
1653 	 * the RTS signal high, blocking the bus indefinitely.
1654 	 *
1655 	 * All interrupts are now disabled, so imx_uart_stop_tx() will
1656 	 * no longer be called from imx_uart_transmit_buffer(). It may
1657 	 * still be called via the hrtimers, and if those are in play,
1658 	 * we have to honour the delays.
1659 	 */
1660 	if (sport->tx_state == WAIT_AFTER_RTS || sport->tx_state == SEND)
1661 		imx_uart_stop_tx(port);
1662 
1663 	/*
1664 	 * In many cases (rs232 mode, or if tx_state was
1665 	 * WAIT_AFTER_RTS, or if tx_state was SEND and there is no
1666 	 * delay_rts_after_send), this will have moved directly to
1667 	 * OFF. In rs485 mode, tx_state might already have been
1668 	 * WAIT_AFTER_SEND and the hrtimer thus already started, or
1669 	 * the above imx_uart_stop_tx() call could have started it. In
1670 	 * those cases, we have to wait for the hrtimer to fire and
1671 	 * complete the transition to OFF.
1672 	 */
1673 	loops = port->rs485.flags & SER_RS485_ENABLED ?
1674 		port->rs485.delay_rts_after_send : 0;
1675 	while (sport->tx_state != OFF && loops--) {
1676 		uart_port_unlock_irqrestore(&sport->port, flags);
1677 		msleep(1);
1678 		uart_port_lock_irqsave(&sport->port, &flags);
1679 	}
1680 
1681 	if (sport->tx_state != OFF) {
1682 		dev_warn(sport->port.dev, "unexpected tx_state %d\n",
1683 			 sport->tx_state);
1684 		/*
1685 		 * This machine may be busted, but ensure the RTS
1686 		 * signal is inactive in order not to block other
1687 		 * devices.
1688 		 */
1689 		if (port->rs485.flags & SER_RS485_ENABLED) {
1690 			ucr2 = imx_uart_readl(sport, UCR2);
1691 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1692 				imx_uart_rts_active(sport, &ucr2);
1693 			else
1694 				imx_uart_rts_inactive(sport, &ucr2);
1695 			imx_uart_writel(sport, ucr2, UCR2);
1696 		}
1697 		sport->tx_state = OFF;
1698 	}
1699 
1700 	uart_port_unlock_irqrestore(&sport->port, flags);
1701 
1702 	clk_disable_unprepare(sport->clk_per);
1703 	clk_disable_unprepare(sport->clk_ipg);
1704 }
1705 
1706 /* called with port.lock taken and irqs off */
1707 static void imx_uart_flush_buffer(struct uart_port *port)
1708 {
1709 	struct imx_port *sport = to_imx_port(port);
1710 	struct scatterlist *sgl = &sport->tx_sgl[0];
1711 
1712 	if (!sport->dma_chan_tx)
1713 		return;
1714 
1715 	sport->tx_bytes = 0;
1716 	dmaengine_terminate_all(sport->dma_chan_tx);
1717 	if (sport->dma_is_txing) {
1718 		u32 ucr1;
1719 
1720 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1721 			     DMA_TO_DEVICE);
1722 		ucr1 = imx_uart_readl(sport, UCR1);
1723 		ucr1 &= ~UCR1_TXDMAEN;
1724 		imx_uart_writel(sport, ucr1, UCR1);
1725 		sport->dma_is_txing = 0;
1726 	}
1727 
1728 	imx_uart_soft_reset(sport);
1729 
1730 }
1731 
1732 static void
1733 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1734 		     const struct ktermios *old)
1735 {
1736 	struct imx_port *sport = to_imx_port(port);
1737 	unsigned long flags;
1738 	u32 ucr2, old_ucr2, ufcr;
1739 	unsigned int baud, quot;
1740 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1741 	unsigned long div;
1742 	unsigned long num, denom, old_ubir, old_ubmr;
1743 	uint64_t tdiv64;
1744 
1745 	/*
1746 	 * We only support CS7 and CS8.
1747 	 */
1748 	while ((termios->c_cflag & CSIZE) != CS7 &&
1749 	       (termios->c_cflag & CSIZE) != CS8) {
1750 		termios->c_cflag &= ~CSIZE;
1751 		termios->c_cflag |= old_csize;
1752 		old_csize = CS8;
1753 	}
1754 
1755 	del_timer_sync(&sport->timer);
1756 
1757 	/*
1758 	 * Ask the core to calculate the divisor for us.
1759 	 */
1760 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1761 	quot = uart_get_divisor(port, baud);
1762 
1763 	uart_port_lock_irqsave(&sport->port, &flags);
1764 
1765 	/*
1766 	 * Read current UCR2 and save it for future use, then clear all the bits
1767 	 * except those we will or may need to preserve.
1768 	 */
1769 	old_ucr2 = imx_uart_readl(sport, UCR2);
1770 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1771 
1772 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1773 	if ((termios->c_cflag & CSIZE) == CS8)
1774 		ucr2 |= UCR2_WS;
1775 
1776 	if (!sport->have_rtscts)
1777 		termios->c_cflag &= ~CRTSCTS;
1778 
1779 	if (port->rs485.flags & SER_RS485_ENABLED) {
1780 		/*
1781 		 * RTS is mandatory for rs485 operation, so keep
1782 		 * it under manual control and keep transmitter
1783 		 * disabled.
1784 		 */
1785 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1786 			imx_uart_rts_active(sport, &ucr2);
1787 		else
1788 			imx_uart_rts_inactive(sport, &ucr2);
1789 
1790 	} else if (termios->c_cflag & CRTSCTS) {
1791 		/*
1792 		 * Only let receiver control RTS output if we were not requested
1793 		 * to have RTS inactive (which then should take precedence).
1794 		 */
1795 		if (ucr2 & UCR2_CTS)
1796 			ucr2 |= UCR2_CTSC;
1797 	}
1798 
1799 	if (termios->c_cflag & CRTSCTS)
1800 		ucr2 &= ~UCR2_IRTS;
1801 	if (termios->c_cflag & CSTOPB)
1802 		ucr2 |= UCR2_STPB;
1803 	if (termios->c_cflag & PARENB) {
1804 		ucr2 |= UCR2_PREN;
1805 		if (termios->c_cflag & PARODD)
1806 			ucr2 |= UCR2_PROE;
1807 	}
1808 
1809 	sport->port.read_status_mask = 0;
1810 	if (termios->c_iflag & INPCK)
1811 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1812 	if (termios->c_iflag & (BRKINT | PARMRK))
1813 		sport->port.read_status_mask |= URXD_BRK;
1814 
1815 	/*
1816 	 * Characters to ignore
1817 	 */
1818 	sport->port.ignore_status_mask = 0;
1819 	if (termios->c_iflag & IGNPAR)
1820 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1821 	if (termios->c_iflag & IGNBRK) {
1822 		sport->port.ignore_status_mask |= URXD_BRK;
1823 		/*
1824 		 * If we're ignoring parity and break indicators,
1825 		 * ignore overruns too (for real raw support).
1826 		 */
1827 		if (termios->c_iflag & IGNPAR)
1828 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1829 	}
1830 
1831 	if ((termios->c_cflag & CREAD) == 0)
1832 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1833 
1834 	/*
1835 	 * Update the per-port timeout.
1836 	 */
1837 	uart_update_timeout(port, termios->c_cflag, baud);
1838 
1839 	/* custom-baudrate handling */
1840 	div = sport->port.uartclk / (baud * 16);
1841 	if (baud == 38400 && quot != div)
1842 		baud = sport->port.uartclk / (quot * 16);
1843 
1844 	div = sport->port.uartclk / (baud * 16);
1845 	if (div > 7)
1846 		div = 7;
1847 	if (!div)
1848 		div = 1;
1849 
1850 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1851 		1 << 16, 1 << 16, &num, &denom);
1852 
1853 	tdiv64 = sport->port.uartclk;
1854 	tdiv64 *= num;
1855 	do_div(tdiv64, denom * 16 * div);
1856 	tty_termios_encode_baud_rate(termios,
1857 				(speed_t)tdiv64, (speed_t)tdiv64);
1858 
1859 	num -= 1;
1860 	denom -= 1;
1861 
1862 	ufcr = imx_uart_readl(sport, UFCR);
1863 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1864 	imx_uart_writel(sport, ufcr, UFCR);
1865 
1866 	/*
1867 	 *  Two registers below should always be written both and in this
1868 	 *  particular order. One consequence is that we need to check if any of
1869 	 *  them changes and then update both. We do need the check for change
1870 	 *  as even writing the same values seem to "restart"
1871 	 *  transmission/receiving logic in the hardware, that leads to data
1872 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1873 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1874 	 */
1875 	old_ubir = imx_uart_readl(sport, UBIR);
1876 	old_ubmr = imx_uart_readl(sport, UBMR);
1877 	if (old_ubir != num || old_ubmr != denom) {
1878 		imx_uart_writel(sport, num, UBIR);
1879 		imx_uart_writel(sport, denom, UBMR);
1880 	}
1881 
1882 	if (!imx_uart_is_imx1(sport))
1883 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1884 				IMX21_ONEMS);
1885 
1886 	imx_uart_writel(sport, ucr2, UCR2);
1887 
1888 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1889 		imx_uart_enable_ms(&sport->port);
1890 
1891 	uart_port_unlock_irqrestore(&sport->port, flags);
1892 }
1893 
1894 static const char *imx_uart_type(struct uart_port *port)
1895 {
1896 	return port->type == PORT_IMX ? "IMX" : NULL;
1897 }
1898 
1899 /*
1900  * Configure/autoconfigure the port.
1901  */
1902 static void imx_uart_config_port(struct uart_port *port, int flags)
1903 {
1904 	if (flags & UART_CONFIG_TYPE)
1905 		port->type = PORT_IMX;
1906 }
1907 
1908 /*
1909  * Verify the new serial_struct (for TIOCSSERIAL).
1910  * The only change we allow are to the flags and type, and
1911  * even then only between PORT_IMX and PORT_UNKNOWN
1912  */
1913 static int
1914 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1915 {
1916 	int ret = 0;
1917 
1918 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1919 		ret = -EINVAL;
1920 	if (port->irq != ser->irq)
1921 		ret = -EINVAL;
1922 	if (ser->io_type != UPIO_MEM)
1923 		ret = -EINVAL;
1924 	if (port->uartclk / 16 != ser->baud_base)
1925 		ret = -EINVAL;
1926 	if (port->mapbase != (unsigned long)ser->iomem_base)
1927 		ret = -EINVAL;
1928 	if (port->iobase != ser->port)
1929 		ret = -EINVAL;
1930 	if (ser->hub6 != 0)
1931 		ret = -EINVAL;
1932 	return ret;
1933 }
1934 
1935 #if defined(CONFIG_CONSOLE_POLL)
1936 
1937 static int imx_uart_poll_init(struct uart_port *port)
1938 {
1939 	struct imx_port *sport = to_imx_port(port);
1940 	unsigned long flags;
1941 	u32 ucr1, ucr2;
1942 	int retval;
1943 
1944 	retval = clk_prepare_enable(sport->clk_ipg);
1945 	if (retval)
1946 		return retval;
1947 	retval = clk_prepare_enable(sport->clk_per);
1948 	if (retval)
1949 		clk_disable_unprepare(sport->clk_ipg);
1950 
1951 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1952 
1953 	uart_port_lock_irqsave(&sport->port, &flags);
1954 
1955 	/*
1956 	 * Be careful about the order of enabling bits here. First enable the
1957 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1958 	 * This prevents that a character that already sits in the RX fifo is
1959 	 * triggering an irq but the try to fetch it from there results in an
1960 	 * exception because UARTEN or RXEN is still off.
1961 	 */
1962 	ucr1 = imx_uart_readl(sport, UCR1);
1963 	ucr2 = imx_uart_readl(sport, UCR2);
1964 
1965 	if (imx_uart_is_imx1(sport))
1966 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1967 
1968 	ucr1 |= UCR1_UARTEN;
1969 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1970 
1971 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1972 	ucr2 &= ~UCR2_ATEN;
1973 
1974 	imx_uart_writel(sport, ucr1, UCR1);
1975 	imx_uart_writel(sport, ucr2, UCR2);
1976 
1977 	/* now enable irqs */
1978 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1979 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1980 
1981 	uart_port_unlock_irqrestore(&sport->port, flags);
1982 
1983 	return 0;
1984 }
1985 
1986 static int imx_uart_poll_get_char(struct uart_port *port)
1987 {
1988 	struct imx_port *sport = to_imx_port(port);
1989 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1990 		return NO_POLL_CHAR;
1991 
1992 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1993 }
1994 
1995 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1996 {
1997 	struct imx_port *sport = to_imx_port(port);
1998 	unsigned int status;
1999 
2000 	/* drain */
2001 	do {
2002 		status = imx_uart_readl(sport, USR1);
2003 	} while (~status & USR1_TRDY);
2004 
2005 	/* write */
2006 	imx_uart_writel(sport, c, URTX0);
2007 
2008 	/* flush */
2009 	do {
2010 		status = imx_uart_readl(sport, USR2);
2011 	} while (~status & USR2_TXDC);
2012 }
2013 #endif
2014 
2015 /* called with port.lock taken and irqs off or from .probe without locking */
2016 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
2017 				 struct serial_rs485 *rs485conf)
2018 {
2019 	struct imx_port *sport = to_imx_port(port);
2020 	u32 ucr2, ufcr;
2021 
2022 	if (rs485conf->flags & SER_RS485_ENABLED) {
2023 		/* Enable receiver if low-active RTS signal is requested */
2024 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
2025 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
2026 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
2027 
2028 		/* disable transmitter */
2029 		ucr2 = imx_uart_readl(sport, UCR2);
2030 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
2031 			imx_uart_rts_active(sport, &ucr2);
2032 		else
2033 			imx_uart_rts_inactive(sport, &ucr2);
2034 		imx_uart_writel(sport, ucr2, UCR2);
2035 	}
2036 
2037 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
2038 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
2039 	    rs485conf->flags & SER_RS485_RX_DURING_TX) {
2040 		/* If the receiver trigger is 0, set it to a default value */
2041 		ufcr = imx_uart_readl(sport, UFCR);
2042 		if ((ufcr & UFCR_RXTL_MASK) == 0)
2043 			imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2044 		imx_uart_start_rx(port);
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static const struct uart_ops imx_uart_pops = {
2051 	.tx_empty	= imx_uart_tx_empty,
2052 	.set_mctrl	= imx_uart_set_mctrl,
2053 	.get_mctrl	= imx_uart_get_mctrl,
2054 	.stop_tx	= imx_uart_stop_tx,
2055 	.start_tx	= imx_uart_start_tx,
2056 	.stop_rx	= imx_uart_stop_rx,
2057 	.enable_ms	= imx_uart_enable_ms,
2058 	.break_ctl	= imx_uart_break_ctl,
2059 	.startup	= imx_uart_startup,
2060 	.shutdown	= imx_uart_shutdown,
2061 	.flush_buffer	= imx_uart_flush_buffer,
2062 	.set_termios	= imx_uart_set_termios,
2063 	.type		= imx_uart_type,
2064 	.config_port	= imx_uart_config_port,
2065 	.verify_port	= imx_uart_verify_port,
2066 #if defined(CONFIG_CONSOLE_POLL)
2067 	.poll_init      = imx_uart_poll_init,
2068 	.poll_get_char  = imx_uart_poll_get_char,
2069 	.poll_put_char  = imx_uart_poll_put_char,
2070 #endif
2071 };
2072 
2073 static struct imx_port *imx_uart_ports[UART_NR];
2074 
2075 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
2076 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
2077 {
2078 	struct imx_port *sport = to_imx_port(port);
2079 
2080 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
2081 		barrier();
2082 
2083 	imx_uart_writel(sport, ch, URTX0);
2084 
2085 	sport->last_putchar_was_newline = (ch == '\n');
2086 }
2087 
2088 static void imx_uart_console_device_lock(struct console *co, unsigned long *flags)
2089 {
2090 	struct uart_port *up = &imx_uart_ports[co->index]->port;
2091 
2092 	return __uart_port_lock_irqsave(up, flags);
2093 }
2094 
2095 static void imx_uart_console_device_unlock(struct console *co, unsigned long flags)
2096 {
2097 	struct uart_port *up = &imx_uart_ports[co->index]->port;
2098 
2099 	return __uart_port_unlock_irqrestore(up, flags);
2100 }
2101 
2102 static void imx_uart_console_write_atomic(struct console *co,
2103 					  struct nbcon_write_context *wctxt)
2104 {
2105 	struct imx_port *sport = imx_uart_ports[co->index];
2106 	struct uart_port *port = &sport->port;
2107 	struct imx_port_ucrs old_ucr;
2108 	unsigned int ucr1, usr2;
2109 
2110 	if (!nbcon_enter_unsafe(wctxt))
2111 		return;
2112 
2113 	/*
2114 	 *	First, save UCR1/2/3 and then disable interrupts
2115 	 */
2116 	imx_uart_ucrs_save(sport, &old_ucr);
2117 	ucr1 = old_ucr.ucr1;
2118 
2119 	if (imx_uart_is_imx1(sport))
2120 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2121 	ucr1 |= UCR1_UARTEN;
2122 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2123 
2124 	imx_uart_writel(sport, ucr1, UCR1);
2125 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2126 
2127 	if (!sport->last_putchar_was_newline)
2128 		uart_console_write(port, "\n", 1, imx_uart_console_putchar);
2129 	uart_console_write(port, wctxt->outbuf, wctxt->len,
2130 			   imx_uart_console_putchar);
2131 
2132 	/*
2133 	 *	Finally, wait for transmitter to become empty
2134 	 *	and restore UCR1/2/3
2135 	 */
2136 	read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC,
2137 				 0, USEC_PER_SEC, false, sport, USR2);
2138 	imx_uart_ucrs_restore(sport, &old_ucr);
2139 
2140 	nbcon_exit_unsafe(wctxt);
2141 }
2142 
2143 static void imx_uart_console_write_thread(struct console *co,
2144 					  struct nbcon_write_context *wctxt)
2145 {
2146 	struct imx_port *sport = imx_uart_ports[co->index];
2147 	struct uart_port *port = &sport->port;
2148 	struct imx_port_ucrs old_ucr;
2149 	unsigned int ucr1, usr2;
2150 
2151 	if (!nbcon_enter_unsafe(wctxt))
2152 		return;
2153 
2154 	/*
2155 	 *	First, save UCR1/2/3 and then disable interrupts
2156 	 */
2157 	imx_uart_ucrs_save(sport, &old_ucr);
2158 	ucr1 = old_ucr.ucr1;
2159 
2160 	if (imx_uart_is_imx1(sport))
2161 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2162 	ucr1 |= UCR1_UARTEN;
2163 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2164 
2165 	imx_uart_writel(sport, ucr1, UCR1);
2166 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2167 
2168 	if (nbcon_exit_unsafe(wctxt)) {
2169 		int len = READ_ONCE(wctxt->len);
2170 		int i;
2171 
2172 		/*
2173 		 * Write out the message. Toggle unsafe for each byte in order
2174 		 * to give another (higher priority) context the opportunity
2175 		 * for a friendly takeover. If such a takeover occurs, this
2176 		 * context must reacquire ownership in order to perform final
2177 		 * actions (such as re-enabling the interrupts).
2178 		 *
2179 		 * IMPORTANT: wctxt->outbuf and wctxt->len are no longer valid
2180 		 *	      after a reacquire so writing the message must be
2181 		 *	      aborted.
2182 		 */
2183 		for (i = 0; i < len; i++) {
2184 			if (!nbcon_enter_unsafe(wctxt))
2185 				break;
2186 
2187 			uart_console_write(port, wctxt->outbuf + i, 1,
2188 					   imx_uart_console_putchar);
2189 
2190 			if (!nbcon_exit_unsafe(wctxt))
2191 				break;
2192 		}
2193 	}
2194 
2195 	while (!nbcon_enter_unsafe(wctxt))
2196 		nbcon_reacquire_nobuf(wctxt);
2197 
2198 	/*
2199 	 *	Finally, wait for transmitter to become empty
2200 	 *	and restore UCR1/2/3
2201 	 */
2202 	read_poll_timeout(imx_uart_readl, usr2, usr2 & USR2_TXDC,
2203 			  0, USEC_PER_SEC, false, sport, USR2);
2204 	imx_uart_ucrs_restore(sport, &old_ucr);
2205 
2206 	nbcon_exit_unsafe(wctxt);
2207 }
2208 
2209 /*
2210  * If the port was already initialised (eg, by a boot loader),
2211  * try to determine the current setup.
2212  */
2213 static void
2214 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2215 			     int *parity, int *bits)
2216 {
2217 
2218 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2219 		/* ok, the port was enabled */
2220 		unsigned int ucr2, ubir, ubmr, uartclk;
2221 		unsigned int baud_raw;
2222 		unsigned int ucfr_rfdiv;
2223 
2224 		ucr2 = imx_uart_readl(sport, UCR2);
2225 
2226 		*parity = 'n';
2227 		if (ucr2 & UCR2_PREN) {
2228 			if (ucr2 & UCR2_PROE)
2229 				*parity = 'o';
2230 			else
2231 				*parity = 'e';
2232 		}
2233 
2234 		if (ucr2 & UCR2_WS)
2235 			*bits = 8;
2236 		else
2237 			*bits = 7;
2238 
2239 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2240 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2241 
2242 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2243 		if (ucfr_rfdiv == 6)
2244 			ucfr_rfdiv = 7;
2245 		else
2246 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2247 
2248 		uartclk = clk_get_rate(sport->clk_per);
2249 		uartclk /= ucfr_rfdiv;
2250 
2251 		{	/*
2252 			 * The next code provides exact computation of
2253 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2254 			 * without need of float support or long long division,
2255 			 * which would be required to prevent 32bit arithmetic overflow
2256 			 */
2257 			unsigned int mul = ubir + 1;
2258 			unsigned int div = 16 * (ubmr + 1);
2259 			unsigned int rem = uartclk % div;
2260 
2261 			baud_raw = (uartclk / div) * mul;
2262 			baud_raw += (rem * mul + div / 2) / div;
2263 			*baud = (baud_raw + 50) / 100 * 100;
2264 		}
2265 
2266 		if (*baud != baud_raw)
2267 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2268 				baud_raw, *baud);
2269 	}
2270 }
2271 
2272 static int
2273 imx_uart_console_setup(struct console *co, char *options)
2274 {
2275 	struct imx_port *sport;
2276 	int baud = 9600;
2277 	int bits = 8;
2278 	int parity = 'n';
2279 	int flow = 'n';
2280 	int retval;
2281 
2282 	/*
2283 	 * Check whether an invalid uart number has been specified, and
2284 	 * if so, search for the first available port that does have
2285 	 * console support.
2286 	 */
2287 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2288 		co->index = 0;
2289 	sport = imx_uart_ports[co->index];
2290 	if (sport == NULL)
2291 		return -ENODEV;
2292 
2293 	/* For setting the registers, we only need to enable the ipg clock. */
2294 	retval = clk_prepare_enable(sport->clk_ipg);
2295 	if (retval)
2296 		goto error_console;
2297 
2298 	sport->last_putchar_was_newline = true;
2299 
2300 	if (options)
2301 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2302 	else
2303 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2304 
2305 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2306 
2307 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2308 
2309 	if (retval) {
2310 		clk_disable_unprepare(sport->clk_ipg);
2311 		goto error_console;
2312 	}
2313 
2314 	retval = clk_prepare_enable(sport->clk_per);
2315 	if (retval)
2316 		clk_disable_unprepare(sport->clk_ipg);
2317 
2318 error_console:
2319 	return retval;
2320 }
2321 
2322 static int
2323 imx_uart_console_exit(struct console *co)
2324 {
2325 	struct imx_port *sport = imx_uart_ports[co->index];
2326 
2327 	clk_disable_unprepare(sport->clk_per);
2328 	clk_disable_unprepare(sport->clk_ipg);
2329 
2330 	return 0;
2331 }
2332 
2333 static struct uart_driver imx_uart_uart_driver;
2334 static struct console imx_uart_console = {
2335 	.name		= DEV_NAME,
2336 	.write_atomic	= imx_uart_console_write_atomic,
2337 	.write_thread	= imx_uart_console_write_thread,
2338 	.device_lock	= imx_uart_console_device_lock,
2339 	.device_unlock	= imx_uart_console_device_unlock,
2340 	.flags		= CON_PRINTBUFFER | CON_NBCON,
2341 	.device		= uart_console_device,
2342 	.setup		= imx_uart_console_setup,
2343 	.exit		= imx_uart_console_exit,
2344 	.index		= -1,
2345 	.data		= &imx_uart_uart_driver,
2346 };
2347 
2348 #define IMX_CONSOLE	&imx_uart_console
2349 
2350 #else
2351 #define IMX_CONSOLE	NULL
2352 #endif
2353 
2354 static struct uart_driver imx_uart_uart_driver = {
2355 	.owner          = THIS_MODULE,
2356 	.driver_name    = DRIVER_NAME,
2357 	.dev_name       = DEV_NAME,
2358 	.major          = SERIAL_IMX_MAJOR,
2359 	.minor          = MINOR_START,
2360 	.nr             = ARRAY_SIZE(imx_uart_ports),
2361 	.cons           = IMX_CONSOLE,
2362 };
2363 
2364 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2365 {
2366 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2367 	unsigned long flags;
2368 
2369 	uart_port_lock_irqsave(&sport->port, &flags);
2370 	if (sport->tx_state == WAIT_AFTER_RTS)
2371 		imx_uart_start_tx(&sport->port);
2372 	uart_port_unlock_irqrestore(&sport->port, flags);
2373 
2374 	return HRTIMER_NORESTART;
2375 }
2376 
2377 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2378 {
2379 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2380 	unsigned long flags;
2381 
2382 	uart_port_lock_irqsave(&sport->port, &flags);
2383 	if (sport->tx_state == WAIT_AFTER_SEND)
2384 		imx_uart_stop_tx(&sport->port);
2385 	uart_port_unlock_irqrestore(&sport->port, flags);
2386 
2387 	return HRTIMER_NORESTART;
2388 }
2389 
2390 static const struct serial_rs485 imx_rs485_supported = {
2391 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2392 		 SER_RS485_RX_DURING_TX,
2393 	.delay_rts_before_send = 1,
2394 	.delay_rts_after_send = 1,
2395 };
2396 
2397 /* Default RX DMA buffer configuration */
2398 #define RX_DMA_PERIODS		16
2399 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2400 
2401 static int imx_uart_probe(struct platform_device *pdev)
2402 {
2403 	struct device_node *np = pdev->dev.of_node;
2404 	struct imx_port *sport;
2405 	void __iomem *base;
2406 	u32 dma_buf_conf[2];
2407 	int ret = 0;
2408 	u32 ucr1, ucr2, uts;
2409 	struct resource *res;
2410 	int txirq, rxirq, rtsirq;
2411 
2412 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2413 	if (!sport)
2414 		return -ENOMEM;
2415 
2416 	sport->devdata = of_device_get_match_data(&pdev->dev);
2417 
2418 	ret = of_alias_get_id(np, "serial");
2419 	if (ret < 0) {
2420 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2421 		return ret;
2422 	}
2423 	sport->port.line = ret;
2424 
2425 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2426 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2427 
2428 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2429 
2430 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2431 
2432 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2433 
2434 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2435 
2436 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2437 		sport->rx_period_length = dma_buf_conf[0];
2438 		sport->rx_periods = dma_buf_conf[1];
2439 	} else {
2440 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2441 		sport->rx_periods = RX_DMA_PERIODS;
2442 	}
2443 
2444 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2445 		dev_err(&pdev->dev, "serial%d out of range\n",
2446 			sport->port.line);
2447 		return -EINVAL;
2448 	}
2449 
2450 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2451 	if (IS_ERR(base))
2452 		return PTR_ERR(base);
2453 
2454 	rxirq = platform_get_irq(pdev, 0);
2455 	if (rxirq < 0)
2456 		return rxirq;
2457 	txirq = platform_get_irq_optional(pdev, 1);
2458 	rtsirq = platform_get_irq_optional(pdev, 2);
2459 
2460 	sport->port.dev = &pdev->dev;
2461 	sport->port.mapbase = res->start;
2462 	sport->port.membase = base;
2463 	sport->port.type = PORT_IMX;
2464 	sport->port.iotype = UPIO_MEM;
2465 	sport->port.irq = rxirq;
2466 	sport->port.fifosize = 32;
2467 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2468 	sport->port.ops = &imx_uart_pops;
2469 	sport->port.rs485_config = imx_uart_rs485_config;
2470 	/* RTS is required to control the RS485 transmitter */
2471 	if (sport->have_rtscts || sport->have_rtsgpio)
2472 		sport->port.rs485_supported = imx_rs485_supported;
2473 	sport->port.flags = UPF_BOOT_AUTOCONF;
2474 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2475 
2476 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2477 	if (IS_ERR(sport->gpios))
2478 		return PTR_ERR(sport->gpios);
2479 
2480 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2481 	if (IS_ERR(sport->clk_ipg)) {
2482 		ret = PTR_ERR(sport->clk_ipg);
2483 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2484 		return ret;
2485 	}
2486 
2487 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2488 	if (IS_ERR(sport->clk_per)) {
2489 		ret = PTR_ERR(sport->clk_per);
2490 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2491 		return ret;
2492 	}
2493 
2494 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2495 
2496 	/* For register access, we only need to enable the ipg clock. */
2497 	ret = clk_prepare_enable(sport->clk_ipg);
2498 	if (ret) {
2499 		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2500 		return ret;
2501 	}
2502 
2503 	ret = uart_get_rs485_mode(&sport->port);
2504 	if (ret)
2505 		goto err_clk;
2506 
2507 	/*
2508 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2509 	 * signal cannot be set low during transmission in case the
2510 	 * receiver is off (limitation of the i.MX UART IP).
2511 	 */
2512 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2513 	    sport->have_rtscts && !sport->have_rtsgpio &&
2514 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2515 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2516 		dev_err(&pdev->dev,
2517 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2518 
2519 	/* Disable interrupts before requesting them */
2520 	ucr1 = imx_uart_readl(sport, UCR1);
2521 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2522 	imx_uart_writel(sport, ucr1, UCR1);
2523 
2524 	/* Disable Ageing Timer interrupt */
2525 	ucr2 = imx_uart_readl(sport, UCR2);
2526 	ucr2 &= ~UCR2_ATEN;
2527 	imx_uart_writel(sport, ucr2, UCR2);
2528 
2529 	/*
2530 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2531 	 * is used to control CTS signal. Keep both the UART and Receiver
2532 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2533 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2534 	 * data from being fed into the RX FIFO, enable loopback mode in
2535 	 * UTS register, which disconnects the RX path from external RXD
2536 	 * pin and connects it to the Transceiver, which is disabled, so
2537 	 * no data can be fed to the RX FIFO that way.
2538 	 */
2539 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2540 	    sport->have_rtscts && !sport->have_rtsgpio) {
2541 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2542 		uts |= UTS_LOOP;
2543 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2544 
2545 		ucr1 = imx_uart_readl(sport, UCR1);
2546 		ucr1 |= UCR1_UARTEN;
2547 		imx_uart_writel(sport, ucr1, UCR1);
2548 
2549 		ucr2 = imx_uart_readl(sport, UCR2);
2550 		ucr2 |= UCR2_RXEN;
2551 		imx_uart_writel(sport, ucr2, UCR2);
2552 	}
2553 
2554 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2555 		/*
2556 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2557 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2558 		 * and DCD (when they are outputs) or enables the respective
2559 		 * irqs. So set this bit early, i.e. before requesting irqs.
2560 		 */
2561 		u32 ufcr = imx_uart_readl(sport, UFCR);
2562 		if (!(ufcr & UFCR_DCEDTE))
2563 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2564 
2565 		/*
2566 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2567 		 * enabled later because they cannot be cleared
2568 		 * (confirmed on i.MX25) which makes them unusable.
2569 		 */
2570 		imx_uart_writel(sport,
2571 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2572 				UCR3);
2573 
2574 	} else {
2575 		u32 ucr3 = UCR3_DSR;
2576 		u32 ufcr = imx_uart_readl(sport, UFCR);
2577 		if (ufcr & UFCR_DCEDTE)
2578 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2579 
2580 		if (!imx_uart_is_imx1(sport))
2581 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2582 		imx_uart_writel(sport, ucr3, UCR3);
2583 	}
2584 
2585 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2586 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2587 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2588 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2589 
2590 	/*
2591 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2592 	 * chips only have one interrupt.
2593 	 */
2594 	if (txirq > 0) {
2595 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2596 				       dev_name(&pdev->dev), sport);
2597 		if (ret) {
2598 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2599 				ret);
2600 			goto err_clk;
2601 		}
2602 
2603 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2604 				       dev_name(&pdev->dev), sport);
2605 		if (ret) {
2606 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2607 				ret);
2608 			goto err_clk;
2609 		}
2610 
2611 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2612 				       dev_name(&pdev->dev), sport);
2613 		if (ret) {
2614 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2615 				ret);
2616 			goto err_clk;
2617 		}
2618 	} else {
2619 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2620 				       dev_name(&pdev->dev), sport);
2621 		if (ret) {
2622 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2623 			goto err_clk;
2624 		}
2625 	}
2626 
2627 	imx_uart_ports[sport->port.line] = sport;
2628 
2629 	platform_set_drvdata(pdev, sport);
2630 
2631 	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2632 
2633 err_clk:
2634 	clk_disable_unprepare(sport->clk_ipg);
2635 
2636 	return ret;
2637 }
2638 
2639 static void imx_uart_remove(struct platform_device *pdev)
2640 {
2641 	struct imx_port *sport = platform_get_drvdata(pdev);
2642 
2643 	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2644 }
2645 
2646 static void imx_uart_restore_context(struct imx_port *sport)
2647 {
2648 	unsigned long flags;
2649 
2650 	uart_port_lock_irqsave(&sport->port, &flags);
2651 	if (!sport->context_saved) {
2652 		uart_port_unlock_irqrestore(&sport->port, flags);
2653 		return;
2654 	}
2655 
2656 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2657 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2658 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2659 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2660 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2661 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2662 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2663 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2664 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2665 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2666 	sport->context_saved = false;
2667 	uart_port_unlock_irqrestore(&sport->port, flags);
2668 }
2669 
2670 static void imx_uart_save_context(struct imx_port *sport)
2671 {
2672 	unsigned long flags;
2673 
2674 	/* Save necessary regs */
2675 	uart_port_lock_irqsave(&sport->port, &flags);
2676 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2677 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2678 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2679 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2680 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2681 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2682 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2683 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2684 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2685 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2686 	sport->context_saved = true;
2687 	uart_port_unlock_irqrestore(&sport->port, flags);
2688 }
2689 
2690 /* called with irq off */
2691 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2692 {
2693 	u32 ucr3;
2694 
2695 	uart_port_lock(&sport->port);
2696 
2697 	ucr3 = imx_uart_readl(sport, UCR3);
2698 	if (on) {
2699 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2700 		ucr3 |= UCR3_AWAKEN;
2701 	} else {
2702 		ucr3 &= ~UCR3_AWAKEN;
2703 	}
2704 	imx_uart_writel(sport, ucr3, UCR3);
2705 
2706 	if (sport->have_rtscts) {
2707 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2708 		if (on) {
2709 			imx_uart_writel(sport, USR1_RTSD, USR1);
2710 			ucr1 |= UCR1_RTSDEN;
2711 		} else {
2712 			ucr1 &= ~UCR1_RTSDEN;
2713 		}
2714 		imx_uart_writel(sport, ucr1, UCR1);
2715 	}
2716 
2717 	uart_port_unlock(&sport->port);
2718 }
2719 
2720 static int imx_uart_suspend_noirq(struct device *dev)
2721 {
2722 	struct imx_port *sport = dev_get_drvdata(dev);
2723 
2724 	imx_uart_save_context(sport);
2725 
2726 	clk_disable(sport->clk_ipg);
2727 
2728 	pinctrl_pm_select_sleep_state(dev);
2729 
2730 	return 0;
2731 }
2732 
2733 static int imx_uart_resume_noirq(struct device *dev)
2734 {
2735 	struct imx_port *sport = dev_get_drvdata(dev);
2736 	int ret;
2737 
2738 	pinctrl_pm_select_default_state(dev);
2739 
2740 	ret = clk_enable(sport->clk_ipg);
2741 	if (ret)
2742 		return ret;
2743 
2744 	imx_uart_restore_context(sport);
2745 
2746 	return 0;
2747 }
2748 
2749 static int imx_uart_suspend(struct device *dev)
2750 {
2751 	struct imx_port *sport = dev_get_drvdata(dev);
2752 	int ret;
2753 
2754 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2755 	disable_irq(sport->port.irq);
2756 
2757 	ret = clk_prepare_enable(sport->clk_ipg);
2758 	if (ret)
2759 		return ret;
2760 
2761 	/* enable wakeup from i.MX UART */
2762 	imx_uart_enable_wakeup(sport, true);
2763 
2764 	return 0;
2765 }
2766 
2767 static int imx_uart_resume(struct device *dev)
2768 {
2769 	struct imx_port *sport = dev_get_drvdata(dev);
2770 
2771 	/* disable wakeup from i.MX UART */
2772 	imx_uart_enable_wakeup(sport, false);
2773 
2774 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2775 	enable_irq(sport->port.irq);
2776 
2777 	clk_disable_unprepare(sport->clk_ipg);
2778 
2779 	return 0;
2780 }
2781 
2782 static int imx_uart_freeze(struct device *dev)
2783 {
2784 	struct imx_port *sport = dev_get_drvdata(dev);
2785 
2786 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2787 
2788 	return clk_prepare_enable(sport->clk_ipg);
2789 }
2790 
2791 static int imx_uart_thaw(struct device *dev)
2792 {
2793 	struct imx_port *sport = dev_get_drvdata(dev);
2794 
2795 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2796 
2797 	clk_disable_unprepare(sport->clk_ipg);
2798 
2799 	return 0;
2800 }
2801 
2802 static const struct dev_pm_ops imx_uart_pm_ops = {
2803 	.suspend_noirq = imx_uart_suspend_noirq,
2804 	.resume_noirq = imx_uart_resume_noirq,
2805 	.freeze_noirq = imx_uart_suspend_noirq,
2806 	.thaw_noirq = imx_uart_resume_noirq,
2807 	.restore_noirq = imx_uart_resume_noirq,
2808 	.suspend = imx_uart_suspend,
2809 	.resume = imx_uart_resume,
2810 	.freeze = imx_uart_freeze,
2811 	.thaw = imx_uart_thaw,
2812 	.restore = imx_uart_thaw,
2813 };
2814 
2815 static struct platform_driver imx_uart_platform_driver = {
2816 	.probe = imx_uart_probe,
2817 	.remove = imx_uart_remove,
2818 
2819 	.driver = {
2820 		.name = "imx-uart",
2821 		.of_match_table = imx_uart_dt_ids,
2822 		.pm = &imx_uart_pm_ops,
2823 	},
2824 };
2825 
2826 static int __init imx_uart_init(void)
2827 {
2828 	int ret = uart_register_driver(&imx_uart_uart_driver);
2829 
2830 	if (ret)
2831 		return ret;
2832 
2833 	ret = platform_driver_register(&imx_uart_platform_driver);
2834 	if (ret != 0)
2835 		uart_unregister_driver(&imx_uart_uart_driver);
2836 
2837 	return ret;
2838 }
2839 
2840 static void __exit imx_uart_exit(void)
2841 {
2842 	platform_driver_unregister(&imx_uart_platform_driver);
2843 	uart_unregister_driver(&imx_uart_uart_driver);
2844 }
2845 
2846 module_init(imx_uart_init);
2847 module_exit(imx_uart_exit);
2848 
2849 MODULE_AUTHOR("Sascha Hauer");
2850 MODULE_DESCRIPTION("IMX generic serial port driver");
2851 MODULE_LICENSE("GPL");
2852 MODULE_ALIAS("platform:imx-uart");
2853