1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/circ_buf.h> 12 #include <linux/module.h> 13 #include <linux/ioport.h> 14 #include <linux/init.h> 15 #include <linux/console.h> 16 #include <linux/sysrq.h> 17 #include <linux/platform_device.h> 18 #include <linux/tty.h> 19 #include <linux/tty_flip.h> 20 #include <linux/serial_core.h> 21 #include <linux/serial.h> 22 #include <linux/clk.h> 23 #include <linux/delay.h> 24 #include <linux/ktime.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/rational.h> 27 #include <linux/slab.h> 28 #include <linux/of.h> 29 #include <linux/io.h> 30 #include <linux/iopoll.h> 31 #include <linux/dma-mapping.h> 32 33 #include <asm/irq.h> 34 #include <linux/dma/imx-dma.h> 35 36 #include "serial_mctrl_gpio.h" 37 38 /* Register definitions */ 39 #define URXD0 0x0 /* Receiver Register */ 40 #define URTX0 0x40 /* Transmitter Register */ 41 #define UCR1 0x80 /* Control Register 1 */ 42 #define UCR2 0x84 /* Control Register 2 */ 43 #define UCR3 0x88 /* Control Register 3 */ 44 #define UCR4 0x8c /* Control Register 4 */ 45 #define UFCR 0x90 /* FIFO Control Register */ 46 #define USR1 0x94 /* Status Register 1 */ 47 #define USR2 0x98 /* Status Register 2 */ 48 #define UESC 0x9c /* Escape Character Register */ 49 #define UTIM 0xa0 /* Escape Timer Register */ 50 #define UBIR 0xa4 /* BRM Incremental Register */ 51 #define UBMR 0xa8 /* BRM Modulator Register */ 52 #define UBRC 0xac /* Baud Rate Count Register */ 53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 56 57 /* UART Control Register Bit Fields.*/ 58 #define URXD_DUMMY_READ (1<<16) 59 #define URXD_CHARRDY (1<<15) 60 #define URXD_ERR (1<<14) 61 #define URXD_OVRRUN (1<<13) 62 #define URXD_FRMERR (1<<12) 63 #define URXD_BRK (1<<11) 64 #define URXD_PRERR (1<<10) 65 #define URXD_RX_DATA (0xFF<<0) 66 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 67 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 68 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 69 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 71 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 72 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 73 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 74 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 75 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 76 #define UCR1_SNDBRK (1<<4) /* Send break */ 77 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 79 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 80 #define UCR1_DOZE (1<<1) /* Doze */ 81 #define UCR1_UARTEN (1<<0) /* UART enabled */ 82 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 83 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 84 #define UCR2_CTSC (1<<13) /* CTS pin control */ 85 #define UCR2_CTS (1<<12) /* Clear to send */ 86 #define UCR2_ESCEN (1<<11) /* Escape enable */ 87 #define UCR2_PREN (1<<8) /* Parity enable */ 88 #define UCR2_PROE (1<<7) /* Parity odd/even */ 89 #define UCR2_STPB (1<<6) /* Stop */ 90 #define UCR2_WS (1<<5) /* Word size */ 91 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 92 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 93 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 94 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 95 #define UCR2_SRST (1<<0) /* SW reset */ 96 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 97 #define UCR3_PARERREN (1<<12) /* Parity enable */ 98 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 99 #define UCR3_DSR (1<<10) /* Data set ready */ 100 #define UCR3_DCD (1<<9) /* Data carrier detect */ 101 #define UCR3_RI (1<<8) /* Ring indicator */ 102 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 103 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 104 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 105 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 106 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 107 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 108 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 109 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 110 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 111 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 112 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 113 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 114 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 115 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 116 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 117 #define UCR4_IRSC (1<<5) /* IR special case */ 118 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 119 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 120 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 121 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 122 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 123 #define UFCR_RXTL_MASK 0x3F /* Receiver trigger 6 bits wide */ 124 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 125 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 126 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 127 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 128 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 129 #define USR1_RTSS (1<<14) /* RTS pin status */ 130 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 131 #define USR1_RTSD (1<<12) /* RTS delta */ 132 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 133 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 134 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 135 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 136 #define USR1_DTRD (1<<7) /* DTR Delta */ 137 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 138 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 139 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 140 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 141 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 142 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 143 #define USR2_IDLE (1<<12) /* Idle condition */ 144 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 145 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 146 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 147 #define USR2_WAKE (1<<7) /* Wake */ 148 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 149 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 150 #define USR2_TXDC (1<<3) /* Transmitter complete */ 151 #define USR2_BRCD (1<<2) /* Break condition */ 152 #define USR2_ORE (1<<1) /* Overrun error */ 153 #define USR2_RDR (1<<0) /* Recv data ready */ 154 #define UTS_FRCPERR (1<<13) /* Force parity error */ 155 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 156 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 157 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 158 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 159 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 160 #define UTS_SOFTRST (1<<0) /* Software reset */ 161 162 /* We've been assigned a range on the "Low-density serial ports" major */ 163 #define SERIAL_IMX_MAJOR 207 164 #define MINOR_START 16 165 #define DEV_NAME "ttymxc" 166 167 /* 168 * This determines how often we check the modem status signals 169 * for any change. They generally aren't connected to an IRQ 170 * so we have to poll them. We also check immediately before 171 * filling the TX fifo incase CTS has been dropped. 172 */ 173 #define MCTRL_TIMEOUT (250*HZ/1000) 174 175 #define DRIVER_NAME "IMX-uart" 176 177 #define UART_NR 8 178 179 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 180 enum imx_uart_type { 181 IMX1_UART, 182 IMX21_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* counter to stop 0xff flood */ 214 int idle_counter; 215 216 /* DMA fields */ 217 unsigned int dma_is_enabled:1; 218 unsigned int dma_is_rxing:1; 219 unsigned int dma_is_txing:1; 220 struct dma_chan *dma_chan_rx, *dma_chan_tx; 221 struct scatterlist rx_sgl, tx_sgl[2]; 222 void *rx_buf; 223 struct circ_buf rx_ring; 224 unsigned int rx_buf_size; 225 unsigned int rx_period_length; 226 unsigned int rx_periods; 227 dma_cookie_t rx_cookie; 228 unsigned int tx_bytes; 229 unsigned int dma_tx_nents; 230 unsigned int saved_reg[10]; 231 bool context_saved; 232 233 bool last_putchar_was_newline; 234 235 enum imx_tx_state tx_state; 236 struct hrtimer trigger_start_tx; 237 struct hrtimer trigger_stop_tx; 238 }; 239 240 struct imx_port_ucrs { 241 unsigned int ucr1; 242 unsigned int ucr2; 243 unsigned int ucr3; 244 }; 245 246 static const struct imx_uart_data imx_uart_imx1_devdata = { 247 .uts_reg = IMX1_UTS, 248 .devtype = IMX1_UART, 249 }; 250 251 static const struct imx_uart_data imx_uart_imx21_devdata = { 252 .uts_reg = IMX21_UTS, 253 .devtype = IMX21_UART, 254 }; 255 256 static const struct of_device_id imx_uart_dt_ids[] = { 257 /* 258 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are 259 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the 260 * original imx6q's UART is compatible to fsl,imx21-uart. This driver 261 * doesn't make any distinction between these two variants. 262 */ 263 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, }, 264 { .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, }, 265 { .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, }, 266 { /* sentinel */ } 267 }; 268 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 269 270 static inline struct imx_port *to_imx_port(struct uart_port *port) 271 { 272 return container_of(port, struct imx_port, port); 273 } 274 275 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 276 { 277 writel(val, sport->port.membase + offset); 278 } 279 280 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 281 { 282 return readl(sport->port.membase + offset); 283 } 284 285 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 286 { 287 return sport->devdata->uts_reg; 288 } 289 290 static inline int imx_uart_is_imx1(struct imx_port *sport) 291 { 292 return sport->devdata->devtype == IMX1_UART; 293 } 294 295 /* 296 * Save and restore functions for UCR1, UCR2 and UCR3 registers 297 */ 298 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 299 static void imx_uart_ucrs_save(struct imx_port *sport, 300 struct imx_port_ucrs *ucr) 301 { 302 /* save control registers */ 303 ucr->ucr1 = imx_uart_readl(sport, UCR1); 304 ucr->ucr2 = imx_uart_readl(sport, UCR2); 305 ucr->ucr3 = imx_uart_readl(sport, UCR3); 306 } 307 308 static void imx_uart_ucrs_restore(struct imx_port *sport, 309 struct imx_port_ucrs *ucr) 310 { 311 /* restore control registers */ 312 imx_uart_writel(sport, ucr->ucr1, UCR1); 313 imx_uart_writel(sport, ucr->ucr2, UCR2); 314 imx_uart_writel(sport, ucr->ucr3, UCR3); 315 } 316 #endif 317 318 /* called with port.lock taken and irqs caller dependent */ 319 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 320 { 321 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 322 323 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 324 } 325 326 /* called with port.lock taken and irqs caller dependent */ 327 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 328 { 329 *ucr2 &= ~UCR2_CTSC; 330 *ucr2 |= UCR2_CTS; 331 332 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 333 } 334 335 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 336 { 337 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 338 } 339 340 /* called with port.lock taken and irqs off */ 341 static void imx_uart_soft_reset(struct imx_port *sport) 342 { 343 int i = 10; 344 u32 ucr2, ubir, ubmr, uts; 345 346 /* 347 * According to the Reference Manual description of the UART SRST bit: 348 * 349 * "Reset the transmit and receive state machines, 350 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 351 * and UTS[6-3]". 352 * 353 * We don't need to restore the old values from USR1, USR2, URXD and 354 * UTXD. UBRC is read only, so only save/restore the other three 355 * registers. 356 */ 357 ubir = imx_uart_readl(sport, UBIR); 358 ubmr = imx_uart_readl(sport, UBMR); 359 uts = imx_uart_readl(sport, IMX21_UTS); 360 361 ucr2 = imx_uart_readl(sport, UCR2); 362 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 363 364 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 365 udelay(1); 366 367 /* Restore the registers */ 368 imx_uart_writel(sport, ubir, UBIR); 369 imx_uart_writel(sport, ubmr, UBMR); 370 imx_uart_writel(sport, uts, IMX21_UTS); 371 372 sport->idle_counter = 0; 373 } 374 375 /* called with port.lock taken and irqs off */ 376 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 377 { 378 unsigned int uts; 379 380 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 381 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 382 uts &= ~UTS_LOOP; 383 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 384 } 385 386 /* called with port.lock taken and irqs off */ 387 static void imx_uart_start_rx(struct uart_port *port) 388 { 389 struct imx_port *sport = to_imx_port(port); 390 unsigned int ucr1, ucr2; 391 392 ucr1 = imx_uart_readl(sport, UCR1); 393 ucr2 = imx_uart_readl(sport, UCR2); 394 395 ucr2 |= UCR2_RXEN; 396 397 if (sport->dma_is_enabled) { 398 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 399 } else { 400 ucr1 |= UCR1_RRDYEN; 401 ucr2 |= UCR2_ATEN; 402 } 403 404 /* Write UCR2 first as it includes RXEN */ 405 imx_uart_writel(sport, ucr2, UCR2); 406 imx_uart_writel(sport, ucr1, UCR1); 407 imx_uart_disable_loopback_rs485(sport); 408 } 409 410 /* called with port.lock taken and irqs off */ 411 static void imx_uart_stop_tx(struct uart_port *port) 412 { 413 struct imx_port *sport = to_imx_port(port); 414 u32 ucr1, ucr4, usr2; 415 416 if (sport->tx_state == OFF) 417 return; 418 419 /* 420 * We are maybe in the SMP context, so if the DMA TX thread is running 421 * on other cpu, we have to wait for it to finish. 422 */ 423 if (sport->dma_is_txing) 424 return; 425 426 ucr1 = imx_uart_readl(sport, UCR1); 427 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 428 429 ucr4 = imx_uart_readl(sport, UCR4); 430 usr2 = imx_uart_readl(sport, USR2); 431 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 432 /* The shifter is still busy, so retry once TC triggers */ 433 return; 434 } 435 436 ucr4 &= ~UCR4_TCEN; 437 imx_uart_writel(sport, ucr4, UCR4); 438 439 /* in rs485 mode disable transmitter */ 440 if (port->rs485.flags & SER_RS485_ENABLED) { 441 if (sport->tx_state == SEND) { 442 sport->tx_state = WAIT_AFTER_SEND; 443 444 if (port->rs485.delay_rts_after_send > 0) { 445 start_hrtimer_ms(&sport->trigger_stop_tx, 446 port->rs485.delay_rts_after_send); 447 return; 448 } 449 450 /* continue without any delay */ 451 } 452 453 if (sport->tx_state == WAIT_AFTER_RTS || 454 sport->tx_state == WAIT_AFTER_SEND) { 455 u32 ucr2; 456 457 hrtimer_try_to_cancel(&sport->trigger_start_tx); 458 459 ucr2 = imx_uart_readl(sport, UCR2); 460 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 461 imx_uart_rts_active(sport, &ucr2); 462 else 463 imx_uart_rts_inactive(sport, &ucr2); 464 imx_uart_writel(sport, ucr2, UCR2); 465 466 if (!port->rs485_rx_during_tx_gpio) 467 imx_uart_start_rx(port); 468 469 sport->tx_state = OFF; 470 } 471 } else { 472 sport->tx_state = OFF; 473 } 474 } 475 476 /* called with port.lock taken and irqs off */ 477 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 478 { 479 struct imx_port *sport = to_imx_port(port); 480 u32 ucr1, ucr2, ucr4, uts; 481 482 ucr1 = imx_uart_readl(sport, UCR1); 483 ucr2 = imx_uart_readl(sport, UCR2); 484 ucr4 = imx_uart_readl(sport, UCR4); 485 486 if (sport->dma_is_enabled) { 487 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 488 } else { 489 ucr1 &= ~UCR1_RRDYEN; 490 ucr2 &= ~UCR2_ATEN; 491 ucr4 &= ~UCR4_OREN; 492 } 493 imx_uart_writel(sport, ucr1, UCR1); 494 imx_uart_writel(sport, ucr4, UCR4); 495 496 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 497 if (port->rs485.flags & SER_RS485_ENABLED && 498 port->rs485.flags & SER_RS485_RTS_ON_SEND && 499 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 500 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 501 uts |= UTS_LOOP; 502 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 503 ucr2 |= UCR2_RXEN; 504 } else { 505 ucr2 &= ~UCR2_RXEN; 506 } 507 508 imx_uart_writel(sport, ucr2, UCR2); 509 } 510 511 /* called with port.lock taken and irqs off */ 512 static void imx_uart_stop_rx(struct uart_port *port) 513 { 514 /* 515 * Stop RX and enable loopback in order to make sure RS485 bus 516 * is not blocked. Se comment in imx_uart_probe(). 517 */ 518 imx_uart_stop_rx_with_loopback_ctrl(port, true); 519 } 520 521 /* called with port.lock taken and irqs off */ 522 static void imx_uart_enable_ms(struct uart_port *port) 523 { 524 struct imx_port *sport = to_imx_port(port); 525 526 mod_timer(&sport->timer, jiffies); 527 528 mctrl_gpio_enable_ms(sport->gpios); 529 } 530 531 static void imx_uart_dma_tx(struct imx_port *sport); 532 533 /* called with port.lock taken and irqs off */ 534 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 535 { 536 struct tty_port *tport = &sport->port.state->port; 537 unsigned char c; 538 539 if (sport->port.x_char) { 540 /* Send next char */ 541 imx_uart_writel(sport, sport->port.x_char, URTX0); 542 sport->port.icount.tx++; 543 sport->port.x_char = 0; 544 return; 545 } 546 547 if (kfifo_is_empty(&tport->xmit_fifo) || 548 uart_tx_stopped(&sport->port)) { 549 imx_uart_stop_tx(&sport->port); 550 return; 551 } 552 553 if (sport->dma_is_enabled) { 554 u32 ucr1; 555 /* 556 * We've just sent a X-char Ensure the TX DMA is enabled 557 * and the TX IRQ is disabled. 558 **/ 559 ucr1 = imx_uart_readl(sport, UCR1); 560 ucr1 &= ~UCR1_TRDYEN; 561 if (sport->dma_is_txing) { 562 ucr1 |= UCR1_TXDMAEN; 563 imx_uart_writel(sport, ucr1, UCR1); 564 } else { 565 imx_uart_writel(sport, ucr1, UCR1); 566 imx_uart_dma_tx(sport); 567 } 568 569 return; 570 } 571 572 while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) && 573 uart_fifo_get(&sport->port, &c)) 574 imx_uart_writel(sport, c, URTX0); 575 576 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 577 uart_write_wakeup(&sport->port); 578 579 if (kfifo_is_empty(&tport->xmit_fifo)) 580 imx_uart_stop_tx(&sport->port); 581 } 582 583 static void imx_uart_dma_tx_callback(void *data) 584 { 585 struct imx_port *sport = data; 586 struct tty_port *tport = &sport->port.state->port; 587 struct scatterlist *sgl = &sport->tx_sgl[0]; 588 unsigned long flags; 589 u32 ucr1; 590 591 uart_port_lock_irqsave(&sport->port, &flags); 592 593 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 594 595 ucr1 = imx_uart_readl(sport, UCR1); 596 ucr1 &= ~UCR1_TXDMAEN; 597 imx_uart_writel(sport, ucr1, UCR1); 598 599 uart_xmit_advance(&sport->port, sport->tx_bytes); 600 601 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 602 603 sport->dma_is_txing = 0; 604 605 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 606 uart_write_wakeup(&sport->port); 607 608 if (!kfifo_is_empty(&tport->xmit_fifo) && 609 !uart_tx_stopped(&sport->port)) 610 imx_uart_dma_tx(sport); 611 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 612 u32 ucr4 = imx_uart_readl(sport, UCR4); 613 ucr4 |= UCR4_TCEN; 614 imx_uart_writel(sport, ucr4, UCR4); 615 } 616 617 uart_port_unlock_irqrestore(&sport->port, flags); 618 } 619 620 /* called with port.lock taken and irqs off */ 621 static void imx_uart_dma_tx(struct imx_port *sport) 622 { 623 struct tty_port *tport = &sport->port.state->port; 624 struct scatterlist *sgl = sport->tx_sgl; 625 struct dma_async_tx_descriptor *desc; 626 struct dma_chan *chan = sport->dma_chan_tx; 627 struct device *dev = sport->port.dev; 628 u32 ucr1, ucr4; 629 int ret; 630 631 if (sport->dma_is_txing) 632 return; 633 634 ucr4 = imx_uart_readl(sport, UCR4); 635 ucr4 &= ~UCR4_TCEN; 636 imx_uart_writel(sport, ucr4, UCR4); 637 638 sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl)); 639 sport->tx_bytes = kfifo_len(&tport->xmit_fifo); 640 sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl, 641 ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes); 642 643 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 644 if (ret == 0) { 645 dev_err(dev, "DMA mapping error for TX.\n"); 646 return; 647 } 648 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 649 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 650 if (!desc) { 651 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 652 DMA_TO_DEVICE); 653 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 654 return; 655 } 656 desc->callback = imx_uart_dma_tx_callback; 657 desc->callback_param = sport; 658 659 dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes); 660 661 ucr1 = imx_uart_readl(sport, UCR1); 662 ucr1 |= UCR1_TXDMAEN; 663 imx_uart_writel(sport, ucr1, UCR1); 664 665 /* fire it */ 666 sport->dma_is_txing = 1; 667 dmaengine_submit(desc); 668 dma_async_issue_pending(chan); 669 return; 670 } 671 672 /* called with port.lock taken and irqs off */ 673 static void imx_uart_start_tx(struct uart_port *port) 674 { 675 struct imx_port *sport = to_imx_port(port); 676 struct tty_port *tport = &sport->port.state->port; 677 u32 ucr1; 678 679 if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo)) 680 return; 681 682 /* 683 * We cannot simply do nothing here if sport->tx_state == SEND already 684 * because UCR1_TXMPTYEN might already have been cleared in 685 * imx_uart_stop_tx(), but tx_state is still SEND. 686 */ 687 688 if (port->rs485.flags & SER_RS485_ENABLED) { 689 if (sport->tx_state == OFF) { 690 u32 ucr2 = imx_uart_readl(sport, UCR2); 691 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 692 imx_uart_rts_active(sport, &ucr2); 693 else 694 imx_uart_rts_inactive(sport, &ucr2); 695 imx_uart_writel(sport, ucr2, UCR2); 696 697 /* 698 * Since we are about to transmit we can not stop RX 699 * with loopback enabled because that will make our 700 * transmitted data being just looped to RX. 701 */ 702 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 703 !port->rs485_rx_during_tx_gpio) 704 imx_uart_stop_rx_with_loopback_ctrl(port, false); 705 706 sport->tx_state = WAIT_AFTER_RTS; 707 708 if (port->rs485.delay_rts_before_send > 0) { 709 start_hrtimer_ms(&sport->trigger_start_tx, 710 port->rs485.delay_rts_before_send); 711 return; 712 } 713 714 /* continue without any delay */ 715 } 716 717 if (sport->tx_state == WAIT_AFTER_SEND 718 || sport->tx_state == WAIT_AFTER_RTS) { 719 720 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 721 722 /* 723 * Enable transmitter and shifter empty irq only if DMA 724 * is off. In the DMA case this is done in the 725 * tx-callback. 726 */ 727 if (!sport->dma_is_enabled) { 728 u32 ucr4 = imx_uart_readl(sport, UCR4); 729 ucr4 |= UCR4_TCEN; 730 imx_uart_writel(sport, ucr4, UCR4); 731 } 732 733 sport->tx_state = SEND; 734 } 735 } else { 736 sport->tx_state = SEND; 737 } 738 739 if (!sport->dma_is_enabled) { 740 ucr1 = imx_uart_readl(sport, UCR1); 741 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 742 } 743 744 if (sport->dma_is_enabled) { 745 if (sport->port.x_char) { 746 /* We have X-char to send, so enable TX IRQ and 747 * disable TX DMA to let TX interrupt to send X-char */ 748 ucr1 = imx_uart_readl(sport, UCR1); 749 ucr1 &= ~UCR1_TXDMAEN; 750 ucr1 |= UCR1_TRDYEN; 751 imx_uart_writel(sport, ucr1, UCR1); 752 return; 753 } 754 755 if (!kfifo_is_empty(&tport->xmit_fifo) && 756 !uart_tx_stopped(port)) 757 imx_uart_dma_tx(sport); 758 return; 759 } 760 } 761 762 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 763 { 764 struct imx_port *sport = dev_id; 765 u32 usr1; 766 767 imx_uart_writel(sport, USR1_RTSD, USR1); 768 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 769 /* 770 * Update sport->old_status here, so any follow-up calls to 771 * imx_uart_mctrl_check() will be able to recognize that RTS 772 * state changed since last imx_uart_mctrl_check() call. 773 * 774 * In case RTS has been detected as asserted here and later on 775 * deasserted by the time imx_uart_mctrl_check() was called, 776 * imx_uart_mctrl_check() can detect the RTS state change and 777 * trigger uart_handle_cts_change() to unblock the port for 778 * further TX transfers. 779 */ 780 if (usr1 & USR1_RTSS) 781 sport->old_status |= TIOCM_CTS; 782 else 783 sport->old_status &= ~TIOCM_CTS; 784 uart_handle_cts_change(&sport->port, usr1); 785 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 786 787 return IRQ_HANDLED; 788 } 789 790 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 791 { 792 struct imx_port *sport = dev_id; 793 irqreturn_t ret; 794 795 uart_port_lock(&sport->port); 796 797 ret = __imx_uart_rtsint(irq, dev_id); 798 799 uart_port_unlock(&sport->port); 800 801 return ret; 802 } 803 804 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 805 { 806 struct imx_port *sport = dev_id; 807 808 uart_port_lock(&sport->port); 809 imx_uart_transmit_buffer(sport); 810 uart_port_unlock(&sport->port); 811 return IRQ_HANDLED; 812 } 813 814 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 815 * This is to be called from Rx ISRs only when some bytes were actually 816 * received. 817 * 818 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 819 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 820 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 821 * that is terminated by any activity on RxD line, or could be stopped by 822 * issuing soft reset to the UART (just stop/start of RX does not help). Note 823 * that what we do here is sending isolated start bit about 2.4 times shorter 824 * than it is to be on UART configured baud rate. 825 * 826 * Called with port.lock taken and irqs off. 827 */ 828 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 829 { 830 /* To detect hardware 0xff flood we monitor RxD line between RX 831 * interrupts to isolate "receiving" of char(s) with no activity 832 * on RxD line, that'd never happen on actual data transfers. 833 * 834 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 835 * race here if we clear USR2_WAKE when receiving of a char is in 836 * progress, so we might get RX interrupt later with USR2_WAKE bit 837 * cleared. Note though that as we don't try to clear USR2_WAKE when we 838 * detected no activity, this race may hide actual activity only once. 839 * 840 * Yet another case where receive interrupt may occur without RxD 841 * activity is expiration of aging timer, so we consider this as well. 842 * 843 * We use 'idle_counter' to ensure that we got at least so many RX 844 * interrupts without any detected activity on RxD line. 2 cases 845 * described plus 1 to be on the safe side gives us a margin of 3, 846 * below. In practice I was not able to produce a false positive to 847 * induce soft reset at regular data transfers even using 1 as the 848 * margin, so 3 is actually very strong. 849 * 850 * We count interrupts, not chars in 'idle-counter' for simplicity. 851 */ 852 853 if (usr2 & USR2_WAKE) { 854 imx_uart_writel(sport, USR2_WAKE, USR2); 855 sport->idle_counter = 0; 856 } else if (++sport->idle_counter > 3) { 857 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 858 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 859 } 860 } 861 862 /* called with port.lock taken and irqs off */ 863 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 864 { 865 struct imx_port *sport = dev_id; 866 struct tty_port *port = &sport->port.state->port; 867 u32 usr2, rx; 868 869 /* If we received something, check for 0xff flood */ 870 usr2 = imx_uart_readl(sport, USR2); 871 if (usr2 & USR2_RDR) 872 imx_uart_check_flood(sport, usr2); 873 874 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 875 unsigned int flg = TTY_NORMAL; 876 sport->port.icount.rx++; 877 878 if (unlikely(rx & URXD_ERR)) { 879 if (rx & URXD_BRK) { 880 sport->port.icount.brk++; 881 if (uart_handle_break(&sport->port)) 882 continue; 883 } 884 else if (rx & URXD_PRERR) 885 sport->port.icount.parity++; 886 else if (rx & URXD_FRMERR) 887 sport->port.icount.frame++; 888 if (rx & URXD_OVRRUN) 889 sport->port.icount.overrun++; 890 891 if (rx & sport->port.ignore_status_mask) 892 continue; 893 894 rx &= (sport->port.read_status_mask | 0xFF); 895 896 if (rx & URXD_BRK) 897 flg = TTY_BREAK; 898 else if (rx & URXD_PRERR) 899 flg = TTY_PARITY; 900 else if (rx & URXD_FRMERR) 901 flg = TTY_FRAME; 902 if (rx & URXD_OVRRUN) 903 flg = TTY_OVERRUN; 904 905 sport->port.sysrq = 0; 906 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 907 continue; 908 } 909 910 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 911 continue; 912 913 if (tty_insert_flip_char(port, rx, flg) == 0) 914 sport->port.icount.buf_overrun++; 915 } 916 917 tty_flip_buffer_push(port); 918 919 return IRQ_HANDLED; 920 } 921 922 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 923 { 924 struct imx_port *sport = dev_id; 925 irqreturn_t ret; 926 927 uart_port_lock(&sport->port); 928 929 ret = __imx_uart_rxint(irq, dev_id); 930 931 uart_port_unlock(&sport->port); 932 933 return ret; 934 } 935 936 static void imx_uart_clear_rx_errors(struct imx_port *sport); 937 938 /* 939 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 940 */ 941 /* called with port.lock taken and irqs off */ 942 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 943 { 944 unsigned int tmp = TIOCM_DSR; 945 unsigned usr1 = imx_uart_readl(sport, USR1); 946 unsigned usr2 = imx_uart_readl(sport, USR2); 947 948 if (usr1 & USR1_RTSS) 949 tmp |= TIOCM_CTS; 950 951 /* in DCE mode DCDIN is always 0 */ 952 if (!(usr2 & USR2_DCDIN)) 953 tmp |= TIOCM_CAR; 954 955 if (sport->dte_mode) 956 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 957 tmp |= TIOCM_RI; 958 959 return tmp; 960 } 961 962 /* 963 * Handle any change of modem status signal since we were last called. 964 * 965 * Called with port.lock taken and irqs off. 966 */ 967 static void imx_uart_mctrl_check(struct imx_port *sport) 968 { 969 unsigned int status, changed; 970 971 status = imx_uart_get_hwmctrl(sport); 972 changed = status ^ sport->old_status; 973 974 if (changed == 0) 975 return; 976 977 sport->old_status = status; 978 979 if (changed & TIOCM_RI && status & TIOCM_RI) 980 sport->port.icount.rng++; 981 if (changed & TIOCM_DSR) 982 sport->port.icount.dsr++; 983 if (changed & TIOCM_CAR) 984 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 985 if (changed & TIOCM_CTS) 986 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 987 988 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 989 } 990 991 static irqreturn_t imx_uart_int(int irq, void *dev_id) 992 { 993 struct imx_port *sport = dev_id; 994 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 995 irqreturn_t ret = IRQ_NONE; 996 997 uart_port_lock(&sport->port); 998 999 usr1 = imx_uart_readl(sport, USR1); 1000 usr2 = imx_uart_readl(sport, USR2); 1001 ucr1 = imx_uart_readl(sport, UCR1); 1002 ucr2 = imx_uart_readl(sport, UCR2); 1003 ucr3 = imx_uart_readl(sport, UCR3); 1004 ucr4 = imx_uart_readl(sport, UCR4); 1005 1006 /* 1007 * Even if a condition is true that can trigger an irq only handle it if 1008 * the respective irq source is enabled. This prevents some undesired 1009 * actions, for example if a character that sits in the RX FIFO and that 1010 * should be fetched via DMA is tried to be fetched using PIO. Or the 1011 * receiver is currently off and so reading from URXD0 results in an 1012 * exception. So just mask the (raw) status bits for disabled irqs. 1013 */ 1014 if ((ucr1 & UCR1_RRDYEN) == 0) 1015 usr1 &= ~USR1_RRDY; 1016 if ((ucr2 & UCR2_ATEN) == 0) 1017 usr1 &= ~USR1_AGTIM; 1018 if ((ucr1 & UCR1_TRDYEN) == 0) 1019 usr1 &= ~USR1_TRDY; 1020 if ((ucr4 & UCR4_TCEN) == 0) 1021 usr2 &= ~USR2_TXDC; 1022 if ((ucr3 & UCR3_DTRDEN) == 0) 1023 usr1 &= ~USR1_DTRD; 1024 if ((ucr1 & UCR1_RTSDEN) == 0) 1025 usr1 &= ~USR1_RTSD; 1026 if ((ucr3 & UCR3_AWAKEN) == 0) 1027 usr1 &= ~USR1_AWAKE; 1028 if ((ucr4 & UCR4_OREN) == 0) 1029 usr2 &= ~USR2_ORE; 1030 1031 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1032 imx_uart_writel(sport, USR1_AGTIM, USR1); 1033 1034 __imx_uart_rxint(irq, dev_id); 1035 ret = IRQ_HANDLED; 1036 } 1037 1038 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1039 imx_uart_transmit_buffer(sport); 1040 ret = IRQ_HANDLED; 1041 } 1042 1043 if (usr1 & USR1_DTRD) { 1044 imx_uart_writel(sport, USR1_DTRD, USR1); 1045 1046 imx_uart_mctrl_check(sport); 1047 1048 ret = IRQ_HANDLED; 1049 } 1050 1051 if (usr1 & USR1_RTSD) { 1052 __imx_uart_rtsint(irq, dev_id); 1053 ret = IRQ_HANDLED; 1054 } 1055 1056 if (usr1 & USR1_AWAKE) { 1057 imx_uart_writel(sport, USR1_AWAKE, USR1); 1058 ret = IRQ_HANDLED; 1059 } 1060 1061 if (usr2 & USR2_ORE) { 1062 sport->port.icount.overrun++; 1063 imx_uart_writel(sport, USR2_ORE, USR2); 1064 ret = IRQ_HANDLED; 1065 } 1066 1067 uart_port_unlock(&sport->port); 1068 1069 return ret; 1070 } 1071 1072 /* 1073 * Return TIOCSER_TEMT when transmitter is not busy. 1074 */ 1075 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1076 { 1077 struct imx_port *sport = to_imx_port(port); 1078 unsigned int ret; 1079 1080 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1081 1082 /* If the TX DMA is working, return 0. */ 1083 if (sport->dma_is_txing) 1084 ret = 0; 1085 1086 return ret; 1087 } 1088 1089 /* called with port.lock taken and irqs off */ 1090 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1091 { 1092 struct imx_port *sport = to_imx_port(port); 1093 unsigned int ret = imx_uart_get_hwmctrl(sport); 1094 1095 mctrl_gpio_get(sport->gpios, &ret); 1096 1097 return ret; 1098 } 1099 1100 /* called with port.lock taken and irqs off */ 1101 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1102 { 1103 struct imx_port *sport = to_imx_port(port); 1104 u32 ucr3, uts; 1105 1106 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1107 u32 ucr2; 1108 1109 /* 1110 * Turn off autoRTS if RTS is lowered and restore autoRTS 1111 * setting if RTS is raised. 1112 */ 1113 ucr2 = imx_uart_readl(sport, UCR2); 1114 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1115 if (mctrl & TIOCM_RTS) { 1116 ucr2 |= UCR2_CTS; 1117 /* 1118 * UCR2_IRTS is unset if and only if the port is 1119 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1120 * to get the state to restore to. 1121 */ 1122 if (!(ucr2 & UCR2_IRTS)) 1123 ucr2 |= UCR2_CTSC; 1124 } 1125 imx_uart_writel(sport, ucr2, UCR2); 1126 } 1127 1128 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1129 if (!(mctrl & TIOCM_DTR)) 1130 ucr3 |= UCR3_DSR; 1131 imx_uart_writel(sport, ucr3, UCR3); 1132 1133 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1134 if (mctrl & TIOCM_LOOP) 1135 uts |= UTS_LOOP; 1136 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1137 1138 mctrl_gpio_set(sport->gpios, mctrl); 1139 } 1140 1141 /* 1142 * Interrupts always disabled. 1143 */ 1144 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1145 { 1146 struct imx_port *sport = to_imx_port(port); 1147 unsigned long flags; 1148 u32 ucr1; 1149 1150 uart_port_lock_irqsave(&sport->port, &flags); 1151 1152 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1153 1154 if (break_state != 0) 1155 ucr1 |= UCR1_SNDBRK; 1156 1157 imx_uart_writel(sport, ucr1, UCR1); 1158 1159 uart_port_unlock_irqrestore(&sport->port, flags); 1160 } 1161 1162 /* 1163 * This is our per-port timeout handler, for checking the 1164 * modem status signals. 1165 */ 1166 static void imx_uart_timeout(struct timer_list *t) 1167 { 1168 struct imx_port *sport = from_timer(sport, t, timer); 1169 unsigned long flags; 1170 1171 if (sport->port.state) { 1172 uart_port_lock_irqsave(&sport->port, &flags); 1173 imx_uart_mctrl_check(sport); 1174 uart_port_unlock_irqrestore(&sport->port, flags); 1175 1176 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1177 } 1178 } 1179 1180 /* 1181 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1182 * [1] the RX DMA buffer is full. 1183 * [2] the aging timer expires 1184 * 1185 * Condition [2] is triggered when a character has been sitting in the FIFO 1186 * for at least 8 byte durations. 1187 */ 1188 static void imx_uart_dma_rx_callback(void *data) 1189 { 1190 struct imx_port *sport = data; 1191 struct dma_chan *chan = sport->dma_chan_rx; 1192 struct scatterlist *sgl = &sport->rx_sgl; 1193 struct tty_port *port = &sport->port.state->port; 1194 struct dma_tx_state state; 1195 struct circ_buf *rx_ring = &sport->rx_ring; 1196 enum dma_status status; 1197 unsigned int w_bytes = 0; 1198 unsigned int r_bytes; 1199 unsigned int bd_size; 1200 1201 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1202 1203 if (status == DMA_ERROR) { 1204 uart_port_lock(&sport->port); 1205 imx_uart_clear_rx_errors(sport); 1206 uart_port_unlock(&sport->port); 1207 return; 1208 } 1209 1210 /* 1211 * The state-residue variable represents the empty space 1212 * relative to the entire buffer. Taking this in consideration 1213 * the head is always calculated base on the buffer total 1214 * length - DMA transaction residue. The UART script from the 1215 * SDMA firmware will jump to the next buffer descriptor, 1216 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1217 * Taking this in consideration the tail is always at the 1218 * beginning of the buffer descriptor that contains the head. 1219 */ 1220 1221 /* Calculate the head */ 1222 rx_ring->head = sg_dma_len(sgl) - state.residue; 1223 1224 /* Calculate the tail. */ 1225 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1226 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1227 1228 if (rx_ring->head <= sg_dma_len(sgl) && 1229 rx_ring->head > rx_ring->tail) { 1230 1231 /* Move data from tail to head */ 1232 r_bytes = rx_ring->head - rx_ring->tail; 1233 1234 /* If we received something, check for 0xff flood */ 1235 uart_port_lock(&sport->port); 1236 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1237 uart_port_unlock(&sport->port); 1238 1239 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1240 1241 /* CPU claims ownership of RX DMA buffer */ 1242 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1243 DMA_FROM_DEVICE); 1244 1245 w_bytes = tty_insert_flip_string(port, 1246 sport->rx_buf + rx_ring->tail, r_bytes); 1247 1248 /* UART retrieves ownership of RX DMA buffer */ 1249 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1250 DMA_FROM_DEVICE); 1251 1252 if (w_bytes != r_bytes) 1253 sport->port.icount.buf_overrun++; 1254 1255 sport->port.icount.rx += w_bytes; 1256 } 1257 } else { 1258 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1259 WARN_ON(rx_ring->head <= rx_ring->tail); 1260 } 1261 1262 if (w_bytes) { 1263 tty_flip_buffer_push(port); 1264 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1265 } 1266 } 1267 1268 static int imx_uart_start_rx_dma(struct imx_port *sport) 1269 { 1270 struct scatterlist *sgl = &sport->rx_sgl; 1271 struct dma_chan *chan = sport->dma_chan_rx; 1272 struct device *dev = sport->port.dev; 1273 struct dma_async_tx_descriptor *desc; 1274 int ret; 1275 1276 sport->rx_ring.head = 0; 1277 sport->rx_ring.tail = 0; 1278 1279 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1280 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1281 if (ret == 0) { 1282 dev_err(dev, "DMA mapping error for RX.\n"); 1283 return -EINVAL; 1284 } 1285 1286 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1287 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1288 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1289 1290 if (!desc) { 1291 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1292 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1293 return -EINVAL; 1294 } 1295 desc->callback = imx_uart_dma_rx_callback; 1296 desc->callback_param = sport; 1297 1298 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1299 sport->dma_is_rxing = 1; 1300 sport->rx_cookie = dmaengine_submit(desc); 1301 dma_async_issue_pending(chan); 1302 return 0; 1303 } 1304 1305 /* called with port.lock taken and irqs off */ 1306 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1307 { 1308 struct tty_port *port = &sport->port.state->port; 1309 u32 usr1, usr2; 1310 1311 usr1 = imx_uart_readl(sport, USR1); 1312 usr2 = imx_uart_readl(sport, USR2); 1313 1314 if (usr2 & USR2_BRCD) { 1315 sport->port.icount.brk++; 1316 imx_uart_writel(sport, USR2_BRCD, USR2); 1317 uart_handle_break(&sport->port); 1318 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1319 sport->port.icount.buf_overrun++; 1320 tty_flip_buffer_push(port); 1321 } else { 1322 if (usr1 & USR1_FRAMERR) { 1323 sport->port.icount.frame++; 1324 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1325 } else if (usr1 & USR1_PARITYERR) { 1326 sport->port.icount.parity++; 1327 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1328 } 1329 } 1330 1331 if (usr2 & USR2_ORE) { 1332 sport->port.icount.overrun++; 1333 imx_uart_writel(sport, USR2_ORE, USR2); 1334 } 1335 1336 sport->idle_counter = 0; 1337 1338 } 1339 1340 #define TXTL_DEFAULT 8 1341 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1342 #define TXTL_DMA 8 /* DMA burst setting */ 1343 #define RXTL_DMA 9 /* DMA burst setting */ 1344 1345 static void imx_uart_setup_ufcr(struct imx_port *sport, 1346 unsigned char txwl, unsigned char rxwl) 1347 { 1348 unsigned int val; 1349 1350 /* set receiver / transmitter trigger level */ 1351 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1352 val |= txwl << UFCR_TXTL_SHF | rxwl; 1353 imx_uart_writel(sport, val, UFCR); 1354 } 1355 1356 static void imx_uart_dma_exit(struct imx_port *sport) 1357 { 1358 if (sport->dma_chan_rx) { 1359 dmaengine_terminate_sync(sport->dma_chan_rx); 1360 dma_release_channel(sport->dma_chan_rx); 1361 sport->dma_chan_rx = NULL; 1362 sport->rx_cookie = -EINVAL; 1363 kfree(sport->rx_buf); 1364 sport->rx_buf = NULL; 1365 } 1366 1367 if (sport->dma_chan_tx) { 1368 dmaengine_terminate_sync(sport->dma_chan_tx); 1369 dma_release_channel(sport->dma_chan_tx); 1370 sport->dma_chan_tx = NULL; 1371 } 1372 } 1373 1374 static int imx_uart_dma_init(struct imx_port *sport) 1375 { 1376 struct dma_slave_config slave_config = {}; 1377 struct device *dev = sport->port.dev; 1378 struct dma_chan *chan; 1379 int ret; 1380 1381 /* Prepare for RX : */ 1382 chan = dma_request_chan(dev, "rx"); 1383 if (IS_ERR(chan)) { 1384 dev_dbg(dev, "cannot get the DMA channel.\n"); 1385 sport->dma_chan_rx = NULL; 1386 ret = PTR_ERR(chan); 1387 goto err; 1388 } 1389 sport->dma_chan_rx = chan; 1390 1391 slave_config.direction = DMA_DEV_TO_MEM; 1392 slave_config.src_addr = sport->port.mapbase + URXD0; 1393 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1394 /* one byte less than the watermark level to enable the aging timer */ 1395 slave_config.src_maxburst = RXTL_DMA - 1; 1396 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1397 if (ret) { 1398 dev_err(dev, "error in RX dma configuration.\n"); 1399 goto err; 1400 } 1401 1402 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1403 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1404 if (!sport->rx_buf) { 1405 ret = -ENOMEM; 1406 goto err; 1407 } 1408 sport->rx_ring.buf = sport->rx_buf; 1409 1410 /* Prepare for TX : */ 1411 chan = dma_request_chan(dev, "tx"); 1412 if (IS_ERR(chan)) { 1413 dev_err(dev, "cannot get the TX DMA channel!\n"); 1414 sport->dma_chan_tx = NULL; 1415 ret = PTR_ERR(chan); 1416 goto err; 1417 } 1418 sport->dma_chan_tx = chan; 1419 1420 slave_config.direction = DMA_MEM_TO_DEV; 1421 slave_config.dst_addr = sport->port.mapbase + URTX0; 1422 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1423 slave_config.dst_maxburst = TXTL_DMA; 1424 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1425 if (ret) { 1426 dev_err(dev, "error in TX dma configuration."); 1427 goto err; 1428 } 1429 1430 return 0; 1431 err: 1432 imx_uart_dma_exit(sport); 1433 return ret; 1434 } 1435 1436 /* called with port.lock taken and irqs off */ 1437 static void imx_uart_enable_dma(struct imx_port *sport) 1438 { 1439 u32 ucr1; 1440 1441 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1442 1443 /* set UCR1 */ 1444 ucr1 = imx_uart_readl(sport, UCR1); 1445 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1446 imx_uart_writel(sport, ucr1, UCR1); 1447 1448 sport->dma_is_enabled = 1; 1449 } 1450 1451 static void imx_uart_disable_dma(struct imx_port *sport) 1452 { 1453 u32 ucr1; 1454 1455 /* clear UCR1 */ 1456 ucr1 = imx_uart_readl(sport, UCR1); 1457 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1458 imx_uart_writel(sport, ucr1, UCR1); 1459 1460 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1461 1462 sport->dma_is_enabled = 0; 1463 } 1464 1465 /* half the RX buffer size */ 1466 #define CTSTL 16 1467 1468 static int imx_uart_startup(struct uart_port *port) 1469 { 1470 struct imx_port *sport = to_imx_port(port); 1471 int retval; 1472 unsigned long flags; 1473 int dma_is_inited = 0; 1474 u32 ucr1, ucr2, ucr3, ucr4; 1475 1476 retval = clk_prepare_enable(sport->clk_per); 1477 if (retval) 1478 return retval; 1479 retval = clk_prepare_enable(sport->clk_ipg); 1480 if (retval) { 1481 clk_disable_unprepare(sport->clk_per); 1482 return retval; 1483 } 1484 1485 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1486 1487 /* disable the DREN bit (Data Ready interrupt enable) before 1488 * requesting IRQs 1489 */ 1490 ucr4 = imx_uart_readl(sport, UCR4); 1491 1492 /* set the trigger level for CTS */ 1493 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1494 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1495 1496 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1497 1498 /* Can we enable the DMA support? */ 1499 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) { 1500 lockdep_set_subclass(&port->lock, 1); 1501 dma_is_inited = 1; 1502 } 1503 1504 uart_port_lock_irqsave(&sport->port, &flags); 1505 1506 /* Reset fifo's and state machines */ 1507 imx_uart_soft_reset(sport); 1508 1509 /* 1510 * Finally, clear and enable interrupts 1511 */ 1512 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1513 imx_uart_writel(sport, USR2_ORE, USR2); 1514 1515 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1516 ucr1 |= UCR1_UARTEN; 1517 if (sport->have_rtscts) 1518 ucr1 |= UCR1_RTSDEN; 1519 1520 imx_uart_writel(sport, ucr1, UCR1); 1521 1522 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1523 if (!dma_is_inited) 1524 ucr4 |= UCR4_OREN; 1525 if (sport->inverted_rx) 1526 ucr4 |= UCR4_INVR; 1527 imx_uart_writel(sport, ucr4, UCR4); 1528 1529 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1530 /* 1531 * configure tx polarity before enabling tx 1532 */ 1533 if (sport->inverted_tx) 1534 ucr3 |= UCR3_INVT; 1535 1536 if (!imx_uart_is_imx1(sport)) { 1537 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1538 1539 if (sport->dte_mode) 1540 /* disable broken interrupts */ 1541 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1542 } 1543 imx_uart_writel(sport, ucr3, UCR3); 1544 1545 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1546 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1547 if (!sport->have_rtscts) 1548 ucr2 |= UCR2_IRTS; 1549 /* 1550 * make sure the edge sensitive RTS-irq is disabled, 1551 * we're using RTSD instead. 1552 */ 1553 if (!imx_uart_is_imx1(sport)) 1554 ucr2 &= ~UCR2_RTSEN; 1555 imx_uart_writel(sport, ucr2, UCR2); 1556 1557 /* 1558 * Enable modem status interrupts 1559 */ 1560 imx_uart_enable_ms(&sport->port); 1561 1562 if (dma_is_inited) { 1563 imx_uart_enable_dma(sport); 1564 imx_uart_start_rx_dma(sport); 1565 } else { 1566 ucr1 = imx_uart_readl(sport, UCR1); 1567 ucr1 |= UCR1_RRDYEN; 1568 imx_uart_writel(sport, ucr1, UCR1); 1569 1570 ucr2 = imx_uart_readl(sport, UCR2); 1571 ucr2 |= UCR2_ATEN; 1572 imx_uart_writel(sport, ucr2, UCR2); 1573 } 1574 1575 imx_uart_disable_loopback_rs485(sport); 1576 1577 uart_port_unlock_irqrestore(&sport->port, flags); 1578 1579 return 0; 1580 } 1581 1582 static void imx_uart_shutdown(struct uart_port *port) 1583 { 1584 struct imx_port *sport = to_imx_port(port); 1585 unsigned long flags; 1586 u32 ucr1, ucr2, ucr4, uts; 1587 int loops; 1588 1589 if (sport->dma_is_enabled) { 1590 dmaengine_terminate_sync(sport->dma_chan_tx); 1591 if (sport->dma_is_txing) { 1592 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1593 sport->dma_tx_nents, DMA_TO_DEVICE); 1594 sport->dma_is_txing = 0; 1595 } 1596 dmaengine_terminate_sync(sport->dma_chan_rx); 1597 if (sport->dma_is_rxing) { 1598 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1599 1, DMA_FROM_DEVICE); 1600 sport->dma_is_rxing = 0; 1601 } 1602 1603 uart_port_lock_irqsave(&sport->port, &flags); 1604 imx_uart_stop_tx(port); 1605 imx_uart_stop_rx(port); 1606 imx_uart_disable_dma(sport); 1607 uart_port_unlock_irqrestore(&sport->port, flags); 1608 imx_uart_dma_exit(sport); 1609 } 1610 1611 mctrl_gpio_disable_ms(sport->gpios); 1612 1613 uart_port_lock_irqsave(&sport->port, &flags); 1614 ucr2 = imx_uart_readl(sport, UCR2); 1615 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1616 imx_uart_writel(sport, ucr2, UCR2); 1617 uart_port_unlock_irqrestore(&sport->port, flags); 1618 1619 /* 1620 * Stop our timer. 1621 */ 1622 del_timer_sync(&sport->timer); 1623 1624 /* 1625 * Disable all interrupts, port and break condition. 1626 */ 1627 1628 uart_port_lock_irqsave(&sport->port, &flags); 1629 1630 ucr1 = imx_uart_readl(sport, UCR1); 1631 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1632 UCR1_ATDMAEN | UCR1_SNDBRK); 1633 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1634 if (port->rs485.flags & SER_RS485_ENABLED && 1635 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1636 sport->have_rtscts && !sport->have_rtsgpio) { 1637 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1638 uts |= UTS_LOOP; 1639 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1640 ucr1 |= UCR1_UARTEN; 1641 } else { 1642 ucr1 &= ~UCR1_UARTEN; 1643 } 1644 imx_uart_writel(sport, ucr1, UCR1); 1645 1646 ucr4 = imx_uart_readl(sport, UCR4); 1647 ucr4 &= ~UCR4_TCEN; 1648 imx_uart_writel(sport, ucr4, UCR4); 1649 1650 /* 1651 * We have to ensure the tx state machine ends up in OFF. This 1652 * is especially important for rs485 where we must not leave 1653 * the RTS signal high, blocking the bus indefinitely. 1654 * 1655 * All interrupts are now disabled, so imx_uart_stop_tx() will 1656 * no longer be called from imx_uart_transmit_buffer(). It may 1657 * still be called via the hrtimers, and if those are in play, 1658 * we have to honour the delays. 1659 */ 1660 if (sport->tx_state == WAIT_AFTER_RTS || sport->tx_state == SEND) 1661 imx_uart_stop_tx(port); 1662 1663 /* 1664 * In many cases (rs232 mode, or if tx_state was 1665 * WAIT_AFTER_RTS, or if tx_state was SEND and there is no 1666 * delay_rts_after_send), this will have moved directly to 1667 * OFF. In rs485 mode, tx_state might already have been 1668 * WAIT_AFTER_SEND and the hrtimer thus already started, or 1669 * the above imx_uart_stop_tx() call could have started it. In 1670 * those cases, we have to wait for the hrtimer to fire and 1671 * complete the transition to OFF. 1672 */ 1673 loops = port->rs485.flags & SER_RS485_ENABLED ? 1674 port->rs485.delay_rts_after_send : 0; 1675 while (sport->tx_state != OFF && loops--) { 1676 uart_port_unlock_irqrestore(&sport->port, flags); 1677 msleep(1); 1678 uart_port_lock_irqsave(&sport->port, &flags); 1679 } 1680 1681 if (sport->tx_state != OFF) { 1682 dev_warn(sport->port.dev, "unexpected tx_state %d\n", 1683 sport->tx_state); 1684 /* 1685 * This machine may be busted, but ensure the RTS 1686 * signal is inactive in order not to block other 1687 * devices. 1688 */ 1689 if (port->rs485.flags & SER_RS485_ENABLED) { 1690 ucr2 = imx_uart_readl(sport, UCR2); 1691 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1692 imx_uart_rts_active(sport, &ucr2); 1693 else 1694 imx_uart_rts_inactive(sport, &ucr2); 1695 imx_uart_writel(sport, ucr2, UCR2); 1696 } 1697 sport->tx_state = OFF; 1698 } 1699 1700 uart_port_unlock_irqrestore(&sport->port, flags); 1701 1702 clk_disable_unprepare(sport->clk_per); 1703 clk_disable_unprepare(sport->clk_ipg); 1704 } 1705 1706 /* called with port.lock taken and irqs off */ 1707 static void imx_uart_flush_buffer(struct uart_port *port) 1708 { 1709 struct imx_port *sport = to_imx_port(port); 1710 struct scatterlist *sgl = &sport->tx_sgl[0]; 1711 1712 if (!sport->dma_chan_tx) 1713 return; 1714 1715 sport->tx_bytes = 0; 1716 dmaengine_terminate_all(sport->dma_chan_tx); 1717 if (sport->dma_is_txing) { 1718 u32 ucr1; 1719 1720 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1721 DMA_TO_DEVICE); 1722 ucr1 = imx_uart_readl(sport, UCR1); 1723 ucr1 &= ~UCR1_TXDMAEN; 1724 imx_uart_writel(sport, ucr1, UCR1); 1725 sport->dma_is_txing = 0; 1726 } 1727 1728 imx_uart_soft_reset(sport); 1729 1730 } 1731 1732 static void 1733 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1734 const struct ktermios *old) 1735 { 1736 struct imx_port *sport = to_imx_port(port); 1737 unsigned long flags; 1738 u32 ucr2, old_ucr2, ufcr; 1739 unsigned int baud, quot; 1740 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1741 unsigned long div; 1742 unsigned long num, denom, old_ubir, old_ubmr; 1743 uint64_t tdiv64; 1744 1745 /* 1746 * We only support CS7 and CS8. 1747 */ 1748 while ((termios->c_cflag & CSIZE) != CS7 && 1749 (termios->c_cflag & CSIZE) != CS8) { 1750 termios->c_cflag &= ~CSIZE; 1751 termios->c_cflag |= old_csize; 1752 old_csize = CS8; 1753 } 1754 1755 del_timer_sync(&sport->timer); 1756 1757 /* 1758 * Ask the core to calculate the divisor for us. 1759 */ 1760 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1761 quot = uart_get_divisor(port, baud); 1762 1763 uart_port_lock_irqsave(&sport->port, &flags); 1764 1765 /* 1766 * Read current UCR2 and save it for future use, then clear all the bits 1767 * except those we will or may need to preserve. 1768 */ 1769 old_ucr2 = imx_uart_readl(sport, UCR2); 1770 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1771 1772 ucr2 |= UCR2_SRST | UCR2_IRTS; 1773 if ((termios->c_cflag & CSIZE) == CS8) 1774 ucr2 |= UCR2_WS; 1775 1776 if (!sport->have_rtscts) 1777 termios->c_cflag &= ~CRTSCTS; 1778 1779 if (port->rs485.flags & SER_RS485_ENABLED) { 1780 /* 1781 * RTS is mandatory for rs485 operation, so keep 1782 * it under manual control and keep transmitter 1783 * disabled. 1784 */ 1785 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1786 imx_uart_rts_active(sport, &ucr2); 1787 else 1788 imx_uart_rts_inactive(sport, &ucr2); 1789 1790 } else if (termios->c_cflag & CRTSCTS) { 1791 /* 1792 * Only let receiver control RTS output if we were not requested 1793 * to have RTS inactive (which then should take precedence). 1794 */ 1795 if (ucr2 & UCR2_CTS) 1796 ucr2 |= UCR2_CTSC; 1797 } 1798 1799 if (termios->c_cflag & CRTSCTS) 1800 ucr2 &= ~UCR2_IRTS; 1801 if (termios->c_cflag & CSTOPB) 1802 ucr2 |= UCR2_STPB; 1803 if (termios->c_cflag & PARENB) { 1804 ucr2 |= UCR2_PREN; 1805 if (termios->c_cflag & PARODD) 1806 ucr2 |= UCR2_PROE; 1807 } 1808 1809 sport->port.read_status_mask = 0; 1810 if (termios->c_iflag & INPCK) 1811 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1812 if (termios->c_iflag & (BRKINT | PARMRK)) 1813 sport->port.read_status_mask |= URXD_BRK; 1814 1815 /* 1816 * Characters to ignore 1817 */ 1818 sport->port.ignore_status_mask = 0; 1819 if (termios->c_iflag & IGNPAR) 1820 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1821 if (termios->c_iflag & IGNBRK) { 1822 sport->port.ignore_status_mask |= URXD_BRK; 1823 /* 1824 * If we're ignoring parity and break indicators, 1825 * ignore overruns too (for real raw support). 1826 */ 1827 if (termios->c_iflag & IGNPAR) 1828 sport->port.ignore_status_mask |= URXD_OVRRUN; 1829 } 1830 1831 if ((termios->c_cflag & CREAD) == 0) 1832 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1833 1834 /* 1835 * Update the per-port timeout. 1836 */ 1837 uart_update_timeout(port, termios->c_cflag, baud); 1838 1839 /* custom-baudrate handling */ 1840 div = sport->port.uartclk / (baud * 16); 1841 if (baud == 38400 && quot != div) 1842 baud = sport->port.uartclk / (quot * 16); 1843 1844 div = sport->port.uartclk / (baud * 16); 1845 if (div > 7) 1846 div = 7; 1847 if (!div) 1848 div = 1; 1849 1850 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1851 1 << 16, 1 << 16, &num, &denom); 1852 1853 tdiv64 = sport->port.uartclk; 1854 tdiv64 *= num; 1855 do_div(tdiv64, denom * 16 * div); 1856 tty_termios_encode_baud_rate(termios, 1857 (speed_t)tdiv64, (speed_t)tdiv64); 1858 1859 num -= 1; 1860 denom -= 1; 1861 1862 ufcr = imx_uart_readl(sport, UFCR); 1863 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1864 imx_uart_writel(sport, ufcr, UFCR); 1865 1866 /* 1867 * Two registers below should always be written both and in this 1868 * particular order. One consequence is that we need to check if any of 1869 * them changes and then update both. We do need the check for change 1870 * as even writing the same values seem to "restart" 1871 * transmission/receiving logic in the hardware, that leads to data 1872 * breakage even when rate doesn't in fact change. E.g., user switches 1873 * RTS/CTS handshake and suddenly gets broken bytes. 1874 */ 1875 old_ubir = imx_uart_readl(sport, UBIR); 1876 old_ubmr = imx_uart_readl(sport, UBMR); 1877 if (old_ubir != num || old_ubmr != denom) { 1878 imx_uart_writel(sport, num, UBIR); 1879 imx_uart_writel(sport, denom, UBMR); 1880 } 1881 1882 if (!imx_uart_is_imx1(sport)) 1883 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1884 IMX21_ONEMS); 1885 1886 imx_uart_writel(sport, ucr2, UCR2); 1887 1888 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1889 imx_uart_enable_ms(&sport->port); 1890 1891 uart_port_unlock_irqrestore(&sport->port, flags); 1892 } 1893 1894 static const char *imx_uart_type(struct uart_port *port) 1895 { 1896 return port->type == PORT_IMX ? "IMX" : NULL; 1897 } 1898 1899 /* 1900 * Configure/autoconfigure the port. 1901 */ 1902 static void imx_uart_config_port(struct uart_port *port, int flags) 1903 { 1904 if (flags & UART_CONFIG_TYPE) 1905 port->type = PORT_IMX; 1906 } 1907 1908 /* 1909 * Verify the new serial_struct (for TIOCSSERIAL). 1910 * The only change we allow are to the flags and type, and 1911 * even then only between PORT_IMX and PORT_UNKNOWN 1912 */ 1913 static int 1914 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1915 { 1916 int ret = 0; 1917 1918 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1919 ret = -EINVAL; 1920 if (port->irq != ser->irq) 1921 ret = -EINVAL; 1922 if (ser->io_type != UPIO_MEM) 1923 ret = -EINVAL; 1924 if (port->uartclk / 16 != ser->baud_base) 1925 ret = -EINVAL; 1926 if (port->mapbase != (unsigned long)ser->iomem_base) 1927 ret = -EINVAL; 1928 if (port->iobase != ser->port) 1929 ret = -EINVAL; 1930 if (ser->hub6 != 0) 1931 ret = -EINVAL; 1932 return ret; 1933 } 1934 1935 #if defined(CONFIG_CONSOLE_POLL) 1936 1937 static int imx_uart_poll_init(struct uart_port *port) 1938 { 1939 struct imx_port *sport = to_imx_port(port); 1940 unsigned long flags; 1941 u32 ucr1, ucr2; 1942 int retval; 1943 1944 retval = clk_prepare_enable(sport->clk_ipg); 1945 if (retval) 1946 return retval; 1947 retval = clk_prepare_enable(sport->clk_per); 1948 if (retval) 1949 clk_disable_unprepare(sport->clk_ipg); 1950 1951 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1952 1953 uart_port_lock_irqsave(&sport->port, &flags); 1954 1955 /* 1956 * Be careful about the order of enabling bits here. First enable the 1957 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1958 * This prevents that a character that already sits in the RX fifo is 1959 * triggering an irq but the try to fetch it from there results in an 1960 * exception because UARTEN or RXEN is still off. 1961 */ 1962 ucr1 = imx_uart_readl(sport, UCR1); 1963 ucr2 = imx_uart_readl(sport, UCR2); 1964 1965 if (imx_uart_is_imx1(sport)) 1966 ucr1 |= IMX1_UCR1_UARTCLKEN; 1967 1968 ucr1 |= UCR1_UARTEN; 1969 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1970 1971 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1972 ucr2 &= ~UCR2_ATEN; 1973 1974 imx_uart_writel(sport, ucr1, UCR1); 1975 imx_uart_writel(sport, ucr2, UCR2); 1976 1977 /* now enable irqs */ 1978 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1979 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1980 1981 uart_port_unlock_irqrestore(&sport->port, flags); 1982 1983 return 0; 1984 } 1985 1986 static int imx_uart_poll_get_char(struct uart_port *port) 1987 { 1988 struct imx_port *sport = to_imx_port(port); 1989 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1990 return NO_POLL_CHAR; 1991 1992 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1993 } 1994 1995 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1996 { 1997 struct imx_port *sport = to_imx_port(port); 1998 unsigned int status; 1999 2000 /* drain */ 2001 do { 2002 status = imx_uart_readl(sport, USR1); 2003 } while (~status & USR1_TRDY); 2004 2005 /* write */ 2006 imx_uart_writel(sport, c, URTX0); 2007 2008 /* flush */ 2009 do { 2010 status = imx_uart_readl(sport, USR2); 2011 } while (~status & USR2_TXDC); 2012 } 2013 #endif 2014 2015 /* called with port.lock taken and irqs off or from .probe without locking */ 2016 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 2017 struct serial_rs485 *rs485conf) 2018 { 2019 struct imx_port *sport = to_imx_port(port); 2020 u32 ucr2, ufcr; 2021 2022 if (rs485conf->flags & SER_RS485_ENABLED) { 2023 /* Enable receiver if low-active RTS signal is requested */ 2024 if (sport->have_rtscts && !sport->have_rtsgpio && 2025 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 2026 rs485conf->flags |= SER_RS485_RX_DURING_TX; 2027 2028 /* disable transmitter */ 2029 ucr2 = imx_uart_readl(sport, UCR2); 2030 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 2031 imx_uart_rts_active(sport, &ucr2); 2032 else 2033 imx_uart_rts_inactive(sport, &ucr2); 2034 imx_uart_writel(sport, ucr2, UCR2); 2035 } 2036 2037 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 2038 if (!(rs485conf->flags & SER_RS485_ENABLED) || 2039 rs485conf->flags & SER_RS485_RX_DURING_TX) { 2040 /* If the receiver trigger is 0, set it to a default value */ 2041 ufcr = imx_uart_readl(sport, UFCR); 2042 if ((ufcr & UFCR_RXTL_MASK) == 0) 2043 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2044 imx_uart_start_rx(port); 2045 } 2046 2047 return 0; 2048 } 2049 2050 static const struct uart_ops imx_uart_pops = { 2051 .tx_empty = imx_uart_tx_empty, 2052 .set_mctrl = imx_uart_set_mctrl, 2053 .get_mctrl = imx_uart_get_mctrl, 2054 .stop_tx = imx_uart_stop_tx, 2055 .start_tx = imx_uart_start_tx, 2056 .stop_rx = imx_uart_stop_rx, 2057 .enable_ms = imx_uart_enable_ms, 2058 .break_ctl = imx_uart_break_ctl, 2059 .startup = imx_uart_startup, 2060 .shutdown = imx_uart_shutdown, 2061 .flush_buffer = imx_uart_flush_buffer, 2062 .set_termios = imx_uart_set_termios, 2063 .type = imx_uart_type, 2064 .config_port = imx_uart_config_port, 2065 .verify_port = imx_uart_verify_port, 2066 #if defined(CONFIG_CONSOLE_POLL) 2067 .poll_init = imx_uart_poll_init, 2068 .poll_get_char = imx_uart_poll_get_char, 2069 .poll_put_char = imx_uart_poll_put_char, 2070 #endif 2071 }; 2072 2073 static struct imx_port *imx_uart_ports[UART_NR]; 2074 2075 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 2076 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 2077 { 2078 struct imx_port *sport = to_imx_port(port); 2079 2080 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 2081 barrier(); 2082 2083 imx_uart_writel(sport, ch, URTX0); 2084 2085 sport->last_putchar_was_newline = (ch == '\n'); 2086 } 2087 2088 static void imx_uart_console_device_lock(struct console *co, unsigned long *flags) 2089 { 2090 struct uart_port *up = &imx_uart_ports[co->index]->port; 2091 2092 return __uart_port_lock_irqsave(up, flags); 2093 } 2094 2095 static void imx_uart_console_device_unlock(struct console *co, unsigned long flags) 2096 { 2097 struct uart_port *up = &imx_uart_ports[co->index]->port; 2098 2099 return __uart_port_unlock_irqrestore(up, flags); 2100 } 2101 2102 static void imx_uart_console_write_atomic(struct console *co, 2103 struct nbcon_write_context *wctxt) 2104 { 2105 struct imx_port *sport = imx_uart_ports[co->index]; 2106 struct uart_port *port = &sport->port; 2107 struct imx_port_ucrs old_ucr; 2108 unsigned int ucr1, usr2; 2109 2110 if (!nbcon_enter_unsafe(wctxt)) 2111 return; 2112 2113 /* 2114 * First, save UCR1/2/3 and then disable interrupts 2115 */ 2116 imx_uart_ucrs_save(sport, &old_ucr); 2117 ucr1 = old_ucr.ucr1; 2118 2119 if (imx_uart_is_imx1(sport)) 2120 ucr1 |= IMX1_UCR1_UARTCLKEN; 2121 ucr1 |= UCR1_UARTEN; 2122 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2123 2124 imx_uart_writel(sport, ucr1, UCR1); 2125 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2126 2127 if (!sport->last_putchar_was_newline) 2128 uart_console_write(port, "\n", 1, imx_uart_console_putchar); 2129 uart_console_write(port, wctxt->outbuf, wctxt->len, 2130 imx_uart_console_putchar); 2131 2132 /* 2133 * Finally, wait for transmitter to become empty 2134 * and restore UCR1/2/3 2135 */ 2136 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2137 0, USEC_PER_SEC, false, sport, USR2); 2138 imx_uart_ucrs_restore(sport, &old_ucr); 2139 2140 nbcon_exit_unsafe(wctxt); 2141 } 2142 2143 static void imx_uart_console_write_thread(struct console *co, 2144 struct nbcon_write_context *wctxt) 2145 { 2146 struct imx_port *sport = imx_uart_ports[co->index]; 2147 struct uart_port *port = &sport->port; 2148 struct imx_port_ucrs old_ucr; 2149 unsigned int ucr1, usr2; 2150 2151 if (!nbcon_enter_unsafe(wctxt)) 2152 return; 2153 2154 /* 2155 * First, save UCR1/2/3 and then disable interrupts 2156 */ 2157 imx_uart_ucrs_save(sport, &old_ucr); 2158 ucr1 = old_ucr.ucr1; 2159 2160 if (imx_uart_is_imx1(sport)) 2161 ucr1 |= IMX1_UCR1_UARTCLKEN; 2162 ucr1 |= UCR1_UARTEN; 2163 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2164 2165 imx_uart_writel(sport, ucr1, UCR1); 2166 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2167 2168 if (nbcon_exit_unsafe(wctxt)) { 2169 int len = READ_ONCE(wctxt->len); 2170 int i; 2171 2172 /* 2173 * Write out the message. Toggle unsafe for each byte in order 2174 * to give another (higher priority) context the opportunity 2175 * for a friendly takeover. If such a takeover occurs, this 2176 * context must reacquire ownership in order to perform final 2177 * actions (such as re-enabling the interrupts). 2178 * 2179 * IMPORTANT: wctxt->outbuf and wctxt->len are no longer valid 2180 * after a reacquire so writing the message must be 2181 * aborted. 2182 */ 2183 for (i = 0; i < len; i++) { 2184 if (!nbcon_enter_unsafe(wctxt)) 2185 break; 2186 2187 uart_console_write(port, wctxt->outbuf + i, 1, 2188 imx_uart_console_putchar); 2189 2190 if (!nbcon_exit_unsafe(wctxt)) 2191 break; 2192 } 2193 } 2194 2195 while (!nbcon_enter_unsafe(wctxt)) 2196 nbcon_reacquire_nobuf(wctxt); 2197 2198 /* 2199 * Finally, wait for transmitter to become empty 2200 * and restore UCR1/2/3 2201 */ 2202 read_poll_timeout(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2203 0, USEC_PER_SEC, false, sport, USR2); 2204 imx_uart_ucrs_restore(sport, &old_ucr); 2205 2206 nbcon_exit_unsafe(wctxt); 2207 } 2208 2209 /* 2210 * If the port was already initialised (eg, by a boot loader), 2211 * try to determine the current setup. 2212 */ 2213 static void 2214 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2215 int *parity, int *bits) 2216 { 2217 2218 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2219 /* ok, the port was enabled */ 2220 unsigned int ucr2, ubir, ubmr, uartclk; 2221 unsigned int baud_raw; 2222 unsigned int ucfr_rfdiv; 2223 2224 ucr2 = imx_uart_readl(sport, UCR2); 2225 2226 *parity = 'n'; 2227 if (ucr2 & UCR2_PREN) { 2228 if (ucr2 & UCR2_PROE) 2229 *parity = 'o'; 2230 else 2231 *parity = 'e'; 2232 } 2233 2234 if (ucr2 & UCR2_WS) 2235 *bits = 8; 2236 else 2237 *bits = 7; 2238 2239 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2240 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2241 2242 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2243 if (ucfr_rfdiv == 6) 2244 ucfr_rfdiv = 7; 2245 else 2246 ucfr_rfdiv = 6 - ucfr_rfdiv; 2247 2248 uartclk = clk_get_rate(sport->clk_per); 2249 uartclk /= ucfr_rfdiv; 2250 2251 { /* 2252 * The next code provides exact computation of 2253 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2254 * without need of float support or long long division, 2255 * which would be required to prevent 32bit arithmetic overflow 2256 */ 2257 unsigned int mul = ubir + 1; 2258 unsigned int div = 16 * (ubmr + 1); 2259 unsigned int rem = uartclk % div; 2260 2261 baud_raw = (uartclk / div) * mul; 2262 baud_raw += (rem * mul + div / 2) / div; 2263 *baud = (baud_raw + 50) / 100 * 100; 2264 } 2265 2266 if (*baud != baud_raw) 2267 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2268 baud_raw, *baud); 2269 } 2270 } 2271 2272 static int 2273 imx_uart_console_setup(struct console *co, char *options) 2274 { 2275 struct imx_port *sport; 2276 int baud = 9600; 2277 int bits = 8; 2278 int parity = 'n'; 2279 int flow = 'n'; 2280 int retval; 2281 2282 /* 2283 * Check whether an invalid uart number has been specified, and 2284 * if so, search for the first available port that does have 2285 * console support. 2286 */ 2287 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2288 co->index = 0; 2289 sport = imx_uart_ports[co->index]; 2290 if (sport == NULL) 2291 return -ENODEV; 2292 2293 /* For setting the registers, we only need to enable the ipg clock. */ 2294 retval = clk_prepare_enable(sport->clk_ipg); 2295 if (retval) 2296 goto error_console; 2297 2298 sport->last_putchar_was_newline = true; 2299 2300 if (options) 2301 uart_parse_options(options, &baud, &parity, &bits, &flow); 2302 else 2303 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2304 2305 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2306 2307 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2308 2309 if (retval) { 2310 clk_disable_unprepare(sport->clk_ipg); 2311 goto error_console; 2312 } 2313 2314 retval = clk_prepare_enable(sport->clk_per); 2315 if (retval) 2316 clk_disable_unprepare(sport->clk_ipg); 2317 2318 error_console: 2319 return retval; 2320 } 2321 2322 static int 2323 imx_uart_console_exit(struct console *co) 2324 { 2325 struct imx_port *sport = imx_uart_ports[co->index]; 2326 2327 clk_disable_unprepare(sport->clk_per); 2328 clk_disable_unprepare(sport->clk_ipg); 2329 2330 return 0; 2331 } 2332 2333 static struct uart_driver imx_uart_uart_driver; 2334 static struct console imx_uart_console = { 2335 .name = DEV_NAME, 2336 .write_atomic = imx_uart_console_write_atomic, 2337 .write_thread = imx_uart_console_write_thread, 2338 .device_lock = imx_uart_console_device_lock, 2339 .device_unlock = imx_uart_console_device_unlock, 2340 .flags = CON_PRINTBUFFER | CON_NBCON, 2341 .device = uart_console_device, 2342 .setup = imx_uart_console_setup, 2343 .exit = imx_uart_console_exit, 2344 .index = -1, 2345 .data = &imx_uart_uart_driver, 2346 }; 2347 2348 #define IMX_CONSOLE &imx_uart_console 2349 2350 #else 2351 #define IMX_CONSOLE NULL 2352 #endif 2353 2354 static struct uart_driver imx_uart_uart_driver = { 2355 .owner = THIS_MODULE, 2356 .driver_name = DRIVER_NAME, 2357 .dev_name = DEV_NAME, 2358 .major = SERIAL_IMX_MAJOR, 2359 .minor = MINOR_START, 2360 .nr = ARRAY_SIZE(imx_uart_ports), 2361 .cons = IMX_CONSOLE, 2362 }; 2363 2364 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2365 { 2366 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2367 unsigned long flags; 2368 2369 uart_port_lock_irqsave(&sport->port, &flags); 2370 if (sport->tx_state == WAIT_AFTER_RTS) 2371 imx_uart_start_tx(&sport->port); 2372 uart_port_unlock_irqrestore(&sport->port, flags); 2373 2374 return HRTIMER_NORESTART; 2375 } 2376 2377 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2378 { 2379 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2380 unsigned long flags; 2381 2382 uart_port_lock_irqsave(&sport->port, &flags); 2383 if (sport->tx_state == WAIT_AFTER_SEND) 2384 imx_uart_stop_tx(&sport->port); 2385 uart_port_unlock_irqrestore(&sport->port, flags); 2386 2387 return HRTIMER_NORESTART; 2388 } 2389 2390 static const struct serial_rs485 imx_rs485_supported = { 2391 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2392 SER_RS485_RX_DURING_TX, 2393 .delay_rts_before_send = 1, 2394 .delay_rts_after_send = 1, 2395 }; 2396 2397 /* Default RX DMA buffer configuration */ 2398 #define RX_DMA_PERIODS 16 2399 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2400 2401 static int imx_uart_probe(struct platform_device *pdev) 2402 { 2403 struct device_node *np = pdev->dev.of_node; 2404 struct imx_port *sport; 2405 void __iomem *base; 2406 u32 dma_buf_conf[2]; 2407 int ret = 0; 2408 u32 ucr1, ucr2, uts; 2409 struct resource *res; 2410 int txirq, rxirq, rtsirq; 2411 2412 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2413 if (!sport) 2414 return -ENOMEM; 2415 2416 sport->devdata = of_device_get_match_data(&pdev->dev); 2417 2418 ret = of_alias_get_id(np, "serial"); 2419 if (ret < 0) { 2420 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2421 return ret; 2422 } 2423 sport->port.line = ret; 2424 2425 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2426 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2427 2428 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2429 2430 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2431 2432 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2433 2434 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2435 2436 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2437 sport->rx_period_length = dma_buf_conf[0]; 2438 sport->rx_periods = dma_buf_conf[1]; 2439 } else { 2440 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2441 sport->rx_periods = RX_DMA_PERIODS; 2442 } 2443 2444 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2445 dev_err(&pdev->dev, "serial%d out of range\n", 2446 sport->port.line); 2447 return -EINVAL; 2448 } 2449 2450 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2451 if (IS_ERR(base)) 2452 return PTR_ERR(base); 2453 2454 rxirq = platform_get_irq(pdev, 0); 2455 if (rxirq < 0) 2456 return rxirq; 2457 txirq = platform_get_irq_optional(pdev, 1); 2458 rtsirq = platform_get_irq_optional(pdev, 2); 2459 2460 sport->port.dev = &pdev->dev; 2461 sport->port.mapbase = res->start; 2462 sport->port.membase = base; 2463 sport->port.type = PORT_IMX; 2464 sport->port.iotype = UPIO_MEM; 2465 sport->port.irq = rxirq; 2466 sport->port.fifosize = 32; 2467 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2468 sport->port.ops = &imx_uart_pops; 2469 sport->port.rs485_config = imx_uart_rs485_config; 2470 /* RTS is required to control the RS485 transmitter */ 2471 if (sport->have_rtscts || sport->have_rtsgpio) 2472 sport->port.rs485_supported = imx_rs485_supported; 2473 sport->port.flags = UPF_BOOT_AUTOCONF; 2474 timer_setup(&sport->timer, imx_uart_timeout, 0); 2475 2476 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2477 if (IS_ERR(sport->gpios)) 2478 return PTR_ERR(sport->gpios); 2479 2480 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2481 if (IS_ERR(sport->clk_ipg)) { 2482 ret = PTR_ERR(sport->clk_ipg); 2483 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2484 return ret; 2485 } 2486 2487 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2488 if (IS_ERR(sport->clk_per)) { 2489 ret = PTR_ERR(sport->clk_per); 2490 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2491 return ret; 2492 } 2493 2494 sport->port.uartclk = clk_get_rate(sport->clk_per); 2495 2496 /* For register access, we only need to enable the ipg clock. */ 2497 ret = clk_prepare_enable(sport->clk_ipg); 2498 if (ret) { 2499 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2500 return ret; 2501 } 2502 2503 ret = uart_get_rs485_mode(&sport->port); 2504 if (ret) 2505 goto err_clk; 2506 2507 /* 2508 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2509 * signal cannot be set low during transmission in case the 2510 * receiver is off (limitation of the i.MX UART IP). 2511 */ 2512 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2513 sport->have_rtscts && !sport->have_rtsgpio && 2514 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2515 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2516 dev_err(&pdev->dev, 2517 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2518 2519 /* Disable interrupts before requesting them */ 2520 ucr1 = imx_uart_readl(sport, UCR1); 2521 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2522 imx_uart_writel(sport, ucr1, UCR1); 2523 2524 /* Disable Ageing Timer interrupt */ 2525 ucr2 = imx_uart_readl(sport, UCR2); 2526 ucr2 &= ~UCR2_ATEN; 2527 imx_uart_writel(sport, ucr2, UCR2); 2528 2529 /* 2530 * In case RS485 is enabled without GPIO RTS control, the UART IP 2531 * is used to control CTS signal. Keep both the UART and Receiver 2532 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2533 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2534 * data from being fed into the RX FIFO, enable loopback mode in 2535 * UTS register, which disconnects the RX path from external RXD 2536 * pin and connects it to the Transceiver, which is disabled, so 2537 * no data can be fed to the RX FIFO that way. 2538 */ 2539 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2540 sport->have_rtscts && !sport->have_rtsgpio) { 2541 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2542 uts |= UTS_LOOP; 2543 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2544 2545 ucr1 = imx_uart_readl(sport, UCR1); 2546 ucr1 |= UCR1_UARTEN; 2547 imx_uart_writel(sport, ucr1, UCR1); 2548 2549 ucr2 = imx_uart_readl(sport, UCR2); 2550 ucr2 |= UCR2_RXEN; 2551 imx_uart_writel(sport, ucr2, UCR2); 2552 } 2553 2554 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2555 /* 2556 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2557 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2558 * and DCD (when they are outputs) or enables the respective 2559 * irqs. So set this bit early, i.e. before requesting irqs. 2560 */ 2561 u32 ufcr = imx_uart_readl(sport, UFCR); 2562 if (!(ufcr & UFCR_DCEDTE)) 2563 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2564 2565 /* 2566 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2567 * enabled later because they cannot be cleared 2568 * (confirmed on i.MX25) which makes them unusable. 2569 */ 2570 imx_uart_writel(sport, 2571 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2572 UCR3); 2573 2574 } else { 2575 u32 ucr3 = UCR3_DSR; 2576 u32 ufcr = imx_uart_readl(sport, UFCR); 2577 if (ufcr & UFCR_DCEDTE) 2578 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2579 2580 if (!imx_uart_is_imx1(sport)) 2581 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2582 imx_uart_writel(sport, ucr3, UCR3); 2583 } 2584 2585 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2586 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2587 sport->trigger_start_tx.function = imx_trigger_start_tx; 2588 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2589 2590 /* 2591 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2592 * chips only have one interrupt. 2593 */ 2594 if (txirq > 0) { 2595 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2596 dev_name(&pdev->dev), sport); 2597 if (ret) { 2598 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2599 ret); 2600 goto err_clk; 2601 } 2602 2603 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2604 dev_name(&pdev->dev), sport); 2605 if (ret) { 2606 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2607 ret); 2608 goto err_clk; 2609 } 2610 2611 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2612 dev_name(&pdev->dev), sport); 2613 if (ret) { 2614 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2615 ret); 2616 goto err_clk; 2617 } 2618 } else { 2619 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2620 dev_name(&pdev->dev), sport); 2621 if (ret) { 2622 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2623 goto err_clk; 2624 } 2625 } 2626 2627 imx_uart_ports[sport->port.line] = sport; 2628 2629 platform_set_drvdata(pdev, sport); 2630 2631 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2632 2633 err_clk: 2634 clk_disable_unprepare(sport->clk_ipg); 2635 2636 return ret; 2637 } 2638 2639 static void imx_uart_remove(struct platform_device *pdev) 2640 { 2641 struct imx_port *sport = platform_get_drvdata(pdev); 2642 2643 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2644 } 2645 2646 static void imx_uart_restore_context(struct imx_port *sport) 2647 { 2648 unsigned long flags; 2649 2650 uart_port_lock_irqsave(&sport->port, &flags); 2651 if (!sport->context_saved) { 2652 uart_port_unlock_irqrestore(&sport->port, flags); 2653 return; 2654 } 2655 2656 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2657 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2658 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2659 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2660 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2661 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2662 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2663 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2664 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2665 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2666 sport->context_saved = false; 2667 uart_port_unlock_irqrestore(&sport->port, flags); 2668 } 2669 2670 static void imx_uart_save_context(struct imx_port *sport) 2671 { 2672 unsigned long flags; 2673 2674 /* Save necessary regs */ 2675 uart_port_lock_irqsave(&sport->port, &flags); 2676 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2677 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2678 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2679 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2680 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2681 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2682 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2683 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2684 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2685 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2686 sport->context_saved = true; 2687 uart_port_unlock_irqrestore(&sport->port, flags); 2688 } 2689 2690 /* called with irq off */ 2691 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2692 { 2693 u32 ucr3; 2694 2695 uart_port_lock(&sport->port); 2696 2697 ucr3 = imx_uart_readl(sport, UCR3); 2698 if (on) { 2699 imx_uart_writel(sport, USR1_AWAKE, USR1); 2700 ucr3 |= UCR3_AWAKEN; 2701 } else { 2702 ucr3 &= ~UCR3_AWAKEN; 2703 } 2704 imx_uart_writel(sport, ucr3, UCR3); 2705 2706 if (sport->have_rtscts) { 2707 u32 ucr1 = imx_uart_readl(sport, UCR1); 2708 if (on) { 2709 imx_uart_writel(sport, USR1_RTSD, USR1); 2710 ucr1 |= UCR1_RTSDEN; 2711 } else { 2712 ucr1 &= ~UCR1_RTSDEN; 2713 } 2714 imx_uart_writel(sport, ucr1, UCR1); 2715 } 2716 2717 uart_port_unlock(&sport->port); 2718 } 2719 2720 static int imx_uart_suspend_noirq(struct device *dev) 2721 { 2722 struct imx_port *sport = dev_get_drvdata(dev); 2723 2724 imx_uart_save_context(sport); 2725 2726 clk_disable(sport->clk_ipg); 2727 2728 pinctrl_pm_select_sleep_state(dev); 2729 2730 return 0; 2731 } 2732 2733 static int imx_uart_resume_noirq(struct device *dev) 2734 { 2735 struct imx_port *sport = dev_get_drvdata(dev); 2736 int ret; 2737 2738 pinctrl_pm_select_default_state(dev); 2739 2740 ret = clk_enable(sport->clk_ipg); 2741 if (ret) 2742 return ret; 2743 2744 imx_uart_restore_context(sport); 2745 2746 return 0; 2747 } 2748 2749 static int imx_uart_suspend(struct device *dev) 2750 { 2751 struct imx_port *sport = dev_get_drvdata(dev); 2752 int ret; 2753 2754 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2755 disable_irq(sport->port.irq); 2756 2757 ret = clk_prepare_enable(sport->clk_ipg); 2758 if (ret) 2759 return ret; 2760 2761 /* enable wakeup from i.MX UART */ 2762 imx_uart_enable_wakeup(sport, true); 2763 2764 return 0; 2765 } 2766 2767 static int imx_uart_resume(struct device *dev) 2768 { 2769 struct imx_port *sport = dev_get_drvdata(dev); 2770 2771 /* disable wakeup from i.MX UART */ 2772 imx_uart_enable_wakeup(sport, false); 2773 2774 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2775 enable_irq(sport->port.irq); 2776 2777 clk_disable_unprepare(sport->clk_ipg); 2778 2779 return 0; 2780 } 2781 2782 static int imx_uart_freeze(struct device *dev) 2783 { 2784 struct imx_port *sport = dev_get_drvdata(dev); 2785 2786 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2787 2788 return clk_prepare_enable(sport->clk_ipg); 2789 } 2790 2791 static int imx_uart_thaw(struct device *dev) 2792 { 2793 struct imx_port *sport = dev_get_drvdata(dev); 2794 2795 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2796 2797 clk_disable_unprepare(sport->clk_ipg); 2798 2799 return 0; 2800 } 2801 2802 static const struct dev_pm_ops imx_uart_pm_ops = { 2803 .suspend_noirq = imx_uart_suspend_noirq, 2804 .resume_noirq = imx_uart_resume_noirq, 2805 .freeze_noirq = imx_uart_suspend_noirq, 2806 .thaw_noirq = imx_uart_resume_noirq, 2807 .restore_noirq = imx_uart_resume_noirq, 2808 .suspend = imx_uart_suspend, 2809 .resume = imx_uart_resume, 2810 .freeze = imx_uart_freeze, 2811 .thaw = imx_uart_thaw, 2812 .restore = imx_uart_thaw, 2813 }; 2814 2815 static struct platform_driver imx_uart_platform_driver = { 2816 .probe = imx_uart_probe, 2817 .remove = imx_uart_remove, 2818 2819 .driver = { 2820 .name = "imx-uart", 2821 .of_match_table = imx_uart_dt_ids, 2822 .pm = &imx_uart_pm_ops, 2823 }, 2824 }; 2825 2826 static int __init imx_uart_init(void) 2827 { 2828 int ret = uart_register_driver(&imx_uart_uart_driver); 2829 2830 if (ret) 2831 return ret; 2832 2833 ret = platform_driver_register(&imx_uart_platform_driver); 2834 if (ret != 0) 2835 uart_unregister_driver(&imx_uart_uart_driver); 2836 2837 return ret; 2838 } 2839 2840 static void __exit imx_uart_exit(void) 2841 { 2842 platform_driver_unregister(&imx_uart_platform_driver); 2843 uart_unregister_driver(&imx_uart_uart_driver); 2844 } 2845 2846 module_init(imx_uart_init); 2847 module_exit(imx_uart_exit); 2848 2849 MODULE_AUTHOR("Sascha Hauer"); 2850 MODULE_DESCRIPTION("IMX generic serial port driver"); 2851 MODULE_LICENSE("GPL"); 2852 MODULE_ALIAS("platform:imx-uart"); 2853