xref: /linux/drivers/tty/serial/imx.c (revision 45413bf759193d9c677746b5e52b96d60d9fa94f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/dma/imx-dma.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* counter to stop 0xff flood */
214 	int idle_counter;
215 
216 	/* DMA fields */
217 	unsigned int		dma_is_enabled:1;
218 	unsigned int		dma_is_rxing:1;
219 	unsigned int		dma_is_txing:1;
220 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
221 	struct scatterlist	rx_sgl, tx_sgl[2];
222 	void			*rx_buf;
223 	struct circ_buf		rx_ring;
224 	unsigned int		rx_buf_size;
225 	unsigned int		rx_period_length;
226 	unsigned int		rx_periods;
227 	dma_cookie_t		rx_cookie;
228 	unsigned int		tx_bytes;
229 	unsigned int		dma_tx_nents;
230 	unsigned int            saved_reg[10];
231 	bool			context_saved;
232 
233 	enum imx_tx_state	tx_state;
234 	struct hrtimer		trigger_start_tx;
235 	struct hrtimer		trigger_stop_tx;
236 };
237 
238 struct imx_port_ucrs {
239 	unsigned int	ucr1;
240 	unsigned int	ucr2;
241 	unsigned int	ucr3;
242 };
243 
244 static struct imx_uart_data imx_uart_devdata[] = {
245 	[IMX1_UART] = {
246 		.uts_reg = IMX1_UTS,
247 		.devtype = IMX1_UART,
248 	},
249 	[IMX21_UART] = {
250 		.uts_reg = IMX21_UTS,
251 		.devtype = IMX21_UART,
252 	},
253 	[IMX53_UART] = {
254 		.uts_reg = IMX21_UTS,
255 		.devtype = IMX53_UART,
256 	},
257 	[IMX6Q_UART] = {
258 		.uts_reg = IMX21_UTS,
259 		.devtype = IMX6Q_UART,
260 	},
261 };
262 
263 static const struct of_device_id imx_uart_dt_ids[] = {
264 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
265 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
266 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
267 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
268 	{ /* sentinel */ }
269 };
270 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
271 
272 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
273 {
274 	writel(val, sport->port.membase + offset);
275 }
276 
277 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
278 {
279 	return readl(sport->port.membase + offset);
280 }
281 
282 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
283 {
284 	return sport->devdata->uts_reg;
285 }
286 
287 static inline int imx_uart_is_imx1(struct imx_port *sport)
288 {
289 	return sport->devdata->devtype == IMX1_UART;
290 }
291 
292 /*
293  * Save and restore functions for UCR1, UCR2 and UCR3 registers
294  */
295 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
296 static void imx_uart_ucrs_save(struct imx_port *sport,
297 			       struct imx_port_ucrs *ucr)
298 {
299 	/* save control registers */
300 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
301 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
302 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
303 }
304 
305 static void imx_uart_ucrs_restore(struct imx_port *sport,
306 				  struct imx_port_ucrs *ucr)
307 {
308 	/* restore control registers */
309 	imx_uart_writel(sport, ucr->ucr1, UCR1);
310 	imx_uart_writel(sport, ucr->ucr2, UCR2);
311 	imx_uart_writel(sport, ucr->ucr3, UCR3);
312 }
313 #endif
314 
315 /* called with port.lock taken and irqs caller dependent */
316 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
317 {
318 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
319 
320 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
321 }
322 
323 /* called with port.lock taken and irqs caller dependent */
324 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
325 {
326 	*ucr2 &= ~UCR2_CTSC;
327 	*ucr2 |= UCR2_CTS;
328 
329 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
330 }
331 
332 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
333 {
334        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
335 }
336 
337 /* called with port.lock taken and irqs off */
338 static void imx_uart_soft_reset(struct imx_port *sport)
339 {
340 	int i = 10;
341 	u32 ucr2, ubir, ubmr, uts;
342 
343 	/*
344 	 * According to the Reference Manual description of the UART SRST bit:
345 	 *
346 	 * "Reset the transmit and receive state machines,
347 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
348 	 * and UTS[6-3]".
349 	 *
350 	 * We don't need to restore the old values from USR1, USR2, URXD and
351 	 * UTXD. UBRC is read only, so only save/restore the other three
352 	 * registers.
353 	 */
354 	ubir = imx_uart_readl(sport, UBIR);
355 	ubmr = imx_uart_readl(sport, UBMR);
356 	uts = imx_uart_readl(sport, IMX21_UTS);
357 
358 	ucr2 = imx_uart_readl(sport, UCR2);
359 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
360 
361 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
362 		udelay(1);
363 
364 	/* Restore the registers */
365 	imx_uart_writel(sport, ubir, UBIR);
366 	imx_uart_writel(sport, ubmr, UBMR);
367 	imx_uart_writel(sport, uts, IMX21_UTS);
368 
369 	sport->idle_counter = 0;
370 }
371 
372 /* called with port.lock taken and irqs off */
373 static void imx_uart_start_rx(struct uart_port *port)
374 {
375 	struct imx_port *sport = (struct imx_port *)port;
376 	unsigned int ucr1, ucr2;
377 
378 	ucr1 = imx_uart_readl(sport, UCR1);
379 	ucr2 = imx_uart_readl(sport, UCR2);
380 
381 	ucr2 |= UCR2_RXEN;
382 
383 	if (sport->dma_is_enabled) {
384 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
385 	} else {
386 		ucr1 |= UCR1_RRDYEN;
387 		ucr2 |= UCR2_ATEN;
388 	}
389 
390 	/* Write UCR2 first as it includes RXEN */
391 	imx_uart_writel(sport, ucr2, UCR2);
392 	imx_uart_writel(sport, ucr1, UCR1);
393 }
394 
395 /* called with port.lock taken and irqs off */
396 static void imx_uart_stop_tx(struct uart_port *port)
397 {
398 	struct imx_port *sport = (struct imx_port *)port;
399 	u32 ucr1, ucr4, usr2;
400 
401 	if (sport->tx_state == OFF)
402 		return;
403 
404 	/*
405 	 * We are maybe in the SMP context, so if the DMA TX thread is running
406 	 * on other cpu, we have to wait for it to finish.
407 	 */
408 	if (sport->dma_is_txing)
409 		return;
410 
411 	ucr1 = imx_uart_readl(sport, UCR1);
412 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
413 
414 	usr2 = imx_uart_readl(sport, USR2);
415 	if (!(usr2 & USR2_TXDC)) {
416 		/* The shifter is still busy, so retry once TC triggers */
417 		return;
418 	}
419 
420 	ucr4 = imx_uart_readl(sport, UCR4);
421 	ucr4 &= ~UCR4_TCEN;
422 	imx_uart_writel(sport, ucr4, UCR4);
423 
424 	/* in rs485 mode disable transmitter */
425 	if (port->rs485.flags & SER_RS485_ENABLED) {
426 		if (sport->tx_state == SEND) {
427 			sport->tx_state = WAIT_AFTER_SEND;
428 
429 			if (port->rs485.delay_rts_after_send > 0) {
430 				start_hrtimer_ms(&sport->trigger_stop_tx,
431 					 port->rs485.delay_rts_after_send);
432 				return;
433 			}
434 
435 			/* continue without any delay */
436 		}
437 
438 		if (sport->tx_state == WAIT_AFTER_RTS ||
439 		    sport->tx_state == WAIT_AFTER_SEND) {
440 			u32 ucr2;
441 
442 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
443 
444 			ucr2 = imx_uart_readl(sport, UCR2);
445 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
446 				imx_uart_rts_active(sport, &ucr2);
447 			else
448 				imx_uart_rts_inactive(sport, &ucr2);
449 			imx_uart_writel(sport, ucr2, UCR2);
450 
451 			if (!port->rs485_rx_during_tx_gpio)
452 				imx_uart_start_rx(port);
453 
454 			sport->tx_state = OFF;
455 		}
456 	} else {
457 		sport->tx_state = OFF;
458 	}
459 }
460 
461 /* called with port.lock taken and irqs off */
462 static void imx_uart_stop_rx(struct uart_port *port)
463 {
464 	struct imx_port *sport = (struct imx_port *)port;
465 	u32 ucr1, ucr2, ucr4, uts;
466 
467 	ucr1 = imx_uart_readl(sport, UCR1);
468 	ucr2 = imx_uart_readl(sport, UCR2);
469 	ucr4 = imx_uart_readl(sport, UCR4);
470 
471 	if (sport->dma_is_enabled) {
472 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
473 	} else {
474 		ucr1 &= ~UCR1_RRDYEN;
475 		ucr2 &= ~UCR2_ATEN;
476 		ucr4 &= ~UCR4_OREN;
477 	}
478 	imx_uart_writel(sport, ucr1, UCR1);
479 	imx_uart_writel(sport, ucr4, UCR4);
480 
481 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
482 	if (port->rs485.flags & SER_RS485_ENABLED &&
483 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
484 	    sport->have_rtscts && !sport->have_rtsgpio) {
485 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
486 		uts |= UTS_LOOP;
487 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
488 		ucr2 |= UCR2_RXEN;
489 	} else {
490 		ucr2 &= ~UCR2_RXEN;
491 	}
492 
493 	imx_uart_writel(sport, ucr2, UCR2);
494 }
495 
496 /* called with port.lock taken and irqs off */
497 static void imx_uart_enable_ms(struct uart_port *port)
498 {
499 	struct imx_port *sport = (struct imx_port *)port;
500 
501 	mod_timer(&sport->timer, jiffies);
502 
503 	mctrl_gpio_enable_ms(sport->gpios);
504 }
505 
506 static void imx_uart_dma_tx(struct imx_port *sport);
507 
508 /* called with port.lock taken and irqs off */
509 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
510 {
511 	struct circ_buf *xmit = &sport->port.state->xmit;
512 
513 	if (sport->port.x_char) {
514 		/* Send next char */
515 		imx_uart_writel(sport, sport->port.x_char, URTX0);
516 		sport->port.icount.tx++;
517 		sport->port.x_char = 0;
518 		return;
519 	}
520 
521 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
522 		imx_uart_stop_tx(&sport->port);
523 		return;
524 	}
525 
526 	if (sport->dma_is_enabled) {
527 		u32 ucr1;
528 		/*
529 		 * We've just sent a X-char Ensure the TX DMA is enabled
530 		 * and the TX IRQ is disabled.
531 		 **/
532 		ucr1 = imx_uart_readl(sport, UCR1);
533 		ucr1 &= ~UCR1_TRDYEN;
534 		if (sport->dma_is_txing) {
535 			ucr1 |= UCR1_TXDMAEN;
536 			imx_uart_writel(sport, ucr1, UCR1);
537 		} else {
538 			imx_uart_writel(sport, ucr1, UCR1);
539 			imx_uart_dma_tx(sport);
540 		}
541 
542 		return;
543 	}
544 
545 	while (!uart_circ_empty(xmit) &&
546 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
547 		/* send xmit->buf[xmit->tail]
548 		 * out the port here */
549 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
550 		uart_xmit_advance(&sport->port, 1);
551 	}
552 
553 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
554 		uart_write_wakeup(&sport->port);
555 
556 	if (uart_circ_empty(xmit))
557 		imx_uart_stop_tx(&sport->port);
558 }
559 
560 static void imx_uart_dma_tx_callback(void *data)
561 {
562 	struct imx_port *sport = data;
563 	struct scatterlist *sgl = &sport->tx_sgl[0];
564 	struct circ_buf *xmit = &sport->port.state->xmit;
565 	unsigned long flags;
566 	u32 ucr1;
567 
568 	spin_lock_irqsave(&sport->port.lock, flags);
569 
570 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
571 
572 	ucr1 = imx_uart_readl(sport, UCR1);
573 	ucr1 &= ~UCR1_TXDMAEN;
574 	imx_uart_writel(sport, ucr1, UCR1);
575 
576 	uart_xmit_advance(&sport->port, sport->tx_bytes);
577 
578 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
579 
580 	sport->dma_is_txing = 0;
581 
582 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
583 		uart_write_wakeup(&sport->port);
584 
585 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
586 		imx_uart_dma_tx(sport);
587 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
588 		u32 ucr4 = imx_uart_readl(sport, UCR4);
589 		ucr4 |= UCR4_TCEN;
590 		imx_uart_writel(sport, ucr4, UCR4);
591 	}
592 
593 	spin_unlock_irqrestore(&sport->port.lock, flags);
594 }
595 
596 /* called with port.lock taken and irqs off */
597 static void imx_uart_dma_tx(struct imx_port *sport)
598 {
599 	struct circ_buf *xmit = &sport->port.state->xmit;
600 	struct scatterlist *sgl = sport->tx_sgl;
601 	struct dma_async_tx_descriptor *desc;
602 	struct dma_chan	*chan = sport->dma_chan_tx;
603 	struct device *dev = sport->port.dev;
604 	u32 ucr1, ucr4;
605 	int ret;
606 
607 	if (sport->dma_is_txing)
608 		return;
609 
610 	ucr4 = imx_uart_readl(sport, UCR4);
611 	ucr4 &= ~UCR4_TCEN;
612 	imx_uart_writel(sport, ucr4, UCR4);
613 
614 	sport->tx_bytes = uart_circ_chars_pending(xmit);
615 
616 	if (xmit->tail < xmit->head || xmit->head == 0) {
617 		sport->dma_tx_nents = 1;
618 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
619 	} else {
620 		sport->dma_tx_nents = 2;
621 		sg_init_table(sgl, 2);
622 		sg_set_buf(sgl, xmit->buf + xmit->tail,
623 				UART_XMIT_SIZE - xmit->tail);
624 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
625 	}
626 
627 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
628 	if (ret == 0) {
629 		dev_err(dev, "DMA mapping error for TX.\n");
630 		return;
631 	}
632 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
633 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
634 	if (!desc) {
635 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
636 			     DMA_TO_DEVICE);
637 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
638 		return;
639 	}
640 	desc->callback = imx_uart_dma_tx_callback;
641 	desc->callback_param = sport;
642 
643 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
644 			uart_circ_chars_pending(xmit));
645 
646 	ucr1 = imx_uart_readl(sport, UCR1);
647 	ucr1 |= UCR1_TXDMAEN;
648 	imx_uart_writel(sport, ucr1, UCR1);
649 
650 	/* fire it */
651 	sport->dma_is_txing = 1;
652 	dmaengine_submit(desc);
653 	dma_async_issue_pending(chan);
654 	return;
655 }
656 
657 /* called with port.lock taken and irqs off */
658 static void imx_uart_start_tx(struct uart_port *port)
659 {
660 	struct imx_port *sport = (struct imx_port *)port;
661 	u32 ucr1;
662 
663 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
664 		return;
665 
666 	/*
667 	 * We cannot simply do nothing here if sport->tx_state == SEND already
668 	 * because UCR1_TXMPTYEN might already have been cleared in
669 	 * imx_uart_stop_tx(), but tx_state is still SEND.
670 	 */
671 
672 	if (port->rs485.flags & SER_RS485_ENABLED) {
673 		if (sport->tx_state == OFF) {
674 			u32 ucr2 = imx_uart_readl(sport, UCR2);
675 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
676 				imx_uart_rts_active(sport, &ucr2);
677 			else
678 				imx_uart_rts_inactive(sport, &ucr2);
679 			imx_uart_writel(sport, ucr2, UCR2);
680 
681 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
682 			    !port->rs485_rx_during_tx_gpio)
683 				imx_uart_stop_rx(port);
684 
685 			sport->tx_state = WAIT_AFTER_RTS;
686 
687 			if (port->rs485.delay_rts_before_send > 0) {
688 				start_hrtimer_ms(&sport->trigger_start_tx,
689 					 port->rs485.delay_rts_before_send);
690 				return;
691 			}
692 
693 			/* continue without any delay */
694 		}
695 
696 		if (sport->tx_state == WAIT_AFTER_SEND
697 		    || sport->tx_state == WAIT_AFTER_RTS) {
698 
699 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
700 
701 			/*
702 			 * Enable transmitter and shifter empty irq only if DMA
703 			 * is off.  In the DMA case this is done in the
704 			 * tx-callback.
705 			 */
706 			if (!sport->dma_is_enabled) {
707 				u32 ucr4 = imx_uart_readl(sport, UCR4);
708 				ucr4 |= UCR4_TCEN;
709 				imx_uart_writel(sport, ucr4, UCR4);
710 			}
711 
712 			sport->tx_state = SEND;
713 		}
714 	} else {
715 		sport->tx_state = SEND;
716 	}
717 
718 	if (!sport->dma_is_enabled) {
719 		ucr1 = imx_uart_readl(sport, UCR1);
720 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
721 	}
722 
723 	if (sport->dma_is_enabled) {
724 		if (sport->port.x_char) {
725 			/* We have X-char to send, so enable TX IRQ and
726 			 * disable TX DMA to let TX interrupt to send X-char */
727 			ucr1 = imx_uart_readl(sport, UCR1);
728 			ucr1 &= ~UCR1_TXDMAEN;
729 			ucr1 |= UCR1_TRDYEN;
730 			imx_uart_writel(sport, ucr1, UCR1);
731 			return;
732 		}
733 
734 		if (!uart_circ_empty(&port->state->xmit) &&
735 		    !uart_tx_stopped(port))
736 			imx_uart_dma_tx(sport);
737 		return;
738 	}
739 }
740 
741 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
742 {
743 	struct imx_port *sport = dev_id;
744 	u32 usr1;
745 
746 	imx_uart_writel(sport, USR1_RTSD, USR1);
747 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
748 	uart_handle_cts_change(&sport->port, usr1);
749 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
750 
751 	return IRQ_HANDLED;
752 }
753 
754 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
755 {
756 	struct imx_port *sport = dev_id;
757 	irqreturn_t ret;
758 
759 	spin_lock(&sport->port.lock);
760 
761 	ret = __imx_uart_rtsint(irq, dev_id);
762 
763 	spin_unlock(&sport->port.lock);
764 
765 	return ret;
766 }
767 
768 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
769 {
770 	struct imx_port *sport = dev_id;
771 
772 	spin_lock(&sport->port.lock);
773 	imx_uart_transmit_buffer(sport);
774 	spin_unlock(&sport->port.lock);
775 	return IRQ_HANDLED;
776 }
777 
778 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
779  * This is to be called from Rx ISRs only when some bytes were actually
780  * received.
781  *
782  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
783  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
784  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
785  * that is terminated by any activity on RxD line, or could be stopped by
786  * issuing soft reset to the UART (just stop/start of RX does not help). Note
787  * that what we do here is sending isolated start bit about 2.4 times shorter
788  * than it is to be on UART configured baud rate.
789  */
790 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
791 {
792 	/* To detect hardware 0xff flood we monitor RxD line between RX
793 	 * interrupts to isolate "receiving" of char(s) with no activity
794 	 * on RxD line, that'd never happen on actual data transfers.
795 	 *
796 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
797 	 * race here if we clear USR2_WAKE when receiving of a char is in
798 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
799 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
800 	 * detected no activity, this race may hide actual activity only once.
801 	 *
802 	 * Yet another case where receive interrupt may occur without RxD
803 	 * activity is expiration of aging timer, so we consider this as well.
804 	 *
805 	 * We use 'idle_counter' to ensure that we got at least so many RX
806 	 * interrupts without any detected activity on RxD line. 2 cases
807 	 * described plus 1 to be on the safe side gives us a margin of 3,
808 	 * below. In practice I was not able to produce a false positive to
809 	 * induce soft reset at regular data transfers even using 1 as the
810 	 * margin, so 3 is actually very strong.
811 	 *
812 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
813 	 */
814 
815 	if (usr2 & USR2_WAKE) {
816 		imx_uart_writel(sport, USR2_WAKE, USR2);
817 		sport->idle_counter = 0;
818 	} else if (++sport->idle_counter > 3) {
819 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
820 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
821 	}
822 }
823 
824 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
825 {
826 	struct imx_port *sport = dev_id;
827 	struct tty_port *port = &sport->port.state->port;
828 	u32 usr2, rx;
829 
830 	/* If we received something, check for 0xff flood */
831 	usr2 = imx_uart_readl(sport, USR2);
832 	if (usr2 & USR2_RDR)
833 		imx_uart_check_flood(sport, usr2);
834 
835 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
836 		unsigned int flg = TTY_NORMAL;
837 		sport->port.icount.rx++;
838 
839 		if (unlikely(rx & URXD_ERR)) {
840 			if (rx & URXD_BRK) {
841 				sport->port.icount.brk++;
842 				if (uart_handle_break(&sport->port))
843 					continue;
844 			}
845 			else if (rx & URXD_PRERR)
846 				sport->port.icount.parity++;
847 			else if (rx & URXD_FRMERR)
848 				sport->port.icount.frame++;
849 			if (rx & URXD_OVRRUN)
850 				sport->port.icount.overrun++;
851 
852 			if (rx & sport->port.ignore_status_mask)
853 				continue;
854 
855 			rx &= (sport->port.read_status_mask | 0xFF);
856 
857 			if (rx & URXD_BRK)
858 				flg = TTY_BREAK;
859 			else if (rx & URXD_PRERR)
860 				flg = TTY_PARITY;
861 			else if (rx & URXD_FRMERR)
862 				flg = TTY_FRAME;
863 			if (rx & URXD_OVRRUN)
864 				flg = TTY_OVERRUN;
865 
866 			sport->port.sysrq = 0;
867 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
868 			continue;
869 		}
870 
871 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
872 			continue;
873 
874 		if (tty_insert_flip_char(port, rx, flg) == 0)
875 			sport->port.icount.buf_overrun++;
876 	}
877 
878 	tty_flip_buffer_push(port);
879 
880 	return IRQ_HANDLED;
881 }
882 
883 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
884 {
885 	struct imx_port *sport = dev_id;
886 	irqreturn_t ret;
887 
888 	spin_lock(&sport->port.lock);
889 
890 	ret = __imx_uart_rxint(irq, dev_id);
891 
892 	spin_unlock(&sport->port.lock);
893 
894 	return ret;
895 }
896 
897 static void imx_uart_clear_rx_errors(struct imx_port *sport);
898 
899 /*
900  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
901  */
902 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
903 {
904 	unsigned int tmp = TIOCM_DSR;
905 	unsigned usr1 = imx_uart_readl(sport, USR1);
906 	unsigned usr2 = imx_uart_readl(sport, USR2);
907 
908 	if (usr1 & USR1_RTSS)
909 		tmp |= TIOCM_CTS;
910 
911 	/* in DCE mode DCDIN is always 0 */
912 	if (!(usr2 & USR2_DCDIN))
913 		tmp |= TIOCM_CAR;
914 
915 	if (sport->dte_mode)
916 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
917 			tmp |= TIOCM_RI;
918 
919 	return tmp;
920 }
921 
922 /*
923  * Handle any change of modem status signal since we were last called.
924  */
925 static void imx_uart_mctrl_check(struct imx_port *sport)
926 {
927 	unsigned int status, changed;
928 
929 	status = imx_uart_get_hwmctrl(sport);
930 	changed = status ^ sport->old_status;
931 
932 	if (changed == 0)
933 		return;
934 
935 	sport->old_status = status;
936 
937 	if (changed & TIOCM_RI && status & TIOCM_RI)
938 		sport->port.icount.rng++;
939 	if (changed & TIOCM_DSR)
940 		sport->port.icount.dsr++;
941 	if (changed & TIOCM_CAR)
942 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
943 	if (changed & TIOCM_CTS)
944 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
945 
946 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
947 }
948 
949 static irqreturn_t imx_uart_int(int irq, void *dev_id)
950 {
951 	struct imx_port *sport = dev_id;
952 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
953 	irqreturn_t ret = IRQ_NONE;
954 
955 	spin_lock(&sport->port.lock);
956 
957 	usr1 = imx_uart_readl(sport, USR1);
958 	usr2 = imx_uart_readl(sport, USR2);
959 	ucr1 = imx_uart_readl(sport, UCR1);
960 	ucr2 = imx_uart_readl(sport, UCR2);
961 	ucr3 = imx_uart_readl(sport, UCR3);
962 	ucr4 = imx_uart_readl(sport, UCR4);
963 
964 	/*
965 	 * Even if a condition is true that can trigger an irq only handle it if
966 	 * the respective irq source is enabled. This prevents some undesired
967 	 * actions, for example if a character that sits in the RX FIFO and that
968 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
969 	 * receiver is currently off and so reading from URXD0 results in an
970 	 * exception. So just mask the (raw) status bits for disabled irqs.
971 	 */
972 	if ((ucr1 & UCR1_RRDYEN) == 0)
973 		usr1 &= ~USR1_RRDY;
974 	if ((ucr2 & UCR2_ATEN) == 0)
975 		usr1 &= ~USR1_AGTIM;
976 	if ((ucr1 & UCR1_TRDYEN) == 0)
977 		usr1 &= ~USR1_TRDY;
978 	if ((ucr4 & UCR4_TCEN) == 0)
979 		usr2 &= ~USR2_TXDC;
980 	if ((ucr3 & UCR3_DTRDEN) == 0)
981 		usr1 &= ~USR1_DTRD;
982 	if ((ucr1 & UCR1_RTSDEN) == 0)
983 		usr1 &= ~USR1_RTSD;
984 	if ((ucr3 & UCR3_AWAKEN) == 0)
985 		usr1 &= ~USR1_AWAKE;
986 	if ((ucr4 & UCR4_OREN) == 0)
987 		usr2 &= ~USR2_ORE;
988 
989 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
990 		imx_uart_writel(sport, USR1_AGTIM, USR1);
991 
992 		__imx_uart_rxint(irq, dev_id);
993 		ret = IRQ_HANDLED;
994 	}
995 
996 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
997 		imx_uart_transmit_buffer(sport);
998 		ret = IRQ_HANDLED;
999 	}
1000 
1001 	if (usr1 & USR1_DTRD) {
1002 		imx_uart_writel(sport, USR1_DTRD, USR1);
1003 
1004 		imx_uart_mctrl_check(sport);
1005 
1006 		ret = IRQ_HANDLED;
1007 	}
1008 
1009 	if (usr1 & USR1_RTSD) {
1010 		__imx_uart_rtsint(irq, dev_id);
1011 		ret = IRQ_HANDLED;
1012 	}
1013 
1014 	if (usr1 & USR1_AWAKE) {
1015 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1016 		ret = IRQ_HANDLED;
1017 	}
1018 
1019 	if (usr2 & USR2_ORE) {
1020 		sport->port.icount.overrun++;
1021 		imx_uart_writel(sport, USR2_ORE, USR2);
1022 		ret = IRQ_HANDLED;
1023 	}
1024 
1025 	spin_unlock(&sport->port.lock);
1026 
1027 	return ret;
1028 }
1029 
1030 /*
1031  * Return TIOCSER_TEMT when transmitter is not busy.
1032  */
1033 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1034 {
1035 	struct imx_port *sport = (struct imx_port *)port;
1036 	unsigned int ret;
1037 
1038 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1039 
1040 	/* If the TX DMA is working, return 0. */
1041 	if (sport->dma_is_txing)
1042 		ret = 0;
1043 
1044 	return ret;
1045 }
1046 
1047 /* called with port.lock taken and irqs off */
1048 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1049 {
1050 	struct imx_port *sport = (struct imx_port *)port;
1051 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1052 
1053 	mctrl_gpio_get(sport->gpios, &ret);
1054 
1055 	return ret;
1056 }
1057 
1058 /* called with port.lock taken and irqs off */
1059 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1060 {
1061 	struct imx_port *sport = (struct imx_port *)port;
1062 	u32 ucr3, uts;
1063 
1064 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1065 		u32 ucr2;
1066 
1067 		/*
1068 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1069 		 * setting if RTS is raised.
1070 		 */
1071 		ucr2 = imx_uart_readl(sport, UCR2);
1072 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1073 		if (mctrl & TIOCM_RTS) {
1074 			ucr2 |= UCR2_CTS;
1075 			/*
1076 			 * UCR2_IRTS is unset if and only if the port is
1077 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1078 			 * to get the state to restore to.
1079 			 */
1080 			if (!(ucr2 & UCR2_IRTS))
1081 				ucr2 |= UCR2_CTSC;
1082 		}
1083 		imx_uart_writel(sport, ucr2, UCR2);
1084 	}
1085 
1086 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1087 	if (!(mctrl & TIOCM_DTR))
1088 		ucr3 |= UCR3_DSR;
1089 	imx_uart_writel(sport, ucr3, UCR3);
1090 
1091 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1092 	if (mctrl & TIOCM_LOOP)
1093 		uts |= UTS_LOOP;
1094 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1095 
1096 	mctrl_gpio_set(sport->gpios, mctrl);
1097 }
1098 
1099 /*
1100  * Interrupts always disabled.
1101  */
1102 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1103 {
1104 	struct imx_port *sport = (struct imx_port *)port;
1105 	unsigned long flags;
1106 	u32 ucr1;
1107 
1108 	spin_lock_irqsave(&sport->port.lock, flags);
1109 
1110 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1111 
1112 	if (break_state != 0)
1113 		ucr1 |= UCR1_SNDBRK;
1114 
1115 	imx_uart_writel(sport, ucr1, UCR1);
1116 
1117 	spin_unlock_irqrestore(&sport->port.lock, flags);
1118 }
1119 
1120 /*
1121  * This is our per-port timeout handler, for checking the
1122  * modem status signals.
1123  */
1124 static void imx_uart_timeout(struct timer_list *t)
1125 {
1126 	struct imx_port *sport = from_timer(sport, t, timer);
1127 	unsigned long flags;
1128 
1129 	if (sport->port.state) {
1130 		spin_lock_irqsave(&sport->port.lock, flags);
1131 		imx_uart_mctrl_check(sport);
1132 		spin_unlock_irqrestore(&sport->port.lock, flags);
1133 
1134 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1135 	}
1136 }
1137 
1138 /*
1139  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1140  *   [1] the RX DMA buffer is full.
1141  *   [2] the aging timer expires
1142  *
1143  * Condition [2] is triggered when a character has been sitting in the FIFO
1144  * for at least 8 byte durations.
1145  */
1146 static void imx_uart_dma_rx_callback(void *data)
1147 {
1148 	struct imx_port *sport = data;
1149 	struct dma_chan	*chan = sport->dma_chan_rx;
1150 	struct scatterlist *sgl = &sport->rx_sgl;
1151 	struct tty_port *port = &sport->port.state->port;
1152 	struct dma_tx_state state;
1153 	struct circ_buf *rx_ring = &sport->rx_ring;
1154 	enum dma_status status;
1155 	unsigned int w_bytes = 0;
1156 	unsigned int r_bytes;
1157 	unsigned int bd_size;
1158 
1159 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1160 
1161 	if (status == DMA_ERROR) {
1162 		spin_lock(&sport->port.lock);
1163 		imx_uart_clear_rx_errors(sport);
1164 		spin_unlock(&sport->port.lock);
1165 		return;
1166 	}
1167 
1168 	/*
1169 	 * The state-residue variable represents the empty space
1170 	 * relative to the entire buffer. Taking this in consideration
1171 	 * the head is always calculated base on the buffer total
1172 	 * length - DMA transaction residue. The UART script from the
1173 	 * SDMA firmware will jump to the next buffer descriptor,
1174 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1175 	 * Taking this in consideration the tail is always at the
1176 	 * beginning of the buffer descriptor that contains the head.
1177 	 */
1178 
1179 	/* Calculate the head */
1180 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1181 
1182 	/* Calculate the tail. */
1183 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1184 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1185 
1186 	if (rx_ring->head <= sg_dma_len(sgl) &&
1187 	    rx_ring->head > rx_ring->tail) {
1188 
1189 		/* Move data from tail to head */
1190 		r_bytes = rx_ring->head - rx_ring->tail;
1191 
1192 		/* If we received something, check for 0xff flood */
1193 		spin_lock(&sport->port.lock);
1194 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1195 		spin_unlock(&sport->port.lock);
1196 
1197 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1198 
1199 			/* CPU claims ownership of RX DMA buffer */
1200 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1201 					    DMA_FROM_DEVICE);
1202 
1203 			w_bytes = tty_insert_flip_string(port,
1204 							 sport->rx_buf + rx_ring->tail, r_bytes);
1205 
1206 			/* UART retrieves ownership of RX DMA buffer */
1207 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1208 					       DMA_FROM_DEVICE);
1209 
1210 			if (w_bytes != r_bytes)
1211 				sport->port.icount.buf_overrun++;
1212 
1213 			sport->port.icount.rx += w_bytes;
1214 		}
1215 	} else	{
1216 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1217 		WARN_ON(rx_ring->head <= rx_ring->tail);
1218 	}
1219 
1220 	if (w_bytes) {
1221 		tty_flip_buffer_push(port);
1222 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1223 	}
1224 }
1225 
1226 static int imx_uart_start_rx_dma(struct imx_port *sport)
1227 {
1228 	struct scatterlist *sgl = &sport->rx_sgl;
1229 	struct dma_chan	*chan = sport->dma_chan_rx;
1230 	struct device *dev = sport->port.dev;
1231 	struct dma_async_tx_descriptor *desc;
1232 	int ret;
1233 
1234 	sport->rx_ring.head = 0;
1235 	sport->rx_ring.tail = 0;
1236 
1237 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1238 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1239 	if (ret == 0) {
1240 		dev_err(dev, "DMA mapping error for RX.\n");
1241 		return -EINVAL;
1242 	}
1243 
1244 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1245 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1246 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1247 
1248 	if (!desc) {
1249 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1250 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1251 		return -EINVAL;
1252 	}
1253 	desc->callback = imx_uart_dma_rx_callback;
1254 	desc->callback_param = sport;
1255 
1256 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1257 	sport->dma_is_rxing = 1;
1258 	sport->rx_cookie = dmaengine_submit(desc);
1259 	dma_async_issue_pending(chan);
1260 	return 0;
1261 }
1262 
1263 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1264 {
1265 	struct tty_port *port = &sport->port.state->port;
1266 	u32 usr1, usr2;
1267 
1268 	usr1 = imx_uart_readl(sport, USR1);
1269 	usr2 = imx_uart_readl(sport, USR2);
1270 
1271 	if (usr2 & USR2_BRCD) {
1272 		sport->port.icount.brk++;
1273 		imx_uart_writel(sport, USR2_BRCD, USR2);
1274 		uart_handle_break(&sport->port);
1275 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1276 			sport->port.icount.buf_overrun++;
1277 		tty_flip_buffer_push(port);
1278 	} else {
1279 		if (usr1 & USR1_FRAMERR) {
1280 			sport->port.icount.frame++;
1281 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1282 		} else if (usr1 & USR1_PARITYERR) {
1283 			sport->port.icount.parity++;
1284 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1285 		}
1286 	}
1287 
1288 	if (usr2 & USR2_ORE) {
1289 		sport->port.icount.overrun++;
1290 		imx_uart_writel(sport, USR2_ORE, USR2);
1291 	}
1292 
1293 	sport->idle_counter = 0;
1294 
1295 }
1296 
1297 #define TXTL_DEFAULT 2 /* reset default */
1298 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1299 #define TXTL_DMA 8 /* DMA burst setting */
1300 #define RXTL_DMA 9 /* DMA burst setting */
1301 
1302 static void imx_uart_setup_ufcr(struct imx_port *sport,
1303 				unsigned char txwl, unsigned char rxwl)
1304 {
1305 	unsigned int val;
1306 
1307 	/* set receiver / transmitter trigger level */
1308 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1309 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1310 	imx_uart_writel(sport, val, UFCR);
1311 }
1312 
1313 static void imx_uart_dma_exit(struct imx_port *sport)
1314 {
1315 	if (sport->dma_chan_rx) {
1316 		dmaengine_terminate_sync(sport->dma_chan_rx);
1317 		dma_release_channel(sport->dma_chan_rx);
1318 		sport->dma_chan_rx = NULL;
1319 		sport->rx_cookie = -EINVAL;
1320 		kfree(sport->rx_buf);
1321 		sport->rx_buf = NULL;
1322 	}
1323 
1324 	if (sport->dma_chan_tx) {
1325 		dmaengine_terminate_sync(sport->dma_chan_tx);
1326 		dma_release_channel(sport->dma_chan_tx);
1327 		sport->dma_chan_tx = NULL;
1328 	}
1329 }
1330 
1331 static int imx_uart_dma_init(struct imx_port *sport)
1332 {
1333 	struct dma_slave_config slave_config = {};
1334 	struct device *dev = sport->port.dev;
1335 	int ret;
1336 
1337 	/* Prepare for RX : */
1338 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1339 	if (!sport->dma_chan_rx) {
1340 		dev_dbg(dev, "cannot get the DMA channel.\n");
1341 		ret = -EINVAL;
1342 		goto err;
1343 	}
1344 
1345 	slave_config.direction = DMA_DEV_TO_MEM;
1346 	slave_config.src_addr = sport->port.mapbase + URXD0;
1347 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1348 	/* one byte less than the watermark level to enable the aging timer */
1349 	slave_config.src_maxburst = RXTL_DMA - 1;
1350 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1351 	if (ret) {
1352 		dev_err(dev, "error in RX dma configuration.\n");
1353 		goto err;
1354 	}
1355 
1356 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1357 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1358 	if (!sport->rx_buf) {
1359 		ret = -ENOMEM;
1360 		goto err;
1361 	}
1362 	sport->rx_ring.buf = sport->rx_buf;
1363 
1364 	/* Prepare for TX : */
1365 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1366 	if (!sport->dma_chan_tx) {
1367 		dev_err(dev, "cannot get the TX DMA channel!\n");
1368 		ret = -EINVAL;
1369 		goto err;
1370 	}
1371 
1372 	slave_config.direction = DMA_MEM_TO_DEV;
1373 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1374 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1375 	slave_config.dst_maxburst = TXTL_DMA;
1376 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1377 	if (ret) {
1378 		dev_err(dev, "error in TX dma configuration.");
1379 		goto err;
1380 	}
1381 
1382 	return 0;
1383 err:
1384 	imx_uart_dma_exit(sport);
1385 	return ret;
1386 }
1387 
1388 static void imx_uart_enable_dma(struct imx_port *sport)
1389 {
1390 	u32 ucr1;
1391 
1392 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1393 
1394 	/* set UCR1 */
1395 	ucr1 = imx_uart_readl(sport, UCR1);
1396 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1397 	imx_uart_writel(sport, ucr1, UCR1);
1398 
1399 	sport->dma_is_enabled = 1;
1400 }
1401 
1402 static void imx_uart_disable_dma(struct imx_port *sport)
1403 {
1404 	u32 ucr1;
1405 
1406 	/* clear UCR1 */
1407 	ucr1 = imx_uart_readl(sport, UCR1);
1408 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1409 	imx_uart_writel(sport, ucr1, UCR1);
1410 
1411 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1412 
1413 	sport->dma_is_enabled = 0;
1414 }
1415 
1416 /* half the RX buffer size */
1417 #define CTSTL 16
1418 
1419 static int imx_uart_startup(struct uart_port *port)
1420 {
1421 	struct imx_port *sport = (struct imx_port *)port;
1422 	int retval;
1423 	unsigned long flags;
1424 	int dma_is_inited = 0;
1425 	u32 ucr1, ucr2, ucr3, ucr4, uts;
1426 
1427 	retval = clk_prepare_enable(sport->clk_per);
1428 	if (retval)
1429 		return retval;
1430 	retval = clk_prepare_enable(sport->clk_ipg);
1431 	if (retval) {
1432 		clk_disable_unprepare(sport->clk_per);
1433 		return retval;
1434 	}
1435 
1436 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1437 
1438 	/* disable the DREN bit (Data Ready interrupt enable) before
1439 	 * requesting IRQs
1440 	 */
1441 	ucr4 = imx_uart_readl(sport, UCR4);
1442 
1443 	/* set the trigger level for CTS */
1444 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1445 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1446 
1447 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1448 
1449 	/* Can we enable the DMA support? */
1450 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1451 		dma_is_inited = 1;
1452 
1453 	spin_lock_irqsave(&sport->port.lock, flags);
1454 
1455 	/* Reset fifo's and state machines */
1456 	imx_uart_soft_reset(sport);
1457 
1458 	/*
1459 	 * Finally, clear and enable interrupts
1460 	 */
1461 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1462 	imx_uart_writel(sport, USR2_ORE, USR2);
1463 
1464 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1465 	ucr1 |= UCR1_UARTEN;
1466 	if (sport->have_rtscts)
1467 		ucr1 |= UCR1_RTSDEN;
1468 
1469 	imx_uart_writel(sport, ucr1, UCR1);
1470 
1471 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1472 	if (!dma_is_inited)
1473 		ucr4 |= UCR4_OREN;
1474 	if (sport->inverted_rx)
1475 		ucr4 |= UCR4_INVR;
1476 	imx_uart_writel(sport, ucr4, UCR4);
1477 
1478 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1479 	/*
1480 	 * configure tx polarity before enabling tx
1481 	 */
1482 	if (sport->inverted_tx)
1483 		ucr3 |= UCR3_INVT;
1484 
1485 	if (!imx_uart_is_imx1(sport)) {
1486 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1487 
1488 		if (sport->dte_mode)
1489 			/* disable broken interrupts */
1490 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1491 	}
1492 	imx_uart_writel(sport, ucr3, UCR3);
1493 
1494 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1495 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1496 	if (!sport->have_rtscts)
1497 		ucr2 |= UCR2_IRTS;
1498 	/*
1499 	 * make sure the edge sensitive RTS-irq is disabled,
1500 	 * we're using RTSD instead.
1501 	 */
1502 	if (!imx_uart_is_imx1(sport))
1503 		ucr2 &= ~UCR2_RTSEN;
1504 	imx_uart_writel(sport, ucr2, UCR2);
1505 
1506 	/*
1507 	 * Enable modem status interrupts
1508 	 */
1509 	imx_uart_enable_ms(&sport->port);
1510 
1511 	if (dma_is_inited) {
1512 		imx_uart_enable_dma(sport);
1513 		imx_uart_start_rx_dma(sport);
1514 	} else {
1515 		ucr1 = imx_uart_readl(sport, UCR1);
1516 		ucr1 |= UCR1_RRDYEN;
1517 		imx_uart_writel(sport, ucr1, UCR1);
1518 
1519 		ucr2 = imx_uart_readl(sport, UCR2);
1520 		ucr2 |= UCR2_ATEN;
1521 		imx_uart_writel(sport, ucr2, UCR2);
1522 	}
1523 
1524 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1525 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1526 	uts &= ~UTS_LOOP;
1527 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1528 
1529 	spin_unlock_irqrestore(&sport->port.lock, flags);
1530 
1531 	return 0;
1532 }
1533 
1534 static void imx_uart_shutdown(struct uart_port *port)
1535 {
1536 	struct imx_port *sport = (struct imx_port *)port;
1537 	unsigned long flags;
1538 	u32 ucr1, ucr2, ucr4, uts;
1539 
1540 	if (sport->dma_is_enabled) {
1541 		dmaengine_terminate_sync(sport->dma_chan_tx);
1542 		if (sport->dma_is_txing) {
1543 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1544 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1545 			sport->dma_is_txing = 0;
1546 		}
1547 		dmaengine_terminate_sync(sport->dma_chan_rx);
1548 		if (sport->dma_is_rxing) {
1549 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1550 				     1, DMA_FROM_DEVICE);
1551 			sport->dma_is_rxing = 0;
1552 		}
1553 
1554 		spin_lock_irqsave(&sport->port.lock, flags);
1555 		imx_uart_stop_tx(port);
1556 		imx_uart_stop_rx(port);
1557 		imx_uart_disable_dma(sport);
1558 		spin_unlock_irqrestore(&sport->port.lock, flags);
1559 		imx_uart_dma_exit(sport);
1560 	}
1561 
1562 	mctrl_gpio_disable_ms(sport->gpios);
1563 
1564 	spin_lock_irqsave(&sport->port.lock, flags);
1565 	ucr2 = imx_uart_readl(sport, UCR2);
1566 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1567 	imx_uart_writel(sport, ucr2, UCR2);
1568 	spin_unlock_irqrestore(&sport->port.lock, flags);
1569 
1570 	/*
1571 	 * Stop our timer.
1572 	 */
1573 	del_timer_sync(&sport->timer);
1574 
1575 	/*
1576 	 * Disable all interrupts, port and break condition.
1577 	 */
1578 
1579 	spin_lock_irqsave(&sport->port.lock, flags);
1580 
1581 	ucr1 = imx_uart_readl(sport, UCR1);
1582 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1583 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1584 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1585 	if (port->rs485.flags & SER_RS485_ENABLED &&
1586 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1587 	    sport->have_rtscts && !sport->have_rtsgpio) {
1588 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1589 		uts |= UTS_LOOP;
1590 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1591 		ucr1 |= UCR1_UARTEN;
1592 	} else {
1593 		ucr1 &= ~UCR1_UARTEN;
1594 	}
1595 	imx_uart_writel(sport, ucr1, UCR1);
1596 
1597 	ucr4 = imx_uart_readl(sport, UCR4);
1598 	ucr4 &= ~UCR4_TCEN;
1599 	imx_uart_writel(sport, ucr4, UCR4);
1600 
1601 	spin_unlock_irqrestore(&sport->port.lock, flags);
1602 
1603 	clk_disable_unprepare(sport->clk_per);
1604 	clk_disable_unprepare(sport->clk_ipg);
1605 }
1606 
1607 /* called with port.lock taken and irqs off */
1608 static void imx_uart_flush_buffer(struct uart_port *port)
1609 {
1610 	struct imx_port *sport = (struct imx_port *)port;
1611 	struct scatterlist *sgl = &sport->tx_sgl[0];
1612 
1613 	if (!sport->dma_chan_tx)
1614 		return;
1615 
1616 	sport->tx_bytes = 0;
1617 	dmaengine_terminate_all(sport->dma_chan_tx);
1618 	if (sport->dma_is_txing) {
1619 		u32 ucr1;
1620 
1621 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1622 			     DMA_TO_DEVICE);
1623 		ucr1 = imx_uart_readl(sport, UCR1);
1624 		ucr1 &= ~UCR1_TXDMAEN;
1625 		imx_uart_writel(sport, ucr1, UCR1);
1626 		sport->dma_is_txing = 0;
1627 	}
1628 
1629 	imx_uart_soft_reset(sport);
1630 
1631 }
1632 
1633 static void
1634 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1635 		     const struct ktermios *old)
1636 {
1637 	struct imx_port *sport = (struct imx_port *)port;
1638 	unsigned long flags;
1639 	u32 ucr2, old_ucr2, ufcr;
1640 	unsigned int baud, quot;
1641 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1642 	unsigned long div;
1643 	unsigned long num, denom, old_ubir, old_ubmr;
1644 	uint64_t tdiv64;
1645 
1646 	/*
1647 	 * We only support CS7 and CS8.
1648 	 */
1649 	while ((termios->c_cflag & CSIZE) != CS7 &&
1650 	       (termios->c_cflag & CSIZE) != CS8) {
1651 		termios->c_cflag &= ~CSIZE;
1652 		termios->c_cflag |= old_csize;
1653 		old_csize = CS8;
1654 	}
1655 
1656 	del_timer_sync(&sport->timer);
1657 
1658 	/*
1659 	 * Ask the core to calculate the divisor for us.
1660 	 */
1661 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1662 	quot = uart_get_divisor(port, baud);
1663 
1664 	spin_lock_irqsave(&sport->port.lock, flags);
1665 
1666 	/*
1667 	 * Read current UCR2 and save it for future use, then clear all the bits
1668 	 * except those we will or may need to preserve.
1669 	 */
1670 	old_ucr2 = imx_uart_readl(sport, UCR2);
1671 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1672 
1673 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1674 	if ((termios->c_cflag & CSIZE) == CS8)
1675 		ucr2 |= UCR2_WS;
1676 
1677 	if (!sport->have_rtscts)
1678 		termios->c_cflag &= ~CRTSCTS;
1679 
1680 	if (port->rs485.flags & SER_RS485_ENABLED) {
1681 		/*
1682 		 * RTS is mandatory for rs485 operation, so keep
1683 		 * it under manual control and keep transmitter
1684 		 * disabled.
1685 		 */
1686 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1687 			imx_uart_rts_active(sport, &ucr2);
1688 		else
1689 			imx_uart_rts_inactive(sport, &ucr2);
1690 
1691 	} else if (termios->c_cflag & CRTSCTS) {
1692 		/*
1693 		 * Only let receiver control RTS output if we were not requested
1694 		 * to have RTS inactive (which then should take precedence).
1695 		 */
1696 		if (ucr2 & UCR2_CTS)
1697 			ucr2 |= UCR2_CTSC;
1698 	}
1699 
1700 	if (termios->c_cflag & CRTSCTS)
1701 		ucr2 &= ~UCR2_IRTS;
1702 	if (termios->c_cflag & CSTOPB)
1703 		ucr2 |= UCR2_STPB;
1704 	if (termios->c_cflag & PARENB) {
1705 		ucr2 |= UCR2_PREN;
1706 		if (termios->c_cflag & PARODD)
1707 			ucr2 |= UCR2_PROE;
1708 	}
1709 
1710 	sport->port.read_status_mask = 0;
1711 	if (termios->c_iflag & INPCK)
1712 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1713 	if (termios->c_iflag & (BRKINT | PARMRK))
1714 		sport->port.read_status_mask |= URXD_BRK;
1715 
1716 	/*
1717 	 * Characters to ignore
1718 	 */
1719 	sport->port.ignore_status_mask = 0;
1720 	if (termios->c_iflag & IGNPAR)
1721 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1722 	if (termios->c_iflag & IGNBRK) {
1723 		sport->port.ignore_status_mask |= URXD_BRK;
1724 		/*
1725 		 * If we're ignoring parity and break indicators,
1726 		 * ignore overruns too (for real raw support).
1727 		 */
1728 		if (termios->c_iflag & IGNPAR)
1729 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1730 	}
1731 
1732 	if ((termios->c_cflag & CREAD) == 0)
1733 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1734 
1735 	/*
1736 	 * Update the per-port timeout.
1737 	 */
1738 	uart_update_timeout(port, termios->c_cflag, baud);
1739 
1740 	/* custom-baudrate handling */
1741 	div = sport->port.uartclk / (baud * 16);
1742 	if (baud == 38400 && quot != div)
1743 		baud = sport->port.uartclk / (quot * 16);
1744 
1745 	div = sport->port.uartclk / (baud * 16);
1746 	if (div > 7)
1747 		div = 7;
1748 	if (!div)
1749 		div = 1;
1750 
1751 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1752 		1 << 16, 1 << 16, &num, &denom);
1753 
1754 	tdiv64 = sport->port.uartclk;
1755 	tdiv64 *= num;
1756 	do_div(tdiv64, denom * 16 * div);
1757 	tty_termios_encode_baud_rate(termios,
1758 				(speed_t)tdiv64, (speed_t)tdiv64);
1759 
1760 	num -= 1;
1761 	denom -= 1;
1762 
1763 	ufcr = imx_uart_readl(sport, UFCR);
1764 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1765 	imx_uart_writel(sport, ufcr, UFCR);
1766 
1767 	/*
1768 	 *  Two registers below should always be written both and in this
1769 	 *  particular order. One consequence is that we need to check if any of
1770 	 *  them changes and then update both. We do need the check for change
1771 	 *  as even writing the same values seem to "restart"
1772 	 *  transmission/receiving logic in the hardware, that leads to data
1773 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1774 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1775 	 */
1776 	old_ubir = imx_uart_readl(sport, UBIR);
1777 	old_ubmr = imx_uart_readl(sport, UBMR);
1778 	if (old_ubir != num || old_ubmr != denom) {
1779 		imx_uart_writel(sport, num, UBIR);
1780 		imx_uart_writel(sport, denom, UBMR);
1781 	}
1782 
1783 	if (!imx_uart_is_imx1(sport))
1784 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1785 				IMX21_ONEMS);
1786 
1787 	imx_uart_writel(sport, ucr2, UCR2);
1788 
1789 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1790 		imx_uart_enable_ms(&sport->port);
1791 
1792 	spin_unlock_irqrestore(&sport->port.lock, flags);
1793 }
1794 
1795 static const char *imx_uart_type(struct uart_port *port)
1796 {
1797 	return port->type == PORT_IMX ? "IMX" : NULL;
1798 }
1799 
1800 /*
1801  * Configure/autoconfigure the port.
1802  */
1803 static void imx_uart_config_port(struct uart_port *port, int flags)
1804 {
1805 	if (flags & UART_CONFIG_TYPE)
1806 		port->type = PORT_IMX;
1807 }
1808 
1809 /*
1810  * Verify the new serial_struct (for TIOCSSERIAL).
1811  * The only change we allow are to the flags and type, and
1812  * even then only between PORT_IMX and PORT_UNKNOWN
1813  */
1814 static int
1815 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1816 {
1817 	int ret = 0;
1818 
1819 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1820 		ret = -EINVAL;
1821 	if (port->irq != ser->irq)
1822 		ret = -EINVAL;
1823 	if (ser->io_type != UPIO_MEM)
1824 		ret = -EINVAL;
1825 	if (port->uartclk / 16 != ser->baud_base)
1826 		ret = -EINVAL;
1827 	if (port->mapbase != (unsigned long)ser->iomem_base)
1828 		ret = -EINVAL;
1829 	if (port->iobase != ser->port)
1830 		ret = -EINVAL;
1831 	if (ser->hub6 != 0)
1832 		ret = -EINVAL;
1833 	return ret;
1834 }
1835 
1836 #if defined(CONFIG_CONSOLE_POLL)
1837 
1838 static int imx_uart_poll_init(struct uart_port *port)
1839 {
1840 	struct imx_port *sport = (struct imx_port *)port;
1841 	unsigned long flags;
1842 	u32 ucr1, ucr2;
1843 	int retval;
1844 
1845 	retval = clk_prepare_enable(sport->clk_ipg);
1846 	if (retval)
1847 		return retval;
1848 	retval = clk_prepare_enable(sport->clk_per);
1849 	if (retval)
1850 		clk_disable_unprepare(sport->clk_ipg);
1851 
1852 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1853 
1854 	spin_lock_irqsave(&sport->port.lock, flags);
1855 
1856 	/*
1857 	 * Be careful about the order of enabling bits here. First enable the
1858 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1859 	 * This prevents that a character that already sits in the RX fifo is
1860 	 * triggering an irq but the try to fetch it from there results in an
1861 	 * exception because UARTEN or RXEN is still off.
1862 	 */
1863 	ucr1 = imx_uart_readl(sport, UCR1);
1864 	ucr2 = imx_uart_readl(sport, UCR2);
1865 
1866 	if (imx_uart_is_imx1(sport))
1867 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1868 
1869 	ucr1 |= UCR1_UARTEN;
1870 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1871 
1872 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1873 	ucr2 &= ~UCR2_ATEN;
1874 
1875 	imx_uart_writel(sport, ucr1, UCR1);
1876 	imx_uart_writel(sport, ucr2, UCR2);
1877 
1878 	/* now enable irqs */
1879 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1880 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1881 
1882 	spin_unlock_irqrestore(&sport->port.lock, flags);
1883 
1884 	return 0;
1885 }
1886 
1887 static int imx_uart_poll_get_char(struct uart_port *port)
1888 {
1889 	struct imx_port *sport = (struct imx_port *)port;
1890 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1891 		return NO_POLL_CHAR;
1892 
1893 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1894 }
1895 
1896 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1897 {
1898 	struct imx_port *sport = (struct imx_port *)port;
1899 	unsigned int status;
1900 
1901 	/* drain */
1902 	do {
1903 		status = imx_uart_readl(sport, USR1);
1904 	} while (~status & USR1_TRDY);
1905 
1906 	/* write */
1907 	imx_uart_writel(sport, c, URTX0);
1908 
1909 	/* flush */
1910 	do {
1911 		status = imx_uart_readl(sport, USR2);
1912 	} while (~status & USR2_TXDC);
1913 }
1914 #endif
1915 
1916 /* called with port.lock taken and irqs off or from .probe without locking */
1917 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1918 				 struct serial_rs485 *rs485conf)
1919 {
1920 	struct imx_port *sport = (struct imx_port *)port;
1921 	u32 ucr2;
1922 
1923 	if (rs485conf->flags & SER_RS485_ENABLED) {
1924 		/* Enable receiver if low-active RTS signal is requested */
1925 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1926 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1927 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1928 
1929 		/* disable transmitter */
1930 		ucr2 = imx_uart_readl(sport, UCR2);
1931 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1932 			imx_uart_rts_active(sport, &ucr2);
1933 		else
1934 			imx_uart_rts_inactive(sport, &ucr2);
1935 		imx_uart_writel(sport, ucr2, UCR2);
1936 	}
1937 
1938 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1939 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1940 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1941 		imx_uart_start_rx(port);
1942 
1943 	if (port->rs485_rx_during_tx_gpio)
1944 		gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio,
1945 					 !!(rs485conf->flags & SER_RS485_RX_DURING_TX));
1946 
1947 	return 0;
1948 }
1949 
1950 static const struct uart_ops imx_uart_pops = {
1951 	.tx_empty	= imx_uart_tx_empty,
1952 	.set_mctrl	= imx_uart_set_mctrl,
1953 	.get_mctrl	= imx_uart_get_mctrl,
1954 	.stop_tx	= imx_uart_stop_tx,
1955 	.start_tx	= imx_uart_start_tx,
1956 	.stop_rx	= imx_uart_stop_rx,
1957 	.enable_ms	= imx_uart_enable_ms,
1958 	.break_ctl	= imx_uart_break_ctl,
1959 	.startup	= imx_uart_startup,
1960 	.shutdown	= imx_uart_shutdown,
1961 	.flush_buffer	= imx_uart_flush_buffer,
1962 	.set_termios	= imx_uart_set_termios,
1963 	.type		= imx_uart_type,
1964 	.config_port	= imx_uart_config_port,
1965 	.verify_port	= imx_uart_verify_port,
1966 #if defined(CONFIG_CONSOLE_POLL)
1967 	.poll_init      = imx_uart_poll_init,
1968 	.poll_get_char  = imx_uart_poll_get_char,
1969 	.poll_put_char  = imx_uart_poll_put_char,
1970 #endif
1971 };
1972 
1973 static struct imx_port *imx_uart_ports[UART_NR];
1974 
1975 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1976 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1977 {
1978 	struct imx_port *sport = (struct imx_port *)port;
1979 
1980 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1981 		barrier();
1982 
1983 	imx_uart_writel(sport, ch, URTX0);
1984 }
1985 
1986 /*
1987  * Interrupts are disabled on entering
1988  */
1989 static void
1990 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1991 {
1992 	struct imx_port *sport = imx_uart_ports[co->index];
1993 	struct imx_port_ucrs old_ucr;
1994 	unsigned long flags;
1995 	unsigned int ucr1;
1996 	int locked = 1;
1997 
1998 	if (sport->port.sysrq)
1999 		locked = 0;
2000 	else if (oops_in_progress)
2001 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2002 	else
2003 		spin_lock_irqsave(&sport->port.lock, flags);
2004 
2005 	/*
2006 	 *	First, save UCR1/2/3 and then disable interrupts
2007 	 */
2008 	imx_uart_ucrs_save(sport, &old_ucr);
2009 	ucr1 = old_ucr.ucr1;
2010 
2011 	if (imx_uart_is_imx1(sport))
2012 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2013 	ucr1 |= UCR1_UARTEN;
2014 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2015 
2016 	imx_uart_writel(sport, ucr1, UCR1);
2017 
2018 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2019 
2020 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2021 
2022 	/*
2023 	 *	Finally, wait for transmitter to become empty
2024 	 *	and restore UCR1/2/3
2025 	 */
2026 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2027 
2028 	imx_uart_ucrs_restore(sport, &old_ucr);
2029 
2030 	if (locked)
2031 		spin_unlock_irqrestore(&sport->port.lock, flags);
2032 }
2033 
2034 /*
2035  * If the port was already initialised (eg, by a boot loader),
2036  * try to determine the current setup.
2037  */
2038 static void
2039 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2040 			     int *parity, int *bits)
2041 {
2042 
2043 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2044 		/* ok, the port was enabled */
2045 		unsigned int ucr2, ubir, ubmr, uartclk;
2046 		unsigned int baud_raw;
2047 		unsigned int ucfr_rfdiv;
2048 
2049 		ucr2 = imx_uart_readl(sport, UCR2);
2050 
2051 		*parity = 'n';
2052 		if (ucr2 & UCR2_PREN) {
2053 			if (ucr2 & UCR2_PROE)
2054 				*parity = 'o';
2055 			else
2056 				*parity = 'e';
2057 		}
2058 
2059 		if (ucr2 & UCR2_WS)
2060 			*bits = 8;
2061 		else
2062 			*bits = 7;
2063 
2064 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2065 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2066 
2067 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2068 		if (ucfr_rfdiv == 6)
2069 			ucfr_rfdiv = 7;
2070 		else
2071 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2072 
2073 		uartclk = clk_get_rate(sport->clk_per);
2074 		uartclk /= ucfr_rfdiv;
2075 
2076 		{	/*
2077 			 * The next code provides exact computation of
2078 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2079 			 * without need of float support or long long division,
2080 			 * which would be required to prevent 32bit arithmetic overflow
2081 			 */
2082 			unsigned int mul = ubir + 1;
2083 			unsigned int div = 16 * (ubmr + 1);
2084 			unsigned int rem = uartclk % div;
2085 
2086 			baud_raw = (uartclk / div) * mul;
2087 			baud_raw += (rem * mul + div / 2) / div;
2088 			*baud = (baud_raw + 50) / 100 * 100;
2089 		}
2090 
2091 		if (*baud != baud_raw)
2092 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2093 				baud_raw, *baud);
2094 	}
2095 }
2096 
2097 static int
2098 imx_uart_console_setup(struct console *co, char *options)
2099 {
2100 	struct imx_port *sport;
2101 	int baud = 9600;
2102 	int bits = 8;
2103 	int parity = 'n';
2104 	int flow = 'n';
2105 	int retval;
2106 
2107 	/*
2108 	 * Check whether an invalid uart number has been specified, and
2109 	 * if so, search for the first available port that does have
2110 	 * console support.
2111 	 */
2112 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2113 		co->index = 0;
2114 	sport = imx_uart_ports[co->index];
2115 	if (sport == NULL)
2116 		return -ENODEV;
2117 
2118 	/* For setting the registers, we only need to enable the ipg clock. */
2119 	retval = clk_prepare_enable(sport->clk_ipg);
2120 	if (retval)
2121 		goto error_console;
2122 
2123 	if (options)
2124 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2125 	else
2126 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2127 
2128 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2129 
2130 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2131 
2132 	if (retval) {
2133 		clk_disable_unprepare(sport->clk_ipg);
2134 		goto error_console;
2135 	}
2136 
2137 	retval = clk_prepare_enable(sport->clk_per);
2138 	if (retval)
2139 		clk_disable_unprepare(sport->clk_ipg);
2140 
2141 error_console:
2142 	return retval;
2143 }
2144 
2145 static int
2146 imx_uart_console_exit(struct console *co)
2147 {
2148 	struct imx_port *sport = imx_uart_ports[co->index];
2149 
2150 	clk_disable_unprepare(sport->clk_per);
2151 	clk_disable_unprepare(sport->clk_ipg);
2152 
2153 	return 0;
2154 }
2155 
2156 static struct uart_driver imx_uart_uart_driver;
2157 static struct console imx_uart_console = {
2158 	.name		= DEV_NAME,
2159 	.write		= imx_uart_console_write,
2160 	.device		= uart_console_device,
2161 	.setup		= imx_uart_console_setup,
2162 	.exit		= imx_uart_console_exit,
2163 	.flags		= CON_PRINTBUFFER,
2164 	.index		= -1,
2165 	.data		= &imx_uart_uart_driver,
2166 };
2167 
2168 #define IMX_CONSOLE	&imx_uart_console
2169 
2170 #else
2171 #define IMX_CONSOLE	NULL
2172 #endif
2173 
2174 static struct uart_driver imx_uart_uart_driver = {
2175 	.owner          = THIS_MODULE,
2176 	.driver_name    = DRIVER_NAME,
2177 	.dev_name       = DEV_NAME,
2178 	.major          = SERIAL_IMX_MAJOR,
2179 	.minor          = MINOR_START,
2180 	.nr             = ARRAY_SIZE(imx_uart_ports),
2181 	.cons           = IMX_CONSOLE,
2182 };
2183 
2184 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2185 {
2186 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2187 	unsigned long flags;
2188 
2189 	spin_lock_irqsave(&sport->port.lock, flags);
2190 	if (sport->tx_state == WAIT_AFTER_RTS)
2191 		imx_uart_start_tx(&sport->port);
2192 	spin_unlock_irqrestore(&sport->port.lock, flags);
2193 
2194 	return HRTIMER_NORESTART;
2195 }
2196 
2197 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2198 {
2199 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2200 	unsigned long flags;
2201 
2202 	spin_lock_irqsave(&sport->port.lock, flags);
2203 	if (sport->tx_state == WAIT_AFTER_SEND)
2204 		imx_uart_stop_tx(&sport->port);
2205 	spin_unlock_irqrestore(&sport->port.lock, flags);
2206 
2207 	return HRTIMER_NORESTART;
2208 }
2209 
2210 static const struct serial_rs485 imx_no_rs485 = {};	/* No RS485 if no RTS */
2211 static const struct serial_rs485 imx_rs485_supported = {
2212 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2213 		 SER_RS485_RX_DURING_TX,
2214 	.delay_rts_before_send = 1,
2215 	.delay_rts_after_send = 1,
2216 };
2217 
2218 /* Default RX DMA buffer configuration */
2219 #define RX_DMA_PERIODS		16
2220 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2221 
2222 static int imx_uart_probe(struct platform_device *pdev)
2223 {
2224 	struct device_node *np = pdev->dev.of_node;
2225 	struct imx_port *sport;
2226 	void __iomem *base;
2227 	u32 dma_buf_conf[2];
2228 	int ret = 0;
2229 	u32 ucr1, ucr2, uts;
2230 	struct resource *res;
2231 	int txirq, rxirq, rtsirq;
2232 
2233 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2234 	if (!sport)
2235 		return -ENOMEM;
2236 
2237 	sport->devdata = of_device_get_match_data(&pdev->dev);
2238 
2239 	ret = of_alias_get_id(np, "serial");
2240 	if (ret < 0) {
2241 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2242 		return ret;
2243 	}
2244 	sport->port.line = ret;
2245 
2246 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2247 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2248 
2249 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2250 
2251 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2252 
2253 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2254 
2255 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2256 
2257 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2258 		sport->rx_period_length = dma_buf_conf[0];
2259 		sport->rx_periods = dma_buf_conf[1];
2260 	} else {
2261 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2262 		sport->rx_periods = RX_DMA_PERIODS;
2263 	}
2264 
2265 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2266 		dev_err(&pdev->dev, "serial%d out of range\n",
2267 			sport->port.line);
2268 		return -EINVAL;
2269 	}
2270 
2271 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2272 	base = devm_ioremap_resource(&pdev->dev, res);
2273 	if (IS_ERR(base))
2274 		return PTR_ERR(base);
2275 
2276 	rxirq = platform_get_irq(pdev, 0);
2277 	if (rxirq < 0)
2278 		return rxirq;
2279 	txirq = platform_get_irq_optional(pdev, 1);
2280 	rtsirq = platform_get_irq_optional(pdev, 2);
2281 
2282 	sport->port.dev = &pdev->dev;
2283 	sport->port.mapbase = res->start;
2284 	sport->port.membase = base;
2285 	sport->port.type = PORT_IMX;
2286 	sport->port.iotype = UPIO_MEM;
2287 	sport->port.irq = rxirq;
2288 	sport->port.fifosize = 32;
2289 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2290 	sport->port.ops = &imx_uart_pops;
2291 	sport->port.rs485_config = imx_uart_rs485_config;
2292 	/* RTS is required to control the RS485 transmitter */
2293 	if (sport->have_rtscts || sport->have_rtsgpio)
2294 		sport->port.rs485_supported = imx_rs485_supported;
2295 	else
2296 		sport->port.rs485_supported = imx_no_rs485;
2297 	sport->port.flags = UPF_BOOT_AUTOCONF;
2298 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2299 
2300 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2301 	if (IS_ERR(sport->gpios))
2302 		return PTR_ERR(sport->gpios);
2303 
2304 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2305 	if (IS_ERR(sport->clk_ipg)) {
2306 		ret = PTR_ERR(sport->clk_ipg);
2307 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2308 		return ret;
2309 	}
2310 
2311 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2312 	if (IS_ERR(sport->clk_per)) {
2313 		ret = PTR_ERR(sport->clk_per);
2314 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2315 		return ret;
2316 	}
2317 
2318 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2319 
2320 	/* For register access, we only need to enable the ipg clock. */
2321 	ret = clk_prepare_enable(sport->clk_ipg);
2322 	if (ret) {
2323 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2324 		return ret;
2325 	}
2326 
2327 	ret = uart_get_rs485_mode(&sport->port);
2328 	if (ret) {
2329 		clk_disable_unprepare(sport->clk_ipg);
2330 		return ret;
2331 	}
2332 
2333 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2334 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2335 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2336 
2337 	/*
2338 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2339 	 * signal cannot be set low during transmission in case the
2340 	 * receiver is off (limitation of the i.MX UART IP).
2341 	 */
2342 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2343 	    sport->have_rtscts && !sport->have_rtsgpio &&
2344 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2345 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2346 		dev_err(&pdev->dev,
2347 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2348 
2349 	/* Disable interrupts before requesting them */
2350 	ucr1 = imx_uart_readl(sport, UCR1);
2351 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2352 	imx_uart_writel(sport, ucr1, UCR1);
2353 
2354 	/* Disable Ageing Timer interrupt */
2355 	ucr2 = imx_uart_readl(sport, UCR2);
2356 	ucr2 &= ~UCR2_ATEN;
2357 	imx_uart_writel(sport, ucr2, UCR2);
2358 
2359 	/*
2360 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2361 	 * is used to control CTS signal. Keep both the UART and Receiver
2362 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2363 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2364 	 * data from being fed into the RX FIFO, enable loopback mode in
2365 	 * UTS register, which disconnects the RX path from external RXD
2366 	 * pin and connects it to the Transceiver, which is disabled, so
2367 	 * no data can be fed to the RX FIFO that way.
2368 	 */
2369 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2370 	    sport->have_rtscts && !sport->have_rtsgpio) {
2371 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2372 		uts |= UTS_LOOP;
2373 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2374 
2375 		ucr1 = imx_uart_readl(sport, UCR1);
2376 		ucr1 |= UCR1_UARTEN;
2377 		imx_uart_writel(sport, ucr1, UCR1);
2378 
2379 		ucr2 = imx_uart_readl(sport, UCR2);
2380 		ucr2 |= UCR2_RXEN;
2381 		imx_uart_writel(sport, ucr2, UCR2);
2382 	}
2383 
2384 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2385 		/*
2386 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2387 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2388 		 * and DCD (when they are outputs) or enables the respective
2389 		 * irqs. So set this bit early, i.e. before requesting irqs.
2390 		 */
2391 		u32 ufcr = imx_uart_readl(sport, UFCR);
2392 		if (!(ufcr & UFCR_DCEDTE))
2393 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2394 
2395 		/*
2396 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2397 		 * enabled later because they cannot be cleared
2398 		 * (confirmed on i.MX25) which makes them unusable.
2399 		 */
2400 		imx_uart_writel(sport,
2401 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2402 				UCR3);
2403 
2404 	} else {
2405 		u32 ucr3 = UCR3_DSR;
2406 		u32 ufcr = imx_uart_readl(sport, UFCR);
2407 		if (ufcr & UFCR_DCEDTE)
2408 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2409 
2410 		if (!imx_uart_is_imx1(sport))
2411 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2412 		imx_uart_writel(sport, ucr3, UCR3);
2413 	}
2414 
2415 	clk_disable_unprepare(sport->clk_ipg);
2416 
2417 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2418 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2419 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2420 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2421 
2422 	/*
2423 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2424 	 * chips only have one interrupt.
2425 	 */
2426 	if (txirq > 0) {
2427 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2428 				       dev_name(&pdev->dev), sport);
2429 		if (ret) {
2430 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2431 				ret);
2432 			return ret;
2433 		}
2434 
2435 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2436 				       dev_name(&pdev->dev), sport);
2437 		if (ret) {
2438 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2439 				ret);
2440 			return ret;
2441 		}
2442 
2443 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2444 				       dev_name(&pdev->dev), sport);
2445 		if (ret) {
2446 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2447 				ret);
2448 			return ret;
2449 		}
2450 	} else {
2451 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2452 				       dev_name(&pdev->dev), sport);
2453 		if (ret) {
2454 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2455 			return ret;
2456 		}
2457 	}
2458 
2459 	imx_uart_ports[sport->port.line] = sport;
2460 
2461 	platform_set_drvdata(pdev, sport);
2462 
2463 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2464 }
2465 
2466 static int imx_uart_remove(struct platform_device *pdev)
2467 {
2468 	struct imx_port *sport = platform_get_drvdata(pdev);
2469 
2470 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2471 }
2472 
2473 static void imx_uart_restore_context(struct imx_port *sport)
2474 {
2475 	unsigned long flags;
2476 
2477 	spin_lock_irqsave(&sport->port.lock, flags);
2478 	if (!sport->context_saved) {
2479 		spin_unlock_irqrestore(&sport->port.lock, flags);
2480 		return;
2481 	}
2482 
2483 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2484 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2485 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2486 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2487 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2488 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2489 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2490 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2491 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2492 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2493 	sport->context_saved = false;
2494 	spin_unlock_irqrestore(&sport->port.lock, flags);
2495 }
2496 
2497 static void imx_uart_save_context(struct imx_port *sport)
2498 {
2499 	unsigned long flags;
2500 
2501 	/* Save necessary regs */
2502 	spin_lock_irqsave(&sport->port.lock, flags);
2503 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2504 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2505 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2506 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2507 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2508 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2509 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2510 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2511 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2512 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2513 	sport->context_saved = true;
2514 	spin_unlock_irqrestore(&sport->port.lock, flags);
2515 }
2516 
2517 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2518 {
2519 	u32 ucr3;
2520 
2521 	ucr3 = imx_uart_readl(sport, UCR3);
2522 	if (on) {
2523 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2524 		ucr3 |= UCR3_AWAKEN;
2525 	} else {
2526 		ucr3 &= ~UCR3_AWAKEN;
2527 	}
2528 	imx_uart_writel(sport, ucr3, UCR3);
2529 
2530 	if (sport->have_rtscts) {
2531 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2532 		if (on) {
2533 			imx_uart_writel(sport, USR1_RTSD, USR1);
2534 			ucr1 |= UCR1_RTSDEN;
2535 		} else {
2536 			ucr1 &= ~UCR1_RTSDEN;
2537 		}
2538 		imx_uart_writel(sport, ucr1, UCR1);
2539 	}
2540 }
2541 
2542 static int imx_uart_suspend_noirq(struct device *dev)
2543 {
2544 	struct imx_port *sport = dev_get_drvdata(dev);
2545 
2546 	imx_uart_save_context(sport);
2547 
2548 	clk_disable(sport->clk_ipg);
2549 
2550 	pinctrl_pm_select_sleep_state(dev);
2551 
2552 	return 0;
2553 }
2554 
2555 static int imx_uart_resume_noirq(struct device *dev)
2556 {
2557 	struct imx_port *sport = dev_get_drvdata(dev);
2558 	int ret;
2559 
2560 	pinctrl_pm_select_default_state(dev);
2561 
2562 	ret = clk_enable(sport->clk_ipg);
2563 	if (ret)
2564 		return ret;
2565 
2566 	imx_uart_restore_context(sport);
2567 
2568 	return 0;
2569 }
2570 
2571 static int imx_uart_suspend(struct device *dev)
2572 {
2573 	struct imx_port *sport = dev_get_drvdata(dev);
2574 	int ret;
2575 
2576 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2577 	disable_irq(sport->port.irq);
2578 
2579 	ret = clk_prepare_enable(sport->clk_ipg);
2580 	if (ret)
2581 		return ret;
2582 
2583 	/* enable wakeup from i.MX UART */
2584 	imx_uart_enable_wakeup(sport, true);
2585 
2586 	return 0;
2587 }
2588 
2589 static int imx_uart_resume(struct device *dev)
2590 {
2591 	struct imx_port *sport = dev_get_drvdata(dev);
2592 
2593 	/* disable wakeup from i.MX UART */
2594 	imx_uart_enable_wakeup(sport, false);
2595 
2596 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2597 	enable_irq(sport->port.irq);
2598 
2599 	clk_disable_unprepare(sport->clk_ipg);
2600 
2601 	return 0;
2602 }
2603 
2604 static int imx_uart_freeze(struct device *dev)
2605 {
2606 	struct imx_port *sport = dev_get_drvdata(dev);
2607 
2608 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2609 
2610 	return clk_prepare_enable(sport->clk_ipg);
2611 }
2612 
2613 static int imx_uart_thaw(struct device *dev)
2614 {
2615 	struct imx_port *sport = dev_get_drvdata(dev);
2616 
2617 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2618 
2619 	clk_disable_unprepare(sport->clk_ipg);
2620 
2621 	return 0;
2622 }
2623 
2624 static const struct dev_pm_ops imx_uart_pm_ops = {
2625 	.suspend_noirq = imx_uart_suspend_noirq,
2626 	.resume_noirq = imx_uart_resume_noirq,
2627 	.freeze_noirq = imx_uart_suspend_noirq,
2628 	.thaw_noirq = imx_uart_resume_noirq,
2629 	.restore_noirq = imx_uart_resume_noirq,
2630 	.suspend = imx_uart_suspend,
2631 	.resume = imx_uart_resume,
2632 	.freeze = imx_uart_freeze,
2633 	.thaw = imx_uart_thaw,
2634 	.restore = imx_uart_thaw,
2635 };
2636 
2637 static struct platform_driver imx_uart_platform_driver = {
2638 	.probe = imx_uart_probe,
2639 	.remove = imx_uart_remove,
2640 
2641 	.driver = {
2642 		.name = "imx-uart",
2643 		.of_match_table = imx_uart_dt_ids,
2644 		.pm = &imx_uart_pm_ops,
2645 	},
2646 };
2647 
2648 static int __init imx_uart_init(void)
2649 {
2650 	int ret = uart_register_driver(&imx_uart_uart_driver);
2651 
2652 	if (ret)
2653 		return ret;
2654 
2655 	ret = platform_driver_register(&imx_uart_platform_driver);
2656 	if (ret != 0)
2657 		uart_unregister_driver(&imx_uart_uart_driver);
2658 
2659 	return ret;
2660 }
2661 
2662 static void __exit imx_uart_exit(void)
2663 {
2664 	platform_driver_unregister(&imx_uart_platform_driver);
2665 	uart_unregister_driver(&imx_uart_uart_driver);
2666 }
2667 
2668 module_init(imx_uart_init);
2669 module_exit(imx_uart_exit);
2670 
2671 MODULE_AUTHOR("Sascha Hauer");
2672 MODULE_DESCRIPTION("IMX generic serial port driver");
2673 MODULE_LICENSE("GPL");
2674 MODULE_ALIAS("platform:imx-uart");
2675