1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/circ_buf.h> 12 #include <linux/module.h> 13 #include <linux/ioport.h> 14 #include <linux/init.h> 15 #include <linux/console.h> 16 #include <linux/sysrq.h> 17 #include <linux/platform_device.h> 18 #include <linux/tty.h> 19 #include <linux/tty_flip.h> 20 #include <linux/serial_core.h> 21 #include <linux/serial.h> 22 #include <linux/clk.h> 23 #include <linux/delay.h> 24 #include <linux/ktime.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/rational.h> 27 #include <linux/slab.h> 28 #include <linux/of.h> 29 #include <linux/io.h> 30 #include <linux/iopoll.h> 31 #include <linux/dma-mapping.h> 32 33 #include <asm/irq.h> 34 #include <linux/dma/imx-dma.h> 35 36 #include "serial_mctrl_gpio.h" 37 38 /* Register definitions */ 39 #define URXD0 0x0 /* Receiver Register */ 40 #define URTX0 0x40 /* Transmitter Register */ 41 #define UCR1 0x80 /* Control Register 1 */ 42 #define UCR2 0x84 /* Control Register 2 */ 43 #define UCR3 0x88 /* Control Register 3 */ 44 #define UCR4 0x8c /* Control Register 4 */ 45 #define UFCR 0x90 /* FIFO Control Register */ 46 #define USR1 0x94 /* Status Register 1 */ 47 #define USR2 0x98 /* Status Register 2 */ 48 #define UESC 0x9c /* Escape Character Register */ 49 #define UTIM 0xa0 /* Escape Timer Register */ 50 #define UBIR 0xa4 /* BRM Incremental Register */ 51 #define UBMR 0xa8 /* BRM Modulator Register */ 52 #define UBRC 0xac /* Baud Rate Count Register */ 53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 56 57 /* UART Control Register Bit Fields.*/ 58 #define URXD_DUMMY_READ (1<<16) 59 #define URXD_CHARRDY (1<<15) 60 #define URXD_ERR (1<<14) 61 #define URXD_OVRRUN (1<<13) 62 #define URXD_FRMERR (1<<12) 63 #define URXD_BRK (1<<11) 64 #define URXD_PRERR (1<<10) 65 #define URXD_RX_DATA (0xFF<<0) 66 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 67 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 68 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 69 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 71 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 72 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 73 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 74 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 75 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 76 #define UCR1_SNDBRK (1<<4) /* Send break */ 77 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 79 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 80 #define UCR1_DOZE (1<<1) /* Doze */ 81 #define UCR1_UARTEN (1<<0) /* UART enabled */ 82 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 83 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 84 #define UCR2_CTSC (1<<13) /* CTS pin control */ 85 #define UCR2_CTS (1<<12) /* Clear to send */ 86 #define UCR2_ESCEN (1<<11) /* Escape enable */ 87 #define UCR2_PREN (1<<8) /* Parity enable */ 88 #define UCR2_PROE (1<<7) /* Parity odd/even */ 89 #define UCR2_STPB (1<<6) /* Stop */ 90 #define UCR2_WS (1<<5) /* Word size */ 91 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 92 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 93 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 94 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 95 #define UCR2_SRST (1<<0) /* SW reset */ 96 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 97 #define UCR3_PARERREN (1<<12) /* Parity enable */ 98 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 99 #define UCR3_DSR (1<<10) /* Data set ready */ 100 #define UCR3_DCD (1<<9) /* Data carrier detect */ 101 #define UCR3_RI (1<<8) /* Ring indicator */ 102 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 103 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 104 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 105 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 106 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 107 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 108 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 109 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 110 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 111 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 112 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 113 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 114 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 115 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 116 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 117 #define UCR4_IRSC (1<<5) /* IR special case */ 118 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 119 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 120 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 121 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 122 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 123 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 124 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 125 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 126 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 127 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 128 #define USR1_RTSS (1<<14) /* RTS pin status */ 129 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 130 #define USR1_RTSD (1<<12) /* RTS delta */ 131 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 132 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 133 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 134 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 135 #define USR1_DTRD (1<<7) /* DTR Delta */ 136 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 137 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 138 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 139 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 140 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 141 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 142 #define USR2_IDLE (1<<12) /* Idle condition */ 143 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 144 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 145 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 146 #define USR2_WAKE (1<<7) /* Wake */ 147 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 148 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 149 #define USR2_TXDC (1<<3) /* Transmitter complete */ 150 #define USR2_BRCD (1<<2) /* Break condition */ 151 #define USR2_ORE (1<<1) /* Overrun error */ 152 #define USR2_RDR (1<<0) /* Recv data ready */ 153 #define UTS_FRCPERR (1<<13) /* Force parity error */ 154 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 155 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 156 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 157 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 158 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 159 #define UTS_SOFTRST (1<<0) /* Software reset */ 160 161 /* We've been assigned a range on the "Low-density serial ports" major */ 162 #define SERIAL_IMX_MAJOR 207 163 #define MINOR_START 16 164 #define DEV_NAME "ttymxc" 165 166 /* 167 * This determines how often we check the modem status signals 168 * for any change. They generally aren't connected to an IRQ 169 * so we have to poll them. We also check immediately before 170 * filling the TX fifo incase CTS has been dropped. 171 */ 172 #define MCTRL_TIMEOUT (250*HZ/1000) 173 174 #define DRIVER_NAME "IMX-uart" 175 176 #define UART_NR 8 177 178 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 179 enum imx_uart_type { 180 IMX1_UART, 181 IMX21_UART, 182 }; 183 184 /* device type dependent stuff */ 185 struct imx_uart_data { 186 unsigned uts_reg; 187 enum imx_uart_type devtype; 188 }; 189 190 enum imx_tx_state { 191 OFF, 192 WAIT_AFTER_RTS, 193 SEND, 194 WAIT_AFTER_SEND, 195 }; 196 197 struct imx_port { 198 struct uart_port port; 199 struct timer_list timer; 200 unsigned int old_status; 201 unsigned int have_rtscts:1; 202 unsigned int have_rtsgpio:1; 203 unsigned int dte_mode:1; 204 unsigned int inverted_tx:1; 205 unsigned int inverted_rx:1; 206 struct clk *clk_ipg; 207 struct clk *clk_per; 208 const struct imx_uart_data *devdata; 209 210 struct mctrl_gpios *gpios; 211 212 /* counter to stop 0xff flood */ 213 int idle_counter; 214 215 /* DMA fields */ 216 unsigned int dma_is_enabled:1; 217 unsigned int dma_is_rxing:1; 218 unsigned int dma_is_txing:1; 219 struct dma_chan *dma_chan_rx, *dma_chan_tx; 220 struct scatterlist rx_sgl, tx_sgl[2]; 221 void *rx_buf; 222 struct circ_buf rx_ring; 223 unsigned int rx_buf_size; 224 unsigned int rx_period_length; 225 unsigned int rx_periods; 226 dma_cookie_t rx_cookie; 227 unsigned int tx_bytes; 228 unsigned int dma_tx_nents; 229 unsigned int saved_reg[10]; 230 bool context_saved; 231 232 enum imx_tx_state tx_state; 233 struct hrtimer trigger_start_tx; 234 struct hrtimer trigger_stop_tx; 235 }; 236 237 struct imx_port_ucrs { 238 unsigned int ucr1; 239 unsigned int ucr2; 240 unsigned int ucr3; 241 }; 242 243 static const struct imx_uart_data imx_uart_imx1_devdata = { 244 .uts_reg = IMX1_UTS, 245 .devtype = IMX1_UART, 246 }; 247 248 static const struct imx_uart_data imx_uart_imx21_devdata = { 249 .uts_reg = IMX21_UTS, 250 .devtype = IMX21_UART, 251 }; 252 253 static const struct of_device_id imx_uart_dt_ids[] = { 254 /* 255 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are 256 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the 257 * original imx6q's UART is compatible to fsl,imx21-uart. This driver 258 * doesn't make any distinction between these two variants. 259 */ 260 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, }, 261 { .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, }, 262 { .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, }, 263 { /* sentinel */ } 264 }; 265 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 266 267 static inline struct imx_port *to_imx_port(struct uart_port *port) 268 { 269 return container_of(port, struct imx_port, port); 270 } 271 272 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 273 { 274 writel(val, sport->port.membase + offset); 275 } 276 277 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 278 { 279 return readl(sport->port.membase + offset); 280 } 281 282 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 283 { 284 return sport->devdata->uts_reg; 285 } 286 287 static inline int imx_uart_is_imx1(struct imx_port *sport) 288 { 289 return sport->devdata->devtype == IMX1_UART; 290 } 291 292 /* 293 * Save and restore functions for UCR1, UCR2 and UCR3 registers 294 */ 295 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 296 static void imx_uart_ucrs_save(struct imx_port *sport, 297 struct imx_port_ucrs *ucr) 298 { 299 /* save control registers */ 300 ucr->ucr1 = imx_uart_readl(sport, UCR1); 301 ucr->ucr2 = imx_uart_readl(sport, UCR2); 302 ucr->ucr3 = imx_uart_readl(sport, UCR3); 303 } 304 305 static void imx_uart_ucrs_restore(struct imx_port *sport, 306 struct imx_port_ucrs *ucr) 307 { 308 /* restore control registers */ 309 imx_uart_writel(sport, ucr->ucr1, UCR1); 310 imx_uart_writel(sport, ucr->ucr2, UCR2); 311 imx_uart_writel(sport, ucr->ucr3, UCR3); 312 } 313 #endif 314 315 /* called with port.lock taken and irqs caller dependent */ 316 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 317 { 318 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 319 320 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 321 } 322 323 /* called with port.lock taken and irqs caller dependent */ 324 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 325 { 326 *ucr2 &= ~UCR2_CTSC; 327 *ucr2 |= UCR2_CTS; 328 329 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 330 } 331 332 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 333 { 334 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 335 } 336 337 /* called with port.lock taken and irqs off */ 338 static void imx_uart_soft_reset(struct imx_port *sport) 339 { 340 int i = 10; 341 u32 ucr2, ubir, ubmr, uts; 342 343 /* 344 * According to the Reference Manual description of the UART SRST bit: 345 * 346 * "Reset the transmit and receive state machines, 347 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 348 * and UTS[6-3]". 349 * 350 * We don't need to restore the old values from USR1, USR2, URXD and 351 * UTXD. UBRC is read only, so only save/restore the other three 352 * registers. 353 */ 354 ubir = imx_uart_readl(sport, UBIR); 355 ubmr = imx_uart_readl(sport, UBMR); 356 uts = imx_uart_readl(sport, IMX21_UTS); 357 358 ucr2 = imx_uart_readl(sport, UCR2); 359 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 360 361 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 362 udelay(1); 363 364 /* Restore the registers */ 365 imx_uart_writel(sport, ubir, UBIR); 366 imx_uart_writel(sport, ubmr, UBMR); 367 imx_uart_writel(sport, uts, IMX21_UTS); 368 369 sport->idle_counter = 0; 370 } 371 372 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 373 { 374 unsigned int uts; 375 376 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 377 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 378 uts &= ~UTS_LOOP; 379 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 380 } 381 382 /* called with port.lock taken and irqs off */ 383 static void imx_uart_start_rx(struct uart_port *port) 384 { 385 struct imx_port *sport = to_imx_port(port); 386 unsigned int ucr1, ucr2; 387 388 ucr1 = imx_uart_readl(sport, UCR1); 389 ucr2 = imx_uart_readl(sport, UCR2); 390 391 ucr2 |= UCR2_RXEN; 392 393 if (sport->dma_is_enabled) { 394 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 395 } else { 396 ucr1 |= UCR1_RRDYEN; 397 ucr2 |= UCR2_ATEN; 398 } 399 400 /* Write UCR2 first as it includes RXEN */ 401 imx_uart_writel(sport, ucr2, UCR2); 402 imx_uart_writel(sport, ucr1, UCR1); 403 imx_uart_disable_loopback_rs485(sport); 404 } 405 406 /* called with port.lock taken and irqs off */ 407 static void imx_uart_stop_tx(struct uart_port *port) 408 { 409 struct imx_port *sport = to_imx_port(port); 410 u32 ucr1, ucr4, usr2; 411 412 if (sport->tx_state == OFF) 413 return; 414 415 /* 416 * We are maybe in the SMP context, so if the DMA TX thread is running 417 * on other cpu, we have to wait for it to finish. 418 */ 419 if (sport->dma_is_txing) 420 return; 421 422 ucr1 = imx_uart_readl(sport, UCR1); 423 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 424 425 ucr4 = imx_uart_readl(sport, UCR4); 426 usr2 = imx_uart_readl(sport, USR2); 427 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 428 /* The shifter is still busy, so retry once TC triggers */ 429 return; 430 } 431 432 ucr4 &= ~UCR4_TCEN; 433 imx_uart_writel(sport, ucr4, UCR4); 434 435 /* in rs485 mode disable transmitter */ 436 if (port->rs485.flags & SER_RS485_ENABLED) { 437 if (sport->tx_state == SEND) { 438 sport->tx_state = WAIT_AFTER_SEND; 439 440 if (port->rs485.delay_rts_after_send > 0) { 441 start_hrtimer_ms(&sport->trigger_stop_tx, 442 port->rs485.delay_rts_after_send); 443 return; 444 } 445 446 /* continue without any delay */ 447 } 448 449 if (sport->tx_state == WAIT_AFTER_RTS || 450 sport->tx_state == WAIT_AFTER_SEND) { 451 u32 ucr2; 452 453 hrtimer_try_to_cancel(&sport->trigger_start_tx); 454 455 ucr2 = imx_uart_readl(sport, UCR2); 456 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 457 imx_uart_rts_active(sport, &ucr2); 458 else 459 imx_uart_rts_inactive(sport, &ucr2); 460 imx_uart_writel(sport, ucr2, UCR2); 461 462 if (!port->rs485_rx_during_tx_gpio) 463 imx_uart_start_rx(port); 464 465 sport->tx_state = OFF; 466 } 467 } else { 468 sport->tx_state = OFF; 469 } 470 } 471 472 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 473 { 474 struct imx_port *sport = to_imx_port(port); 475 u32 ucr1, ucr2, ucr4, uts; 476 477 ucr1 = imx_uart_readl(sport, UCR1); 478 ucr2 = imx_uart_readl(sport, UCR2); 479 ucr4 = imx_uart_readl(sport, UCR4); 480 481 if (sport->dma_is_enabled) { 482 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 483 } else { 484 ucr1 &= ~UCR1_RRDYEN; 485 ucr2 &= ~UCR2_ATEN; 486 ucr4 &= ~UCR4_OREN; 487 } 488 imx_uart_writel(sport, ucr1, UCR1); 489 imx_uart_writel(sport, ucr4, UCR4); 490 491 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 492 if (port->rs485.flags & SER_RS485_ENABLED && 493 port->rs485.flags & SER_RS485_RTS_ON_SEND && 494 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 495 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 496 uts |= UTS_LOOP; 497 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 498 ucr2 |= UCR2_RXEN; 499 } else { 500 ucr2 &= ~UCR2_RXEN; 501 } 502 503 imx_uart_writel(sport, ucr2, UCR2); 504 } 505 506 /* called with port.lock taken and irqs off */ 507 static void imx_uart_stop_rx(struct uart_port *port) 508 { 509 /* 510 * Stop RX and enable loopback in order to make sure RS485 bus 511 * is not blocked. Se comment in imx_uart_probe(). 512 */ 513 imx_uart_stop_rx_with_loopback_ctrl(port, true); 514 } 515 516 /* called with port.lock taken and irqs off */ 517 static void imx_uart_enable_ms(struct uart_port *port) 518 { 519 struct imx_port *sport = to_imx_port(port); 520 521 mod_timer(&sport->timer, jiffies); 522 523 mctrl_gpio_enable_ms(sport->gpios); 524 } 525 526 static void imx_uart_dma_tx(struct imx_port *sport); 527 528 /* called with port.lock taken and irqs off */ 529 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 530 { 531 struct tty_port *tport = &sport->port.state->port; 532 unsigned char c; 533 534 if (sport->port.x_char) { 535 /* Send next char */ 536 imx_uart_writel(sport, sport->port.x_char, URTX0); 537 sport->port.icount.tx++; 538 sport->port.x_char = 0; 539 return; 540 } 541 542 if (kfifo_is_empty(&tport->xmit_fifo) || 543 uart_tx_stopped(&sport->port)) { 544 imx_uart_stop_tx(&sport->port); 545 return; 546 } 547 548 if (sport->dma_is_enabled) { 549 u32 ucr1; 550 /* 551 * We've just sent a X-char Ensure the TX DMA is enabled 552 * and the TX IRQ is disabled. 553 **/ 554 ucr1 = imx_uart_readl(sport, UCR1); 555 ucr1 &= ~UCR1_TRDYEN; 556 if (sport->dma_is_txing) { 557 ucr1 |= UCR1_TXDMAEN; 558 imx_uart_writel(sport, ucr1, UCR1); 559 } else { 560 imx_uart_writel(sport, ucr1, UCR1); 561 imx_uart_dma_tx(sport); 562 } 563 564 return; 565 } 566 567 while (!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) && 568 uart_fifo_get(&sport->port, &c)) 569 imx_uart_writel(sport, c, URTX0); 570 571 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 572 uart_write_wakeup(&sport->port); 573 574 if (kfifo_is_empty(&tport->xmit_fifo)) 575 imx_uart_stop_tx(&sport->port); 576 } 577 578 static void imx_uart_dma_tx_callback(void *data) 579 { 580 struct imx_port *sport = data; 581 struct tty_port *tport = &sport->port.state->port; 582 struct scatterlist *sgl = &sport->tx_sgl[0]; 583 unsigned long flags; 584 u32 ucr1; 585 586 uart_port_lock_irqsave(&sport->port, &flags); 587 588 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 589 590 ucr1 = imx_uart_readl(sport, UCR1); 591 ucr1 &= ~UCR1_TXDMAEN; 592 imx_uart_writel(sport, ucr1, UCR1); 593 594 uart_xmit_advance(&sport->port, sport->tx_bytes); 595 596 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 597 598 sport->dma_is_txing = 0; 599 600 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 601 uart_write_wakeup(&sport->port); 602 603 if (!kfifo_is_empty(&tport->xmit_fifo) && 604 !uart_tx_stopped(&sport->port)) 605 imx_uart_dma_tx(sport); 606 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 607 u32 ucr4 = imx_uart_readl(sport, UCR4); 608 ucr4 |= UCR4_TCEN; 609 imx_uart_writel(sport, ucr4, UCR4); 610 } 611 612 uart_port_unlock_irqrestore(&sport->port, flags); 613 } 614 615 /* called with port.lock taken and irqs off */ 616 static void imx_uart_dma_tx(struct imx_port *sport) 617 { 618 struct tty_port *tport = &sport->port.state->port; 619 struct scatterlist *sgl = sport->tx_sgl; 620 struct dma_async_tx_descriptor *desc; 621 struct dma_chan *chan = sport->dma_chan_tx; 622 struct device *dev = sport->port.dev; 623 u32 ucr1, ucr4; 624 int ret; 625 626 if (sport->dma_is_txing) 627 return; 628 629 ucr4 = imx_uart_readl(sport, UCR4); 630 ucr4 &= ~UCR4_TCEN; 631 imx_uart_writel(sport, ucr4, UCR4); 632 633 sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl)); 634 sport->tx_bytes = kfifo_len(&tport->xmit_fifo); 635 sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl, 636 ARRAY_SIZE(sport->tx_sgl), sport->tx_bytes); 637 638 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 639 if (ret == 0) { 640 dev_err(dev, "DMA mapping error for TX.\n"); 641 return; 642 } 643 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 644 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 645 if (!desc) { 646 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 647 DMA_TO_DEVICE); 648 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 649 return; 650 } 651 desc->callback = imx_uart_dma_tx_callback; 652 desc->callback_param = sport; 653 654 dev_dbg(dev, "TX: prepare to send %u bytes by DMA.\n", sport->tx_bytes); 655 656 ucr1 = imx_uart_readl(sport, UCR1); 657 ucr1 |= UCR1_TXDMAEN; 658 imx_uart_writel(sport, ucr1, UCR1); 659 660 /* fire it */ 661 sport->dma_is_txing = 1; 662 dmaengine_submit(desc); 663 dma_async_issue_pending(chan); 664 return; 665 } 666 667 /* called with port.lock taken and irqs off */ 668 static void imx_uart_start_tx(struct uart_port *port) 669 { 670 struct imx_port *sport = to_imx_port(port); 671 struct tty_port *tport = &sport->port.state->port; 672 u32 ucr1; 673 674 if (!sport->port.x_char && kfifo_is_empty(&tport->xmit_fifo)) 675 return; 676 677 /* 678 * We cannot simply do nothing here if sport->tx_state == SEND already 679 * because UCR1_TXMPTYEN might already have been cleared in 680 * imx_uart_stop_tx(), but tx_state is still SEND. 681 */ 682 683 if (port->rs485.flags & SER_RS485_ENABLED) { 684 if (sport->tx_state == OFF) { 685 u32 ucr2 = imx_uart_readl(sport, UCR2); 686 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 687 imx_uart_rts_active(sport, &ucr2); 688 else 689 imx_uart_rts_inactive(sport, &ucr2); 690 imx_uart_writel(sport, ucr2, UCR2); 691 692 /* 693 * Since we are about to transmit we can not stop RX 694 * with loopback enabled because that will make our 695 * transmitted data being just looped to RX. 696 */ 697 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 698 !port->rs485_rx_during_tx_gpio) 699 imx_uart_stop_rx_with_loopback_ctrl(port, false); 700 701 sport->tx_state = WAIT_AFTER_RTS; 702 703 if (port->rs485.delay_rts_before_send > 0) { 704 start_hrtimer_ms(&sport->trigger_start_tx, 705 port->rs485.delay_rts_before_send); 706 return; 707 } 708 709 /* continue without any delay */ 710 } 711 712 if (sport->tx_state == WAIT_AFTER_SEND 713 || sport->tx_state == WAIT_AFTER_RTS) { 714 715 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 716 717 /* 718 * Enable transmitter and shifter empty irq only if DMA 719 * is off. In the DMA case this is done in the 720 * tx-callback. 721 */ 722 if (!sport->dma_is_enabled) { 723 u32 ucr4 = imx_uart_readl(sport, UCR4); 724 ucr4 |= UCR4_TCEN; 725 imx_uart_writel(sport, ucr4, UCR4); 726 } 727 728 sport->tx_state = SEND; 729 } 730 } else { 731 sport->tx_state = SEND; 732 } 733 734 if (!sport->dma_is_enabled) { 735 ucr1 = imx_uart_readl(sport, UCR1); 736 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 737 } 738 739 if (sport->dma_is_enabled) { 740 if (sport->port.x_char) { 741 /* We have X-char to send, so enable TX IRQ and 742 * disable TX DMA to let TX interrupt to send X-char */ 743 ucr1 = imx_uart_readl(sport, UCR1); 744 ucr1 &= ~UCR1_TXDMAEN; 745 ucr1 |= UCR1_TRDYEN; 746 imx_uart_writel(sport, ucr1, UCR1); 747 return; 748 } 749 750 if (!kfifo_is_empty(&tport->xmit_fifo) && 751 !uart_tx_stopped(port)) 752 imx_uart_dma_tx(sport); 753 return; 754 } 755 } 756 757 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 758 { 759 struct imx_port *sport = dev_id; 760 u32 usr1; 761 762 imx_uart_writel(sport, USR1_RTSD, USR1); 763 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 764 uart_handle_cts_change(&sport->port, usr1); 765 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 766 767 return IRQ_HANDLED; 768 } 769 770 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 771 { 772 struct imx_port *sport = dev_id; 773 irqreturn_t ret; 774 775 uart_port_lock(&sport->port); 776 777 ret = __imx_uart_rtsint(irq, dev_id); 778 779 uart_port_unlock(&sport->port); 780 781 return ret; 782 } 783 784 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 785 { 786 struct imx_port *sport = dev_id; 787 788 uart_port_lock(&sport->port); 789 imx_uart_transmit_buffer(sport); 790 uart_port_unlock(&sport->port); 791 return IRQ_HANDLED; 792 } 793 794 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 795 * This is to be called from Rx ISRs only when some bytes were actually 796 * received. 797 * 798 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 799 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 800 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 801 * that is terminated by any activity on RxD line, or could be stopped by 802 * issuing soft reset to the UART (just stop/start of RX does not help). Note 803 * that what we do here is sending isolated start bit about 2.4 times shorter 804 * than it is to be on UART configured baud rate. 805 */ 806 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 807 { 808 /* To detect hardware 0xff flood we monitor RxD line between RX 809 * interrupts to isolate "receiving" of char(s) with no activity 810 * on RxD line, that'd never happen on actual data transfers. 811 * 812 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 813 * race here if we clear USR2_WAKE when receiving of a char is in 814 * progress, so we might get RX interrupt later with USR2_WAKE bit 815 * cleared. Note though that as we don't try to clear USR2_WAKE when we 816 * detected no activity, this race may hide actual activity only once. 817 * 818 * Yet another case where receive interrupt may occur without RxD 819 * activity is expiration of aging timer, so we consider this as well. 820 * 821 * We use 'idle_counter' to ensure that we got at least so many RX 822 * interrupts without any detected activity on RxD line. 2 cases 823 * described plus 1 to be on the safe side gives us a margin of 3, 824 * below. In practice I was not able to produce a false positive to 825 * induce soft reset at regular data transfers even using 1 as the 826 * margin, so 3 is actually very strong. 827 * 828 * We count interrupts, not chars in 'idle-counter' for simplicity. 829 */ 830 831 if (usr2 & USR2_WAKE) { 832 imx_uart_writel(sport, USR2_WAKE, USR2); 833 sport->idle_counter = 0; 834 } else if (++sport->idle_counter > 3) { 835 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 836 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 837 } 838 } 839 840 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 841 { 842 struct imx_port *sport = dev_id; 843 struct tty_port *port = &sport->port.state->port; 844 u32 usr2, rx; 845 846 /* If we received something, check for 0xff flood */ 847 usr2 = imx_uart_readl(sport, USR2); 848 if (usr2 & USR2_RDR) 849 imx_uart_check_flood(sport, usr2); 850 851 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 852 unsigned int flg = TTY_NORMAL; 853 sport->port.icount.rx++; 854 855 if (unlikely(rx & URXD_ERR)) { 856 if (rx & URXD_BRK) { 857 sport->port.icount.brk++; 858 if (uart_handle_break(&sport->port)) 859 continue; 860 } 861 else if (rx & URXD_PRERR) 862 sport->port.icount.parity++; 863 else if (rx & URXD_FRMERR) 864 sport->port.icount.frame++; 865 if (rx & URXD_OVRRUN) 866 sport->port.icount.overrun++; 867 868 if (rx & sport->port.ignore_status_mask) 869 continue; 870 871 rx &= (sport->port.read_status_mask | 0xFF); 872 873 if (rx & URXD_BRK) 874 flg = TTY_BREAK; 875 else if (rx & URXD_PRERR) 876 flg = TTY_PARITY; 877 else if (rx & URXD_FRMERR) 878 flg = TTY_FRAME; 879 if (rx & URXD_OVRRUN) 880 flg = TTY_OVERRUN; 881 882 sport->port.sysrq = 0; 883 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 884 continue; 885 } 886 887 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 888 continue; 889 890 if (tty_insert_flip_char(port, rx, flg) == 0) 891 sport->port.icount.buf_overrun++; 892 } 893 894 tty_flip_buffer_push(port); 895 896 return IRQ_HANDLED; 897 } 898 899 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 900 { 901 struct imx_port *sport = dev_id; 902 irqreturn_t ret; 903 904 uart_port_lock(&sport->port); 905 906 ret = __imx_uart_rxint(irq, dev_id); 907 908 uart_port_unlock(&sport->port); 909 910 return ret; 911 } 912 913 static void imx_uart_clear_rx_errors(struct imx_port *sport); 914 915 /* 916 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 917 */ 918 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 919 { 920 unsigned int tmp = TIOCM_DSR; 921 unsigned usr1 = imx_uart_readl(sport, USR1); 922 unsigned usr2 = imx_uart_readl(sport, USR2); 923 924 if (usr1 & USR1_RTSS) 925 tmp |= TIOCM_CTS; 926 927 /* in DCE mode DCDIN is always 0 */ 928 if (!(usr2 & USR2_DCDIN)) 929 tmp |= TIOCM_CAR; 930 931 if (sport->dte_mode) 932 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 933 tmp |= TIOCM_RI; 934 935 return tmp; 936 } 937 938 /* 939 * Handle any change of modem status signal since we were last called. 940 */ 941 static void imx_uart_mctrl_check(struct imx_port *sport) 942 { 943 unsigned int status, changed; 944 945 status = imx_uart_get_hwmctrl(sport); 946 changed = status ^ sport->old_status; 947 948 if (changed == 0) 949 return; 950 951 sport->old_status = status; 952 953 if (changed & TIOCM_RI && status & TIOCM_RI) 954 sport->port.icount.rng++; 955 if (changed & TIOCM_DSR) 956 sport->port.icount.dsr++; 957 if (changed & TIOCM_CAR) 958 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 959 if (changed & TIOCM_CTS) 960 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 961 962 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 963 } 964 965 static irqreturn_t imx_uart_int(int irq, void *dev_id) 966 { 967 struct imx_port *sport = dev_id; 968 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 969 irqreturn_t ret = IRQ_NONE; 970 971 uart_port_lock(&sport->port); 972 973 usr1 = imx_uart_readl(sport, USR1); 974 usr2 = imx_uart_readl(sport, USR2); 975 ucr1 = imx_uart_readl(sport, UCR1); 976 ucr2 = imx_uart_readl(sport, UCR2); 977 ucr3 = imx_uart_readl(sport, UCR3); 978 ucr4 = imx_uart_readl(sport, UCR4); 979 980 /* 981 * Even if a condition is true that can trigger an irq only handle it if 982 * the respective irq source is enabled. This prevents some undesired 983 * actions, for example if a character that sits in the RX FIFO and that 984 * should be fetched via DMA is tried to be fetched using PIO. Or the 985 * receiver is currently off and so reading from URXD0 results in an 986 * exception. So just mask the (raw) status bits for disabled irqs. 987 */ 988 if ((ucr1 & UCR1_RRDYEN) == 0) 989 usr1 &= ~USR1_RRDY; 990 if ((ucr2 & UCR2_ATEN) == 0) 991 usr1 &= ~USR1_AGTIM; 992 if ((ucr1 & UCR1_TRDYEN) == 0) 993 usr1 &= ~USR1_TRDY; 994 if ((ucr4 & UCR4_TCEN) == 0) 995 usr2 &= ~USR2_TXDC; 996 if ((ucr3 & UCR3_DTRDEN) == 0) 997 usr1 &= ~USR1_DTRD; 998 if ((ucr1 & UCR1_RTSDEN) == 0) 999 usr1 &= ~USR1_RTSD; 1000 if ((ucr3 & UCR3_AWAKEN) == 0) 1001 usr1 &= ~USR1_AWAKE; 1002 if ((ucr4 & UCR4_OREN) == 0) 1003 usr2 &= ~USR2_ORE; 1004 1005 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1006 imx_uart_writel(sport, USR1_AGTIM, USR1); 1007 1008 __imx_uart_rxint(irq, dev_id); 1009 ret = IRQ_HANDLED; 1010 } 1011 1012 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1013 imx_uart_transmit_buffer(sport); 1014 ret = IRQ_HANDLED; 1015 } 1016 1017 if (usr1 & USR1_DTRD) { 1018 imx_uart_writel(sport, USR1_DTRD, USR1); 1019 1020 imx_uart_mctrl_check(sport); 1021 1022 ret = IRQ_HANDLED; 1023 } 1024 1025 if (usr1 & USR1_RTSD) { 1026 __imx_uart_rtsint(irq, dev_id); 1027 ret = IRQ_HANDLED; 1028 } 1029 1030 if (usr1 & USR1_AWAKE) { 1031 imx_uart_writel(sport, USR1_AWAKE, USR1); 1032 ret = IRQ_HANDLED; 1033 } 1034 1035 if (usr2 & USR2_ORE) { 1036 sport->port.icount.overrun++; 1037 imx_uart_writel(sport, USR2_ORE, USR2); 1038 ret = IRQ_HANDLED; 1039 } 1040 1041 uart_port_unlock(&sport->port); 1042 1043 return ret; 1044 } 1045 1046 /* 1047 * Return TIOCSER_TEMT when transmitter is not busy. 1048 */ 1049 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1050 { 1051 struct imx_port *sport = to_imx_port(port); 1052 unsigned int ret; 1053 1054 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1055 1056 /* If the TX DMA is working, return 0. */ 1057 if (sport->dma_is_txing) 1058 ret = 0; 1059 1060 return ret; 1061 } 1062 1063 /* called with port.lock taken and irqs off */ 1064 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1065 { 1066 struct imx_port *sport = to_imx_port(port); 1067 unsigned int ret = imx_uart_get_hwmctrl(sport); 1068 1069 mctrl_gpio_get(sport->gpios, &ret); 1070 1071 return ret; 1072 } 1073 1074 /* called with port.lock taken and irqs off */ 1075 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1076 { 1077 struct imx_port *sport = to_imx_port(port); 1078 u32 ucr3, uts; 1079 1080 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1081 u32 ucr2; 1082 1083 /* 1084 * Turn off autoRTS if RTS is lowered and restore autoRTS 1085 * setting if RTS is raised. 1086 */ 1087 ucr2 = imx_uart_readl(sport, UCR2); 1088 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1089 if (mctrl & TIOCM_RTS) { 1090 ucr2 |= UCR2_CTS; 1091 /* 1092 * UCR2_IRTS is unset if and only if the port is 1093 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1094 * to get the state to restore to. 1095 */ 1096 if (!(ucr2 & UCR2_IRTS)) 1097 ucr2 |= UCR2_CTSC; 1098 } 1099 imx_uart_writel(sport, ucr2, UCR2); 1100 } 1101 1102 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1103 if (!(mctrl & TIOCM_DTR)) 1104 ucr3 |= UCR3_DSR; 1105 imx_uart_writel(sport, ucr3, UCR3); 1106 1107 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1108 if (mctrl & TIOCM_LOOP) 1109 uts |= UTS_LOOP; 1110 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1111 1112 mctrl_gpio_set(sport->gpios, mctrl); 1113 } 1114 1115 /* 1116 * Interrupts always disabled. 1117 */ 1118 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1119 { 1120 struct imx_port *sport = to_imx_port(port); 1121 unsigned long flags; 1122 u32 ucr1; 1123 1124 uart_port_lock_irqsave(&sport->port, &flags); 1125 1126 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1127 1128 if (break_state != 0) 1129 ucr1 |= UCR1_SNDBRK; 1130 1131 imx_uart_writel(sport, ucr1, UCR1); 1132 1133 uart_port_unlock_irqrestore(&sport->port, flags); 1134 } 1135 1136 /* 1137 * This is our per-port timeout handler, for checking the 1138 * modem status signals. 1139 */ 1140 static void imx_uart_timeout(struct timer_list *t) 1141 { 1142 struct imx_port *sport = from_timer(sport, t, timer); 1143 unsigned long flags; 1144 1145 if (sport->port.state) { 1146 uart_port_lock_irqsave(&sport->port, &flags); 1147 imx_uart_mctrl_check(sport); 1148 uart_port_unlock_irqrestore(&sport->port, flags); 1149 1150 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1151 } 1152 } 1153 1154 /* 1155 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1156 * [1] the RX DMA buffer is full. 1157 * [2] the aging timer expires 1158 * 1159 * Condition [2] is triggered when a character has been sitting in the FIFO 1160 * for at least 8 byte durations. 1161 */ 1162 static void imx_uart_dma_rx_callback(void *data) 1163 { 1164 struct imx_port *sport = data; 1165 struct dma_chan *chan = sport->dma_chan_rx; 1166 struct scatterlist *sgl = &sport->rx_sgl; 1167 struct tty_port *port = &sport->port.state->port; 1168 struct dma_tx_state state; 1169 struct circ_buf *rx_ring = &sport->rx_ring; 1170 enum dma_status status; 1171 unsigned int w_bytes = 0; 1172 unsigned int r_bytes; 1173 unsigned int bd_size; 1174 1175 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1176 1177 if (status == DMA_ERROR) { 1178 uart_port_lock(&sport->port); 1179 imx_uart_clear_rx_errors(sport); 1180 uart_port_unlock(&sport->port); 1181 return; 1182 } 1183 1184 /* 1185 * The state-residue variable represents the empty space 1186 * relative to the entire buffer. Taking this in consideration 1187 * the head is always calculated base on the buffer total 1188 * length - DMA transaction residue. The UART script from the 1189 * SDMA firmware will jump to the next buffer descriptor, 1190 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1191 * Taking this in consideration the tail is always at the 1192 * beginning of the buffer descriptor that contains the head. 1193 */ 1194 1195 /* Calculate the head */ 1196 rx_ring->head = sg_dma_len(sgl) - state.residue; 1197 1198 /* Calculate the tail. */ 1199 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1200 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1201 1202 if (rx_ring->head <= sg_dma_len(sgl) && 1203 rx_ring->head > rx_ring->tail) { 1204 1205 /* Move data from tail to head */ 1206 r_bytes = rx_ring->head - rx_ring->tail; 1207 1208 /* If we received something, check for 0xff flood */ 1209 uart_port_lock(&sport->port); 1210 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1211 uart_port_unlock(&sport->port); 1212 1213 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1214 1215 /* CPU claims ownership of RX DMA buffer */ 1216 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1217 DMA_FROM_DEVICE); 1218 1219 w_bytes = tty_insert_flip_string(port, 1220 sport->rx_buf + rx_ring->tail, r_bytes); 1221 1222 /* UART retrieves ownership of RX DMA buffer */ 1223 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1224 DMA_FROM_DEVICE); 1225 1226 if (w_bytes != r_bytes) 1227 sport->port.icount.buf_overrun++; 1228 1229 sport->port.icount.rx += w_bytes; 1230 } 1231 } else { 1232 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1233 WARN_ON(rx_ring->head <= rx_ring->tail); 1234 } 1235 1236 if (w_bytes) { 1237 tty_flip_buffer_push(port); 1238 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1239 } 1240 } 1241 1242 static int imx_uart_start_rx_dma(struct imx_port *sport) 1243 { 1244 struct scatterlist *sgl = &sport->rx_sgl; 1245 struct dma_chan *chan = sport->dma_chan_rx; 1246 struct device *dev = sport->port.dev; 1247 struct dma_async_tx_descriptor *desc; 1248 int ret; 1249 1250 sport->rx_ring.head = 0; 1251 sport->rx_ring.tail = 0; 1252 1253 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1254 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1255 if (ret == 0) { 1256 dev_err(dev, "DMA mapping error for RX.\n"); 1257 return -EINVAL; 1258 } 1259 1260 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1261 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1262 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1263 1264 if (!desc) { 1265 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1266 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1267 return -EINVAL; 1268 } 1269 desc->callback = imx_uart_dma_rx_callback; 1270 desc->callback_param = sport; 1271 1272 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1273 sport->dma_is_rxing = 1; 1274 sport->rx_cookie = dmaengine_submit(desc); 1275 dma_async_issue_pending(chan); 1276 return 0; 1277 } 1278 1279 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1280 { 1281 struct tty_port *port = &sport->port.state->port; 1282 u32 usr1, usr2; 1283 1284 usr1 = imx_uart_readl(sport, USR1); 1285 usr2 = imx_uart_readl(sport, USR2); 1286 1287 if (usr2 & USR2_BRCD) { 1288 sport->port.icount.brk++; 1289 imx_uart_writel(sport, USR2_BRCD, USR2); 1290 uart_handle_break(&sport->port); 1291 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1292 sport->port.icount.buf_overrun++; 1293 tty_flip_buffer_push(port); 1294 } else { 1295 if (usr1 & USR1_FRAMERR) { 1296 sport->port.icount.frame++; 1297 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1298 } else if (usr1 & USR1_PARITYERR) { 1299 sport->port.icount.parity++; 1300 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1301 } 1302 } 1303 1304 if (usr2 & USR2_ORE) { 1305 sport->port.icount.overrun++; 1306 imx_uart_writel(sport, USR2_ORE, USR2); 1307 } 1308 1309 sport->idle_counter = 0; 1310 1311 } 1312 1313 #define TXTL_DEFAULT 8 1314 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1315 #define TXTL_DMA 8 /* DMA burst setting */ 1316 #define RXTL_DMA 9 /* DMA burst setting */ 1317 1318 static void imx_uart_setup_ufcr(struct imx_port *sport, 1319 unsigned char txwl, unsigned char rxwl) 1320 { 1321 unsigned int val; 1322 1323 /* set receiver / transmitter trigger level */ 1324 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1325 val |= txwl << UFCR_TXTL_SHF | rxwl; 1326 imx_uart_writel(sport, val, UFCR); 1327 } 1328 1329 static void imx_uart_dma_exit(struct imx_port *sport) 1330 { 1331 if (sport->dma_chan_rx) { 1332 dmaengine_terminate_sync(sport->dma_chan_rx); 1333 dma_release_channel(sport->dma_chan_rx); 1334 sport->dma_chan_rx = NULL; 1335 sport->rx_cookie = -EINVAL; 1336 kfree(sport->rx_buf); 1337 sport->rx_buf = NULL; 1338 } 1339 1340 if (sport->dma_chan_tx) { 1341 dmaengine_terminate_sync(sport->dma_chan_tx); 1342 dma_release_channel(sport->dma_chan_tx); 1343 sport->dma_chan_tx = NULL; 1344 } 1345 } 1346 1347 static int imx_uart_dma_init(struct imx_port *sport) 1348 { 1349 struct dma_slave_config slave_config = {}; 1350 struct device *dev = sport->port.dev; 1351 struct dma_chan *chan; 1352 int ret; 1353 1354 /* Prepare for RX : */ 1355 chan = dma_request_chan(dev, "rx"); 1356 if (IS_ERR(chan)) { 1357 dev_dbg(dev, "cannot get the DMA channel.\n"); 1358 sport->dma_chan_rx = NULL; 1359 ret = PTR_ERR(chan); 1360 goto err; 1361 } 1362 sport->dma_chan_rx = chan; 1363 1364 slave_config.direction = DMA_DEV_TO_MEM; 1365 slave_config.src_addr = sport->port.mapbase + URXD0; 1366 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1367 /* one byte less than the watermark level to enable the aging timer */ 1368 slave_config.src_maxburst = RXTL_DMA - 1; 1369 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1370 if (ret) { 1371 dev_err(dev, "error in RX dma configuration.\n"); 1372 goto err; 1373 } 1374 1375 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1376 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1377 if (!sport->rx_buf) { 1378 ret = -ENOMEM; 1379 goto err; 1380 } 1381 sport->rx_ring.buf = sport->rx_buf; 1382 1383 /* Prepare for TX : */ 1384 chan = dma_request_chan(dev, "tx"); 1385 if (IS_ERR(chan)) { 1386 dev_err(dev, "cannot get the TX DMA channel!\n"); 1387 sport->dma_chan_tx = NULL; 1388 ret = PTR_ERR(chan); 1389 goto err; 1390 } 1391 sport->dma_chan_tx = chan; 1392 1393 slave_config.direction = DMA_MEM_TO_DEV; 1394 slave_config.dst_addr = sport->port.mapbase + URTX0; 1395 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1396 slave_config.dst_maxburst = TXTL_DMA; 1397 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1398 if (ret) { 1399 dev_err(dev, "error in TX dma configuration."); 1400 goto err; 1401 } 1402 1403 return 0; 1404 err: 1405 imx_uart_dma_exit(sport); 1406 return ret; 1407 } 1408 1409 static void imx_uart_enable_dma(struct imx_port *sport) 1410 { 1411 u32 ucr1; 1412 1413 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1414 1415 /* set UCR1 */ 1416 ucr1 = imx_uart_readl(sport, UCR1); 1417 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1418 imx_uart_writel(sport, ucr1, UCR1); 1419 1420 sport->dma_is_enabled = 1; 1421 } 1422 1423 static void imx_uart_disable_dma(struct imx_port *sport) 1424 { 1425 u32 ucr1; 1426 1427 /* clear UCR1 */ 1428 ucr1 = imx_uart_readl(sport, UCR1); 1429 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1430 imx_uart_writel(sport, ucr1, UCR1); 1431 1432 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1433 1434 sport->dma_is_enabled = 0; 1435 } 1436 1437 /* half the RX buffer size */ 1438 #define CTSTL 16 1439 1440 static int imx_uart_startup(struct uart_port *port) 1441 { 1442 struct imx_port *sport = to_imx_port(port); 1443 int retval; 1444 unsigned long flags; 1445 int dma_is_inited = 0; 1446 u32 ucr1, ucr2, ucr3, ucr4; 1447 1448 retval = clk_prepare_enable(sport->clk_per); 1449 if (retval) 1450 return retval; 1451 retval = clk_prepare_enable(sport->clk_ipg); 1452 if (retval) { 1453 clk_disable_unprepare(sport->clk_per); 1454 return retval; 1455 } 1456 1457 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1458 1459 /* disable the DREN bit (Data Ready interrupt enable) before 1460 * requesting IRQs 1461 */ 1462 ucr4 = imx_uart_readl(sport, UCR4); 1463 1464 /* set the trigger level for CTS */ 1465 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1466 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1467 1468 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1469 1470 /* Can we enable the DMA support? */ 1471 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) { 1472 lockdep_set_subclass(&port->lock, 1); 1473 dma_is_inited = 1; 1474 } 1475 1476 uart_port_lock_irqsave(&sport->port, &flags); 1477 1478 /* Reset fifo's and state machines */ 1479 imx_uart_soft_reset(sport); 1480 1481 /* 1482 * Finally, clear and enable interrupts 1483 */ 1484 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1485 imx_uart_writel(sport, USR2_ORE, USR2); 1486 1487 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1488 ucr1 |= UCR1_UARTEN; 1489 if (sport->have_rtscts) 1490 ucr1 |= UCR1_RTSDEN; 1491 1492 imx_uart_writel(sport, ucr1, UCR1); 1493 1494 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1495 if (!dma_is_inited) 1496 ucr4 |= UCR4_OREN; 1497 if (sport->inverted_rx) 1498 ucr4 |= UCR4_INVR; 1499 imx_uart_writel(sport, ucr4, UCR4); 1500 1501 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1502 /* 1503 * configure tx polarity before enabling tx 1504 */ 1505 if (sport->inverted_tx) 1506 ucr3 |= UCR3_INVT; 1507 1508 if (!imx_uart_is_imx1(sport)) { 1509 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1510 1511 if (sport->dte_mode) 1512 /* disable broken interrupts */ 1513 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1514 } 1515 imx_uart_writel(sport, ucr3, UCR3); 1516 1517 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1518 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1519 if (!sport->have_rtscts) 1520 ucr2 |= UCR2_IRTS; 1521 /* 1522 * make sure the edge sensitive RTS-irq is disabled, 1523 * we're using RTSD instead. 1524 */ 1525 if (!imx_uart_is_imx1(sport)) 1526 ucr2 &= ~UCR2_RTSEN; 1527 imx_uart_writel(sport, ucr2, UCR2); 1528 1529 /* 1530 * Enable modem status interrupts 1531 */ 1532 imx_uart_enable_ms(&sport->port); 1533 1534 if (dma_is_inited) { 1535 imx_uart_enable_dma(sport); 1536 imx_uart_start_rx_dma(sport); 1537 } else { 1538 ucr1 = imx_uart_readl(sport, UCR1); 1539 ucr1 |= UCR1_RRDYEN; 1540 imx_uart_writel(sport, ucr1, UCR1); 1541 1542 ucr2 = imx_uart_readl(sport, UCR2); 1543 ucr2 |= UCR2_ATEN; 1544 imx_uart_writel(sport, ucr2, UCR2); 1545 } 1546 1547 imx_uart_disable_loopback_rs485(sport); 1548 1549 uart_port_unlock_irqrestore(&sport->port, flags); 1550 1551 return 0; 1552 } 1553 1554 static void imx_uart_shutdown(struct uart_port *port) 1555 { 1556 struct imx_port *sport = to_imx_port(port); 1557 unsigned long flags; 1558 u32 ucr1, ucr2, ucr4, uts; 1559 1560 if (sport->dma_is_enabled) { 1561 dmaengine_terminate_sync(sport->dma_chan_tx); 1562 if (sport->dma_is_txing) { 1563 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1564 sport->dma_tx_nents, DMA_TO_DEVICE); 1565 sport->dma_is_txing = 0; 1566 } 1567 dmaengine_terminate_sync(sport->dma_chan_rx); 1568 if (sport->dma_is_rxing) { 1569 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1570 1, DMA_FROM_DEVICE); 1571 sport->dma_is_rxing = 0; 1572 } 1573 1574 uart_port_lock_irqsave(&sport->port, &flags); 1575 imx_uart_stop_tx(port); 1576 imx_uart_stop_rx(port); 1577 imx_uart_disable_dma(sport); 1578 uart_port_unlock_irqrestore(&sport->port, flags); 1579 imx_uart_dma_exit(sport); 1580 } 1581 1582 mctrl_gpio_disable_ms(sport->gpios); 1583 1584 uart_port_lock_irqsave(&sport->port, &flags); 1585 ucr2 = imx_uart_readl(sport, UCR2); 1586 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1587 imx_uart_writel(sport, ucr2, UCR2); 1588 uart_port_unlock_irqrestore(&sport->port, flags); 1589 1590 /* 1591 * Stop our timer. 1592 */ 1593 del_timer_sync(&sport->timer); 1594 1595 /* 1596 * Disable all interrupts, port and break condition. 1597 */ 1598 1599 uart_port_lock_irqsave(&sport->port, &flags); 1600 1601 ucr1 = imx_uart_readl(sport, UCR1); 1602 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1603 UCR1_ATDMAEN | UCR1_SNDBRK); 1604 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1605 if (port->rs485.flags & SER_RS485_ENABLED && 1606 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1607 sport->have_rtscts && !sport->have_rtsgpio) { 1608 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1609 uts |= UTS_LOOP; 1610 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1611 ucr1 |= UCR1_UARTEN; 1612 } else { 1613 ucr1 &= ~UCR1_UARTEN; 1614 } 1615 imx_uart_writel(sport, ucr1, UCR1); 1616 1617 ucr4 = imx_uart_readl(sport, UCR4); 1618 ucr4 &= ~UCR4_TCEN; 1619 imx_uart_writel(sport, ucr4, UCR4); 1620 1621 uart_port_unlock_irqrestore(&sport->port, flags); 1622 1623 clk_disable_unprepare(sport->clk_per); 1624 clk_disable_unprepare(sport->clk_ipg); 1625 } 1626 1627 /* called with port.lock taken and irqs off */ 1628 static void imx_uart_flush_buffer(struct uart_port *port) 1629 { 1630 struct imx_port *sport = to_imx_port(port); 1631 struct scatterlist *sgl = &sport->tx_sgl[0]; 1632 1633 if (!sport->dma_chan_tx) 1634 return; 1635 1636 sport->tx_bytes = 0; 1637 dmaengine_terminate_all(sport->dma_chan_tx); 1638 if (sport->dma_is_txing) { 1639 u32 ucr1; 1640 1641 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1642 DMA_TO_DEVICE); 1643 ucr1 = imx_uart_readl(sport, UCR1); 1644 ucr1 &= ~UCR1_TXDMAEN; 1645 imx_uart_writel(sport, ucr1, UCR1); 1646 sport->dma_is_txing = 0; 1647 } 1648 1649 imx_uart_soft_reset(sport); 1650 1651 } 1652 1653 static void 1654 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1655 const struct ktermios *old) 1656 { 1657 struct imx_port *sport = to_imx_port(port); 1658 unsigned long flags; 1659 u32 ucr2, old_ucr2, ufcr; 1660 unsigned int baud, quot; 1661 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1662 unsigned long div; 1663 unsigned long num, denom, old_ubir, old_ubmr; 1664 uint64_t tdiv64; 1665 1666 /* 1667 * We only support CS7 and CS8. 1668 */ 1669 while ((termios->c_cflag & CSIZE) != CS7 && 1670 (termios->c_cflag & CSIZE) != CS8) { 1671 termios->c_cflag &= ~CSIZE; 1672 termios->c_cflag |= old_csize; 1673 old_csize = CS8; 1674 } 1675 1676 del_timer_sync(&sport->timer); 1677 1678 /* 1679 * Ask the core to calculate the divisor for us. 1680 */ 1681 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1682 quot = uart_get_divisor(port, baud); 1683 1684 uart_port_lock_irqsave(&sport->port, &flags); 1685 1686 /* 1687 * Read current UCR2 and save it for future use, then clear all the bits 1688 * except those we will or may need to preserve. 1689 */ 1690 old_ucr2 = imx_uart_readl(sport, UCR2); 1691 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1692 1693 ucr2 |= UCR2_SRST | UCR2_IRTS; 1694 if ((termios->c_cflag & CSIZE) == CS8) 1695 ucr2 |= UCR2_WS; 1696 1697 if (!sport->have_rtscts) 1698 termios->c_cflag &= ~CRTSCTS; 1699 1700 if (port->rs485.flags & SER_RS485_ENABLED) { 1701 /* 1702 * RTS is mandatory for rs485 operation, so keep 1703 * it under manual control and keep transmitter 1704 * disabled. 1705 */ 1706 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1707 imx_uart_rts_active(sport, &ucr2); 1708 else 1709 imx_uart_rts_inactive(sport, &ucr2); 1710 1711 } else if (termios->c_cflag & CRTSCTS) { 1712 /* 1713 * Only let receiver control RTS output if we were not requested 1714 * to have RTS inactive (which then should take precedence). 1715 */ 1716 if (ucr2 & UCR2_CTS) 1717 ucr2 |= UCR2_CTSC; 1718 } 1719 1720 if (termios->c_cflag & CRTSCTS) 1721 ucr2 &= ~UCR2_IRTS; 1722 if (termios->c_cflag & CSTOPB) 1723 ucr2 |= UCR2_STPB; 1724 if (termios->c_cflag & PARENB) { 1725 ucr2 |= UCR2_PREN; 1726 if (termios->c_cflag & PARODD) 1727 ucr2 |= UCR2_PROE; 1728 } 1729 1730 sport->port.read_status_mask = 0; 1731 if (termios->c_iflag & INPCK) 1732 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1733 if (termios->c_iflag & (BRKINT | PARMRK)) 1734 sport->port.read_status_mask |= URXD_BRK; 1735 1736 /* 1737 * Characters to ignore 1738 */ 1739 sport->port.ignore_status_mask = 0; 1740 if (termios->c_iflag & IGNPAR) 1741 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1742 if (termios->c_iflag & IGNBRK) { 1743 sport->port.ignore_status_mask |= URXD_BRK; 1744 /* 1745 * If we're ignoring parity and break indicators, 1746 * ignore overruns too (for real raw support). 1747 */ 1748 if (termios->c_iflag & IGNPAR) 1749 sport->port.ignore_status_mask |= URXD_OVRRUN; 1750 } 1751 1752 if ((termios->c_cflag & CREAD) == 0) 1753 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1754 1755 /* 1756 * Update the per-port timeout. 1757 */ 1758 uart_update_timeout(port, termios->c_cflag, baud); 1759 1760 /* custom-baudrate handling */ 1761 div = sport->port.uartclk / (baud * 16); 1762 if (baud == 38400 && quot != div) 1763 baud = sport->port.uartclk / (quot * 16); 1764 1765 div = sport->port.uartclk / (baud * 16); 1766 if (div > 7) 1767 div = 7; 1768 if (!div) 1769 div = 1; 1770 1771 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1772 1 << 16, 1 << 16, &num, &denom); 1773 1774 tdiv64 = sport->port.uartclk; 1775 tdiv64 *= num; 1776 do_div(tdiv64, denom * 16 * div); 1777 tty_termios_encode_baud_rate(termios, 1778 (speed_t)tdiv64, (speed_t)tdiv64); 1779 1780 num -= 1; 1781 denom -= 1; 1782 1783 ufcr = imx_uart_readl(sport, UFCR); 1784 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1785 imx_uart_writel(sport, ufcr, UFCR); 1786 1787 /* 1788 * Two registers below should always be written both and in this 1789 * particular order. One consequence is that we need to check if any of 1790 * them changes and then update both. We do need the check for change 1791 * as even writing the same values seem to "restart" 1792 * transmission/receiving logic in the hardware, that leads to data 1793 * breakage even when rate doesn't in fact change. E.g., user switches 1794 * RTS/CTS handshake and suddenly gets broken bytes. 1795 */ 1796 old_ubir = imx_uart_readl(sport, UBIR); 1797 old_ubmr = imx_uart_readl(sport, UBMR); 1798 if (old_ubir != num || old_ubmr != denom) { 1799 imx_uart_writel(sport, num, UBIR); 1800 imx_uart_writel(sport, denom, UBMR); 1801 } 1802 1803 if (!imx_uart_is_imx1(sport)) 1804 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1805 IMX21_ONEMS); 1806 1807 imx_uart_writel(sport, ucr2, UCR2); 1808 1809 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1810 imx_uart_enable_ms(&sport->port); 1811 1812 uart_port_unlock_irqrestore(&sport->port, flags); 1813 } 1814 1815 static const char *imx_uart_type(struct uart_port *port) 1816 { 1817 return port->type == PORT_IMX ? "IMX" : NULL; 1818 } 1819 1820 /* 1821 * Configure/autoconfigure the port. 1822 */ 1823 static void imx_uart_config_port(struct uart_port *port, int flags) 1824 { 1825 if (flags & UART_CONFIG_TYPE) 1826 port->type = PORT_IMX; 1827 } 1828 1829 /* 1830 * Verify the new serial_struct (for TIOCSSERIAL). 1831 * The only change we allow are to the flags and type, and 1832 * even then only between PORT_IMX and PORT_UNKNOWN 1833 */ 1834 static int 1835 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1836 { 1837 int ret = 0; 1838 1839 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1840 ret = -EINVAL; 1841 if (port->irq != ser->irq) 1842 ret = -EINVAL; 1843 if (ser->io_type != UPIO_MEM) 1844 ret = -EINVAL; 1845 if (port->uartclk / 16 != ser->baud_base) 1846 ret = -EINVAL; 1847 if (port->mapbase != (unsigned long)ser->iomem_base) 1848 ret = -EINVAL; 1849 if (port->iobase != ser->port) 1850 ret = -EINVAL; 1851 if (ser->hub6 != 0) 1852 ret = -EINVAL; 1853 return ret; 1854 } 1855 1856 #if defined(CONFIG_CONSOLE_POLL) 1857 1858 static int imx_uart_poll_init(struct uart_port *port) 1859 { 1860 struct imx_port *sport = to_imx_port(port); 1861 unsigned long flags; 1862 u32 ucr1, ucr2; 1863 int retval; 1864 1865 retval = clk_prepare_enable(sport->clk_ipg); 1866 if (retval) 1867 return retval; 1868 retval = clk_prepare_enable(sport->clk_per); 1869 if (retval) 1870 clk_disable_unprepare(sport->clk_ipg); 1871 1872 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1873 1874 uart_port_lock_irqsave(&sport->port, &flags); 1875 1876 /* 1877 * Be careful about the order of enabling bits here. First enable the 1878 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1879 * This prevents that a character that already sits in the RX fifo is 1880 * triggering an irq but the try to fetch it from there results in an 1881 * exception because UARTEN or RXEN is still off. 1882 */ 1883 ucr1 = imx_uart_readl(sport, UCR1); 1884 ucr2 = imx_uart_readl(sport, UCR2); 1885 1886 if (imx_uart_is_imx1(sport)) 1887 ucr1 |= IMX1_UCR1_UARTCLKEN; 1888 1889 ucr1 |= UCR1_UARTEN; 1890 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1891 1892 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1893 ucr2 &= ~UCR2_ATEN; 1894 1895 imx_uart_writel(sport, ucr1, UCR1); 1896 imx_uart_writel(sport, ucr2, UCR2); 1897 1898 /* now enable irqs */ 1899 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1900 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1901 1902 uart_port_unlock_irqrestore(&sport->port, flags); 1903 1904 return 0; 1905 } 1906 1907 static int imx_uart_poll_get_char(struct uart_port *port) 1908 { 1909 struct imx_port *sport = to_imx_port(port); 1910 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1911 return NO_POLL_CHAR; 1912 1913 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1914 } 1915 1916 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1917 { 1918 struct imx_port *sport = to_imx_port(port); 1919 unsigned int status; 1920 1921 /* drain */ 1922 do { 1923 status = imx_uart_readl(sport, USR1); 1924 } while (~status & USR1_TRDY); 1925 1926 /* write */ 1927 imx_uart_writel(sport, c, URTX0); 1928 1929 /* flush */ 1930 do { 1931 status = imx_uart_readl(sport, USR2); 1932 } while (~status & USR2_TXDC); 1933 } 1934 #endif 1935 1936 /* called with port.lock taken and irqs off or from .probe without locking */ 1937 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1938 struct serial_rs485 *rs485conf) 1939 { 1940 struct imx_port *sport = to_imx_port(port); 1941 u32 ucr2; 1942 1943 if (rs485conf->flags & SER_RS485_ENABLED) { 1944 /* Enable receiver if low-active RTS signal is requested */ 1945 if (sport->have_rtscts && !sport->have_rtsgpio && 1946 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1947 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1948 1949 /* disable transmitter */ 1950 ucr2 = imx_uart_readl(sport, UCR2); 1951 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1952 imx_uart_rts_active(sport, &ucr2); 1953 else 1954 imx_uart_rts_inactive(sport, &ucr2); 1955 imx_uart_writel(sport, ucr2, UCR2); 1956 } 1957 1958 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1959 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1960 rs485conf->flags & SER_RS485_RX_DURING_TX) 1961 imx_uart_start_rx(port); 1962 1963 return 0; 1964 } 1965 1966 static const struct uart_ops imx_uart_pops = { 1967 .tx_empty = imx_uart_tx_empty, 1968 .set_mctrl = imx_uart_set_mctrl, 1969 .get_mctrl = imx_uart_get_mctrl, 1970 .stop_tx = imx_uart_stop_tx, 1971 .start_tx = imx_uart_start_tx, 1972 .stop_rx = imx_uart_stop_rx, 1973 .enable_ms = imx_uart_enable_ms, 1974 .break_ctl = imx_uart_break_ctl, 1975 .startup = imx_uart_startup, 1976 .shutdown = imx_uart_shutdown, 1977 .flush_buffer = imx_uart_flush_buffer, 1978 .set_termios = imx_uart_set_termios, 1979 .type = imx_uart_type, 1980 .config_port = imx_uart_config_port, 1981 .verify_port = imx_uart_verify_port, 1982 #if defined(CONFIG_CONSOLE_POLL) 1983 .poll_init = imx_uart_poll_init, 1984 .poll_get_char = imx_uart_poll_get_char, 1985 .poll_put_char = imx_uart_poll_put_char, 1986 #endif 1987 }; 1988 1989 static struct imx_port *imx_uart_ports[UART_NR]; 1990 1991 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1992 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1993 { 1994 struct imx_port *sport = to_imx_port(port); 1995 1996 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1997 barrier(); 1998 1999 imx_uart_writel(sport, ch, URTX0); 2000 } 2001 2002 /* 2003 * Interrupts are disabled on entering 2004 */ 2005 static void 2006 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2007 { 2008 struct imx_port *sport = imx_uart_ports[co->index]; 2009 struct imx_port_ucrs old_ucr; 2010 unsigned long flags; 2011 unsigned int ucr1, usr2; 2012 int locked = 1; 2013 2014 if (sport->port.sysrq) 2015 locked = 0; 2016 else if (oops_in_progress) 2017 locked = uart_port_trylock_irqsave(&sport->port, &flags); 2018 else 2019 uart_port_lock_irqsave(&sport->port, &flags); 2020 2021 /* 2022 * First, save UCR1/2/3 and then disable interrupts 2023 */ 2024 imx_uart_ucrs_save(sport, &old_ucr); 2025 ucr1 = old_ucr.ucr1; 2026 2027 if (imx_uart_is_imx1(sport)) 2028 ucr1 |= IMX1_UCR1_UARTCLKEN; 2029 ucr1 |= UCR1_UARTEN; 2030 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2031 2032 imx_uart_writel(sport, ucr1, UCR1); 2033 2034 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2035 2036 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2037 2038 /* 2039 * Finally, wait for transmitter to become empty 2040 * and restore UCR1/2/3 2041 */ 2042 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2043 0, USEC_PER_SEC, false, sport, USR2); 2044 imx_uart_ucrs_restore(sport, &old_ucr); 2045 2046 if (locked) 2047 uart_port_unlock_irqrestore(&sport->port, flags); 2048 } 2049 2050 /* 2051 * If the port was already initialised (eg, by a boot loader), 2052 * try to determine the current setup. 2053 */ 2054 static void 2055 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2056 int *parity, int *bits) 2057 { 2058 2059 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2060 /* ok, the port was enabled */ 2061 unsigned int ucr2, ubir, ubmr, uartclk; 2062 unsigned int baud_raw; 2063 unsigned int ucfr_rfdiv; 2064 2065 ucr2 = imx_uart_readl(sport, UCR2); 2066 2067 *parity = 'n'; 2068 if (ucr2 & UCR2_PREN) { 2069 if (ucr2 & UCR2_PROE) 2070 *parity = 'o'; 2071 else 2072 *parity = 'e'; 2073 } 2074 2075 if (ucr2 & UCR2_WS) 2076 *bits = 8; 2077 else 2078 *bits = 7; 2079 2080 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2081 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2082 2083 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2084 if (ucfr_rfdiv == 6) 2085 ucfr_rfdiv = 7; 2086 else 2087 ucfr_rfdiv = 6 - ucfr_rfdiv; 2088 2089 uartclk = clk_get_rate(sport->clk_per); 2090 uartclk /= ucfr_rfdiv; 2091 2092 { /* 2093 * The next code provides exact computation of 2094 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2095 * without need of float support or long long division, 2096 * which would be required to prevent 32bit arithmetic overflow 2097 */ 2098 unsigned int mul = ubir + 1; 2099 unsigned int div = 16 * (ubmr + 1); 2100 unsigned int rem = uartclk % div; 2101 2102 baud_raw = (uartclk / div) * mul; 2103 baud_raw += (rem * mul + div / 2) / div; 2104 *baud = (baud_raw + 50) / 100 * 100; 2105 } 2106 2107 if (*baud != baud_raw) 2108 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2109 baud_raw, *baud); 2110 } 2111 } 2112 2113 static int 2114 imx_uart_console_setup(struct console *co, char *options) 2115 { 2116 struct imx_port *sport; 2117 int baud = 9600; 2118 int bits = 8; 2119 int parity = 'n'; 2120 int flow = 'n'; 2121 int retval; 2122 2123 /* 2124 * Check whether an invalid uart number has been specified, and 2125 * if so, search for the first available port that does have 2126 * console support. 2127 */ 2128 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2129 co->index = 0; 2130 sport = imx_uart_ports[co->index]; 2131 if (sport == NULL) 2132 return -ENODEV; 2133 2134 /* For setting the registers, we only need to enable the ipg clock. */ 2135 retval = clk_prepare_enable(sport->clk_ipg); 2136 if (retval) 2137 goto error_console; 2138 2139 if (options) 2140 uart_parse_options(options, &baud, &parity, &bits, &flow); 2141 else 2142 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2143 2144 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2145 2146 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2147 2148 if (retval) { 2149 clk_disable_unprepare(sport->clk_ipg); 2150 goto error_console; 2151 } 2152 2153 retval = clk_prepare_enable(sport->clk_per); 2154 if (retval) 2155 clk_disable_unprepare(sport->clk_ipg); 2156 2157 error_console: 2158 return retval; 2159 } 2160 2161 static int 2162 imx_uart_console_exit(struct console *co) 2163 { 2164 struct imx_port *sport = imx_uart_ports[co->index]; 2165 2166 clk_disable_unprepare(sport->clk_per); 2167 clk_disable_unprepare(sport->clk_ipg); 2168 2169 return 0; 2170 } 2171 2172 static struct uart_driver imx_uart_uart_driver; 2173 static struct console imx_uart_console = { 2174 .name = DEV_NAME, 2175 .write = imx_uart_console_write, 2176 .device = uart_console_device, 2177 .setup = imx_uart_console_setup, 2178 .exit = imx_uart_console_exit, 2179 .flags = CON_PRINTBUFFER, 2180 .index = -1, 2181 .data = &imx_uart_uart_driver, 2182 }; 2183 2184 #define IMX_CONSOLE &imx_uart_console 2185 2186 #else 2187 #define IMX_CONSOLE NULL 2188 #endif 2189 2190 static struct uart_driver imx_uart_uart_driver = { 2191 .owner = THIS_MODULE, 2192 .driver_name = DRIVER_NAME, 2193 .dev_name = DEV_NAME, 2194 .major = SERIAL_IMX_MAJOR, 2195 .minor = MINOR_START, 2196 .nr = ARRAY_SIZE(imx_uart_ports), 2197 .cons = IMX_CONSOLE, 2198 }; 2199 2200 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2201 { 2202 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2203 unsigned long flags; 2204 2205 uart_port_lock_irqsave(&sport->port, &flags); 2206 if (sport->tx_state == WAIT_AFTER_RTS) 2207 imx_uart_start_tx(&sport->port); 2208 uart_port_unlock_irqrestore(&sport->port, flags); 2209 2210 return HRTIMER_NORESTART; 2211 } 2212 2213 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2214 { 2215 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2216 unsigned long flags; 2217 2218 uart_port_lock_irqsave(&sport->port, &flags); 2219 if (sport->tx_state == WAIT_AFTER_SEND) 2220 imx_uart_stop_tx(&sport->port); 2221 uart_port_unlock_irqrestore(&sport->port, flags); 2222 2223 return HRTIMER_NORESTART; 2224 } 2225 2226 static const struct serial_rs485 imx_rs485_supported = { 2227 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2228 SER_RS485_RX_DURING_TX, 2229 .delay_rts_before_send = 1, 2230 .delay_rts_after_send = 1, 2231 }; 2232 2233 /* Default RX DMA buffer configuration */ 2234 #define RX_DMA_PERIODS 16 2235 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2236 2237 static int imx_uart_probe(struct platform_device *pdev) 2238 { 2239 struct device_node *np = pdev->dev.of_node; 2240 struct imx_port *sport; 2241 void __iomem *base; 2242 u32 dma_buf_conf[2]; 2243 int ret = 0; 2244 u32 ucr1, ucr2, uts; 2245 struct resource *res; 2246 int txirq, rxirq, rtsirq; 2247 2248 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2249 if (!sport) 2250 return -ENOMEM; 2251 2252 sport->devdata = of_device_get_match_data(&pdev->dev); 2253 2254 ret = of_alias_get_id(np, "serial"); 2255 if (ret < 0) { 2256 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2257 return ret; 2258 } 2259 sport->port.line = ret; 2260 2261 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2262 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2263 2264 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2265 2266 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2267 2268 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2269 2270 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2271 2272 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2273 sport->rx_period_length = dma_buf_conf[0]; 2274 sport->rx_periods = dma_buf_conf[1]; 2275 } else { 2276 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2277 sport->rx_periods = RX_DMA_PERIODS; 2278 } 2279 2280 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2281 dev_err(&pdev->dev, "serial%d out of range\n", 2282 sport->port.line); 2283 return -EINVAL; 2284 } 2285 2286 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2287 if (IS_ERR(base)) 2288 return PTR_ERR(base); 2289 2290 rxirq = platform_get_irq(pdev, 0); 2291 if (rxirq < 0) 2292 return rxirq; 2293 txirq = platform_get_irq_optional(pdev, 1); 2294 rtsirq = platform_get_irq_optional(pdev, 2); 2295 2296 sport->port.dev = &pdev->dev; 2297 sport->port.mapbase = res->start; 2298 sport->port.membase = base; 2299 sport->port.type = PORT_IMX; 2300 sport->port.iotype = UPIO_MEM; 2301 sport->port.irq = rxirq; 2302 sport->port.fifosize = 32; 2303 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2304 sport->port.ops = &imx_uart_pops; 2305 sport->port.rs485_config = imx_uart_rs485_config; 2306 /* RTS is required to control the RS485 transmitter */ 2307 if (sport->have_rtscts || sport->have_rtsgpio) 2308 sport->port.rs485_supported = imx_rs485_supported; 2309 sport->port.flags = UPF_BOOT_AUTOCONF; 2310 timer_setup(&sport->timer, imx_uart_timeout, 0); 2311 2312 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2313 if (IS_ERR(sport->gpios)) 2314 return PTR_ERR(sport->gpios); 2315 2316 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2317 if (IS_ERR(sport->clk_ipg)) { 2318 ret = PTR_ERR(sport->clk_ipg); 2319 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2320 return ret; 2321 } 2322 2323 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2324 if (IS_ERR(sport->clk_per)) { 2325 ret = PTR_ERR(sport->clk_per); 2326 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2327 return ret; 2328 } 2329 2330 sport->port.uartclk = clk_get_rate(sport->clk_per); 2331 2332 /* For register access, we only need to enable the ipg clock. */ 2333 ret = clk_prepare_enable(sport->clk_ipg); 2334 if (ret) { 2335 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2336 return ret; 2337 } 2338 2339 ret = uart_get_rs485_mode(&sport->port); 2340 if (ret) 2341 goto err_clk; 2342 2343 /* 2344 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2345 * signal cannot be set low during transmission in case the 2346 * receiver is off (limitation of the i.MX UART IP). 2347 */ 2348 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2349 sport->have_rtscts && !sport->have_rtsgpio && 2350 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2351 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2352 dev_err(&pdev->dev, 2353 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2354 2355 /* Disable interrupts before requesting them */ 2356 ucr1 = imx_uart_readl(sport, UCR1); 2357 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2358 imx_uart_writel(sport, ucr1, UCR1); 2359 2360 /* Disable Ageing Timer interrupt */ 2361 ucr2 = imx_uart_readl(sport, UCR2); 2362 ucr2 &= ~UCR2_ATEN; 2363 imx_uart_writel(sport, ucr2, UCR2); 2364 2365 /* 2366 * In case RS485 is enabled without GPIO RTS control, the UART IP 2367 * is used to control CTS signal. Keep both the UART and Receiver 2368 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2369 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2370 * data from being fed into the RX FIFO, enable loopback mode in 2371 * UTS register, which disconnects the RX path from external RXD 2372 * pin and connects it to the Transceiver, which is disabled, so 2373 * no data can be fed to the RX FIFO that way. 2374 */ 2375 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2376 sport->have_rtscts && !sport->have_rtsgpio) { 2377 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2378 uts |= UTS_LOOP; 2379 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2380 2381 ucr1 = imx_uart_readl(sport, UCR1); 2382 ucr1 |= UCR1_UARTEN; 2383 imx_uart_writel(sport, ucr1, UCR1); 2384 2385 ucr2 = imx_uart_readl(sport, UCR2); 2386 ucr2 |= UCR2_RXEN; 2387 imx_uart_writel(sport, ucr2, UCR2); 2388 } 2389 2390 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2391 /* 2392 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2393 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2394 * and DCD (when they are outputs) or enables the respective 2395 * irqs. So set this bit early, i.e. before requesting irqs. 2396 */ 2397 u32 ufcr = imx_uart_readl(sport, UFCR); 2398 if (!(ufcr & UFCR_DCEDTE)) 2399 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2400 2401 /* 2402 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2403 * enabled later because they cannot be cleared 2404 * (confirmed on i.MX25) which makes them unusable. 2405 */ 2406 imx_uart_writel(sport, 2407 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2408 UCR3); 2409 2410 } else { 2411 u32 ucr3 = UCR3_DSR; 2412 u32 ufcr = imx_uart_readl(sport, UFCR); 2413 if (ufcr & UFCR_DCEDTE) 2414 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2415 2416 if (!imx_uart_is_imx1(sport)) 2417 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2418 imx_uart_writel(sport, ucr3, UCR3); 2419 } 2420 2421 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2422 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2423 sport->trigger_start_tx.function = imx_trigger_start_tx; 2424 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2425 2426 /* 2427 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2428 * chips only have one interrupt. 2429 */ 2430 if (txirq > 0) { 2431 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2432 dev_name(&pdev->dev), sport); 2433 if (ret) { 2434 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2435 ret); 2436 goto err_clk; 2437 } 2438 2439 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2440 dev_name(&pdev->dev), sport); 2441 if (ret) { 2442 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2443 ret); 2444 goto err_clk; 2445 } 2446 2447 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2448 dev_name(&pdev->dev), sport); 2449 if (ret) { 2450 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2451 ret); 2452 goto err_clk; 2453 } 2454 } else { 2455 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2456 dev_name(&pdev->dev), sport); 2457 if (ret) { 2458 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2459 goto err_clk; 2460 } 2461 } 2462 2463 imx_uart_ports[sport->port.line] = sport; 2464 2465 platform_set_drvdata(pdev, sport); 2466 2467 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2468 2469 err_clk: 2470 clk_disable_unprepare(sport->clk_ipg); 2471 2472 return ret; 2473 } 2474 2475 static void imx_uart_remove(struct platform_device *pdev) 2476 { 2477 struct imx_port *sport = platform_get_drvdata(pdev); 2478 2479 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2480 } 2481 2482 static void imx_uart_restore_context(struct imx_port *sport) 2483 { 2484 unsigned long flags; 2485 2486 uart_port_lock_irqsave(&sport->port, &flags); 2487 if (!sport->context_saved) { 2488 uart_port_unlock_irqrestore(&sport->port, flags); 2489 return; 2490 } 2491 2492 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2493 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2494 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2495 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2496 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2497 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2498 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2499 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2500 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2501 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2502 sport->context_saved = false; 2503 uart_port_unlock_irqrestore(&sport->port, flags); 2504 } 2505 2506 static void imx_uart_save_context(struct imx_port *sport) 2507 { 2508 unsigned long flags; 2509 2510 /* Save necessary regs */ 2511 uart_port_lock_irqsave(&sport->port, &flags); 2512 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2513 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2514 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2515 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2516 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2517 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2518 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2519 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2520 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2521 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2522 sport->context_saved = true; 2523 uart_port_unlock_irqrestore(&sport->port, flags); 2524 } 2525 2526 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2527 { 2528 u32 ucr3; 2529 2530 ucr3 = imx_uart_readl(sport, UCR3); 2531 if (on) { 2532 imx_uart_writel(sport, USR1_AWAKE, USR1); 2533 ucr3 |= UCR3_AWAKEN; 2534 } else { 2535 ucr3 &= ~UCR3_AWAKEN; 2536 } 2537 imx_uart_writel(sport, ucr3, UCR3); 2538 2539 if (sport->have_rtscts) { 2540 u32 ucr1 = imx_uart_readl(sport, UCR1); 2541 if (on) { 2542 imx_uart_writel(sport, USR1_RTSD, USR1); 2543 ucr1 |= UCR1_RTSDEN; 2544 } else { 2545 ucr1 &= ~UCR1_RTSDEN; 2546 } 2547 imx_uart_writel(sport, ucr1, UCR1); 2548 } 2549 } 2550 2551 static int imx_uart_suspend_noirq(struct device *dev) 2552 { 2553 struct imx_port *sport = dev_get_drvdata(dev); 2554 2555 imx_uart_save_context(sport); 2556 2557 clk_disable(sport->clk_ipg); 2558 2559 pinctrl_pm_select_sleep_state(dev); 2560 2561 return 0; 2562 } 2563 2564 static int imx_uart_resume_noirq(struct device *dev) 2565 { 2566 struct imx_port *sport = dev_get_drvdata(dev); 2567 int ret; 2568 2569 pinctrl_pm_select_default_state(dev); 2570 2571 ret = clk_enable(sport->clk_ipg); 2572 if (ret) 2573 return ret; 2574 2575 imx_uart_restore_context(sport); 2576 2577 return 0; 2578 } 2579 2580 static int imx_uart_suspend(struct device *dev) 2581 { 2582 struct imx_port *sport = dev_get_drvdata(dev); 2583 int ret; 2584 2585 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2586 disable_irq(sport->port.irq); 2587 2588 ret = clk_prepare_enable(sport->clk_ipg); 2589 if (ret) 2590 return ret; 2591 2592 /* enable wakeup from i.MX UART */ 2593 imx_uart_enable_wakeup(sport, true); 2594 2595 return 0; 2596 } 2597 2598 static int imx_uart_resume(struct device *dev) 2599 { 2600 struct imx_port *sport = dev_get_drvdata(dev); 2601 2602 /* disable wakeup from i.MX UART */ 2603 imx_uart_enable_wakeup(sport, false); 2604 2605 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2606 enable_irq(sport->port.irq); 2607 2608 clk_disable_unprepare(sport->clk_ipg); 2609 2610 return 0; 2611 } 2612 2613 static int imx_uart_freeze(struct device *dev) 2614 { 2615 struct imx_port *sport = dev_get_drvdata(dev); 2616 2617 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2618 2619 return clk_prepare_enable(sport->clk_ipg); 2620 } 2621 2622 static int imx_uart_thaw(struct device *dev) 2623 { 2624 struct imx_port *sport = dev_get_drvdata(dev); 2625 2626 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2627 2628 clk_disable_unprepare(sport->clk_ipg); 2629 2630 return 0; 2631 } 2632 2633 static const struct dev_pm_ops imx_uart_pm_ops = { 2634 .suspend_noirq = imx_uart_suspend_noirq, 2635 .resume_noirq = imx_uart_resume_noirq, 2636 .freeze_noirq = imx_uart_suspend_noirq, 2637 .thaw_noirq = imx_uart_resume_noirq, 2638 .restore_noirq = imx_uart_resume_noirq, 2639 .suspend = imx_uart_suspend, 2640 .resume = imx_uart_resume, 2641 .freeze = imx_uart_freeze, 2642 .thaw = imx_uart_thaw, 2643 .restore = imx_uart_thaw, 2644 }; 2645 2646 static struct platform_driver imx_uart_platform_driver = { 2647 .probe = imx_uart_probe, 2648 .remove_new = imx_uart_remove, 2649 2650 .driver = { 2651 .name = "imx-uart", 2652 .of_match_table = imx_uart_dt_ids, 2653 .pm = &imx_uart_pm_ops, 2654 }, 2655 }; 2656 2657 static int __init imx_uart_init(void) 2658 { 2659 int ret = uart_register_driver(&imx_uart_uart_driver); 2660 2661 if (ret) 2662 return ret; 2663 2664 ret = platform_driver_register(&imx_uart_platform_driver); 2665 if (ret != 0) 2666 uart_unregister_driver(&imx_uart_uart_driver); 2667 2668 return ret; 2669 } 2670 2671 static void __exit imx_uart_exit(void) 2672 { 2673 platform_driver_unregister(&imx_uart_platform_driver); 2674 uart_unregister_driver(&imx_uart_uart_driver); 2675 } 2676 2677 module_init(imx_uart_init); 2678 module_exit(imx_uart_exit); 2679 2680 MODULE_AUTHOR("Sascha Hauer"); 2681 MODULE_DESCRIPTION("IMX generic serial port driver"); 2682 MODULE_LICENSE("GPL"); 2683 MODULE_ALIAS("platform:imx-uart"); 2684