xref: /linux/drivers/tty/serial/imx.c (revision 24b10e5f8e0d2bee1a10fc67011ea5d936c1a389)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/io.h>
29 #include <linux/dma-mapping.h>
30 
31 #include <asm/irq.h>
32 #include <linux/dma/imx-dma.h>
33 
34 #include "serial_mctrl_gpio.h"
35 
36 /* Register definitions */
37 #define URXD0 0x0  /* Receiver Register */
38 #define URTX0 0x40 /* Transmitter Register */
39 #define UCR1  0x80 /* Control Register 1 */
40 #define UCR2  0x84 /* Control Register 2 */
41 #define UCR3  0x88 /* Control Register 3 */
42 #define UCR4  0x8c /* Control Register 4 */
43 #define UFCR  0x90 /* FIFO Control Register */
44 #define USR1  0x94 /* Status Register 1 */
45 #define USR2  0x98 /* Status Register 2 */
46 #define UESC  0x9c /* Escape Character Register */
47 #define UTIM  0xa0 /* Escape Timer Register */
48 #define UBIR  0xa4 /* BRM Incremental Register */
49 #define UBMR  0xa8 /* BRM Modulator Register */
50 #define UBRC  0xac /* Baud Rate Count Register */
51 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
52 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
53 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
54 
55 /* UART Control Register Bit Fields.*/
56 #define URXD_DUMMY_READ (1<<16)
57 #define URXD_CHARRDY	(1<<15)
58 #define URXD_ERR	(1<<14)
59 #define URXD_OVRRUN	(1<<13)
60 #define URXD_FRMERR	(1<<12)
61 #define URXD_BRK	(1<<11)
62 #define URXD_PRERR	(1<<10)
63 #define URXD_RX_DATA	(0xFF<<0)
64 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
65 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
66 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
67 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
68 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
69 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
70 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
71 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
72 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
73 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
74 #define UCR1_SNDBRK	(1<<4)	/* Send break */
75 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
76 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
77 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
78 #define UCR1_DOZE	(1<<1)	/* Doze */
79 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
80 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
81 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
82 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
83 #define UCR2_CTS	(1<<12)	/* Clear to send */
84 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
85 #define UCR2_PREN	(1<<8)	/* Parity enable */
86 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
87 #define UCR2_STPB	(1<<6)	/* Stop */
88 #define UCR2_WS		(1<<5)	/* Word size */
89 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
90 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
91 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
92 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
93 #define UCR2_SRST	(1<<0)	/* SW reset */
94 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
95 #define UCR3_PARERREN	(1<<12) /* Parity enable */
96 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
97 #define UCR3_DSR	(1<<10) /* Data set ready */
98 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
99 #define UCR3_RI		(1<<8)	/* Ring indicator */
100 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
101 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
102 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
103 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
104 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
105 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
106 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
107 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
108 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
109 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
110 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
111 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
112 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
113 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
114 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
115 #define UCR4_IRSC	(1<<5)	/* IR special case */
116 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
117 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
118 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
119 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
120 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
121 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
122 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
123 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
124 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
125 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
126 #define USR1_RTSS	(1<<14) /* RTS pin status */
127 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
128 #define USR1_RTSD	(1<<12) /* RTS delta */
129 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
130 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
131 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
132 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
133 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
134 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
135 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
136 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
137 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
138 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
139 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
140 #define USR2_IDLE	 (1<<12) /* Idle condition */
141 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
142 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
143 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
144 #define USR2_WAKE	 (1<<7)	 /* Wake */
145 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
146 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
147 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
148 #define USR2_BRCD	 (1<<2)	 /* Break condition */
149 #define USR2_ORE	(1<<1)	 /* Overrun error */
150 #define USR2_RDR	(1<<0)	 /* Recv data ready */
151 #define UTS_FRCPERR	(1<<13) /* Force parity error */
152 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
153 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
154 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
155 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
156 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
157 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
158 
159 /* We've been assigned a range on the "Low-density serial ports" major */
160 #define SERIAL_IMX_MAJOR	207
161 #define MINOR_START		16
162 #define DEV_NAME		"ttymxc"
163 
164 /*
165  * This determines how often we check the modem status signals
166  * for any change.  They generally aren't connected to an IRQ
167  * so we have to poll them.  We also check immediately before
168  * filling the TX fifo incase CTS has been dropped.
169  */
170 #define MCTRL_TIMEOUT	(250*HZ/1000)
171 
172 #define DRIVER_NAME "IMX-uart"
173 
174 #define UART_NR 8
175 
176 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
177 enum imx_uart_type {
178 	IMX1_UART,
179 	IMX21_UART,
180 };
181 
182 /* device type dependent stuff */
183 struct imx_uart_data {
184 	unsigned uts_reg;
185 	enum imx_uart_type devtype;
186 };
187 
188 enum imx_tx_state {
189 	OFF,
190 	WAIT_AFTER_RTS,
191 	SEND,
192 	WAIT_AFTER_SEND,
193 };
194 
195 struct imx_port {
196 	struct uart_port	port;
197 	struct timer_list	timer;
198 	unsigned int		old_status;
199 	unsigned int		have_rtscts:1;
200 	unsigned int		have_rtsgpio:1;
201 	unsigned int		dte_mode:1;
202 	unsigned int		inverted_tx:1;
203 	unsigned int		inverted_rx:1;
204 	struct clk		*clk_ipg;
205 	struct clk		*clk_per;
206 	const struct imx_uart_data *devdata;
207 
208 	struct mctrl_gpios *gpios;
209 
210 	/* counter to stop 0xff flood */
211 	int idle_counter;
212 
213 	/* DMA fields */
214 	unsigned int		dma_is_enabled:1;
215 	unsigned int		dma_is_rxing:1;
216 	unsigned int		dma_is_txing:1;
217 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
218 	struct scatterlist	rx_sgl, tx_sgl[2];
219 	void			*rx_buf;
220 	struct circ_buf		rx_ring;
221 	unsigned int		rx_buf_size;
222 	unsigned int		rx_period_length;
223 	unsigned int		rx_periods;
224 	dma_cookie_t		rx_cookie;
225 	unsigned int		tx_bytes;
226 	unsigned int		dma_tx_nents;
227 	unsigned int            saved_reg[10];
228 	bool			context_saved;
229 
230 	enum imx_tx_state	tx_state;
231 	struct hrtimer		trigger_start_tx;
232 	struct hrtimer		trigger_stop_tx;
233 };
234 
235 struct imx_port_ucrs {
236 	unsigned int	ucr1;
237 	unsigned int	ucr2;
238 	unsigned int	ucr3;
239 };
240 
241 static const struct imx_uart_data imx_uart_imx1_devdata = {
242 	.uts_reg = IMX1_UTS,
243 	.devtype = IMX1_UART,
244 };
245 
246 static const struct imx_uart_data imx_uart_imx21_devdata = {
247 	.uts_reg = IMX21_UTS,
248 	.devtype = IMX21_UART,
249 };
250 
251 static const struct of_device_id imx_uart_dt_ids[] = {
252 	/*
253 	 * For reasons unknown to me, some UART devices (e.g. imx6ul's) are
254 	 * compatible to fsl,imx6q-uart, but not fsl,imx21-uart, while the
255 	 * original imx6q's UART is compatible to fsl,imx21-uart. This driver
256 	 * doesn't make any distinction between these two variants.
257 	 */
258 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_imx21_devdata, },
259 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_imx1_devdata, },
260 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_imx21_devdata, },
261 	{ /* sentinel */ }
262 };
263 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
264 
265 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
266 {
267 	writel(val, sport->port.membase + offset);
268 }
269 
270 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
271 {
272 	return readl(sport->port.membase + offset);
273 }
274 
275 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
276 {
277 	return sport->devdata->uts_reg;
278 }
279 
280 static inline int imx_uart_is_imx1(struct imx_port *sport)
281 {
282 	return sport->devdata->devtype == IMX1_UART;
283 }
284 
285 /*
286  * Save and restore functions for UCR1, UCR2 and UCR3 registers
287  */
288 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
289 static void imx_uart_ucrs_save(struct imx_port *sport,
290 			       struct imx_port_ucrs *ucr)
291 {
292 	/* save control registers */
293 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
294 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
295 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
296 }
297 
298 static void imx_uart_ucrs_restore(struct imx_port *sport,
299 				  struct imx_port_ucrs *ucr)
300 {
301 	/* restore control registers */
302 	imx_uart_writel(sport, ucr->ucr1, UCR1);
303 	imx_uart_writel(sport, ucr->ucr2, UCR2);
304 	imx_uart_writel(sport, ucr->ucr3, UCR3);
305 }
306 #endif
307 
308 /* called with port.lock taken and irqs caller dependent */
309 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
310 {
311 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
312 
313 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
314 }
315 
316 /* called with port.lock taken and irqs caller dependent */
317 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
318 {
319 	*ucr2 &= ~UCR2_CTSC;
320 	*ucr2 |= UCR2_CTS;
321 
322 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
323 }
324 
325 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
326 {
327        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
328 }
329 
330 /* called with port.lock taken and irqs off */
331 static void imx_uart_soft_reset(struct imx_port *sport)
332 {
333 	int i = 10;
334 	u32 ucr2, ubir, ubmr, uts;
335 
336 	/*
337 	 * According to the Reference Manual description of the UART SRST bit:
338 	 *
339 	 * "Reset the transmit and receive state machines,
340 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
341 	 * and UTS[6-3]".
342 	 *
343 	 * We don't need to restore the old values from USR1, USR2, URXD and
344 	 * UTXD. UBRC is read only, so only save/restore the other three
345 	 * registers.
346 	 */
347 	ubir = imx_uart_readl(sport, UBIR);
348 	ubmr = imx_uart_readl(sport, UBMR);
349 	uts = imx_uart_readl(sport, IMX21_UTS);
350 
351 	ucr2 = imx_uart_readl(sport, UCR2);
352 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
353 
354 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
355 		udelay(1);
356 
357 	/* Restore the registers */
358 	imx_uart_writel(sport, ubir, UBIR);
359 	imx_uart_writel(sport, ubmr, UBMR);
360 	imx_uart_writel(sport, uts, IMX21_UTS);
361 
362 	sport->idle_counter = 0;
363 }
364 
365 static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
366 {
367 	unsigned int uts;
368 
369 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
370 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
371 	uts &= ~UTS_LOOP;
372 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
373 }
374 
375 /* called with port.lock taken and irqs off */
376 static void imx_uart_start_rx(struct uart_port *port)
377 {
378 	struct imx_port *sport = (struct imx_port *)port;
379 	unsigned int ucr1, ucr2;
380 
381 	ucr1 = imx_uart_readl(sport, UCR1);
382 	ucr2 = imx_uart_readl(sport, UCR2);
383 
384 	ucr2 |= UCR2_RXEN;
385 
386 	if (sport->dma_is_enabled) {
387 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
388 	} else {
389 		ucr1 |= UCR1_RRDYEN;
390 		ucr2 |= UCR2_ATEN;
391 	}
392 
393 	/* Write UCR2 first as it includes RXEN */
394 	imx_uart_writel(sport, ucr2, UCR2);
395 	imx_uart_writel(sport, ucr1, UCR1);
396 	imx_uart_disable_loopback_rs485(sport);
397 }
398 
399 /* called with port.lock taken and irqs off */
400 static void imx_uart_stop_tx(struct uart_port *port)
401 {
402 	struct imx_port *sport = (struct imx_port *)port;
403 	u32 ucr1, ucr4, usr2;
404 
405 	if (sport->tx_state == OFF)
406 		return;
407 
408 	/*
409 	 * We are maybe in the SMP context, so if the DMA TX thread is running
410 	 * on other cpu, we have to wait for it to finish.
411 	 */
412 	if (sport->dma_is_txing)
413 		return;
414 
415 	ucr1 = imx_uart_readl(sport, UCR1);
416 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
417 
418 	ucr4 = imx_uart_readl(sport, UCR4);
419 	usr2 = imx_uart_readl(sport, USR2);
420 	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
421 		/* The shifter is still busy, so retry once TC triggers */
422 		return;
423 	}
424 
425 	ucr4 &= ~UCR4_TCEN;
426 	imx_uart_writel(sport, ucr4, UCR4);
427 
428 	/* in rs485 mode disable transmitter */
429 	if (port->rs485.flags & SER_RS485_ENABLED) {
430 		if (sport->tx_state == SEND) {
431 			sport->tx_state = WAIT_AFTER_SEND;
432 
433 			if (port->rs485.delay_rts_after_send > 0) {
434 				start_hrtimer_ms(&sport->trigger_stop_tx,
435 					 port->rs485.delay_rts_after_send);
436 				return;
437 			}
438 
439 			/* continue without any delay */
440 		}
441 
442 		if (sport->tx_state == WAIT_AFTER_RTS ||
443 		    sport->tx_state == WAIT_AFTER_SEND) {
444 			u32 ucr2;
445 
446 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
447 
448 			ucr2 = imx_uart_readl(sport, UCR2);
449 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
450 				imx_uart_rts_active(sport, &ucr2);
451 			else
452 				imx_uart_rts_inactive(sport, &ucr2);
453 			imx_uart_writel(sport, ucr2, UCR2);
454 
455 			if (!port->rs485_rx_during_tx_gpio)
456 				imx_uart_start_rx(port);
457 
458 			sport->tx_state = OFF;
459 		}
460 	} else {
461 		sport->tx_state = OFF;
462 	}
463 }
464 
465 /* called with port.lock taken and irqs off */
466 static void imx_uart_stop_rx(struct uart_port *port)
467 {
468 	struct imx_port *sport = (struct imx_port *)port;
469 	u32 ucr1, ucr2, ucr4, uts;
470 
471 	ucr1 = imx_uart_readl(sport, UCR1);
472 	ucr2 = imx_uart_readl(sport, UCR2);
473 	ucr4 = imx_uart_readl(sport, UCR4);
474 
475 	if (sport->dma_is_enabled) {
476 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
477 	} else {
478 		ucr1 &= ~UCR1_RRDYEN;
479 		ucr2 &= ~UCR2_ATEN;
480 		ucr4 &= ~UCR4_OREN;
481 	}
482 	imx_uart_writel(sport, ucr1, UCR1);
483 	imx_uart_writel(sport, ucr4, UCR4);
484 
485 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
486 	if (port->rs485.flags & SER_RS485_ENABLED &&
487 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
488 	    sport->have_rtscts && !sport->have_rtsgpio) {
489 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
490 		uts |= UTS_LOOP;
491 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
492 		ucr2 |= UCR2_RXEN;
493 	} else {
494 		ucr2 &= ~UCR2_RXEN;
495 	}
496 
497 	imx_uart_writel(sport, ucr2, UCR2);
498 }
499 
500 /* called with port.lock taken and irqs off */
501 static void imx_uart_enable_ms(struct uart_port *port)
502 {
503 	struct imx_port *sport = (struct imx_port *)port;
504 
505 	mod_timer(&sport->timer, jiffies);
506 
507 	mctrl_gpio_enable_ms(sport->gpios);
508 }
509 
510 static void imx_uart_dma_tx(struct imx_port *sport);
511 
512 /* called with port.lock taken and irqs off */
513 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
514 {
515 	struct circ_buf *xmit = &sport->port.state->xmit;
516 
517 	if (sport->port.x_char) {
518 		/* Send next char */
519 		imx_uart_writel(sport, sport->port.x_char, URTX0);
520 		sport->port.icount.tx++;
521 		sport->port.x_char = 0;
522 		return;
523 	}
524 
525 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
526 		imx_uart_stop_tx(&sport->port);
527 		return;
528 	}
529 
530 	if (sport->dma_is_enabled) {
531 		u32 ucr1;
532 		/*
533 		 * We've just sent a X-char Ensure the TX DMA is enabled
534 		 * and the TX IRQ is disabled.
535 		 **/
536 		ucr1 = imx_uart_readl(sport, UCR1);
537 		ucr1 &= ~UCR1_TRDYEN;
538 		if (sport->dma_is_txing) {
539 			ucr1 |= UCR1_TXDMAEN;
540 			imx_uart_writel(sport, ucr1, UCR1);
541 		} else {
542 			imx_uart_writel(sport, ucr1, UCR1);
543 			imx_uart_dma_tx(sport);
544 		}
545 
546 		return;
547 	}
548 
549 	while (!uart_circ_empty(xmit) &&
550 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
551 		/* send xmit->buf[xmit->tail]
552 		 * out the port here */
553 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
554 		uart_xmit_advance(&sport->port, 1);
555 	}
556 
557 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
558 		uart_write_wakeup(&sport->port);
559 
560 	if (uart_circ_empty(xmit))
561 		imx_uart_stop_tx(&sport->port);
562 }
563 
564 static void imx_uart_dma_tx_callback(void *data)
565 {
566 	struct imx_port *sport = data;
567 	struct scatterlist *sgl = &sport->tx_sgl[0];
568 	struct circ_buf *xmit = &sport->port.state->xmit;
569 	unsigned long flags;
570 	u32 ucr1;
571 
572 	uart_port_lock_irqsave(&sport->port, &flags);
573 
574 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
575 
576 	ucr1 = imx_uart_readl(sport, UCR1);
577 	ucr1 &= ~UCR1_TXDMAEN;
578 	imx_uart_writel(sport, ucr1, UCR1);
579 
580 	uart_xmit_advance(&sport->port, sport->tx_bytes);
581 
582 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
583 
584 	sport->dma_is_txing = 0;
585 
586 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
587 		uart_write_wakeup(&sport->port);
588 
589 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
590 		imx_uart_dma_tx(sport);
591 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
592 		u32 ucr4 = imx_uart_readl(sport, UCR4);
593 		ucr4 |= UCR4_TCEN;
594 		imx_uart_writel(sport, ucr4, UCR4);
595 	}
596 
597 	uart_port_unlock_irqrestore(&sport->port, flags);
598 }
599 
600 /* called with port.lock taken and irqs off */
601 static void imx_uart_dma_tx(struct imx_port *sport)
602 {
603 	struct circ_buf *xmit = &sport->port.state->xmit;
604 	struct scatterlist *sgl = sport->tx_sgl;
605 	struct dma_async_tx_descriptor *desc;
606 	struct dma_chan	*chan = sport->dma_chan_tx;
607 	struct device *dev = sport->port.dev;
608 	u32 ucr1, ucr4;
609 	int ret;
610 
611 	if (sport->dma_is_txing)
612 		return;
613 
614 	ucr4 = imx_uart_readl(sport, UCR4);
615 	ucr4 &= ~UCR4_TCEN;
616 	imx_uart_writel(sport, ucr4, UCR4);
617 
618 	sport->tx_bytes = uart_circ_chars_pending(xmit);
619 
620 	if (xmit->tail < xmit->head || xmit->head == 0) {
621 		sport->dma_tx_nents = 1;
622 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
623 	} else {
624 		sport->dma_tx_nents = 2;
625 		sg_init_table(sgl, 2);
626 		sg_set_buf(sgl, xmit->buf + xmit->tail,
627 				UART_XMIT_SIZE - xmit->tail);
628 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
629 	}
630 
631 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
632 	if (ret == 0) {
633 		dev_err(dev, "DMA mapping error for TX.\n");
634 		return;
635 	}
636 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
637 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
638 	if (!desc) {
639 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
640 			     DMA_TO_DEVICE);
641 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
642 		return;
643 	}
644 	desc->callback = imx_uart_dma_tx_callback;
645 	desc->callback_param = sport;
646 
647 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
648 			uart_circ_chars_pending(xmit));
649 
650 	ucr1 = imx_uart_readl(sport, UCR1);
651 	ucr1 |= UCR1_TXDMAEN;
652 	imx_uart_writel(sport, ucr1, UCR1);
653 
654 	/* fire it */
655 	sport->dma_is_txing = 1;
656 	dmaengine_submit(desc);
657 	dma_async_issue_pending(chan);
658 	return;
659 }
660 
661 /* called with port.lock taken and irqs off */
662 static void imx_uart_start_tx(struct uart_port *port)
663 {
664 	struct imx_port *sport = (struct imx_port *)port;
665 	u32 ucr1;
666 
667 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
668 		return;
669 
670 	/*
671 	 * We cannot simply do nothing here if sport->tx_state == SEND already
672 	 * because UCR1_TXMPTYEN might already have been cleared in
673 	 * imx_uart_stop_tx(), but tx_state is still SEND.
674 	 */
675 
676 	if (port->rs485.flags & SER_RS485_ENABLED) {
677 		if (sport->tx_state == OFF) {
678 			u32 ucr2 = imx_uart_readl(sport, UCR2);
679 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
680 				imx_uart_rts_active(sport, &ucr2);
681 			else
682 				imx_uart_rts_inactive(sport, &ucr2);
683 			imx_uart_writel(sport, ucr2, UCR2);
684 
685 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
686 			    !port->rs485_rx_during_tx_gpio)
687 				imx_uart_stop_rx(port);
688 
689 			sport->tx_state = WAIT_AFTER_RTS;
690 
691 			if (port->rs485.delay_rts_before_send > 0) {
692 				start_hrtimer_ms(&sport->trigger_start_tx,
693 					 port->rs485.delay_rts_before_send);
694 				return;
695 			}
696 
697 			/* continue without any delay */
698 		}
699 
700 		if (sport->tx_state == WAIT_AFTER_SEND
701 		    || sport->tx_state == WAIT_AFTER_RTS) {
702 
703 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
704 
705 			/*
706 			 * Enable transmitter and shifter empty irq only if DMA
707 			 * is off.  In the DMA case this is done in the
708 			 * tx-callback.
709 			 */
710 			if (!sport->dma_is_enabled) {
711 				u32 ucr4 = imx_uart_readl(sport, UCR4);
712 				ucr4 |= UCR4_TCEN;
713 				imx_uart_writel(sport, ucr4, UCR4);
714 			}
715 
716 			sport->tx_state = SEND;
717 		}
718 	} else {
719 		sport->tx_state = SEND;
720 	}
721 
722 	if (!sport->dma_is_enabled) {
723 		ucr1 = imx_uart_readl(sport, UCR1);
724 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
725 	}
726 
727 	if (sport->dma_is_enabled) {
728 		if (sport->port.x_char) {
729 			/* We have X-char to send, so enable TX IRQ and
730 			 * disable TX DMA to let TX interrupt to send X-char */
731 			ucr1 = imx_uart_readl(sport, UCR1);
732 			ucr1 &= ~UCR1_TXDMAEN;
733 			ucr1 |= UCR1_TRDYEN;
734 			imx_uart_writel(sport, ucr1, UCR1);
735 			return;
736 		}
737 
738 		if (!uart_circ_empty(&port->state->xmit) &&
739 		    !uart_tx_stopped(port))
740 			imx_uart_dma_tx(sport);
741 		return;
742 	}
743 }
744 
745 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
746 {
747 	struct imx_port *sport = dev_id;
748 	u32 usr1;
749 
750 	imx_uart_writel(sport, USR1_RTSD, USR1);
751 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
752 	uart_handle_cts_change(&sport->port, usr1);
753 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
754 
755 	return IRQ_HANDLED;
756 }
757 
758 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
759 {
760 	struct imx_port *sport = dev_id;
761 	irqreturn_t ret;
762 
763 	uart_port_lock(&sport->port);
764 
765 	ret = __imx_uart_rtsint(irq, dev_id);
766 
767 	uart_port_unlock(&sport->port);
768 
769 	return ret;
770 }
771 
772 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
773 {
774 	struct imx_port *sport = dev_id;
775 
776 	uart_port_lock(&sport->port);
777 	imx_uart_transmit_buffer(sport);
778 	uart_port_unlock(&sport->port);
779 	return IRQ_HANDLED;
780 }
781 
782 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
783  * This is to be called from Rx ISRs only when some bytes were actually
784  * received.
785  *
786  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
787  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
788  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
789  * that is terminated by any activity on RxD line, or could be stopped by
790  * issuing soft reset to the UART (just stop/start of RX does not help). Note
791  * that what we do here is sending isolated start bit about 2.4 times shorter
792  * than it is to be on UART configured baud rate.
793  */
794 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
795 {
796 	/* To detect hardware 0xff flood we monitor RxD line between RX
797 	 * interrupts to isolate "receiving" of char(s) with no activity
798 	 * on RxD line, that'd never happen on actual data transfers.
799 	 *
800 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
801 	 * race here if we clear USR2_WAKE when receiving of a char is in
802 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
803 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
804 	 * detected no activity, this race may hide actual activity only once.
805 	 *
806 	 * Yet another case where receive interrupt may occur without RxD
807 	 * activity is expiration of aging timer, so we consider this as well.
808 	 *
809 	 * We use 'idle_counter' to ensure that we got at least so many RX
810 	 * interrupts without any detected activity on RxD line. 2 cases
811 	 * described plus 1 to be on the safe side gives us a margin of 3,
812 	 * below. In practice I was not able to produce a false positive to
813 	 * induce soft reset at regular data transfers even using 1 as the
814 	 * margin, so 3 is actually very strong.
815 	 *
816 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
817 	 */
818 
819 	if (usr2 & USR2_WAKE) {
820 		imx_uart_writel(sport, USR2_WAKE, USR2);
821 		sport->idle_counter = 0;
822 	} else if (++sport->idle_counter > 3) {
823 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
824 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
825 	}
826 }
827 
828 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
829 {
830 	struct imx_port *sport = dev_id;
831 	struct tty_port *port = &sport->port.state->port;
832 	u32 usr2, rx;
833 
834 	/* If we received something, check for 0xff flood */
835 	usr2 = imx_uart_readl(sport, USR2);
836 	if (usr2 & USR2_RDR)
837 		imx_uart_check_flood(sport, usr2);
838 
839 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
840 		unsigned int flg = TTY_NORMAL;
841 		sport->port.icount.rx++;
842 
843 		if (unlikely(rx & URXD_ERR)) {
844 			if (rx & URXD_BRK) {
845 				sport->port.icount.brk++;
846 				if (uart_handle_break(&sport->port))
847 					continue;
848 			}
849 			else if (rx & URXD_PRERR)
850 				sport->port.icount.parity++;
851 			else if (rx & URXD_FRMERR)
852 				sport->port.icount.frame++;
853 			if (rx & URXD_OVRRUN)
854 				sport->port.icount.overrun++;
855 
856 			if (rx & sport->port.ignore_status_mask)
857 				continue;
858 
859 			rx &= (sport->port.read_status_mask | 0xFF);
860 
861 			if (rx & URXD_BRK)
862 				flg = TTY_BREAK;
863 			else if (rx & URXD_PRERR)
864 				flg = TTY_PARITY;
865 			else if (rx & URXD_FRMERR)
866 				flg = TTY_FRAME;
867 			if (rx & URXD_OVRRUN)
868 				flg = TTY_OVERRUN;
869 
870 			sport->port.sysrq = 0;
871 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
872 			continue;
873 		}
874 
875 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
876 			continue;
877 
878 		if (tty_insert_flip_char(port, rx, flg) == 0)
879 			sport->port.icount.buf_overrun++;
880 	}
881 
882 	tty_flip_buffer_push(port);
883 
884 	return IRQ_HANDLED;
885 }
886 
887 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
888 {
889 	struct imx_port *sport = dev_id;
890 	irqreturn_t ret;
891 
892 	uart_port_lock(&sport->port);
893 
894 	ret = __imx_uart_rxint(irq, dev_id);
895 
896 	uart_port_unlock(&sport->port);
897 
898 	return ret;
899 }
900 
901 static void imx_uart_clear_rx_errors(struct imx_port *sport);
902 
903 /*
904  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
905  */
906 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
907 {
908 	unsigned int tmp = TIOCM_DSR;
909 	unsigned usr1 = imx_uart_readl(sport, USR1);
910 	unsigned usr2 = imx_uart_readl(sport, USR2);
911 
912 	if (usr1 & USR1_RTSS)
913 		tmp |= TIOCM_CTS;
914 
915 	/* in DCE mode DCDIN is always 0 */
916 	if (!(usr2 & USR2_DCDIN))
917 		tmp |= TIOCM_CAR;
918 
919 	if (sport->dte_mode)
920 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
921 			tmp |= TIOCM_RI;
922 
923 	return tmp;
924 }
925 
926 /*
927  * Handle any change of modem status signal since we were last called.
928  */
929 static void imx_uart_mctrl_check(struct imx_port *sport)
930 {
931 	unsigned int status, changed;
932 
933 	status = imx_uart_get_hwmctrl(sport);
934 	changed = status ^ sport->old_status;
935 
936 	if (changed == 0)
937 		return;
938 
939 	sport->old_status = status;
940 
941 	if (changed & TIOCM_RI && status & TIOCM_RI)
942 		sport->port.icount.rng++;
943 	if (changed & TIOCM_DSR)
944 		sport->port.icount.dsr++;
945 	if (changed & TIOCM_CAR)
946 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
947 	if (changed & TIOCM_CTS)
948 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
949 
950 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
951 }
952 
953 static irqreturn_t imx_uart_int(int irq, void *dev_id)
954 {
955 	struct imx_port *sport = dev_id;
956 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
957 	irqreturn_t ret = IRQ_NONE;
958 
959 	uart_port_lock(&sport->port);
960 
961 	usr1 = imx_uart_readl(sport, USR1);
962 	usr2 = imx_uart_readl(sport, USR2);
963 	ucr1 = imx_uart_readl(sport, UCR1);
964 	ucr2 = imx_uart_readl(sport, UCR2);
965 	ucr3 = imx_uart_readl(sport, UCR3);
966 	ucr4 = imx_uart_readl(sport, UCR4);
967 
968 	/*
969 	 * Even if a condition is true that can trigger an irq only handle it if
970 	 * the respective irq source is enabled. This prevents some undesired
971 	 * actions, for example if a character that sits in the RX FIFO and that
972 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
973 	 * receiver is currently off and so reading from URXD0 results in an
974 	 * exception. So just mask the (raw) status bits for disabled irqs.
975 	 */
976 	if ((ucr1 & UCR1_RRDYEN) == 0)
977 		usr1 &= ~USR1_RRDY;
978 	if ((ucr2 & UCR2_ATEN) == 0)
979 		usr1 &= ~USR1_AGTIM;
980 	if ((ucr1 & UCR1_TRDYEN) == 0)
981 		usr1 &= ~USR1_TRDY;
982 	if ((ucr4 & UCR4_TCEN) == 0)
983 		usr2 &= ~USR2_TXDC;
984 	if ((ucr3 & UCR3_DTRDEN) == 0)
985 		usr1 &= ~USR1_DTRD;
986 	if ((ucr1 & UCR1_RTSDEN) == 0)
987 		usr1 &= ~USR1_RTSD;
988 	if ((ucr3 & UCR3_AWAKEN) == 0)
989 		usr1 &= ~USR1_AWAKE;
990 	if ((ucr4 & UCR4_OREN) == 0)
991 		usr2 &= ~USR2_ORE;
992 
993 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
994 		imx_uart_writel(sport, USR1_AGTIM, USR1);
995 
996 		__imx_uart_rxint(irq, dev_id);
997 		ret = IRQ_HANDLED;
998 	}
999 
1000 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1001 		imx_uart_transmit_buffer(sport);
1002 		ret = IRQ_HANDLED;
1003 	}
1004 
1005 	if (usr1 & USR1_DTRD) {
1006 		imx_uart_writel(sport, USR1_DTRD, USR1);
1007 
1008 		imx_uart_mctrl_check(sport);
1009 
1010 		ret = IRQ_HANDLED;
1011 	}
1012 
1013 	if (usr1 & USR1_RTSD) {
1014 		__imx_uart_rtsint(irq, dev_id);
1015 		ret = IRQ_HANDLED;
1016 	}
1017 
1018 	if (usr1 & USR1_AWAKE) {
1019 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1020 		ret = IRQ_HANDLED;
1021 	}
1022 
1023 	if (usr2 & USR2_ORE) {
1024 		sport->port.icount.overrun++;
1025 		imx_uart_writel(sport, USR2_ORE, USR2);
1026 		ret = IRQ_HANDLED;
1027 	}
1028 
1029 	uart_port_unlock(&sport->port);
1030 
1031 	return ret;
1032 }
1033 
1034 /*
1035  * Return TIOCSER_TEMT when transmitter is not busy.
1036  */
1037 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1038 {
1039 	struct imx_port *sport = (struct imx_port *)port;
1040 	unsigned int ret;
1041 
1042 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1043 
1044 	/* If the TX DMA is working, return 0. */
1045 	if (sport->dma_is_txing)
1046 		ret = 0;
1047 
1048 	return ret;
1049 }
1050 
1051 /* called with port.lock taken and irqs off */
1052 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1053 {
1054 	struct imx_port *sport = (struct imx_port *)port;
1055 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1056 
1057 	mctrl_gpio_get(sport->gpios, &ret);
1058 
1059 	return ret;
1060 }
1061 
1062 /* called with port.lock taken and irqs off */
1063 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1064 {
1065 	struct imx_port *sport = (struct imx_port *)port;
1066 	u32 ucr3, uts;
1067 
1068 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1069 		u32 ucr2;
1070 
1071 		/*
1072 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1073 		 * setting if RTS is raised.
1074 		 */
1075 		ucr2 = imx_uart_readl(sport, UCR2);
1076 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1077 		if (mctrl & TIOCM_RTS) {
1078 			ucr2 |= UCR2_CTS;
1079 			/*
1080 			 * UCR2_IRTS is unset if and only if the port is
1081 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1082 			 * to get the state to restore to.
1083 			 */
1084 			if (!(ucr2 & UCR2_IRTS))
1085 				ucr2 |= UCR2_CTSC;
1086 		}
1087 		imx_uart_writel(sport, ucr2, UCR2);
1088 	}
1089 
1090 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1091 	if (!(mctrl & TIOCM_DTR))
1092 		ucr3 |= UCR3_DSR;
1093 	imx_uart_writel(sport, ucr3, UCR3);
1094 
1095 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1096 	if (mctrl & TIOCM_LOOP)
1097 		uts |= UTS_LOOP;
1098 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1099 
1100 	mctrl_gpio_set(sport->gpios, mctrl);
1101 }
1102 
1103 /*
1104  * Interrupts always disabled.
1105  */
1106 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1107 {
1108 	struct imx_port *sport = (struct imx_port *)port;
1109 	unsigned long flags;
1110 	u32 ucr1;
1111 
1112 	uart_port_lock_irqsave(&sport->port, &flags);
1113 
1114 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1115 
1116 	if (break_state != 0)
1117 		ucr1 |= UCR1_SNDBRK;
1118 
1119 	imx_uart_writel(sport, ucr1, UCR1);
1120 
1121 	uart_port_unlock_irqrestore(&sport->port, flags);
1122 }
1123 
1124 /*
1125  * This is our per-port timeout handler, for checking the
1126  * modem status signals.
1127  */
1128 static void imx_uart_timeout(struct timer_list *t)
1129 {
1130 	struct imx_port *sport = from_timer(sport, t, timer);
1131 	unsigned long flags;
1132 
1133 	if (sport->port.state) {
1134 		uart_port_lock_irqsave(&sport->port, &flags);
1135 		imx_uart_mctrl_check(sport);
1136 		uart_port_unlock_irqrestore(&sport->port, flags);
1137 
1138 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1139 	}
1140 }
1141 
1142 /*
1143  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1144  *   [1] the RX DMA buffer is full.
1145  *   [2] the aging timer expires
1146  *
1147  * Condition [2] is triggered when a character has been sitting in the FIFO
1148  * for at least 8 byte durations.
1149  */
1150 static void imx_uart_dma_rx_callback(void *data)
1151 {
1152 	struct imx_port *sport = data;
1153 	struct dma_chan	*chan = sport->dma_chan_rx;
1154 	struct scatterlist *sgl = &sport->rx_sgl;
1155 	struct tty_port *port = &sport->port.state->port;
1156 	struct dma_tx_state state;
1157 	struct circ_buf *rx_ring = &sport->rx_ring;
1158 	enum dma_status status;
1159 	unsigned int w_bytes = 0;
1160 	unsigned int r_bytes;
1161 	unsigned int bd_size;
1162 
1163 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1164 
1165 	if (status == DMA_ERROR) {
1166 		uart_port_lock(&sport->port);
1167 		imx_uart_clear_rx_errors(sport);
1168 		uart_port_unlock(&sport->port);
1169 		return;
1170 	}
1171 
1172 	/*
1173 	 * The state-residue variable represents the empty space
1174 	 * relative to the entire buffer. Taking this in consideration
1175 	 * the head is always calculated base on the buffer total
1176 	 * length - DMA transaction residue. The UART script from the
1177 	 * SDMA firmware will jump to the next buffer descriptor,
1178 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1179 	 * Taking this in consideration the tail is always at the
1180 	 * beginning of the buffer descriptor that contains the head.
1181 	 */
1182 
1183 	/* Calculate the head */
1184 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1185 
1186 	/* Calculate the tail. */
1187 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1188 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1189 
1190 	if (rx_ring->head <= sg_dma_len(sgl) &&
1191 	    rx_ring->head > rx_ring->tail) {
1192 
1193 		/* Move data from tail to head */
1194 		r_bytes = rx_ring->head - rx_ring->tail;
1195 
1196 		/* If we received something, check for 0xff flood */
1197 		uart_port_lock(&sport->port);
1198 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1199 		uart_port_unlock(&sport->port);
1200 
1201 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1202 
1203 			/* CPU claims ownership of RX DMA buffer */
1204 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1205 					    DMA_FROM_DEVICE);
1206 
1207 			w_bytes = tty_insert_flip_string(port,
1208 							 sport->rx_buf + rx_ring->tail, r_bytes);
1209 
1210 			/* UART retrieves ownership of RX DMA buffer */
1211 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1212 					       DMA_FROM_DEVICE);
1213 
1214 			if (w_bytes != r_bytes)
1215 				sport->port.icount.buf_overrun++;
1216 
1217 			sport->port.icount.rx += w_bytes;
1218 		}
1219 	} else	{
1220 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1221 		WARN_ON(rx_ring->head <= rx_ring->tail);
1222 	}
1223 
1224 	if (w_bytes) {
1225 		tty_flip_buffer_push(port);
1226 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1227 	}
1228 }
1229 
1230 static int imx_uart_start_rx_dma(struct imx_port *sport)
1231 {
1232 	struct scatterlist *sgl = &sport->rx_sgl;
1233 	struct dma_chan	*chan = sport->dma_chan_rx;
1234 	struct device *dev = sport->port.dev;
1235 	struct dma_async_tx_descriptor *desc;
1236 	int ret;
1237 
1238 	sport->rx_ring.head = 0;
1239 	sport->rx_ring.tail = 0;
1240 
1241 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1242 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1243 	if (ret == 0) {
1244 		dev_err(dev, "DMA mapping error for RX.\n");
1245 		return -EINVAL;
1246 	}
1247 
1248 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1249 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1250 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1251 
1252 	if (!desc) {
1253 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1254 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1255 		return -EINVAL;
1256 	}
1257 	desc->callback = imx_uart_dma_rx_callback;
1258 	desc->callback_param = sport;
1259 
1260 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1261 	sport->dma_is_rxing = 1;
1262 	sport->rx_cookie = dmaengine_submit(desc);
1263 	dma_async_issue_pending(chan);
1264 	return 0;
1265 }
1266 
1267 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1268 {
1269 	struct tty_port *port = &sport->port.state->port;
1270 	u32 usr1, usr2;
1271 
1272 	usr1 = imx_uart_readl(sport, USR1);
1273 	usr2 = imx_uart_readl(sport, USR2);
1274 
1275 	if (usr2 & USR2_BRCD) {
1276 		sport->port.icount.brk++;
1277 		imx_uart_writel(sport, USR2_BRCD, USR2);
1278 		uart_handle_break(&sport->port);
1279 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1280 			sport->port.icount.buf_overrun++;
1281 		tty_flip_buffer_push(port);
1282 	} else {
1283 		if (usr1 & USR1_FRAMERR) {
1284 			sport->port.icount.frame++;
1285 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1286 		} else if (usr1 & USR1_PARITYERR) {
1287 			sport->port.icount.parity++;
1288 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1289 		}
1290 	}
1291 
1292 	if (usr2 & USR2_ORE) {
1293 		sport->port.icount.overrun++;
1294 		imx_uart_writel(sport, USR2_ORE, USR2);
1295 	}
1296 
1297 	sport->idle_counter = 0;
1298 
1299 }
1300 
1301 #define TXTL_DEFAULT 2 /* reset default */
1302 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1303 #define TXTL_DMA 8 /* DMA burst setting */
1304 #define RXTL_DMA 9 /* DMA burst setting */
1305 
1306 static void imx_uart_setup_ufcr(struct imx_port *sport,
1307 				unsigned char txwl, unsigned char rxwl)
1308 {
1309 	unsigned int val;
1310 
1311 	/* set receiver / transmitter trigger level */
1312 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1313 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1314 	imx_uart_writel(sport, val, UFCR);
1315 }
1316 
1317 static void imx_uart_dma_exit(struct imx_port *sport)
1318 {
1319 	if (sport->dma_chan_rx) {
1320 		dmaengine_terminate_sync(sport->dma_chan_rx);
1321 		dma_release_channel(sport->dma_chan_rx);
1322 		sport->dma_chan_rx = NULL;
1323 		sport->rx_cookie = -EINVAL;
1324 		kfree(sport->rx_buf);
1325 		sport->rx_buf = NULL;
1326 	}
1327 
1328 	if (sport->dma_chan_tx) {
1329 		dmaengine_terminate_sync(sport->dma_chan_tx);
1330 		dma_release_channel(sport->dma_chan_tx);
1331 		sport->dma_chan_tx = NULL;
1332 	}
1333 }
1334 
1335 static int imx_uart_dma_init(struct imx_port *sport)
1336 {
1337 	struct dma_slave_config slave_config = {};
1338 	struct device *dev = sport->port.dev;
1339 	struct dma_chan *chan;
1340 	int ret;
1341 
1342 	/* Prepare for RX : */
1343 	chan = dma_request_chan(dev, "rx");
1344 	if (IS_ERR(chan)) {
1345 		dev_dbg(dev, "cannot get the DMA channel.\n");
1346 		sport->dma_chan_rx = NULL;
1347 		ret = PTR_ERR(chan);
1348 		goto err;
1349 	}
1350 	sport->dma_chan_rx = chan;
1351 
1352 	slave_config.direction = DMA_DEV_TO_MEM;
1353 	slave_config.src_addr = sport->port.mapbase + URXD0;
1354 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1355 	/* one byte less than the watermark level to enable the aging timer */
1356 	slave_config.src_maxburst = RXTL_DMA - 1;
1357 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1358 	if (ret) {
1359 		dev_err(dev, "error in RX dma configuration.\n");
1360 		goto err;
1361 	}
1362 
1363 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1364 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1365 	if (!sport->rx_buf) {
1366 		ret = -ENOMEM;
1367 		goto err;
1368 	}
1369 	sport->rx_ring.buf = sport->rx_buf;
1370 
1371 	/* Prepare for TX : */
1372 	chan = dma_request_chan(dev, "tx");
1373 	if (IS_ERR(chan)) {
1374 		dev_err(dev, "cannot get the TX DMA channel!\n");
1375 		sport->dma_chan_tx = NULL;
1376 		ret = PTR_ERR(chan);
1377 		goto err;
1378 	}
1379 	sport->dma_chan_tx = chan;
1380 
1381 	slave_config.direction = DMA_MEM_TO_DEV;
1382 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1383 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1384 	slave_config.dst_maxburst = TXTL_DMA;
1385 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1386 	if (ret) {
1387 		dev_err(dev, "error in TX dma configuration.");
1388 		goto err;
1389 	}
1390 
1391 	return 0;
1392 err:
1393 	imx_uart_dma_exit(sport);
1394 	return ret;
1395 }
1396 
1397 static void imx_uart_enable_dma(struct imx_port *sport)
1398 {
1399 	u32 ucr1;
1400 
1401 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1402 
1403 	/* set UCR1 */
1404 	ucr1 = imx_uart_readl(sport, UCR1);
1405 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1406 	imx_uart_writel(sport, ucr1, UCR1);
1407 
1408 	sport->dma_is_enabled = 1;
1409 }
1410 
1411 static void imx_uart_disable_dma(struct imx_port *sport)
1412 {
1413 	u32 ucr1;
1414 
1415 	/* clear UCR1 */
1416 	ucr1 = imx_uart_readl(sport, UCR1);
1417 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1418 	imx_uart_writel(sport, ucr1, UCR1);
1419 
1420 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1421 
1422 	sport->dma_is_enabled = 0;
1423 }
1424 
1425 /* half the RX buffer size */
1426 #define CTSTL 16
1427 
1428 static int imx_uart_startup(struct uart_port *port)
1429 {
1430 	struct imx_port *sport = (struct imx_port *)port;
1431 	int retval;
1432 	unsigned long flags;
1433 	int dma_is_inited = 0;
1434 	u32 ucr1, ucr2, ucr3, ucr4;
1435 
1436 	retval = clk_prepare_enable(sport->clk_per);
1437 	if (retval)
1438 		return retval;
1439 	retval = clk_prepare_enable(sport->clk_ipg);
1440 	if (retval) {
1441 		clk_disable_unprepare(sport->clk_per);
1442 		return retval;
1443 	}
1444 
1445 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1446 
1447 	/* disable the DREN bit (Data Ready interrupt enable) before
1448 	 * requesting IRQs
1449 	 */
1450 	ucr4 = imx_uart_readl(sport, UCR4);
1451 
1452 	/* set the trigger level for CTS */
1453 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1454 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1455 
1456 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1457 
1458 	/* Can we enable the DMA support? */
1459 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0) {
1460 		lockdep_set_subclass(&port->lock, 1);
1461 		dma_is_inited = 1;
1462 	}
1463 
1464 	uart_port_lock_irqsave(&sport->port, &flags);
1465 
1466 	/* Reset fifo's and state machines */
1467 	imx_uart_soft_reset(sport);
1468 
1469 	/*
1470 	 * Finally, clear and enable interrupts
1471 	 */
1472 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1473 	imx_uart_writel(sport, USR2_ORE, USR2);
1474 
1475 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1476 	ucr1 |= UCR1_UARTEN;
1477 	if (sport->have_rtscts)
1478 		ucr1 |= UCR1_RTSDEN;
1479 
1480 	imx_uart_writel(sport, ucr1, UCR1);
1481 
1482 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1483 	if (!dma_is_inited)
1484 		ucr4 |= UCR4_OREN;
1485 	if (sport->inverted_rx)
1486 		ucr4 |= UCR4_INVR;
1487 	imx_uart_writel(sport, ucr4, UCR4);
1488 
1489 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1490 	/*
1491 	 * configure tx polarity before enabling tx
1492 	 */
1493 	if (sport->inverted_tx)
1494 		ucr3 |= UCR3_INVT;
1495 
1496 	if (!imx_uart_is_imx1(sport)) {
1497 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1498 
1499 		if (sport->dte_mode)
1500 			/* disable broken interrupts */
1501 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1502 	}
1503 	imx_uart_writel(sport, ucr3, UCR3);
1504 
1505 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1506 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1507 	if (!sport->have_rtscts)
1508 		ucr2 |= UCR2_IRTS;
1509 	/*
1510 	 * make sure the edge sensitive RTS-irq is disabled,
1511 	 * we're using RTSD instead.
1512 	 */
1513 	if (!imx_uart_is_imx1(sport))
1514 		ucr2 &= ~UCR2_RTSEN;
1515 	imx_uart_writel(sport, ucr2, UCR2);
1516 
1517 	/*
1518 	 * Enable modem status interrupts
1519 	 */
1520 	imx_uart_enable_ms(&sport->port);
1521 
1522 	if (dma_is_inited) {
1523 		imx_uart_enable_dma(sport);
1524 		imx_uart_start_rx_dma(sport);
1525 	} else {
1526 		ucr1 = imx_uart_readl(sport, UCR1);
1527 		ucr1 |= UCR1_RRDYEN;
1528 		imx_uart_writel(sport, ucr1, UCR1);
1529 
1530 		ucr2 = imx_uart_readl(sport, UCR2);
1531 		ucr2 |= UCR2_ATEN;
1532 		imx_uart_writel(sport, ucr2, UCR2);
1533 	}
1534 
1535 	imx_uart_disable_loopback_rs485(sport);
1536 
1537 	uart_port_unlock_irqrestore(&sport->port, flags);
1538 
1539 	return 0;
1540 }
1541 
1542 static void imx_uart_shutdown(struct uart_port *port)
1543 {
1544 	struct imx_port *sport = (struct imx_port *)port;
1545 	unsigned long flags;
1546 	u32 ucr1, ucr2, ucr4, uts;
1547 
1548 	if (sport->dma_is_enabled) {
1549 		dmaengine_terminate_sync(sport->dma_chan_tx);
1550 		if (sport->dma_is_txing) {
1551 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1552 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1553 			sport->dma_is_txing = 0;
1554 		}
1555 		dmaengine_terminate_sync(sport->dma_chan_rx);
1556 		if (sport->dma_is_rxing) {
1557 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1558 				     1, DMA_FROM_DEVICE);
1559 			sport->dma_is_rxing = 0;
1560 		}
1561 
1562 		uart_port_lock_irqsave(&sport->port, &flags);
1563 		imx_uart_stop_tx(port);
1564 		imx_uart_stop_rx(port);
1565 		imx_uart_disable_dma(sport);
1566 		uart_port_unlock_irqrestore(&sport->port, flags);
1567 		imx_uart_dma_exit(sport);
1568 	}
1569 
1570 	mctrl_gpio_disable_ms(sport->gpios);
1571 
1572 	uart_port_lock_irqsave(&sport->port, &flags);
1573 	ucr2 = imx_uart_readl(sport, UCR2);
1574 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1575 	imx_uart_writel(sport, ucr2, UCR2);
1576 	uart_port_unlock_irqrestore(&sport->port, flags);
1577 
1578 	/*
1579 	 * Stop our timer.
1580 	 */
1581 	del_timer_sync(&sport->timer);
1582 
1583 	/*
1584 	 * Disable all interrupts, port and break condition.
1585 	 */
1586 
1587 	uart_port_lock_irqsave(&sport->port, &flags);
1588 
1589 	ucr1 = imx_uart_readl(sport, UCR1);
1590 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1591 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1592 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1593 	if (port->rs485.flags & SER_RS485_ENABLED &&
1594 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1595 	    sport->have_rtscts && !sport->have_rtsgpio) {
1596 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1597 		uts |= UTS_LOOP;
1598 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1599 		ucr1 |= UCR1_UARTEN;
1600 	} else {
1601 		ucr1 &= ~UCR1_UARTEN;
1602 	}
1603 	imx_uart_writel(sport, ucr1, UCR1);
1604 
1605 	ucr4 = imx_uart_readl(sport, UCR4);
1606 	ucr4 &= ~UCR4_TCEN;
1607 	imx_uart_writel(sport, ucr4, UCR4);
1608 
1609 	uart_port_unlock_irqrestore(&sport->port, flags);
1610 
1611 	clk_disable_unprepare(sport->clk_per);
1612 	clk_disable_unprepare(sport->clk_ipg);
1613 }
1614 
1615 /* called with port.lock taken and irqs off */
1616 static void imx_uart_flush_buffer(struct uart_port *port)
1617 {
1618 	struct imx_port *sport = (struct imx_port *)port;
1619 	struct scatterlist *sgl = &sport->tx_sgl[0];
1620 
1621 	if (!sport->dma_chan_tx)
1622 		return;
1623 
1624 	sport->tx_bytes = 0;
1625 	dmaengine_terminate_all(sport->dma_chan_tx);
1626 	if (sport->dma_is_txing) {
1627 		u32 ucr1;
1628 
1629 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1630 			     DMA_TO_DEVICE);
1631 		ucr1 = imx_uart_readl(sport, UCR1);
1632 		ucr1 &= ~UCR1_TXDMAEN;
1633 		imx_uart_writel(sport, ucr1, UCR1);
1634 		sport->dma_is_txing = 0;
1635 	}
1636 
1637 	imx_uart_soft_reset(sport);
1638 
1639 }
1640 
1641 static void
1642 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1643 		     const struct ktermios *old)
1644 {
1645 	struct imx_port *sport = (struct imx_port *)port;
1646 	unsigned long flags;
1647 	u32 ucr2, old_ucr2, ufcr;
1648 	unsigned int baud, quot;
1649 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1650 	unsigned long div;
1651 	unsigned long num, denom, old_ubir, old_ubmr;
1652 	uint64_t tdiv64;
1653 
1654 	/*
1655 	 * We only support CS7 and CS8.
1656 	 */
1657 	while ((termios->c_cflag & CSIZE) != CS7 &&
1658 	       (termios->c_cflag & CSIZE) != CS8) {
1659 		termios->c_cflag &= ~CSIZE;
1660 		termios->c_cflag |= old_csize;
1661 		old_csize = CS8;
1662 	}
1663 
1664 	del_timer_sync(&sport->timer);
1665 
1666 	/*
1667 	 * Ask the core to calculate the divisor for us.
1668 	 */
1669 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1670 	quot = uart_get_divisor(port, baud);
1671 
1672 	uart_port_lock_irqsave(&sport->port, &flags);
1673 
1674 	/*
1675 	 * Read current UCR2 and save it for future use, then clear all the bits
1676 	 * except those we will or may need to preserve.
1677 	 */
1678 	old_ucr2 = imx_uart_readl(sport, UCR2);
1679 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1680 
1681 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1682 	if ((termios->c_cflag & CSIZE) == CS8)
1683 		ucr2 |= UCR2_WS;
1684 
1685 	if (!sport->have_rtscts)
1686 		termios->c_cflag &= ~CRTSCTS;
1687 
1688 	if (port->rs485.flags & SER_RS485_ENABLED) {
1689 		/*
1690 		 * RTS is mandatory for rs485 operation, so keep
1691 		 * it under manual control and keep transmitter
1692 		 * disabled.
1693 		 */
1694 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1695 			imx_uart_rts_active(sport, &ucr2);
1696 		else
1697 			imx_uart_rts_inactive(sport, &ucr2);
1698 
1699 	} else if (termios->c_cflag & CRTSCTS) {
1700 		/*
1701 		 * Only let receiver control RTS output if we were not requested
1702 		 * to have RTS inactive (which then should take precedence).
1703 		 */
1704 		if (ucr2 & UCR2_CTS)
1705 			ucr2 |= UCR2_CTSC;
1706 	}
1707 
1708 	if (termios->c_cflag & CRTSCTS)
1709 		ucr2 &= ~UCR2_IRTS;
1710 	if (termios->c_cflag & CSTOPB)
1711 		ucr2 |= UCR2_STPB;
1712 	if (termios->c_cflag & PARENB) {
1713 		ucr2 |= UCR2_PREN;
1714 		if (termios->c_cflag & PARODD)
1715 			ucr2 |= UCR2_PROE;
1716 	}
1717 
1718 	sport->port.read_status_mask = 0;
1719 	if (termios->c_iflag & INPCK)
1720 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1721 	if (termios->c_iflag & (BRKINT | PARMRK))
1722 		sport->port.read_status_mask |= URXD_BRK;
1723 
1724 	/*
1725 	 * Characters to ignore
1726 	 */
1727 	sport->port.ignore_status_mask = 0;
1728 	if (termios->c_iflag & IGNPAR)
1729 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1730 	if (termios->c_iflag & IGNBRK) {
1731 		sport->port.ignore_status_mask |= URXD_BRK;
1732 		/*
1733 		 * If we're ignoring parity and break indicators,
1734 		 * ignore overruns too (for real raw support).
1735 		 */
1736 		if (termios->c_iflag & IGNPAR)
1737 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1738 	}
1739 
1740 	if ((termios->c_cflag & CREAD) == 0)
1741 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1742 
1743 	/*
1744 	 * Update the per-port timeout.
1745 	 */
1746 	uart_update_timeout(port, termios->c_cflag, baud);
1747 
1748 	/* custom-baudrate handling */
1749 	div = sport->port.uartclk / (baud * 16);
1750 	if (baud == 38400 && quot != div)
1751 		baud = sport->port.uartclk / (quot * 16);
1752 
1753 	div = sport->port.uartclk / (baud * 16);
1754 	if (div > 7)
1755 		div = 7;
1756 	if (!div)
1757 		div = 1;
1758 
1759 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1760 		1 << 16, 1 << 16, &num, &denom);
1761 
1762 	tdiv64 = sport->port.uartclk;
1763 	tdiv64 *= num;
1764 	do_div(tdiv64, denom * 16 * div);
1765 	tty_termios_encode_baud_rate(termios,
1766 				(speed_t)tdiv64, (speed_t)tdiv64);
1767 
1768 	num -= 1;
1769 	denom -= 1;
1770 
1771 	ufcr = imx_uart_readl(sport, UFCR);
1772 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1773 	imx_uart_writel(sport, ufcr, UFCR);
1774 
1775 	/*
1776 	 *  Two registers below should always be written both and in this
1777 	 *  particular order. One consequence is that we need to check if any of
1778 	 *  them changes and then update both. We do need the check for change
1779 	 *  as even writing the same values seem to "restart"
1780 	 *  transmission/receiving logic in the hardware, that leads to data
1781 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1782 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1783 	 */
1784 	old_ubir = imx_uart_readl(sport, UBIR);
1785 	old_ubmr = imx_uart_readl(sport, UBMR);
1786 	if (old_ubir != num || old_ubmr != denom) {
1787 		imx_uart_writel(sport, num, UBIR);
1788 		imx_uart_writel(sport, denom, UBMR);
1789 	}
1790 
1791 	if (!imx_uart_is_imx1(sport))
1792 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1793 				IMX21_ONEMS);
1794 
1795 	imx_uart_writel(sport, ucr2, UCR2);
1796 
1797 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1798 		imx_uart_enable_ms(&sport->port);
1799 
1800 	uart_port_unlock_irqrestore(&sport->port, flags);
1801 }
1802 
1803 static const char *imx_uart_type(struct uart_port *port)
1804 {
1805 	return port->type == PORT_IMX ? "IMX" : NULL;
1806 }
1807 
1808 /*
1809  * Configure/autoconfigure the port.
1810  */
1811 static void imx_uart_config_port(struct uart_port *port, int flags)
1812 {
1813 	if (flags & UART_CONFIG_TYPE)
1814 		port->type = PORT_IMX;
1815 }
1816 
1817 /*
1818  * Verify the new serial_struct (for TIOCSSERIAL).
1819  * The only change we allow are to the flags and type, and
1820  * even then only between PORT_IMX and PORT_UNKNOWN
1821  */
1822 static int
1823 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1824 {
1825 	int ret = 0;
1826 
1827 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1828 		ret = -EINVAL;
1829 	if (port->irq != ser->irq)
1830 		ret = -EINVAL;
1831 	if (ser->io_type != UPIO_MEM)
1832 		ret = -EINVAL;
1833 	if (port->uartclk / 16 != ser->baud_base)
1834 		ret = -EINVAL;
1835 	if (port->mapbase != (unsigned long)ser->iomem_base)
1836 		ret = -EINVAL;
1837 	if (port->iobase != ser->port)
1838 		ret = -EINVAL;
1839 	if (ser->hub6 != 0)
1840 		ret = -EINVAL;
1841 	return ret;
1842 }
1843 
1844 #if defined(CONFIG_CONSOLE_POLL)
1845 
1846 static int imx_uart_poll_init(struct uart_port *port)
1847 {
1848 	struct imx_port *sport = (struct imx_port *)port;
1849 	unsigned long flags;
1850 	u32 ucr1, ucr2;
1851 	int retval;
1852 
1853 	retval = clk_prepare_enable(sport->clk_ipg);
1854 	if (retval)
1855 		return retval;
1856 	retval = clk_prepare_enable(sport->clk_per);
1857 	if (retval)
1858 		clk_disable_unprepare(sport->clk_ipg);
1859 
1860 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1861 
1862 	uart_port_lock_irqsave(&sport->port, &flags);
1863 
1864 	/*
1865 	 * Be careful about the order of enabling bits here. First enable the
1866 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1867 	 * This prevents that a character that already sits in the RX fifo is
1868 	 * triggering an irq but the try to fetch it from there results in an
1869 	 * exception because UARTEN or RXEN is still off.
1870 	 */
1871 	ucr1 = imx_uart_readl(sport, UCR1);
1872 	ucr2 = imx_uart_readl(sport, UCR2);
1873 
1874 	if (imx_uart_is_imx1(sport))
1875 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1876 
1877 	ucr1 |= UCR1_UARTEN;
1878 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1879 
1880 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1881 	ucr2 &= ~UCR2_ATEN;
1882 
1883 	imx_uart_writel(sport, ucr1, UCR1);
1884 	imx_uart_writel(sport, ucr2, UCR2);
1885 
1886 	/* now enable irqs */
1887 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1888 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1889 
1890 	uart_port_unlock_irqrestore(&sport->port, flags);
1891 
1892 	return 0;
1893 }
1894 
1895 static int imx_uart_poll_get_char(struct uart_port *port)
1896 {
1897 	struct imx_port *sport = (struct imx_port *)port;
1898 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1899 		return NO_POLL_CHAR;
1900 
1901 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1902 }
1903 
1904 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1905 {
1906 	struct imx_port *sport = (struct imx_port *)port;
1907 	unsigned int status;
1908 
1909 	/* drain */
1910 	do {
1911 		status = imx_uart_readl(sport, USR1);
1912 	} while (~status & USR1_TRDY);
1913 
1914 	/* write */
1915 	imx_uart_writel(sport, c, URTX0);
1916 
1917 	/* flush */
1918 	do {
1919 		status = imx_uart_readl(sport, USR2);
1920 	} while (~status & USR2_TXDC);
1921 }
1922 #endif
1923 
1924 /* called with port.lock taken and irqs off or from .probe without locking */
1925 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1926 				 struct serial_rs485 *rs485conf)
1927 {
1928 	struct imx_port *sport = (struct imx_port *)port;
1929 	u32 ucr2;
1930 
1931 	if (rs485conf->flags & SER_RS485_ENABLED) {
1932 		/* Enable receiver if low-active RTS signal is requested */
1933 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1934 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1935 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1936 
1937 		/* disable transmitter */
1938 		ucr2 = imx_uart_readl(sport, UCR2);
1939 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1940 			imx_uart_rts_active(sport, &ucr2);
1941 		else
1942 			imx_uart_rts_inactive(sport, &ucr2);
1943 		imx_uart_writel(sport, ucr2, UCR2);
1944 	}
1945 
1946 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1947 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1948 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1949 		imx_uart_start_rx(port);
1950 
1951 	return 0;
1952 }
1953 
1954 static const struct uart_ops imx_uart_pops = {
1955 	.tx_empty	= imx_uart_tx_empty,
1956 	.set_mctrl	= imx_uart_set_mctrl,
1957 	.get_mctrl	= imx_uart_get_mctrl,
1958 	.stop_tx	= imx_uart_stop_tx,
1959 	.start_tx	= imx_uart_start_tx,
1960 	.stop_rx	= imx_uart_stop_rx,
1961 	.enable_ms	= imx_uart_enable_ms,
1962 	.break_ctl	= imx_uart_break_ctl,
1963 	.startup	= imx_uart_startup,
1964 	.shutdown	= imx_uart_shutdown,
1965 	.flush_buffer	= imx_uart_flush_buffer,
1966 	.set_termios	= imx_uart_set_termios,
1967 	.type		= imx_uart_type,
1968 	.config_port	= imx_uart_config_port,
1969 	.verify_port	= imx_uart_verify_port,
1970 #if defined(CONFIG_CONSOLE_POLL)
1971 	.poll_init      = imx_uart_poll_init,
1972 	.poll_get_char  = imx_uart_poll_get_char,
1973 	.poll_put_char  = imx_uart_poll_put_char,
1974 #endif
1975 };
1976 
1977 static struct imx_port *imx_uart_ports[UART_NR];
1978 
1979 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1980 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1981 {
1982 	struct imx_port *sport = (struct imx_port *)port;
1983 
1984 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1985 		barrier();
1986 
1987 	imx_uart_writel(sport, ch, URTX0);
1988 }
1989 
1990 /*
1991  * Interrupts are disabled on entering
1992  */
1993 static void
1994 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1995 {
1996 	struct imx_port *sport = imx_uart_ports[co->index];
1997 	struct imx_port_ucrs old_ucr;
1998 	unsigned long flags;
1999 	unsigned int ucr1;
2000 	int locked = 1;
2001 
2002 	if (sport->port.sysrq)
2003 		locked = 0;
2004 	else if (oops_in_progress)
2005 		locked = uart_port_trylock_irqsave(&sport->port, &flags);
2006 	else
2007 		uart_port_lock_irqsave(&sport->port, &flags);
2008 
2009 	/*
2010 	 *	First, save UCR1/2/3 and then disable interrupts
2011 	 */
2012 	imx_uart_ucrs_save(sport, &old_ucr);
2013 	ucr1 = old_ucr.ucr1;
2014 
2015 	if (imx_uart_is_imx1(sport))
2016 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2017 	ucr1 |= UCR1_UARTEN;
2018 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2019 
2020 	imx_uart_writel(sport, ucr1, UCR1);
2021 
2022 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2023 
2024 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2025 
2026 	/*
2027 	 *	Finally, wait for transmitter to become empty
2028 	 *	and restore UCR1/2/3
2029 	 */
2030 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2031 
2032 	imx_uart_ucrs_restore(sport, &old_ucr);
2033 
2034 	if (locked)
2035 		uart_port_unlock_irqrestore(&sport->port, flags);
2036 }
2037 
2038 /*
2039  * If the port was already initialised (eg, by a boot loader),
2040  * try to determine the current setup.
2041  */
2042 static void
2043 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2044 			     int *parity, int *bits)
2045 {
2046 
2047 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2048 		/* ok, the port was enabled */
2049 		unsigned int ucr2, ubir, ubmr, uartclk;
2050 		unsigned int baud_raw;
2051 		unsigned int ucfr_rfdiv;
2052 
2053 		ucr2 = imx_uart_readl(sport, UCR2);
2054 
2055 		*parity = 'n';
2056 		if (ucr2 & UCR2_PREN) {
2057 			if (ucr2 & UCR2_PROE)
2058 				*parity = 'o';
2059 			else
2060 				*parity = 'e';
2061 		}
2062 
2063 		if (ucr2 & UCR2_WS)
2064 			*bits = 8;
2065 		else
2066 			*bits = 7;
2067 
2068 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2069 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2070 
2071 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2072 		if (ucfr_rfdiv == 6)
2073 			ucfr_rfdiv = 7;
2074 		else
2075 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2076 
2077 		uartclk = clk_get_rate(sport->clk_per);
2078 		uartclk /= ucfr_rfdiv;
2079 
2080 		{	/*
2081 			 * The next code provides exact computation of
2082 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2083 			 * without need of float support or long long division,
2084 			 * which would be required to prevent 32bit arithmetic overflow
2085 			 */
2086 			unsigned int mul = ubir + 1;
2087 			unsigned int div = 16 * (ubmr + 1);
2088 			unsigned int rem = uartclk % div;
2089 
2090 			baud_raw = (uartclk / div) * mul;
2091 			baud_raw += (rem * mul + div / 2) / div;
2092 			*baud = (baud_raw + 50) / 100 * 100;
2093 		}
2094 
2095 		if (*baud != baud_raw)
2096 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2097 				baud_raw, *baud);
2098 	}
2099 }
2100 
2101 static int
2102 imx_uart_console_setup(struct console *co, char *options)
2103 {
2104 	struct imx_port *sport;
2105 	int baud = 9600;
2106 	int bits = 8;
2107 	int parity = 'n';
2108 	int flow = 'n';
2109 	int retval;
2110 
2111 	/*
2112 	 * Check whether an invalid uart number has been specified, and
2113 	 * if so, search for the first available port that does have
2114 	 * console support.
2115 	 */
2116 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2117 		co->index = 0;
2118 	sport = imx_uart_ports[co->index];
2119 	if (sport == NULL)
2120 		return -ENODEV;
2121 
2122 	/* For setting the registers, we only need to enable the ipg clock. */
2123 	retval = clk_prepare_enable(sport->clk_ipg);
2124 	if (retval)
2125 		goto error_console;
2126 
2127 	if (options)
2128 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2129 	else
2130 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2131 
2132 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2133 
2134 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2135 
2136 	if (retval) {
2137 		clk_disable_unprepare(sport->clk_ipg);
2138 		goto error_console;
2139 	}
2140 
2141 	retval = clk_prepare_enable(sport->clk_per);
2142 	if (retval)
2143 		clk_disable_unprepare(sport->clk_ipg);
2144 
2145 error_console:
2146 	return retval;
2147 }
2148 
2149 static int
2150 imx_uart_console_exit(struct console *co)
2151 {
2152 	struct imx_port *sport = imx_uart_ports[co->index];
2153 
2154 	clk_disable_unprepare(sport->clk_per);
2155 	clk_disable_unprepare(sport->clk_ipg);
2156 
2157 	return 0;
2158 }
2159 
2160 static struct uart_driver imx_uart_uart_driver;
2161 static struct console imx_uart_console = {
2162 	.name		= DEV_NAME,
2163 	.write		= imx_uart_console_write,
2164 	.device		= uart_console_device,
2165 	.setup		= imx_uart_console_setup,
2166 	.exit		= imx_uart_console_exit,
2167 	.flags		= CON_PRINTBUFFER,
2168 	.index		= -1,
2169 	.data		= &imx_uart_uart_driver,
2170 };
2171 
2172 #define IMX_CONSOLE	&imx_uart_console
2173 
2174 #else
2175 #define IMX_CONSOLE	NULL
2176 #endif
2177 
2178 static struct uart_driver imx_uart_uart_driver = {
2179 	.owner          = THIS_MODULE,
2180 	.driver_name    = DRIVER_NAME,
2181 	.dev_name       = DEV_NAME,
2182 	.major          = SERIAL_IMX_MAJOR,
2183 	.minor          = MINOR_START,
2184 	.nr             = ARRAY_SIZE(imx_uart_ports),
2185 	.cons           = IMX_CONSOLE,
2186 };
2187 
2188 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2189 {
2190 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2191 	unsigned long flags;
2192 
2193 	uart_port_lock_irqsave(&sport->port, &flags);
2194 	if (sport->tx_state == WAIT_AFTER_RTS)
2195 		imx_uart_start_tx(&sport->port);
2196 	uart_port_unlock_irqrestore(&sport->port, flags);
2197 
2198 	return HRTIMER_NORESTART;
2199 }
2200 
2201 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2202 {
2203 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2204 	unsigned long flags;
2205 
2206 	uart_port_lock_irqsave(&sport->port, &flags);
2207 	if (sport->tx_state == WAIT_AFTER_SEND)
2208 		imx_uart_stop_tx(&sport->port);
2209 	uart_port_unlock_irqrestore(&sport->port, flags);
2210 
2211 	return HRTIMER_NORESTART;
2212 }
2213 
2214 static const struct serial_rs485 imx_rs485_supported = {
2215 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2216 		 SER_RS485_RX_DURING_TX,
2217 	.delay_rts_before_send = 1,
2218 	.delay_rts_after_send = 1,
2219 };
2220 
2221 /* Default RX DMA buffer configuration */
2222 #define RX_DMA_PERIODS		16
2223 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2224 
2225 static int imx_uart_probe(struct platform_device *pdev)
2226 {
2227 	struct device_node *np = pdev->dev.of_node;
2228 	struct imx_port *sport;
2229 	void __iomem *base;
2230 	u32 dma_buf_conf[2];
2231 	int ret = 0;
2232 	u32 ucr1, ucr2, uts;
2233 	struct resource *res;
2234 	int txirq, rxirq, rtsirq;
2235 
2236 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2237 	if (!sport)
2238 		return -ENOMEM;
2239 
2240 	sport->devdata = of_device_get_match_data(&pdev->dev);
2241 
2242 	ret = of_alias_get_id(np, "serial");
2243 	if (ret < 0) {
2244 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2245 		return ret;
2246 	}
2247 	sport->port.line = ret;
2248 
2249 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2250 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2251 
2252 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2253 
2254 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2255 
2256 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2257 
2258 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2259 
2260 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2261 		sport->rx_period_length = dma_buf_conf[0];
2262 		sport->rx_periods = dma_buf_conf[1];
2263 	} else {
2264 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2265 		sport->rx_periods = RX_DMA_PERIODS;
2266 	}
2267 
2268 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2269 		dev_err(&pdev->dev, "serial%d out of range\n",
2270 			sport->port.line);
2271 		return -EINVAL;
2272 	}
2273 
2274 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2275 	if (IS_ERR(base))
2276 		return PTR_ERR(base);
2277 
2278 	rxirq = platform_get_irq(pdev, 0);
2279 	if (rxirq < 0)
2280 		return rxirq;
2281 	txirq = platform_get_irq_optional(pdev, 1);
2282 	rtsirq = platform_get_irq_optional(pdev, 2);
2283 
2284 	sport->port.dev = &pdev->dev;
2285 	sport->port.mapbase = res->start;
2286 	sport->port.membase = base;
2287 	sport->port.type = PORT_IMX;
2288 	sport->port.iotype = UPIO_MEM;
2289 	sport->port.irq = rxirq;
2290 	sport->port.fifosize = 32;
2291 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2292 	sport->port.ops = &imx_uart_pops;
2293 	sport->port.rs485_config = imx_uart_rs485_config;
2294 	/* RTS is required to control the RS485 transmitter */
2295 	if (sport->have_rtscts || sport->have_rtsgpio)
2296 		sport->port.rs485_supported = imx_rs485_supported;
2297 	sport->port.flags = UPF_BOOT_AUTOCONF;
2298 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2299 
2300 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2301 	if (IS_ERR(sport->gpios))
2302 		return PTR_ERR(sport->gpios);
2303 
2304 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2305 	if (IS_ERR(sport->clk_ipg)) {
2306 		ret = PTR_ERR(sport->clk_ipg);
2307 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2308 		return ret;
2309 	}
2310 
2311 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2312 	if (IS_ERR(sport->clk_per)) {
2313 		ret = PTR_ERR(sport->clk_per);
2314 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2315 		return ret;
2316 	}
2317 
2318 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2319 
2320 	/* For register access, we only need to enable the ipg clock. */
2321 	ret = clk_prepare_enable(sport->clk_ipg);
2322 	if (ret) {
2323 		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2324 		return ret;
2325 	}
2326 
2327 	ret = uart_get_rs485_mode(&sport->port);
2328 	if (ret)
2329 		goto err_clk;
2330 
2331 	/*
2332 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2333 	 * signal cannot be set low during transmission in case the
2334 	 * receiver is off (limitation of the i.MX UART IP).
2335 	 */
2336 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2337 	    sport->have_rtscts && !sport->have_rtsgpio &&
2338 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2339 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2340 		dev_err(&pdev->dev,
2341 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2342 
2343 	/* Disable interrupts before requesting them */
2344 	ucr1 = imx_uart_readl(sport, UCR1);
2345 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2346 	imx_uart_writel(sport, ucr1, UCR1);
2347 
2348 	/* Disable Ageing Timer interrupt */
2349 	ucr2 = imx_uart_readl(sport, UCR2);
2350 	ucr2 &= ~UCR2_ATEN;
2351 	imx_uart_writel(sport, ucr2, UCR2);
2352 
2353 	/*
2354 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2355 	 * is used to control CTS signal. Keep both the UART and Receiver
2356 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2357 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2358 	 * data from being fed into the RX FIFO, enable loopback mode in
2359 	 * UTS register, which disconnects the RX path from external RXD
2360 	 * pin and connects it to the Transceiver, which is disabled, so
2361 	 * no data can be fed to the RX FIFO that way.
2362 	 */
2363 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2364 	    sport->have_rtscts && !sport->have_rtsgpio) {
2365 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2366 		uts |= UTS_LOOP;
2367 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2368 
2369 		ucr1 = imx_uart_readl(sport, UCR1);
2370 		ucr1 |= UCR1_UARTEN;
2371 		imx_uart_writel(sport, ucr1, UCR1);
2372 
2373 		ucr2 = imx_uart_readl(sport, UCR2);
2374 		ucr2 |= UCR2_RXEN;
2375 		imx_uart_writel(sport, ucr2, UCR2);
2376 	}
2377 
2378 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2379 		/*
2380 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2381 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2382 		 * and DCD (when they are outputs) or enables the respective
2383 		 * irqs. So set this bit early, i.e. before requesting irqs.
2384 		 */
2385 		u32 ufcr = imx_uart_readl(sport, UFCR);
2386 		if (!(ufcr & UFCR_DCEDTE))
2387 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2388 
2389 		/*
2390 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2391 		 * enabled later because they cannot be cleared
2392 		 * (confirmed on i.MX25) which makes them unusable.
2393 		 */
2394 		imx_uart_writel(sport,
2395 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2396 				UCR3);
2397 
2398 	} else {
2399 		u32 ucr3 = UCR3_DSR;
2400 		u32 ufcr = imx_uart_readl(sport, UFCR);
2401 		if (ufcr & UFCR_DCEDTE)
2402 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2403 
2404 		if (!imx_uart_is_imx1(sport))
2405 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2406 		imx_uart_writel(sport, ucr3, UCR3);
2407 	}
2408 
2409 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2410 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2411 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2412 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2413 
2414 	/*
2415 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2416 	 * chips only have one interrupt.
2417 	 */
2418 	if (txirq > 0) {
2419 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2420 				       dev_name(&pdev->dev), sport);
2421 		if (ret) {
2422 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2423 				ret);
2424 			goto err_clk;
2425 		}
2426 
2427 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2428 				       dev_name(&pdev->dev), sport);
2429 		if (ret) {
2430 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2431 				ret);
2432 			goto err_clk;
2433 		}
2434 
2435 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2436 				       dev_name(&pdev->dev), sport);
2437 		if (ret) {
2438 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2439 				ret);
2440 			goto err_clk;
2441 		}
2442 	} else {
2443 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2444 				       dev_name(&pdev->dev), sport);
2445 		if (ret) {
2446 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2447 			goto err_clk;
2448 		}
2449 	}
2450 
2451 	imx_uart_ports[sport->port.line] = sport;
2452 
2453 	platform_set_drvdata(pdev, sport);
2454 
2455 	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2456 
2457 err_clk:
2458 	clk_disable_unprepare(sport->clk_ipg);
2459 
2460 	return ret;
2461 }
2462 
2463 static void imx_uart_remove(struct platform_device *pdev)
2464 {
2465 	struct imx_port *sport = platform_get_drvdata(pdev);
2466 
2467 	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2468 }
2469 
2470 static void imx_uart_restore_context(struct imx_port *sport)
2471 {
2472 	unsigned long flags;
2473 
2474 	uart_port_lock_irqsave(&sport->port, &flags);
2475 	if (!sport->context_saved) {
2476 		uart_port_unlock_irqrestore(&sport->port, flags);
2477 		return;
2478 	}
2479 
2480 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2481 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2482 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2483 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2484 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2485 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2486 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2487 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2488 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2489 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2490 	sport->context_saved = false;
2491 	uart_port_unlock_irqrestore(&sport->port, flags);
2492 }
2493 
2494 static void imx_uart_save_context(struct imx_port *sport)
2495 {
2496 	unsigned long flags;
2497 
2498 	/* Save necessary regs */
2499 	uart_port_lock_irqsave(&sport->port, &flags);
2500 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2501 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2502 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2503 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2504 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2505 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2506 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2507 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2508 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2509 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2510 	sport->context_saved = true;
2511 	uart_port_unlock_irqrestore(&sport->port, flags);
2512 }
2513 
2514 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2515 {
2516 	u32 ucr3;
2517 
2518 	ucr3 = imx_uart_readl(sport, UCR3);
2519 	if (on) {
2520 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2521 		ucr3 |= UCR3_AWAKEN;
2522 	} else {
2523 		ucr3 &= ~UCR3_AWAKEN;
2524 	}
2525 	imx_uart_writel(sport, ucr3, UCR3);
2526 
2527 	if (sport->have_rtscts) {
2528 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2529 		if (on) {
2530 			imx_uart_writel(sport, USR1_RTSD, USR1);
2531 			ucr1 |= UCR1_RTSDEN;
2532 		} else {
2533 			ucr1 &= ~UCR1_RTSDEN;
2534 		}
2535 		imx_uart_writel(sport, ucr1, UCR1);
2536 	}
2537 }
2538 
2539 static int imx_uart_suspend_noirq(struct device *dev)
2540 {
2541 	struct imx_port *sport = dev_get_drvdata(dev);
2542 
2543 	imx_uart_save_context(sport);
2544 
2545 	clk_disable(sport->clk_ipg);
2546 
2547 	pinctrl_pm_select_sleep_state(dev);
2548 
2549 	return 0;
2550 }
2551 
2552 static int imx_uart_resume_noirq(struct device *dev)
2553 {
2554 	struct imx_port *sport = dev_get_drvdata(dev);
2555 	int ret;
2556 
2557 	pinctrl_pm_select_default_state(dev);
2558 
2559 	ret = clk_enable(sport->clk_ipg);
2560 	if (ret)
2561 		return ret;
2562 
2563 	imx_uart_restore_context(sport);
2564 
2565 	return 0;
2566 }
2567 
2568 static int imx_uart_suspend(struct device *dev)
2569 {
2570 	struct imx_port *sport = dev_get_drvdata(dev);
2571 	int ret;
2572 
2573 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2574 	disable_irq(sport->port.irq);
2575 
2576 	ret = clk_prepare_enable(sport->clk_ipg);
2577 	if (ret)
2578 		return ret;
2579 
2580 	/* enable wakeup from i.MX UART */
2581 	imx_uart_enable_wakeup(sport, true);
2582 
2583 	return 0;
2584 }
2585 
2586 static int imx_uart_resume(struct device *dev)
2587 {
2588 	struct imx_port *sport = dev_get_drvdata(dev);
2589 
2590 	/* disable wakeup from i.MX UART */
2591 	imx_uart_enable_wakeup(sport, false);
2592 
2593 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2594 	enable_irq(sport->port.irq);
2595 
2596 	clk_disable_unprepare(sport->clk_ipg);
2597 
2598 	return 0;
2599 }
2600 
2601 static int imx_uart_freeze(struct device *dev)
2602 {
2603 	struct imx_port *sport = dev_get_drvdata(dev);
2604 
2605 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2606 
2607 	return clk_prepare_enable(sport->clk_ipg);
2608 }
2609 
2610 static int imx_uart_thaw(struct device *dev)
2611 {
2612 	struct imx_port *sport = dev_get_drvdata(dev);
2613 
2614 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2615 
2616 	clk_disable_unprepare(sport->clk_ipg);
2617 
2618 	return 0;
2619 }
2620 
2621 static const struct dev_pm_ops imx_uart_pm_ops = {
2622 	.suspend_noirq = imx_uart_suspend_noirq,
2623 	.resume_noirq = imx_uart_resume_noirq,
2624 	.freeze_noirq = imx_uart_suspend_noirq,
2625 	.thaw_noirq = imx_uart_resume_noirq,
2626 	.restore_noirq = imx_uart_resume_noirq,
2627 	.suspend = imx_uart_suspend,
2628 	.resume = imx_uart_resume,
2629 	.freeze = imx_uart_freeze,
2630 	.thaw = imx_uart_thaw,
2631 	.restore = imx_uart_thaw,
2632 };
2633 
2634 static struct platform_driver imx_uart_platform_driver = {
2635 	.probe = imx_uart_probe,
2636 	.remove_new = imx_uart_remove,
2637 
2638 	.driver = {
2639 		.name = "imx-uart",
2640 		.of_match_table = imx_uart_dt_ids,
2641 		.pm = &imx_uart_pm_ops,
2642 	},
2643 };
2644 
2645 static int __init imx_uart_init(void)
2646 {
2647 	int ret = uart_register_driver(&imx_uart_uart_driver);
2648 
2649 	if (ret)
2650 		return ret;
2651 
2652 	ret = platform_driver_register(&imx_uart_platform_driver);
2653 	if (ret != 0)
2654 		uart_unregister_driver(&imx_uart_uart_driver);
2655 
2656 	return ret;
2657 }
2658 
2659 static void __exit imx_uart_exit(void)
2660 {
2661 	platform_driver_unregister(&imx_uart_platform_driver);
2662 	uart_unregister_driver(&imx_uart_uart_driver);
2663 }
2664 
2665 module_init(imx_uart_init);
2666 module_exit(imx_uart_exit);
2667 
2668 MODULE_AUTHOR("Sascha Hauer");
2669 MODULE_DESCRIPTION("IMX generic serial port driver");
2670 MODULE_LICENSE("GPL");
2671 MODULE_ALIAS("platform:imx-uart");
2672