xref: /linux/drivers/tty/serial/imx.c (revision 1448f8acf4cc61197a228bdb7126e7eeb92760fe)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/platform_data/dma-imx.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* shadow registers */
214 	unsigned int ucr1;
215 	unsigned int ucr2;
216 	unsigned int ucr3;
217 	unsigned int ucr4;
218 	unsigned int ufcr;
219 
220 	/* DMA fields */
221 	unsigned int		dma_is_enabled:1;
222 	unsigned int		dma_is_rxing:1;
223 	unsigned int		dma_is_txing:1;
224 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
225 	struct scatterlist	rx_sgl, tx_sgl[2];
226 	void			*rx_buf;
227 	struct circ_buf		rx_ring;
228 	unsigned int		rx_periods;
229 	dma_cookie_t		rx_cookie;
230 	unsigned int		tx_bytes;
231 	unsigned int		dma_tx_nents;
232 	unsigned int            saved_reg[10];
233 	bool			context_saved;
234 
235 	enum imx_tx_state	tx_state;
236 	struct hrtimer		trigger_start_tx;
237 	struct hrtimer		trigger_stop_tx;
238 };
239 
240 struct imx_port_ucrs {
241 	unsigned int	ucr1;
242 	unsigned int	ucr2;
243 	unsigned int	ucr3;
244 };
245 
246 static struct imx_uart_data imx_uart_devdata[] = {
247 	[IMX1_UART] = {
248 		.uts_reg = IMX1_UTS,
249 		.devtype = IMX1_UART,
250 	},
251 	[IMX21_UART] = {
252 		.uts_reg = IMX21_UTS,
253 		.devtype = IMX21_UART,
254 	},
255 	[IMX53_UART] = {
256 		.uts_reg = IMX21_UTS,
257 		.devtype = IMX53_UART,
258 	},
259 	[IMX6Q_UART] = {
260 		.uts_reg = IMX21_UTS,
261 		.devtype = IMX6Q_UART,
262 	},
263 };
264 
265 static const struct of_device_id imx_uart_dt_ids[] = {
266 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
267 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
268 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
269 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
270 	{ /* sentinel */ }
271 };
272 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
273 
274 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
275 {
276 	switch (offset) {
277 	case UCR1:
278 		sport->ucr1 = val;
279 		break;
280 	case UCR2:
281 		sport->ucr2 = val;
282 		break;
283 	case UCR3:
284 		sport->ucr3 = val;
285 		break;
286 	case UCR4:
287 		sport->ucr4 = val;
288 		break;
289 	case UFCR:
290 		sport->ufcr = val;
291 		break;
292 	default:
293 		break;
294 	}
295 	writel(val, sport->port.membase + offset);
296 }
297 
298 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
299 {
300 	switch (offset) {
301 	case UCR1:
302 		return sport->ucr1;
303 		break;
304 	case UCR2:
305 		/*
306 		 * UCR2_SRST is the only bit in the cached registers that might
307 		 * differ from the value that was last written. As it only
308 		 * automatically becomes one after being cleared, reread
309 		 * conditionally.
310 		 */
311 		if (!(sport->ucr2 & UCR2_SRST))
312 			sport->ucr2 = readl(sport->port.membase + offset);
313 		return sport->ucr2;
314 		break;
315 	case UCR3:
316 		return sport->ucr3;
317 		break;
318 	case UCR4:
319 		return sport->ucr4;
320 		break;
321 	case UFCR:
322 		return sport->ufcr;
323 		break;
324 	default:
325 		return readl(sport->port.membase + offset);
326 	}
327 }
328 
329 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
330 {
331 	return sport->devdata->uts_reg;
332 }
333 
334 static inline int imx_uart_is_imx1(struct imx_port *sport)
335 {
336 	return sport->devdata->devtype == IMX1_UART;
337 }
338 
339 static inline int imx_uart_is_imx21(struct imx_port *sport)
340 {
341 	return sport->devdata->devtype == IMX21_UART;
342 }
343 
344 static inline int imx_uart_is_imx53(struct imx_port *sport)
345 {
346 	return sport->devdata->devtype == IMX53_UART;
347 }
348 
349 static inline int imx_uart_is_imx6q(struct imx_port *sport)
350 {
351 	return sport->devdata->devtype == IMX6Q_UART;
352 }
353 /*
354  * Save and restore functions for UCR1, UCR2 and UCR3 registers
355  */
356 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
357 static void imx_uart_ucrs_save(struct imx_port *sport,
358 			       struct imx_port_ucrs *ucr)
359 {
360 	/* save control registers */
361 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
362 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
363 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
364 }
365 
366 static void imx_uart_ucrs_restore(struct imx_port *sport,
367 				  struct imx_port_ucrs *ucr)
368 {
369 	/* restore control registers */
370 	imx_uart_writel(sport, ucr->ucr1, UCR1);
371 	imx_uart_writel(sport, ucr->ucr2, UCR2);
372 	imx_uart_writel(sport, ucr->ucr3, UCR3);
373 }
374 #endif
375 
376 /* called with port.lock taken and irqs caller dependent */
377 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
378 {
379 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
380 
381 	sport->port.mctrl |= TIOCM_RTS;
382 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
383 }
384 
385 /* called with port.lock taken and irqs caller dependent */
386 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
387 {
388 	*ucr2 &= ~UCR2_CTSC;
389 	*ucr2 |= UCR2_CTS;
390 
391 	sport->port.mctrl &= ~TIOCM_RTS;
392 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
393 }
394 
395 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
396 {
397        long sec = msec / MSEC_PER_SEC;
398        long nsec = (msec % MSEC_PER_SEC) * 1000000;
399        ktime_t t = ktime_set(sec, nsec);
400 
401        hrtimer_start(hrt, t, HRTIMER_MODE_REL);
402 }
403 
404 /* called with port.lock taken and irqs off */
405 static void imx_uart_start_rx(struct uart_port *port)
406 {
407 	struct imx_port *sport = (struct imx_port *)port;
408 	unsigned int ucr1, ucr2;
409 
410 	ucr1 = imx_uart_readl(sport, UCR1);
411 	ucr2 = imx_uart_readl(sport, UCR2);
412 
413 	ucr2 |= UCR2_RXEN;
414 
415 	if (sport->dma_is_enabled) {
416 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
417 	} else {
418 		ucr1 |= UCR1_RRDYEN;
419 		ucr2 |= UCR2_ATEN;
420 	}
421 
422 	/* Write UCR2 first as it includes RXEN */
423 	imx_uart_writel(sport, ucr2, UCR2);
424 	imx_uart_writel(sport, ucr1, UCR1);
425 }
426 
427 /* called with port.lock taken and irqs off */
428 static void imx_uart_stop_tx(struct uart_port *port)
429 {
430 	struct imx_port *sport = (struct imx_port *)port;
431 	u32 ucr1, ucr4, usr2;
432 
433 	if (sport->tx_state == OFF)
434 		return;
435 
436 	/*
437 	 * We are maybe in the SMP context, so if the DMA TX thread is running
438 	 * on other cpu, we have to wait for it to finish.
439 	 */
440 	if (sport->dma_is_txing)
441 		return;
442 
443 	ucr1 = imx_uart_readl(sport, UCR1);
444 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
445 
446 	usr2 = imx_uart_readl(sport, USR2);
447 	if (!(usr2 & USR2_TXDC)) {
448 		/* The shifter is still busy, so retry once TC triggers */
449 		return;
450 	}
451 
452 	ucr4 = imx_uart_readl(sport, UCR4);
453 	ucr4 &= ~UCR4_TCEN;
454 	imx_uart_writel(sport, ucr4, UCR4);
455 
456 	/* in rs485 mode disable transmitter */
457 	if (port->rs485.flags & SER_RS485_ENABLED) {
458 		if (sport->tx_state == SEND) {
459 			sport->tx_state = WAIT_AFTER_SEND;
460 			start_hrtimer_ms(&sport->trigger_stop_tx,
461 					 port->rs485.delay_rts_after_send);
462 			return;
463 		}
464 
465 		if (sport->tx_state == WAIT_AFTER_RTS ||
466 		    sport->tx_state == WAIT_AFTER_SEND) {
467 			u32 ucr2;
468 
469 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
470 
471 			ucr2 = imx_uart_readl(sport, UCR2);
472 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
473 				imx_uart_rts_active(sport, &ucr2);
474 			else
475 				imx_uart_rts_inactive(sport, &ucr2);
476 			imx_uart_writel(sport, ucr2, UCR2);
477 
478 			imx_uart_start_rx(port);
479 
480 			sport->tx_state = OFF;
481 		}
482 	} else {
483 		sport->tx_state = OFF;
484 	}
485 }
486 
487 /* called with port.lock taken and irqs off */
488 static void imx_uart_stop_rx(struct uart_port *port)
489 {
490 	struct imx_port *sport = (struct imx_port *)port;
491 	u32 ucr1, ucr2;
492 
493 	ucr1 = imx_uart_readl(sport, UCR1);
494 	ucr2 = imx_uart_readl(sport, UCR2);
495 
496 	if (sport->dma_is_enabled) {
497 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
498 	} else {
499 		ucr1 &= ~UCR1_RRDYEN;
500 		ucr2 &= ~UCR2_ATEN;
501 	}
502 	imx_uart_writel(sport, ucr1, UCR1);
503 
504 	ucr2 &= ~UCR2_RXEN;
505 	imx_uart_writel(sport, ucr2, UCR2);
506 }
507 
508 /* called with port.lock taken and irqs off */
509 static void imx_uart_enable_ms(struct uart_port *port)
510 {
511 	struct imx_port *sport = (struct imx_port *)port;
512 
513 	mod_timer(&sport->timer, jiffies);
514 
515 	mctrl_gpio_enable_ms(sport->gpios);
516 }
517 
518 static void imx_uart_dma_tx(struct imx_port *sport);
519 
520 /* called with port.lock taken and irqs off */
521 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
522 {
523 	struct circ_buf *xmit = &sport->port.state->xmit;
524 
525 	if (sport->port.x_char) {
526 		/* Send next char */
527 		imx_uart_writel(sport, sport->port.x_char, URTX0);
528 		sport->port.icount.tx++;
529 		sport->port.x_char = 0;
530 		return;
531 	}
532 
533 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
534 		imx_uart_stop_tx(&sport->port);
535 		return;
536 	}
537 
538 	if (sport->dma_is_enabled) {
539 		u32 ucr1;
540 		/*
541 		 * We've just sent a X-char Ensure the TX DMA is enabled
542 		 * and the TX IRQ is disabled.
543 		 **/
544 		ucr1 = imx_uart_readl(sport, UCR1);
545 		ucr1 &= ~UCR1_TRDYEN;
546 		if (sport->dma_is_txing) {
547 			ucr1 |= UCR1_TXDMAEN;
548 			imx_uart_writel(sport, ucr1, UCR1);
549 		} else {
550 			imx_uart_writel(sport, ucr1, UCR1);
551 			imx_uart_dma_tx(sport);
552 		}
553 
554 		return;
555 	}
556 
557 	while (!uart_circ_empty(xmit) &&
558 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
559 		/* send xmit->buf[xmit->tail]
560 		 * out the port here */
561 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
562 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
563 		sport->port.icount.tx++;
564 	}
565 
566 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
567 		uart_write_wakeup(&sport->port);
568 
569 	if (uart_circ_empty(xmit))
570 		imx_uart_stop_tx(&sport->port);
571 }
572 
573 static void imx_uart_dma_tx_callback(void *data)
574 {
575 	struct imx_port *sport = data;
576 	struct scatterlist *sgl = &sport->tx_sgl[0];
577 	struct circ_buf *xmit = &sport->port.state->xmit;
578 	unsigned long flags;
579 	u32 ucr1;
580 
581 	spin_lock_irqsave(&sport->port.lock, flags);
582 
583 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
584 
585 	ucr1 = imx_uart_readl(sport, UCR1);
586 	ucr1 &= ~UCR1_TXDMAEN;
587 	imx_uart_writel(sport, ucr1, UCR1);
588 
589 	/* update the stat */
590 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
591 	sport->port.icount.tx += sport->tx_bytes;
592 
593 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
594 
595 	sport->dma_is_txing = 0;
596 
597 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
598 		uart_write_wakeup(&sport->port);
599 
600 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
601 		imx_uart_dma_tx(sport);
602 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
603 		u32 ucr4 = imx_uart_readl(sport, UCR4);
604 		ucr4 |= UCR4_TCEN;
605 		imx_uart_writel(sport, ucr4, UCR4);
606 	}
607 
608 	spin_unlock_irqrestore(&sport->port.lock, flags);
609 }
610 
611 /* called with port.lock taken and irqs off */
612 static void imx_uart_dma_tx(struct imx_port *sport)
613 {
614 	struct circ_buf *xmit = &sport->port.state->xmit;
615 	struct scatterlist *sgl = sport->tx_sgl;
616 	struct dma_async_tx_descriptor *desc;
617 	struct dma_chan	*chan = sport->dma_chan_tx;
618 	struct device *dev = sport->port.dev;
619 	u32 ucr1, ucr4;
620 	int ret;
621 
622 	if (sport->dma_is_txing)
623 		return;
624 
625 	ucr4 = imx_uart_readl(sport, UCR4);
626 	ucr4 &= ~UCR4_TCEN;
627 	imx_uart_writel(sport, ucr4, UCR4);
628 
629 	sport->tx_bytes = uart_circ_chars_pending(xmit);
630 
631 	if (xmit->tail < xmit->head || xmit->head == 0) {
632 		sport->dma_tx_nents = 1;
633 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
634 	} else {
635 		sport->dma_tx_nents = 2;
636 		sg_init_table(sgl, 2);
637 		sg_set_buf(sgl, xmit->buf + xmit->tail,
638 				UART_XMIT_SIZE - xmit->tail);
639 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
640 	}
641 
642 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
643 	if (ret == 0) {
644 		dev_err(dev, "DMA mapping error for TX.\n");
645 		return;
646 	}
647 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
648 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
649 	if (!desc) {
650 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
651 			     DMA_TO_DEVICE);
652 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
653 		return;
654 	}
655 	desc->callback = imx_uart_dma_tx_callback;
656 	desc->callback_param = sport;
657 
658 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
659 			uart_circ_chars_pending(xmit));
660 
661 	ucr1 = imx_uart_readl(sport, UCR1);
662 	ucr1 |= UCR1_TXDMAEN;
663 	imx_uart_writel(sport, ucr1, UCR1);
664 
665 	/* fire it */
666 	sport->dma_is_txing = 1;
667 	dmaengine_submit(desc);
668 	dma_async_issue_pending(chan);
669 	return;
670 }
671 
672 /* called with port.lock taken and irqs off */
673 static void imx_uart_start_tx(struct uart_port *port)
674 {
675 	struct imx_port *sport = (struct imx_port *)port;
676 	u32 ucr1;
677 
678 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
679 		return;
680 
681 	/*
682 	 * We cannot simply do nothing here if sport->tx_state == SEND already
683 	 * because UCR1_TXMPTYEN might already have been cleared in
684 	 * imx_uart_stop_tx(), but tx_state is still SEND.
685 	 */
686 
687 	if (port->rs485.flags & SER_RS485_ENABLED) {
688 		if (sport->tx_state == OFF) {
689 			u32 ucr2 = imx_uart_readl(sport, UCR2);
690 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
691 				imx_uart_rts_active(sport, &ucr2);
692 			else
693 				imx_uart_rts_inactive(sport, &ucr2);
694 			imx_uart_writel(sport, ucr2, UCR2);
695 
696 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
697 				imx_uart_stop_rx(port);
698 
699 			sport->tx_state = WAIT_AFTER_RTS;
700 			start_hrtimer_ms(&sport->trigger_start_tx,
701 					 port->rs485.delay_rts_before_send);
702 			return;
703 		}
704 
705 		if (sport->tx_state == WAIT_AFTER_SEND
706 		    || sport->tx_state == WAIT_AFTER_RTS) {
707 
708 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
709 
710 			/*
711 			 * Enable transmitter and shifter empty irq only if DMA
712 			 * is off.  In the DMA case this is done in the
713 			 * tx-callback.
714 			 */
715 			if (!sport->dma_is_enabled) {
716 				u32 ucr4 = imx_uart_readl(sport, UCR4);
717 				ucr4 |= UCR4_TCEN;
718 				imx_uart_writel(sport, ucr4, UCR4);
719 			}
720 
721 			sport->tx_state = SEND;
722 		}
723 	} else {
724 		sport->tx_state = SEND;
725 	}
726 
727 	if (!sport->dma_is_enabled) {
728 		ucr1 = imx_uart_readl(sport, UCR1);
729 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
730 	}
731 
732 	if (sport->dma_is_enabled) {
733 		if (sport->port.x_char) {
734 			/* We have X-char to send, so enable TX IRQ and
735 			 * disable TX DMA to let TX interrupt to send X-char */
736 			ucr1 = imx_uart_readl(sport, UCR1);
737 			ucr1 &= ~UCR1_TXDMAEN;
738 			ucr1 |= UCR1_TRDYEN;
739 			imx_uart_writel(sport, ucr1, UCR1);
740 			return;
741 		}
742 
743 		if (!uart_circ_empty(&port->state->xmit) &&
744 		    !uart_tx_stopped(port))
745 			imx_uart_dma_tx(sport);
746 		return;
747 	}
748 }
749 
750 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
751 {
752 	struct imx_port *sport = dev_id;
753 	u32 usr1;
754 
755 	imx_uart_writel(sport, USR1_RTSD, USR1);
756 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
757 	uart_handle_cts_change(&sport->port, !!usr1);
758 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
759 
760 	return IRQ_HANDLED;
761 }
762 
763 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
764 {
765 	struct imx_port *sport = dev_id;
766 	irqreturn_t ret;
767 
768 	spin_lock(&sport->port.lock);
769 
770 	ret = __imx_uart_rtsint(irq, dev_id);
771 
772 	spin_unlock(&sport->port.lock);
773 
774 	return ret;
775 }
776 
777 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
778 {
779 	struct imx_port *sport = dev_id;
780 
781 	spin_lock(&sport->port.lock);
782 	imx_uart_transmit_buffer(sport);
783 	spin_unlock(&sport->port.lock);
784 	return IRQ_HANDLED;
785 }
786 
787 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
788 {
789 	struct imx_port *sport = dev_id;
790 	unsigned int rx, flg, ignored = 0;
791 	struct tty_port *port = &sport->port.state->port;
792 
793 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
794 		u32 usr2;
795 
796 		flg = TTY_NORMAL;
797 		sport->port.icount.rx++;
798 
799 		rx = imx_uart_readl(sport, URXD0);
800 
801 		usr2 = imx_uart_readl(sport, USR2);
802 		if (usr2 & USR2_BRCD) {
803 			imx_uart_writel(sport, USR2_BRCD, USR2);
804 			if (uart_handle_break(&sport->port))
805 				continue;
806 		}
807 
808 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
809 			continue;
810 
811 		if (unlikely(rx & URXD_ERR)) {
812 			if (rx & URXD_BRK)
813 				sport->port.icount.brk++;
814 			else if (rx & URXD_PRERR)
815 				sport->port.icount.parity++;
816 			else if (rx & URXD_FRMERR)
817 				sport->port.icount.frame++;
818 			if (rx & URXD_OVRRUN)
819 				sport->port.icount.overrun++;
820 
821 			if (rx & sport->port.ignore_status_mask) {
822 				if (++ignored > 100)
823 					goto out;
824 				continue;
825 			}
826 
827 			rx &= (sport->port.read_status_mask | 0xFF);
828 
829 			if (rx & URXD_BRK)
830 				flg = TTY_BREAK;
831 			else if (rx & URXD_PRERR)
832 				flg = TTY_PARITY;
833 			else if (rx & URXD_FRMERR)
834 				flg = TTY_FRAME;
835 			if (rx & URXD_OVRRUN)
836 				flg = TTY_OVERRUN;
837 
838 			sport->port.sysrq = 0;
839 		}
840 
841 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
842 			goto out;
843 
844 		if (tty_insert_flip_char(port, rx, flg) == 0)
845 			sport->port.icount.buf_overrun++;
846 	}
847 
848 out:
849 	tty_flip_buffer_push(port);
850 
851 	return IRQ_HANDLED;
852 }
853 
854 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
855 {
856 	struct imx_port *sport = dev_id;
857 	irqreturn_t ret;
858 
859 	spin_lock(&sport->port.lock);
860 
861 	ret = __imx_uart_rxint(irq, dev_id);
862 
863 	spin_unlock(&sport->port.lock);
864 
865 	return ret;
866 }
867 
868 static void imx_uart_clear_rx_errors(struct imx_port *sport);
869 
870 /*
871  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
872  */
873 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
874 {
875 	unsigned int tmp = TIOCM_DSR;
876 	unsigned usr1 = imx_uart_readl(sport, USR1);
877 	unsigned usr2 = imx_uart_readl(sport, USR2);
878 
879 	if (usr1 & USR1_RTSS)
880 		tmp |= TIOCM_CTS;
881 
882 	/* in DCE mode DCDIN is always 0 */
883 	if (!(usr2 & USR2_DCDIN))
884 		tmp |= TIOCM_CAR;
885 
886 	if (sport->dte_mode)
887 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
888 			tmp |= TIOCM_RI;
889 
890 	return tmp;
891 }
892 
893 /*
894  * Handle any change of modem status signal since we were last called.
895  */
896 static void imx_uart_mctrl_check(struct imx_port *sport)
897 {
898 	unsigned int status, changed;
899 
900 	status = imx_uart_get_hwmctrl(sport);
901 	changed = status ^ sport->old_status;
902 
903 	if (changed == 0)
904 		return;
905 
906 	sport->old_status = status;
907 
908 	if (changed & TIOCM_RI && status & TIOCM_RI)
909 		sport->port.icount.rng++;
910 	if (changed & TIOCM_DSR)
911 		sport->port.icount.dsr++;
912 	if (changed & TIOCM_CAR)
913 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
914 	if (changed & TIOCM_CTS)
915 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
916 
917 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
918 }
919 
920 static irqreturn_t imx_uart_int(int irq, void *dev_id)
921 {
922 	struct imx_port *sport = dev_id;
923 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
924 	irqreturn_t ret = IRQ_NONE;
925 	unsigned long flags = 0;
926 
927 	/*
928 	 * IRQs might not be disabled upon entering this interrupt handler,
929 	 * e.g. when interrupt handlers are forced to be threaded. To support
930 	 * this scenario as well, disable IRQs when acquiring the spinlock.
931 	 */
932 	spin_lock_irqsave(&sport->port.lock, flags);
933 
934 	usr1 = imx_uart_readl(sport, USR1);
935 	usr2 = imx_uart_readl(sport, USR2);
936 	ucr1 = imx_uart_readl(sport, UCR1);
937 	ucr2 = imx_uart_readl(sport, UCR2);
938 	ucr3 = imx_uart_readl(sport, UCR3);
939 	ucr4 = imx_uart_readl(sport, UCR4);
940 
941 	/*
942 	 * Even if a condition is true that can trigger an irq only handle it if
943 	 * the respective irq source is enabled. This prevents some undesired
944 	 * actions, for example if a character that sits in the RX FIFO and that
945 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
946 	 * receiver is currently off and so reading from URXD0 results in an
947 	 * exception. So just mask the (raw) status bits for disabled irqs.
948 	 */
949 	if ((ucr1 & UCR1_RRDYEN) == 0)
950 		usr1 &= ~USR1_RRDY;
951 	if ((ucr2 & UCR2_ATEN) == 0)
952 		usr1 &= ~USR1_AGTIM;
953 	if ((ucr1 & UCR1_TRDYEN) == 0)
954 		usr1 &= ~USR1_TRDY;
955 	if ((ucr4 & UCR4_TCEN) == 0)
956 		usr2 &= ~USR2_TXDC;
957 	if ((ucr3 & UCR3_DTRDEN) == 0)
958 		usr1 &= ~USR1_DTRD;
959 	if ((ucr1 & UCR1_RTSDEN) == 0)
960 		usr1 &= ~USR1_RTSD;
961 	if ((ucr3 & UCR3_AWAKEN) == 0)
962 		usr1 &= ~USR1_AWAKE;
963 	if ((ucr4 & UCR4_OREN) == 0)
964 		usr2 &= ~USR2_ORE;
965 
966 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
967 		imx_uart_writel(sport, USR1_AGTIM, USR1);
968 
969 		__imx_uart_rxint(irq, dev_id);
970 		ret = IRQ_HANDLED;
971 	}
972 
973 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
974 		imx_uart_transmit_buffer(sport);
975 		ret = IRQ_HANDLED;
976 	}
977 
978 	if (usr1 & USR1_DTRD) {
979 		imx_uart_writel(sport, USR1_DTRD, USR1);
980 
981 		imx_uart_mctrl_check(sport);
982 
983 		ret = IRQ_HANDLED;
984 	}
985 
986 	if (usr1 & USR1_RTSD) {
987 		__imx_uart_rtsint(irq, dev_id);
988 		ret = IRQ_HANDLED;
989 	}
990 
991 	if (usr1 & USR1_AWAKE) {
992 		imx_uart_writel(sport, USR1_AWAKE, USR1);
993 		ret = IRQ_HANDLED;
994 	}
995 
996 	if (usr2 & USR2_ORE) {
997 		sport->port.icount.overrun++;
998 		imx_uart_writel(sport, USR2_ORE, USR2);
999 		ret = IRQ_HANDLED;
1000 	}
1001 
1002 	spin_unlock_irqrestore(&sport->port.lock, flags);
1003 
1004 	return ret;
1005 }
1006 
1007 /*
1008  * Return TIOCSER_TEMT when transmitter is not busy.
1009  */
1010 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1011 {
1012 	struct imx_port *sport = (struct imx_port *)port;
1013 	unsigned int ret;
1014 
1015 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1016 
1017 	/* If the TX DMA is working, return 0. */
1018 	if (sport->dma_is_txing)
1019 		ret = 0;
1020 
1021 	return ret;
1022 }
1023 
1024 /* called with port.lock taken and irqs off */
1025 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1026 {
1027 	struct imx_port *sport = (struct imx_port *)port;
1028 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1029 
1030 	mctrl_gpio_get(sport->gpios, &ret);
1031 
1032 	return ret;
1033 }
1034 
1035 /* called with port.lock taken and irqs off */
1036 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1037 {
1038 	struct imx_port *sport = (struct imx_port *)port;
1039 	u32 ucr3, uts;
1040 
1041 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1042 		u32 ucr2;
1043 
1044 		/*
1045 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1046 		 * setting if RTS is raised.
1047 		 */
1048 		ucr2 = imx_uart_readl(sport, UCR2);
1049 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1050 		if (mctrl & TIOCM_RTS) {
1051 			ucr2 |= UCR2_CTS;
1052 			/*
1053 			 * UCR2_IRTS is unset if and only if the port is
1054 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1055 			 * to get the state to restore to.
1056 			 */
1057 			if (!(ucr2 & UCR2_IRTS))
1058 				ucr2 |= UCR2_CTSC;
1059 		}
1060 		imx_uart_writel(sport, ucr2, UCR2);
1061 	}
1062 
1063 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1064 	if (!(mctrl & TIOCM_DTR))
1065 		ucr3 |= UCR3_DSR;
1066 	imx_uart_writel(sport, ucr3, UCR3);
1067 
1068 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1069 	if (mctrl & TIOCM_LOOP)
1070 		uts |= UTS_LOOP;
1071 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1072 
1073 	mctrl_gpio_set(sport->gpios, mctrl);
1074 }
1075 
1076 /*
1077  * Interrupts always disabled.
1078  */
1079 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1080 {
1081 	struct imx_port *sport = (struct imx_port *)port;
1082 	unsigned long flags;
1083 	u32 ucr1;
1084 
1085 	spin_lock_irqsave(&sport->port.lock, flags);
1086 
1087 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1088 
1089 	if (break_state != 0)
1090 		ucr1 |= UCR1_SNDBRK;
1091 
1092 	imx_uart_writel(sport, ucr1, UCR1);
1093 
1094 	spin_unlock_irqrestore(&sport->port.lock, flags);
1095 }
1096 
1097 /*
1098  * This is our per-port timeout handler, for checking the
1099  * modem status signals.
1100  */
1101 static void imx_uart_timeout(struct timer_list *t)
1102 {
1103 	struct imx_port *sport = from_timer(sport, t, timer);
1104 	unsigned long flags;
1105 
1106 	if (sport->port.state) {
1107 		spin_lock_irqsave(&sport->port.lock, flags);
1108 		imx_uart_mctrl_check(sport);
1109 		spin_unlock_irqrestore(&sport->port.lock, flags);
1110 
1111 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1112 	}
1113 }
1114 
1115 /*
1116  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1117  *   [1] the RX DMA buffer is full.
1118  *   [2] the aging timer expires
1119  *
1120  * Condition [2] is triggered when a character has been sitting in the FIFO
1121  * for at least 8 byte durations.
1122  */
1123 static void imx_uart_dma_rx_callback(void *data)
1124 {
1125 	struct imx_port *sport = data;
1126 	struct dma_chan	*chan = sport->dma_chan_rx;
1127 	struct scatterlist *sgl = &sport->rx_sgl;
1128 	struct tty_port *port = &sport->port.state->port;
1129 	struct dma_tx_state state;
1130 	struct circ_buf *rx_ring = &sport->rx_ring;
1131 	enum dma_status status;
1132 	unsigned int w_bytes = 0;
1133 	unsigned int r_bytes;
1134 	unsigned int bd_size;
1135 
1136 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1137 
1138 	if (status == DMA_ERROR) {
1139 		imx_uart_clear_rx_errors(sport);
1140 		return;
1141 	}
1142 
1143 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1144 
1145 		/*
1146 		 * The state-residue variable represents the empty space
1147 		 * relative to the entire buffer. Taking this in consideration
1148 		 * the head is always calculated base on the buffer total
1149 		 * length - DMA transaction residue. The UART script from the
1150 		 * SDMA firmware will jump to the next buffer descriptor,
1151 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1152 		 * Taking this in consideration the tail is always at the
1153 		 * beginning of the buffer descriptor that contains the head.
1154 		 */
1155 
1156 		/* Calculate the head */
1157 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1158 
1159 		/* Calculate the tail. */
1160 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1161 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1162 
1163 		if (rx_ring->head <= sg_dma_len(sgl) &&
1164 		    rx_ring->head > rx_ring->tail) {
1165 
1166 			/* Move data from tail to head */
1167 			r_bytes = rx_ring->head - rx_ring->tail;
1168 
1169 			/* CPU claims ownership of RX DMA buffer */
1170 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1171 				DMA_FROM_DEVICE);
1172 
1173 			w_bytes = tty_insert_flip_string(port,
1174 				sport->rx_buf + rx_ring->tail, r_bytes);
1175 
1176 			/* UART retrieves ownership of RX DMA buffer */
1177 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1178 				DMA_FROM_DEVICE);
1179 
1180 			if (w_bytes != r_bytes)
1181 				sport->port.icount.buf_overrun++;
1182 
1183 			sport->port.icount.rx += w_bytes;
1184 		} else	{
1185 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1186 			WARN_ON(rx_ring->head <= rx_ring->tail);
1187 		}
1188 	}
1189 
1190 	if (w_bytes) {
1191 		tty_flip_buffer_push(port);
1192 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1193 	}
1194 }
1195 
1196 /* RX DMA buffer periods */
1197 #define RX_DMA_PERIODS	16
1198 #define RX_BUF_SIZE	(RX_DMA_PERIODS * PAGE_SIZE / 4)
1199 
1200 static int imx_uart_start_rx_dma(struct imx_port *sport)
1201 {
1202 	struct scatterlist *sgl = &sport->rx_sgl;
1203 	struct dma_chan	*chan = sport->dma_chan_rx;
1204 	struct device *dev = sport->port.dev;
1205 	struct dma_async_tx_descriptor *desc;
1206 	int ret;
1207 
1208 	sport->rx_ring.head = 0;
1209 	sport->rx_ring.tail = 0;
1210 	sport->rx_periods = RX_DMA_PERIODS;
1211 
1212 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
1213 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1214 	if (ret == 0) {
1215 		dev_err(dev, "DMA mapping error for RX.\n");
1216 		return -EINVAL;
1217 	}
1218 
1219 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1220 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1221 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1222 
1223 	if (!desc) {
1224 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1225 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1226 		return -EINVAL;
1227 	}
1228 	desc->callback = imx_uart_dma_rx_callback;
1229 	desc->callback_param = sport;
1230 
1231 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1232 	sport->dma_is_rxing = 1;
1233 	sport->rx_cookie = dmaengine_submit(desc);
1234 	dma_async_issue_pending(chan);
1235 	return 0;
1236 }
1237 
1238 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1239 {
1240 	struct tty_port *port = &sport->port.state->port;
1241 	u32 usr1, usr2;
1242 
1243 	usr1 = imx_uart_readl(sport, USR1);
1244 	usr2 = imx_uart_readl(sport, USR2);
1245 
1246 	if (usr2 & USR2_BRCD) {
1247 		sport->port.icount.brk++;
1248 		imx_uart_writel(sport, USR2_BRCD, USR2);
1249 		uart_handle_break(&sport->port);
1250 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1251 			sport->port.icount.buf_overrun++;
1252 		tty_flip_buffer_push(port);
1253 	} else {
1254 		if (usr1 & USR1_FRAMERR) {
1255 			sport->port.icount.frame++;
1256 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1257 		} else if (usr1 & USR1_PARITYERR) {
1258 			sport->port.icount.parity++;
1259 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1260 		}
1261 	}
1262 
1263 	if (usr2 & USR2_ORE) {
1264 		sport->port.icount.overrun++;
1265 		imx_uart_writel(sport, USR2_ORE, USR2);
1266 	}
1267 
1268 }
1269 
1270 #define TXTL_DEFAULT 2 /* reset default */
1271 #define RXTL_DEFAULT 1 /* reset default */
1272 #define TXTL_DMA 8 /* DMA burst setting */
1273 #define RXTL_DMA 9 /* DMA burst setting */
1274 
1275 static void imx_uart_setup_ufcr(struct imx_port *sport,
1276 				unsigned char txwl, unsigned char rxwl)
1277 {
1278 	unsigned int val;
1279 
1280 	/* set receiver / transmitter trigger level */
1281 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1282 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1283 	imx_uart_writel(sport, val, UFCR);
1284 }
1285 
1286 static void imx_uart_dma_exit(struct imx_port *sport)
1287 {
1288 	if (sport->dma_chan_rx) {
1289 		dmaengine_terminate_sync(sport->dma_chan_rx);
1290 		dma_release_channel(sport->dma_chan_rx);
1291 		sport->dma_chan_rx = NULL;
1292 		sport->rx_cookie = -EINVAL;
1293 		kfree(sport->rx_buf);
1294 		sport->rx_buf = NULL;
1295 	}
1296 
1297 	if (sport->dma_chan_tx) {
1298 		dmaengine_terminate_sync(sport->dma_chan_tx);
1299 		dma_release_channel(sport->dma_chan_tx);
1300 		sport->dma_chan_tx = NULL;
1301 	}
1302 }
1303 
1304 static int imx_uart_dma_init(struct imx_port *sport)
1305 {
1306 	struct dma_slave_config slave_config = {};
1307 	struct device *dev = sport->port.dev;
1308 	int ret;
1309 
1310 	/* Prepare for RX : */
1311 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1312 	if (!sport->dma_chan_rx) {
1313 		dev_dbg(dev, "cannot get the DMA channel.\n");
1314 		ret = -EINVAL;
1315 		goto err;
1316 	}
1317 
1318 	slave_config.direction = DMA_DEV_TO_MEM;
1319 	slave_config.src_addr = sport->port.mapbase + URXD0;
1320 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1321 	/* one byte less than the watermark level to enable the aging timer */
1322 	slave_config.src_maxburst = RXTL_DMA - 1;
1323 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1324 	if (ret) {
1325 		dev_err(dev, "error in RX dma configuration.\n");
1326 		goto err;
1327 	}
1328 
1329 	sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
1330 	if (!sport->rx_buf) {
1331 		ret = -ENOMEM;
1332 		goto err;
1333 	}
1334 	sport->rx_ring.buf = sport->rx_buf;
1335 
1336 	/* Prepare for TX : */
1337 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1338 	if (!sport->dma_chan_tx) {
1339 		dev_err(dev, "cannot get the TX DMA channel!\n");
1340 		ret = -EINVAL;
1341 		goto err;
1342 	}
1343 
1344 	slave_config.direction = DMA_MEM_TO_DEV;
1345 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1346 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1347 	slave_config.dst_maxburst = TXTL_DMA;
1348 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1349 	if (ret) {
1350 		dev_err(dev, "error in TX dma configuration.");
1351 		goto err;
1352 	}
1353 
1354 	return 0;
1355 err:
1356 	imx_uart_dma_exit(sport);
1357 	return ret;
1358 }
1359 
1360 static void imx_uart_enable_dma(struct imx_port *sport)
1361 {
1362 	u32 ucr1;
1363 
1364 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1365 
1366 	/* set UCR1 */
1367 	ucr1 = imx_uart_readl(sport, UCR1);
1368 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1369 	imx_uart_writel(sport, ucr1, UCR1);
1370 
1371 	sport->dma_is_enabled = 1;
1372 }
1373 
1374 static void imx_uart_disable_dma(struct imx_port *sport)
1375 {
1376 	u32 ucr1;
1377 
1378 	/* clear UCR1 */
1379 	ucr1 = imx_uart_readl(sport, UCR1);
1380 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1381 	imx_uart_writel(sport, ucr1, UCR1);
1382 
1383 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1384 
1385 	sport->dma_is_enabled = 0;
1386 }
1387 
1388 /* half the RX buffer size */
1389 #define CTSTL 16
1390 
1391 static int imx_uart_startup(struct uart_port *port)
1392 {
1393 	struct imx_port *sport = (struct imx_port *)port;
1394 	int retval, i;
1395 	unsigned long flags;
1396 	int dma_is_inited = 0;
1397 	u32 ucr1, ucr2, ucr3, ucr4;
1398 
1399 	retval = clk_prepare_enable(sport->clk_per);
1400 	if (retval)
1401 		return retval;
1402 	retval = clk_prepare_enable(sport->clk_ipg);
1403 	if (retval) {
1404 		clk_disable_unprepare(sport->clk_per);
1405 		return retval;
1406 	}
1407 
1408 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1409 
1410 	/* disable the DREN bit (Data Ready interrupt enable) before
1411 	 * requesting IRQs
1412 	 */
1413 	ucr4 = imx_uart_readl(sport, UCR4);
1414 
1415 	/* set the trigger level for CTS */
1416 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1417 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1418 
1419 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1420 
1421 	/* Can we enable the DMA support? */
1422 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1423 		dma_is_inited = 1;
1424 
1425 	spin_lock_irqsave(&sport->port.lock, flags);
1426 	/* Reset fifo's and state machines */
1427 	i = 100;
1428 
1429 	ucr2 = imx_uart_readl(sport, UCR2);
1430 	ucr2 &= ~UCR2_SRST;
1431 	imx_uart_writel(sport, ucr2, UCR2);
1432 
1433 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1434 		udelay(1);
1435 
1436 	/*
1437 	 * Finally, clear and enable interrupts
1438 	 */
1439 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1440 	imx_uart_writel(sport, USR2_ORE, USR2);
1441 
1442 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1443 	ucr1 |= UCR1_UARTEN;
1444 	if (sport->have_rtscts)
1445 		ucr1 |= UCR1_RTSDEN;
1446 
1447 	imx_uart_writel(sport, ucr1, UCR1);
1448 
1449 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1450 	if (!sport->dma_is_enabled)
1451 		ucr4 |= UCR4_OREN;
1452 	if (sport->inverted_rx)
1453 		ucr4 |= UCR4_INVR;
1454 	imx_uart_writel(sport, ucr4, UCR4);
1455 
1456 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1457 	/*
1458 	 * configure tx polarity before enabling tx
1459 	 */
1460 	if (sport->inverted_tx)
1461 		ucr3 |= UCR3_INVT;
1462 
1463 	if (!imx_uart_is_imx1(sport)) {
1464 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1465 
1466 		if (sport->dte_mode)
1467 			/* disable broken interrupts */
1468 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1469 	}
1470 	imx_uart_writel(sport, ucr3, UCR3);
1471 
1472 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1473 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1474 	if (!sport->have_rtscts)
1475 		ucr2 |= UCR2_IRTS;
1476 	/*
1477 	 * make sure the edge sensitive RTS-irq is disabled,
1478 	 * we're using RTSD instead.
1479 	 */
1480 	if (!imx_uart_is_imx1(sport))
1481 		ucr2 &= ~UCR2_RTSEN;
1482 	imx_uart_writel(sport, ucr2, UCR2);
1483 
1484 	/*
1485 	 * Enable modem status interrupts
1486 	 */
1487 	imx_uart_enable_ms(&sport->port);
1488 
1489 	if (dma_is_inited) {
1490 		imx_uart_enable_dma(sport);
1491 		imx_uart_start_rx_dma(sport);
1492 	} else {
1493 		ucr1 = imx_uart_readl(sport, UCR1);
1494 		ucr1 |= UCR1_RRDYEN;
1495 		imx_uart_writel(sport, ucr1, UCR1);
1496 
1497 		ucr2 = imx_uart_readl(sport, UCR2);
1498 		ucr2 |= UCR2_ATEN;
1499 		imx_uart_writel(sport, ucr2, UCR2);
1500 	}
1501 
1502 	spin_unlock_irqrestore(&sport->port.lock, flags);
1503 
1504 	return 0;
1505 }
1506 
1507 static void imx_uart_shutdown(struct uart_port *port)
1508 {
1509 	struct imx_port *sport = (struct imx_port *)port;
1510 	unsigned long flags;
1511 	u32 ucr1, ucr2, ucr4;
1512 
1513 	if (sport->dma_is_enabled) {
1514 		dmaengine_terminate_sync(sport->dma_chan_tx);
1515 		if (sport->dma_is_txing) {
1516 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1517 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1518 			sport->dma_is_txing = 0;
1519 		}
1520 		dmaengine_terminate_sync(sport->dma_chan_rx);
1521 		if (sport->dma_is_rxing) {
1522 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1523 				     1, DMA_FROM_DEVICE);
1524 			sport->dma_is_rxing = 0;
1525 		}
1526 
1527 		spin_lock_irqsave(&sport->port.lock, flags);
1528 		imx_uart_stop_tx(port);
1529 		imx_uart_stop_rx(port);
1530 		imx_uart_disable_dma(sport);
1531 		spin_unlock_irqrestore(&sport->port.lock, flags);
1532 		imx_uart_dma_exit(sport);
1533 	}
1534 
1535 	mctrl_gpio_disable_ms(sport->gpios);
1536 
1537 	spin_lock_irqsave(&sport->port.lock, flags);
1538 	ucr2 = imx_uart_readl(sport, UCR2);
1539 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1540 	imx_uart_writel(sport, ucr2, UCR2);
1541 	spin_unlock_irqrestore(&sport->port.lock, flags);
1542 
1543 	/*
1544 	 * Stop our timer.
1545 	 */
1546 	del_timer_sync(&sport->timer);
1547 
1548 	/*
1549 	 * Disable all interrupts, port and break condition.
1550 	 */
1551 
1552 	spin_lock_irqsave(&sport->port.lock, flags);
1553 
1554 	ucr1 = imx_uart_readl(sport, UCR1);
1555 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1556 	imx_uart_writel(sport, ucr1, UCR1);
1557 
1558 	ucr4 = imx_uart_readl(sport, UCR4);
1559 	ucr4 &= ~(UCR4_OREN | UCR4_TCEN);
1560 	imx_uart_writel(sport, ucr4, UCR4);
1561 
1562 	spin_unlock_irqrestore(&sport->port.lock, flags);
1563 
1564 	clk_disable_unprepare(sport->clk_per);
1565 	clk_disable_unprepare(sport->clk_ipg);
1566 }
1567 
1568 /* called with port.lock taken and irqs off */
1569 static void imx_uart_flush_buffer(struct uart_port *port)
1570 {
1571 	struct imx_port *sport = (struct imx_port *)port;
1572 	struct scatterlist *sgl = &sport->tx_sgl[0];
1573 	u32 ucr2;
1574 	int i = 100, ubir, ubmr, uts;
1575 
1576 	if (!sport->dma_chan_tx)
1577 		return;
1578 
1579 	sport->tx_bytes = 0;
1580 	dmaengine_terminate_all(sport->dma_chan_tx);
1581 	if (sport->dma_is_txing) {
1582 		u32 ucr1;
1583 
1584 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1585 			     DMA_TO_DEVICE);
1586 		ucr1 = imx_uart_readl(sport, UCR1);
1587 		ucr1 &= ~UCR1_TXDMAEN;
1588 		imx_uart_writel(sport, ucr1, UCR1);
1589 		sport->dma_is_txing = 0;
1590 	}
1591 
1592 	/*
1593 	 * According to the Reference Manual description of the UART SRST bit:
1594 	 *
1595 	 * "Reset the transmit and receive state machines,
1596 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1597 	 * and UTS[6-3]".
1598 	 *
1599 	 * We don't need to restore the old values from USR1, USR2, URXD and
1600 	 * UTXD. UBRC is read only, so only save/restore the other three
1601 	 * registers.
1602 	 */
1603 	ubir = imx_uart_readl(sport, UBIR);
1604 	ubmr = imx_uart_readl(sport, UBMR);
1605 	uts = imx_uart_readl(sport, IMX21_UTS);
1606 
1607 	ucr2 = imx_uart_readl(sport, UCR2);
1608 	ucr2 &= ~UCR2_SRST;
1609 	imx_uart_writel(sport, ucr2, UCR2);
1610 
1611 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1612 		udelay(1);
1613 
1614 	/* Restore the registers */
1615 	imx_uart_writel(sport, ubir, UBIR);
1616 	imx_uart_writel(sport, ubmr, UBMR);
1617 	imx_uart_writel(sport, uts, IMX21_UTS);
1618 }
1619 
1620 static void
1621 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1622 		     struct ktermios *old)
1623 {
1624 	struct imx_port *sport = (struct imx_port *)port;
1625 	unsigned long flags;
1626 	u32 ucr2, old_ucr2, ufcr;
1627 	unsigned int baud, quot;
1628 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1629 	unsigned long div;
1630 	unsigned long num, denom, old_ubir, old_ubmr;
1631 	uint64_t tdiv64;
1632 
1633 	/*
1634 	 * We only support CS7 and CS8.
1635 	 */
1636 	while ((termios->c_cflag & CSIZE) != CS7 &&
1637 	       (termios->c_cflag & CSIZE) != CS8) {
1638 		termios->c_cflag &= ~CSIZE;
1639 		termios->c_cflag |= old_csize;
1640 		old_csize = CS8;
1641 	}
1642 
1643 	del_timer_sync(&sport->timer);
1644 
1645 	/*
1646 	 * Ask the core to calculate the divisor for us.
1647 	 */
1648 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1649 	quot = uart_get_divisor(port, baud);
1650 
1651 	spin_lock_irqsave(&sport->port.lock, flags);
1652 
1653 	/*
1654 	 * Read current UCR2 and save it for future use, then clear all the bits
1655 	 * except those we will or may need to preserve.
1656 	 */
1657 	old_ucr2 = imx_uart_readl(sport, UCR2);
1658 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1659 
1660 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1661 	if ((termios->c_cflag & CSIZE) == CS8)
1662 		ucr2 |= UCR2_WS;
1663 
1664 	if (!sport->have_rtscts)
1665 		termios->c_cflag &= ~CRTSCTS;
1666 
1667 	if (port->rs485.flags & SER_RS485_ENABLED) {
1668 		/*
1669 		 * RTS is mandatory for rs485 operation, so keep
1670 		 * it under manual control and keep transmitter
1671 		 * disabled.
1672 		 */
1673 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1674 			imx_uart_rts_active(sport, &ucr2);
1675 		else
1676 			imx_uart_rts_inactive(sport, &ucr2);
1677 
1678 	} else if (termios->c_cflag & CRTSCTS) {
1679 		/*
1680 		 * Only let receiver control RTS output if we were not requested
1681 		 * to have RTS inactive (which then should take precedence).
1682 		 */
1683 		if (ucr2 & UCR2_CTS)
1684 			ucr2 |= UCR2_CTSC;
1685 	}
1686 
1687 	if (termios->c_cflag & CRTSCTS)
1688 		ucr2 &= ~UCR2_IRTS;
1689 	if (termios->c_cflag & CSTOPB)
1690 		ucr2 |= UCR2_STPB;
1691 	if (termios->c_cflag & PARENB) {
1692 		ucr2 |= UCR2_PREN;
1693 		if (termios->c_cflag & PARODD)
1694 			ucr2 |= UCR2_PROE;
1695 	}
1696 
1697 	sport->port.read_status_mask = 0;
1698 	if (termios->c_iflag & INPCK)
1699 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1700 	if (termios->c_iflag & (BRKINT | PARMRK))
1701 		sport->port.read_status_mask |= URXD_BRK;
1702 
1703 	/*
1704 	 * Characters to ignore
1705 	 */
1706 	sport->port.ignore_status_mask = 0;
1707 	if (termios->c_iflag & IGNPAR)
1708 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1709 	if (termios->c_iflag & IGNBRK) {
1710 		sport->port.ignore_status_mask |= URXD_BRK;
1711 		/*
1712 		 * If we're ignoring parity and break indicators,
1713 		 * ignore overruns too (for real raw support).
1714 		 */
1715 		if (termios->c_iflag & IGNPAR)
1716 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1717 	}
1718 
1719 	if ((termios->c_cflag & CREAD) == 0)
1720 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1721 
1722 	/*
1723 	 * Update the per-port timeout.
1724 	 */
1725 	uart_update_timeout(port, termios->c_cflag, baud);
1726 
1727 	/* custom-baudrate handling */
1728 	div = sport->port.uartclk / (baud * 16);
1729 	if (baud == 38400 && quot != div)
1730 		baud = sport->port.uartclk / (quot * 16);
1731 
1732 	div = sport->port.uartclk / (baud * 16);
1733 	if (div > 7)
1734 		div = 7;
1735 	if (!div)
1736 		div = 1;
1737 
1738 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1739 		1 << 16, 1 << 16, &num, &denom);
1740 
1741 	tdiv64 = sport->port.uartclk;
1742 	tdiv64 *= num;
1743 	do_div(tdiv64, denom * 16 * div);
1744 	tty_termios_encode_baud_rate(termios,
1745 				(speed_t)tdiv64, (speed_t)tdiv64);
1746 
1747 	num -= 1;
1748 	denom -= 1;
1749 
1750 	ufcr = imx_uart_readl(sport, UFCR);
1751 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1752 	imx_uart_writel(sport, ufcr, UFCR);
1753 
1754 	/*
1755 	 *  Two registers below should always be written both and in this
1756 	 *  particular order. One consequence is that we need to check if any of
1757 	 *  them changes and then update both. We do need the check for change
1758 	 *  as even writing the same values seem to "restart"
1759 	 *  transmission/receiving logic in the hardware, that leads to data
1760 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1761 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1762 	 */
1763 	old_ubir = imx_uart_readl(sport, UBIR);
1764 	old_ubmr = imx_uart_readl(sport, UBMR);
1765 	if (old_ubir != num || old_ubmr != denom) {
1766 		imx_uart_writel(sport, num, UBIR);
1767 		imx_uart_writel(sport, denom, UBMR);
1768 	}
1769 
1770 	if (!imx_uart_is_imx1(sport))
1771 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1772 				IMX21_ONEMS);
1773 
1774 	imx_uart_writel(sport, ucr2, UCR2);
1775 
1776 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1777 		imx_uart_enable_ms(&sport->port);
1778 
1779 	spin_unlock_irqrestore(&sport->port.lock, flags);
1780 }
1781 
1782 static const char *imx_uart_type(struct uart_port *port)
1783 {
1784 	struct imx_port *sport = (struct imx_port *)port;
1785 
1786 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1787 }
1788 
1789 /*
1790  * Configure/autoconfigure the port.
1791  */
1792 static void imx_uart_config_port(struct uart_port *port, int flags)
1793 {
1794 	struct imx_port *sport = (struct imx_port *)port;
1795 
1796 	if (flags & UART_CONFIG_TYPE)
1797 		sport->port.type = PORT_IMX;
1798 }
1799 
1800 /*
1801  * Verify the new serial_struct (for TIOCSSERIAL).
1802  * The only change we allow are to the flags and type, and
1803  * even then only between PORT_IMX and PORT_UNKNOWN
1804  */
1805 static int
1806 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1807 {
1808 	struct imx_port *sport = (struct imx_port *)port;
1809 	int ret = 0;
1810 
1811 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1812 		ret = -EINVAL;
1813 	if (sport->port.irq != ser->irq)
1814 		ret = -EINVAL;
1815 	if (ser->io_type != UPIO_MEM)
1816 		ret = -EINVAL;
1817 	if (sport->port.uartclk / 16 != ser->baud_base)
1818 		ret = -EINVAL;
1819 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1820 		ret = -EINVAL;
1821 	if (sport->port.iobase != ser->port)
1822 		ret = -EINVAL;
1823 	if (ser->hub6 != 0)
1824 		ret = -EINVAL;
1825 	return ret;
1826 }
1827 
1828 #if defined(CONFIG_CONSOLE_POLL)
1829 
1830 static int imx_uart_poll_init(struct uart_port *port)
1831 {
1832 	struct imx_port *sport = (struct imx_port *)port;
1833 	unsigned long flags;
1834 	u32 ucr1, ucr2;
1835 	int retval;
1836 
1837 	retval = clk_prepare_enable(sport->clk_ipg);
1838 	if (retval)
1839 		return retval;
1840 	retval = clk_prepare_enable(sport->clk_per);
1841 	if (retval)
1842 		clk_disable_unprepare(sport->clk_ipg);
1843 
1844 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1845 
1846 	spin_lock_irqsave(&sport->port.lock, flags);
1847 
1848 	/*
1849 	 * Be careful about the order of enabling bits here. First enable the
1850 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1851 	 * This prevents that a character that already sits in the RX fifo is
1852 	 * triggering an irq but the try to fetch it from there results in an
1853 	 * exception because UARTEN or RXEN is still off.
1854 	 */
1855 	ucr1 = imx_uart_readl(sport, UCR1);
1856 	ucr2 = imx_uart_readl(sport, UCR2);
1857 
1858 	if (imx_uart_is_imx1(sport))
1859 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1860 
1861 	ucr1 |= UCR1_UARTEN;
1862 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1863 
1864 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1865 	ucr2 &= ~UCR2_ATEN;
1866 
1867 	imx_uart_writel(sport, ucr1, UCR1);
1868 	imx_uart_writel(sport, ucr2, UCR2);
1869 
1870 	/* now enable irqs */
1871 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1872 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1873 
1874 	spin_unlock_irqrestore(&sport->port.lock, flags);
1875 
1876 	return 0;
1877 }
1878 
1879 static int imx_uart_poll_get_char(struct uart_port *port)
1880 {
1881 	struct imx_port *sport = (struct imx_port *)port;
1882 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1883 		return NO_POLL_CHAR;
1884 
1885 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1886 }
1887 
1888 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1889 {
1890 	struct imx_port *sport = (struct imx_port *)port;
1891 	unsigned int status;
1892 
1893 	/* drain */
1894 	do {
1895 		status = imx_uart_readl(sport, USR1);
1896 	} while (~status & USR1_TRDY);
1897 
1898 	/* write */
1899 	imx_uart_writel(sport, c, URTX0);
1900 
1901 	/* flush */
1902 	do {
1903 		status = imx_uart_readl(sport, USR2);
1904 	} while (~status & USR2_TXDC);
1905 }
1906 #endif
1907 
1908 /* called with port.lock taken and irqs off or from .probe without locking */
1909 static int imx_uart_rs485_config(struct uart_port *port,
1910 				 struct serial_rs485 *rs485conf)
1911 {
1912 	struct imx_port *sport = (struct imx_port *)port;
1913 	u32 ucr2;
1914 
1915 	/* RTS is required to control the transmitter */
1916 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1917 		rs485conf->flags &= ~SER_RS485_ENABLED;
1918 
1919 	if (rs485conf->flags & SER_RS485_ENABLED) {
1920 		/* Enable receiver if low-active RTS signal is requested */
1921 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1922 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1923 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1924 
1925 		/* disable transmitter */
1926 		ucr2 = imx_uart_readl(sport, UCR2);
1927 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1928 			imx_uart_rts_active(sport, &ucr2);
1929 		else
1930 			imx_uart_rts_inactive(sport, &ucr2);
1931 		imx_uart_writel(sport, ucr2, UCR2);
1932 	}
1933 
1934 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1935 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1936 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1937 		imx_uart_start_rx(port);
1938 
1939 	port->rs485 = *rs485conf;
1940 
1941 	return 0;
1942 }
1943 
1944 static const struct uart_ops imx_uart_pops = {
1945 	.tx_empty	= imx_uart_tx_empty,
1946 	.set_mctrl	= imx_uart_set_mctrl,
1947 	.get_mctrl	= imx_uart_get_mctrl,
1948 	.stop_tx	= imx_uart_stop_tx,
1949 	.start_tx	= imx_uart_start_tx,
1950 	.stop_rx	= imx_uart_stop_rx,
1951 	.enable_ms	= imx_uart_enable_ms,
1952 	.break_ctl	= imx_uart_break_ctl,
1953 	.startup	= imx_uart_startup,
1954 	.shutdown	= imx_uart_shutdown,
1955 	.flush_buffer	= imx_uart_flush_buffer,
1956 	.set_termios	= imx_uart_set_termios,
1957 	.type		= imx_uart_type,
1958 	.config_port	= imx_uart_config_port,
1959 	.verify_port	= imx_uart_verify_port,
1960 #if defined(CONFIG_CONSOLE_POLL)
1961 	.poll_init      = imx_uart_poll_init,
1962 	.poll_get_char  = imx_uart_poll_get_char,
1963 	.poll_put_char  = imx_uart_poll_put_char,
1964 #endif
1965 };
1966 
1967 static struct imx_port *imx_uart_ports[UART_NR];
1968 
1969 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1970 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1971 {
1972 	struct imx_port *sport = (struct imx_port *)port;
1973 
1974 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1975 		barrier();
1976 
1977 	imx_uart_writel(sport, ch, URTX0);
1978 }
1979 
1980 /*
1981  * Interrupts are disabled on entering
1982  */
1983 static void
1984 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1985 {
1986 	struct imx_port *sport = imx_uart_ports[co->index];
1987 	struct imx_port_ucrs old_ucr;
1988 	unsigned int ucr1;
1989 	unsigned long flags = 0;
1990 	int locked = 1;
1991 
1992 	if (sport->port.sysrq)
1993 		locked = 0;
1994 	else if (oops_in_progress)
1995 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1996 	else
1997 		spin_lock_irqsave(&sport->port.lock, flags);
1998 
1999 	/*
2000 	 *	First, save UCR1/2/3 and then disable interrupts
2001 	 */
2002 	imx_uart_ucrs_save(sport, &old_ucr);
2003 	ucr1 = old_ucr.ucr1;
2004 
2005 	if (imx_uart_is_imx1(sport))
2006 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2007 	ucr1 |= UCR1_UARTEN;
2008 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2009 
2010 	imx_uart_writel(sport, ucr1, UCR1);
2011 
2012 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2013 
2014 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2015 
2016 	/*
2017 	 *	Finally, wait for transmitter to become empty
2018 	 *	and restore UCR1/2/3
2019 	 */
2020 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2021 
2022 	imx_uart_ucrs_restore(sport, &old_ucr);
2023 
2024 	if (locked)
2025 		spin_unlock_irqrestore(&sport->port.lock, flags);
2026 }
2027 
2028 /*
2029  * If the port was already initialised (eg, by a boot loader),
2030  * try to determine the current setup.
2031  */
2032 static void __init
2033 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2034 			     int *parity, int *bits)
2035 {
2036 
2037 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2038 		/* ok, the port was enabled */
2039 		unsigned int ucr2, ubir, ubmr, uartclk;
2040 		unsigned int baud_raw;
2041 		unsigned int ucfr_rfdiv;
2042 
2043 		ucr2 = imx_uart_readl(sport, UCR2);
2044 
2045 		*parity = 'n';
2046 		if (ucr2 & UCR2_PREN) {
2047 			if (ucr2 & UCR2_PROE)
2048 				*parity = 'o';
2049 			else
2050 				*parity = 'e';
2051 		}
2052 
2053 		if (ucr2 & UCR2_WS)
2054 			*bits = 8;
2055 		else
2056 			*bits = 7;
2057 
2058 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2059 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2060 
2061 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2062 		if (ucfr_rfdiv == 6)
2063 			ucfr_rfdiv = 7;
2064 		else
2065 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2066 
2067 		uartclk = clk_get_rate(sport->clk_per);
2068 		uartclk /= ucfr_rfdiv;
2069 
2070 		{	/*
2071 			 * The next code provides exact computation of
2072 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2073 			 * without need of float support or long long division,
2074 			 * which would be required to prevent 32bit arithmetic overflow
2075 			 */
2076 			unsigned int mul = ubir + 1;
2077 			unsigned int div = 16 * (ubmr + 1);
2078 			unsigned int rem = uartclk % div;
2079 
2080 			baud_raw = (uartclk / div) * mul;
2081 			baud_raw += (rem * mul + div / 2) / div;
2082 			*baud = (baud_raw + 50) / 100 * 100;
2083 		}
2084 
2085 		if (*baud != baud_raw)
2086 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2087 				baud_raw, *baud);
2088 	}
2089 }
2090 
2091 static int __init
2092 imx_uart_console_setup(struct console *co, char *options)
2093 {
2094 	struct imx_port *sport;
2095 	int baud = 9600;
2096 	int bits = 8;
2097 	int parity = 'n';
2098 	int flow = 'n';
2099 	int retval;
2100 
2101 	/*
2102 	 * Check whether an invalid uart number has been specified, and
2103 	 * if so, search for the first available port that does have
2104 	 * console support.
2105 	 */
2106 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2107 		co->index = 0;
2108 	sport = imx_uart_ports[co->index];
2109 	if (sport == NULL)
2110 		return -ENODEV;
2111 
2112 	/* For setting the registers, we only need to enable the ipg clock. */
2113 	retval = clk_prepare_enable(sport->clk_ipg);
2114 	if (retval)
2115 		goto error_console;
2116 
2117 	if (options)
2118 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2119 	else
2120 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2121 
2122 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2123 
2124 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2125 
2126 	if (retval) {
2127 		clk_disable_unprepare(sport->clk_ipg);
2128 		goto error_console;
2129 	}
2130 
2131 	retval = clk_prepare_enable(sport->clk_per);
2132 	if (retval)
2133 		clk_disable_unprepare(sport->clk_ipg);
2134 
2135 error_console:
2136 	return retval;
2137 }
2138 
2139 static struct uart_driver imx_uart_uart_driver;
2140 static struct console imx_uart_console = {
2141 	.name		= DEV_NAME,
2142 	.write		= imx_uart_console_write,
2143 	.device		= uart_console_device,
2144 	.setup		= imx_uart_console_setup,
2145 	.flags		= CON_PRINTBUFFER,
2146 	.index		= -1,
2147 	.data		= &imx_uart_uart_driver,
2148 };
2149 
2150 #define IMX_CONSOLE	&imx_uart_console
2151 
2152 #else
2153 #define IMX_CONSOLE	NULL
2154 #endif
2155 
2156 static struct uart_driver imx_uart_uart_driver = {
2157 	.owner          = THIS_MODULE,
2158 	.driver_name    = DRIVER_NAME,
2159 	.dev_name       = DEV_NAME,
2160 	.major          = SERIAL_IMX_MAJOR,
2161 	.minor          = MINOR_START,
2162 	.nr             = ARRAY_SIZE(imx_uart_ports),
2163 	.cons           = IMX_CONSOLE,
2164 };
2165 
2166 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2167 {
2168 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2169 	unsigned long flags;
2170 
2171 	spin_lock_irqsave(&sport->port.lock, flags);
2172 	if (sport->tx_state == WAIT_AFTER_RTS)
2173 		imx_uart_start_tx(&sport->port);
2174 	spin_unlock_irqrestore(&sport->port.lock, flags);
2175 
2176 	return HRTIMER_NORESTART;
2177 }
2178 
2179 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2180 {
2181 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2182 	unsigned long flags;
2183 
2184 	spin_lock_irqsave(&sport->port.lock, flags);
2185 	if (sport->tx_state == WAIT_AFTER_SEND)
2186 		imx_uart_stop_tx(&sport->port);
2187 	spin_unlock_irqrestore(&sport->port.lock, flags);
2188 
2189 	return HRTIMER_NORESTART;
2190 }
2191 
2192 static int imx_uart_probe(struct platform_device *pdev)
2193 {
2194 	struct device_node *np = pdev->dev.of_node;
2195 	struct imx_port *sport;
2196 	void __iomem *base;
2197 	int ret = 0;
2198 	u32 ucr1;
2199 	struct resource *res;
2200 	int txirq, rxirq, rtsirq;
2201 
2202 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2203 	if (!sport)
2204 		return -ENOMEM;
2205 
2206 	sport->devdata = of_device_get_match_data(&pdev->dev);
2207 
2208 	ret = of_alias_get_id(np, "serial");
2209 	if (ret < 0) {
2210 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2211 		return ret;
2212 	}
2213 	sport->port.line = ret;
2214 
2215 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2216 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2217 		sport->have_rtscts = 1;
2218 
2219 	if (of_get_property(np, "fsl,dte-mode", NULL))
2220 		sport->dte_mode = 1;
2221 
2222 	if (of_get_property(np, "rts-gpios", NULL))
2223 		sport->have_rtsgpio = 1;
2224 
2225 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2226 		sport->inverted_tx = 1;
2227 
2228 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2229 		sport->inverted_rx = 1;
2230 
2231 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2232 		dev_err(&pdev->dev, "serial%d out of range\n",
2233 			sport->port.line);
2234 		return -EINVAL;
2235 	}
2236 
2237 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2238 	base = devm_ioremap_resource(&pdev->dev, res);
2239 	if (IS_ERR(base))
2240 		return PTR_ERR(base);
2241 
2242 	rxirq = platform_get_irq(pdev, 0);
2243 	if (rxirq < 0)
2244 		return rxirq;
2245 	txirq = platform_get_irq_optional(pdev, 1);
2246 	rtsirq = platform_get_irq_optional(pdev, 2);
2247 
2248 	sport->port.dev = &pdev->dev;
2249 	sport->port.mapbase = res->start;
2250 	sport->port.membase = base;
2251 	sport->port.type = PORT_IMX,
2252 	sport->port.iotype = UPIO_MEM;
2253 	sport->port.irq = rxirq;
2254 	sport->port.fifosize = 32;
2255 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2256 	sport->port.ops = &imx_uart_pops;
2257 	sport->port.rs485_config = imx_uart_rs485_config;
2258 	sport->port.flags = UPF_BOOT_AUTOCONF;
2259 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2260 
2261 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2262 	if (IS_ERR(sport->gpios))
2263 		return PTR_ERR(sport->gpios);
2264 
2265 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2266 	if (IS_ERR(sport->clk_ipg)) {
2267 		ret = PTR_ERR(sport->clk_ipg);
2268 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2269 		return ret;
2270 	}
2271 
2272 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2273 	if (IS_ERR(sport->clk_per)) {
2274 		ret = PTR_ERR(sport->clk_per);
2275 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2276 		return ret;
2277 	}
2278 
2279 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2280 
2281 	/* For register access, we only need to enable the ipg clock. */
2282 	ret = clk_prepare_enable(sport->clk_ipg);
2283 	if (ret) {
2284 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2285 		return ret;
2286 	}
2287 
2288 	/* initialize shadow register values */
2289 	sport->ucr1 = readl(sport->port.membase + UCR1);
2290 	sport->ucr2 = readl(sport->port.membase + UCR2);
2291 	sport->ucr3 = readl(sport->port.membase + UCR3);
2292 	sport->ucr4 = readl(sport->port.membase + UCR4);
2293 	sport->ufcr = readl(sport->port.membase + UFCR);
2294 
2295 	ret = uart_get_rs485_mode(&sport->port);
2296 	if (ret) {
2297 		clk_disable_unprepare(sport->clk_ipg);
2298 		return ret;
2299 	}
2300 
2301 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2302 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2303 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2304 
2305 	/*
2306 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2307 	 * signal cannot be set low during transmission in case the
2308 	 * receiver is off (limitation of the i.MX UART IP).
2309 	 */
2310 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2311 	    sport->have_rtscts && !sport->have_rtsgpio &&
2312 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2313 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2314 		dev_err(&pdev->dev,
2315 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2316 
2317 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2318 
2319 	/* Disable interrupts before requesting them */
2320 	ucr1 = imx_uart_readl(sport, UCR1);
2321 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2322 	imx_uart_writel(sport, ucr1, UCR1);
2323 
2324 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2325 		/*
2326 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2327 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2328 		 * and DCD (when they are outputs) or enables the respective
2329 		 * irqs. So set this bit early, i.e. before requesting irqs.
2330 		 */
2331 		u32 ufcr = imx_uart_readl(sport, UFCR);
2332 		if (!(ufcr & UFCR_DCEDTE))
2333 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2334 
2335 		/*
2336 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2337 		 * enabled later because they cannot be cleared
2338 		 * (confirmed on i.MX25) which makes them unusable.
2339 		 */
2340 		imx_uart_writel(sport,
2341 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2342 				UCR3);
2343 
2344 	} else {
2345 		u32 ucr3 = UCR3_DSR;
2346 		u32 ufcr = imx_uart_readl(sport, UFCR);
2347 		if (ufcr & UFCR_DCEDTE)
2348 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2349 
2350 		if (!imx_uart_is_imx1(sport))
2351 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2352 		imx_uart_writel(sport, ucr3, UCR3);
2353 	}
2354 
2355 	clk_disable_unprepare(sport->clk_ipg);
2356 
2357 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2358 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2359 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2360 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2361 
2362 	/*
2363 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2364 	 * chips only have one interrupt.
2365 	 */
2366 	if (txirq > 0) {
2367 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2368 				       dev_name(&pdev->dev), sport);
2369 		if (ret) {
2370 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2371 				ret);
2372 			return ret;
2373 		}
2374 
2375 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2376 				       dev_name(&pdev->dev), sport);
2377 		if (ret) {
2378 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2379 				ret);
2380 			return ret;
2381 		}
2382 
2383 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2384 				       dev_name(&pdev->dev), sport);
2385 		if (ret) {
2386 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2387 				ret);
2388 			return ret;
2389 		}
2390 	} else {
2391 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2392 				       dev_name(&pdev->dev), sport);
2393 		if (ret) {
2394 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2395 			return ret;
2396 		}
2397 	}
2398 
2399 	imx_uart_ports[sport->port.line] = sport;
2400 
2401 	platform_set_drvdata(pdev, sport);
2402 
2403 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2404 }
2405 
2406 static int imx_uart_remove(struct platform_device *pdev)
2407 {
2408 	struct imx_port *sport = platform_get_drvdata(pdev);
2409 
2410 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2411 }
2412 
2413 static void imx_uart_restore_context(struct imx_port *sport)
2414 {
2415 	unsigned long flags;
2416 
2417 	spin_lock_irqsave(&sport->port.lock, flags);
2418 	if (!sport->context_saved) {
2419 		spin_unlock_irqrestore(&sport->port.lock, flags);
2420 		return;
2421 	}
2422 
2423 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2424 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2425 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2426 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2427 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2428 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2429 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2430 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2431 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2432 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2433 	sport->context_saved = false;
2434 	spin_unlock_irqrestore(&sport->port.lock, flags);
2435 }
2436 
2437 static void imx_uart_save_context(struct imx_port *sport)
2438 {
2439 	unsigned long flags;
2440 
2441 	/* Save necessary regs */
2442 	spin_lock_irqsave(&sport->port.lock, flags);
2443 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2444 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2445 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2446 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2447 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2448 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2449 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2450 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2451 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2452 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2453 	sport->context_saved = true;
2454 	spin_unlock_irqrestore(&sport->port.lock, flags);
2455 }
2456 
2457 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2458 {
2459 	u32 ucr3;
2460 
2461 	ucr3 = imx_uart_readl(sport, UCR3);
2462 	if (on) {
2463 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2464 		ucr3 |= UCR3_AWAKEN;
2465 	} else {
2466 		ucr3 &= ~UCR3_AWAKEN;
2467 	}
2468 	imx_uart_writel(sport, ucr3, UCR3);
2469 
2470 	if (sport->have_rtscts) {
2471 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2472 		if (on)
2473 			ucr1 |= UCR1_RTSDEN;
2474 		else
2475 			ucr1 &= ~UCR1_RTSDEN;
2476 		imx_uart_writel(sport, ucr1, UCR1);
2477 	}
2478 }
2479 
2480 static int imx_uart_suspend_noirq(struct device *dev)
2481 {
2482 	struct imx_port *sport = dev_get_drvdata(dev);
2483 
2484 	imx_uart_save_context(sport);
2485 
2486 	clk_disable(sport->clk_ipg);
2487 
2488 	pinctrl_pm_select_sleep_state(dev);
2489 
2490 	return 0;
2491 }
2492 
2493 static int imx_uart_resume_noirq(struct device *dev)
2494 {
2495 	struct imx_port *sport = dev_get_drvdata(dev);
2496 	int ret;
2497 
2498 	pinctrl_pm_select_default_state(dev);
2499 
2500 	ret = clk_enable(sport->clk_ipg);
2501 	if (ret)
2502 		return ret;
2503 
2504 	imx_uart_restore_context(sport);
2505 
2506 	return 0;
2507 }
2508 
2509 static int imx_uart_suspend(struct device *dev)
2510 {
2511 	struct imx_port *sport = dev_get_drvdata(dev);
2512 	int ret;
2513 
2514 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2515 	disable_irq(sport->port.irq);
2516 
2517 	ret = clk_prepare_enable(sport->clk_ipg);
2518 	if (ret)
2519 		return ret;
2520 
2521 	/* enable wakeup from i.MX UART */
2522 	imx_uart_enable_wakeup(sport, true);
2523 
2524 	return 0;
2525 }
2526 
2527 static int imx_uart_resume(struct device *dev)
2528 {
2529 	struct imx_port *sport = dev_get_drvdata(dev);
2530 
2531 	/* disable wakeup from i.MX UART */
2532 	imx_uart_enable_wakeup(sport, false);
2533 
2534 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2535 	enable_irq(sport->port.irq);
2536 
2537 	clk_disable_unprepare(sport->clk_ipg);
2538 
2539 	return 0;
2540 }
2541 
2542 static int imx_uart_freeze(struct device *dev)
2543 {
2544 	struct imx_port *sport = dev_get_drvdata(dev);
2545 
2546 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2547 
2548 	return clk_prepare_enable(sport->clk_ipg);
2549 }
2550 
2551 static int imx_uart_thaw(struct device *dev)
2552 {
2553 	struct imx_port *sport = dev_get_drvdata(dev);
2554 
2555 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2556 
2557 	clk_disable_unprepare(sport->clk_ipg);
2558 
2559 	return 0;
2560 }
2561 
2562 static const struct dev_pm_ops imx_uart_pm_ops = {
2563 	.suspend_noirq = imx_uart_suspend_noirq,
2564 	.resume_noirq = imx_uart_resume_noirq,
2565 	.freeze_noirq = imx_uart_suspend_noirq,
2566 	.restore_noirq = imx_uart_resume_noirq,
2567 	.suspend = imx_uart_suspend,
2568 	.resume = imx_uart_resume,
2569 	.freeze = imx_uart_freeze,
2570 	.thaw = imx_uart_thaw,
2571 	.restore = imx_uart_thaw,
2572 };
2573 
2574 static struct platform_driver imx_uart_platform_driver = {
2575 	.probe = imx_uart_probe,
2576 	.remove = imx_uart_remove,
2577 
2578 	.driver = {
2579 		.name = "imx-uart",
2580 		.of_match_table = imx_uart_dt_ids,
2581 		.pm = &imx_uart_pm_ops,
2582 	},
2583 };
2584 
2585 static int __init imx_uart_init(void)
2586 {
2587 	int ret = uart_register_driver(&imx_uart_uart_driver);
2588 
2589 	if (ret)
2590 		return ret;
2591 
2592 	ret = platform_driver_register(&imx_uart_platform_driver);
2593 	if (ret != 0)
2594 		uart_unregister_driver(&imx_uart_uart_driver);
2595 
2596 	return ret;
2597 }
2598 
2599 static void __exit imx_uart_exit(void)
2600 {
2601 	platform_driver_unregister(&imx_uart_platform_driver);
2602 	uart_unregister_driver(&imx_uart_uart_driver);
2603 }
2604 
2605 module_init(imx_uart_init);
2606 module_exit(imx_uart_exit);
2607 
2608 MODULE_AUTHOR("Sascha Hauer");
2609 MODULE_DESCRIPTION("IMX generic serial port driver");
2610 MODULE_LICENSE("GPL");
2611 MODULE_ALIAS("platform:imx-uart");
2612