xref: /linux/drivers/tty/serial/amba-pl011.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 
62 #define UART_NR			14
63 
64 #define SERIAL_AMBA_MAJOR	204
65 #define SERIAL_AMBA_MINOR	64
66 #define SERIAL_AMBA_NR		UART_NR
67 
68 #define AMBA_ISR_PASS_LIMIT	256
69 
70 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX	(1 << 16)
72 
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 	unsigned int		ifls;
76 	unsigned int		lcrh_tx;
77 	unsigned int		lcrh_rx;
78 	bool			oversampling;
79 	bool			dma_threshold;
80 	bool			cts_event_workaround;
81 
82 	unsigned int (*get_fifosize)(struct amba_device *dev);
83 };
84 
85 static unsigned int get_fifosize_arm(struct amba_device *dev)
86 {
87 	return amba_rev(dev) < 3 ? 16 : 32;
88 }
89 
90 static struct vendor_data vendor_arm = {
91 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
92 	.lcrh_tx		= UART011_LCRH,
93 	.lcrh_rx		= UART011_LCRH,
94 	.oversampling		= false,
95 	.dma_threshold		= false,
96 	.cts_event_workaround	= false,
97 	.get_fifosize		= get_fifosize_arm,
98 };
99 
100 static unsigned int get_fifosize_st(struct amba_device *dev)
101 {
102 	return 64;
103 }
104 
105 static struct vendor_data vendor_st = {
106 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
107 	.lcrh_tx		= ST_UART011_LCRH_TX,
108 	.lcrh_rx		= ST_UART011_LCRH_RX,
109 	.oversampling		= true,
110 	.dma_threshold		= true,
111 	.cts_event_workaround	= true,
112 	.get_fifosize		= get_fifosize_st,
113 };
114 
115 static struct uart_amba_port *amba_ports[UART_NR];
116 
117 /* Deals with DMA transactions */
118 
119 struct pl011_sgbuf {
120 	struct scatterlist sg;
121 	char *buf;
122 };
123 
124 struct pl011_dmarx_data {
125 	struct dma_chan		*chan;
126 	struct completion	complete;
127 	bool			use_buf_b;
128 	struct pl011_sgbuf	sgbuf_a;
129 	struct pl011_sgbuf	sgbuf_b;
130 	dma_cookie_t		cookie;
131 	bool			running;
132 	struct timer_list	timer;
133 	unsigned int last_residue;
134 	unsigned long last_jiffies;
135 	bool auto_poll_rate;
136 	unsigned int poll_rate;
137 	unsigned int poll_timeout;
138 };
139 
140 struct pl011_dmatx_data {
141 	struct dma_chan		*chan;
142 	struct scatterlist	sg;
143 	char			*buf;
144 	bool			queued;
145 };
146 
147 /*
148  * We wrap our port structure around the generic uart_port.
149  */
150 struct uart_amba_port {
151 	struct uart_port	port;
152 	struct clk		*clk;
153 	const struct vendor_data *vendor;
154 	unsigned int		dmacr;		/* dma control reg */
155 	unsigned int		im;		/* interrupt mask */
156 	unsigned int		old_status;
157 	unsigned int		fifosize;	/* vendor-specific */
158 	unsigned int		lcrh_tx;	/* vendor-specific */
159 	unsigned int		lcrh_rx;	/* vendor-specific */
160 	unsigned int		old_cr;		/* state during shutdown */
161 	bool			autorts;
162 	char			type[12];
163 #ifdef CONFIG_DMA_ENGINE
164 	/* DMA stuff */
165 	bool			using_tx_dma;
166 	bool			using_rx_dma;
167 	struct pl011_dmarx_data dmarx;
168 	struct pl011_dmatx_data	dmatx;
169 #endif
170 };
171 
172 /*
173  * Reads up to 256 characters from the FIFO or until it's empty and
174  * inserts them into the TTY layer. Returns the number of characters
175  * read from the FIFO.
176  */
177 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
178 {
179 	u16 status, ch;
180 	unsigned int flag, max_count = 256;
181 	int fifotaken = 0;
182 
183 	while (max_count--) {
184 		status = readw(uap->port.membase + UART01x_FR);
185 		if (status & UART01x_FR_RXFE)
186 			break;
187 
188 		/* Take chars from the FIFO and update status */
189 		ch = readw(uap->port.membase + UART01x_DR) |
190 			UART_DUMMY_DR_RX;
191 		flag = TTY_NORMAL;
192 		uap->port.icount.rx++;
193 		fifotaken++;
194 
195 		if (unlikely(ch & UART_DR_ERROR)) {
196 			if (ch & UART011_DR_BE) {
197 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
198 				uap->port.icount.brk++;
199 				if (uart_handle_break(&uap->port))
200 					continue;
201 			} else if (ch & UART011_DR_PE)
202 				uap->port.icount.parity++;
203 			else if (ch & UART011_DR_FE)
204 				uap->port.icount.frame++;
205 			if (ch & UART011_DR_OE)
206 				uap->port.icount.overrun++;
207 
208 			ch &= uap->port.read_status_mask;
209 
210 			if (ch & UART011_DR_BE)
211 				flag = TTY_BREAK;
212 			else if (ch & UART011_DR_PE)
213 				flag = TTY_PARITY;
214 			else if (ch & UART011_DR_FE)
215 				flag = TTY_FRAME;
216 		}
217 
218 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
219 			continue;
220 
221 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
222 	}
223 
224 	return fifotaken;
225 }
226 
227 
228 /*
229  * All the DMA operation mode stuff goes inside this ifdef.
230  * This assumes that you have a generic DMA device interface,
231  * no custom DMA interfaces are supported.
232  */
233 #ifdef CONFIG_DMA_ENGINE
234 
235 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
236 
237 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
238 	enum dma_data_direction dir)
239 {
240 	dma_addr_t dma_addr;
241 
242 	sg->buf = dma_alloc_coherent(chan->device->dev,
243 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
244 	if (!sg->buf)
245 		return -ENOMEM;
246 
247 	sg_init_table(&sg->sg, 1);
248 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
249 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
250 	sg_dma_address(&sg->sg) = dma_addr;
251 
252 	return 0;
253 }
254 
255 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
256 	enum dma_data_direction dir)
257 {
258 	if (sg->buf) {
259 		dma_free_coherent(chan->device->dev,
260 			PL011_DMA_BUFFER_SIZE, sg->buf,
261 			sg_dma_address(&sg->sg));
262 	}
263 }
264 
265 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
266 {
267 	/* DMA is the sole user of the platform data right now */
268 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
269 	struct dma_slave_config tx_conf = {
270 		.dst_addr = uap->port.mapbase + UART01x_DR,
271 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
272 		.direction = DMA_MEM_TO_DEV,
273 		.dst_maxburst = uap->fifosize >> 1,
274 		.device_fc = false,
275 	};
276 	struct dma_chan *chan;
277 	dma_cap_mask_t mask;
278 
279 	chan = dma_request_slave_channel(dev, "tx");
280 
281 	if (!chan) {
282 		/* We need platform data */
283 		if (!plat || !plat->dma_filter) {
284 			dev_info(uap->port.dev, "no DMA platform data\n");
285 			return;
286 		}
287 
288 		/* Try to acquire a generic DMA engine slave TX channel */
289 		dma_cap_zero(mask);
290 		dma_cap_set(DMA_SLAVE, mask);
291 
292 		chan = dma_request_channel(mask, plat->dma_filter,
293 						plat->dma_tx_param);
294 		if (!chan) {
295 			dev_err(uap->port.dev, "no TX DMA channel!\n");
296 			return;
297 		}
298 	}
299 
300 	dmaengine_slave_config(chan, &tx_conf);
301 	uap->dmatx.chan = chan;
302 
303 	dev_info(uap->port.dev, "DMA channel TX %s\n",
304 		 dma_chan_name(uap->dmatx.chan));
305 
306 	/* Optionally make use of an RX channel as well */
307 	chan = dma_request_slave_channel(dev, "rx");
308 
309 	if (!chan && plat->dma_rx_param) {
310 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
311 
312 		if (!chan) {
313 			dev_err(uap->port.dev, "no RX DMA channel!\n");
314 			return;
315 		}
316 	}
317 
318 	if (chan) {
319 		struct dma_slave_config rx_conf = {
320 			.src_addr = uap->port.mapbase + UART01x_DR,
321 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
322 			.direction = DMA_DEV_TO_MEM,
323 			.src_maxburst = uap->fifosize >> 1,
324 			.device_fc = false,
325 		};
326 
327 		dmaengine_slave_config(chan, &rx_conf);
328 		uap->dmarx.chan = chan;
329 
330 		if (plat && plat->dma_rx_poll_enable) {
331 			/* Set poll rate if specified. */
332 			if (plat->dma_rx_poll_rate) {
333 				uap->dmarx.auto_poll_rate = false;
334 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
335 			} else {
336 				/*
337 				 * 100 ms defaults to poll rate if not
338 				 * specified. This will be adjusted with
339 				 * the baud rate at set_termios.
340 				 */
341 				uap->dmarx.auto_poll_rate = true;
342 				uap->dmarx.poll_rate =  100;
343 			}
344 			/* 3 secs defaults poll_timeout if not specified. */
345 			if (plat->dma_rx_poll_timeout)
346 				uap->dmarx.poll_timeout =
347 					plat->dma_rx_poll_timeout;
348 			else
349 				uap->dmarx.poll_timeout = 3000;
350 		} else
351 			uap->dmarx.auto_poll_rate = false;
352 
353 		dev_info(uap->port.dev, "DMA channel RX %s\n",
354 			 dma_chan_name(uap->dmarx.chan));
355 	}
356 }
357 
358 #ifndef MODULE
359 /*
360  * Stack up the UARTs and let the above initcall be done at device
361  * initcall time, because the serial driver is called as an arch
362  * initcall, and at this time the DMA subsystem is not yet registered.
363  * At this point the driver will switch over to using DMA where desired.
364  */
365 struct dma_uap {
366 	struct list_head node;
367 	struct uart_amba_port *uap;
368 	struct device *dev;
369 };
370 
371 static LIST_HEAD(pl011_dma_uarts);
372 
373 static int __init pl011_dma_initcall(void)
374 {
375 	struct list_head *node, *tmp;
376 
377 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
378 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
379 		pl011_dma_probe_initcall(dmau->dev, dmau->uap);
380 		list_del(node);
381 		kfree(dmau);
382 	}
383 	return 0;
384 }
385 
386 device_initcall(pl011_dma_initcall);
387 
388 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
389 {
390 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
391 	if (dmau) {
392 		dmau->uap = uap;
393 		dmau->dev = dev;
394 		list_add_tail(&dmau->node, &pl011_dma_uarts);
395 	}
396 }
397 #else
398 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
399 {
400 	pl011_dma_probe_initcall(dev, uap);
401 }
402 #endif
403 
404 static void pl011_dma_remove(struct uart_amba_port *uap)
405 {
406 	/* TODO: remove the initcall if it has not yet executed */
407 	if (uap->dmatx.chan)
408 		dma_release_channel(uap->dmatx.chan);
409 	if (uap->dmarx.chan)
410 		dma_release_channel(uap->dmarx.chan);
411 }
412 
413 /* Forward declare this for the refill routine */
414 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
415 
416 /*
417  * The current DMA TX buffer has been sent.
418  * Try to queue up another DMA buffer.
419  */
420 static void pl011_dma_tx_callback(void *data)
421 {
422 	struct uart_amba_port *uap = data;
423 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
424 	unsigned long flags;
425 	u16 dmacr;
426 
427 	spin_lock_irqsave(&uap->port.lock, flags);
428 	if (uap->dmatx.queued)
429 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
430 			     DMA_TO_DEVICE);
431 
432 	dmacr = uap->dmacr;
433 	uap->dmacr = dmacr & ~UART011_TXDMAE;
434 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
435 
436 	/*
437 	 * If TX DMA was disabled, it means that we've stopped the DMA for
438 	 * some reason (eg, XOFF received, or we want to send an X-char.)
439 	 *
440 	 * Note: we need to be careful here of a potential race between DMA
441 	 * and the rest of the driver - if the driver disables TX DMA while
442 	 * a TX buffer completing, we must update the tx queued status to
443 	 * get further refills (hence we check dmacr).
444 	 */
445 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
446 	    uart_circ_empty(&uap->port.state->xmit)) {
447 		uap->dmatx.queued = false;
448 		spin_unlock_irqrestore(&uap->port.lock, flags);
449 		return;
450 	}
451 
452 	if (pl011_dma_tx_refill(uap) <= 0) {
453 		/*
454 		 * We didn't queue a DMA buffer for some reason, but we
455 		 * have data pending to be sent.  Re-enable the TX IRQ.
456 		 */
457 		uap->im |= UART011_TXIM;
458 		writew(uap->im, uap->port.membase + UART011_IMSC);
459 	}
460 	spin_unlock_irqrestore(&uap->port.lock, flags);
461 }
462 
463 /*
464  * Try to refill the TX DMA buffer.
465  * Locking: called with port lock held and IRQs disabled.
466  * Returns:
467  *   1 if we queued up a TX DMA buffer.
468  *   0 if we didn't want to handle this by DMA
469  *  <0 on error
470  */
471 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
472 {
473 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
474 	struct dma_chan *chan = dmatx->chan;
475 	struct dma_device *dma_dev = chan->device;
476 	struct dma_async_tx_descriptor *desc;
477 	struct circ_buf *xmit = &uap->port.state->xmit;
478 	unsigned int count;
479 
480 	/*
481 	 * Try to avoid the overhead involved in using DMA if the
482 	 * transaction fits in the first half of the FIFO, by using
483 	 * the standard interrupt handling.  This ensures that we
484 	 * issue a uart_write_wakeup() at the appropriate time.
485 	 */
486 	count = uart_circ_chars_pending(xmit);
487 	if (count < (uap->fifosize >> 1)) {
488 		uap->dmatx.queued = false;
489 		return 0;
490 	}
491 
492 	/*
493 	 * Bodge: don't send the last character by DMA, as this
494 	 * will prevent XON from notifying us to restart DMA.
495 	 */
496 	count -= 1;
497 
498 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
499 	if (count > PL011_DMA_BUFFER_SIZE)
500 		count = PL011_DMA_BUFFER_SIZE;
501 
502 	if (xmit->tail < xmit->head)
503 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
504 	else {
505 		size_t first = UART_XMIT_SIZE - xmit->tail;
506 		size_t second = xmit->head;
507 
508 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
509 		if (second)
510 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
511 	}
512 
513 	dmatx->sg.length = count;
514 
515 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
516 		uap->dmatx.queued = false;
517 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
518 		return -EBUSY;
519 	}
520 
521 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
522 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
523 	if (!desc) {
524 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
525 		uap->dmatx.queued = false;
526 		/*
527 		 * If DMA cannot be used right now, we complete this
528 		 * transaction via IRQ and let the TTY layer retry.
529 		 */
530 		dev_dbg(uap->port.dev, "TX DMA busy\n");
531 		return -EBUSY;
532 	}
533 
534 	/* Some data to go along to the callback */
535 	desc->callback = pl011_dma_tx_callback;
536 	desc->callback_param = uap;
537 
538 	/* All errors should happen at prepare time */
539 	dmaengine_submit(desc);
540 
541 	/* Fire the DMA transaction */
542 	dma_dev->device_issue_pending(chan);
543 
544 	uap->dmacr |= UART011_TXDMAE;
545 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
546 	uap->dmatx.queued = true;
547 
548 	/*
549 	 * Now we know that DMA will fire, so advance the ring buffer
550 	 * with the stuff we just dispatched.
551 	 */
552 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
553 	uap->port.icount.tx += count;
554 
555 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
556 		uart_write_wakeup(&uap->port);
557 
558 	return 1;
559 }
560 
561 /*
562  * We received a transmit interrupt without a pending X-char but with
563  * pending characters.
564  * Locking: called with port lock held and IRQs disabled.
565  * Returns:
566  *   false if we want to use PIO to transmit
567  *   true if we queued a DMA buffer
568  */
569 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
570 {
571 	if (!uap->using_tx_dma)
572 		return false;
573 
574 	/*
575 	 * If we already have a TX buffer queued, but received a
576 	 * TX interrupt, it will be because we've just sent an X-char.
577 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
578 	 */
579 	if (uap->dmatx.queued) {
580 		uap->dmacr |= UART011_TXDMAE;
581 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
582 		uap->im &= ~UART011_TXIM;
583 		writew(uap->im, uap->port.membase + UART011_IMSC);
584 		return true;
585 	}
586 
587 	/*
588 	 * We don't have a TX buffer queued, so try to queue one.
589 	 * If we successfully queued a buffer, mask the TX IRQ.
590 	 */
591 	if (pl011_dma_tx_refill(uap) > 0) {
592 		uap->im &= ~UART011_TXIM;
593 		writew(uap->im, uap->port.membase + UART011_IMSC);
594 		return true;
595 	}
596 	return false;
597 }
598 
599 /*
600  * Stop the DMA transmit (eg, due to received XOFF).
601  * Locking: called with port lock held and IRQs disabled.
602  */
603 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
604 {
605 	if (uap->dmatx.queued) {
606 		uap->dmacr &= ~UART011_TXDMAE;
607 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
608 	}
609 }
610 
611 /*
612  * Try to start a DMA transmit, or in the case of an XON/OFF
613  * character queued for send, try to get that character out ASAP.
614  * Locking: called with port lock held and IRQs disabled.
615  * Returns:
616  *   false if we want the TX IRQ to be enabled
617  *   true if we have a buffer queued
618  */
619 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
620 {
621 	u16 dmacr;
622 
623 	if (!uap->using_tx_dma)
624 		return false;
625 
626 	if (!uap->port.x_char) {
627 		/* no X-char, try to push chars out in DMA mode */
628 		bool ret = true;
629 
630 		if (!uap->dmatx.queued) {
631 			if (pl011_dma_tx_refill(uap) > 0) {
632 				uap->im &= ~UART011_TXIM;
633 				ret = true;
634 			} else {
635 				uap->im |= UART011_TXIM;
636 				ret = false;
637 			}
638 			writew(uap->im, uap->port.membase + UART011_IMSC);
639 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
640 			uap->dmacr |= UART011_TXDMAE;
641 			writew(uap->dmacr,
642 				       uap->port.membase + UART011_DMACR);
643 		}
644 		return ret;
645 	}
646 
647 	/*
648 	 * We have an X-char to send.  Disable DMA to prevent it loading
649 	 * the TX fifo, and then see if we can stuff it into the FIFO.
650 	 */
651 	dmacr = uap->dmacr;
652 	uap->dmacr &= ~UART011_TXDMAE;
653 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
654 
655 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
656 		/*
657 		 * No space in the FIFO, so enable the transmit interrupt
658 		 * so we know when there is space.  Note that once we've
659 		 * loaded the character, we should just re-enable DMA.
660 		 */
661 		return false;
662 	}
663 
664 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
665 	uap->port.icount.tx++;
666 	uap->port.x_char = 0;
667 
668 	/* Success - restore the DMA state */
669 	uap->dmacr = dmacr;
670 	writew(dmacr, uap->port.membase + UART011_DMACR);
671 
672 	return true;
673 }
674 
675 /*
676  * Flush the transmit buffer.
677  * Locking: called with port lock held and IRQs disabled.
678  */
679 static void pl011_dma_flush_buffer(struct uart_port *port)
680 {
681 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
682 
683 	if (!uap->using_tx_dma)
684 		return;
685 
686 	/* Avoid deadlock with the DMA engine callback */
687 	spin_unlock(&uap->port.lock);
688 	dmaengine_terminate_all(uap->dmatx.chan);
689 	spin_lock(&uap->port.lock);
690 	if (uap->dmatx.queued) {
691 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
692 			     DMA_TO_DEVICE);
693 		uap->dmatx.queued = false;
694 		uap->dmacr &= ~UART011_TXDMAE;
695 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
696 	}
697 }
698 
699 static void pl011_dma_rx_callback(void *data);
700 
701 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
702 {
703 	struct dma_chan *rxchan = uap->dmarx.chan;
704 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
705 	struct dma_async_tx_descriptor *desc;
706 	struct pl011_sgbuf *sgbuf;
707 
708 	if (!rxchan)
709 		return -EIO;
710 
711 	/* Start the RX DMA job */
712 	sgbuf = uap->dmarx.use_buf_b ?
713 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
714 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
715 					DMA_DEV_TO_MEM,
716 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
717 	/*
718 	 * If the DMA engine is busy and cannot prepare a
719 	 * channel, no big deal, the driver will fall back
720 	 * to interrupt mode as a result of this error code.
721 	 */
722 	if (!desc) {
723 		uap->dmarx.running = false;
724 		dmaengine_terminate_all(rxchan);
725 		return -EBUSY;
726 	}
727 
728 	/* Some data to go along to the callback */
729 	desc->callback = pl011_dma_rx_callback;
730 	desc->callback_param = uap;
731 	dmarx->cookie = dmaengine_submit(desc);
732 	dma_async_issue_pending(rxchan);
733 
734 	uap->dmacr |= UART011_RXDMAE;
735 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
736 	uap->dmarx.running = true;
737 
738 	uap->im &= ~UART011_RXIM;
739 	writew(uap->im, uap->port.membase + UART011_IMSC);
740 
741 	return 0;
742 }
743 
744 /*
745  * This is called when either the DMA job is complete, or
746  * the FIFO timeout interrupt occurred. This must be called
747  * with the port spinlock uap->port.lock held.
748  */
749 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
750 			       u32 pending, bool use_buf_b,
751 			       bool readfifo)
752 {
753 	struct tty_port *port = &uap->port.state->port;
754 	struct pl011_sgbuf *sgbuf = use_buf_b ?
755 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
756 	int dma_count = 0;
757 	u32 fifotaken = 0; /* only used for vdbg() */
758 
759 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
760 	int dmataken = 0;
761 
762 	if (uap->dmarx.poll_rate) {
763 		/* The data can be taken by polling */
764 		dmataken = sgbuf->sg.length - dmarx->last_residue;
765 		/* Recalculate the pending size */
766 		if (pending >= dmataken)
767 			pending -= dmataken;
768 	}
769 
770 	/* Pick the remain data from the DMA */
771 	if (pending) {
772 
773 		/*
774 		 * First take all chars in the DMA pipe, then look in the FIFO.
775 		 * Note that tty_insert_flip_buf() tries to take as many chars
776 		 * as it can.
777 		 */
778 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
779 				pending);
780 
781 		uap->port.icount.rx += dma_count;
782 		if (dma_count < pending)
783 			dev_warn(uap->port.dev,
784 				 "couldn't insert all characters (TTY is full?)\n");
785 	}
786 
787 	/* Reset the last_residue for Rx DMA poll */
788 	if (uap->dmarx.poll_rate)
789 		dmarx->last_residue = sgbuf->sg.length;
790 
791 	/*
792 	 * Only continue with trying to read the FIFO if all DMA chars have
793 	 * been taken first.
794 	 */
795 	if (dma_count == pending && readfifo) {
796 		/* Clear any error flags */
797 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
798 		       uap->port.membase + UART011_ICR);
799 
800 		/*
801 		 * If we read all the DMA'd characters, and we had an
802 		 * incomplete buffer, that could be due to an rx error, or
803 		 * maybe we just timed out. Read any pending chars and check
804 		 * the error status.
805 		 *
806 		 * Error conditions will only occur in the FIFO, these will
807 		 * trigger an immediate interrupt and stop the DMA job, so we
808 		 * will always find the error in the FIFO, never in the DMA
809 		 * buffer.
810 		 */
811 		fifotaken = pl011_fifo_to_tty(uap);
812 	}
813 
814 	spin_unlock(&uap->port.lock);
815 	dev_vdbg(uap->port.dev,
816 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
817 		 dma_count, fifotaken);
818 	tty_flip_buffer_push(port);
819 	spin_lock(&uap->port.lock);
820 }
821 
822 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
823 {
824 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
825 	struct dma_chan *rxchan = dmarx->chan;
826 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
827 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
828 	size_t pending;
829 	struct dma_tx_state state;
830 	enum dma_status dmastat;
831 
832 	/*
833 	 * Pause the transfer so we can trust the current counter,
834 	 * do this before we pause the PL011 block, else we may
835 	 * overflow the FIFO.
836 	 */
837 	if (dmaengine_pause(rxchan))
838 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
839 	dmastat = rxchan->device->device_tx_status(rxchan,
840 						   dmarx->cookie, &state);
841 	if (dmastat != DMA_PAUSED)
842 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
843 
844 	/* Disable RX DMA - incoming data will wait in the FIFO */
845 	uap->dmacr &= ~UART011_RXDMAE;
846 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
847 	uap->dmarx.running = false;
848 
849 	pending = sgbuf->sg.length - state.residue;
850 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
851 	/* Then we terminate the transfer - we now know our residue */
852 	dmaengine_terminate_all(rxchan);
853 
854 	/*
855 	 * This will take the chars we have so far and insert
856 	 * into the framework.
857 	 */
858 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
859 
860 	/* Switch buffer & re-trigger DMA job */
861 	dmarx->use_buf_b = !dmarx->use_buf_b;
862 	if (pl011_dma_rx_trigger_dma(uap)) {
863 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
864 			"fall back to interrupt mode\n");
865 		uap->im |= UART011_RXIM;
866 		writew(uap->im, uap->port.membase + UART011_IMSC);
867 	}
868 }
869 
870 static void pl011_dma_rx_callback(void *data)
871 {
872 	struct uart_amba_port *uap = data;
873 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
874 	struct dma_chan *rxchan = dmarx->chan;
875 	bool lastbuf = dmarx->use_buf_b;
876 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
877 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
878 	size_t pending;
879 	struct dma_tx_state state;
880 	int ret;
881 
882 	/*
883 	 * This completion interrupt occurs typically when the
884 	 * RX buffer is totally stuffed but no timeout has yet
885 	 * occurred. When that happens, we just want the RX
886 	 * routine to flush out the secondary DMA buffer while
887 	 * we immediately trigger the next DMA job.
888 	 */
889 	spin_lock_irq(&uap->port.lock);
890 	/*
891 	 * Rx data can be taken by the UART interrupts during
892 	 * the DMA irq handler. So we check the residue here.
893 	 */
894 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
895 	pending = sgbuf->sg.length - state.residue;
896 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
897 	/* Then we terminate the transfer - we now know our residue */
898 	dmaengine_terminate_all(rxchan);
899 
900 	uap->dmarx.running = false;
901 	dmarx->use_buf_b = !lastbuf;
902 	ret = pl011_dma_rx_trigger_dma(uap);
903 
904 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
905 	spin_unlock_irq(&uap->port.lock);
906 	/*
907 	 * Do this check after we picked the DMA chars so we don't
908 	 * get some IRQ immediately from RX.
909 	 */
910 	if (ret) {
911 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
912 			"fall back to interrupt mode\n");
913 		uap->im |= UART011_RXIM;
914 		writew(uap->im, uap->port.membase + UART011_IMSC);
915 	}
916 }
917 
918 /*
919  * Stop accepting received characters, when we're shutting down or
920  * suspending this port.
921  * Locking: called with port lock held and IRQs disabled.
922  */
923 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
924 {
925 	/* FIXME.  Just disable the DMA enable */
926 	uap->dmacr &= ~UART011_RXDMAE;
927 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
928 }
929 
930 /*
931  * Timer handler for Rx DMA polling.
932  * Every polling, It checks the residue in the dma buffer and transfer
933  * data to the tty. Also, last_residue is updated for the next polling.
934  */
935 static void pl011_dma_rx_poll(unsigned long args)
936 {
937 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
938 	struct tty_port *port = &uap->port.state->port;
939 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
940 	struct dma_chan *rxchan = uap->dmarx.chan;
941 	unsigned long flags = 0;
942 	unsigned int dmataken = 0;
943 	unsigned int size = 0;
944 	struct pl011_sgbuf *sgbuf;
945 	int dma_count;
946 	struct dma_tx_state state;
947 
948 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
949 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
950 	if (likely(state.residue < dmarx->last_residue)) {
951 		dmataken = sgbuf->sg.length - dmarx->last_residue;
952 		size = dmarx->last_residue - state.residue;
953 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
954 				size);
955 		if (dma_count == size)
956 			dmarx->last_residue =  state.residue;
957 		dmarx->last_jiffies = jiffies;
958 	}
959 	tty_flip_buffer_push(port);
960 
961 	/*
962 	 * If no data is received in poll_timeout, the driver will fall back
963 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
964 	 */
965 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
966 			> uap->dmarx.poll_timeout) {
967 
968 		spin_lock_irqsave(&uap->port.lock, flags);
969 		pl011_dma_rx_stop(uap);
970 		spin_unlock_irqrestore(&uap->port.lock, flags);
971 
972 		uap->dmarx.running = false;
973 		dmaengine_terminate_all(rxchan);
974 		del_timer(&uap->dmarx.timer);
975 	} else {
976 		mod_timer(&uap->dmarx.timer,
977 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
978 	}
979 }
980 
981 static void pl011_dma_startup(struct uart_amba_port *uap)
982 {
983 	int ret;
984 
985 	if (!uap->dmatx.chan)
986 		return;
987 
988 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
989 	if (!uap->dmatx.buf) {
990 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
991 		uap->port.fifosize = uap->fifosize;
992 		return;
993 	}
994 
995 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
996 
997 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
998 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
999 	uap->using_tx_dma = true;
1000 
1001 	if (!uap->dmarx.chan)
1002 		goto skip_rx;
1003 
1004 	/* Allocate and map DMA RX buffers */
1005 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1006 			       DMA_FROM_DEVICE);
1007 	if (ret) {
1008 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1009 			"RX buffer A", ret);
1010 		goto skip_rx;
1011 	}
1012 
1013 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1014 			       DMA_FROM_DEVICE);
1015 	if (ret) {
1016 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1017 			"RX buffer B", ret);
1018 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1019 				 DMA_FROM_DEVICE);
1020 		goto skip_rx;
1021 	}
1022 
1023 	uap->using_rx_dma = true;
1024 
1025 skip_rx:
1026 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1027 	uap->dmacr |= UART011_DMAONERR;
1028 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1029 
1030 	/*
1031 	 * ST Micro variants has some specific dma burst threshold
1032 	 * compensation. Set this to 16 bytes, so burst will only
1033 	 * be issued above/below 16 bytes.
1034 	 */
1035 	if (uap->vendor->dma_threshold)
1036 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1037 			       uap->port.membase + ST_UART011_DMAWM);
1038 
1039 	if (uap->using_rx_dma) {
1040 		if (pl011_dma_rx_trigger_dma(uap))
1041 			dev_dbg(uap->port.dev, "could not trigger initial "
1042 				"RX DMA job, fall back to interrupt mode\n");
1043 		if (uap->dmarx.poll_rate) {
1044 			init_timer(&(uap->dmarx.timer));
1045 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1046 			uap->dmarx.timer.data = (unsigned long)uap;
1047 			mod_timer(&uap->dmarx.timer,
1048 				jiffies +
1049 				msecs_to_jiffies(uap->dmarx.poll_rate));
1050 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1051 			uap->dmarx.last_jiffies = jiffies;
1052 		}
1053 	}
1054 }
1055 
1056 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1057 {
1058 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1059 		return;
1060 
1061 	/* Disable RX and TX DMA */
1062 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1063 		barrier();
1064 
1065 	spin_lock_irq(&uap->port.lock);
1066 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1067 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1068 	spin_unlock_irq(&uap->port.lock);
1069 
1070 	if (uap->using_tx_dma) {
1071 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1072 		dmaengine_terminate_all(uap->dmatx.chan);
1073 		if (uap->dmatx.queued) {
1074 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1075 				     DMA_TO_DEVICE);
1076 			uap->dmatx.queued = false;
1077 		}
1078 
1079 		kfree(uap->dmatx.buf);
1080 		uap->using_tx_dma = false;
1081 	}
1082 
1083 	if (uap->using_rx_dma) {
1084 		dmaengine_terminate_all(uap->dmarx.chan);
1085 		/* Clean up the RX DMA */
1086 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1087 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1088 		if (uap->dmarx.poll_rate)
1089 			del_timer_sync(&uap->dmarx.timer);
1090 		uap->using_rx_dma = false;
1091 	}
1092 }
1093 
1094 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1095 {
1096 	return uap->using_rx_dma;
1097 }
1098 
1099 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1100 {
1101 	return uap->using_rx_dma && uap->dmarx.running;
1102 }
1103 
1104 #else
1105 /* Blank functions if the DMA engine is not available */
1106 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
1107 {
1108 }
1109 
1110 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1111 {
1112 }
1113 
1114 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1115 {
1116 }
1117 
1118 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1119 {
1120 }
1121 
1122 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1123 {
1124 	return false;
1125 }
1126 
1127 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1128 {
1129 }
1130 
1131 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1132 {
1133 	return false;
1134 }
1135 
1136 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1137 {
1138 }
1139 
1140 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1141 {
1142 }
1143 
1144 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1145 {
1146 	return -EIO;
1147 }
1148 
1149 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1150 {
1151 	return false;
1152 }
1153 
1154 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1155 {
1156 	return false;
1157 }
1158 
1159 #define pl011_dma_flush_buffer	NULL
1160 #endif
1161 
1162 static void pl011_stop_tx(struct uart_port *port)
1163 {
1164 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1165 
1166 	uap->im &= ~UART011_TXIM;
1167 	writew(uap->im, uap->port.membase + UART011_IMSC);
1168 	pl011_dma_tx_stop(uap);
1169 }
1170 
1171 static void pl011_start_tx(struct uart_port *port)
1172 {
1173 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1174 
1175 	if (!pl011_dma_tx_start(uap)) {
1176 		uap->im |= UART011_TXIM;
1177 		writew(uap->im, uap->port.membase + UART011_IMSC);
1178 	}
1179 }
1180 
1181 static void pl011_stop_rx(struct uart_port *port)
1182 {
1183 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1184 
1185 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1186 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1187 	writew(uap->im, uap->port.membase + UART011_IMSC);
1188 
1189 	pl011_dma_rx_stop(uap);
1190 }
1191 
1192 static void pl011_enable_ms(struct uart_port *port)
1193 {
1194 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1195 
1196 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1197 	writew(uap->im, uap->port.membase + UART011_IMSC);
1198 }
1199 
1200 static void pl011_rx_chars(struct uart_amba_port *uap)
1201 {
1202 	pl011_fifo_to_tty(uap);
1203 
1204 	spin_unlock(&uap->port.lock);
1205 	tty_flip_buffer_push(&uap->port.state->port);
1206 	/*
1207 	 * If we were temporarily out of DMA mode for a while,
1208 	 * attempt to switch back to DMA mode again.
1209 	 */
1210 	if (pl011_dma_rx_available(uap)) {
1211 		if (pl011_dma_rx_trigger_dma(uap)) {
1212 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1213 				"fall back to interrupt mode again\n");
1214 			uap->im |= UART011_RXIM;
1215 		} else {
1216 			uap->im &= ~UART011_RXIM;
1217 #ifdef CONFIG_DMA_ENGINE
1218 			/* Start Rx DMA poll */
1219 			if (uap->dmarx.poll_rate) {
1220 				uap->dmarx.last_jiffies = jiffies;
1221 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1222 				mod_timer(&uap->dmarx.timer,
1223 					jiffies +
1224 					msecs_to_jiffies(uap->dmarx.poll_rate));
1225 			}
1226 #endif
1227 		}
1228 
1229 		writew(uap->im, uap->port.membase + UART011_IMSC);
1230 	}
1231 	spin_lock(&uap->port.lock);
1232 }
1233 
1234 static void pl011_tx_chars(struct uart_amba_port *uap)
1235 {
1236 	struct circ_buf *xmit = &uap->port.state->xmit;
1237 	int count;
1238 
1239 	if (uap->port.x_char) {
1240 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1241 		uap->port.icount.tx++;
1242 		uap->port.x_char = 0;
1243 		return;
1244 	}
1245 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1246 		pl011_stop_tx(&uap->port);
1247 		return;
1248 	}
1249 
1250 	/* If we are using DMA mode, try to send some characters. */
1251 	if (pl011_dma_tx_irq(uap))
1252 		return;
1253 
1254 	count = uap->fifosize >> 1;
1255 	do {
1256 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1257 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1258 		uap->port.icount.tx++;
1259 		if (uart_circ_empty(xmit))
1260 			break;
1261 	} while (--count > 0);
1262 
1263 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1264 		uart_write_wakeup(&uap->port);
1265 
1266 	if (uart_circ_empty(xmit))
1267 		pl011_stop_tx(&uap->port);
1268 }
1269 
1270 static void pl011_modem_status(struct uart_amba_port *uap)
1271 {
1272 	unsigned int status, delta;
1273 
1274 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1275 
1276 	delta = status ^ uap->old_status;
1277 	uap->old_status = status;
1278 
1279 	if (!delta)
1280 		return;
1281 
1282 	if (delta & UART01x_FR_DCD)
1283 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1284 
1285 	if (delta & UART01x_FR_DSR)
1286 		uap->port.icount.dsr++;
1287 
1288 	if (delta & UART01x_FR_CTS)
1289 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1290 
1291 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1292 }
1293 
1294 static irqreturn_t pl011_int(int irq, void *dev_id)
1295 {
1296 	struct uart_amba_port *uap = dev_id;
1297 	unsigned long flags;
1298 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1299 	int handled = 0;
1300 	unsigned int dummy_read;
1301 
1302 	spin_lock_irqsave(&uap->port.lock, flags);
1303 	status = readw(uap->port.membase + UART011_MIS);
1304 	if (status) {
1305 		do {
1306 			if (uap->vendor->cts_event_workaround) {
1307 				/* workaround to make sure that all bits are unlocked.. */
1308 				writew(0x00, uap->port.membase + UART011_ICR);
1309 
1310 				/*
1311 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1312 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1313 				 * so add 2 dummy reads
1314 				 */
1315 				dummy_read = readw(uap->port.membase + UART011_ICR);
1316 				dummy_read = readw(uap->port.membase + UART011_ICR);
1317 			}
1318 
1319 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1320 					  UART011_RXIS),
1321 			       uap->port.membase + UART011_ICR);
1322 
1323 			if (status & (UART011_RTIS|UART011_RXIS)) {
1324 				if (pl011_dma_rx_running(uap))
1325 					pl011_dma_rx_irq(uap);
1326 				else
1327 					pl011_rx_chars(uap);
1328 			}
1329 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1330 				      UART011_CTSMIS|UART011_RIMIS))
1331 				pl011_modem_status(uap);
1332 			if (status & UART011_TXIS)
1333 				pl011_tx_chars(uap);
1334 
1335 			if (pass_counter-- == 0)
1336 				break;
1337 
1338 			status = readw(uap->port.membase + UART011_MIS);
1339 		} while (status != 0);
1340 		handled = 1;
1341 	}
1342 
1343 	spin_unlock_irqrestore(&uap->port.lock, flags);
1344 
1345 	return IRQ_RETVAL(handled);
1346 }
1347 
1348 static unsigned int pl011_tx_empty(struct uart_port *port)
1349 {
1350 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1351 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1352 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1353 }
1354 
1355 static unsigned int pl011_get_mctrl(struct uart_port *port)
1356 {
1357 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1358 	unsigned int result = 0;
1359 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1360 
1361 #define TIOCMBIT(uartbit, tiocmbit)	\
1362 	if (status & uartbit)		\
1363 		result |= tiocmbit
1364 
1365 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1366 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1367 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1368 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1369 #undef TIOCMBIT
1370 	return result;
1371 }
1372 
1373 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1374 {
1375 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1376 	unsigned int cr;
1377 
1378 	cr = readw(uap->port.membase + UART011_CR);
1379 
1380 #define	TIOCMBIT(tiocmbit, uartbit)		\
1381 	if (mctrl & tiocmbit)		\
1382 		cr |= uartbit;		\
1383 	else				\
1384 		cr &= ~uartbit
1385 
1386 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1387 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1388 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1389 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1390 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1391 
1392 	if (uap->autorts) {
1393 		/* We need to disable auto-RTS if we want to turn RTS off */
1394 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1395 	}
1396 #undef TIOCMBIT
1397 
1398 	writew(cr, uap->port.membase + UART011_CR);
1399 }
1400 
1401 static void pl011_break_ctl(struct uart_port *port, int break_state)
1402 {
1403 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1404 	unsigned long flags;
1405 	unsigned int lcr_h;
1406 
1407 	spin_lock_irqsave(&uap->port.lock, flags);
1408 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1409 	if (break_state == -1)
1410 		lcr_h |= UART01x_LCRH_BRK;
1411 	else
1412 		lcr_h &= ~UART01x_LCRH_BRK;
1413 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1414 	spin_unlock_irqrestore(&uap->port.lock, flags);
1415 }
1416 
1417 #ifdef CONFIG_CONSOLE_POLL
1418 
1419 static void pl011_quiesce_irqs(struct uart_port *port)
1420 {
1421 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1422 	unsigned char __iomem *regs = uap->port.membase;
1423 
1424 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1425 	/*
1426 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1427 	 * we simply mask it. start_tx() will unmask it.
1428 	 *
1429 	 * Note we can race with start_tx(), and if the race happens, the
1430 	 * polling user might get another interrupt just after we clear it.
1431 	 * But it should be OK and can happen even w/o the race, e.g.
1432 	 * controller immediately got some new data and raised the IRQ.
1433 	 *
1434 	 * And whoever uses polling routines assumes that it manages the device
1435 	 * (including tx queue), so we're also fine with start_tx()'s caller
1436 	 * side.
1437 	 */
1438 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1439 }
1440 
1441 static int pl011_get_poll_char(struct uart_port *port)
1442 {
1443 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1444 	unsigned int status;
1445 
1446 	/*
1447 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1448 	 * debugger.
1449 	 */
1450 	pl011_quiesce_irqs(port);
1451 
1452 	status = readw(uap->port.membase + UART01x_FR);
1453 	if (status & UART01x_FR_RXFE)
1454 		return NO_POLL_CHAR;
1455 
1456 	return readw(uap->port.membase + UART01x_DR);
1457 }
1458 
1459 static void pl011_put_poll_char(struct uart_port *port,
1460 			 unsigned char ch)
1461 {
1462 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1463 
1464 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1465 		barrier();
1466 
1467 	writew(ch, uap->port.membase + UART01x_DR);
1468 }
1469 
1470 #endif /* CONFIG_CONSOLE_POLL */
1471 
1472 static int pl011_hwinit(struct uart_port *port)
1473 {
1474 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1475 	int retval;
1476 
1477 	/* Optionaly enable pins to be muxed in and configured */
1478 	pinctrl_pm_select_default_state(port->dev);
1479 
1480 	/*
1481 	 * Try to enable the clock producer.
1482 	 */
1483 	retval = clk_prepare_enable(uap->clk);
1484 	if (retval)
1485 		goto out;
1486 
1487 	uap->port.uartclk = clk_get_rate(uap->clk);
1488 
1489 	/* Clear pending error and receive interrupts */
1490 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1491 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1492 
1493 	/*
1494 	 * Save interrupts enable mask, and enable RX interrupts in case if
1495 	 * the interrupt is used for NMI entry.
1496 	 */
1497 	uap->im = readw(uap->port.membase + UART011_IMSC);
1498 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1499 
1500 	if (uap->port.dev->platform_data) {
1501 		struct amba_pl011_data *plat;
1502 
1503 		plat = uap->port.dev->platform_data;
1504 		if (plat->init)
1505 			plat->init();
1506 	}
1507 	return 0;
1508  out:
1509 	return retval;
1510 }
1511 
1512 static int pl011_startup(struct uart_port *port)
1513 {
1514 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1515 	unsigned int cr;
1516 	int retval;
1517 
1518 	retval = pl011_hwinit(port);
1519 	if (retval)
1520 		goto clk_dis;
1521 
1522 	writew(uap->im, uap->port.membase + UART011_IMSC);
1523 
1524 	/*
1525 	 * Allocate the IRQ
1526 	 */
1527 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1528 	if (retval)
1529 		goto clk_dis;
1530 
1531 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1532 
1533 	/*
1534 	 * Provoke TX FIFO interrupt into asserting.
1535 	 */
1536 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1537 	writew(cr, uap->port.membase + UART011_CR);
1538 	writew(0, uap->port.membase + UART011_FBRD);
1539 	writew(1, uap->port.membase + UART011_IBRD);
1540 	writew(0, uap->port.membase + uap->lcrh_rx);
1541 	if (uap->lcrh_tx != uap->lcrh_rx) {
1542 		int i;
1543 		/*
1544 		 * Wait 10 PCLKs before writing LCRH_TX register,
1545 		 * to get this delay write read only register 10 times
1546 		 */
1547 		for (i = 0; i < 10; ++i)
1548 			writew(0xff, uap->port.membase + UART011_MIS);
1549 		writew(0, uap->port.membase + uap->lcrh_tx);
1550 	}
1551 	writew(0, uap->port.membase + UART01x_DR);
1552 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1553 		barrier();
1554 
1555 	/* restore RTS and DTR */
1556 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1557 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1558 	writew(cr, uap->port.membase + UART011_CR);
1559 
1560 	/*
1561 	 * initialise the old status of the modem signals
1562 	 */
1563 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1564 
1565 	/* Startup DMA */
1566 	pl011_dma_startup(uap);
1567 
1568 	/*
1569 	 * Finally, enable interrupts, only timeouts when using DMA
1570 	 * if initial RX DMA job failed, start in interrupt mode
1571 	 * as well.
1572 	 */
1573 	spin_lock_irq(&uap->port.lock);
1574 	/* Clear out any spuriously appearing RX interrupts */
1575 	 writew(UART011_RTIS | UART011_RXIS,
1576 		uap->port.membase + UART011_ICR);
1577 	uap->im = UART011_RTIM;
1578 	if (!pl011_dma_rx_running(uap))
1579 		uap->im |= UART011_RXIM;
1580 	writew(uap->im, uap->port.membase + UART011_IMSC);
1581 	spin_unlock_irq(&uap->port.lock);
1582 
1583 	return 0;
1584 
1585  clk_dis:
1586 	clk_disable_unprepare(uap->clk);
1587 	return retval;
1588 }
1589 
1590 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1591 					unsigned int lcrh)
1592 {
1593       unsigned long val;
1594 
1595       val = readw(uap->port.membase + lcrh);
1596       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1597       writew(val, uap->port.membase + lcrh);
1598 }
1599 
1600 static void pl011_shutdown(struct uart_port *port)
1601 {
1602 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1603 	unsigned int cr;
1604 
1605 	/*
1606 	 * disable all interrupts
1607 	 */
1608 	spin_lock_irq(&uap->port.lock);
1609 	uap->im = 0;
1610 	writew(uap->im, uap->port.membase + UART011_IMSC);
1611 	writew(0xffff, uap->port.membase + UART011_ICR);
1612 	spin_unlock_irq(&uap->port.lock);
1613 
1614 	pl011_dma_shutdown(uap);
1615 
1616 	/*
1617 	 * Free the interrupt
1618 	 */
1619 	free_irq(uap->port.irq, uap);
1620 
1621 	/*
1622 	 * disable the port
1623 	 * disable the port. It should not disable RTS and DTR.
1624 	 * Also RTS and DTR state should be preserved to restore
1625 	 * it during startup().
1626 	 */
1627 	uap->autorts = false;
1628 	cr = readw(uap->port.membase + UART011_CR);
1629 	uap->old_cr = cr;
1630 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1631 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1632 	writew(cr, uap->port.membase + UART011_CR);
1633 
1634 	/*
1635 	 * disable break condition and fifos
1636 	 */
1637 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1638 	if (uap->lcrh_rx != uap->lcrh_tx)
1639 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1640 
1641 	/*
1642 	 * Shut down the clock producer
1643 	 */
1644 	clk_disable_unprepare(uap->clk);
1645 	/* Optionally let pins go into sleep states */
1646 	pinctrl_pm_select_sleep_state(port->dev);
1647 
1648 	if (uap->port.dev->platform_data) {
1649 		struct amba_pl011_data *plat;
1650 
1651 		plat = uap->port.dev->platform_data;
1652 		if (plat->exit)
1653 			plat->exit();
1654 	}
1655 
1656 }
1657 
1658 static void
1659 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1660 		     struct ktermios *old)
1661 {
1662 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1663 	unsigned int lcr_h, old_cr;
1664 	unsigned long flags;
1665 	unsigned int baud, quot, clkdiv;
1666 
1667 	if (uap->vendor->oversampling)
1668 		clkdiv = 8;
1669 	else
1670 		clkdiv = 16;
1671 
1672 	/*
1673 	 * Ask the core to calculate the divisor for us.
1674 	 */
1675 	baud = uart_get_baud_rate(port, termios, old, 0,
1676 				  port->uartclk / clkdiv);
1677 #ifdef CONFIG_DMA_ENGINE
1678 	/*
1679 	 * Adjust RX DMA polling rate with baud rate if not specified.
1680 	 */
1681 	if (uap->dmarx.auto_poll_rate)
1682 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1683 #endif
1684 
1685 	if (baud > port->uartclk/16)
1686 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1687 	else
1688 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1689 
1690 	switch (termios->c_cflag & CSIZE) {
1691 	case CS5:
1692 		lcr_h = UART01x_LCRH_WLEN_5;
1693 		break;
1694 	case CS6:
1695 		lcr_h = UART01x_LCRH_WLEN_6;
1696 		break;
1697 	case CS7:
1698 		lcr_h = UART01x_LCRH_WLEN_7;
1699 		break;
1700 	default: // CS8
1701 		lcr_h = UART01x_LCRH_WLEN_8;
1702 		break;
1703 	}
1704 	if (termios->c_cflag & CSTOPB)
1705 		lcr_h |= UART01x_LCRH_STP2;
1706 	if (termios->c_cflag & PARENB) {
1707 		lcr_h |= UART01x_LCRH_PEN;
1708 		if (!(termios->c_cflag & PARODD))
1709 			lcr_h |= UART01x_LCRH_EPS;
1710 	}
1711 	if (uap->fifosize > 1)
1712 		lcr_h |= UART01x_LCRH_FEN;
1713 
1714 	spin_lock_irqsave(&port->lock, flags);
1715 
1716 	/*
1717 	 * Update the per-port timeout.
1718 	 */
1719 	uart_update_timeout(port, termios->c_cflag, baud);
1720 
1721 	port->read_status_mask = UART011_DR_OE | 255;
1722 	if (termios->c_iflag & INPCK)
1723 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1724 	if (termios->c_iflag & (BRKINT | PARMRK))
1725 		port->read_status_mask |= UART011_DR_BE;
1726 
1727 	/*
1728 	 * Characters to ignore
1729 	 */
1730 	port->ignore_status_mask = 0;
1731 	if (termios->c_iflag & IGNPAR)
1732 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1733 	if (termios->c_iflag & IGNBRK) {
1734 		port->ignore_status_mask |= UART011_DR_BE;
1735 		/*
1736 		 * If we're ignoring parity and break indicators,
1737 		 * ignore overruns too (for real raw support).
1738 		 */
1739 		if (termios->c_iflag & IGNPAR)
1740 			port->ignore_status_mask |= UART011_DR_OE;
1741 	}
1742 
1743 	/*
1744 	 * Ignore all characters if CREAD is not set.
1745 	 */
1746 	if ((termios->c_cflag & CREAD) == 0)
1747 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1748 
1749 	if (UART_ENABLE_MS(port, termios->c_cflag))
1750 		pl011_enable_ms(port);
1751 
1752 	/* first, disable everything */
1753 	old_cr = readw(port->membase + UART011_CR);
1754 	writew(0, port->membase + UART011_CR);
1755 
1756 	if (termios->c_cflag & CRTSCTS) {
1757 		if (old_cr & UART011_CR_RTS)
1758 			old_cr |= UART011_CR_RTSEN;
1759 
1760 		old_cr |= UART011_CR_CTSEN;
1761 		uap->autorts = true;
1762 	} else {
1763 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1764 		uap->autorts = false;
1765 	}
1766 
1767 	if (uap->vendor->oversampling) {
1768 		if (baud > port->uartclk / 16)
1769 			old_cr |= ST_UART011_CR_OVSFACT;
1770 		else
1771 			old_cr &= ~ST_UART011_CR_OVSFACT;
1772 	}
1773 
1774 	/*
1775 	 * Workaround for the ST Micro oversampling variants to
1776 	 * increase the bitrate slightly, by lowering the divisor,
1777 	 * to avoid delayed sampling of start bit at high speeds,
1778 	 * else we see data corruption.
1779 	 */
1780 	if (uap->vendor->oversampling) {
1781 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1782 			quot -= 1;
1783 		else if ((baud > 3250000) && (quot > 2))
1784 			quot -= 2;
1785 	}
1786 	/* Set baud rate */
1787 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1788 	writew(quot >> 6, port->membase + UART011_IBRD);
1789 
1790 	/*
1791 	 * ----------v----------v----------v----------v-----
1792 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1793 	 * UART011_FBRD & UART011_IBRD.
1794 	 * ----------^----------^----------^----------^-----
1795 	 */
1796 	writew(lcr_h, port->membase + uap->lcrh_rx);
1797 	if (uap->lcrh_rx != uap->lcrh_tx) {
1798 		int i;
1799 		/*
1800 		 * Wait 10 PCLKs before writing LCRH_TX register,
1801 		 * to get this delay write read only register 10 times
1802 		 */
1803 		for (i = 0; i < 10; ++i)
1804 			writew(0xff, uap->port.membase + UART011_MIS);
1805 		writew(lcr_h, port->membase + uap->lcrh_tx);
1806 	}
1807 	writew(old_cr, port->membase + UART011_CR);
1808 
1809 	spin_unlock_irqrestore(&port->lock, flags);
1810 }
1811 
1812 static const char *pl011_type(struct uart_port *port)
1813 {
1814 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1815 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1816 }
1817 
1818 /*
1819  * Release the memory region(s) being used by 'port'
1820  */
1821 static void pl011_release_port(struct uart_port *port)
1822 {
1823 	release_mem_region(port->mapbase, SZ_4K);
1824 }
1825 
1826 /*
1827  * Request the memory region(s) being used by 'port'
1828  */
1829 static int pl011_request_port(struct uart_port *port)
1830 {
1831 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1832 			!= NULL ? 0 : -EBUSY;
1833 }
1834 
1835 /*
1836  * Configure/autoconfigure the port.
1837  */
1838 static void pl011_config_port(struct uart_port *port, int flags)
1839 {
1840 	if (flags & UART_CONFIG_TYPE) {
1841 		port->type = PORT_AMBA;
1842 		pl011_request_port(port);
1843 	}
1844 }
1845 
1846 /*
1847  * verify the new serial_struct (for TIOCSSERIAL).
1848  */
1849 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1850 {
1851 	int ret = 0;
1852 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1853 		ret = -EINVAL;
1854 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1855 		ret = -EINVAL;
1856 	if (ser->baud_base < 9600)
1857 		ret = -EINVAL;
1858 	return ret;
1859 }
1860 
1861 static struct uart_ops amba_pl011_pops = {
1862 	.tx_empty	= pl011_tx_empty,
1863 	.set_mctrl	= pl011_set_mctrl,
1864 	.get_mctrl	= pl011_get_mctrl,
1865 	.stop_tx	= pl011_stop_tx,
1866 	.start_tx	= pl011_start_tx,
1867 	.stop_rx	= pl011_stop_rx,
1868 	.enable_ms	= pl011_enable_ms,
1869 	.break_ctl	= pl011_break_ctl,
1870 	.startup	= pl011_startup,
1871 	.shutdown	= pl011_shutdown,
1872 	.flush_buffer	= pl011_dma_flush_buffer,
1873 	.set_termios	= pl011_set_termios,
1874 	.type		= pl011_type,
1875 	.release_port	= pl011_release_port,
1876 	.request_port	= pl011_request_port,
1877 	.config_port	= pl011_config_port,
1878 	.verify_port	= pl011_verify_port,
1879 #ifdef CONFIG_CONSOLE_POLL
1880 	.poll_init     = pl011_hwinit,
1881 	.poll_get_char = pl011_get_poll_char,
1882 	.poll_put_char = pl011_put_poll_char,
1883 #endif
1884 };
1885 
1886 static struct uart_amba_port *amba_ports[UART_NR];
1887 
1888 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1889 
1890 static void pl011_console_putchar(struct uart_port *port, int ch)
1891 {
1892 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1893 
1894 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1895 		barrier();
1896 	writew(ch, uap->port.membase + UART01x_DR);
1897 }
1898 
1899 static void
1900 pl011_console_write(struct console *co, const char *s, unsigned int count)
1901 {
1902 	struct uart_amba_port *uap = amba_ports[co->index];
1903 	unsigned int status, old_cr, new_cr;
1904 	unsigned long flags;
1905 	int locked = 1;
1906 
1907 	clk_enable(uap->clk);
1908 
1909 	local_irq_save(flags);
1910 	if (uap->port.sysrq)
1911 		locked = 0;
1912 	else if (oops_in_progress)
1913 		locked = spin_trylock(&uap->port.lock);
1914 	else
1915 		spin_lock(&uap->port.lock);
1916 
1917 	/*
1918 	 *	First save the CR then disable the interrupts
1919 	 */
1920 	old_cr = readw(uap->port.membase + UART011_CR);
1921 	new_cr = old_cr & ~UART011_CR_CTSEN;
1922 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1923 	writew(new_cr, uap->port.membase + UART011_CR);
1924 
1925 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1926 
1927 	/*
1928 	 *	Finally, wait for transmitter to become empty
1929 	 *	and restore the TCR
1930 	 */
1931 	do {
1932 		status = readw(uap->port.membase + UART01x_FR);
1933 	} while (status & UART01x_FR_BUSY);
1934 	writew(old_cr, uap->port.membase + UART011_CR);
1935 
1936 	if (locked)
1937 		spin_unlock(&uap->port.lock);
1938 	local_irq_restore(flags);
1939 
1940 	clk_disable(uap->clk);
1941 }
1942 
1943 static void __init
1944 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1945 			     int *parity, int *bits)
1946 {
1947 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1948 		unsigned int lcr_h, ibrd, fbrd;
1949 
1950 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1951 
1952 		*parity = 'n';
1953 		if (lcr_h & UART01x_LCRH_PEN) {
1954 			if (lcr_h & UART01x_LCRH_EPS)
1955 				*parity = 'e';
1956 			else
1957 				*parity = 'o';
1958 		}
1959 
1960 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1961 			*bits = 7;
1962 		else
1963 			*bits = 8;
1964 
1965 		ibrd = readw(uap->port.membase + UART011_IBRD);
1966 		fbrd = readw(uap->port.membase + UART011_FBRD);
1967 
1968 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1969 
1970 		if (uap->vendor->oversampling) {
1971 			if (readw(uap->port.membase + UART011_CR)
1972 				  & ST_UART011_CR_OVSFACT)
1973 				*baud *= 2;
1974 		}
1975 	}
1976 }
1977 
1978 static int __init pl011_console_setup(struct console *co, char *options)
1979 {
1980 	struct uart_amba_port *uap;
1981 	int baud = 38400;
1982 	int bits = 8;
1983 	int parity = 'n';
1984 	int flow = 'n';
1985 	int ret;
1986 
1987 	/*
1988 	 * Check whether an invalid uart number has been specified, and
1989 	 * if so, search for the first available port that does have
1990 	 * console support.
1991 	 */
1992 	if (co->index >= UART_NR)
1993 		co->index = 0;
1994 	uap = amba_ports[co->index];
1995 	if (!uap)
1996 		return -ENODEV;
1997 
1998 	/* Allow pins to be muxed in and configured */
1999 	pinctrl_pm_select_default_state(uap->port.dev);
2000 
2001 	ret = clk_prepare(uap->clk);
2002 	if (ret)
2003 		return ret;
2004 
2005 	if (uap->port.dev->platform_data) {
2006 		struct amba_pl011_data *plat;
2007 
2008 		plat = uap->port.dev->platform_data;
2009 		if (plat->init)
2010 			plat->init();
2011 	}
2012 
2013 	uap->port.uartclk = clk_get_rate(uap->clk);
2014 
2015 	if (options)
2016 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2017 	else
2018 		pl011_console_get_options(uap, &baud, &parity, &bits);
2019 
2020 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2021 }
2022 
2023 static struct uart_driver amba_reg;
2024 static struct console amba_console = {
2025 	.name		= "ttyAMA",
2026 	.write		= pl011_console_write,
2027 	.device		= uart_console_device,
2028 	.setup		= pl011_console_setup,
2029 	.flags		= CON_PRINTBUFFER,
2030 	.index		= -1,
2031 	.data		= &amba_reg,
2032 };
2033 
2034 #define AMBA_CONSOLE	(&amba_console)
2035 #else
2036 #define AMBA_CONSOLE	NULL
2037 #endif
2038 
2039 static struct uart_driver amba_reg = {
2040 	.owner			= THIS_MODULE,
2041 	.driver_name		= "ttyAMA",
2042 	.dev_name		= "ttyAMA",
2043 	.major			= SERIAL_AMBA_MAJOR,
2044 	.minor			= SERIAL_AMBA_MINOR,
2045 	.nr			= UART_NR,
2046 	.cons			= AMBA_CONSOLE,
2047 };
2048 
2049 static int pl011_probe_dt_alias(int index, struct device *dev)
2050 {
2051 	struct device_node *np;
2052 	static bool seen_dev_with_alias = false;
2053 	static bool seen_dev_without_alias = false;
2054 	int ret = index;
2055 
2056 	if (!IS_ENABLED(CONFIG_OF))
2057 		return ret;
2058 
2059 	np = dev->of_node;
2060 	if (!np)
2061 		return ret;
2062 
2063 	ret = of_alias_get_id(np, "serial");
2064 	if (IS_ERR_VALUE(ret)) {
2065 		seen_dev_without_alias = true;
2066 		ret = index;
2067 	} else {
2068 		seen_dev_with_alias = true;
2069 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2070 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2071 			ret = index;
2072 		}
2073 	}
2074 
2075 	if (seen_dev_with_alias && seen_dev_without_alias)
2076 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2077 
2078 	return ret;
2079 }
2080 
2081 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2082 {
2083 	struct uart_amba_port *uap;
2084 	struct vendor_data *vendor = id->data;
2085 	void __iomem *base;
2086 	int i, ret;
2087 
2088 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2089 		if (amba_ports[i] == NULL)
2090 			break;
2091 
2092 	if (i == ARRAY_SIZE(amba_ports)) {
2093 		ret = -EBUSY;
2094 		goto out;
2095 	}
2096 
2097 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2098 			   GFP_KERNEL);
2099 	if (uap == NULL) {
2100 		ret = -ENOMEM;
2101 		goto out;
2102 	}
2103 
2104 	i = pl011_probe_dt_alias(i, &dev->dev);
2105 
2106 	base = devm_ioremap(&dev->dev, dev->res.start,
2107 			    resource_size(&dev->res));
2108 	if (!base) {
2109 		ret = -ENOMEM;
2110 		goto out;
2111 	}
2112 
2113 	uap->clk = devm_clk_get(&dev->dev, NULL);
2114 	if (IS_ERR(uap->clk)) {
2115 		ret = PTR_ERR(uap->clk);
2116 		goto out;
2117 	}
2118 
2119 	uap->vendor = vendor;
2120 	uap->lcrh_rx = vendor->lcrh_rx;
2121 	uap->lcrh_tx = vendor->lcrh_tx;
2122 	uap->old_cr = 0;
2123 	uap->fifosize = vendor->get_fifosize(dev);
2124 	uap->port.dev = &dev->dev;
2125 	uap->port.mapbase = dev->res.start;
2126 	uap->port.membase = base;
2127 	uap->port.iotype = UPIO_MEM;
2128 	uap->port.irq = dev->irq[0];
2129 	uap->port.fifosize = uap->fifosize;
2130 	uap->port.ops = &amba_pl011_pops;
2131 	uap->port.flags = UPF_BOOT_AUTOCONF;
2132 	uap->port.line = i;
2133 	pl011_dma_probe(&dev->dev, uap);
2134 
2135 	/* Ensure interrupts from this UART are masked and cleared */
2136 	writew(0, uap->port.membase + UART011_IMSC);
2137 	writew(0xffff, uap->port.membase + UART011_ICR);
2138 
2139 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2140 
2141 	amba_ports[i] = uap;
2142 
2143 	amba_set_drvdata(dev, uap);
2144 	ret = uart_add_one_port(&amba_reg, &uap->port);
2145 	if (ret) {
2146 		amba_set_drvdata(dev, NULL);
2147 		amba_ports[i] = NULL;
2148 		pl011_dma_remove(uap);
2149 	}
2150  out:
2151 	return ret;
2152 }
2153 
2154 static int pl011_remove(struct amba_device *dev)
2155 {
2156 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2157 	int i;
2158 
2159 	amba_set_drvdata(dev, NULL);
2160 
2161 	uart_remove_one_port(&amba_reg, &uap->port);
2162 
2163 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2164 		if (amba_ports[i] == uap)
2165 			amba_ports[i] = NULL;
2166 
2167 	pl011_dma_remove(uap);
2168 	return 0;
2169 }
2170 
2171 #ifdef CONFIG_PM
2172 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2173 {
2174 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2175 
2176 	if (!uap)
2177 		return -EINVAL;
2178 
2179 	return uart_suspend_port(&amba_reg, &uap->port);
2180 }
2181 
2182 static int pl011_resume(struct amba_device *dev)
2183 {
2184 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2185 
2186 	if (!uap)
2187 		return -EINVAL;
2188 
2189 	return uart_resume_port(&amba_reg, &uap->port);
2190 }
2191 #endif
2192 
2193 static struct amba_id pl011_ids[] = {
2194 	{
2195 		.id	= 0x00041011,
2196 		.mask	= 0x000fffff,
2197 		.data	= &vendor_arm,
2198 	},
2199 	{
2200 		.id	= 0x00380802,
2201 		.mask	= 0x00ffffff,
2202 		.data	= &vendor_st,
2203 	},
2204 	{ 0, 0 },
2205 };
2206 
2207 MODULE_DEVICE_TABLE(amba, pl011_ids);
2208 
2209 static struct amba_driver pl011_driver = {
2210 	.drv = {
2211 		.name	= "uart-pl011",
2212 	},
2213 	.id_table	= pl011_ids,
2214 	.probe		= pl011_probe,
2215 	.remove		= pl011_remove,
2216 #ifdef CONFIG_PM
2217 	.suspend	= pl011_suspend,
2218 	.resume		= pl011_resume,
2219 #endif
2220 };
2221 
2222 static int __init pl011_init(void)
2223 {
2224 	int ret;
2225 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2226 
2227 	ret = uart_register_driver(&amba_reg);
2228 	if (ret == 0) {
2229 		ret = amba_driver_register(&pl011_driver);
2230 		if (ret)
2231 			uart_unregister_driver(&amba_reg);
2232 	}
2233 	return ret;
2234 }
2235 
2236 static void __exit pl011_exit(void)
2237 {
2238 	amba_driver_unregister(&pl011_driver);
2239 	uart_unregister_driver(&amba_reg);
2240 }
2241 
2242 /*
2243  * While this can be a module, if builtin it's most likely the console
2244  * So let's leave module_exit but move module_init to an earlier place
2245  */
2246 arch_initcall(pl011_init);
2247 module_exit(pl011_exit);
2248 
2249 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2250 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2251 MODULE_LICENSE("GPL");
2252