xref: /linux/drivers/tty/serial/amba-pl011.c (revision e25293d9d92cce24aa4ca21b90064661fe4d3fcf)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	BIT(16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_dmabuf {
222 	dma_addr_t		dma;
223 	size_t			len;
224 	char			*buf;
225 };
226 
227 struct pl011_dmarx_data {
228 	struct dma_chan		*chan;
229 	struct completion	complete;
230 	bool			use_buf_b;
231 	struct pl011_dmabuf	dbuf_a;
232 	struct pl011_dmabuf	dbuf_b;
233 	dma_cookie_t		cookie;
234 	bool			running;
235 	struct timer_list	timer;
236 	unsigned int last_residue;
237 	unsigned long last_jiffies;
238 	bool auto_poll_rate;
239 	unsigned int poll_rate;
240 	unsigned int poll_timeout;
241 };
242 
243 struct pl011_dmatx_data {
244 	struct dma_chan		*chan;
245 	dma_addr_t		dma;
246 	size_t			len;
247 	char			*buf;
248 	bool			queued;
249 };
250 
251 /*
252  * We wrap our port structure around the generic uart_port.
253  */
254 struct uart_amba_port {
255 	struct uart_port	port;
256 	const u16		*reg_offset;
257 	struct clk		*clk;
258 	const struct vendor_data *vendor;
259 	unsigned int		dmacr;		/* dma control reg */
260 	unsigned int		im;		/* interrupt mask */
261 	unsigned int		old_status;
262 	unsigned int		fifosize;	/* vendor-specific */
263 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
264 	char			type[12];
265 	bool			rs485_tx_started;
266 	unsigned int		rs485_tx_drain_interval; /* usecs */
267 #ifdef CONFIG_DMA_ENGINE
268 	/* DMA stuff */
269 	bool			using_tx_dma;
270 	bool			using_rx_dma;
271 	struct pl011_dmarx_data dmarx;
272 	struct pl011_dmatx_data	dmatx;
273 	bool			dma_probed;
274 #endif
275 };
276 
277 static unsigned int pl011_tx_empty(struct uart_port *port);
278 
279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 					unsigned int reg)
281 {
282 	return uap->reg_offset[reg];
283 }
284 
285 static unsigned int pl011_read(const struct uart_amba_port *uap,
286 			       unsigned int reg)
287 {
288 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289 
290 	return (uap->port.iotype == UPIO_MEM32) ?
291 		readl_relaxed(addr) : readw_relaxed(addr);
292 }
293 
294 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 			unsigned int reg)
296 {
297 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298 
299 	if (uap->port.iotype == UPIO_MEM32)
300 		writel_relaxed(val, addr);
301 	else
302 		writew_relaxed(val, addr);
303 }
304 
305 /*
306  * Reads up to 256 characters from the FIFO or until it's empty and
307  * inserts them into the TTY layer. Returns the number of characters
308  * read from the FIFO.
309  */
310 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311 {
312 	unsigned int ch, fifotaken;
313 	int sysrq;
314 	u16 status;
315 	u8 flag;
316 
317 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 		status = pl011_read(uap, REG_FR);
319 		if (status & UART01x_FR_RXFE)
320 			break;
321 
322 		/* Take chars from the FIFO and update status */
323 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324 		flag = TTY_NORMAL;
325 		uap->port.icount.rx++;
326 
327 		if (unlikely(ch & UART_DR_ERROR)) {
328 			if (ch & UART011_DR_BE) {
329 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 				uap->port.icount.brk++;
331 				if (uart_handle_break(&uap->port))
332 					continue;
333 			} else if (ch & UART011_DR_PE) {
334 				uap->port.icount.parity++;
335 			} else if (ch & UART011_DR_FE) {
336 				uap->port.icount.frame++;
337 			}
338 			if (ch & UART011_DR_OE)
339 				uap->port.icount.overrun++;
340 
341 			ch &= uap->port.read_status_mask;
342 
343 			if (ch & UART011_DR_BE)
344 				flag = TTY_BREAK;
345 			else if (ch & UART011_DR_PE)
346 				flag = TTY_PARITY;
347 			else if (ch & UART011_DR_FE)
348 				flag = TTY_FRAME;
349 		}
350 
351 		uart_port_unlock(&uap->port);
352 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
353 		uart_port_lock(&uap->port);
354 
355 		if (!sysrq)
356 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
357 	}
358 
359 	return fifotaken;
360 }
361 
362 /*
363  * All the DMA operation mode stuff goes inside this ifdef.
364  * This assumes that you have a generic DMA device interface,
365  * no custom DMA interfaces are supported.
366  */
367 #ifdef CONFIG_DMA_ENGINE
368 
369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370 
371 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
372 			     enum dma_data_direction dir)
373 {
374 	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
375 				     &db->dma, GFP_KERNEL);
376 	if (!db->buf)
377 		return -ENOMEM;
378 	db->len = PL011_DMA_BUFFER_SIZE;
379 
380 	return 0;
381 }
382 
383 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
384 			      enum dma_data_direction dir)
385 {
386 	if (db->buf) {
387 		dma_free_coherent(chan->device->dev,
388 				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
389 	}
390 }
391 
392 static void pl011_dma_probe(struct uart_amba_port *uap)
393 {
394 	/* DMA is the sole user of the platform data right now */
395 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
396 	struct device *dev = uap->port.dev;
397 	struct dma_slave_config tx_conf = {
398 		.dst_addr = uap->port.mapbase +
399 				 pl011_reg_to_offset(uap, REG_DR),
400 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
401 		.direction = DMA_MEM_TO_DEV,
402 		.dst_maxburst = uap->fifosize >> 1,
403 		.device_fc = false,
404 	};
405 	struct dma_chan *chan;
406 	dma_cap_mask_t mask;
407 
408 	uap->dma_probed = true;
409 	chan = dma_request_chan(dev, "tx");
410 	if (IS_ERR(chan)) {
411 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
412 			uap->dma_probed = false;
413 			return;
414 		}
415 
416 		/* We need platform data */
417 		if (!plat || !plat->dma_filter) {
418 			dev_dbg(uap->port.dev, "no DMA platform data\n");
419 			return;
420 		}
421 
422 		/* Try to acquire a generic DMA engine slave TX channel */
423 		dma_cap_zero(mask);
424 		dma_cap_set(DMA_SLAVE, mask);
425 
426 		chan = dma_request_channel(mask, plat->dma_filter,
427 					   plat->dma_tx_param);
428 		if (!chan) {
429 			dev_err(uap->port.dev, "no TX DMA channel!\n");
430 			return;
431 		}
432 	}
433 
434 	dmaengine_slave_config(chan, &tx_conf);
435 	uap->dmatx.chan = chan;
436 
437 	dev_info(uap->port.dev, "DMA channel TX %s\n",
438 		 dma_chan_name(uap->dmatx.chan));
439 
440 	/* Optionally make use of an RX channel as well */
441 	chan = dma_request_chan(dev, "rx");
442 
443 	if (IS_ERR(chan) && plat && plat->dma_rx_param) {
444 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
445 
446 		if (!chan) {
447 			dev_err(uap->port.dev, "no RX DMA channel!\n");
448 			return;
449 		}
450 	}
451 
452 	if (!IS_ERR(chan)) {
453 		struct dma_slave_config rx_conf = {
454 			.src_addr = uap->port.mapbase +
455 				pl011_reg_to_offset(uap, REG_DR),
456 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
457 			.direction = DMA_DEV_TO_MEM,
458 			.src_maxburst = uap->fifosize >> 2,
459 			.device_fc = false,
460 		};
461 		struct dma_slave_caps caps;
462 
463 		/*
464 		 * Some DMA controllers provide information on their capabilities.
465 		 * If the controller does, check for suitable residue processing
466 		 * otherwise assime all is well.
467 		 */
468 		if (dma_get_slave_caps(chan, &caps) == 0) {
469 			if (caps.residue_granularity ==
470 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
471 				dma_release_channel(chan);
472 				dev_info(uap->port.dev,
473 					 "RX DMA disabled - no residue processing\n");
474 				return;
475 			}
476 		}
477 		dmaengine_slave_config(chan, &rx_conf);
478 		uap->dmarx.chan = chan;
479 
480 		uap->dmarx.auto_poll_rate = false;
481 		if (plat && plat->dma_rx_poll_enable) {
482 			/* Set poll rate if specified. */
483 			if (plat->dma_rx_poll_rate) {
484 				uap->dmarx.auto_poll_rate = false;
485 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
486 			} else {
487 				/*
488 				 * 100 ms defaults to poll rate if not
489 				 * specified. This will be adjusted with
490 				 * the baud rate at set_termios.
491 				 */
492 				uap->dmarx.auto_poll_rate = true;
493 				uap->dmarx.poll_rate =  100;
494 			}
495 			/* 3 secs defaults poll_timeout if not specified. */
496 			if (plat->dma_rx_poll_timeout)
497 				uap->dmarx.poll_timeout =
498 					plat->dma_rx_poll_timeout;
499 			else
500 				uap->dmarx.poll_timeout = 3000;
501 		} else if (!plat && dev->of_node) {
502 			uap->dmarx.auto_poll_rate =
503 					of_property_read_bool(dev->of_node, "auto-poll");
504 			if (uap->dmarx.auto_poll_rate) {
505 				u32 x;
506 
507 				if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
508 					uap->dmarx.poll_rate = x;
509 				else
510 					uap->dmarx.poll_rate = 100;
511 				if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
512 					uap->dmarx.poll_timeout = x;
513 				else
514 					uap->dmarx.poll_timeout = 3000;
515 			}
516 		}
517 		dev_info(uap->port.dev, "DMA channel RX %s\n",
518 			 dma_chan_name(uap->dmarx.chan));
519 	}
520 }
521 
522 static void pl011_dma_remove(struct uart_amba_port *uap)
523 {
524 	if (uap->dmatx.chan)
525 		dma_release_channel(uap->dmatx.chan);
526 	if (uap->dmarx.chan)
527 		dma_release_channel(uap->dmarx.chan);
528 }
529 
530 /* Forward declare these for the refill routine */
531 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
532 static void pl011_start_tx_pio(struct uart_amba_port *uap);
533 
534 /*
535  * The current DMA TX buffer has been sent.
536  * Try to queue up another DMA buffer.
537  */
538 static void pl011_dma_tx_callback(void *data)
539 {
540 	struct uart_amba_port *uap = data;
541 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
542 	unsigned long flags;
543 	u16 dmacr;
544 
545 	uart_port_lock_irqsave(&uap->port, &flags);
546 	if (uap->dmatx.queued)
547 		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
548 				 dmatx->len, DMA_TO_DEVICE);
549 
550 	dmacr = uap->dmacr;
551 	uap->dmacr = dmacr & ~UART011_TXDMAE;
552 	pl011_write(uap->dmacr, uap, REG_DMACR);
553 
554 	/*
555 	 * If TX DMA was disabled, it means that we've stopped the DMA for
556 	 * some reason (eg, XOFF received, or we want to send an X-char.)
557 	 *
558 	 * Note: we need to be careful here of a potential race between DMA
559 	 * and the rest of the driver - if the driver disables TX DMA while
560 	 * a TX buffer completing, we must update the tx queued status to
561 	 * get further refills (hence we check dmacr).
562 	 */
563 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
564 	    uart_circ_empty(&uap->port.state->xmit)) {
565 		uap->dmatx.queued = false;
566 		uart_port_unlock_irqrestore(&uap->port, flags);
567 		return;
568 	}
569 
570 	if (pl011_dma_tx_refill(uap) <= 0)
571 		/*
572 		 * We didn't queue a DMA buffer for some reason, but we
573 		 * have data pending to be sent.  Re-enable the TX IRQ.
574 		 */
575 		pl011_start_tx_pio(uap);
576 
577 	uart_port_unlock_irqrestore(&uap->port, flags);
578 }
579 
580 /*
581  * Try to refill the TX DMA buffer.
582  * Locking: called with port lock held and IRQs disabled.
583  * Returns:
584  *   1 if we queued up a TX DMA buffer.
585  *   0 if we didn't want to handle this by DMA
586  *  <0 on error
587  */
588 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
589 {
590 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
591 	struct dma_chan *chan = dmatx->chan;
592 	struct dma_device *dma_dev = chan->device;
593 	struct dma_async_tx_descriptor *desc;
594 	struct circ_buf *xmit = &uap->port.state->xmit;
595 	unsigned int count;
596 
597 	/*
598 	 * Try to avoid the overhead involved in using DMA if the
599 	 * transaction fits in the first half of the FIFO, by using
600 	 * the standard interrupt handling.  This ensures that we
601 	 * issue a uart_write_wakeup() at the appropriate time.
602 	 */
603 	count = uart_circ_chars_pending(xmit);
604 	if (count < (uap->fifosize >> 1)) {
605 		uap->dmatx.queued = false;
606 		return 0;
607 	}
608 
609 	/*
610 	 * Bodge: don't send the last character by DMA, as this
611 	 * will prevent XON from notifying us to restart DMA.
612 	 */
613 	count -= 1;
614 
615 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
616 	if (count > PL011_DMA_BUFFER_SIZE)
617 		count = PL011_DMA_BUFFER_SIZE;
618 
619 	if (xmit->tail < xmit->head) {
620 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
621 	} else {
622 		size_t first = UART_XMIT_SIZE - xmit->tail;
623 		size_t second;
624 
625 		if (first > count)
626 			first = count;
627 		second = count - first;
628 
629 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
630 		if (second)
631 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
632 	}
633 
634 	dmatx->len = count;
635 	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
636 				    DMA_TO_DEVICE);
637 	if (dmatx->dma == DMA_MAPPING_ERROR) {
638 		uap->dmatx.queued = false;
639 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
640 		return -EBUSY;
641 	}
642 
643 	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
644 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
645 	if (!desc) {
646 		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
647 		uap->dmatx.queued = false;
648 		/*
649 		 * If DMA cannot be used right now, we complete this
650 		 * transaction via IRQ and let the TTY layer retry.
651 		 */
652 		dev_dbg(uap->port.dev, "TX DMA busy\n");
653 		return -EBUSY;
654 	}
655 
656 	/* Some data to go along to the callback */
657 	desc->callback = pl011_dma_tx_callback;
658 	desc->callback_param = uap;
659 
660 	/* All errors should happen at prepare time */
661 	dmaengine_submit(desc);
662 
663 	/* Fire the DMA transaction */
664 	dma_dev->device_issue_pending(chan);
665 
666 	uap->dmacr |= UART011_TXDMAE;
667 	pl011_write(uap->dmacr, uap, REG_DMACR);
668 	uap->dmatx.queued = true;
669 
670 	/*
671 	 * Now we know that DMA will fire, so advance the ring buffer
672 	 * with the stuff we just dispatched.
673 	 */
674 	uart_xmit_advance(&uap->port, count);
675 
676 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
677 		uart_write_wakeup(&uap->port);
678 
679 	return 1;
680 }
681 
682 /*
683  * We received a transmit interrupt without a pending X-char but with
684  * pending characters.
685  * Locking: called with port lock held and IRQs disabled.
686  * Returns:
687  *   false if we want to use PIO to transmit
688  *   true if we queued a DMA buffer
689  */
690 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
691 {
692 	if (!uap->using_tx_dma)
693 		return false;
694 
695 	/*
696 	 * If we already have a TX buffer queued, but received a
697 	 * TX interrupt, it will be because we've just sent an X-char.
698 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
699 	 */
700 	if (uap->dmatx.queued) {
701 		uap->dmacr |= UART011_TXDMAE;
702 		pl011_write(uap->dmacr, uap, REG_DMACR);
703 		uap->im &= ~UART011_TXIM;
704 		pl011_write(uap->im, uap, REG_IMSC);
705 		return true;
706 	}
707 
708 	/*
709 	 * We don't have a TX buffer queued, so try to queue one.
710 	 * If we successfully queued a buffer, mask the TX IRQ.
711 	 */
712 	if (pl011_dma_tx_refill(uap) > 0) {
713 		uap->im &= ~UART011_TXIM;
714 		pl011_write(uap->im, uap, REG_IMSC);
715 		return true;
716 	}
717 	return false;
718 }
719 
720 /*
721  * Stop the DMA transmit (eg, due to received XOFF).
722  * Locking: called with port lock held and IRQs disabled.
723  */
724 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
725 {
726 	if (uap->dmatx.queued) {
727 		uap->dmacr &= ~UART011_TXDMAE;
728 		pl011_write(uap->dmacr, uap, REG_DMACR);
729 	}
730 }
731 
732 /*
733  * Try to start a DMA transmit, or in the case of an XON/OFF
734  * character queued for send, try to get that character out ASAP.
735  * Locking: called with port lock held and IRQs disabled.
736  * Returns:
737  *   false if we want the TX IRQ to be enabled
738  *   true if we have a buffer queued
739  */
740 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
741 {
742 	u16 dmacr;
743 
744 	if (!uap->using_tx_dma)
745 		return false;
746 
747 	if (!uap->port.x_char) {
748 		/* no X-char, try to push chars out in DMA mode */
749 		bool ret = true;
750 
751 		if (!uap->dmatx.queued) {
752 			if (pl011_dma_tx_refill(uap) > 0) {
753 				uap->im &= ~UART011_TXIM;
754 				pl011_write(uap->im, uap, REG_IMSC);
755 			} else {
756 				ret = false;
757 			}
758 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
759 			uap->dmacr |= UART011_TXDMAE;
760 			pl011_write(uap->dmacr, uap, REG_DMACR);
761 		}
762 		return ret;
763 	}
764 
765 	/*
766 	 * We have an X-char to send.  Disable DMA to prevent it loading
767 	 * the TX fifo, and then see if we can stuff it into the FIFO.
768 	 */
769 	dmacr = uap->dmacr;
770 	uap->dmacr &= ~UART011_TXDMAE;
771 	pl011_write(uap->dmacr, uap, REG_DMACR);
772 
773 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
774 		/*
775 		 * No space in the FIFO, so enable the transmit interrupt
776 		 * so we know when there is space.  Note that once we've
777 		 * loaded the character, we should just re-enable DMA.
778 		 */
779 		return false;
780 	}
781 
782 	pl011_write(uap->port.x_char, uap, REG_DR);
783 	uap->port.icount.tx++;
784 	uap->port.x_char = 0;
785 
786 	/* Success - restore the DMA state */
787 	uap->dmacr = dmacr;
788 	pl011_write(dmacr, uap, REG_DMACR);
789 
790 	return true;
791 }
792 
793 /*
794  * Flush the transmit buffer.
795  * Locking: called with port lock held and IRQs disabled.
796  */
797 static void pl011_dma_flush_buffer(struct uart_port *port)
798 __releases(&uap->port.lock)
799 __acquires(&uap->port.lock)
800 {
801 	struct uart_amba_port *uap =
802 	    container_of(port, struct uart_amba_port, port);
803 
804 	if (!uap->using_tx_dma)
805 		return;
806 
807 	dmaengine_terminate_async(uap->dmatx.chan);
808 
809 	if (uap->dmatx.queued) {
810 		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
811 				 uap->dmatx.len, DMA_TO_DEVICE);
812 		uap->dmatx.queued = false;
813 		uap->dmacr &= ~UART011_TXDMAE;
814 		pl011_write(uap->dmacr, uap, REG_DMACR);
815 	}
816 }
817 
818 static void pl011_dma_rx_callback(void *data);
819 
820 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
821 {
822 	struct dma_chan *rxchan = uap->dmarx.chan;
823 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
824 	struct dma_async_tx_descriptor *desc;
825 	struct pl011_dmabuf *dbuf;
826 
827 	if (!rxchan)
828 		return -EIO;
829 
830 	/* Start the RX DMA job */
831 	dbuf = uap->dmarx.use_buf_b ?
832 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
833 	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
834 					   DMA_DEV_TO_MEM,
835 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
836 	/*
837 	 * If the DMA engine is busy and cannot prepare a
838 	 * channel, no big deal, the driver will fall back
839 	 * to interrupt mode as a result of this error code.
840 	 */
841 	if (!desc) {
842 		uap->dmarx.running = false;
843 		dmaengine_terminate_all(rxchan);
844 		return -EBUSY;
845 	}
846 
847 	/* Some data to go along to the callback */
848 	desc->callback = pl011_dma_rx_callback;
849 	desc->callback_param = uap;
850 	dmarx->cookie = dmaengine_submit(desc);
851 	dma_async_issue_pending(rxchan);
852 
853 	uap->dmacr |= UART011_RXDMAE;
854 	pl011_write(uap->dmacr, uap, REG_DMACR);
855 	uap->dmarx.running = true;
856 
857 	uap->im &= ~UART011_RXIM;
858 	pl011_write(uap->im, uap, REG_IMSC);
859 
860 	return 0;
861 }
862 
863 /*
864  * This is called when either the DMA job is complete, or
865  * the FIFO timeout interrupt occurred. This must be called
866  * with the port spinlock uap->port.lock held.
867  */
868 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
869 			       u32 pending, bool use_buf_b,
870 			       bool readfifo)
871 {
872 	struct tty_port *port = &uap->port.state->port;
873 	struct pl011_dmabuf *dbuf = use_buf_b ?
874 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
875 	int dma_count = 0;
876 	u32 fifotaken = 0; /* only used for vdbg() */
877 
878 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
879 	int dmataken = 0;
880 
881 	if (uap->dmarx.poll_rate) {
882 		/* The data can be taken by polling */
883 		dmataken = dbuf->len - dmarx->last_residue;
884 		/* Recalculate the pending size */
885 		if (pending >= dmataken)
886 			pending -= dmataken;
887 	}
888 
889 	/* Pick the remain data from the DMA */
890 	if (pending) {
891 		/*
892 		 * First take all chars in the DMA pipe, then look in the FIFO.
893 		 * Note that tty_insert_flip_buf() tries to take as many chars
894 		 * as it can.
895 		 */
896 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
897 
898 		uap->port.icount.rx += dma_count;
899 		if (dma_count < pending)
900 			dev_warn(uap->port.dev,
901 				 "couldn't insert all characters (TTY is full?)\n");
902 	}
903 
904 	/* Reset the last_residue for Rx DMA poll */
905 	if (uap->dmarx.poll_rate)
906 		dmarx->last_residue = dbuf->len;
907 
908 	/*
909 	 * Only continue with trying to read the FIFO if all DMA chars have
910 	 * been taken first.
911 	 */
912 	if (dma_count == pending && readfifo) {
913 		/* Clear any error flags */
914 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
915 			    UART011_FEIS, uap, REG_ICR);
916 
917 		/*
918 		 * If we read all the DMA'd characters, and we had an
919 		 * incomplete buffer, that could be due to an rx error, or
920 		 * maybe we just timed out. Read any pending chars and check
921 		 * the error status.
922 		 *
923 		 * Error conditions will only occur in the FIFO, these will
924 		 * trigger an immediate interrupt and stop the DMA job, so we
925 		 * will always find the error in the FIFO, never in the DMA
926 		 * buffer.
927 		 */
928 		fifotaken = pl011_fifo_to_tty(uap);
929 	}
930 
931 	dev_vdbg(uap->port.dev,
932 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
933 		 dma_count, fifotaken);
934 	tty_flip_buffer_push(port);
935 }
936 
937 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
938 {
939 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
940 	struct dma_chan *rxchan = dmarx->chan;
941 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
942 		&dmarx->dbuf_b : &dmarx->dbuf_a;
943 	size_t pending;
944 	struct dma_tx_state state;
945 	enum dma_status dmastat;
946 
947 	/*
948 	 * Pause the transfer so we can trust the current counter,
949 	 * do this before we pause the PL011 block, else we may
950 	 * overflow the FIFO.
951 	 */
952 	if (dmaengine_pause(rxchan))
953 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
954 	dmastat = rxchan->device->device_tx_status(rxchan,
955 						   dmarx->cookie, &state);
956 	if (dmastat != DMA_PAUSED)
957 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
958 
959 	/* Disable RX DMA - incoming data will wait in the FIFO */
960 	uap->dmacr &= ~UART011_RXDMAE;
961 	pl011_write(uap->dmacr, uap, REG_DMACR);
962 	uap->dmarx.running = false;
963 
964 	pending = dbuf->len - state.residue;
965 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
966 	/* Then we terminate the transfer - we now know our residue */
967 	dmaengine_terminate_all(rxchan);
968 
969 	/*
970 	 * This will take the chars we have so far and insert
971 	 * into the framework.
972 	 */
973 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
974 
975 	/* Switch buffer & re-trigger DMA job */
976 	dmarx->use_buf_b = !dmarx->use_buf_b;
977 	if (pl011_dma_rx_trigger_dma(uap)) {
978 		dev_dbg(uap->port.dev,
979 			"could not retrigger RX DMA job fall back to interrupt mode\n");
980 		uap->im |= UART011_RXIM;
981 		pl011_write(uap->im, uap, REG_IMSC);
982 	}
983 }
984 
985 static void pl011_dma_rx_callback(void *data)
986 {
987 	struct uart_amba_port *uap = data;
988 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
989 	struct dma_chan *rxchan = dmarx->chan;
990 	bool lastbuf = dmarx->use_buf_b;
991 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
992 		&dmarx->dbuf_b : &dmarx->dbuf_a;
993 	size_t pending;
994 	struct dma_tx_state state;
995 	int ret;
996 
997 	/*
998 	 * This completion interrupt occurs typically when the
999 	 * RX buffer is totally stuffed but no timeout has yet
1000 	 * occurred. When that happens, we just want the RX
1001 	 * routine to flush out the secondary DMA buffer while
1002 	 * we immediately trigger the next DMA job.
1003 	 */
1004 	uart_port_lock_irq(&uap->port);
1005 	/*
1006 	 * Rx data can be taken by the UART interrupts during
1007 	 * the DMA irq handler. So we check the residue here.
1008 	 */
1009 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1010 	pending = dbuf->len - state.residue;
1011 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1012 	/* Then we terminate the transfer - we now know our residue */
1013 	dmaengine_terminate_all(rxchan);
1014 
1015 	uap->dmarx.running = false;
1016 	dmarx->use_buf_b = !lastbuf;
1017 	ret = pl011_dma_rx_trigger_dma(uap);
1018 
1019 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1020 	uart_port_unlock_irq(&uap->port);
1021 	/*
1022 	 * Do this check after we picked the DMA chars so we don't
1023 	 * get some IRQ immediately from RX.
1024 	 */
1025 	if (ret) {
1026 		dev_dbg(uap->port.dev,
1027 			"could not retrigger RX DMA job fall back to interrupt mode\n");
1028 		uap->im |= UART011_RXIM;
1029 		pl011_write(uap->im, uap, REG_IMSC);
1030 	}
1031 }
1032 
1033 /*
1034  * Stop accepting received characters, when we're shutting down or
1035  * suspending this port.
1036  * Locking: called with port lock held and IRQs disabled.
1037  */
1038 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1039 {
1040 	if (!uap->using_rx_dma)
1041 		return;
1042 
1043 	/* FIXME.  Just disable the DMA enable */
1044 	uap->dmacr &= ~UART011_RXDMAE;
1045 	pl011_write(uap->dmacr, uap, REG_DMACR);
1046 }
1047 
1048 /*
1049  * Timer handler for Rx DMA polling.
1050  * Every polling, It checks the residue in the dma buffer and transfer
1051  * data to the tty. Also, last_residue is updated for the next polling.
1052  */
1053 static void pl011_dma_rx_poll(struct timer_list *t)
1054 {
1055 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1056 	struct tty_port *port = &uap->port.state->port;
1057 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1058 	struct dma_chan *rxchan = uap->dmarx.chan;
1059 	unsigned long flags;
1060 	unsigned int dmataken = 0;
1061 	unsigned int size = 0;
1062 	struct pl011_dmabuf *dbuf;
1063 	int dma_count;
1064 	struct dma_tx_state state;
1065 
1066 	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1067 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1068 	if (likely(state.residue < dmarx->last_residue)) {
1069 		dmataken = dbuf->len - dmarx->last_residue;
1070 		size = dmarx->last_residue - state.residue;
1071 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1072 						   size);
1073 		if (dma_count == size)
1074 			dmarx->last_residue =  state.residue;
1075 		dmarx->last_jiffies = jiffies;
1076 	}
1077 	tty_flip_buffer_push(port);
1078 
1079 	/*
1080 	 * If no data is received in poll_timeout, the driver will fall back
1081 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1082 	 */
1083 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1084 			> uap->dmarx.poll_timeout) {
1085 		uart_port_lock_irqsave(&uap->port, &flags);
1086 		pl011_dma_rx_stop(uap);
1087 		uap->im |= UART011_RXIM;
1088 		pl011_write(uap->im, uap, REG_IMSC);
1089 		uart_port_unlock_irqrestore(&uap->port, flags);
1090 
1091 		uap->dmarx.running = false;
1092 		dmaengine_terminate_all(rxchan);
1093 		del_timer(&uap->dmarx.timer);
1094 	} else {
1095 		mod_timer(&uap->dmarx.timer,
1096 			  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1097 	}
1098 }
1099 
1100 static void pl011_dma_startup(struct uart_amba_port *uap)
1101 {
1102 	int ret;
1103 
1104 	if (!uap->dma_probed)
1105 		pl011_dma_probe(uap);
1106 
1107 	if (!uap->dmatx.chan)
1108 		return;
1109 
1110 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1111 	if (!uap->dmatx.buf) {
1112 		uap->port.fifosize = uap->fifosize;
1113 		return;
1114 	}
1115 
1116 	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1117 
1118 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1119 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1120 	uap->using_tx_dma = true;
1121 
1122 	if (!uap->dmarx.chan)
1123 		goto skip_rx;
1124 
1125 	/* Allocate and map DMA RX buffers */
1126 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1127 				DMA_FROM_DEVICE);
1128 	if (ret) {
1129 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1130 			"RX buffer A", ret);
1131 		goto skip_rx;
1132 	}
1133 
1134 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1135 				DMA_FROM_DEVICE);
1136 	if (ret) {
1137 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1138 			"RX buffer B", ret);
1139 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1140 				  DMA_FROM_DEVICE);
1141 		goto skip_rx;
1142 	}
1143 
1144 	uap->using_rx_dma = true;
1145 
1146 skip_rx:
1147 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1148 	uap->dmacr |= UART011_DMAONERR;
1149 	pl011_write(uap->dmacr, uap, REG_DMACR);
1150 
1151 	/*
1152 	 * ST Micro variants has some specific dma burst threshold
1153 	 * compensation. Set this to 16 bytes, so burst will only
1154 	 * be issued above/below 16 bytes.
1155 	 */
1156 	if (uap->vendor->dma_threshold)
1157 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1158 			    uap, REG_ST_DMAWM);
1159 
1160 	if (uap->using_rx_dma) {
1161 		if (pl011_dma_rx_trigger_dma(uap))
1162 			dev_dbg(uap->port.dev,
1163 				"could not trigger initial RX DMA job, fall back to interrupt mode\n");
1164 		if (uap->dmarx.poll_rate) {
1165 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1166 			mod_timer(&uap->dmarx.timer,
1167 				  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1168 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1169 			uap->dmarx.last_jiffies = jiffies;
1170 		}
1171 	}
1172 }
1173 
1174 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1175 {
1176 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1177 		return;
1178 
1179 	/* Disable RX and TX DMA */
1180 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1181 		cpu_relax();
1182 
1183 	uart_port_lock_irq(&uap->port);
1184 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1185 	pl011_write(uap->dmacr, uap, REG_DMACR);
1186 	uart_port_unlock_irq(&uap->port);
1187 
1188 	if (uap->using_tx_dma) {
1189 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1190 		dmaengine_terminate_all(uap->dmatx.chan);
1191 		if (uap->dmatx.queued) {
1192 			dma_unmap_single(uap->dmatx.chan->device->dev,
1193 					 uap->dmatx.dma, uap->dmatx.len,
1194 					 DMA_TO_DEVICE);
1195 			uap->dmatx.queued = false;
1196 		}
1197 
1198 		kfree(uap->dmatx.buf);
1199 		uap->using_tx_dma = false;
1200 	}
1201 
1202 	if (uap->using_rx_dma) {
1203 		dmaengine_terminate_all(uap->dmarx.chan);
1204 		/* Clean up the RX DMA */
1205 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1206 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1207 		if (uap->dmarx.poll_rate)
1208 			del_timer_sync(&uap->dmarx.timer);
1209 		uap->using_rx_dma = false;
1210 	}
1211 }
1212 
1213 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1214 {
1215 	return uap->using_rx_dma;
1216 }
1217 
1218 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1219 {
1220 	return uap->using_rx_dma && uap->dmarx.running;
1221 }
1222 
1223 #else
1224 /* Blank functions if the DMA engine is not available */
1225 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1226 {
1227 }
1228 
1229 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1230 {
1231 }
1232 
1233 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1234 {
1235 }
1236 
1237 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1238 {
1239 	return false;
1240 }
1241 
1242 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1243 {
1244 }
1245 
1246 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1247 {
1248 	return false;
1249 }
1250 
1251 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1252 {
1253 }
1254 
1255 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1256 {
1257 }
1258 
1259 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1260 {
1261 	return -EIO;
1262 }
1263 
1264 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1265 {
1266 	return false;
1267 }
1268 
1269 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1270 {
1271 	return false;
1272 }
1273 
1274 #define pl011_dma_flush_buffer	NULL
1275 #endif
1276 
1277 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1278 {
1279 	/*
1280 	 * To be on the safe side only time out after twice as many iterations
1281 	 * as fifo size.
1282 	 */
1283 	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1284 	struct uart_port *port = &uap->port;
1285 	int i = 0;
1286 	u32 cr;
1287 
1288 	/* Wait until hardware tx queue is empty */
1289 	while (!pl011_tx_empty(port)) {
1290 		if (i > MAX_TX_DRAIN_ITERS) {
1291 			dev_warn(port->dev,
1292 				 "timeout while draining hardware tx queue\n");
1293 			break;
1294 		}
1295 
1296 		udelay(uap->rs485_tx_drain_interval);
1297 		i++;
1298 	}
1299 
1300 	if (port->rs485.delay_rts_after_send)
1301 		mdelay(port->rs485.delay_rts_after_send);
1302 
1303 	cr = pl011_read(uap, REG_CR);
1304 
1305 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1306 		cr &= ~UART011_CR_RTS;
1307 	else
1308 		cr |= UART011_CR_RTS;
1309 
1310 	/* Disable the transmitter and reenable the transceiver */
1311 	cr &= ~UART011_CR_TXE;
1312 	cr |= UART011_CR_RXE;
1313 	pl011_write(cr, uap, REG_CR);
1314 
1315 	uap->rs485_tx_started = false;
1316 }
1317 
1318 static void pl011_stop_tx(struct uart_port *port)
1319 {
1320 	struct uart_amba_port *uap =
1321 	    container_of(port, struct uart_amba_port, port);
1322 
1323 	uap->im &= ~UART011_TXIM;
1324 	pl011_write(uap->im, uap, REG_IMSC);
1325 	pl011_dma_tx_stop(uap);
1326 
1327 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1328 		pl011_rs485_tx_stop(uap);
1329 }
1330 
1331 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1332 
1333 /* Start TX with programmed I/O only (no DMA) */
1334 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1335 {
1336 	if (pl011_tx_chars(uap, false)) {
1337 		uap->im |= UART011_TXIM;
1338 		pl011_write(uap->im, uap, REG_IMSC);
1339 	}
1340 }
1341 
1342 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1343 {
1344 	struct uart_port *port = &uap->port;
1345 	u32 cr;
1346 
1347 	/* Enable transmitter */
1348 	cr = pl011_read(uap, REG_CR);
1349 	cr |= UART011_CR_TXE;
1350 
1351 	/* Disable receiver if half-duplex */
1352 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1353 		cr &= ~UART011_CR_RXE;
1354 
1355 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1356 		cr &= ~UART011_CR_RTS;
1357 	else
1358 		cr |= UART011_CR_RTS;
1359 
1360 	pl011_write(cr, uap, REG_CR);
1361 
1362 	if (port->rs485.delay_rts_before_send)
1363 		mdelay(port->rs485.delay_rts_before_send);
1364 
1365 	uap->rs485_tx_started = true;
1366 }
1367 
1368 static void pl011_start_tx(struct uart_port *port)
1369 {
1370 	struct uart_amba_port *uap =
1371 	    container_of(port, struct uart_amba_port, port);
1372 
1373 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1374 	    !uap->rs485_tx_started)
1375 		pl011_rs485_tx_start(uap);
1376 
1377 	if (!pl011_dma_tx_start(uap))
1378 		pl011_start_tx_pio(uap);
1379 }
1380 
1381 static void pl011_stop_rx(struct uart_port *port)
1382 {
1383 	struct uart_amba_port *uap =
1384 	    container_of(port, struct uart_amba_port, port);
1385 
1386 	uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1387 		     UART011_PEIM | UART011_BEIM | UART011_OEIM);
1388 	pl011_write(uap->im, uap, REG_IMSC);
1389 
1390 	pl011_dma_rx_stop(uap);
1391 }
1392 
1393 static void pl011_throttle_rx(struct uart_port *port)
1394 {
1395 	unsigned long flags;
1396 
1397 	uart_port_lock_irqsave(port, &flags);
1398 	pl011_stop_rx(port);
1399 	uart_port_unlock_irqrestore(port, flags);
1400 }
1401 
1402 static void pl011_enable_ms(struct uart_port *port)
1403 {
1404 	struct uart_amba_port *uap =
1405 	    container_of(port, struct uart_amba_port, port);
1406 
1407 	uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1408 	pl011_write(uap->im, uap, REG_IMSC);
1409 }
1410 
1411 static void pl011_rx_chars(struct uart_amba_port *uap)
1412 __releases(&uap->port.lock)
1413 __acquires(&uap->port.lock)
1414 {
1415 	pl011_fifo_to_tty(uap);
1416 
1417 	uart_port_unlock(&uap->port);
1418 	tty_flip_buffer_push(&uap->port.state->port);
1419 	/*
1420 	 * If we were temporarily out of DMA mode for a while,
1421 	 * attempt to switch back to DMA mode again.
1422 	 */
1423 	if (pl011_dma_rx_available(uap)) {
1424 		if (pl011_dma_rx_trigger_dma(uap)) {
1425 			dev_dbg(uap->port.dev,
1426 				"could not trigger RX DMA job fall back to interrupt mode again\n");
1427 			uap->im |= UART011_RXIM;
1428 			pl011_write(uap->im, uap, REG_IMSC);
1429 		} else {
1430 #ifdef CONFIG_DMA_ENGINE
1431 			/* Start Rx DMA poll */
1432 			if (uap->dmarx.poll_rate) {
1433 				uap->dmarx.last_jiffies = jiffies;
1434 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1435 				mod_timer(&uap->dmarx.timer,
1436 					  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1437 			}
1438 #endif
1439 		}
1440 	}
1441 	uart_port_lock(&uap->port);
1442 }
1443 
1444 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1445 			  bool from_irq)
1446 {
1447 	if (unlikely(!from_irq) &&
1448 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1449 		return false; /* unable to transmit character */
1450 
1451 	pl011_write(c, uap, REG_DR);
1452 	uap->port.icount.tx++;
1453 
1454 	return true;
1455 }
1456 
1457 /* Returns true if tx interrupts have to be (kept) enabled  */
1458 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1459 {
1460 	struct circ_buf *xmit = &uap->port.state->xmit;
1461 	int count = uap->fifosize >> 1;
1462 
1463 	if (uap->port.x_char) {
1464 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1465 			return true;
1466 		uap->port.x_char = 0;
1467 		--count;
1468 	}
1469 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1470 		pl011_stop_tx(&uap->port);
1471 		return false;
1472 	}
1473 
1474 	/* If we are using DMA mode, try to send some characters. */
1475 	if (pl011_dma_tx_irq(uap))
1476 		return true;
1477 
1478 	do {
1479 		if (likely(from_irq) && count-- == 0)
1480 			break;
1481 
1482 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1483 			break;
1484 
1485 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1486 	} while (!uart_circ_empty(xmit));
1487 
1488 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1489 		uart_write_wakeup(&uap->port);
1490 
1491 	if (uart_circ_empty(xmit)) {
1492 		pl011_stop_tx(&uap->port);
1493 		return false;
1494 	}
1495 	return true;
1496 }
1497 
1498 static void pl011_modem_status(struct uart_amba_port *uap)
1499 {
1500 	unsigned int status, delta;
1501 
1502 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1503 
1504 	delta = status ^ uap->old_status;
1505 	uap->old_status = status;
1506 
1507 	if (!delta)
1508 		return;
1509 
1510 	if (delta & UART01x_FR_DCD)
1511 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1512 
1513 	if (delta & uap->vendor->fr_dsr)
1514 		uap->port.icount.dsr++;
1515 
1516 	if (delta & uap->vendor->fr_cts)
1517 		uart_handle_cts_change(&uap->port,
1518 				       status & uap->vendor->fr_cts);
1519 
1520 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1521 }
1522 
1523 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1524 {
1525 	if (!uap->vendor->cts_event_workaround)
1526 		return;
1527 
1528 	/* workaround to make sure that all bits are unlocked.. */
1529 	pl011_write(0x00, uap, REG_ICR);
1530 
1531 	/*
1532 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1533 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1534 	 * so add 2 dummy reads
1535 	 */
1536 	pl011_read(uap, REG_ICR);
1537 	pl011_read(uap, REG_ICR);
1538 }
1539 
1540 static irqreturn_t pl011_int(int irq, void *dev_id)
1541 {
1542 	struct uart_amba_port *uap = dev_id;
1543 	unsigned long flags;
1544 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1545 	int handled = 0;
1546 
1547 	uart_port_lock_irqsave(&uap->port, &flags);
1548 	status = pl011_read(uap, REG_RIS) & uap->im;
1549 	if (status) {
1550 		do {
1551 			check_apply_cts_event_workaround(uap);
1552 
1553 			pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1554 				    uap, REG_ICR);
1555 
1556 			if (status & (UART011_RTIS | UART011_RXIS)) {
1557 				if (pl011_dma_rx_running(uap))
1558 					pl011_dma_rx_irq(uap);
1559 				else
1560 					pl011_rx_chars(uap);
1561 			}
1562 			if (status & (UART011_DSRMIS | UART011_DCDMIS |
1563 				      UART011_CTSMIS | UART011_RIMIS))
1564 				pl011_modem_status(uap);
1565 			if (status & UART011_TXIS)
1566 				pl011_tx_chars(uap, true);
1567 
1568 			if (pass_counter-- == 0)
1569 				break;
1570 
1571 			status = pl011_read(uap, REG_RIS) & uap->im;
1572 		} while (status != 0);
1573 		handled = 1;
1574 	}
1575 
1576 	uart_port_unlock_irqrestore(&uap->port, flags);
1577 
1578 	return IRQ_RETVAL(handled);
1579 }
1580 
1581 static unsigned int pl011_tx_empty(struct uart_port *port)
1582 {
1583 	struct uart_amba_port *uap =
1584 	    container_of(port, struct uart_amba_port, port);
1585 
1586 	/* Allow feature register bits to be inverted to work around errata */
1587 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1588 
1589 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1590 							0 : TIOCSER_TEMT;
1591 }
1592 
1593 static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1594 {
1595 	if (cond)
1596 		*ptr |= mask;
1597 }
1598 
1599 static unsigned int pl011_get_mctrl(struct uart_port *port)
1600 {
1601 	struct uart_amba_port *uap =
1602 	    container_of(port, struct uart_amba_port, port);
1603 	unsigned int result = 0;
1604 	unsigned int status = pl011_read(uap, REG_FR);
1605 
1606 	pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1607 	pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1608 	pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1609 	pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1610 
1611 	return result;
1612 }
1613 
1614 static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1615 {
1616 	if (cond)
1617 		*ptr |= mask;
1618 	else
1619 		*ptr &= ~mask;
1620 }
1621 
1622 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1623 {
1624 	struct uart_amba_port *uap =
1625 	    container_of(port, struct uart_amba_port, port);
1626 	unsigned int cr;
1627 
1628 	cr = pl011_read(uap, REG_CR);
1629 
1630 	pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1631 	pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1632 	pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1633 	pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1634 	pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1635 
1636 	if (port->status & UPSTAT_AUTORTS) {
1637 		/* We need to disable auto-RTS if we want to turn RTS off */
1638 		pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1639 	}
1640 
1641 	pl011_write(cr, uap, REG_CR);
1642 }
1643 
1644 static void pl011_break_ctl(struct uart_port *port, int break_state)
1645 {
1646 	struct uart_amba_port *uap =
1647 	    container_of(port, struct uart_amba_port, port);
1648 	unsigned long flags;
1649 	unsigned int lcr_h;
1650 
1651 	uart_port_lock_irqsave(&uap->port, &flags);
1652 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1653 	if (break_state == -1)
1654 		lcr_h |= UART01x_LCRH_BRK;
1655 	else
1656 		lcr_h &= ~UART01x_LCRH_BRK;
1657 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1658 	uart_port_unlock_irqrestore(&uap->port, flags);
1659 }
1660 
1661 #ifdef CONFIG_CONSOLE_POLL
1662 
1663 static void pl011_quiesce_irqs(struct uart_port *port)
1664 {
1665 	struct uart_amba_port *uap =
1666 	    container_of(port, struct uart_amba_port, port);
1667 
1668 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1669 	/*
1670 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1671 	 * we simply mask it. start_tx() will unmask it.
1672 	 *
1673 	 * Note we can race with start_tx(), and if the race happens, the
1674 	 * polling user might get another interrupt just after we clear it.
1675 	 * But it should be OK and can happen even w/o the race, e.g.
1676 	 * controller immediately got some new data and raised the IRQ.
1677 	 *
1678 	 * And whoever uses polling routines assumes that it manages the device
1679 	 * (including tx queue), so we're also fine with start_tx()'s caller
1680 	 * side.
1681 	 */
1682 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1683 		    REG_IMSC);
1684 }
1685 
1686 static int pl011_get_poll_char(struct uart_port *port)
1687 {
1688 	struct uart_amba_port *uap =
1689 	    container_of(port, struct uart_amba_port, port);
1690 	unsigned int status;
1691 
1692 	/*
1693 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1694 	 * debugger.
1695 	 */
1696 	pl011_quiesce_irqs(port);
1697 
1698 	status = pl011_read(uap, REG_FR);
1699 	if (status & UART01x_FR_RXFE)
1700 		return NO_POLL_CHAR;
1701 
1702 	return pl011_read(uap, REG_DR);
1703 }
1704 
1705 static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1706 {
1707 	struct uart_amba_port *uap =
1708 	    container_of(port, struct uart_amba_port, port);
1709 
1710 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1711 		cpu_relax();
1712 
1713 	pl011_write(ch, uap, REG_DR);
1714 }
1715 
1716 #endif /* CONFIG_CONSOLE_POLL */
1717 
1718 static int pl011_hwinit(struct uart_port *port)
1719 {
1720 	struct uart_amba_port *uap =
1721 	    container_of(port, struct uart_amba_port, port);
1722 	int retval;
1723 
1724 	/* Optionaly enable pins to be muxed in and configured */
1725 	pinctrl_pm_select_default_state(port->dev);
1726 
1727 	/*
1728 	 * Try to enable the clock producer.
1729 	 */
1730 	retval = clk_prepare_enable(uap->clk);
1731 	if (retval)
1732 		return retval;
1733 
1734 	uap->port.uartclk = clk_get_rate(uap->clk);
1735 
1736 	/* Clear pending error and receive interrupts */
1737 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1738 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1739 		    uap, REG_ICR);
1740 
1741 	/*
1742 	 * Save interrupts enable mask, and enable RX interrupts in case if
1743 	 * the interrupt is used for NMI entry.
1744 	 */
1745 	uap->im = pl011_read(uap, REG_IMSC);
1746 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1747 
1748 	if (dev_get_platdata(uap->port.dev)) {
1749 		struct amba_pl011_data *plat;
1750 
1751 		plat = dev_get_platdata(uap->port.dev);
1752 		if (plat->init)
1753 			plat->init();
1754 	}
1755 	return 0;
1756 }
1757 
1758 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1759 {
1760 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1761 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1762 }
1763 
1764 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1765 {
1766 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1767 	if (pl011_split_lcrh(uap)) {
1768 		int i;
1769 		/*
1770 		 * Wait 10 PCLKs before writing LCRH_TX register,
1771 		 * to get this delay write read only register 10 times
1772 		 */
1773 		for (i = 0; i < 10; ++i)
1774 			pl011_write(0xff, uap, REG_MIS);
1775 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1776 	}
1777 }
1778 
1779 static int pl011_allocate_irq(struct uart_amba_port *uap)
1780 {
1781 	pl011_write(uap->im, uap, REG_IMSC);
1782 
1783 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1784 }
1785 
1786 /*
1787  * Enable interrupts, only timeouts when using DMA
1788  * if initial RX DMA job failed, start in interrupt mode
1789  * as well.
1790  */
1791 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1792 {
1793 	unsigned long flags;
1794 	unsigned int i;
1795 
1796 	uart_port_lock_irqsave(&uap->port, &flags);
1797 
1798 	/* Clear out any spuriously appearing RX interrupts */
1799 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1800 
1801 	/*
1802 	 * RXIS is asserted only when the RX FIFO transitions from below
1803 	 * to above the trigger threshold.  If the RX FIFO is already
1804 	 * full to the threshold this can't happen and RXIS will now be
1805 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1806 	 */
1807 	for (i = 0; i < uap->fifosize * 2; ++i) {
1808 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1809 			break;
1810 
1811 		pl011_read(uap, REG_DR);
1812 	}
1813 
1814 	uap->im = UART011_RTIM;
1815 	if (!pl011_dma_rx_running(uap))
1816 		uap->im |= UART011_RXIM;
1817 	pl011_write(uap->im, uap, REG_IMSC);
1818 	uart_port_unlock_irqrestore(&uap->port, flags);
1819 }
1820 
1821 static void pl011_unthrottle_rx(struct uart_port *port)
1822 {
1823 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1824 	unsigned long flags;
1825 
1826 	uart_port_lock_irqsave(&uap->port, &flags);
1827 
1828 	uap->im = UART011_RTIM;
1829 	if (!pl011_dma_rx_running(uap))
1830 		uap->im |= UART011_RXIM;
1831 
1832 	pl011_write(uap->im, uap, REG_IMSC);
1833 
1834 	uart_port_unlock_irqrestore(&uap->port, flags);
1835 }
1836 
1837 static int pl011_startup(struct uart_port *port)
1838 {
1839 	struct uart_amba_port *uap =
1840 	    container_of(port, struct uart_amba_port, port);
1841 	unsigned int cr;
1842 	int retval;
1843 
1844 	retval = pl011_hwinit(port);
1845 	if (retval)
1846 		goto clk_dis;
1847 
1848 	retval = pl011_allocate_irq(uap);
1849 	if (retval)
1850 		goto clk_dis;
1851 
1852 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1853 
1854 	uart_port_lock_irq(&uap->port);
1855 
1856 	cr = pl011_read(uap, REG_CR);
1857 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1858 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1859 
1860 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1861 		cr |= UART011_CR_TXE;
1862 
1863 	pl011_write(cr, uap, REG_CR);
1864 
1865 	uart_port_unlock_irq(&uap->port);
1866 
1867 	/*
1868 	 * initialise the old status of the modem signals
1869 	 */
1870 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1871 
1872 	/* Startup DMA */
1873 	pl011_dma_startup(uap);
1874 
1875 	pl011_enable_interrupts(uap);
1876 
1877 	return 0;
1878 
1879  clk_dis:
1880 	clk_disable_unprepare(uap->clk);
1881 	return retval;
1882 }
1883 
1884 static int sbsa_uart_startup(struct uart_port *port)
1885 {
1886 	struct uart_amba_port *uap =
1887 		container_of(port, struct uart_amba_port, port);
1888 	int retval;
1889 
1890 	retval = pl011_hwinit(port);
1891 	if (retval)
1892 		return retval;
1893 
1894 	retval = pl011_allocate_irq(uap);
1895 	if (retval)
1896 		return retval;
1897 
1898 	/* The SBSA UART does not support any modem status lines. */
1899 	uap->old_status = 0;
1900 
1901 	pl011_enable_interrupts(uap);
1902 
1903 	return 0;
1904 }
1905 
1906 static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1907 {
1908 	unsigned long val;
1909 
1910 	val = pl011_read(uap, lcrh);
1911 	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1912 	pl011_write(val, uap, lcrh);
1913 }
1914 
1915 /*
1916  * disable the port. It should not disable RTS and DTR.
1917  * Also RTS and DTR state should be preserved to restore
1918  * it during startup().
1919  */
1920 static void pl011_disable_uart(struct uart_amba_port *uap)
1921 {
1922 	unsigned int cr;
1923 
1924 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1925 	uart_port_lock_irq(&uap->port);
1926 	cr = pl011_read(uap, REG_CR);
1927 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1928 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1929 	pl011_write(cr, uap, REG_CR);
1930 	uart_port_unlock_irq(&uap->port);
1931 
1932 	/*
1933 	 * disable break condition and fifos
1934 	 */
1935 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1936 	if (pl011_split_lcrh(uap))
1937 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1938 }
1939 
1940 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1941 {
1942 	uart_port_lock_irq(&uap->port);
1943 
1944 	/* mask all interrupts and clear all pending ones */
1945 	uap->im = 0;
1946 	pl011_write(uap->im, uap, REG_IMSC);
1947 	pl011_write(0xffff, uap, REG_ICR);
1948 
1949 	uart_port_unlock_irq(&uap->port);
1950 }
1951 
1952 static void pl011_shutdown(struct uart_port *port)
1953 {
1954 	struct uart_amba_port *uap =
1955 		container_of(port, struct uart_amba_port, port);
1956 
1957 	pl011_disable_interrupts(uap);
1958 
1959 	pl011_dma_shutdown(uap);
1960 
1961 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1962 		pl011_rs485_tx_stop(uap);
1963 
1964 	free_irq(uap->port.irq, uap);
1965 
1966 	pl011_disable_uart(uap);
1967 
1968 	/*
1969 	 * Shut down the clock producer
1970 	 */
1971 	clk_disable_unprepare(uap->clk);
1972 	/* Optionally let pins go into sleep states */
1973 	pinctrl_pm_select_sleep_state(port->dev);
1974 
1975 	if (dev_get_platdata(uap->port.dev)) {
1976 		struct amba_pl011_data *plat;
1977 
1978 		plat = dev_get_platdata(uap->port.dev);
1979 		if (plat->exit)
1980 			plat->exit();
1981 	}
1982 
1983 	if (uap->port.ops->flush_buffer)
1984 		uap->port.ops->flush_buffer(port);
1985 }
1986 
1987 static void sbsa_uart_shutdown(struct uart_port *port)
1988 {
1989 	struct uart_amba_port *uap =
1990 		container_of(port, struct uart_amba_port, port);
1991 
1992 	pl011_disable_interrupts(uap);
1993 
1994 	free_irq(uap->port.irq, uap);
1995 
1996 	if (uap->port.ops->flush_buffer)
1997 		uap->port.ops->flush_buffer(port);
1998 }
1999 
2000 static void
2001 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2002 {
2003 	port->read_status_mask = UART011_DR_OE | 255;
2004 	if (termios->c_iflag & INPCK)
2005 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2006 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2007 		port->read_status_mask |= UART011_DR_BE;
2008 
2009 	/*
2010 	 * Characters to ignore
2011 	 */
2012 	port->ignore_status_mask = 0;
2013 	if (termios->c_iflag & IGNPAR)
2014 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2015 	if (termios->c_iflag & IGNBRK) {
2016 		port->ignore_status_mask |= UART011_DR_BE;
2017 		/*
2018 		 * If we're ignoring parity and break indicators,
2019 		 * ignore overruns too (for real raw support).
2020 		 */
2021 		if (termios->c_iflag & IGNPAR)
2022 			port->ignore_status_mask |= UART011_DR_OE;
2023 	}
2024 
2025 	/*
2026 	 * Ignore all characters if CREAD is not set.
2027 	 */
2028 	if ((termios->c_cflag & CREAD) == 0)
2029 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2030 }
2031 
2032 static void
2033 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2034 		  const struct ktermios *old)
2035 {
2036 	struct uart_amba_port *uap =
2037 	    container_of(port, struct uart_amba_port, port);
2038 	unsigned int lcr_h, old_cr;
2039 	unsigned long flags;
2040 	unsigned int baud, quot, clkdiv;
2041 	unsigned int bits;
2042 
2043 	if (uap->vendor->oversampling)
2044 		clkdiv = 8;
2045 	else
2046 		clkdiv = 16;
2047 
2048 	/*
2049 	 * Ask the core to calculate the divisor for us.
2050 	 */
2051 	baud = uart_get_baud_rate(port, termios, old, 0,
2052 				  port->uartclk / clkdiv);
2053 #ifdef CONFIG_DMA_ENGINE
2054 	/*
2055 	 * Adjust RX DMA polling rate with baud rate if not specified.
2056 	 */
2057 	if (uap->dmarx.auto_poll_rate)
2058 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2059 #endif
2060 
2061 	if (baud > port->uartclk / 16)
2062 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2063 	else
2064 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2065 
2066 	switch (termios->c_cflag & CSIZE) {
2067 	case CS5:
2068 		lcr_h = UART01x_LCRH_WLEN_5;
2069 		break;
2070 	case CS6:
2071 		lcr_h = UART01x_LCRH_WLEN_6;
2072 		break;
2073 	case CS7:
2074 		lcr_h = UART01x_LCRH_WLEN_7;
2075 		break;
2076 	default: // CS8
2077 		lcr_h = UART01x_LCRH_WLEN_8;
2078 		break;
2079 	}
2080 	if (termios->c_cflag & CSTOPB)
2081 		lcr_h |= UART01x_LCRH_STP2;
2082 	if (termios->c_cflag & PARENB) {
2083 		lcr_h |= UART01x_LCRH_PEN;
2084 		if (!(termios->c_cflag & PARODD))
2085 			lcr_h |= UART01x_LCRH_EPS;
2086 		if (termios->c_cflag & CMSPAR)
2087 			lcr_h |= UART011_LCRH_SPS;
2088 	}
2089 	if (uap->fifosize > 1)
2090 		lcr_h |= UART01x_LCRH_FEN;
2091 
2092 	bits = tty_get_frame_size(termios->c_cflag);
2093 
2094 	uart_port_lock_irqsave(port, &flags);
2095 
2096 	/*
2097 	 * Update the per-port timeout.
2098 	 */
2099 	uart_update_timeout(port, termios->c_cflag, baud);
2100 
2101 	/*
2102 	 * Calculate the approximated time it takes to transmit one character
2103 	 * with the given baud rate. We use this as the poll interval when we
2104 	 * wait for the tx queue to empty.
2105 	 */
2106 	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2107 
2108 	pl011_setup_status_masks(port, termios);
2109 
2110 	if (UART_ENABLE_MS(port, termios->c_cflag))
2111 		pl011_enable_ms(port);
2112 
2113 	if (port->rs485.flags & SER_RS485_ENABLED)
2114 		termios->c_cflag &= ~CRTSCTS;
2115 
2116 	old_cr = pl011_read(uap, REG_CR);
2117 
2118 	if (termios->c_cflag & CRTSCTS) {
2119 		if (old_cr & UART011_CR_RTS)
2120 			old_cr |= UART011_CR_RTSEN;
2121 
2122 		old_cr |= UART011_CR_CTSEN;
2123 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2124 	} else {
2125 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2126 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2127 	}
2128 
2129 	if (uap->vendor->oversampling) {
2130 		if (baud > port->uartclk / 16)
2131 			old_cr |= ST_UART011_CR_OVSFACT;
2132 		else
2133 			old_cr &= ~ST_UART011_CR_OVSFACT;
2134 	}
2135 
2136 	/*
2137 	 * Workaround for the ST Micro oversampling variants to
2138 	 * increase the bitrate slightly, by lowering the divisor,
2139 	 * to avoid delayed sampling of start bit at high speeds,
2140 	 * else we see data corruption.
2141 	 */
2142 	if (uap->vendor->oversampling) {
2143 		if (baud >= 3000000 && baud < 3250000 && quot > 1)
2144 			quot -= 1;
2145 		else if (baud > 3250000 && quot > 2)
2146 			quot -= 2;
2147 	}
2148 	/* Set baud rate */
2149 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2150 	pl011_write(quot >> 6, uap, REG_IBRD);
2151 
2152 	/*
2153 	 * ----------v----------v----------v----------v-----
2154 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2155 	 * REG_FBRD & REG_IBRD.
2156 	 * ----------^----------^----------^----------^-----
2157 	 */
2158 	pl011_write_lcr_h(uap, lcr_h);
2159 
2160 	/*
2161 	 * Receive was disabled by pl011_disable_uart during shutdown.
2162 	 * Need to reenable receive if you need to use a tty_driver
2163 	 * returns from tty_find_polling_driver() after a port shutdown.
2164 	 */
2165 	old_cr |= UART011_CR_RXE;
2166 	pl011_write(old_cr, uap, REG_CR);
2167 
2168 	uart_port_unlock_irqrestore(port, flags);
2169 }
2170 
2171 static void
2172 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2173 		      const struct ktermios *old)
2174 {
2175 	struct uart_amba_port *uap =
2176 	    container_of(port, struct uart_amba_port, port);
2177 	unsigned long flags;
2178 
2179 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2180 
2181 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2182 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2183 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2184 	termios->c_cflag |= CS8 | CLOCAL;
2185 
2186 	uart_port_lock_irqsave(port, &flags);
2187 	uart_update_timeout(port, CS8, uap->fixed_baud);
2188 	pl011_setup_status_masks(port, termios);
2189 	uart_port_unlock_irqrestore(port, flags);
2190 }
2191 
2192 static const char *pl011_type(struct uart_port *port)
2193 {
2194 	struct uart_amba_port *uap =
2195 	    container_of(port, struct uart_amba_port, port);
2196 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2197 }
2198 
2199 /*
2200  * Configure/autoconfigure the port.
2201  */
2202 static void pl011_config_port(struct uart_port *port, int flags)
2203 {
2204 	if (flags & UART_CONFIG_TYPE)
2205 		port->type = PORT_AMBA;
2206 }
2207 
2208 /*
2209  * verify the new serial_struct (for TIOCSSERIAL).
2210  */
2211 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2212 {
2213 	int ret = 0;
2214 
2215 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2216 		ret = -EINVAL;
2217 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2218 		ret = -EINVAL;
2219 	if (ser->baud_base < 9600)
2220 		ret = -EINVAL;
2221 	if (port->mapbase != (unsigned long)ser->iomem_base)
2222 		ret = -EINVAL;
2223 	return ret;
2224 }
2225 
2226 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2227 			      struct serial_rs485 *rs485)
2228 {
2229 	struct uart_amba_port *uap =
2230 		container_of(port, struct uart_amba_port, port);
2231 
2232 	if (port->rs485.flags & SER_RS485_ENABLED)
2233 		pl011_rs485_tx_stop(uap);
2234 
2235 	/* Make sure auto RTS is disabled */
2236 	if (rs485->flags & SER_RS485_ENABLED) {
2237 		u32 cr = pl011_read(uap, REG_CR);
2238 
2239 		cr &= ~UART011_CR_RTSEN;
2240 		pl011_write(cr, uap, REG_CR);
2241 		port->status &= ~UPSTAT_AUTORTS;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static const struct uart_ops amba_pl011_pops = {
2248 	.tx_empty	= pl011_tx_empty,
2249 	.set_mctrl	= pl011_set_mctrl,
2250 	.get_mctrl	= pl011_get_mctrl,
2251 	.stop_tx	= pl011_stop_tx,
2252 	.start_tx	= pl011_start_tx,
2253 	.stop_rx	= pl011_stop_rx,
2254 	.throttle	= pl011_throttle_rx,
2255 	.unthrottle	= pl011_unthrottle_rx,
2256 	.enable_ms	= pl011_enable_ms,
2257 	.break_ctl	= pl011_break_ctl,
2258 	.startup	= pl011_startup,
2259 	.shutdown	= pl011_shutdown,
2260 	.flush_buffer	= pl011_dma_flush_buffer,
2261 	.set_termios	= pl011_set_termios,
2262 	.type		= pl011_type,
2263 	.config_port	= pl011_config_port,
2264 	.verify_port	= pl011_verify_port,
2265 #ifdef CONFIG_CONSOLE_POLL
2266 	.poll_init     = pl011_hwinit,
2267 	.poll_get_char = pl011_get_poll_char,
2268 	.poll_put_char = pl011_put_poll_char,
2269 #endif
2270 };
2271 
2272 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2273 {
2274 }
2275 
2276 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2277 {
2278 	return 0;
2279 }
2280 
2281 static const struct uart_ops sbsa_uart_pops = {
2282 	.tx_empty	= pl011_tx_empty,
2283 	.set_mctrl	= sbsa_uart_set_mctrl,
2284 	.get_mctrl	= sbsa_uart_get_mctrl,
2285 	.stop_tx	= pl011_stop_tx,
2286 	.start_tx	= pl011_start_tx,
2287 	.stop_rx	= pl011_stop_rx,
2288 	.startup	= sbsa_uart_startup,
2289 	.shutdown	= sbsa_uart_shutdown,
2290 	.set_termios	= sbsa_uart_set_termios,
2291 	.type		= pl011_type,
2292 	.config_port	= pl011_config_port,
2293 	.verify_port	= pl011_verify_port,
2294 #ifdef CONFIG_CONSOLE_POLL
2295 	.poll_init     = pl011_hwinit,
2296 	.poll_get_char = pl011_get_poll_char,
2297 	.poll_put_char = pl011_put_poll_char,
2298 #endif
2299 };
2300 
2301 static struct uart_amba_port *amba_ports[UART_NR];
2302 
2303 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2304 
2305 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2306 {
2307 	struct uart_amba_port *uap =
2308 	    container_of(port, struct uart_amba_port, port);
2309 
2310 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2311 		cpu_relax();
2312 	pl011_write(ch, uap, REG_DR);
2313 }
2314 
2315 static void
2316 pl011_console_write(struct console *co, const char *s, unsigned int count)
2317 {
2318 	struct uart_amba_port *uap = amba_ports[co->index];
2319 	unsigned int old_cr = 0, new_cr;
2320 	unsigned long flags;
2321 	int locked = 1;
2322 
2323 	clk_enable(uap->clk);
2324 
2325 	local_irq_save(flags);
2326 	if (uap->port.sysrq)
2327 		locked = 0;
2328 	else if (oops_in_progress)
2329 		locked = uart_port_trylock(&uap->port);
2330 	else
2331 		uart_port_lock(&uap->port);
2332 
2333 	/*
2334 	 *	First save the CR then disable the interrupts
2335 	 */
2336 	if (!uap->vendor->always_enabled) {
2337 		old_cr = pl011_read(uap, REG_CR);
2338 		new_cr = old_cr & ~UART011_CR_CTSEN;
2339 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2340 		pl011_write(new_cr, uap, REG_CR);
2341 	}
2342 
2343 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2344 
2345 	/*
2346 	 *	Finally, wait for transmitter to become empty and restore the
2347 	 *	TCR. Allow feature register bits to be inverted to work around
2348 	 *	errata.
2349 	 */
2350 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2351 						& uap->vendor->fr_busy)
2352 		cpu_relax();
2353 	if (!uap->vendor->always_enabled)
2354 		pl011_write(old_cr, uap, REG_CR);
2355 
2356 	if (locked)
2357 		uart_port_unlock(&uap->port);
2358 	local_irq_restore(flags);
2359 
2360 	clk_disable(uap->clk);
2361 }
2362 
2363 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2364 				      int *parity, int *bits)
2365 {
2366 	unsigned int lcr_h, ibrd, fbrd;
2367 
2368 	if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2369 		return;
2370 
2371 	lcr_h = pl011_read(uap, REG_LCRH_TX);
2372 
2373 	*parity = 'n';
2374 	if (lcr_h & UART01x_LCRH_PEN) {
2375 		if (lcr_h & UART01x_LCRH_EPS)
2376 			*parity = 'e';
2377 		else
2378 			*parity = 'o';
2379 	}
2380 
2381 	if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2382 		*bits = 7;
2383 	else
2384 		*bits = 8;
2385 
2386 	ibrd = pl011_read(uap, REG_IBRD);
2387 	fbrd = pl011_read(uap, REG_FBRD);
2388 
2389 	*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2390 
2391 	if (uap->vendor->oversampling &&
2392 	    (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2393 		*baud *= 2;
2394 }
2395 
2396 static int pl011_console_setup(struct console *co, char *options)
2397 {
2398 	struct uart_amba_port *uap;
2399 	int baud = 38400;
2400 	int bits = 8;
2401 	int parity = 'n';
2402 	int flow = 'n';
2403 	int ret;
2404 
2405 	/*
2406 	 * Check whether an invalid uart number has been specified, and
2407 	 * if so, search for the first available port that does have
2408 	 * console support.
2409 	 */
2410 	if (co->index >= UART_NR)
2411 		co->index = 0;
2412 	uap = amba_ports[co->index];
2413 	if (!uap)
2414 		return -ENODEV;
2415 
2416 	/* Allow pins to be muxed in and configured */
2417 	pinctrl_pm_select_default_state(uap->port.dev);
2418 
2419 	ret = clk_prepare(uap->clk);
2420 	if (ret)
2421 		return ret;
2422 
2423 	if (dev_get_platdata(uap->port.dev)) {
2424 		struct amba_pl011_data *plat;
2425 
2426 		plat = dev_get_platdata(uap->port.dev);
2427 		if (plat->init)
2428 			plat->init();
2429 	}
2430 
2431 	uap->port.uartclk = clk_get_rate(uap->clk);
2432 
2433 	if (uap->vendor->fixed_options) {
2434 		baud = uap->fixed_baud;
2435 	} else {
2436 		if (options)
2437 			uart_parse_options(options,
2438 					   &baud, &parity, &bits, &flow);
2439 		else
2440 			pl011_console_get_options(uap, &baud, &parity, &bits);
2441 	}
2442 
2443 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2444 }
2445 
2446 /**
2447  *	pl011_console_match - non-standard console matching
2448  *	@co:	  registering console
2449  *	@name:	  name from console command line
2450  *	@idx:	  index from console command line
2451  *	@options: ptr to option string from console command line
2452  *
2453  *	Only attempts to match console command lines of the form:
2454  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2455  *	    console=pl011,0x<addr>[,<options>]
2456  *	This form is used to register an initial earlycon boot console and
2457  *	replace it with the amba_console at pl011 driver init.
2458  *
2459  *	Performs console setup for a match (as required by interface)
2460  *	If no <options> are specified, then assume the h/w is already setup.
2461  *
2462  *	Returns 0 if console matches; otherwise non-zero to use default matching
2463  */
2464 static int pl011_console_match(struct console *co, char *name, int idx,
2465 			       char *options)
2466 {
2467 	unsigned char iotype;
2468 	resource_size_t addr;
2469 	int i;
2470 
2471 	/*
2472 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2473 	 * have a distinct console name, so make sure we check for that.
2474 	 * The actual implementation of the erratum occurs in the probe
2475 	 * function.
2476 	 */
2477 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2478 		return -ENODEV;
2479 
2480 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2481 		return -ENODEV;
2482 
2483 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2484 		return -ENODEV;
2485 
2486 	/* try to match the port specified on the command line */
2487 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2488 		struct uart_port *port;
2489 
2490 		if (!amba_ports[i])
2491 			continue;
2492 
2493 		port = &amba_ports[i]->port;
2494 
2495 		if (port->mapbase != addr)
2496 			continue;
2497 
2498 		co->index = i;
2499 		port->cons = co;
2500 		return pl011_console_setup(co, options);
2501 	}
2502 
2503 	return -ENODEV;
2504 }
2505 
2506 static struct uart_driver amba_reg;
2507 static struct console amba_console = {
2508 	.name		= "ttyAMA",
2509 	.write		= pl011_console_write,
2510 	.device		= uart_console_device,
2511 	.setup		= pl011_console_setup,
2512 	.match		= pl011_console_match,
2513 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2514 	.index		= -1,
2515 	.data		= &amba_reg,
2516 };
2517 
2518 #define AMBA_CONSOLE	(&amba_console)
2519 
2520 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2521 {
2522 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2523 		cpu_relax();
2524 	writel(c, port->membase + UART01x_DR);
2525 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2526 		cpu_relax();
2527 }
2528 
2529 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2530 {
2531 	struct earlycon_device *dev = con->data;
2532 
2533 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2534 }
2535 
2536 static void pl011_putc(struct uart_port *port, unsigned char c)
2537 {
2538 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2539 		cpu_relax();
2540 	if (port->iotype == UPIO_MEM32)
2541 		writel(c, port->membase + UART01x_DR);
2542 	else
2543 		writeb(c, port->membase + UART01x_DR);
2544 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2545 		cpu_relax();
2546 }
2547 
2548 static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2549 {
2550 	struct earlycon_device *dev = con->data;
2551 
2552 	uart_console_write(&dev->port, s, n, pl011_putc);
2553 }
2554 
2555 #ifdef CONFIG_CONSOLE_POLL
2556 static int pl011_getc(struct uart_port *port)
2557 {
2558 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2559 		return NO_POLL_CHAR;
2560 
2561 	if (port->iotype == UPIO_MEM32)
2562 		return readl(port->membase + UART01x_DR);
2563 	else
2564 		return readb(port->membase + UART01x_DR);
2565 }
2566 
2567 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2568 {
2569 	struct earlycon_device *dev = con->data;
2570 	int ch, num_read = 0;
2571 
2572 	while (num_read < n) {
2573 		ch = pl011_getc(&dev->port);
2574 		if (ch == NO_POLL_CHAR)
2575 			break;
2576 
2577 		s[num_read++] = ch;
2578 	}
2579 
2580 	return num_read;
2581 }
2582 #else
2583 #define pl011_early_read NULL
2584 #endif
2585 
2586 /*
2587  * On non-ACPI systems, earlycon is enabled by specifying
2588  * "earlycon=pl011,<address>" on the kernel command line.
2589  *
2590  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2591  * by specifying only "earlycon" on the command line.  Because it requires
2592  * SPCR, the console starts after ACPI is parsed, which is later than a
2593  * traditional early console.
2594  *
2595  * To get the traditional early console that starts before ACPI is parsed,
2596  * specify the full "earlycon=pl011,<address>" option.
2597  */
2598 static int __init pl011_early_console_setup(struct earlycon_device *device,
2599 					    const char *opt)
2600 {
2601 	if (!device->port.membase)
2602 		return -ENODEV;
2603 
2604 	device->con->write = pl011_early_write;
2605 	device->con->read = pl011_early_read;
2606 
2607 	return 0;
2608 }
2609 
2610 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2611 
2612 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2613 
2614 /*
2615  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2616  * Erratum 44, traditional earlycon can be enabled by specifying
2617  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2618  *
2619  * Alternatively, you can just specify "earlycon", and the early console
2620  * will be enabled with the information from the SPCR table.  In this
2621  * case, the SPCR code will detect the need for the E44 work-around,
2622  * and set the console name to "qdf2400_e44".
2623  */
2624 static int __init
2625 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2626 				const char *opt)
2627 {
2628 	if (!device->port.membase)
2629 		return -ENODEV;
2630 
2631 	device->con->write = qdf2400_e44_early_write;
2632 	return 0;
2633 }
2634 
2635 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2636 
2637 #else
2638 #define AMBA_CONSOLE	NULL
2639 #endif
2640 
2641 static struct uart_driver amba_reg = {
2642 	.owner			= THIS_MODULE,
2643 	.driver_name		= "ttyAMA",
2644 	.dev_name		= "ttyAMA",
2645 	.major			= SERIAL_AMBA_MAJOR,
2646 	.minor			= SERIAL_AMBA_MINOR,
2647 	.nr			= UART_NR,
2648 	.cons			= AMBA_CONSOLE,
2649 };
2650 
2651 static int pl011_probe_dt_alias(int index, struct device *dev)
2652 {
2653 	struct device_node *np;
2654 	static bool seen_dev_with_alias;
2655 	static bool seen_dev_without_alias;
2656 	int ret = index;
2657 
2658 	if (!IS_ENABLED(CONFIG_OF))
2659 		return ret;
2660 
2661 	np = dev->of_node;
2662 	if (!np)
2663 		return ret;
2664 
2665 	ret = of_alias_get_id(np, "serial");
2666 	if (ret < 0) {
2667 		seen_dev_without_alias = true;
2668 		ret = index;
2669 	} else {
2670 		seen_dev_with_alias = true;
2671 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2672 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2673 			ret = index;
2674 		}
2675 	}
2676 
2677 	if (seen_dev_with_alias && seen_dev_without_alias)
2678 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2679 
2680 	return ret;
2681 }
2682 
2683 /* unregisters the driver also if no more ports are left */
2684 static void pl011_unregister_port(struct uart_amba_port *uap)
2685 {
2686 	int i;
2687 	bool busy = false;
2688 
2689 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690 		if (amba_ports[i] == uap)
2691 			amba_ports[i] = NULL;
2692 		else if (amba_ports[i])
2693 			busy = true;
2694 	}
2695 	pl011_dma_remove(uap);
2696 	if (!busy)
2697 		uart_unregister_driver(&amba_reg);
2698 }
2699 
2700 static int pl011_find_free_port(void)
2701 {
2702 	int i;
2703 
2704 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705 		if (!amba_ports[i])
2706 			return i;
2707 
2708 	return -EBUSY;
2709 }
2710 
2711 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2712 {
2713 	struct uart_port *port = &uap->port;
2714 	int ret;
2715 
2716 	ret = uart_get_rs485_mode(port);
2717 	if (ret)
2718 		return ret;
2719 
2720 	return 0;
2721 }
2722 
2723 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724 			    struct resource *mmiobase, int index)
2725 {
2726 	void __iomem *base;
2727 	int ret;
2728 
2729 	base = devm_ioremap_resource(dev, mmiobase);
2730 	if (IS_ERR(base))
2731 		return PTR_ERR(base);
2732 
2733 	index = pl011_probe_dt_alias(index, dev);
2734 
2735 	uap->port.dev = dev;
2736 	uap->port.mapbase = mmiobase->start;
2737 	uap->port.membase = base;
2738 	uap->port.fifosize = uap->fifosize;
2739 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740 	uap->port.flags = UPF_BOOT_AUTOCONF;
2741 	uap->port.line = index;
2742 
2743 	ret = pl011_get_rs485_mode(uap);
2744 	if (ret)
2745 		return ret;
2746 
2747 	amba_ports[index] = uap;
2748 
2749 	return 0;
2750 }
2751 
2752 static int pl011_register_port(struct uart_amba_port *uap)
2753 {
2754 	int ret, i;
2755 
2756 	/* Ensure interrupts from this UART are masked and cleared */
2757 	pl011_write(0, uap, REG_IMSC);
2758 	pl011_write(0xffff, uap, REG_ICR);
2759 
2760 	if (!amba_reg.state) {
2761 		ret = uart_register_driver(&amba_reg);
2762 		if (ret < 0) {
2763 			dev_err(uap->port.dev,
2764 				"Failed to register AMBA-PL011 driver\n");
2765 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766 				if (amba_ports[i] == uap)
2767 					amba_ports[i] = NULL;
2768 			return ret;
2769 		}
2770 	}
2771 
2772 	ret = uart_add_one_port(&amba_reg, &uap->port);
2773 	if (ret)
2774 		pl011_unregister_port(uap);
2775 
2776 	return ret;
2777 }
2778 
2779 static const struct serial_rs485 pl011_rs485_supported = {
2780 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781 		 SER_RS485_RX_DURING_TX,
2782 	.delay_rts_before_send = 1,
2783 	.delay_rts_after_send = 1,
2784 };
2785 
2786 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2787 {
2788 	struct uart_amba_port *uap;
2789 	struct vendor_data *vendor = id->data;
2790 	int portnr, ret;
2791 	u32 val;
2792 
2793 	portnr = pl011_find_free_port();
2794 	if (portnr < 0)
2795 		return portnr;
2796 
2797 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2798 			   GFP_KERNEL);
2799 	if (!uap)
2800 		return -ENOMEM;
2801 
2802 	uap->clk = devm_clk_get(&dev->dev, NULL);
2803 	if (IS_ERR(uap->clk))
2804 		return PTR_ERR(uap->clk);
2805 
2806 	uap->reg_offset = vendor->reg_offset;
2807 	uap->vendor = vendor;
2808 	uap->fifosize = vendor->get_fifosize(dev);
2809 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810 	uap->port.irq = dev->irq[0];
2811 	uap->port.ops = &amba_pl011_pops;
2812 	uap->port.rs485_config = pl011_rs485_config;
2813 	uap->port.rs485_supported = pl011_rs485_supported;
2814 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2815 
2816 	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2817 		switch (val) {
2818 		case 1:
2819 			uap->port.iotype = UPIO_MEM;
2820 			break;
2821 		case 4:
2822 			uap->port.iotype = UPIO_MEM32;
2823 			break;
2824 		default:
2825 			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2826 				 val);
2827 			return -EINVAL;
2828 		}
2829 	}
2830 
2831 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2832 	if (ret)
2833 		return ret;
2834 
2835 	amba_set_drvdata(dev, uap);
2836 
2837 	return pl011_register_port(uap);
2838 }
2839 
2840 static void pl011_remove(struct amba_device *dev)
2841 {
2842 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2843 
2844 	uart_remove_one_port(&amba_reg, &uap->port);
2845 	pl011_unregister_port(uap);
2846 }
2847 
2848 #ifdef CONFIG_PM_SLEEP
2849 static int pl011_suspend(struct device *dev)
2850 {
2851 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2852 
2853 	if (!uap)
2854 		return -EINVAL;
2855 
2856 	return uart_suspend_port(&amba_reg, &uap->port);
2857 }
2858 
2859 static int pl011_resume(struct device *dev)
2860 {
2861 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2862 
2863 	if (!uap)
2864 		return -EINVAL;
2865 
2866 	return uart_resume_port(&amba_reg, &uap->port);
2867 }
2868 #endif
2869 
2870 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2871 
2872 #ifdef CONFIG_ACPI_SPCR_TABLE
2873 static void qpdf2400_erratum44_workaround(struct device *dev,
2874 					  struct uart_amba_port *uap)
2875 {
2876 	if (!qdf2400_e44_present)
2877 		return;
2878 
2879 	dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2880 	uap->vendor = &vendor_qdt_qdf2400_e44;
2881 }
2882 #else
2883 static void qpdf2400_erratum44_workaround(struct device *dev,
2884 					  struct uart_amba_port *uap)
2885 { /* empty */ }
2886 #endif
2887 
2888 static int sbsa_uart_probe(struct platform_device *pdev)
2889 {
2890 	struct uart_amba_port *uap;
2891 	struct resource *r;
2892 	int portnr, ret;
2893 	int baudrate;
2894 
2895 	/*
2896 	 * Check the mandatory baud rate parameter in the DT node early
2897 	 * so that we can easily exit with the error.
2898 	 */
2899 	if (pdev->dev.of_node) {
2900 		struct device_node *np = pdev->dev.of_node;
2901 
2902 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2903 		if (ret)
2904 			return ret;
2905 	} else {
2906 		baudrate = 115200;
2907 	}
2908 
2909 	portnr = pl011_find_free_port();
2910 	if (portnr < 0)
2911 		return portnr;
2912 
2913 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2914 			   GFP_KERNEL);
2915 	if (!uap)
2916 		return -ENOMEM;
2917 
2918 	ret = platform_get_irq(pdev, 0);
2919 	if (ret < 0)
2920 		return ret;
2921 	uap->port.irq	= ret;
2922 
2923 	uap->vendor = &vendor_sbsa;
2924 	qpdf2400_erratum44_workaround(&pdev->dev, uap);
2925 
2926 	uap->reg_offset	= uap->vendor->reg_offset;
2927 	uap->fifosize	= 32;
2928 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2929 	uap->port.ops	= &sbsa_uart_pops;
2930 	uap->fixed_baud = baudrate;
2931 
2932 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2933 
2934 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2935 
2936 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2937 	if (ret)
2938 		return ret;
2939 
2940 	platform_set_drvdata(pdev, uap);
2941 
2942 	return pl011_register_port(uap);
2943 }
2944 
2945 static void sbsa_uart_remove(struct platform_device *pdev)
2946 {
2947 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2948 
2949 	uart_remove_one_port(&amba_reg, &uap->port);
2950 	pl011_unregister_port(uap);
2951 }
2952 
2953 static const struct of_device_id sbsa_uart_of_match[] = {
2954 	{ .compatible = "arm,sbsa-uart", },
2955 	{},
2956 };
2957 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2958 
2959 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2960 	{ "ARMH0011", 0 },
2961 	{ "ARMHB000", 0 },
2962 	{},
2963 };
2964 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2965 
2966 static struct platform_driver arm_sbsa_uart_platform_driver = {
2967 	.probe		= sbsa_uart_probe,
2968 	.remove_new	= sbsa_uart_remove,
2969 	.driver	= {
2970 		.name	= "sbsa-uart",
2971 		.pm	= &pl011_dev_pm_ops,
2972 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2973 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2974 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2975 	},
2976 };
2977 
2978 static const struct amba_id pl011_ids[] = {
2979 	{
2980 		.id	= 0x00041011,
2981 		.mask	= 0x000fffff,
2982 		.data	= &vendor_arm,
2983 	},
2984 	{
2985 		.id	= 0x00380802,
2986 		.mask	= 0x00ffffff,
2987 		.data	= &vendor_st,
2988 	},
2989 	{ 0, 0 },
2990 };
2991 
2992 MODULE_DEVICE_TABLE(amba, pl011_ids);
2993 
2994 static struct amba_driver pl011_driver = {
2995 	.drv = {
2996 		.name	= "uart-pl011",
2997 		.pm	= &pl011_dev_pm_ops,
2998 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2999 	},
3000 	.id_table	= pl011_ids,
3001 	.probe		= pl011_probe,
3002 	.remove		= pl011_remove,
3003 };
3004 
3005 static int __init pl011_init(void)
3006 {
3007 	pr_info("Serial: AMBA PL011 UART driver\n");
3008 
3009 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3010 		pr_warn("could not register SBSA UART platform driver\n");
3011 	return amba_driver_register(&pl011_driver);
3012 }
3013 
3014 static void __exit pl011_exit(void)
3015 {
3016 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3017 	amba_driver_unregister(&pl011_driver);
3018 }
3019 
3020 /*
3021  * While this can be a module, if builtin it's most likely the console
3022  * So let's leave module_exit but move module_init to an earlier place
3023  */
3024 arch_initcall(pl011_init);
3025 module_exit(pl011_exit);
3026 
3027 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3028 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3029 MODULE_LICENSE("GPL");
3030