xref: /linux/drivers/tty/serial/amba-pl011.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #define UART_NR			14
64 
65 #define SERIAL_AMBA_MAJOR	204
66 #define SERIAL_AMBA_MINOR	64
67 #define SERIAL_AMBA_NR		UART_NR
68 
69 #define AMBA_ISR_PASS_LIMIT	256
70 
71 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
72 #define UART_DUMMY_DR_RX	(1 << 16)
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	unsigned int		ifls;
77 	unsigned int		fr_busy;
78 	unsigned int		fr_dsr;
79 	unsigned int		fr_cts;
80 	unsigned int		fr_ri;
81 	unsigned int		lcrh_tx;
82 	unsigned int		lcrh_rx;
83 	u16			*reg_lut;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
93 /* Max address offset of register in use is 0x48 */
94 #define REG_NR		(0x48 >> 2)
95 #define IDX(x)		(x >> 2)
96 enum reg_idx {
97 	REG_DR		= IDX(UART01x_DR),
98 	REG_RSR		= IDX(UART01x_RSR),
99 	REG_ST_DMAWM	= IDX(ST_UART011_DMAWM),
100 	REG_FR		= IDX(UART01x_FR),
101 	REG_ST_LCRH_RX  = IDX(ST_UART011_LCRH_RX),
102 	REG_ILPR	= IDX(UART01x_ILPR),
103 	REG_IBRD	= IDX(UART011_IBRD),
104 	REG_FBRD	= IDX(UART011_FBRD),
105 	REG_LCRH	= IDX(UART011_LCRH),
106 	REG_CR		= IDX(UART011_CR),
107 	REG_IFLS	= IDX(UART011_IFLS),
108 	REG_IMSC	= IDX(UART011_IMSC),
109 	REG_RIS		= IDX(UART011_RIS),
110 	REG_MIS		= IDX(UART011_MIS),
111 	REG_ICR		= IDX(UART011_ICR),
112 	REG_DMACR	= IDX(UART011_DMACR),
113 };
114 
115 static u16 arm_reg[] = {
116 	[REG_DR]		= UART01x_DR,
117 	[REG_RSR]		= UART01x_RSR,
118 	[REG_ST_DMAWM]		= ~0,
119 	[REG_FR]		= UART01x_FR,
120 	[REG_ST_LCRH_RX]	= ~0,
121 	[REG_ILPR]		= UART01x_ILPR,
122 	[REG_IBRD]		= UART011_IBRD,
123 	[REG_FBRD]		= UART011_FBRD,
124 	[REG_LCRH]		= UART011_LCRH,
125 	[REG_CR]		= UART011_CR,
126 	[REG_IFLS]		= UART011_IFLS,
127 	[REG_IMSC]		= UART011_IMSC,
128 	[REG_RIS]		= UART011_RIS,
129 	[REG_MIS]		= UART011_MIS,
130 	[REG_ICR]		= UART011_ICR,
131 	[REG_DMACR]		= UART011_DMACR,
132 };
133 
134 #ifdef CONFIG_ARM_AMBA
135 static unsigned int get_fifosize_arm(struct amba_device *dev)
136 {
137 	return amba_rev(dev) < 3 ? 16 : 32;
138 }
139 
140 static struct vendor_data vendor_arm = {
141 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
142 	.fr_busy		= UART01x_FR_BUSY,
143 	.fr_dsr			= UART01x_FR_DSR,
144 	.fr_cts			= UART01x_FR_CTS,
145 	.fr_ri			= UART011_FR_RI,
146 	.lcrh_tx		= REG_LCRH,
147 	.lcrh_rx		= REG_LCRH,
148 	.reg_lut		= arm_reg,
149 	.oversampling		= false,
150 	.dma_threshold		= false,
151 	.cts_event_workaround	= false,
152 	.always_enabled		= false,
153 	.fixed_options		= false,
154 	.get_fifosize		= get_fifosize_arm,
155 };
156 #endif
157 
158 static struct vendor_data vendor_sbsa = {
159 	.fr_busy		= UART01x_FR_BUSY,
160 	.fr_dsr			= UART01x_FR_DSR,
161 	.fr_cts			= UART01x_FR_CTS,
162 	.fr_ri			= UART011_FR_RI,
163 	.reg_lut		= arm_reg,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 
171 #ifdef CONFIG_ARM_AMBA
172 static u16 st_reg[] = {
173 	[REG_DR]		= UART01x_DR,
174 	[REG_RSR]		= UART01x_RSR,
175 	[REG_ST_DMAWM]		= ST_UART011_DMAWM,
176 	[REG_FR]		= UART01x_FR,
177 	[REG_ST_LCRH_RX]	= ST_UART011_LCRH_RX,
178 	[REG_ILPR]		= UART01x_ILPR,
179 	[REG_IBRD]		= UART011_IBRD,
180 	[REG_FBRD]		= UART011_FBRD,
181 	[REG_LCRH]		= UART011_LCRH,
182 	[REG_CR]		= UART011_CR,
183 	[REG_IFLS]		= UART011_IFLS,
184 	[REG_IMSC]		= UART011_IMSC,
185 	[REG_RIS]		= UART011_RIS,
186 	[REG_MIS]		= UART011_MIS,
187 	[REG_ICR]		= UART011_ICR,
188 	[REG_DMACR]		= UART011_DMACR,
189 };
190 
191 static unsigned int get_fifosize_st(struct amba_device *dev)
192 {
193 	return 64;
194 }
195 
196 static struct vendor_data vendor_st = {
197 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
198 	.fr_busy		= UART01x_FR_BUSY,
199 	.fr_dsr			= UART01x_FR_DSR,
200 	.fr_cts			= UART01x_FR_CTS,
201 	.fr_ri			= UART011_FR_RI,
202 	.lcrh_tx		= REG_LCRH,
203 	.lcrh_rx		= REG_ST_LCRH_RX,
204 	.reg_lut		= st_reg,
205 	.oversampling		= true,
206 	.dma_threshold		= true,
207 	.cts_event_workaround	= true,
208 	.always_enabled		= false,
209 	.fixed_options		= false,
210 	.get_fifosize		= get_fifosize_st,
211 };
212 #endif
213 
214 #ifdef CONFIG_SOC_ZX296702
215 static u16 zte_reg[] = {
216 	[REG_DR]		= ZX_UART01x_DR,
217 	[REG_RSR]		= UART01x_RSR,
218 	[REG_ST_DMAWM]		= ST_UART011_DMAWM,
219 	[REG_FR]		= ZX_UART01x_FR,
220 	[REG_ST_LCRH_RX]	= ST_UART011_LCRH_RX,
221 	[REG_ILPR]		= UART01x_ILPR,
222 	[REG_IBRD]		= UART011_IBRD,
223 	[REG_FBRD]		= UART011_FBRD,
224 	[REG_LCRH]		= ZX_UART011_LCRH_TX,
225 	[REG_CR]		= ZX_UART011_CR,
226 	[REG_IFLS]		= ZX_UART011_IFLS,
227 	[REG_IMSC]		= ZX_UART011_IMSC,
228 	[REG_RIS]		= ZX_UART011_RIS,
229 	[REG_MIS]		= ZX_UART011_MIS,
230 	[REG_ICR]		= ZX_UART011_ICR,
231 	[REG_DMACR]		= ZX_UART011_DMACR,
232 };
233 
234 static struct vendor_data vendor_zte = {
235 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
236 	.fr_busy		= ZX_UART01x_FR_BUSY,
237 	.fr_dsr			= ZX_UART01x_FR_DSR,
238 	.fr_cts			= ZX_UART01x_FR_CTS,
239 	.fr_ri			= ZX_UART011_FR_RI,
240 	.lcrh_tx		= REG_LCRH,
241 	.lcrh_rx		= REG_ST_LCRH_RX,
242 	.reg_lut		= zte_reg,
243 	.oversampling		= false,
244 	.dma_threshold		= false,
245 	.cts_event_workaround	= false,
246 	.fixed_options		= false,
247 };
248 #endif
249 
250 /* Deals with DMA transactions */
251 
252 struct pl011_sgbuf {
253 	struct scatterlist sg;
254 	char *buf;
255 };
256 
257 struct pl011_dmarx_data {
258 	struct dma_chan		*chan;
259 	struct completion	complete;
260 	bool			use_buf_b;
261 	struct pl011_sgbuf	sgbuf_a;
262 	struct pl011_sgbuf	sgbuf_b;
263 	dma_cookie_t		cookie;
264 	bool			running;
265 	struct timer_list	timer;
266 	unsigned int last_residue;
267 	unsigned long last_jiffies;
268 	bool auto_poll_rate;
269 	unsigned int poll_rate;
270 	unsigned int poll_timeout;
271 };
272 
273 struct pl011_dmatx_data {
274 	struct dma_chan		*chan;
275 	struct scatterlist	sg;
276 	char			*buf;
277 	bool			queued;
278 };
279 
280 /*
281  * We wrap our port structure around the generic uart_port.
282  */
283 struct uart_amba_port {
284 	struct uart_port	port;
285 	struct clk		*clk;
286 	const struct vendor_data *vendor;
287 	u16			*reg_lut;
288 	unsigned int		dmacr;		/* dma control reg */
289 	unsigned int		im;		/* interrupt mask */
290 	unsigned int		old_status;
291 	unsigned int		fifosize;	/* vendor-specific */
292 	unsigned int		fr_busy;        /* vendor-specific */
293 	unsigned int		fr_dsr;		/* vendor-specific */
294 	unsigned int		fr_cts;         /* vendor-specific */
295 	unsigned int		fr_ri;		/* vendor-specific */
296 	unsigned int		lcrh_tx;	/* vendor-specific */
297 	unsigned int		lcrh_rx;	/* vendor-specific */
298 	unsigned int		old_cr;		/* state during shutdown */
299 	bool			autorts;
300 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
301 	char			type[12];
302 #ifdef CONFIG_DMA_ENGINE
303 	/* DMA stuff */
304 	bool			using_tx_dma;
305 	bool			using_rx_dma;
306 	struct pl011_dmarx_data dmarx;
307 	struct pl011_dmatx_data	dmatx;
308 	bool			dma_probed;
309 #endif
310 };
311 
312 static bool is_implemented(struct uart_amba_port *uap, unsigned int reg)
313 {
314 	return uap->reg_lut[reg] != (u16)~0;
315 }
316 
317 static unsigned int pl011_readw(struct uart_amba_port *uap, int index)
318 {
319 	WARN_ON(index > REG_NR);
320 	return readw_relaxed(uap->port.membase + uap->reg_lut[index]);
321 }
322 
323 static void pl011_writew(struct uart_amba_port *uap, int val, int index)
324 {
325 	WARN_ON(index > REG_NR);
326 	writew_relaxed(val, uap->port.membase + uap->reg_lut[index]);
327 }
328 
329 static void pl011_writeb(struct uart_amba_port *uap, u8 val, int index)
330 {
331 	WARN_ON(index > REG_NR);
332 	writeb_relaxed(val, uap->port.membase + uap->reg_lut[index]);
333 }
334 
335 /*
336  * Reads up to 256 characters from the FIFO or until it's empty and
337  * inserts them into the TTY layer. Returns the number of characters
338  * read from the FIFO.
339  */
340 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
341 {
342 	u16 status, ch;
343 	unsigned int flag, max_count = 256;
344 	int fifotaken = 0;
345 
346 	while (max_count--) {
347 		status = pl011_readw(uap, REG_FR);
348 		if (status & UART01x_FR_RXFE)
349 			break;
350 
351 		/* Take chars from the FIFO and update status */
352 		ch = pl011_readw(uap, REG_DR) |
353 			UART_DUMMY_DR_RX;
354 		flag = TTY_NORMAL;
355 		uap->port.icount.rx++;
356 		fifotaken++;
357 
358 		if (unlikely(ch & UART_DR_ERROR)) {
359 			if (ch & UART011_DR_BE) {
360 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
361 				uap->port.icount.brk++;
362 				if (uart_handle_break(&uap->port))
363 					continue;
364 			} else if (ch & UART011_DR_PE)
365 				uap->port.icount.parity++;
366 			else if (ch & UART011_DR_FE)
367 				uap->port.icount.frame++;
368 			if (ch & UART011_DR_OE)
369 				uap->port.icount.overrun++;
370 
371 			ch &= uap->port.read_status_mask;
372 
373 			if (ch & UART011_DR_BE)
374 				flag = TTY_BREAK;
375 			else if (ch & UART011_DR_PE)
376 				flag = TTY_PARITY;
377 			else if (ch & UART011_DR_FE)
378 				flag = TTY_FRAME;
379 		}
380 
381 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
382 			continue;
383 
384 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
385 	}
386 
387 	return fifotaken;
388 }
389 
390 
391 /*
392  * All the DMA operation mode stuff goes inside this ifdef.
393  * This assumes that you have a generic DMA device interface,
394  * no custom DMA interfaces are supported.
395  */
396 #ifdef CONFIG_DMA_ENGINE
397 
398 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
399 
400 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
401 	enum dma_data_direction dir)
402 {
403 	dma_addr_t dma_addr;
404 
405 	sg->buf = dma_alloc_coherent(chan->device->dev,
406 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
407 	if (!sg->buf)
408 		return -ENOMEM;
409 
410 	sg_init_table(&sg->sg, 1);
411 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
412 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
413 	sg_dma_address(&sg->sg) = dma_addr;
414 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
415 
416 	return 0;
417 }
418 
419 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
420 	enum dma_data_direction dir)
421 {
422 	if (sg->buf) {
423 		dma_free_coherent(chan->device->dev,
424 			PL011_DMA_BUFFER_SIZE, sg->buf,
425 			sg_dma_address(&sg->sg));
426 	}
427 }
428 
429 static void pl011_dma_probe(struct uart_amba_port *uap)
430 {
431 	/* DMA is the sole user of the platform data right now */
432 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
433 	struct device *dev = uap->port.dev;
434 	struct dma_slave_config tx_conf = {
435 		.dst_addr = uap->port.mapbase + uap->reg_lut[REG_DR],
436 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
437 		.direction = DMA_MEM_TO_DEV,
438 		.dst_maxburst = uap->fifosize >> 1,
439 		.device_fc = false,
440 	};
441 	struct dma_chan *chan;
442 	dma_cap_mask_t mask;
443 
444 	uap->dma_probed = true;
445 	chan = dma_request_slave_channel_reason(dev, "tx");
446 	if (IS_ERR(chan)) {
447 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
448 			uap->dma_probed = false;
449 			return;
450 		}
451 
452 		/* We need platform data */
453 		if (!plat || !plat->dma_filter) {
454 			dev_info(uap->port.dev, "no DMA platform data\n");
455 			return;
456 		}
457 
458 		/* Try to acquire a generic DMA engine slave TX channel */
459 		dma_cap_zero(mask);
460 		dma_cap_set(DMA_SLAVE, mask);
461 
462 		chan = dma_request_channel(mask, plat->dma_filter,
463 						plat->dma_tx_param);
464 		if (!chan) {
465 			dev_err(uap->port.dev, "no TX DMA channel!\n");
466 			return;
467 		}
468 	}
469 
470 	dmaengine_slave_config(chan, &tx_conf);
471 	uap->dmatx.chan = chan;
472 
473 	dev_info(uap->port.dev, "DMA channel TX %s\n",
474 		 dma_chan_name(uap->dmatx.chan));
475 
476 	/* Optionally make use of an RX channel as well */
477 	chan = dma_request_slave_channel(dev, "rx");
478 
479 	if (!chan && plat->dma_rx_param) {
480 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
481 
482 		if (!chan) {
483 			dev_err(uap->port.dev, "no RX DMA channel!\n");
484 			return;
485 		}
486 	}
487 
488 	if (chan) {
489 		struct dma_slave_config rx_conf = {
490 			.src_addr = uap->port.mapbase + uap->reg_lut[REG_DR],
491 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
492 			.direction = DMA_DEV_TO_MEM,
493 			.src_maxburst = uap->fifosize >> 2,
494 			.device_fc = false,
495 		};
496 		struct dma_slave_caps caps;
497 
498 		/*
499 		 * Some DMA controllers provide information on their capabilities.
500 		 * If the controller does, check for suitable residue processing
501 		 * otherwise assime all is well.
502 		 */
503 		if (0 == dma_get_slave_caps(chan, &caps)) {
504 			if (caps.residue_granularity ==
505 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
506 				dma_release_channel(chan);
507 				dev_info(uap->port.dev,
508 					"RX DMA disabled - no residue processing\n");
509 				return;
510 			}
511 		}
512 		dmaengine_slave_config(chan, &rx_conf);
513 		uap->dmarx.chan = chan;
514 
515 		uap->dmarx.auto_poll_rate = false;
516 		if (plat && plat->dma_rx_poll_enable) {
517 			/* Set poll rate if specified. */
518 			if (plat->dma_rx_poll_rate) {
519 				uap->dmarx.auto_poll_rate = false;
520 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
521 			} else {
522 				/*
523 				 * 100 ms defaults to poll rate if not
524 				 * specified. This will be adjusted with
525 				 * the baud rate at set_termios.
526 				 */
527 				uap->dmarx.auto_poll_rate = true;
528 				uap->dmarx.poll_rate =  100;
529 			}
530 			/* 3 secs defaults poll_timeout if not specified. */
531 			if (plat->dma_rx_poll_timeout)
532 				uap->dmarx.poll_timeout =
533 					plat->dma_rx_poll_timeout;
534 			else
535 				uap->dmarx.poll_timeout = 3000;
536 		} else if (!plat && dev->of_node) {
537 			uap->dmarx.auto_poll_rate = of_property_read_bool(
538 						dev->of_node, "auto-poll");
539 			if (uap->dmarx.auto_poll_rate) {
540 				u32 x;
541 
542 				if (0 == of_property_read_u32(dev->of_node,
543 						"poll-rate-ms", &x))
544 					uap->dmarx.poll_rate = x;
545 				else
546 					uap->dmarx.poll_rate = 100;
547 				if (0 == of_property_read_u32(dev->of_node,
548 						"poll-timeout-ms", &x))
549 					uap->dmarx.poll_timeout = x;
550 				else
551 					uap->dmarx.poll_timeout = 3000;
552 			}
553 		}
554 		dev_info(uap->port.dev, "DMA channel RX %s\n",
555 			 dma_chan_name(uap->dmarx.chan));
556 	}
557 }
558 
559 static void pl011_dma_remove(struct uart_amba_port *uap)
560 {
561 	if (uap->dmatx.chan)
562 		dma_release_channel(uap->dmatx.chan);
563 	if (uap->dmarx.chan)
564 		dma_release_channel(uap->dmarx.chan);
565 }
566 
567 /* Forward declare these for the refill routine */
568 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
569 static void pl011_start_tx_pio(struct uart_amba_port *uap);
570 
571 /*
572  * The current DMA TX buffer has been sent.
573  * Try to queue up another DMA buffer.
574  */
575 static void pl011_dma_tx_callback(void *data)
576 {
577 	struct uart_amba_port *uap = data;
578 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
579 	unsigned long flags;
580 	u16 dmacr;
581 
582 	spin_lock_irqsave(&uap->port.lock, flags);
583 	if (uap->dmatx.queued)
584 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
585 			     DMA_TO_DEVICE);
586 
587 	dmacr = uap->dmacr;
588 	uap->dmacr = dmacr & ~UART011_TXDMAE;
589 	pl011_writew(uap, uap->dmacr, REG_DMACR);
590 
591 	/*
592 	 * If TX DMA was disabled, it means that we've stopped the DMA for
593 	 * some reason (eg, XOFF received, or we want to send an X-char.)
594 	 *
595 	 * Note: we need to be careful here of a potential race between DMA
596 	 * and the rest of the driver - if the driver disables TX DMA while
597 	 * a TX buffer completing, we must update the tx queued status to
598 	 * get further refills (hence we check dmacr).
599 	 */
600 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
601 	    uart_circ_empty(&uap->port.state->xmit)) {
602 		uap->dmatx.queued = false;
603 		spin_unlock_irqrestore(&uap->port.lock, flags);
604 		return;
605 	}
606 
607 	if (pl011_dma_tx_refill(uap) <= 0)
608 		/*
609 		 * We didn't queue a DMA buffer for some reason, but we
610 		 * have data pending to be sent.  Re-enable the TX IRQ.
611 		 */
612 		pl011_start_tx_pio(uap);
613 
614 	spin_unlock_irqrestore(&uap->port.lock, flags);
615 }
616 
617 /*
618  * Try to refill the TX DMA buffer.
619  * Locking: called with port lock held and IRQs disabled.
620  * Returns:
621  *   1 if we queued up a TX DMA buffer.
622  *   0 if we didn't want to handle this by DMA
623  *  <0 on error
624  */
625 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
626 {
627 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
628 	struct dma_chan *chan = dmatx->chan;
629 	struct dma_device *dma_dev = chan->device;
630 	struct dma_async_tx_descriptor *desc;
631 	struct circ_buf *xmit = &uap->port.state->xmit;
632 	unsigned int count;
633 
634 	/*
635 	 * Try to avoid the overhead involved in using DMA if the
636 	 * transaction fits in the first half of the FIFO, by using
637 	 * the standard interrupt handling.  This ensures that we
638 	 * issue a uart_write_wakeup() at the appropriate time.
639 	 */
640 	count = uart_circ_chars_pending(xmit);
641 	if (count < (uap->fifosize >> 1)) {
642 		uap->dmatx.queued = false;
643 		return 0;
644 	}
645 
646 	/*
647 	 * Bodge: don't send the last character by DMA, as this
648 	 * will prevent XON from notifying us to restart DMA.
649 	 */
650 	count -= 1;
651 
652 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
653 	if (count > PL011_DMA_BUFFER_SIZE)
654 		count = PL011_DMA_BUFFER_SIZE;
655 
656 	if (xmit->tail < xmit->head)
657 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
658 	else {
659 		size_t first = UART_XMIT_SIZE - xmit->tail;
660 		size_t second;
661 
662 		if (first > count)
663 			first = count;
664 		second = count - first;
665 
666 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
667 		if (second)
668 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
669 	}
670 
671 	dmatx->sg.length = count;
672 
673 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
674 		uap->dmatx.queued = false;
675 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
676 		return -EBUSY;
677 	}
678 
679 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
680 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
681 	if (!desc) {
682 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
683 		uap->dmatx.queued = false;
684 		/*
685 		 * If DMA cannot be used right now, we complete this
686 		 * transaction via IRQ and let the TTY layer retry.
687 		 */
688 		dev_dbg(uap->port.dev, "TX DMA busy\n");
689 		return -EBUSY;
690 	}
691 
692 	/* Some data to go along to the callback */
693 	desc->callback = pl011_dma_tx_callback;
694 	desc->callback_param = uap;
695 
696 	/* All errors should happen at prepare time */
697 	dmaengine_submit(desc);
698 
699 	/* Fire the DMA transaction */
700 	dma_dev->device_issue_pending(chan);
701 
702 	uap->dmacr |= UART011_TXDMAE;
703 	pl011_writew(uap, uap->dmacr, REG_DMACR);
704 	uap->dmatx.queued = true;
705 
706 	/*
707 	 * Now we know that DMA will fire, so advance the ring buffer
708 	 * with the stuff we just dispatched.
709 	 */
710 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
711 	uap->port.icount.tx += count;
712 
713 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
714 		uart_write_wakeup(&uap->port);
715 
716 	return 1;
717 }
718 
719 /*
720  * We received a transmit interrupt without a pending X-char but with
721  * pending characters.
722  * Locking: called with port lock held and IRQs disabled.
723  * Returns:
724  *   false if we want to use PIO to transmit
725  *   true if we queued a DMA buffer
726  */
727 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
728 {
729 	if (!uap->using_tx_dma)
730 		return false;
731 
732 	/*
733 	 * If we already have a TX buffer queued, but received a
734 	 * TX interrupt, it will be because we've just sent an X-char.
735 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
736 	 */
737 	if (uap->dmatx.queued) {
738 		uap->dmacr |= UART011_TXDMAE;
739 		pl011_writew(uap, uap->dmacr, REG_DMACR);
740 		uap->im &= ~UART011_TXIM;
741 		pl011_writew(uap, uap->im, REG_IMSC);
742 		return true;
743 	}
744 
745 	/*
746 	 * We don't have a TX buffer queued, so try to queue one.
747 	 * If we successfully queued a buffer, mask the TX IRQ.
748 	 */
749 	if (pl011_dma_tx_refill(uap) > 0) {
750 		uap->im &= ~UART011_TXIM;
751 		pl011_writew(uap, uap->im, REG_IMSC);
752 		return true;
753 	}
754 	return false;
755 }
756 
757 /*
758  * Stop the DMA transmit (eg, due to received XOFF).
759  * Locking: called with port lock held and IRQs disabled.
760  */
761 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
762 {
763 	if (uap->dmatx.queued) {
764 		uap->dmacr &= ~UART011_TXDMAE;
765 		pl011_writew(uap, uap->dmacr, REG_DMACR);
766 	}
767 }
768 
769 /*
770  * Try to start a DMA transmit, or in the case of an XON/OFF
771  * character queued for send, try to get that character out ASAP.
772  * Locking: called with port lock held and IRQs disabled.
773  * Returns:
774  *   false if we want the TX IRQ to be enabled
775  *   true if we have a buffer queued
776  */
777 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
778 {
779 	u16 dmacr;
780 
781 	if (!uap->using_tx_dma)
782 		return false;
783 
784 	if (!uap->port.x_char) {
785 		/* no X-char, try to push chars out in DMA mode */
786 		bool ret = true;
787 
788 		if (!uap->dmatx.queued) {
789 			if (pl011_dma_tx_refill(uap) > 0) {
790 				uap->im &= ~UART011_TXIM;
791 				pl011_writew(uap, uap->im, REG_IMSC);
792 			} else
793 				ret = false;
794 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
795 			uap->dmacr |= UART011_TXDMAE;
796 			pl011_writew(uap, uap->dmacr, REG_DMACR);
797 		}
798 		return ret;
799 	}
800 
801 	/*
802 	 * We have an X-char to send.  Disable DMA to prevent it loading
803 	 * the TX fifo, and then see if we can stuff it into the FIFO.
804 	 */
805 	dmacr = uap->dmacr;
806 	uap->dmacr &= ~UART011_TXDMAE;
807 	pl011_writew(uap, uap->dmacr, REG_DMACR);
808 
809 	if (pl011_readw(uap, REG_FR) & UART01x_FR_TXFF) {
810 		/*
811 		 * No space in the FIFO, so enable the transmit interrupt
812 		 * so we know when there is space.  Note that once we've
813 		 * loaded the character, we should just re-enable DMA.
814 		 */
815 		return false;
816 	}
817 
818 	pl011_writew(uap, uap->port.x_char, REG_DR);
819 	uap->port.icount.tx++;
820 	uap->port.x_char = 0;
821 
822 	/* Success - restore the DMA state */
823 	uap->dmacr = dmacr;
824 	pl011_writew(uap, dmacr, REG_DMACR);
825 
826 	return true;
827 }
828 
829 /*
830  * Flush the transmit buffer.
831  * Locking: called with port lock held and IRQs disabled.
832  */
833 static void pl011_dma_flush_buffer(struct uart_port *port)
834 __releases(&uap->port.lock)
835 __acquires(&uap->port.lock)
836 {
837 	struct uart_amba_port *uap =
838 	    container_of(port, struct uart_amba_port, port);
839 
840 	if (!uap->using_tx_dma)
841 		return;
842 
843 	/* Avoid deadlock with the DMA engine callback */
844 	spin_unlock(&uap->port.lock);
845 	dmaengine_terminate_all(uap->dmatx.chan);
846 	spin_lock(&uap->port.lock);
847 	if (uap->dmatx.queued) {
848 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
849 			     DMA_TO_DEVICE);
850 		uap->dmatx.queued = false;
851 		uap->dmacr &= ~UART011_TXDMAE;
852 		pl011_writew(uap, uap->dmacr, REG_DMACR);
853 	}
854 }
855 
856 static void pl011_dma_rx_callback(void *data);
857 
858 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
859 {
860 	struct dma_chan *rxchan = uap->dmarx.chan;
861 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
862 	struct dma_async_tx_descriptor *desc;
863 	struct pl011_sgbuf *sgbuf;
864 
865 	if (!rxchan)
866 		return -EIO;
867 
868 	/* Start the RX DMA job */
869 	sgbuf = uap->dmarx.use_buf_b ?
870 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
871 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
872 					DMA_DEV_TO_MEM,
873 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
874 	/*
875 	 * If the DMA engine is busy and cannot prepare a
876 	 * channel, no big deal, the driver will fall back
877 	 * to interrupt mode as a result of this error code.
878 	 */
879 	if (!desc) {
880 		uap->dmarx.running = false;
881 		dmaengine_terminate_all(rxchan);
882 		return -EBUSY;
883 	}
884 
885 	/* Some data to go along to the callback */
886 	desc->callback = pl011_dma_rx_callback;
887 	desc->callback_param = uap;
888 	dmarx->cookie = dmaengine_submit(desc);
889 	dma_async_issue_pending(rxchan);
890 
891 	uap->dmacr |= UART011_RXDMAE;
892 	pl011_writew(uap, uap->dmacr, REG_DMACR);
893 	uap->dmarx.running = true;
894 
895 	uap->im &= ~UART011_RXIM;
896 	pl011_writew(uap, uap->im, REG_IMSC);
897 
898 	return 0;
899 }
900 
901 /*
902  * This is called when either the DMA job is complete, or
903  * the FIFO timeout interrupt occurred. This must be called
904  * with the port spinlock uap->port.lock held.
905  */
906 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
907 			       u32 pending, bool use_buf_b,
908 			       bool readfifo)
909 {
910 	struct tty_port *port = &uap->port.state->port;
911 	struct pl011_sgbuf *sgbuf = use_buf_b ?
912 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
913 	int dma_count = 0;
914 	u32 fifotaken = 0; /* only used for vdbg() */
915 
916 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
917 	int dmataken = 0;
918 
919 	if (uap->dmarx.poll_rate) {
920 		/* The data can be taken by polling */
921 		dmataken = sgbuf->sg.length - dmarx->last_residue;
922 		/* Recalculate the pending size */
923 		if (pending >= dmataken)
924 			pending -= dmataken;
925 	}
926 
927 	/* Pick the remain data from the DMA */
928 	if (pending) {
929 
930 		/*
931 		 * First take all chars in the DMA pipe, then look in the FIFO.
932 		 * Note that tty_insert_flip_buf() tries to take as many chars
933 		 * as it can.
934 		 */
935 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
936 				pending);
937 
938 		uap->port.icount.rx += dma_count;
939 		if (dma_count < pending)
940 			dev_warn(uap->port.dev,
941 				 "couldn't insert all characters (TTY is full?)\n");
942 	}
943 
944 	/* Reset the last_residue for Rx DMA poll */
945 	if (uap->dmarx.poll_rate)
946 		dmarx->last_residue = sgbuf->sg.length;
947 
948 	/*
949 	 * Only continue with trying to read the FIFO if all DMA chars have
950 	 * been taken first.
951 	 */
952 	if (dma_count == pending && readfifo) {
953 		/* Clear any error flags */
954 		pl011_writew(uap,
955 			     UART011_OEIS | UART011_BEIS | UART011_PEIS
956 			     | UART011_FEIS, REG_ICR);
957 
958 		/*
959 		 * If we read all the DMA'd characters, and we had an
960 		 * incomplete buffer, that could be due to an rx error, or
961 		 * maybe we just timed out. Read any pending chars and check
962 		 * the error status.
963 		 *
964 		 * Error conditions will only occur in the FIFO, these will
965 		 * trigger an immediate interrupt and stop the DMA job, so we
966 		 * will always find the error in the FIFO, never in the DMA
967 		 * buffer.
968 		 */
969 		fifotaken = pl011_fifo_to_tty(uap);
970 	}
971 
972 	spin_unlock(&uap->port.lock);
973 	dev_vdbg(uap->port.dev,
974 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
975 		 dma_count, fifotaken);
976 	tty_flip_buffer_push(port);
977 	spin_lock(&uap->port.lock);
978 }
979 
980 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
981 {
982 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
983 	struct dma_chan *rxchan = dmarx->chan;
984 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
985 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
986 	size_t pending;
987 	struct dma_tx_state state;
988 	enum dma_status dmastat;
989 
990 	/*
991 	 * Pause the transfer so we can trust the current counter,
992 	 * do this before we pause the PL011 block, else we may
993 	 * overflow the FIFO.
994 	 */
995 	if (dmaengine_pause(rxchan))
996 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
997 	dmastat = rxchan->device->device_tx_status(rxchan,
998 						   dmarx->cookie, &state);
999 	if (dmastat != DMA_PAUSED)
1000 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
1001 
1002 	/* Disable RX DMA - incoming data will wait in the FIFO */
1003 	uap->dmacr &= ~UART011_RXDMAE;
1004 	pl011_writew(uap, uap->dmacr, REG_DMACR);
1005 	uap->dmarx.running = false;
1006 
1007 	pending = sgbuf->sg.length - state.residue;
1008 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1009 	/* Then we terminate the transfer - we now know our residue */
1010 	dmaengine_terminate_all(rxchan);
1011 
1012 	/*
1013 	 * This will take the chars we have so far and insert
1014 	 * into the framework.
1015 	 */
1016 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
1017 
1018 	/* Switch buffer & re-trigger DMA job */
1019 	dmarx->use_buf_b = !dmarx->use_buf_b;
1020 	if (pl011_dma_rx_trigger_dma(uap)) {
1021 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1022 			"fall back to interrupt mode\n");
1023 		uap->im |= UART011_RXIM;
1024 		pl011_writew(uap, uap->im, REG_IMSC);
1025 	}
1026 }
1027 
1028 static void pl011_dma_rx_callback(void *data)
1029 {
1030 	struct uart_amba_port *uap = data;
1031 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1032 	struct dma_chan *rxchan = dmarx->chan;
1033 	bool lastbuf = dmarx->use_buf_b;
1034 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1035 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1036 	size_t pending;
1037 	struct dma_tx_state state;
1038 	int ret;
1039 
1040 	/*
1041 	 * This completion interrupt occurs typically when the
1042 	 * RX buffer is totally stuffed but no timeout has yet
1043 	 * occurred. When that happens, we just want the RX
1044 	 * routine to flush out the secondary DMA buffer while
1045 	 * we immediately trigger the next DMA job.
1046 	 */
1047 	spin_lock_irq(&uap->port.lock);
1048 	/*
1049 	 * Rx data can be taken by the UART interrupts during
1050 	 * the DMA irq handler. So we check the residue here.
1051 	 */
1052 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1053 	pending = sgbuf->sg.length - state.residue;
1054 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1055 	/* Then we terminate the transfer - we now know our residue */
1056 	dmaengine_terminate_all(rxchan);
1057 
1058 	uap->dmarx.running = false;
1059 	dmarx->use_buf_b = !lastbuf;
1060 	ret = pl011_dma_rx_trigger_dma(uap);
1061 
1062 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1063 	spin_unlock_irq(&uap->port.lock);
1064 	/*
1065 	 * Do this check after we picked the DMA chars so we don't
1066 	 * get some IRQ immediately from RX.
1067 	 */
1068 	if (ret) {
1069 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1070 			"fall back to interrupt mode\n");
1071 		uap->im |= UART011_RXIM;
1072 		pl011_writew(uap, uap->im, REG_IMSC);
1073 	}
1074 }
1075 
1076 /*
1077  * Stop accepting received characters, when we're shutting down or
1078  * suspending this port.
1079  * Locking: called with port lock held and IRQs disabled.
1080  */
1081 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1082 {
1083 	/* FIXME.  Just disable the DMA enable */
1084 	uap->dmacr &= ~UART011_RXDMAE;
1085 	pl011_writew(uap, uap->dmacr, REG_DMACR);
1086 }
1087 
1088 /*
1089  * Timer handler for Rx DMA polling.
1090  * Every polling, It checks the residue in the dma buffer and transfer
1091  * data to the tty. Also, last_residue is updated for the next polling.
1092  */
1093 static void pl011_dma_rx_poll(unsigned long args)
1094 {
1095 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1096 	struct tty_port *port = &uap->port.state->port;
1097 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1098 	struct dma_chan *rxchan = uap->dmarx.chan;
1099 	unsigned long flags = 0;
1100 	unsigned int dmataken = 0;
1101 	unsigned int size = 0;
1102 	struct pl011_sgbuf *sgbuf;
1103 	int dma_count;
1104 	struct dma_tx_state state;
1105 
1106 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1107 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1108 	if (likely(state.residue < dmarx->last_residue)) {
1109 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1110 		size = dmarx->last_residue - state.residue;
1111 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1112 				size);
1113 		if (dma_count == size)
1114 			dmarx->last_residue =  state.residue;
1115 		dmarx->last_jiffies = jiffies;
1116 	}
1117 	tty_flip_buffer_push(port);
1118 
1119 	/*
1120 	 * If no data is received in poll_timeout, the driver will fall back
1121 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1122 	 */
1123 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1124 			> uap->dmarx.poll_timeout) {
1125 
1126 		spin_lock_irqsave(&uap->port.lock, flags);
1127 		pl011_dma_rx_stop(uap);
1128 		uap->im |= UART011_RXIM;
1129 		pl011_writew(uap, uap->im, REG_IMSC);
1130 		spin_unlock_irqrestore(&uap->port.lock, flags);
1131 
1132 		uap->dmarx.running = false;
1133 		dmaengine_terminate_all(rxchan);
1134 		del_timer(&uap->dmarx.timer);
1135 	} else {
1136 		mod_timer(&uap->dmarx.timer,
1137 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1138 	}
1139 }
1140 
1141 static void pl011_dma_startup(struct uart_amba_port *uap)
1142 {
1143 	int ret;
1144 
1145 	if (!uap->dma_probed)
1146 		pl011_dma_probe(uap);
1147 
1148 	if (!uap->dmatx.chan)
1149 		return;
1150 
1151 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1152 	if (!uap->dmatx.buf) {
1153 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1154 		uap->port.fifosize = uap->fifosize;
1155 		return;
1156 	}
1157 
1158 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1159 
1160 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1161 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1162 	uap->using_tx_dma = true;
1163 
1164 	if (!uap->dmarx.chan)
1165 		goto skip_rx;
1166 
1167 	/* Allocate and map DMA RX buffers */
1168 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1169 			       DMA_FROM_DEVICE);
1170 	if (ret) {
1171 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1172 			"RX buffer A", ret);
1173 		goto skip_rx;
1174 	}
1175 
1176 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1177 			       DMA_FROM_DEVICE);
1178 	if (ret) {
1179 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1180 			"RX buffer B", ret);
1181 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1182 				 DMA_FROM_DEVICE);
1183 		goto skip_rx;
1184 	}
1185 
1186 	uap->using_rx_dma = true;
1187 
1188 skip_rx:
1189 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1190 	uap->dmacr |= UART011_DMAONERR;
1191 	pl011_writew(uap, uap->dmacr, REG_DMACR);
1192 
1193 	/*
1194 	 * ST Micro variants has some specific dma burst threshold
1195 	 * compensation. Set this to 16 bytes, so burst will only
1196 	 * be issued above/below 16 bytes.
1197 	 */
1198 	if (uap->vendor->dma_threshold)
1199 		pl011_writew(uap,
1200 			     ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1201 			     REG_ST_DMAWM);
1202 
1203 	if (uap->using_rx_dma) {
1204 		if (pl011_dma_rx_trigger_dma(uap))
1205 			dev_dbg(uap->port.dev, "could not trigger initial "
1206 				"RX DMA job, fall back to interrupt mode\n");
1207 		if (uap->dmarx.poll_rate) {
1208 			init_timer(&(uap->dmarx.timer));
1209 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1210 			uap->dmarx.timer.data = (unsigned long)uap;
1211 			mod_timer(&uap->dmarx.timer,
1212 				jiffies +
1213 				msecs_to_jiffies(uap->dmarx.poll_rate));
1214 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1215 			uap->dmarx.last_jiffies = jiffies;
1216 		}
1217 	}
1218 }
1219 
1220 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1221 {
1222 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1223 		return;
1224 
1225 	/* Disable RX and TX DMA */
1226 	while (pl011_readw(uap, REG_FR) & uap->fr_busy)
1227 		barrier();
1228 
1229 	spin_lock_irq(&uap->port.lock);
1230 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1231 	pl011_writew(uap, uap->dmacr, REG_DMACR);
1232 	spin_unlock_irq(&uap->port.lock);
1233 
1234 	if (uap->using_tx_dma) {
1235 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1236 		dmaengine_terminate_all(uap->dmatx.chan);
1237 		if (uap->dmatx.queued) {
1238 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1239 				     DMA_TO_DEVICE);
1240 			uap->dmatx.queued = false;
1241 		}
1242 
1243 		kfree(uap->dmatx.buf);
1244 		uap->using_tx_dma = false;
1245 	}
1246 
1247 	if (uap->using_rx_dma) {
1248 		dmaengine_terminate_all(uap->dmarx.chan);
1249 		/* Clean up the RX DMA */
1250 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1251 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1252 		if (uap->dmarx.poll_rate)
1253 			del_timer_sync(&uap->dmarx.timer);
1254 		uap->using_rx_dma = false;
1255 	}
1256 }
1257 
1258 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1259 {
1260 	return uap->using_rx_dma;
1261 }
1262 
1263 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1264 {
1265 	return uap->using_rx_dma && uap->dmarx.running;
1266 }
1267 
1268 #else
1269 /* Blank functions if the DMA engine is not available */
1270 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1271 {
1272 }
1273 
1274 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1275 {
1276 }
1277 
1278 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1279 {
1280 }
1281 
1282 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1283 {
1284 }
1285 
1286 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1287 {
1288 	return false;
1289 }
1290 
1291 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1292 {
1293 }
1294 
1295 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1296 {
1297 	return false;
1298 }
1299 
1300 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1301 {
1302 }
1303 
1304 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1305 {
1306 }
1307 
1308 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1309 {
1310 	return -EIO;
1311 }
1312 
1313 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1314 {
1315 	return false;
1316 }
1317 
1318 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1319 {
1320 	return false;
1321 }
1322 
1323 #define pl011_dma_flush_buffer	NULL
1324 #endif
1325 
1326 static void pl011_stop_tx(struct uart_port *port)
1327 {
1328 	struct uart_amba_port *uap =
1329 	    container_of(port, struct uart_amba_port, port);
1330 
1331 	uap->im &= ~UART011_TXIM;
1332 	pl011_writew(uap, uap->im, REG_IMSC);
1333 	pl011_dma_tx_stop(uap);
1334 }
1335 
1336 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1337 
1338 /* Start TX with programmed I/O only (no DMA) */
1339 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1340 {
1341 	uap->im |= UART011_TXIM;
1342 	pl011_writew(uap, uap->im, REG_IMSC);
1343 	pl011_tx_chars(uap, false);
1344 }
1345 
1346 static void pl011_start_tx(struct uart_port *port)
1347 {
1348 	struct uart_amba_port *uap =
1349 	    container_of(port, struct uart_amba_port, port);
1350 
1351 	if (!pl011_dma_tx_start(uap))
1352 		pl011_start_tx_pio(uap);
1353 }
1354 
1355 static void pl011_stop_rx(struct uart_port *port)
1356 {
1357 	struct uart_amba_port *uap =
1358 	    container_of(port, struct uart_amba_port, port);
1359 
1360 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1361 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1362 	pl011_writew(uap, uap->im, REG_IMSC);
1363 
1364 	pl011_dma_rx_stop(uap);
1365 }
1366 
1367 static void pl011_enable_ms(struct uart_port *port)
1368 {
1369 	struct uart_amba_port *uap =
1370 	    container_of(port, struct uart_amba_port, port);
1371 
1372 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1373 	pl011_writew(uap, uap->im, REG_IMSC);
1374 }
1375 
1376 static void pl011_rx_chars(struct uart_amba_port *uap)
1377 __releases(&uap->port.lock)
1378 __acquires(&uap->port.lock)
1379 {
1380 	pl011_fifo_to_tty(uap);
1381 
1382 	spin_unlock(&uap->port.lock);
1383 	tty_flip_buffer_push(&uap->port.state->port);
1384 	/*
1385 	 * If we were temporarily out of DMA mode for a while,
1386 	 * attempt to switch back to DMA mode again.
1387 	 */
1388 	if (pl011_dma_rx_available(uap)) {
1389 		if (pl011_dma_rx_trigger_dma(uap)) {
1390 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1391 				"fall back to interrupt mode again\n");
1392 			uap->im |= UART011_RXIM;
1393 			pl011_writew(uap, uap->im, REG_IMSC);
1394 		} else {
1395 #ifdef CONFIG_DMA_ENGINE
1396 			/* Start Rx DMA poll */
1397 			if (uap->dmarx.poll_rate) {
1398 				uap->dmarx.last_jiffies = jiffies;
1399 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1400 				mod_timer(&uap->dmarx.timer,
1401 					jiffies +
1402 					msecs_to_jiffies(uap->dmarx.poll_rate));
1403 			}
1404 #endif
1405 		}
1406 	}
1407 	spin_lock(&uap->port.lock);
1408 }
1409 
1410 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1411 			  bool from_irq)
1412 {
1413 	if (unlikely(!from_irq) &&
1414 	    pl011_readw(uap, REG_FR) & UART01x_FR_TXFF)
1415 		return false; /* unable to transmit character */
1416 
1417 	pl011_writew(uap, c, REG_DR);
1418 	uap->port.icount.tx++;
1419 
1420 	return true;
1421 }
1422 
1423 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1424 {
1425 	struct circ_buf *xmit = &uap->port.state->xmit;
1426 	int count = uap->fifosize >> 1;
1427 
1428 	if (uap->port.x_char) {
1429 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1430 			return;
1431 		uap->port.x_char = 0;
1432 		--count;
1433 	}
1434 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1435 		pl011_stop_tx(&uap->port);
1436 		return;
1437 	}
1438 
1439 	/* If we are using DMA mode, try to send some characters. */
1440 	if (pl011_dma_tx_irq(uap))
1441 		return;
1442 
1443 	do {
1444 		if (likely(from_irq) && count-- == 0)
1445 			break;
1446 
1447 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1448 			break;
1449 
1450 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1451 	} while (!uart_circ_empty(xmit));
1452 
1453 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1454 		uart_write_wakeup(&uap->port);
1455 
1456 	if (uart_circ_empty(xmit))
1457 		pl011_stop_tx(&uap->port);
1458 }
1459 
1460 static void pl011_modem_status(struct uart_amba_port *uap)
1461 {
1462 	unsigned int status, delta;
1463 
1464 	status = pl011_readw(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1465 
1466 	delta = status ^ uap->old_status;
1467 	uap->old_status = status;
1468 
1469 	if (!delta)
1470 		return;
1471 
1472 	if (delta & UART01x_FR_DCD)
1473 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1474 
1475 	if (delta & uap->fr_dsr)
1476 		uap->port.icount.dsr++;
1477 
1478 	if (delta & uap->fr_cts)
1479 		uart_handle_cts_change(&uap->port, status & uap->fr_cts);
1480 
1481 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1482 }
1483 
1484 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1485 {
1486 	unsigned int dummy_read;
1487 
1488 	if (!uap->vendor->cts_event_workaround)
1489 		return;
1490 
1491 	/* workaround to make sure that all bits are unlocked.. */
1492 	pl011_writew(uap, 0x00, REG_ICR);
1493 
1494 	/*
1495 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1496 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1497 	 * so add 2 dummy reads
1498 	 */
1499 	dummy_read = pl011_readw(uap, REG_ICR);
1500 	dummy_read = pl011_readw(uap, REG_ICR);
1501 }
1502 
1503 static irqreturn_t pl011_int(int irq, void *dev_id)
1504 {
1505 	struct uart_amba_port *uap = dev_id;
1506 	unsigned long flags;
1507 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1508 	u16 imsc;
1509 	int handled = 0;
1510 
1511 	spin_lock_irqsave(&uap->port.lock, flags);
1512 	imsc = pl011_readw(uap, REG_IMSC);
1513 	status = pl011_readw(uap, REG_RIS) & imsc;
1514 	if (status) {
1515 		do {
1516 			check_apply_cts_event_workaround(uap);
1517 			pl011_writew(uap, status & ~(UART011_TXIS|UART011_RTIS|
1518 				     UART011_RXIS), REG_ICR);
1519 
1520 			if (status & (UART011_RTIS|UART011_RXIS)) {
1521 				if (pl011_dma_rx_running(uap))
1522 					pl011_dma_rx_irq(uap);
1523 				else
1524 					pl011_rx_chars(uap);
1525 			}
1526 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1527 				      UART011_CTSMIS|UART011_RIMIS))
1528 				pl011_modem_status(uap);
1529 			if (status & UART011_TXIS)
1530 				pl011_tx_chars(uap, true);
1531 
1532 			if (pass_counter-- == 0)
1533 				break;
1534 
1535 			status = pl011_readw(uap, REG_RIS) & imsc;
1536 		} while (status != 0);
1537 		handled = 1;
1538 	}
1539 
1540 	spin_unlock_irqrestore(&uap->port.lock, flags);
1541 
1542 	return IRQ_RETVAL(handled);
1543 }
1544 
1545 static unsigned int pl011_tx_empty(struct uart_port *port)
1546 {
1547 	struct uart_amba_port *uap =
1548 	    container_of(port, struct uart_amba_port, port);
1549 	unsigned int status = pl011_readw(uap, REG_FR);
1550 	return status & (uap->fr_busy|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1551 }
1552 
1553 static unsigned int pl011_get_mctrl(struct uart_port *port)
1554 {
1555 	struct uart_amba_port *uap =
1556 	    container_of(port, struct uart_amba_port, port);
1557 	unsigned int result = 0;
1558 	unsigned int status = pl011_readw(uap, REG_FR);
1559 
1560 #define TIOCMBIT(uartbit, tiocmbit)	\
1561 	if (status & uartbit)		\
1562 		result |= tiocmbit
1563 
1564 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1565 	TIOCMBIT(uap->fr_dsr, TIOCM_DSR);
1566 	TIOCMBIT(uap->fr_cts, TIOCM_CTS);
1567 	TIOCMBIT(uap->fr_ri, TIOCM_RNG);
1568 #undef TIOCMBIT
1569 	return result;
1570 }
1571 
1572 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1573 {
1574 	struct uart_amba_port *uap =
1575 	    container_of(port, struct uart_amba_port, port);
1576 	unsigned int cr;
1577 
1578 	cr = pl011_readw(uap, REG_CR);
1579 
1580 #define	TIOCMBIT(tiocmbit, uartbit)		\
1581 	if (mctrl & tiocmbit)		\
1582 		cr |= uartbit;		\
1583 	else				\
1584 		cr &= ~uartbit
1585 
1586 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1587 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1588 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1589 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1590 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1591 
1592 	if (uap->autorts) {
1593 		/* We need to disable auto-RTS if we want to turn RTS off */
1594 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1595 	}
1596 #undef TIOCMBIT
1597 
1598 	pl011_writew(uap, cr, REG_CR);
1599 }
1600 
1601 static void pl011_break_ctl(struct uart_port *port, int break_state)
1602 {
1603 	struct uart_amba_port *uap =
1604 	    container_of(port, struct uart_amba_port, port);
1605 	unsigned long flags;
1606 	unsigned int lcr_h;
1607 
1608 	spin_lock_irqsave(&uap->port.lock, flags);
1609 	lcr_h = pl011_readw(uap, uap->lcrh_tx);
1610 	if (break_state == -1)
1611 		lcr_h |= UART01x_LCRH_BRK;
1612 	else
1613 		lcr_h &= ~UART01x_LCRH_BRK;
1614 	pl011_writew(uap, lcr_h, uap->lcrh_tx);
1615 	spin_unlock_irqrestore(&uap->port.lock, flags);
1616 }
1617 
1618 #ifdef CONFIG_CONSOLE_POLL
1619 
1620 static void pl011_quiesce_irqs(struct uart_port *port)
1621 {
1622 	struct uart_amba_port *uap =
1623 	    container_of(port, struct uart_amba_port, port);
1624 
1625 	pl011_writew(uap, pl011_readw(uap, REG_MIS), REG_ICR);
1626 	/*
1627 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1628 	 * we simply mask it. start_tx() will unmask it.
1629 	 *
1630 	 * Note we can race with start_tx(), and if the race happens, the
1631 	 * polling user might get another interrupt just after we clear it.
1632 	 * But it should be OK and can happen even w/o the race, e.g.
1633 	 * controller immediately got some new data and raised the IRQ.
1634 	 *
1635 	 * And whoever uses polling routines assumes that it manages the device
1636 	 * (including tx queue), so we're also fine with start_tx()'s caller
1637 	 * side.
1638 	 */
1639 	pl011_writew(uap, pl011_readw(uap, REG_IMSC) & ~UART011_TXIM, REG_IMSC);
1640 }
1641 
1642 static int pl011_get_poll_char(struct uart_port *port)
1643 {
1644 	struct uart_amba_port *uap =
1645 	    container_of(port, struct uart_amba_port, port);
1646 	unsigned int status;
1647 
1648 	/*
1649 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1650 	 * debugger.
1651 	 */
1652 	pl011_quiesce_irqs(port);
1653 
1654 	status = pl011_readw(uap, REG_FR);
1655 	if (status & UART01x_FR_RXFE)
1656 		return NO_POLL_CHAR;
1657 
1658 	return pl011_readw(uap, REG_DR);
1659 }
1660 
1661 static void pl011_put_poll_char(struct uart_port *port,
1662 			 unsigned char ch)
1663 {
1664 	struct uart_amba_port *uap =
1665 	    container_of(port, struct uart_amba_port, port);
1666 
1667 	while (pl011_readw(uap, REG_FR) & UART01x_FR_TXFF)
1668 		barrier();
1669 
1670 	pl011_writew(uap, ch, REG_DR);
1671 }
1672 
1673 #endif /* CONFIG_CONSOLE_POLL */
1674 
1675 static int pl011_hwinit(struct uart_port *port)
1676 {
1677 	struct uart_amba_port *uap =
1678 	    container_of(port, struct uart_amba_port, port);
1679 	int retval;
1680 
1681 	/* Optionaly enable pins to be muxed in and configured */
1682 	pinctrl_pm_select_default_state(port->dev);
1683 
1684 	/*
1685 	 * Try to enable the clock producer.
1686 	 */
1687 	retval = clk_prepare_enable(uap->clk);
1688 	if (retval)
1689 		return retval;
1690 
1691 	uap->port.uartclk = clk_get_rate(uap->clk);
1692 
1693 	/* Clear pending error and receive interrupts */
1694 	pl011_writew(uap, UART011_OEIS | UART011_BEIS | UART011_PEIS |
1695 		     UART011_FEIS | UART011_RTIS | UART011_RXIS, REG_ICR);
1696 
1697 	/*
1698 	 * Save interrupts enable mask, and enable RX interrupts in case if
1699 	 * the interrupt is used for NMI entry.
1700 	 */
1701 	uap->im = pl011_readw(uap, REG_IMSC);
1702 	pl011_writew(uap, UART011_RTIM | UART011_RXIM, REG_IMSC);
1703 
1704 	if (dev_get_platdata(uap->port.dev)) {
1705 		struct amba_pl011_data *plat;
1706 
1707 		plat = dev_get_platdata(uap->port.dev);
1708 		if (plat->init)
1709 			plat->init();
1710 	}
1711 	return 0;
1712 }
1713 
1714 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1715 {
1716 	pl011_writew(uap, lcr_h, uap->lcrh_rx);
1717 	if (is_implemented(uap, REG_ST_LCRH_RX)) {
1718 		int i;
1719 		/*
1720 		 * Wait 10 PCLKs before writing LCRH_TX register,
1721 		 * to get this delay write read only register 10 times
1722 		 */
1723 		for (i = 0; i < 10; ++i)
1724 			pl011_writew(uap, 0xff, REG_MIS);
1725 		pl011_writew(uap, lcr_h, uap->lcrh_tx);
1726 	}
1727 }
1728 
1729 static int pl011_allocate_irq(struct uart_amba_port *uap)
1730 {
1731 	pl011_writew(uap, uap->im, REG_IMSC);
1732 
1733 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1734 }
1735 
1736 /*
1737  * Enable interrupts, only timeouts when using DMA
1738  * if initial RX DMA job failed, start in interrupt mode
1739  * as well.
1740  */
1741 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1742 {
1743 	spin_lock_irq(&uap->port.lock);
1744 
1745 	/* Clear out any spuriously appearing RX interrupts */
1746 	pl011_writew(uap, UART011_RTIS | UART011_RXIS, REG_ICR);
1747 	uap->im = UART011_RTIM;
1748 	if (!pl011_dma_rx_running(uap))
1749 		uap->im |= UART011_RXIM;
1750 	pl011_writew(uap, uap->im, REG_IMSC);
1751 	spin_unlock_irq(&uap->port.lock);
1752 }
1753 
1754 static int pl011_startup(struct uart_port *port)
1755 {
1756 	struct uart_amba_port *uap =
1757 	    container_of(port, struct uart_amba_port, port);
1758 	unsigned int cr;
1759 	int retval;
1760 
1761 	retval = pl011_hwinit(port);
1762 	if (retval)
1763 		goto clk_dis;
1764 
1765 	retval = pl011_allocate_irq(uap);
1766 	if (retval)
1767 		goto clk_dis;
1768 
1769 	pl011_writew(uap, uap->vendor->ifls, REG_IFLS);
1770 
1771 	spin_lock_irq(&uap->port.lock);
1772 
1773 	/* restore RTS and DTR */
1774 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1775 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1776 	pl011_writew(uap, cr, REG_CR);
1777 
1778 	spin_unlock_irq(&uap->port.lock);
1779 
1780 	/*
1781 	 * initialise the old status of the modem signals
1782 	 */
1783 	uap->old_status = pl011_readw(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1784 
1785 	/* Startup DMA */
1786 	pl011_dma_startup(uap);
1787 
1788 	pl011_enable_interrupts(uap);
1789 
1790 	return 0;
1791 
1792  clk_dis:
1793 	clk_disable_unprepare(uap->clk);
1794 	return retval;
1795 }
1796 
1797 static int sbsa_uart_startup(struct uart_port *port)
1798 {
1799 	struct uart_amba_port *uap =
1800 		container_of(port, struct uart_amba_port, port);
1801 	int retval;
1802 
1803 	retval = pl011_hwinit(port);
1804 	if (retval)
1805 		return retval;
1806 
1807 	retval = pl011_allocate_irq(uap);
1808 	if (retval)
1809 		return retval;
1810 
1811 	/* The SBSA UART does not support any modem status lines. */
1812 	uap->old_status = 0;
1813 
1814 	pl011_enable_interrupts(uap);
1815 
1816 	return 0;
1817 }
1818 
1819 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1820 					unsigned int lcrh)
1821 {
1822 	unsigned long val;
1823 
1824 	val = pl011_readw(uap, lcrh);
1825 	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1826 	pl011_writew(uap, val, lcrh);
1827 }
1828 
1829 /*
1830  * disable the port. It should not disable RTS and DTR.
1831  * Also RTS and DTR state should be preserved to restore
1832  * it during startup().
1833  */
1834 static void pl011_disable_uart(struct uart_amba_port *uap)
1835 {
1836 	unsigned int cr;
1837 
1838 	uap->autorts = false;
1839 	spin_lock_irq(&uap->port.lock);
1840 	cr = pl011_readw(uap, REG_CR);
1841 	uap->old_cr = cr;
1842 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1843 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1844 	pl011_writew(uap, cr, REG_CR);
1845 	spin_unlock_irq(&uap->port.lock);
1846 
1847 	/*
1848 	 * disable break condition and fifos
1849 	 */
1850 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1851 	if (is_implemented(uap, REG_ST_LCRH_RX))
1852 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1853 }
1854 
1855 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1856 {
1857 	spin_lock_irq(&uap->port.lock);
1858 
1859 	/* mask all interrupts and clear all pending ones */
1860 	uap->im = 0;
1861 	pl011_writew(uap, uap->im, REG_IMSC);
1862 	pl011_writew(uap, 0xffff, REG_ICR);
1863 
1864 	spin_unlock_irq(&uap->port.lock);
1865 }
1866 
1867 static void pl011_shutdown(struct uart_port *port)
1868 {
1869 	struct uart_amba_port *uap =
1870 		container_of(port, struct uart_amba_port, port);
1871 
1872 	pl011_disable_interrupts(uap);
1873 
1874 	pl011_dma_shutdown(uap);
1875 
1876 	free_irq(uap->port.irq, uap);
1877 
1878 	pl011_disable_uart(uap);
1879 
1880 	/*
1881 	 * Shut down the clock producer
1882 	 */
1883 	clk_disable_unprepare(uap->clk);
1884 	/* Optionally let pins go into sleep states */
1885 	pinctrl_pm_select_sleep_state(port->dev);
1886 
1887 	if (dev_get_platdata(uap->port.dev)) {
1888 		struct amba_pl011_data *plat;
1889 
1890 		plat = dev_get_platdata(uap->port.dev);
1891 		if (plat->exit)
1892 			plat->exit();
1893 	}
1894 
1895 	if (uap->port.ops->flush_buffer)
1896 		uap->port.ops->flush_buffer(port);
1897 }
1898 
1899 static void sbsa_uart_shutdown(struct uart_port *port)
1900 {
1901 	struct uart_amba_port *uap =
1902 		container_of(port, struct uart_amba_port, port);
1903 
1904 	pl011_disable_interrupts(uap);
1905 
1906 	free_irq(uap->port.irq, uap);
1907 
1908 	if (uap->port.ops->flush_buffer)
1909 		uap->port.ops->flush_buffer(port);
1910 }
1911 
1912 static void
1913 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1914 {
1915 	port->read_status_mask = UART011_DR_OE | 255;
1916 	if (termios->c_iflag & INPCK)
1917 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1918 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1919 		port->read_status_mask |= UART011_DR_BE;
1920 
1921 	/*
1922 	 * Characters to ignore
1923 	 */
1924 	port->ignore_status_mask = 0;
1925 	if (termios->c_iflag & IGNPAR)
1926 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1927 	if (termios->c_iflag & IGNBRK) {
1928 		port->ignore_status_mask |= UART011_DR_BE;
1929 		/*
1930 		 * If we're ignoring parity and break indicators,
1931 		 * ignore overruns too (for real raw support).
1932 		 */
1933 		if (termios->c_iflag & IGNPAR)
1934 			port->ignore_status_mask |= UART011_DR_OE;
1935 	}
1936 
1937 	/*
1938 	 * Ignore all characters if CREAD is not set.
1939 	 */
1940 	if ((termios->c_cflag & CREAD) == 0)
1941 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1942 }
1943 
1944 static void
1945 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1946 		     struct ktermios *old)
1947 {
1948 	struct uart_amba_port *uap =
1949 	    container_of(port, struct uart_amba_port, port);
1950 	unsigned int lcr_h, old_cr;
1951 	unsigned long flags;
1952 	unsigned int baud, quot, clkdiv;
1953 
1954 	if (uap->vendor->oversampling)
1955 		clkdiv = 8;
1956 	else
1957 		clkdiv = 16;
1958 
1959 	/*
1960 	 * Ask the core to calculate the divisor for us.
1961 	 */
1962 	baud = uart_get_baud_rate(port, termios, old, 0,
1963 				  port->uartclk / clkdiv);
1964 #ifdef CONFIG_DMA_ENGINE
1965 	/*
1966 	 * Adjust RX DMA polling rate with baud rate if not specified.
1967 	 */
1968 	if (uap->dmarx.auto_poll_rate)
1969 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1970 #endif
1971 
1972 	if (baud > port->uartclk/16)
1973 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1974 	else
1975 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1976 
1977 	switch (termios->c_cflag & CSIZE) {
1978 	case CS5:
1979 		lcr_h = UART01x_LCRH_WLEN_5;
1980 		break;
1981 	case CS6:
1982 		lcr_h = UART01x_LCRH_WLEN_6;
1983 		break;
1984 	case CS7:
1985 		lcr_h = UART01x_LCRH_WLEN_7;
1986 		break;
1987 	default: // CS8
1988 		lcr_h = UART01x_LCRH_WLEN_8;
1989 		break;
1990 	}
1991 	if (termios->c_cflag & CSTOPB)
1992 		lcr_h |= UART01x_LCRH_STP2;
1993 	if (termios->c_cflag & PARENB) {
1994 		lcr_h |= UART01x_LCRH_PEN;
1995 		if (!(termios->c_cflag & PARODD))
1996 			lcr_h |= UART01x_LCRH_EPS;
1997 	}
1998 	if (uap->fifosize > 1)
1999 		lcr_h |= UART01x_LCRH_FEN;
2000 
2001 	spin_lock_irqsave(&port->lock, flags);
2002 
2003 	/*
2004 	 * Update the per-port timeout.
2005 	 */
2006 	uart_update_timeout(port, termios->c_cflag, baud);
2007 
2008 	pl011_setup_status_masks(port, termios);
2009 
2010 	if (UART_ENABLE_MS(port, termios->c_cflag))
2011 		pl011_enable_ms(port);
2012 
2013 	/* first, disable everything */
2014 	old_cr = pl011_readw(uap, REG_CR);
2015 	pl011_writew(uap, 0, REG_CR);
2016 
2017 	if (termios->c_cflag & CRTSCTS) {
2018 		if (old_cr & UART011_CR_RTS)
2019 			old_cr |= UART011_CR_RTSEN;
2020 
2021 		old_cr |= UART011_CR_CTSEN;
2022 		uap->autorts = true;
2023 	} else {
2024 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2025 		uap->autorts = false;
2026 	}
2027 
2028 	if (uap->vendor->oversampling) {
2029 		if (baud > port->uartclk / 16)
2030 			old_cr |= ST_UART011_CR_OVSFACT;
2031 		else
2032 			old_cr &= ~ST_UART011_CR_OVSFACT;
2033 	}
2034 
2035 	/*
2036 	 * Workaround for the ST Micro oversampling variants to
2037 	 * increase the bitrate slightly, by lowering the divisor,
2038 	 * to avoid delayed sampling of start bit at high speeds,
2039 	 * else we see data corruption.
2040 	 */
2041 	if (uap->vendor->oversampling) {
2042 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2043 			quot -= 1;
2044 		else if ((baud > 3250000) && (quot > 2))
2045 			quot -= 2;
2046 	}
2047 	/* Set baud rate */
2048 	pl011_writew(uap, quot & 0x3f, REG_FBRD);
2049 	pl011_writew(uap, quot >> 6, REG_IBRD);
2050 
2051 	/*
2052 	 * ----------v----------v----------v----------v-----
2053 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
2054 	 * REG_FBRD & REG_IBRD.
2055 	 * ----------^----------^----------^----------^-----
2056 	 */
2057 	pl011_write_lcr_h(uap, lcr_h);
2058 	pl011_writew(uap, old_cr, REG_CR);
2059 
2060 	spin_unlock_irqrestore(&port->lock, flags);
2061 }
2062 
2063 static void
2064 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2065 		      struct ktermios *old)
2066 {
2067 	struct uart_amba_port *uap =
2068 	    container_of(port, struct uart_amba_port, port);
2069 	unsigned long flags;
2070 
2071 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2072 
2073 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2074 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2075 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2076 	termios->c_cflag |= CS8 | CLOCAL;
2077 
2078 	spin_lock_irqsave(&port->lock, flags);
2079 	uart_update_timeout(port, CS8, uap->fixed_baud);
2080 	pl011_setup_status_masks(port, termios);
2081 	spin_unlock_irqrestore(&port->lock, flags);
2082 }
2083 
2084 static const char *pl011_type(struct uart_port *port)
2085 {
2086 	struct uart_amba_port *uap =
2087 	    container_of(port, struct uart_amba_port, port);
2088 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2089 }
2090 
2091 /*
2092  * Release the memory region(s) being used by 'port'
2093  */
2094 static void pl011_release_port(struct uart_port *port)
2095 {
2096 	release_mem_region(port->mapbase, SZ_4K);
2097 }
2098 
2099 /*
2100  * Request the memory region(s) being used by 'port'
2101  */
2102 static int pl011_request_port(struct uart_port *port)
2103 {
2104 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2105 			!= NULL ? 0 : -EBUSY;
2106 }
2107 
2108 /*
2109  * Configure/autoconfigure the port.
2110  */
2111 static void pl011_config_port(struct uart_port *port, int flags)
2112 {
2113 	if (flags & UART_CONFIG_TYPE) {
2114 		port->type = PORT_AMBA;
2115 		pl011_request_port(port);
2116 	}
2117 }
2118 
2119 /*
2120  * verify the new serial_struct (for TIOCSSERIAL).
2121  */
2122 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2123 {
2124 	int ret = 0;
2125 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2126 		ret = -EINVAL;
2127 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2128 		ret = -EINVAL;
2129 	if (ser->baud_base < 9600)
2130 		ret = -EINVAL;
2131 	return ret;
2132 }
2133 
2134 static struct uart_ops amba_pl011_pops = {
2135 	.tx_empty	= pl011_tx_empty,
2136 	.set_mctrl	= pl011_set_mctrl,
2137 	.get_mctrl	= pl011_get_mctrl,
2138 	.stop_tx	= pl011_stop_tx,
2139 	.start_tx	= pl011_start_tx,
2140 	.stop_rx	= pl011_stop_rx,
2141 	.enable_ms	= pl011_enable_ms,
2142 	.break_ctl	= pl011_break_ctl,
2143 	.startup	= pl011_startup,
2144 	.shutdown	= pl011_shutdown,
2145 	.flush_buffer	= pl011_dma_flush_buffer,
2146 	.set_termios	= pl011_set_termios,
2147 	.type		= pl011_type,
2148 	.release_port	= pl011_release_port,
2149 	.request_port	= pl011_request_port,
2150 	.config_port	= pl011_config_port,
2151 	.verify_port	= pl011_verify_port,
2152 #ifdef CONFIG_CONSOLE_POLL
2153 	.poll_init     = pl011_hwinit,
2154 	.poll_get_char = pl011_get_poll_char,
2155 	.poll_put_char = pl011_put_poll_char,
2156 #endif
2157 };
2158 
2159 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2160 {
2161 }
2162 
2163 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2164 {
2165 	return 0;
2166 }
2167 
2168 static const struct uart_ops sbsa_uart_pops = {
2169 	.tx_empty	= pl011_tx_empty,
2170 	.set_mctrl	= sbsa_uart_set_mctrl,
2171 	.get_mctrl	= sbsa_uart_get_mctrl,
2172 	.stop_tx	= pl011_stop_tx,
2173 	.start_tx	= pl011_start_tx,
2174 	.stop_rx	= pl011_stop_rx,
2175 	.startup	= sbsa_uart_startup,
2176 	.shutdown	= sbsa_uart_shutdown,
2177 	.set_termios	= sbsa_uart_set_termios,
2178 	.type		= pl011_type,
2179 	.release_port	= pl011_release_port,
2180 	.request_port	= pl011_request_port,
2181 	.config_port	= pl011_config_port,
2182 	.verify_port	= pl011_verify_port,
2183 #ifdef CONFIG_CONSOLE_POLL
2184 	.poll_init     = pl011_hwinit,
2185 	.poll_get_char = pl011_get_poll_char,
2186 	.poll_put_char = pl011_put_poll_char,
2187 #endif
2188 };
2189 
2190 static struct uart_amba_port *amba_ports[UART_NR];
2191 
2192 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2193 
2194 static void pl011_console_putchar(struct uart_port *port, int ch)
2195 {
2196 	struct uart_amba_port *uap =
2197 	    container_of(port, struct uart_amba_port, port);
2198 
2199 	while (pl011_readw(uap, REG_FR) & UART01x_FR_TXFF)
2200 		barrier();
2201 	pl011_writew(uap, ch, REG_DR);
2202 }
2203 
2204 static void
2205 pl011_console_write(struct console *co, const char *s, unsigned int count)
2206 {
2207 	struct uart_amba_port *uap = amba_ports[co->index];
2208 	unsigned int status, old_cr = 0, new_cr;
2209 	unsigned long flags;
2210 	int locked = 1;
2211 
2212 	clk_enable(uap->clk);
2213 
2214 	local_irq_save(flags);
2215 	if (uap->port.sysrq)
2216 		locked = 0;
2217 	else if (oops_in_progress)
2218 		locked = spin_trylock(&uap->port.lock);
2219 	else
2220 		spin_lock(&uap->port.lock);
2221 
2222 	/*
2223 	 *	First save the CR then disable the interrupts
2224 	 */
2225 	if (!uap->vendor->always_enabled) {
2226 		old_cr = pl011_readw(uap, REG_CR);
2227 		new_cr = old_cr & ~UART011_CR_CTSEN;
2228 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2229 		pl011_writew(uap, new_cr, REG_CR);
2230 	}
2231 
2232 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2233 
2234 	/*
2235 	 *	Finally, wait for transmitter to become empty
2236 	 *	and restore the TCR
2237 	 */
2238 	do {
2239 		status = pl011_readw(uap, REG_FR);
2240 	} while (status & uap->fr_busy);
2241 	if (!uap->vendor->always_enabled)
2242 		pl011_writew(uap, old_cr, REG_CR);
2243 
2244 	if (locked)
2245 		spin_unlock(&uap->port.lock);
2246 	local_irq_restore(flags);
2247 
2248 	clk_disable(uap->clk);
2249 }
2250 
2251 static void __init
2252 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2253 			     int *parity, int *bits)
2254 {
2255 	if (pl011_readw(uap, REG_CR) & UART01x_CR_UARTEN) {
2256 		unsigned int lcr_h, ibrd, fbrd;
2257 
2258 		lcr_h = pl011_readw(uap, uap->lcrh_tx);
2259 
2260 		*parity = 'n';
2261 		if (lcr_h & UART01x_LCRH_PEN) {
2262 			if (lcr_h & UART01x_LCRH_EPS)
2263 				*parity = 'e';
2264 			else
2265 				*parity = 'o';
2266 		}
2267 
2268 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2269 			*bits = 7;
2270 		else
2271 			*bits = 8;
2272 
2273 		ibrd = pl011_readw(uap, REG_IBRD);
2274 		fbrd = pl011_readw(uap, REG_FBRD);
2275 
2276 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2277 
2278 		if (uap->vendor->oversampling) {
2279 			if (pl011_readw(uap, REG_CR)
2280 				  & ST_UART011_CR_OVSFACT)
2281 				*baud *= 2;
2282 		}
2283 	}
2284 }
2285 
2286 static int __init pl011_console_setup(struct console *co, char *options)
2287 {
2288 	struct uart_amba_port *uap;
2289 	int baud = 38400;
2290 	int bits = 8;
2291 	int parity = 'n';
2292 	int flow = 'n';
2293 	int ret;
2294 
2295 	/*
2296 	 * Check whether an invalid uart number has been specified, and
2297 	 * if so, search for the first available port that does have
2298 	 * console support.
2299 	 */
2300 	if (co->index >= UART_NR)
2301 		co->index = 0;
2302 	uap = amba_ports[co->index];
2303 	if (!uap)
2304 		return -ENODEV;
2305 
2306 	/* Allow pins to be muxed in and configured */
2307 	pinctrl_pm_select_default_state(uap->port.dev);
2308 
2309 	ret = clk_prepare(uap->clk);
2310 	if (ret)
2311 		return ret;
2312 
2313 	if (dev_get_platdata(uap->port.dev)) {
2314 		struct amba_pl011_data *plat;
2315 
2316 		plat = dev_get_platdata(uap->port.dev);
2317 		if (plat->init)
2318 			plat->init();
2319 	}
2320 
2321 	uap->port.uartclk = clk_get_rate(uap->clk);
2322 
2323 	if (uap->vendor->fixed_options) {
2324 		baud = uap->fixed_baud;
2325 	} else {
2326 		if (options)
2327 			uart_parse_options(options,
2328 					   &baud, &parity, &bits, &flow);
2329 		else
2330 			pl011_console_get_options(uap, &baud, &parity, &bits);
2331 	}
2332 
2333 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2334 }
2335 
2336 static struct uart_driver amba_reg;
2337 static struct console amba_console = {
2338 	.name		= "ttyAMA",
2339 	.write		= pl011_console_write,
2340 	.device		= uart_console_device,
2341 	.setup		= pl011_console_setup,
2342 	.flags		= CON_PRINTBUFFER,
2343 	.index		= -1,
2344 	.data		= &amba_reg,
2345 };
2346 
2347 #define AMBA_CONSOLE	(&amba_console)
2348 
2349 static void pl011_putc(struct uart_port *port, int c)
2350 {
2351 	struct uart_amba_port *uap =
2352 	    container_of(port, struct uart_amba_port, port);
2353 
2354 	while (pl011_readw(uap, REG_FR) & UART01x_FR_TXFF)
2355 		;
2356 	pl011_writeb(uap, c, REG_DR);
2357 	while (pl011_readw(uap, REG_FR) & uap->fr_busy)
2358 		;
2359 }
2360 
2361 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2362 {
2363 	struct earlycon_device *dev = con->data;
2364 
2365 	uart_console_write(&dev->port, s, n, pl011_putc);
2366 }
2367 
2368 static int __init pl011_early_console_setup(struct earlycon_device *device,
2369 					    const char *opt)
2370 {
2371 	if (!device->port.membase)
2372 		return -ENODEV;
2373 
2374 	device->con->write = pl011_early_write;
2375 	return 0;
2376 }
2377 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2378 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2379 
2380 #else
2381 #define AMBA_CONSOLE	NULL
2382 #endif
2383 
2384 static struct uart_driver amba_reg = {
2385 	.owner			= THIS_MODULE,
2386 	.driver_name		= "ttyAMA",
2387 	.dev_name		= "ttyAMA",
2388 	.major			= SERIAL_AMBA_MAJOR,
2389 	.minor			= SERIAL_AMBA_MINOR,
2390 	.nr			= UART_NR,
2391 	.cons			= AMBA_CONSOLE,
2392 };
2393 
2394 static int pl011_probe_dt_alias(int index, struct device *dev)
2395 {
2396 	struct device_node *np;
2397 	static bool seen_dev_with_alias = false;
2398 	static bool seen_dev_without_alias = false;
2399 	int ret = index;
2400 
2401 	if (!IS_ENABLED(CONFIG_OF))
2402 		return ret;
2403 
2404 	np = dev->of_node;
2405 	if (!np)
2406 		return ret;
2407 
2408 	ret = of_alias_get_id(np, "serial");
2409 	if (IS_ERR_VALUE(ret)) {
2410 		seen_dev_without_alias = true;
2411 		ret = index;
2412 	} else {
2413 		seen_dev_with_alias = true;
2414 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2415 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2416 			ret = index;
2417 		}
2418 	}
2419 
2420 	if (seen_dev_with_alias && seen_dev_without_alias)
2421 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2422 
2423 	return ret;
2424 }
2425 
2426 /* unregisters the driver also if no more ports are left */
2427 static void pl011_unregister_port(struct uart_amba_port *uap)
2428 {
2429 	int i;
2430 	bool busy = false;
2431 
2432 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2433 		if (amba_ports[i] == uap)
2434 			amba_ports[i] = NULL;
2435 		else if (amba_ports[i])
2436 			busy = true;
2437 	}
2438 	pl011_dma_remove(uap);
2439 	if (!busy)
2440 		uart_unregister_driver(&amba_reg);
2441 }
2442 
2443 static int pl011_find_free_port(void)
2444 {
2445 	int i;
2446 
2447 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2448 		if (amba_ports[i] == NULL)
2449 			return i;
2450 
2451 	return -EBUSY;
2452 }
2453 
2454 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2455 			    struct resource *mmiobase, int index)
2456 {
2457 	void __iomem *base;
2458 
2459 	base = devm_ioremap_resource(dev, mmiobase);
2460 	if (IS_ERR(base))
2461 		return PTR_ERR(base);
2462 
2463 	index = pl011_probe_dt_alias(index, dev);
2464 
2465 	uap->old_cr = 0;
2466 	uap->port.dev = dev;
2467 	uap->port.mapbase = mmiobase->start;
2468 	uap->port.membase = base;
2469 	uap->port.iotype = UPIO_MEM;
2470 	uap->port.fifosize = uap->fifosize;
2471 	uap->port.flags = UPF_BOOT_AUTOCONF;
2472 	uap->port.line = index;
2473 
2474 	amba_ports[index] = uap;
2475 
2476 	return 0;
2477 }
2478 
2479 static int pl011_register_port(struct uart_amba_port *uap)
2480 {
2481 	int ret;
2482 
2483 	/* Ensure interrupts from this UART are masked and cleared */
2484 	pl011_writew(uap, 0, REG_IMSC);
2485 	pl011_writew(uap, 0xffff, REG_ICR);
2486 
2487 	if (!amba_reg.state) {
2488 		ret = uart_register_driver(&amba_reg);
2489 		if (ret < 0) {
2490 			dev_err(uap->port.dev,
2491 				"Failed to register AMBA-PL011 driver\n");
2492 			return ret;
2493 		}
2494 	}
2495 
2496 	ret = uart_add_one_port(&amba_reg, &uap->port);
2497 	if (ret)
2498 		pl011_unregister_port(uap);
2499 
2500 	return ret;
2501 }
2502 
2503 #ifdef CONFIG_ARM_AMBA
2504 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2505 {
2506 	struct uart_amba_port *uap;
2507 	struct vendor_data *vendor = id->data;
2508 	int portnr, ret;
2509 
2510 	portnr = pl011_find_free_port();
2511 	if (portnr < 0)
2512 		return portnr;
2513 
2514 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2515 			   GFP_KERNEL);
2516 	if (!uap)
2517 		return -ENOMEM;
2518 
2519 	uap->clk = devm_clk_get(&dev->dev, NULL);
2520 	if (IS_ERR(uap->clk))
2521 		return PTR_ERR(uap->clk);
2522 
2523 	uap->vendor = vendor;
2524 	uap->reg_lut = vendor->reg_lut;
2525 	uap->lcrh_rx = vendor->lcrh_rx;
2526 	uap->lcrh_tx = vendor->lcrh_tx;
2527 	uap->fr_busy = vendor->fr_busy;
2528 	uap->fr_dsr = vendor->fr_dsr;
2529 	uap->fr_cts = vendor->fr_cts;
2530 	uap->fr_ri = vendor->fr_ri;
2531 	uap->fifosize = vendor->get_fifosize(dev);
2532 	uap->port.irq = dev->irq[0];
2533 	uap->port.ops = &amba_pl011_pops;
2534 
2535 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2536 
2537 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2538 	if (ret)
2539 		return ret;
2540 
2541 	amba_set_drvdata(dev, uap);
2542 
2543 	return pl011_register_port(uap);
2544 }
2545 
2546 static int pl011_remove(struct amba_device *dev)
2547 {
2548 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2549 
2550 	uart_remove_one_port(&amba_reg, &uap->port);
2551 	pl011_unregister_port(uap);
2552 	return 0;
2553 }
2554 #endif
2555 
2556 #ifdef CONFIG_SOC_ZX296702
2557 static int zx_uart_probe(struct platform_device *pdev)
2558 {
2559 	struct uart_amba_port *uap;
2560 	struct vendor_data *vendor = &vendor_zte;
2561 	struct resource *res;
2562 	int portnr, ret;
2563 
2564 	portnr = pl011_find_free_port();
2565 	if (portnr < 0)
2566 		return portnr;
2567 
2568 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2569 			GFP_KERNEL);
2570 	if (!uap) {
2571 		ret = -ENOMEM;
2572 		goto out;
2573 	}
2574 
2575 	uap->clk = devm_clk_get(&pdev->dev, NULL);
2576 	if (IS_ERR(uap->clk)) {
2577 		ret = PTR_ERR(uap->clk);
2578 		goto out;
2579 	}
2580 
2581 	uap->vendor	= vendor;
2582 	uap->reg_lut	= vendor->reg_lut;
2583 	uap->lcrh_rx	= vendor->lcrh_rx;
2584 	uap->lcrh_tx	= vendor->lcrh_tx;
2585 	uap->fr_busy	= vendor->fr_busy;
2586 	uap->fr_dsr	= vendor->fr_dsr;
2587 	uap->fr_cts	= vendor->fr_cts;
2588 	uap->fr_ri	= vendor->fr_ri;
2589 	uap->fifosize	= 16;
2590 	uap->port.irq	= platform_get_irq(pdev, 0);
2591 	uap->port.ops	= &amba_pl011_pops;
2592 
2593 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2594 
2595 	ret = pl011_setup_port(&pdev->dev, uap, res, portnr);
2596 	if (ret)
2597 		return ret;
2598 
2599 	platform_set_drvdata(pdev, uap);
2600 
2601 	return pl011_register_port(uap);
2602 out:
2603 	return ret;
2604 }
2605 
2606 static int zx_uart_remove(struct platform_device *pdev)
2607 {
2608 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2609 
2610 	uart_remove_one_port(&amba_reg, &uap->port);
2611 	pl011_unregister_port(uap);
2612 	return 0;
2613 }
2614 #endif
2615 
2616 #ifdef CONFIG_PM_SLEEP
2617 static int pl011_suspend(struct device *dev)
2618 {
2619 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2620 
2621 	if (!uap)
2622 		return -EINVAL;
2623 
2624 	return uart_suspend_port(&amba_reg, &uap->port);
2625 }
2626 
2627 static int pl011_resume(struct device *dev)
2628 {
2629 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2630 
2631 	if (!uap)
2632 		return -EINVAL;
2633 
2634 	return uart_resume_port(&amba_reg, &uap->port);
2635 }
2636 #endif
2637 
2638 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2639 
2640 static int sbsa_uart_probe(struct platform_device *pdev)
2641 {
2642 	struct uart_amba_port *uap;
2643 	struct resource *r;
2644 	int portnr, ret;
2645 	int baudrate;
2646 
2647 	/*
2648 	 * Check the mandatory baud rate parameter in the DT node early
2649 	 * so that we can easily exit with the error.
2650 	 */
2651 	if (pdev->dev.of_node) {
2652 		struct device_node *np = pdev->dev.of_node;
2653 
2654 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2655 		if (ret)
2656 			return ret;
2657 	} else {
2658 		baudrate = 115200;
2659 	}
2660 
2661 	portnr = pl011_find_free_port();
2662 	if (portnr < 0)
2663 		return portnr;
2664 
2665 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2666 			   GFP_KERNEL);
2667 	if (!uap)
2668 		return -ENOMEM;
2669 
2670 	uap->vendor	= &vendor_sbsa;
2671 	uap->reg_lut	= vendor_sbsa.reg_lut;
2672 	uap->fr_busy	= vendor_sbsa.fr_busy;
2673 	uap->fr_dsr	= vendor_sbsa.fr_dsr;
2674 	uap->fr_cts	= vendor_sbsa.fr_cts;
2675 	uap->fr_ri	= vendor_sbsa.fr_ri;
2676 	uap->fifosize	= 32;
2677 	uap->port.irq	= platform_get_irq(pdev, 0);
2678 	uap->port.ops	= &sbsa_uart_pops;
2679 	uap->fixed_baud = baudrate;
2680 
2681 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2682 
2683 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2684 
2685 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2686 	if (ret)
2687 		return ret;
2688 
2689 	platform_set_drvdata(pdev, uap);
2690 
2691 	return pl011_register_port(uap);
2692 }
2693 
2694 static int sbsa_uart_remove(struct platform_device *pdev)
2695 {
2696 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2697 
2698 	uart_remove_one_port(&amba_reg, &uap->port);
2699 	pl011_unregister_port(uap);
2700 	return 0;
2701 }
2702 
2703 static const struct of_device_id sbsa_uart_of_match[] = {
2704 	{ .compatible = "arm,sbsa-uart", },
2705 	{},
2706 };
2707 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2708 
2709 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2710 	{ "ARMH0011", 0 },
2711 	{},
2712 };
2713 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2714 
2715 static struct platform_driver arm_sbsa_uart_platform_driver = {
2716 	.probe		= sbsa_uart_probe,
2717 	.remove		= sbsa_uart_remove,
2718 	.driver	= {
2719 		.name	= "sbsa-uart",
2720 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2721 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2722 	},
2723 };
2724 
2725 #ifdef CONFIG_ARM_AMBA
2726 static struct amba_id pl011_ids[] = {
2727 	{
2728 		.id	= 0x00041011,
2729 		.mask	= 0x000fffff,
2730 		.data	= &vendor_arm,
2731 	},
2732 	{
2733 		.id	= 0x00380802,
2734 		.mask	= 0x00ffffff,
2735 		.data	= &vendor_st,
2736 	},
2737 	{ 0, 0 },
2738 };
2739 
2740 MODULE_DEVICE_TABLE(amba, pl011_ids);
2741 
2742 static struct amba_driver pl011_driver = {
2743 	.drv = {
2744 		.name	= "uart-pl011",
2745 		.pm	= &pl011_dev_pm_ops,
2746 	},
2747 	.id_table	= pl011_ids,
2748 	.probe		= pl011_probe,
2749 	.remove		= pl011_remove,
2750 };
2751 #endif
2752 
2753 #ifdef CONFIG_SOC_ZX296702
2754 static const struct of_device_id zx_uart_dt_ids[] = {
2755 	{ .compatible = "zte,zx296702-uart", },
2756 	{ /* sentinel */ }
2757 };
2758 MODULE_DEVICE_TABLE(of, zx_uart_dt_ids);
2759 
2760 static struct platform_driver zx_uart_driver = {
2761 	.driver = {
2762 		.name	= "zx-uart",
2763 		.owner	= THIS_MODULE,
2764 		.pm	= &pl011_dev_pm_ops,
2765 		.of_match_table = zx_uart_dt_ids,
2766 	},
2767 	.probe		= zx_uart_probe,
2768 	.remove		= zx_uart_remove,
2769 };
2770 #endif
2771 
2772 
2773 static int __init pl011_init(void)
2774 {
2775 	int ret;
2776 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2777 
2778 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2779 		pr_warn("could not register SBSA UART platform driver\n");
2780 
2781 #ifdef CONFIG_SOC_ZX296702
2782 	ret = platform_driver_register(&zx_uart_driver);
2783 	if (ret)
2784 		pr_warn("could not register ZX UART platform driver\n");
2785 #endif
2786 
2787 #ifdef CONFIG_ARM_AMBA
2788 	ret = amba_driver_register(&pl011_driver);
2789 #endif
2790 	return ret;
2791 }
2792 
2793 static void __exit pl011_exit(void)
2794 {
2795 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2796 #ifdef CONFIG_SOC_ZX296702
2797 	platform_driver_unregister(&zx_uart_driver);
2798 #endif
2799 #ifdef CONFIG_ARM_AMBA
2800 	amba_driver_unregister(&pl011_driver);
2801 #endif
2802 }
2803 
2804 /*
2805  * While this can be a module, if builtin it's most likely the console
2806  * So let's leave module_exit but move module_init to an earlier place
2807  */
2808 arch_initcall(pl011_init);
2809 module_exit(pl011_exit);
2810 
2811 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2812 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2813 MODULE_LICENSE("GPL");
2814