xref: /linux/drivers/tty/serial/amba-pl011.c (revision cb06ff102e2d79a82cf780aa5e6947b2e0529ac0)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 
62 #define UART_NR			14
63 
64 #define SERIAL_AMBA_MAJOR	204
65 #define SERIAL_AMBA_MINOR	64
66 #define SERIAL_AMBA_NR		UART_NR
67 
68 #define AMBA_ISR_PASS_LIMIT	256
69 
70 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX	(1 << 16)
72 
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 	unsigned int		ifls;
76 	unsigned int		fifosize;
77 	unsigned int		lcrh_tx;
78 	unsigned int		lcrh_rx;
79 	bool			oversampling;
80 	bool			dma_threshold;
81 	bool			cts_event_workaround;
82 };
83 
84 static struct vendor_data vendor_arm = {
85 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
86 	.fifosize		= 16,
87 	.lcrh_tx		= UART011_LCRH,
88 	.lcrh_rx		= UART011_LCRH,
89 	.oversampling		= false,
90 	.dma_threshold		= false,
91 	.cts_event_workaround	= false,
92 };
93 
94 static struct vendor_data vendor_st = {
95 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
96 	.fifosize		= 64,
97 	.lcrh_tx		= ST_UART011_LCRH_TX,
98 	.lcrh_rx		= ST_UART011_LCRH_RX,
99 	.oversampling		= true,
100 	.dma_threshold		= true,
101 	.cts_event_workaround	= true,
102 };
103 
104 static struct uart_amba_port *amba_ports[UART_NR];
105 
106 /* Deals with DMA transactions */
107 
108 struct pl011_sgbuf {
109 	struct scatterlist sg;
110 	char *buf;
111 };
112 
113 struct pl011_dmarx_data {
114 	struct dma_chan		*chan;
115 	struct completion	complete;
116 	bool			use_buf_b;
117 	struct pl011_sgbuf	sgbuf_a;
118 	struct pl011_sgbuf	sgbuf_b;
119 	dma_cookie_t		cookie;
120 	bool			running;
121 	struct timer_list	timer;
122 	unsigned int last_residue;
123 	unsigned long last_jiffies;
124 	bool auto_poll_rate;
125 	unsigned int poll_rate;
126 	unsigned int poll_timeout;
127 };
128 
129 struct pl011_dmatx_data {
130 	struct dma_chan		*chan;
131 	struct scatterlist	sg;
132 	char			*buf;
133 	bool			queued;
134 };
135 
136 /*
137  * We wrap our port structure around the generic uart_port.
138  */
139 struct uart_amba_port {
140 	struct uart_port	port;
141 	struct clk		*clk;
142 	/* Two optional pin states - default & sleep */
143 	struct pinctrl		*pinctrl;
144 	struct pinctrl_state	*pins_default;
145 	struct pinctrl_state	*pins_sleep;
146 	const struct vendor_data *vendor;
147 	unsigned int		dmacr;		/* dma control reg */
148 	unsigned int		im;		/* interrupt mask */
149 	unsigned int		old_status;
150 	unsigned int		fifosize;	/* vendor-specific */
151 	unsigned int		lcrh_tx;	/* vendor-specific */
152 	unsigned int		lcrh_rx;	/* vendor-specific */
153 	unsigned int		old_cr;		/* state during shutdown */
154 	bool			autorts;
155 	char			type[12];
156 #ifdef CONFIG_DMA_ENGINE
157 	/* DMA stuff */
158 	bool			using_tx_dma;
159 	bool			using_rx_dma;
160 	struct pl011_dmarx_data dmarx;
161 	struct pl011_dmatx_data	dmatx;
162 #endif
163 };
164 
165 /*
166  * Reads up to 256 characters from the FIFO or until it's empty and
167  * inserts them into the TTY layer. Returns the number of characters
168  * read from the FIFO.
169  */
170 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
171 {
172 	u16 status, ch;
173 	unsigned int flag, max_count = 256;
174 	int fifotaken = 0;
175 
176 	while (max_count--) {
177 		status = readw(uap->port.membase + UART01x_FR);
178 		if (status & UART01x_FR_RXFE)
179 			break;
180 
181 		/* Take chars from the FIFO and update status */
182 		ch = readw(uap->port.membase + UART01x_DR) |
183 			UART_DUMMY_DR_RX;
184 		flag = TTY_NORMAL;
185 		uap->port.icount.rx++;
186 		fifotaken++;
187 
188 		if (unlikely(ch & UART_DR_ERROR)) {
189 			if (ch & UART011_DR_BE) {
190 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
191 				uap->port.icount.brk++;
192 				if (uart_handle_break(&uap->port))
193 					continue;
194 			} else if (ch & UART011_DR_PE)
195 				uap->port.icount.parity++;
196 			else if (ch & UART011_DR_FE)
197 				uap->port.icount.frame++;
198 			if (ch & UART011_DR_OE)
199 				uap->port.icount.overrun++;
200 
201 			ch &= uap->port.read_status_mask;
202 
203 			if (ch & UART011_DR_BE)
204 				flag = TTY_BREAK;
205 			else if (ch & UART011_DR_PE)
206 				flag = TTY_PARITY;
207 			else if (ch & UART011_DR_FE)
208 				flag = TTY_FRAME;
209 		}
210 
211 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
212 			continue;
213 
214 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
215 	}
216 
217 	return fifotaken;
218 }
219 
220 
221 /*
222  * All the DMA operation mode stuff goes inside this ifdef.
223  * This assumes that you have a generic DMA device interface,
224  * no custom DMA interfaces are supported.
225  */
226 #ifdef CONFIG_DMA_ENGINE
227 
228 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
229 
230 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
231 	enum dma_data_direction dir)
232 {
233 	dma_addr_t dma_addr;
234 
235 	sg->buf = dma_alloc_coherent(chan->device->dev,
236 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
237 	if (!sg->buf)
238 		return -ENOMEM;
239 
240 	sg_init_table(&sg->sg, 1);
241 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
242 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
243 	sg_dma_address(&sg->sg) = dma_addr;
244 
245 	return 0;
246 }
247 
248 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
249 	enum dma_data_direction dir)
250 {
251 	if (sg->buf) {
252 		dma_free_coherent(chan->device->dev,
253 			PL011_DMA_BUFFER_SIZE, sg->buf,
254 			sg_dma_address(&sg->sg));
255 	}
256 }
257 
258 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
259 {
260 	/* DMA is the sole user of the platform data right now */
261 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
262 	struct dma_slave_config tx_conf = {
263 		.dst_addr = uap->port.mapbase + UART01x_DR,
264 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
265 		.direction = DMA_MEM_TO_DEV,
266 		.dst_maxburst = uap->fifosize >> 1,
267 		.device_fc = false,
268 	};
269 	struct dma_chan *chan;
270 	dma_cap_mask_t mask;
271 
272 	/* We need platform data */
273 	if (!plat || !plat->dma_filter) {
274 		dev_info(uap->port.dev, "no DMA platform data\n");
275 		return;
276 	}
277 
278 	/* Try to acquire a generic DMA engine slave TX channel */
279 	dma_cap_zero(mask);
280 	dma_cap_set(DMA_SLAVE, mask);
281 
282 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
283 	if (!chan) {
284 		dev_err(uap->port.dev, "no TX DMA channel!\n");
285 		return;
286 	}
287 
288 	dmaengine_slave_config(chan, &tx_conf);
289 	uap->dmatx.chan = chan;
290 
291 	dev_info(uap->port.dev, "DMA channel TX %s\n",
292 		 dma_chan_name(uap->dmatx.chan));
293 
294 	/* Optionally make use of an RX channel as well */
295 	if (plat->dma_rx_param) {
296 		struct dma_slave_config rx_conf = {
297 			.src_addr = uap->port.mapbase + UART01x_DR,
298 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
299 			.direction = DMA_DEV_TO_MEM,
300 			.src_maxburst = uap->fifosize >> 1,
301 			.device_fc = false,
302 		};
303 
304 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
305 		if (!chan) {
306 			dev_err(uap->port.dev, "no RX DMA channel!\n");
307 			return;
308 		}
309 
310 		dmaengine_slave_config(chan, &rx_conf);
311 		uap->dmarx.chan = chan;
312 
313 		if (plat->dma_rx_poll_enable) {
314 			/* Set poll rate if specified. */
315 			if (plat->dma_rx_poll_rate) {
316 				uap->dmarx.auto_poll_rate = false;
317 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
318 			} else {
319 				/*
320 				 * 100 ms defaults to poll rate if not
321 				 * specified. This will be adjusted with
322 				 * the baud rate at set_termios.
323 				 */
324 				uap->dmarx.auto_poll_rate = true;
325 				uap->dmarx.poll_rate =  100;
326 			}
327 			/* 3 secs defaults poll_timeout if not specified. */
328 			if (plat->dma_rx_poll_timeout)
329 				uap->dmarx.poll_timeout =
330 					plat->dma_rx_poll_timeout;
331 			else
332 				uap->dmarx.poll_timeout = 3000;
333 		} else
334 			uap->dmarx.auto_poll_rate = false;
335 
336 		dev_info(uap->port.dev, "DMA channel RX %s\n",
337 			 dma_chan_name(uap->dmarx.chan));
338 	}
339 }
340 
341 #ifndef MODULE
342 /*
343  * Stack up the UARTs and let the above initcall be done at device
344  * initcall time, because the serial driver is called as an arch
345  * initcall, and at this time the DMA subsystem is not yet registered.
346  * At this point the driver will switch over to using DMA where desired.
347  */
348 struct dma_uap {
349 	struct list_head node;
350 	struct uart_amba_port *uap;
351 };
352 
353 static LIST_HEAD(pl011_dma_uarts);
354 
355 static int __init pl011_dma_initcall(void)
356 {
357 	struct list_head *node, *tmp;
358 
359 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
360 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
361 		pl011_dma_probe_initcall(dmau->uap);
362 		list_del(node);
363 		kfree(dmau);
364 	}
365 	return 0;
366 }
367 
368 device_initcall(pl011_dma_initcall);
369 
370 static void pl011_dma_probe(struct uart_amba_port *uap)
371 {
372 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
373 	if (dmau) {
374 		dmau->uap = uap;
375 		list_add_tail(&dmau->node, &pl011_dma_uarts);
376 	}
377 }
378 #else
379 static void pl011_dma_probe(struct uart_amba_port *uap)
380 {
381 	pl011_dma_probe_initcall(uap);
382 }
383 #endif
384 
385 static void pl011_dma_remove(struct uart_amba_port *uap)
386 {
387 	/* TODO: remove the initcall if it has not yet executed */
388 	if (uap->dmatx.chan)
389 		dma_release_channel(uap->dmatx.chan);
390 	if (uap->dmarx.chan)
391 		dma_release_channel(uap->dmarx.chan);
392 }
393 
394 /* Forward declare this for the refill routine */
395 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
396 
397 /*
398  * The current DMA TX buffer has been sent.
399  * Try to queue up another DMA buffer.
400  */
401 static void pl011_dma_tx_callback(void *data)
402 {
403 	struct uart_amba_port *uap = data;
404 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
405 	unsigned long flags;
406 	u16 dmacr;
407 
408 	spin_lock_irqsave(&uap->port.lock, flags);
409 	if (uap->dmatx.queued)
410 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
411 			     DMA_TO_DEVICE);
412 
413 	dmacr = uap->dmacr;
414 	uap->dmacr = dmacr & ~UART011_TXDMAE;
415 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
416 
417 	/*
418 	 * If TX DMA was disabled, it means that we've stopped the DMA for
419 	 * some reason (eg, XOFF received, or we want to send an X-char.)
420 	 *
421 	 * Note: we need to be careful here of a potential race between DMA
422 	 * and the rest of the driver - if the driver disables TX DMA while
423 	 * a TX buffer completing, we must update the tx queued status to
424 	 * get further refills (hence we check dmacr).
425 	 */
426 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
427 	    uart_circ_empty(&uap->port.state->xmit)) {
428 		uap->dmatx.queued = false;
429 		spin_unlock_irqrestore(&uap->port.lock, flags);
430 		return;
431 	}
432 
433 	if (pl011_dma_tx_refill(uap) <= 0) {
434 		/*
435 		 * We didn't queue a DMA buffer for some reason, but we
436 		 * have data pending to be sent.  Re-enable the TX IRQ.
437 		 */
438 		uap->im |= UART011_TXIM;
439 		writew(uap->im, uap->port.membase + UART011_IMSC);
440 	}
441 	spin_unlock_irqrestore(&uap->port.lock, flags);
442 }
443 
444 /*
445  * Try to refill the TX DMA buffer.
446  * Locking: called with port lock held and IRQs disabled.
447  * Returns:
448  *   1 if we queued up a TX DMA buffer.
449  *   0 if we didn't want to handle this by DMA
450  *  <0 on error
451  */
452 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
453 {
454 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
455 	struct dma_chan *chan = dmatx->chan;
456 	struct dma_device *dma_dev = chan->device;
457 	struct dma_async_tx_descriptor *desc;
458 	struct circ_buf *xmit = &uap->port.state->xmit;
459 	unsigned int count;
460 
461 	/*
462 	 * Try to avoid the overhead involved in using DMA if the
463 	 * transaction fits in the first half of the FIFO, by using
464 	 * the standard interrupt handling.  This ensures that we
465 	 * issue a uart_write_wakeup() at the appropriate time.
466 	 */
467 	count = uart_circ_chars_pending(xmit);
468 	if (count < (uap->fifosize >> 1)) {
469 		uap->dmatx.queued = false;
470 		return 0;
471 	}
472 
473 	/*
474 	 * Bodge: don't send the last character by DMA, as this
475 	 * will prevent XON from notifying us to restart DMA.
476 	 */
477 	count -= 1;
478 
479 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
480 	if (count > PL011_DMA_BUFFER_SIZE)
481 		count = PL011_DMA_BUFFER_SIZE;
482 
483 	if (xmit->tail < xmit->head)
484 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
485 	else {
486 		size_t first = UART_XMIT_SIZE - xmit->tail;
487 		size_t second = xmit->head;
488 
489 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
490 		if (second)
491 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
492 	}
493 
494 	dmatx->sg.length = count;
495 
496 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
497 		uap->dmatx.queued = false;
498 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
499 		return -EBUSY;
500 	}
501 
502 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
503 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
504 	if (!desc) {
505 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
506 		uap->dmatx.queued = false;
507 		/*
508 		 * If DMA cannot be used right now, we complete this
509 		 * transaction via IRQ and let the TTY layer retry.
510 		 */
511 		dev_dbg(uap->port.dev, "TX DMA busy\n");
512 		return -EBUSY;
513 	}
514 
515 	/* Some data to go along to the callback */
516 	desc->callback = pl011_dma_tx_callback;
517 	desc->callback_param = uap;
518 
519 	/* All errors should happen at prepare time */
520 	dmaengine_submit(desc);
521 
522 	/* Fire the DMA transaction */
523 	dma_dev->device_issue_pending(chan);
524 
525 	uap->dmacr |= UART011_TXDMAE;
526 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
527 	uap->dmatx.queued = true;
528 
529 	/*
530 	 * Now we know that DMA will fire, so advance the ring buffer
531 	 * with the stuff we just dispatched.
532 	 */
533 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
534 	uap->port.icount.tx += count;
535 
536 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
537 		uart_write_wakeup(&uap->port);
538 
539 	return 1;
540 }
541 
542 /*
543  * We received a transmit interrupt without a pending X-char but with
544  * pending characters.
545  * Locking: called with port lock held and IRQs disabled.
546  * Returns:
547  *   false if we want to use PIO to transmit
548  *   true if we queued a DMA buffer
549  */
550 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
551 {
552 	if (!uap->using_tx_dma)
553 		return false;
554 
555 	/*
556 	 * If we already have a TX buffer queued, but received a
557 	 * TX interrupt, it will be because we've just sent an X-char.
558 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
559 	 */
560 	if (uap->dmatx.queued) {
561 		uap->dmacr |= UART011_TXDMAE;
562 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
563 		uap->im &= ~UART011_TXIM;
564 		writew(uap->im, uap->port.membase + UART011_IMSC);
565 		return true;
566 	}
567 
568 	/*
569 	 * We don't have a TX buffer queued, so try to queue one.
570 	 * If we successfully queued a buffer, mask the TX IRQ.
571 	 */
572 	if (pl011_dma_tx_refill(uap) > 0) {
573 		uap->im &= ~UART011_TXIM;
574 		writew(uap->im, uap->port.membase + UART011_IMSC);
575 		return true;
576 	}
577 	return false;
578 }
579 
580 /*
581  * Stop the DMA transmit (eg, due to received XOFF).
582  * Locking: called with port lock held and IRQs disabled.
583  */
584 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
585 {
586 	if (uap->dmatx.queued) {
587 		uap->dmacr &= ~UART011_TXDMAE;
588 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
589 	}
590 }
591 
592 /*
593  * Try to start a DMA transmit, or in the case of an XON/OFF
594  * character queued for send, try to get that character out ASAP.
595  * Locking: called with port lock held and IRQs disabled.
596  * Returns:
597  *   false if we want the TX IRQ to be enabled
598  *   true if we have a buffer queued
599  */
600 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
601 {
602 	u16 dmacr;
603 
604 	if (!uap->using_tx_dma)
605 		return false;
606 
607 	if (!uap->port.x_char) {
608 		/* no X-char, try to push chars out in DMA mode */
609 		bool ret = true;
610 
611 		if (!uap->dmatx.queued) {
612 			if (pl011_dma_tx_refill(uap) > 0) {
613 				uap->im &= ~UART011_TXIM;
614 				ret = true;
615 			} else {
616 				uap->im |= UART011_TXIM;
617 				ret = false;
618 			}
619 			writew(uap->im, uap->port.membase + UART011_IMSC);
620 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
621 			uap->dmacr |= UART011_TXDMAE;
622 			writew(uap->dmacr,
623 				       uap->port.membase + UART011_DMACR);
624 		}
625 		return ret;
626 	}
627 
628 	/*
629 	 * We have an X-char to send.  Disable DMA to prevent it loading
630 	 * the TX fifo, and then see if we can stuff it into the FIFO.
631 	 */
632 	dmacr = uap->dmacr;
633 	uap->dmacr &= ~UART011_TXDMAE;
634 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
635 
636 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
637 		/*
638 		 * No space in the FIFO, so enable the transmit interrupt
639 		 * so we know when there is space.  Note that once we've
640 		 * loaded the character, we should just re-enable DMA.
641 		 */
642 		return false;
643 	}
644 
645 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
646 	uap->port.icount.tx++;
647 	uap->port.x_char = 0;
648 
649 	/* Success - restore the DMA state */
650 	uap->dmacr = dmacr;
651 	writew(dmacr, uap->port.membase + UART011_DMACR);
652 
653 	return true;
654 }
655 
656 /*
657  * Flush the transmit buffer.
658  * Locking: called with port lock held and IRQs disabled.
659  */
660 static void pl011_dma_flush_buffer(struct uart_port *port)
661 {
662 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
663 
664 	if (!uap->using_tx_dma)
665 		return;
666 
667 	/* Avoid deadlock with the DMA engine callback */
668 	spin_unlock(&uap->port.lock);
669 	dmaengine_terminate_all(uap->dmatx.chan);
670 	spin_lock(&uap->port.lock);
671 	if (uap->dmatx.queued) {
672 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
673 			     DMA_TO_DEVICE);
674 		uap->dmatx.queued = false;
675 		uap->dmacr &= ~UART011_TXDMAE;
676 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
677 	}
678 }
679 
680 static void pl011_dma_rx_callback(void *data);
681 
682 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
683 {
684 	struct dma_chan *rxchan = uap->dmarx.chan;
685 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
686 	struct dma_async_tx_descriptor *desc;
687 	struct pl011_sgbuf *sgbuf;
688 
689 	if (!rxchan)
690 		return -EIO;
691 
692 	/* Start the RX DMA job */
693 	sgbuf = uap->dmarx.use_buf_b ?
694 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
695 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
696 					DMA_DEV_TO_MEM,
697 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
698 	/*
699 	 * If the DMA engine is busy and cannot prepare a
700 	 * channel, no big deal, the driver will fall back
701 	 * to interrupt mode as a result of this error code.
702 	 */
703 	if (!desc) {
704 		uap->dmarx.running = false;
705 		dmaengine_terminate_all(rxchan);
706 		return -EBUSY;
707 	}
708 
709 	/* Some data to go along to the callback */
710 	desc->callback = pl011_dma_rx_callback;
711 	desc->callback_param = uap;
712 	dmarx->cookie = dmaengine_submit(desc);
713 	dma_async_issue_pending(rxchan);
714 
715 	uap->dmacr |= UART011_RXDMAE;
716 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
717 	uap->dmarx.running = true;
718 
719 	uap->im &= ~UART011_RXIM;
720 	writew(uap->im, uap->port.membase + UART011_IMSC);
721 
722 	return 0;
723 }
724 
725 /*
726  * This is called when either the DMA job is complete, or
727  * the FIFO timeout interrupt occurred. This must be called
728  * with the port spinlock uap->port.lock held.
729  */
730 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
731 			       u32 pending, bool use_buf_b,
732 			       bool readfifo)
733 {
734 	struct tty_port *port = &uap->port.state->port;
735 	struct pl011_sgbuf *sgbuf = use_buf_b ?
736 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
737 	int dma_count = 0;
738 	u32 fifotaken = 0; /* only used for vdbg() */
739 
740 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
741 	int dmataken = 0;
742 
743 	if (uap->dmarx.poll_rate) {
744 		/* The data can be taken by polling */
745 		dmataken = sgbuf->sg.length - dmarx->last_residue;
746 		/* Recalculate the pending size */
747 		if (pending >= dmataken)
748 			pending -= dmataken;
749 	}
750 
751 	/* Pick the remain data from the DMA */
752 	if (pending) {
753 
754 		/*
755 		 * First take all chars in the DMA pipe, then look in the FIFO.
756 		 * Note that tty_insert_flip_buf() tries to take as many chars
757 		 * as it can.
758 		 */
759 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
760 				pending);
761 
762 		uap->port.icount.rx += dma_count;
763 		if (dma_count < pending)
764 			dev_warn(uap->port.dev,
765 				 "couldn't insert all characters (TTY is full?)\n");
766 	}
767 
768 	/* Reset the last_residue for Rx DMA poll */
769 	if (uap->dmarx.poll_rate)
770 		dmarx->last_residue = sgbuf->sg.length;
771 
772 	/*
773 	 * Only continue with trying to read the FIFO if all DMA chars have
774 	 * been taken first.
775 	 */
776 	if (dma_count == pending && readfifo) {
777 		/* Clear any error flags */
778 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
779 		       uap->port.membase + UART011_ICR);
780 
781 		/*
782 		 * If we read all the DMA'd characters, and we had an
783 		 * incomplete buffer, that could be due to an rx error, or
784 		 * maybe we just timed out. Read any pending chars and check
785 		 * the error status.
786 		 *
787 		 * Error conditions will only occur in the FIFO, these will
788 		 * trigger an immediate interrupt and stop the DMA job, so we
789 		 * will always find the error in the FIFO, never in the DMA
790 		 * buffer.
791 		 */
792 		fifotaken = pl011_fifo_to_tty(uap);
793 	}
794 
795 	spin_unlock(&uap->port.lock);
796 	dev_vdbg(uap->port.dev,
797 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
798 		 dma_count, fifotaken);
799 	tty_flip_buffer_push(port);
800 	spin_lock(&uap->port.lock);
801 }
802 
803 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
804 {
805 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
806 	struct dma_chan *rxchan = dmarx->chan;
807 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
808 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
809 	size_t pending;
810 	struct dma_tx_state state;
811 	enum dma_status dmastat;
812 
813 	/*
814 	 * Pause the transfer so we can trust the current counter,
815 	 * do this before we pause the PL011 block, else we may
816 	 * overflow the FIFO.
817 	 */
818 	if (dmaengine_pause(rxchan))
819 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
820 	dmastat = rxchan->device->device_tx_status(rxchan,
821 						   dmarx->cookie, &state);
822 	if (dmastat != DMA_PAUSED)
823 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
824 
825 	/* Disable RX DMA - incoming data will wait in the FIFO */
826 	uap->dmacr &= ~UART011_RXDMAE;
827 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
828 	uap->dmarx.running = false;
829 
830 	pending = sgbuf->sg.length - state.residue;
831 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
832 	/* Then we terminate the transfer - we now know our residue */
833 	dmaengine_terminate_all(rxchan);
834 
835 	/*
836 	 * This will take the chars we have so far and insert
837 	 * into the framework.
838 	 */
839 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
840 
841 	/* Switch buffer & re-trigger DMA job */
842 	dmarx->use_buf_b = !dmarx->use_buf_b;
843 	if (pl011_dma_rx_trigger_dma(uap)) {
844 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
845 			"fall back to interrupt mode\n");
846 		uap->im |= UART011_RXIM;
847 		writew(uap->im, uap->port.membase + UART011_IMSC);
848 	}
849 }
850 
851 static void pl011_dma_rx_callback(void *data)
852 {
853 	struct uart_amba_port *uap = data;
854 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
855 	struct dma_chan *rxchan = dmarx->chan;
856 	bool lastbuf = dmarx->use_buf_b;
857 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
858 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
859 	size_t pending;
860 	struct dma_tx_state state;
861 	int ret;
862 
863 	/*
864 	 * This completion interrupt occurs typically when the
865 	 * RX buffer is totally stuffed but no timeout has yet
866 	 * occurred. When that happens, we just want the RX
867 	 * routine to flush out the secondary DMA buffer while
868 	 * we immediately trigger the next DMA job.
869 	 */
870 	spin_lock_irq(&uap->port.lock);
871 	/*
872 	 * Rx data can be taken by the UART interrupts during
873 	 * the DMA irq handler. So we check the residue here.
874 	 */
875 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
876 	pending = sgbuf->sg.length - state.residue;
877 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
878 	/* Then we terminate the transfer - we now know our residue */
879 	dmaengine_terminate_all(rxchan);
880 
881 	uap->dmarx.running = false;
882 	dmarx->use_buf_b = !lastbuf;
883 	ret = pl011_dma_rx_trigger_dma(uap);
884 
885 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
886 	spin_unlock_irq(&uap->port.lock);
887 	/*
888 	 * Do this check after we picked the DMA chars so we don't
889 	 * get some IRQ immediately from RX.
890 	 */
891 	if (ret) {
892 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
893 			"fall back to interrupt mode\n");
894 		uap->im |= UART011_RXIM;
895 		writew(uap->im, uap->port.membase + UART011_IMSC);
896 	}
897 }
898 
899 /*
900  * Stop accepting received characters, when we're shutting down or
901  * suspending this port.
902  * Locking: called with port lock held and IRQs disabled.
903  */
904 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
905 {
906 	/* FIXME.  Just disable the DMA enable */
907 	uap->dmacr &= ~UART011_RXDMAE;
908 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
909 }
910 
911 /*
912  * Timer handler for Rx DMA polling.
913  * Every polling, It checks the residue in the dma buffer and transfer
914  * data to the tty. Also, last_residue is updated for the next polling.
915  */
916 static void pl011_dma_rx_poll(unsigned long args)
917 {
918 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
919 	struct tty_port *port = &uap->port.state->port;
920 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
921 	struct dma_chan *rxchan = uap->dmarx.chan;
922 	unsigned long flags = 0;
923 	unsigned int dmataken = 0;
924 	unsigned int size = 0;
925 	struct pl011_sgbuf *sgbuf;
926 	int dma_count;
927 	struct dma_tx_state state;
928 
929 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
930 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
931 	if (likely(state.residue < dmarx->last_residue)) {
932 		dmataken = sgbuf->sg.length - dmarx->last_residue;
933 		size = dmarx->last_residue - state.residue;
934 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
935 				size);
936 		if (dma_count == size)
937 			dmarx->last_residue =  state.residue;
938 		dmarx->last_jiffies = jiffies;
939 	}
940 	tty_flip_buffer_push(port);
941 
942 	/*
943 	 * If no data is received in poll_timeout, the driver will fall back
944 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
945 	 */
946 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
947 			> uap->dmarx.poll_timeout) {
948 
949 		spin_lock_irqsave(&uap->port.lock, flags);
950 		pl011_dma_rx_stop(uap);
951 		spin_unlock_irqrestore(&uap->port.lock, flags);
952 
953 		uap->dmarx.running = false;
954 		dmaengine_terminate_all(rxchan);
955 		del_timer(&uap->dmarx.timer);
956 	} else {
957 		mod_timer(&uap->dmarx.timer,
958 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
959 	}
960 }
961 
962 static void pl011_dma_startup(struct uart_amba_port *uap)
963 {
964 	int ret;
965 
966 	if (!uap->dmatx.chan)
967 		return;
968 
969 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
970 	if (!uap->dmatx.buf) {
971 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
972 		uap->port.fifosize = uap->fifosize;
973 		return;
974 	}
975 
976 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
977 
978 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
979 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
980 	uap->using_tx_dma = true;
981 
982 	if (!uap->dmarx.chan)
983 		goto skip_rx;
984 
985 	/* Allocate and map DMA RX buffers */
986 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
987 			       DMA_FROM_DEVICE);
988 	if (ret) {
989 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
990 			"RX buffer A", ret);
991 		goto skip_rx;
992 	}
993 
994 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
995 			       DMA_FROM_DEVICE);
996 	if (ret) {
997 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
998 			"RX buffer B", ret);
999 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1000 				 DMA_FROM_DEVICE);
1001 		goto skip_rx;
1002 	}
1003 
1004 	uap->using_rx_dma = true;
1005 
1006 skip_rx:
1007 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1008 	uap->dmacr |= UART011_DMAONERR;
1009 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1010 
1011 	/*
1012 	 * ST Micro variants has some specific dma burst threshold
1013 	 * compensation. Set this to 16 bytes, so burst will only
1014 	 * be issued above/below 16 bytes.
1015 	 */
1016 	if (uap->vendor->dma_threshold)
1017 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1018 			       uap->port.membase + ST_UART011_DMAWM);
1019 
1020 	if (uap->using_rx_dma) {
1021 		if (pl011_dma_rx_trigger_dma(uap))
1022 			dev_dbg(uap->port.dev, "could not trigger initial "
1023 				"RX DMA job, fall back to interrupt mode\n");
1024 		if (uap->dmarx.poll_rate) {
1025 			init_timer(&(uap->dmarx.timer));
1026 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1027 			uap->dmarx.timer.data = (unsigned long)uap;
1028 			mod_timer(&uap->dmarx.timer,
1029 				jiffies +
1030 				msecs_to_jiffies(uap->dmarx.poll_rate));
1031 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1032 			uap->dmarx.last_jiffies = jiffies;
1033 		}
1034 	}
1035 }
1036 
1037 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1038 {
1039 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1040 		return;
1041 
1042 	/* Disable RX and TX DMA */
1043 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1044 		barrier();
1045 
1046 	spin_lock_irq(&uap->port.lock);
1047 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1048 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1049 	spin_unlock_irq(&uap->port.lock);
1050 
1051 	if (uap->using_tx_dma) {
1052 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1053 		dmaengine_terminate_all(uap->dmatx.chan);
1054 		if (uap->dmatx.queued) {
1055 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1056 				     DMA_TO_DEVICE);
1057 			uap->dmatx.queued = false;
1058 		}
1059 
1060 		kfree(uap->dmatx.buf);
1061 		uap->using_tx_dma = false;
1062 	}
1063 
1064 	if (uap->using_rx_dma) {
1065 		dmaengine_terminate_all(uap->dmarx.chan);
1066 		/* Clean up the RX DMA */
1067 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1068 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1069 		if (uap->dmarx.poll_rate)
1070 			del_timer_sync(&uap->dmarx.timer);
1071 		uap->using_rx_dma = false;
1072 	}
1073 }
1074 
1075 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1076 {
1077 	return uap->using_rx_dma;
1078 }
1079 
1080 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1081 {
1082 	return uap->using_rx_dma && uap->dmarx.running;
1083 }
1084 
1085 #else
1086 /* Blank functions if the DMA engine is not available */
1087 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1088 {
1089 }
1090 
1091 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1092 {
1093 }
1094 
1095 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1096 {
1097 }
1098 
1099 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1100 {
1101 }
1102 
1103 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1104 {
1105 	return false;
1106 }
1107 
1108 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1109 {
1110 }
1111 
1112 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1113 {
1114 	return false;
1115 }
1116 
1117 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1118 {
1119 }
1120 
1121 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1122 {
1123 }
1124 
1125 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1126 {
1127 	return -EIO;
1128 }
1129 
1130 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1131 {
1132 	return false;
1133 }
1134 
1135 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1136 {
1137 	return false;
1138 }
1139 
1140 #define pl011_dma_flush_buffer	NULL
1141 #endif
1142 
1143 static void pl011_stop_tx(struct uart_port *port)
1144 {
1145 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1146 
1147 	uap->im &= ~UART011_TXIM;
1148 	writew(uap->im, uap->port.membase + UART011_IMSC);
1149 	pl011_dma_tx_stop(uap);
1150 }
1151 
1152 static void pl011_start_tx(struct uart_port *port)
1153 {
1154 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1155 
1156 	if (!pl011_dma_tx_start(uap)) {
1157 		uap->im |= UART011_TXIM;
1158 		writew(uap->im, uap->port.membase + UART011_IMSC);
1159 	}
1160 }
1161 
1162 static void pl011_stop_rx(struct uart_port *port)
1163 {
1164 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1165 
1166 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1167 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1168 	writew(uap->im, uap->port.membase + UART011_IMSC);
1169 
1170 	pl011_dma_rx_stop(uap);
1171 }
1172 
1173 static void pl011_enable_ms(struct uart_port *port)
1174 {
1175 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1176 
1177 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1178 	writew(uap->im, uap->port.membase + UART011_IMSC);
1179 }
1180 
1181 static void pl011_rx_chars(struct uart_amba_port *uap)
1182 {
1183 	pl011_fifo_to_tty(uap);
1184 
1185 	spin_unlock(&uap->port.lock);
1186 	tty_flip_buffer_push(&uap->port.state->port);
1187 	/*
1188 	 * If we were temporarily out of DMA mode for a while,
1189 	 * attempt to switch back to DMA mode again.
1190 	 */
1191 	if (pl011_dma_rx_available(uap)) {
1192 		if (pl011_dma_rx_trigger_dma(uap)) {
1193 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1194 				"fall back to interrupt mode again\n");
1195 			uap->im |= UART011_RXIM;
1196 		} else {
1197 			uap->im &= ~UART011_RXIM;
1198 			/* Start Rx DMA poll */
1199 			if (uap->dmarx.poll_rate) {
1200 				uap->dmarx.last_jiffies = jiffies;
1201 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1202 				mod_timer(&uap->dmarx.timer,
1203 					jiffies +
1204 					msecs_to_jiffies(uap->dmarx.poll_rate));
1205 			}
1206 		}
1207 
1208 		writew(uap->im, uap->port.membase + UART011_IMSC);
1209 	}
1210 	spin_lock(&uap->port.lock);
1211 }
1212 
1213 static void pl011_tx_chars(struct uart_amba_port *uap)
1214 {
1215 	struct circ_buf *xmit = &uap->port.state->xmit;
1216 	int count;
1217 
1218 	if (uap->port.x_char) {
1219 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1220 		uap->port.icount.tx++;
1221 		uap->port.x_char = 0;
1222 		return;
1223 	}
1224 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1225 		pl011_stop_tx(&uap->port);
1226 		return;
1227 	}
1228 
1229 	/* If we are using DMA mode, try to send some characters. */
1230 	if (pl011_dma_tx_irq(uap))
1231 		return;
1232 
1233 	count = uap->fifosize >> 1;
1234 	do {
1235 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1236 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1237 		uap->port.icount.tx++;
1238 		if (uart_circ_empty(xmit))
1239 			break;
1240 	} while (--count > 0);
1241 
1242 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1243 		uart_write_wakeup(&uap->port);
1244 
1245 	if (uart_circ_empty(xmit))
1246 		pl011_stop_tx(&uap->port);
1247 }
1248 
1249 static void pl011_modem_status(struct uart_amba_port *uap)
1250 {
1251 	unsigned int status, delta;
1252 
1253 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1254 
1255 	delta = status ^ uap->old_status;
1256 	uap->old_status = status;
1257 
1258 	if (!delta)
1259 		return;
1260 
1261 	if (delta & UART01x_FR_DCD)
1262 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1263 
1264 	if (delta & UART01x_FR_DSR)
1265 		uap->port.icount.dsr++;
1266 
1267 	if (delta & UART01x_FR_CTS)
1268 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1269 
1270 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1271 }
1272 
1273 static irqreturn_t pl011_int(int irq, void *dev_id)
1274 {
1275 	struct uart_amba_port *uap = dev_id;
1276 	unsigned long flags;
1277 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1278 	int handled = 0;
1279 	unsigned int dummy_read;
1280 
1281 	spin_lock_irqsave(&uap->port.lock, flags);
1282 	status = readw(uap->port.membase + UART011_MIS);
1283 	if (status) {
1284 		do {
1285 			if (uap->vendor->cts_event_workaround) {
1286 				/* workaround to make sure that all bits are unlocked.. */
1287 				writew(0x00, uap->port.membase + UART011_ICR);
1288 
1289 				/*
1290 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1291 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1292 				 * so add 2 dummy reads
1293 				 */
1294 				dummy_read = readw(uap->port.membase + UART011_ICR);
1295 				dummy_read = readw(uap->port.membase + UART011_ICR);
1296 			}
1297 
1298 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1299 					  UART011_RXIS),
1300 			       uap->port.membase + UART011_ICR);
1301 
1302 			if (status & (UART011_RTIS|UART011_RXIS)) {
1303 				if (pl011_dma_rx_running(uap))
1304 					pl011_dma_rx_irq(uap);
1305 				else
1306 					pl011_rx_chars(uap);
1307 			}
1308 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1309 				      UART011_CTSMIS|UART011_RIMIS))
1310 				pl011_modem_status(uap);
1311 			if (status & UART011_TXIS)
1312 				pl011_tx_chars(uap);
1313 
1314 			if (pass_counter-- == 0)
1315 				break;
1316 
1317 			status = readw(uap->port.membase + UART011_MIS);
1318 		} while (status != 0);
1319 		handled = 1;
1320 	}
1321 
1322 	spin_unlock_irqrestore(&uap->port.lock, flags);
1323 
1324 	return IRQ_RETVAL(handled);
1325 }
1326 
1327 static unsigned int pl011_tx_empty(struct uart_port *port)
1328 {
1329 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1330 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1331 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1332 }
1333 
1334 static unsigned int pl011_get_mctrl(struct uart_port *port)
1335 {
1336 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1337 	unsigned int result = 0;
1338 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1339 
1340 #define TIOCMBIT(uartbit, tiocmbit)	\
1341 	if (status & uartbit)		\
1342 		result |= tiocmbit
1343 
1344 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1345 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1346 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1347 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1348 #undef TIOCMBIT
1349 	return result;
1350 }
1351 
1352 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1353 {
1354 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1355 	unsigned int cr;
1356 
1357 	cr = readw(uap->port.membase + UART011_CR);
1358 
1359 #define	TIOCMBIT(tiocmbit, uartbit)		\
1360 	if (mctrl & tiocmbit)		\
1361 		cr |= uartbit;		\
1362 	else				\
1363 		cr &= ~uartbit
1364 
1365 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1366 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1367 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1368 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1369 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1370 
1371 	if (uap->autorts) {
1372 		/* We need to disable auto-RTS if we want to turn RTS off */
1373 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1374 	}
1375 #undef TIOCMBIT
1376 
1377 	writew(cr, uap->port.membase + UART011_CR);
1378 }
1379 
1380 static void pl011_break_ctl(struct uart_port *port, int break_state)
1381 {
1382 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1383 	unsigned long flags;
1384 	unsigned int lcr_h;
1385 
1386 	spin_lock_irqsave(&uap->port.lock, flags);
1387 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1388 	if (break_state == -1)
1389 		lcr_h |= UART01x_LCRH_BRK;
1390 	else
1391 		lcr_h &= ~UART01x_LCRH_BRK;
1392 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1393 	spin_unlock_irqrestore(&uap->port.lock, flags);
1394 }
1395 
1396 #ifdef CONFIG_CONSOLE_POLL
1397 
1398 static void pl011_quiesce_irqs(struct uart_port *port)
1399 {
1400 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1401 	unsigned char __iomem *regs = uap->port.membase;
1402 
1403 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1404 	/*
1405 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1406 	 * we simply mask it. start_tx() will unmask it.
1407 	 *
1408 	 * Note we can race with start_tx(), and if the race happens, the
1409 	 * polling user might get another interrupt just after we clear it.
1410 	 * But it should be OK and can happen even w/o the race, e.g.
1411 	 * controller immediately got some new data and raised the IRQ.
1412 	 *
1413 	 * And whoever uses polling routines assumes that it manages the device
1414 	 * (including tx queue), so we're also fine with start_tx()'s caller
1415 	 * side.
1416 	 */
1417 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1418 }
1419 
1420 static int pl011_get_poll_char(struct uart_port *port)
1421 {
1422 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1423 	unsigned int status;
1424 
1425 	/*
1426 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1427 	 * debugger.
1428 	 */
1429 	pl011_quiesce_irqs(port);
1430 
1431 	status = readw(uap->port.membase + UART01x_FR);
1432 	if (status & UART01x_FR_RXFE)
1433 		return NO_POLL_CHAR;
1434 
1435 	return readw(uap->port.membase + UART01x_DR);
1436 }
1437 
1438 static void pl011_put_poll_char(struct uart_port *port,
1439 			 unsigned char ch)
1440 {
1441 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1442 
1443 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1444 		barrier();
1445 
1446 	writew(ch, uap->port.membase + UART01x_DR);
1447 }
1448 
1449 #endif /* CONFIG_CONSOLE_POLL */
1450 
1451 static int pl011_hwinit(struct uart_port *port)
1452 {
1453 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1454 	int retval;
1455 
1456 	/* Optionaly enable pins to be muxed in and configured */
1457 	if (!IS_ERR(uap->pins_default)) {
1458 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1459 		if (retval)
1460 			dev_err(port->dev,
1461 				"could not set default pins\n");
1462 	}
1463 
1464 	/*
1465 	 * Try to enable the clock producer.
1466 	 */
1467 	retval = clk_prepare_enable(uap->clk);
1468 	if (retval)
1469 		goto out;
1470 
1471 	uap->port.uartclk = clk_get_rate(uap->clk);
1472 
1473 	/* Clear pending error and receive interrupts */
1474 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1475 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1476 
1477 	/*
1478 	 * Save interrupts enable mask, and enable RX interrupts in case if
1479 	 * the interrupt is used for NMI entry.
1480 	 */
1481 	uap->im = readw(uap->port.membase + UART011_IMSC);
1482 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1483 
1484 	if (uap->port.dev->platform_data) {
1485 		struct amba_pl011_data *plat;
1486 
1487 		plat = uap->port.dev->platform_data;
1488 		if (plat->init)
1489 			plat->init();
1490 	}
1491 	return 0;
1492  out:
1493 	return retval;
1494 }
1495 
1496 static int pl011_startup(struct uart_port *port)
1497 {
1498 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1499 	unsigned int cr;
1500 	int retval;
1501 
1502 	retval = pl011_hwinit(port);
1503 	if (retval)
1504 		goto clk_dis;
1505 
1506 	writew(uap->im, uap->port.membase + UART011_IMSC);
1507 
1508 	/*
1509 	 * Allocate the IRQ
1510 	 */
1511 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1512 	if (retval)
1513 		goto clk_dis;
1514 
1515 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1516 
1517 	/*
1518 	 * Provoke TX FIFO interrupt into asserting.
1519 	 */
1520 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1521 	writew(cr, uap->port.membase + UART011_CR);
1522 	writew(0, uap->port.membase + UART011_FBRD);
1523 	writew(1, uap->port.membase + UART011_IBRD);
1524 	writew(0, uap->port.membase + uap->lcrh_rx);
1525 	if (uap->lcrh_tx != uap->lcrh_rx) {
1526 		int i;
1527 		/*
1528 		 * Wait 10 PCLKs before writing LCRH_TX register,
1529 		 * to get this delay write read only register 10 times
1530 		 */
1531 		for (i = 0; i < 10; ++i)
1532 			writew(0xff, uap->port.membase + UART011_MIS);
1533 		writew(0, uap->port.membase + uap->lcrh_tx);
1534 	}
1535 	writew(0, uap->port.membase + UART01x_DR);
1536 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1537 		barrier();
1538 
1539 	/* restore RTS and DTR */
1540 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1541 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1542 	writew(cr, uap->port.membase + UART011_CR);
1543 
1544 	/*
1545 	 * initialise the old status of the modem signals
1546 	 */
1547 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1548 
1549 	/* Startup DMA */
1550 	pl011_dma_startup(uap);
1551 
1552 	/*
1553 	 * Finally, enable interrupts, only timeouts when using DMA
1554 	 * if initial RX DMA job failed, start in interrupt mode
1555 	 * as well.
1556 	 */
1557 	spin_lock_irq(&uap->port.lock);
1558 	/* Clear out any spuriously appearing RX interrupts */
1559 	 writew(UART011_RTIS | UART011_RXIS,
1560 		uap->port.membase + UART011_ICR);
1561 	uap->im = UART011_RTIM;
1562 	if (!pl011_dma_rx_running(uap))
1563 		uap->im |= UART011_RXIM;
1564 	writew(uap->im, uap->port.membase + UART011_IMSC);
1565 	spin_unlock_irq(&uap->port.lock);
1566 
1567 	return 0;
1568 
1569  clk_dis:
1570 	clk_disable_unprepare(uap->clk);
1571 	return retval;
1572 }
1573 
1574 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1575 					unsigned int lcrh)
1576 {
1577       unsigned long val;
1578 
1579       val = readw(uap->port.membase + lcrh);
1580       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1581       writew(val, uap->port.membase + lcrh);
1582 }
1583 
1584 static void pl011_shutdown(struct uart_port *port)
1585 {
1586 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1587 	unsigned int cr;
1588 	int retval;
1589 
1590 	/*
1591 	 * disable all interrupts
1592 	 */
1593 	spin_lock_irq(&uap->port.lock);
1594 	uap->im = 0;
1595 	writew(uap->im, uap->port.membase + UART011_IMSC);
1596 	writew(0xffff, uap->port.membase + UART011_ICR);
1597 	spin_unlock_irq(&uap->port.lock);
1598 
1599 	pl011_dma_shutdown(uap);
1600 
1601 	/*
1602 	 * Free the interrupt
1603 	 */
1604 	free_irq(uap->port.irq, uap);
1605 
1606 	/*
1607 	 * disable the port
1608 	 * disable the port. It should not disable RTS and DTR.
1609 	 * Also RTS and DTR state should be preserved to restore
1610 	 * it during startup().
1611 	 */
1612 	uap->autorts = false;
1613 	cr = readw(uap->port.membase + UART011_CR);
1614 	uap->old_cr = cr;
1615 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1616 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1617 	writew(cr, uap->port.membase + UART011_CR);
1618 
1619 	/*
1620 	 * disable break condition and fifos
1621 	 */
1622 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1623 	if (uap->lcrh_rx != uap->lcrh_tx)
1624 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1625 
1626 	/*
1627 	 * Shut down the clock producer
1628 	 */
1629 	clk_disable_unprepare(uap->clk);
1630 	/* Optionally let pins go into sleep states */
1631 	if (!IS_ERR(uap->pins_sleep)) {
1632 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1633 		if (retval)
1634 			dev_err(port->dev,
1635 				"could not set pins to sleep state\n");
1636 	}
1637 
1638 
1639 	if (uap->port.dev->platform_data) {
1640 		struct amba_pl011_data *plat;
1641 
1642 		plat = uap->port.dev->platform_data;
1643 		if (plat->exit)
1644 			plat->exit();
1645 	}
1646 
1647 }
1648 
1649 static void
1650 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1651 		     struct ktermios *old)
1652 {
1653 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1654 	unsigned int lcr_h, old_cr;
1655 	unsigned long flags;
1656 	unsigned int baud, quot, clkdiv;
1657 
1658 	if (uap->vendor->oversampling)
1659 		clkdiv = 8;
1660 	else
1661 		clkdiv = 16;
1662 
1663 	/*
1664 	 * Ask the core to calculate the divisor for us.
1665 	 */
1666 	baud = uart_get_baud_rate(port, termios, old, 0,
1667 				  port->uartclk / clkdiv);
1668 	/*
1669 	 * Adjust RX DMA polling rate with baud rate if not specified.
1670 	 */
1671 	if (uap->dmarx.auto_poll_rate)
1672 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1673 
1674 	if (baud > port->uartclk/16)
1675 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1676 	else
1677 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1678 
1679 	switch (termios->c_cflag & CSIZE) {
1680 	case CS5:
1681 		lcr_h = UART01x_LCRH_WLEN_5;
1682 		break;
1683 	case CS6:
1684 		lcr_h = UART01x_LCRH_WLEN_6;
1685 		break;
1686 	case CS7:
1687 		lcr_h = UART01x_LCRH_WLEN_7;
1688 		break;
1689 	default: // CS8
1690 		lcr_h = UART01x_LCRH_WLEN_8;
1691 		break;
1692 	}
1693 	if (termios->c_cflag & CSTOPB)
1694 		lcr_h |= UART01x_LCRH_STP2;
1695 	if (termios->c_cflag & PARENB) {
1696 		lcr_h |= UART01x_LCRH_PEN;
1697 		if (!(termios->c_cflag & PARODD))
1698 			lcr_h |= UART01x_LCRH_EPS;
1699 	}
1700 	if (uap->fifosize > 1)
1701 		lcr_h |= UART01x_LCRH_FEN;
1702 
1703 	spin_lock_irqsave(&port->lock, flags);
1704 
1705 	/*
1706 	 * Update the per-port timeout.
1707 	 */
1708 	uart_update_timeout(port, termios->c_cflag, baud);
1709 
1710 	port->read_status_mask = UART011_DR_OE | 255;
1711 	if (termios->c_iflag & INPCK)
1712 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1713 	if (termios->c_iflag & (BRKINT | PARMRK))
1714 		port->read_status_mask |= UART011_DR_BE;
1715 
1716 	/*
1717 	 * Characters to ignore
1718 	 */
1719 	port->ignore_status_mask = 0;
1720 	if (termios->c_iflag & IGNPAR)
1721 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1722 	if (termios->c_iflag & IGNBRK) {
1723 		port->ignore_status_mask |= UART011_DR_BE;
1724 		/*
1725 		 * If we're ignoring parity and break indicators,
1726 		 * ignore overruns too (for real raw support).
1727 		 */
1728 		if (termios->c_iflag & IGNPAR)
1729 			port->ignore_status_mask |= UART011_DR_OE;
1730 	}
1731 
1732 	/*
1733 	 * Ignore all characters if CREAD is not set.
1734 	 */
1735 	if ((termios->c_cflag & CREAD) == 0)
1736 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1737 
1738 	if (UART_ENABLE_MS(port, termios->c_cflag))
1739 		pl011_enable_ms(port);
1740 
1741 	/* first, disable everything */
1742 	old_cr = readw(port->membase + UART011_CR);
1743 	writew(0, port->membase + UART011_CR);
1744 
1745 	if (termios->c_cflag & CRTSCTS) {
1746 		if (old_cr & UART011_CR_RTS)
1747 			old_cr |= UART011_CR_RTSEN;
1748 
1749 		old_cr |= UART011_CR_CTSEN;
1750 		uap->autorts = true;
1751 	} else {
1752 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1753 		uap->autorts = false;
1754 	}
1755 
1756 	if (uap->vendor->oversampling) {
1757 		if (baud > port->uartclk / 16)
1758 			old_cr |= ST_UART011_CR_OVSFACT;
1759 		else
1760 			old_cr &= ~ST_UART011_CR_OVSFACT;
1761 	}
1762 
1763 	/*
1764 	 * Workaround for the ST Micro oversampling variants to
1765 	 * increase the bitrate slightly, by lowering the divisor,
1766 	 * to avoid delayed sampling of start bit at high speeds,
1767 	 * else we see data corruption.
1768 	 */
1769 	if (uap->vendor->oversampling) {
1770 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1771 			quot -= 1;
1772 		else if ((baud > 3250000) && (quot > 2))
1773 			quot -= 2;
1774 	}
1775 	/* Set baud rate */
1776 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1777 	writew(quot >> 6, port->membase + UART011_IBRD);
1778 
1779 	/*
1780 	 * ----------v----------v----------v----------v-----
1781 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1782 	 * UART011_FBRD & UART011_IBRD.
1783 	 * ----------^----------^----------^----------^-----
1784 	 */
1785 	writew(lcr_h, port->membase + uap->lcrh_rx);
1786 	if (uap->lcrh_rx != uap->lcrh_tx) {
1787 		int i;
1788 		/*
1789 		 * Wait 10 PCLKs before writing LCRH_TX register,
1790 		 * to get this delay write read only register 10 times
1791 		 */
1792 		for (i = 0; i < 10; ++i)
1793 			writew(0xff, uap->port.membase + UART011_MIS);
1794 		writew(lcr_h, port->membase + uap->lcrh_tx);
1795 	}
1796 	writew(old_cr, port->membase + UART011_CR);
1797 
1798 	spin_unlock_irqrestore(&port->lock, flags);
1799 }
1800 
1801 static const char *pl011_type(struct uart_port *port)
1802 {
1803 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1804 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1805 }
1806 
1807 /*
1808  * Release the memory region(s) being used by 'port'
1809  */
1810 static void pl011_release_port(struct uart_port *port)
1811 {
1812 	release_mem_region(port->mapbase, SZ_4K);
1813 }
1814 
1815 /*
1816  * Request the memory region(s) being used by 'port'
1817  */
1818 static int pl011_request_port(struct uart_port *port)
1819 {
1820 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1821 			!= NULL ? 0 : -EBUSY;
1822 }
1823 
1824 /*
1825  * Configure/autoconfigure the port.
1826  */
1827 static void pl011_config_port(struct uart_port *port, int flags)
1828 {
1829 	if (flags & UART_CONFIG_TYPE) {
1830 		port->type = PORT_AMBA;
1831 		pl011_request_port(port);
1832 	}
1833 }
1834 
1835 /*
1836  * verify the new serial_struct (for TIOCSSERIAL).
1837  */
1838 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1839 {
1840 	int ret = 0;
1841 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1842 		ret = -EINVAL;
1843 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1844 		ret = -EINVAL;
1845 	if (ser->baud_base < 9600)
1846 		ret = -EINVAL;
1847 	return ret;
1848 }
1849 
1850 static struct uart_ops amba_pl011_pops = {
1851 	.tx_empty	= pl011_tx_empty,
1852 	.set_mctrl	= pl011_set_mctrl,
1853 	.get_mctrl	= pl011_get_mctrl,
1854 	.stop_tx	= pl011_stop_tx,
1855 	.start_tx	= pl011_start_tx,
1856 	.stop_rx	= pl011_stop_rx,
1857 	.enable_ms	= pl011_enable_ms,
1858 	.break_ctl	= pl011_break_ctl,
1859 	.startup	= pl011_startup,
1860 	.shutdown	= pl011_shutdown,
1861 	.flush_buffer	= pl011_dma_flush_buffer,
1862 	.set_termios	= pl011_set_termios,
1863 	.type		= pl011_type,
1864 	.release_port	= pl011_release_port,
1865 	.request_port	= pl011_request_port,
1866 	.config_port	= pl011_config_port,
1867 	.verify_port	= pl011_verify_port,
1868 #ifdef CONFIG_CONSOLE_POLL
1869 	.poll_init     = pl011_hwinit,
1870 	.poll_get_char = pl011_get_poll_char,
1871 	.poll_put_char = pl011_put_poll_char,
1872 #endif
1873 };
1874 
1875 static struct uart_amba_port *amba_ports[UART_NR];
1876 
1877 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1878 
1879 static void pl011_console_putchar(struct uart_port *port, int ch)
1880 {
1881 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1882 
1883 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1884 		barrier();
1885 	writew(ch, uap->port.membase + UART01x_DR);
1886 }
1887 
1888 static void
1889 pl011_console_write(struct console *co, const char *s, unsigned int count)
1890 {
1891 	struct uart_amba_port *uap = amba_ports[co->index];
1892 	unsigned int status, old_cr, new_cr;
1893 	unsigned long flags;
1894 	int locked = 1;
1895 
1896 	clk_enable(uap->clk);
1897 
1898 	local_irq_save(flags);
1899 	if (uap->port.sysrq)
1900 		locked = 0;
1901 	else if (oops_in_progress)
1902 		locked = spin_trylock(&uap->port.lock);
1903 	else
1904 		spin_lock(&uap->port.lock);
1905 
1906 	/*
1907 	 *	First save the CR then disable the interrupts
1908 	 */
1909 	old_cr = readw(uap->port.membase + UART011_CR);
1910 	new_cr = old_cr & ~UART011_CR_CTSEN;
1911 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1912 	writew(new_cr, uap->port.membase + UART011_CR);
1913 
1914 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1915 
1916 	/*
1917 	 *	Finally, wait for transmitter to become empty
1918 	 *	and restore the TCR
1919 	 */
1920 	do {
1921 		status = readw(uap->port.membase + UART01x_FR);
1922 	} while (status & UART01x_FR_BUSY);
1923 	writew(old_cr, uap->port.membase + UART011_CR);
1924 
1925 	if (locked)
1926 		spin_unlock(&uap->port.lock);
1927 	local_irq_restore(flags);
1928 
1929 	clk_disable(uap->clk);
1930 }
1931 
1932 static void __init
1933 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1934 			     int *parity, int *bits)
1935 {
1936 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1937 		unsigned int lcr_h, ibrd, fbrd;
1938 
1939 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1940 
1941 		*parity = 'n';
1942 		if (lcr_h & UART01x_LCRH_PEN) {
1943 			if (lcr_h & UART01x_LCRH_EPS)
1944 				*parity = 'e';
1945 			else
1946 				*parity = 'o';
1947 		}
1948 
1949 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1950 			*bits = 7;
1951 		else
1952 			*bits = 8;
1953 
1954 		ibrd = readw(uap->port.membase + UART011_IBRD);
1955 		fbrd = readw(uap->port.membase + UART011_FBRD);
1956 
1957 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1958 
1959 		if (uap->vendor->oversampling) {
1960 			if (readw(uap->port.membase + UART011_CR)
1961 				  & ST_UART011_CR_OVSFACT)
1962 				*baud *= 2;
1963 		}
1964 	}
1965 }
1966 
1967 static int __init pl011_console_setup(struct console *co, char *options)
1968 {
1969 	struct uart_amba_port *uap;
1970 	int baud = 38400;
1971 	int bits = 8;
1972 	int parity = 'n';
1973 	int flow = 'n';
1974 	int ret;
1975 
1976 	/*
1977 	 * Check whether an invalid uart number has been specified, and
1978 	 * if so, search for the first available port that does have
1979 	 * console support.
1980 	 */
1981 	if (co->index >= UART_NR)
1982 		co->index = 0;
1983 	uap = amba_ports[co->index];
1984 	if (!uap)
1985 		return -ENODEV;
1986 
1987 	/* Allow pins to be muxed in and configured */
1988 	if (!IS_ERR(uap->pins_default)) {
1989 		ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1990 		if (ret)
1991 			dev_err(uap->port.dev,
1992 				"could not set default pins\n");
1993 	}
1994 
1995 	ret = clk_prepare(uap->clk);
1996 	if (ret)
1997 		return ret;
1998 
1999 	if (uap->port.dev->platform_data) {
2000 		struct amba_pl011_data *plat;
2001 
2002 		plat = uap->port.dev->platform_data;
2003 		if (plat->init)
2004 			plat->init();
2005 	}
2006 
2007 	uap->port.uartclk = clk_get_rate(uap->clk);
2008 
2009 	if (options)
2010 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2011 	else
2012 		pl011_console_get_options(uap, &baud, &parity, &bits);
2013 
2014 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2015 }
2016 
2017 static struct uart_driver amba_reg;
2018 static struct console amba_console = {
2019 	.name		= "ttyAMA",
2020 	.write		= pl011_console_write,
2021 	.device		= uart_console_device,
2022 	.setup		= pl011_console_setup,
2023 	.flags		= CON_PRINTBUFFER,
2024 	.index		= -1,
2025 	.data		= &amba_reg,
2026 };
2027 
2028 #define AMBA_CONSOLE	(&amba_console)
2029 #else
2030 #define AMBA_CONSOLE	NULL
2031 #endif
2032 
2033 static struct uart_driver amba_reg = {
2034 	.owner			= THIS_MODULE,
2035 	.driver_name		= "ttyAMA",
2036 	.dev_name		= "ttyAMA",
2037 	.major			= SERIAL_AMBA_MAJOR,
2038 	.minor			= SERIAL_AMBA_MINOR,
2039 	.nr			= UART_NR,
2040 	.cons			= AMBA_CONSOLE,
2041 };
2042 
2043 static int pl011_probe_dt_alias(int index, struct device *dev)
2044 {
2045 	struct device_node *np;
2046 	static bool seen_dev_with_alias = false;
2047 	static bool seen_dev_without_alias = false;
2048 	int ret = index;
2049 
2050 	if (!IS_ENABLED(CONFIG_OF))
2051 		return ret;
2052 
2053 	np = dev->of_node;
2054 	if (!np)
2055 		return ret;
2056 
2057 	ret = of_alias_get_id(np, "serial");
2058 	if (IS_ERR_VALUE(ret)) {
2059 		seen_dev_without_alias = true;
2060 		ret = index;
2061 	} else {
2062 		seen_dev_with_alias = true;
2063 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2064 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2065 			ret = index;
2066 		}
2067 	}
2068 
2069 	if (seen_dev_with_alias && seen_dev_without_alias)
2070 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2071 
2072 	return ret;
2073 }
2074 
2075 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2076 {
2077 	struct uart_amba_port *uap;
2078 	struct vendor_data *vendor = id->data;
2079 	void __iomem *base;
2080 	int i, ret;
2081 
2082 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2083 		if (amba_ports[i] == NULL)
2084 			break;
2085 
2086 	if (i == ARRAY_SIZE(amba_ports)) {
2087 		ret = -EBUSY;
2088 		goto out;
2089 	}
2090 
2091 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2092 			   GFP_KERNEL);
2093 	if (uap == NULL) {
2094 		ret = -ENOMEM;
2095 		goto out;
2096 	}
2097 
2098 	i = pl011_probe_dt_alias(i, &dev->dev);
2099 
2100 	base = devm_ioremap(&dev->dev, dev->res.start,
2101 			    resource_size(&dev->res));
2102 	if (!base) {
2103 		ret = -ENOMEM;
2104 		goto out;
2105 	}
2106 
2107 	uap->pinctrl = devm_pinctrl_get(&dev->dev);
2108 	if (IS_ERR(uap->pinctrl)) {
2109 		ret = PTR_ERR(uap->pinctrl);
2110 		goto out;
2111 	}
2112 	uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
2113 						 PINCTRL_STATE_DEFAULT);
2114 	if (IS_ERR(uap->pins_default))
2115 		dev_err(&dev->dev, "could not get default pinstate\n");
2116 
2117 	uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
2118 					       PINCTRL_STATE_SLEEP);
2119 	if (IS_ERR(uap->pins_sleep))
2120 		dev_dbg(&dev->dev, "could not get sleep pinstate\n");
2121 
2122 	uap->clk = devm_clk_get(&dev->dev, NULL);
2123 	if (IS_ERR(uap->clk)) {
2124 		ret = PTR_ERR(uap->clk);
2125 		goto out;
2126 	}
2127 
2128 	uap->vendor = vendor;
2129 	uap->lcrh_rx = vendor->lcrh_rx;
2130 	uap->lcrh_tx = vendor->lcrh_tx;
2131 	uap->old_cr = 0;
2132 	uap->fifosize = vendor->fifosize;
2133 	uap->port.dev = &dev->dev;
2134 	uap->port.mapbase = dev->res.start;
2135 	uap->port.membase = base;
2136 	uap->port.iotype = UPIO_MEM;
2137 	uap->port.irq = dev->irq[0];
2138 	uap->port.fifosize = uap->fifosize;
2139 	uap->port.ops = &amba_pl011_pops;
2140 	uap->port.flags = UPF_BOOT_AUTOCONF;
2141 	uap->port.line = i;
2142 	pl011_dma_probe(uap);
2143 
2144 	/* Ensure interrupts from this UART are masked and cleared */
2145 	writew(0, uap->port.membase + UART011_IMSC);
2146 	writew(0xffff, uap->port.membase + UART011_ICR);
2147 
2148 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2149 
2150 	amba_ports[i] = uap;
2151 
2152 	amba_set_drvdata(dev, uap);
2153 	ret = uart_add_one_port(&amba_reg, &uap->port);
2154 	if (ret) {
2155 		amba_set_drvdata(dev, NULL);
2156 		amba_ports[i] = NULL;
2157 		pl011_dma_remove(uap);
2158 	}
2159  out:
2160 	return ret;
2161 }
2162 
2163 static int pl011_remove(struct amba_device *dev)
2164 {
2165 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2166 	int i;
2167 
2168 	amba_set_drvdata(dev, NULL);
2169 
2170 	uart_remove_one_port(&amba_reg, &uap->port);
2171 
2172 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2173 		if (amba_ports[i] == uap)
2174 			amba_ports[i] = NULL;
2175 
2176 	pl011_dma_remove(uap);
2177 	return 0;
2178 }
2179 
2180 #ifdef CONFIG_PM
2181 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2182 {
2183 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2184 
2185 	if (!uap)
2186 		return -EINVAL;
2187 
2188 	return uart_suspend_port(&amba_reg, &uap->port);
2189 }
2190 
2191 static int pl011_resume(struct amba_device *dev)
2192 {
2193 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2194 
2195 	if (!uap)
2196 		return -EINVAL;
2197 
2198 	return uart_resume_port(&amba_reg, &uap->port);
2199 }
2200 #endif
2201 
2202 static struct amba_id pl011_ids[] = {
2203 	{
2204 		.id	= 0x00041011,
2205 		.mask	= 0x000fffff,
2206 		.data	= &vendor_arm,
2207 	},
2208 	{
2209 		.id	= 0x00380802,
2210 		.mask	= 0x00ffffff,
2211 		.data	= &vendor_st,
2212 	},
2213 	{ 0, 0 },
2214 };
2215 
2216 MODULE_DEVICE_TABLE(amba, pl011_ids);
2217 
2218 static struct amba_driver pl011_driver = {
2219 	.drv = {
2220 		.name	= "uart-pl011",
2221 	},
2222 	.id_table	= pl011_ids,
2223 	.probe		= pl011_probe,
2224 	.remove		= pl011_remove,
2225 #ifdef CONFIG_PM
2226 	.suspend	= pl011_suspend,
2227 	.resume		= pl011_resume,
2228 #endif
2229 };
2230 
2231 static int __init pl011_init(void)
2232 {
2233 	int ret;
2234 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2235 
2236 	ret = uart_register_driver(&amba_reg);
2237 	if (ret == 0) {
2238 		ret = amba_driver_register(&pl011_driver);
2239 		if (ret)
2240 			uart_unregister_driver(&amba_reg);
2241 	}
2242 	return ret;
2243 }
2244 
2245 static void __exit pl011_exit(void)
2246 {
2247 	amba_driver_unregister(&pl011_driver);
2248 	uart_unregister_driver(&amba_reg);
2249 }
2250 
2251 /*
2252  * While this can be a module, if builtin it's most likely the console
2253  * So let's leave module_exit but move module_init to an earlier place
2254  */
2255 arch_initcall(pl011_init);
2256 module_exit(pl011_exit);
2257 
2258 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2259 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2260 MODULE_LICENSE("GPL");
2261