xref: /linux/drivers/tty/serial/amba-pl011.c (revision 9f90a4ddef4e4d3aa4229f6b117d4e57231457b3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #include "amba-pl011.h"
46 
47 #define UART_NR			14
48 
49 #define SERIAL_AMBA_MAJOR	204
50 #define SERIAL_AMBA_MINOR	64
51 #define SERIAL_AMBA_NR		UART_NR
52 
53 #define AMBA_ISR_PASS_LIMIT	256
54 
55 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX	(1 << 16)
57 
58 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59 	[REG_DR] = UART01x_DR,
60 	[REG_FR] = UART01x_FR,
61 	[REG_LCRH_RX] = UART011_LCRH,
62 	[REG_LCRH_TX] = UART011_LCRH,
63 	[REG_IBRD] = UART011_IBRD,
64 	[REG_FBRD] = UART011_FBRD,
65 	[REG_CR] = UART011_CR,
66 	[REG_IFLS] = UART011_IFLS,
67 	[REG_IMSC] = UART011_IMSC,
68 	[REG_RIS] = UART011_RIS,
69 	[REG_MIS] = UART011_MIS,
70 	[REG_ICR] = UART011_ICR,
71 	[REG_DMACR] = UART011_DMACR,
72 };
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	const u16		*reg_offset;
77 	unsigned int		ifls;
78 	unsigned int		fr_busy;
79 	unsigned int		fr_dsr;
80 	unsigned int		fr_cts;
81 	unsigned int		fr_ri;
82 	unsigned int		inv_fr;
83 	bool			access_32b;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
93 static unsigned int get_fifosize_arm(struct amba_device *dev)
94 {
95 	return amba_rev(dev) < 3 ? 16 : 32;
96 }
97 
98 static struct vendor_data vendor_arm = {
99 	.reg_offset		= pl011_std_offsets,
100 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101 	.fr_busy		= UART01x_FR_BUSY,
102 	.fr_dsr			= UART01x_FR_DSR,
103 	.fr_cts			= UART01x_FR_CTS,
104 	.fr_ri			= UART011_FR_RI,
105 	.oversampling		= false,
106 	.dma_threshold		= false,
107 	.cts_event_workaround	= false,
108 	.always_enabled		= false,
109 	.fixed_options		= false,
110 	.get_fifosize		= get_fifosize_arm,
111 };
112 
113 static const struct vendor_data vendor_sbsa = {
114 	.reg_offset		= pl011_std_offsets,
115 	.fr_busy		= UART01x_FR_BUSY,
116 	.fr_dsr			= UART01x_FR_DSR,
117 	.fr_cts			= UART01x_FR_CTS,
118 	.fr_ri			= UART011_FR_RI,
119 	.access_32b		= true,
120 	.oversampling		= false,
121 	.dma_threshold		= false,
122 	.cts_event_workaround	= false,
123 	.always_enabled		= true,
124 	.fixed_options		= true,
125 };
126 
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129 	.reg_offset		= pl011_std_offsets,
130 	.fr_busy		= UART011_FR_TXFE,
131 	.fr_dsr			= UART01x_FR_DSR,
132 	.fr_cts			= UART01x_FR_CTS,
133 	.fr_ri			= UART011_FR_RI,
134 	.inv_fr			= UART011_FR_TXFE,
135 	.access_32b		= true,
136 	.oversampling		= false,
137 	.dma_threshold		= false,
138 	.cts_event_workaround	= false,
139 	.always_enabled		= true,
140 	.fixed_options		= true,
141 };
142 #endif
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192 	[REG_DR] = ZX_UART011_DR,
193 	[REG_FR] = ZX_UART011_FR,
194 	[REG_LCRH_RX] = ZX_UART011_LCRH,
195 	[REG_LCRH_TX] = ZX_UART011_LCRH,
196 	[REG_IBRD] = ZX_UART011_IBRD,
197 	[REG_FBRD] = ZX_UART011_FBRD,
198 	[REG_CR] = ZX_UART011_CR,
199 	[REG_IFLS] = ZX_UART011_IFLS,
200 	[REG_IMSC] = ZX_UART011_IMSC,
201 	[REG_RIS] = ZX_UART011_RIS,
202 	[REG_MIS] = ZX_UART011_MIS,
203 	[REG_ICR] = ZX_UART011_ICR,
204 	[REG_DMACR] = ZX_UART011_DMACR,
205 };
206 
207 static unsigned int get_fifosize_zte(struct amba_device *dev)
208 {
209 	return 16;
210 }
211 
212 static struct vendor_data vendor_zte = {
213 	.reg_offset		= pl011_zte_offsets,
214 	.access_32b		= true,
215 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216 	.fr_busy		= ZX_UART01x_FR_BUSY,
217 	.fr_dsr			= ZX_UART01x_FR_DSR,
218 	.fr_cts			= ZX_UART01x_FR_CTS,
219 	.fr_ri			= ZX_UART011_FR_RI,
220 	.get_fifosize		= get_fifosize_zte,
221 };
222 
223 /* Deals with DMA transactions */
224 
225 struct pl011_sgbuf {
226 	struct scatterlist sg;
227 	char *buf;
228 };
229 
230 struct pl011_dmarx_data {
231 	struct dma_chan		*chan;
232 	struct completion	complete;
233 	bool			use_buf_b;
234 	struct pl011_sgbuf	sgbuf_a;
235 	struct pl011_sgbuf	sgbuf_b;
236 	dma_cookie_t		cookie;
237 	bool			running;
238 	struct timer_list	timer;
239 	unsigned int last_residue;
240 	unsigned long last_jiffies;
241 	bool auto_poll_rate;
242 	unsigned int poll_rate;
243 	unsigned int poll_timeout;
244 };
245 
246 struct pl011_dmatx_data {
247 	struct dma_chan		*chan;
248 	struct scatterlist	sg;
249 	char			*buf;
250 	bool			queued;
251 };
252 
253 /*
254  * We wrap our port structure around the generic uart_port.
255  */
256 struct uart_amba_port {
257 	struct uart_port	port;
258 	const u16		*reg_offset;
259 	struct clk		*clk;
260 	const struct vendor_data *vendor;
261 	unsigned int		dmacr;		/* dma control reg */
262 	unsigned int		im;		/* interrupt mask */
263 	unsigned int		old_status;
264 	unsigned int		fifosize;	/* vendor-specific */
265 	unsigned int		old_cr;		/* state during shutdown */
266 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
267 	char			type[12];
268 	bool			rs485_tx_started;
269 	unsigned int		rs485_tx_drain_interval; /* usecs */
270 #ifdef CONFIG_DMA_ENGINE
271 	/* DMA stuff */
272 	bool			using_tx_dma;
273 	bool			using_rx_dma;
274 	struct pl011_dmarx_data dmarx;
275 	struct pl011_dmatx_data	dmatx;
276 	bool			dma_probed;
277 #endif
278 };
279 
280 static unsigned int pl011_tx_empty(struct uart_port *port);
281 
282 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
283 	unsigned int reg)
284 {
285 	return uap->reg_offset[reg];
286 }
287 
288 static unsigned int pl011_read(const struct uart_amba_port *uap,
289 	unsigned int reg)
290 {
291 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
292 
293 	return (uap->port.iotype == UPIO_MEM32) ?
294 		readl_relaxed(addr) : readw_relaxed(addr);
295 }
296 
297 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
298 	unsigned int reg)
299 {
300 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
301 
302 	if (uap->port.iotype == UPIO_MEM32)
303 		writel_relaxed(val, addr);
304 	else
305 		writew_relaxed(val, addr);
306 }
307 
308 /*
309  * Reads up to 256 characters from the FIFO or until it's empty and
310  * inserts them into the TTY layer. Returns the number of characters
311  * read from the FIFO.
312  */
313 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
314 {
315 	unsigned int ch, flag, fifotaken;
316 	int sysrq;
317 	u16 status;
318 
319 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
320 		status = pl011_read(uap, REG_FR);
321 		if (status & UART01x_FR_RXFE)
322 			break;
323 
324 		/* Take chars from the FIFO and update status */
325 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
326 		flag = TTY_NORMAL;
327 		uap->port.icount.rx++;
328 
329 		if (unlikely(ch & UART_DR_ERROR)) {
330 			if (ch & UART011_DR_BE) {
331 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
332 				uap->port.icount.brk++;
333 				if (uart_handle_break(&uap->port))
334 					continue;
335 			} else if (ch & UART011_DR_PE)
336 				uap->port.icount.parity++;
337 			else if (ch & UART011_DR_FE)
338 				uap->port.icount.frame++;
339 			if (ch & UART011_DR_OE)
340 				uap->port.icount.overrun++;
341 
342 			ch &= uap->port.read_status_mask;
343 
344 			if (ch & UART011_DR_BE)
345 				flag = TTY_BREAK;
346 			else if (ch & UART011_DR_PE)
347 				flag = TTY_PARITY;
348 			else if (ch & UART011_DR_FE)
349 				flag = TTY_FRAME;
350 		}
351 
352 		spin_unlock(&uap->port.lock);
353 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
354 		spin_lock(&uap->port.lock);
355 
356 		if (!sysrq)
357 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
358 	}
359 
360 	return fifotaken;
361 }
362 
363 
364 /*
365  * All the DMA operation mode stuff goes inside this ifdef.
366  * This assumes that you have a generic DMA device interface,
367  * no custom DMA interfaces are supported.
368  */
369 #ifdef CONFIG_DMA_ENGINE
370 
371 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
372 
373 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
374 	enum dma_data_direction dir)
375 {
376 	dma_addr_t dma_addr;
377 
378 	sg->buf = dma_alloc_coherent(chan->device->dev,
379 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
380 	if (!sg->buf)
381 		return -ENOMEM;
382 
383 	sg_init_table(&sg->sg, 1);
384 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
385 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
386 	sg_dma_address(&sg->sg) = dma_addr;
387 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
388 
389 	return 0;
390 }
391 
392 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
393 	enum dma_data_direction dir)
394 {
395 	if (sg->buf) {
396 		dma_free_coherent(chan->device->dev,
397 			PL011_DMA_BUFFER_SIZE, sg->buf,
398 			sg_dma_address(&sg->sg));
399 	}
400 }
401 
402 static void pl011_dma_probe(struct uart_amba_port *uap)
403 {
404 	/* DMA is the sole user of the platform data right now */
405 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
406 	struct device *dev = uap->port.dev;
407 	struct dma_slave_config tx_conf = {
408 		.dst_addr = uap->port.mapbase +
409 				 pl011_reg_to_offset(uap, REG_DR),
410 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
411 		.direction = DMA_MEM_TO_DEV,
412 		.dst_maxburst = uap->fifosize >> 1,
413 		.device_fc = false,
414 	};
415 	struct dma_chan *chan;
416 	dma_cap_mask_t mask;
417 
418 	uap->dma_probed = true;
419 	chan = dma_request_chan(dev, "tx");
420 	if (IS_ERR(chan)) {
421 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
422 			uap->dma_probed = false;
423 			return;
424 		}
425 
426 		/* We need platform data */
427 		if (!plat || !plat->dma_filter) {
428 			dev_info(uap->port.dev, "no DMA platform data\n");
429 			return;
430 		}
431 
432 		/* Try to acquire a generic DMA engine slave TX channel */
433 		dma_cap_zero(mask);
434 		dma_cap_set(DMA_SLAVE, mask);
435 
436 		chan = dma_request_channel(mask, plat->dma_filter,
437 						plat->dma_tx_param);
438 		if (!chan) {
439 			dev_err(uap->port.dev, "no TX DMA channel!\n");
440 			return;
441 		}
442 	}
443 
444 	dmaengine_slave_config(chan, &tx_conf);
445 	uap->dmatx.chan = chan;
446 
447 	dev_info(uap->port.dev, "DMA channel TX %s\n",
448 		 dma_chan_name(uap->dmatx.chan));
449 
450 	/* Optionally make use of an RX channel as well */
451 	chan = dma_request_slave_channel(dev, "rx");
452 
453 	if (!chan && plat && plat->dma_rx_param) {
454 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
455 
456 		if (!chan) {
457 			dev_err(uap->port.dev, "no RX DMA channel!\n");
458 			return;
459 		}
460 	}
461 
462 	if (chan) {
463 		struct dma_slave_config rx_conf = {
464 			.src_addr = uap->port.mapbase +
465 				pl011_reg_to_offset(uap, REG_DR),
466 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
467 			.direction = DMA_DEV_TO_MEM,
468 			.src_maxburst = uap->fifosize >> 2,
469 			.device_fc = false,
470 		};
471 		struct dma_slave_caps caps;
472 
473 		/*
474 		 * Some DMA controllers provide information on their capabilities.
475 		 * If the controller does, check for suitable residue processing
476 		 * otherwise assime all is well.
477 		 */
478 		if (0 == dma_get_slave_caps(chan, &caps)) {
479 			if (caps.residue_granularity ==
480 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
481 				dma_release_channel(chan);
482 				dev_info(uap->port.dev,
483 					"RX DMA disabled - no residue processing\n");
484 				return;
485 			}
486 		}
487 		dmaengine_slave_config(chan, &rx_conf);
488 		uap->dmarx.chan = chan;
489 
490 		uap->dmarx.auto_poll_rate = false;
491 		if (plat && plat->dma_rx_poll_enable) {
492 			/* Set poll rate if specified. */
493 			if (plat->dma_rx_poll_rate) {
494 				uap->dmarx.auto_poll_rate = false;
495 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
496 			} else {
497 				/*
498 				 * 100 ms defaults to poll rate if not
499 				 * specified. This will be adjusted with
500 				 * the baud rate at set_termios.
501 				 */
502 				uap->dmarx.auto_poll_rate = true;
503 				uap->dmarx.poll_rate =  100;
504 			}
505 			/* 3 secs defaults poll_timeout if not specified. */
506 			if (plat->dma_rx_poll_timeout)
507 				uap->dmarx.poll_timeout =
508 					plat->dma_rx_poll_timeout;
509 			else
510 				uap->dmarx.poll_timeout = 3000;
511 		} else if (!plat && dev->of_node) {
512 			uap->dmarx.auto_poll_rate = of_property_read_bool(
513 						dev->of_node, "auto-poll");
514 			if (uap->dmarx.auto_poll_rate) {
515 				u32 x;
516 
517 				if (0 == of_property_read_u32(dev->of_node,
518 						"poll-rate-ms", &x))
519 					uap->dmarx.poll_rate = x;
520 				else
521 					uap->dmarx.poll_rate = 100;
522 				if (0 == of_property_read_u32(dev->of_node,
523 						"poll-timeout-ms", &x))
524 					uap->dmarx.poll_timeout = x;
525 				else
526 					uap->dmarx.poll_timeout = 3000;
527 			}
528 		}
529 		dev_info(uap->port.dev, "DMA channel RX %s\n",
530 			 dma_chan_name(uap->dmarx.chan));
531 	}
532 }
533 
534 static void pl011_dma_remove(struct uart_amba_port *uap)
535 {
536 	if (uap->dmatx.chan)
537 		dma_release_channel(uap->dmatx.chan);
538 	if (uap->dmarx.chan)
539 		dma_release_channel(uap->dmarx.chan);
540 }
541 
542 /* Forward declare these for the refill routine */
543 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
544 static void pl011_start_tx_pio(struct uart_amba_port *uap);
545 
546 /*
547  * The current DMA TX buffer has been sent.
548  * Try to queue up another DMA buffer.
549  */
550 static void pl011_dma_tx_callback(void *data)
551 {
552 	struct uart_amba_port *uap = data;
553 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
554 	unsigned long flags;
555 	u16 dmacr;
556 
557 	spin_lock_irqsave(&uap->port.lock, flags);
558 	if (uap->dmatx.queued)
559 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
560 			     DMA_TO_DEVICE);
561 
562 	dmacr = uap->dmacr;
563 	uap->dmacr = dmacr & ~UART011_TXDMAE;
564 	pl011_write(uap->dmacr, uap, REG_DMACR);
565 
566 	/*
567 	 * If TX DMA was disabled, it means that we've stopped the DMA for
568 	 * some reason (eg, XOFF received, or we want to send an X-char.)
569 	 *
570 	 * Note: we need to be careful here of a potential race between DMA
571 	 * and the rest of the driver - if the driver disables TX DMA while
572 	 * a TX buffer completing, we must update the tx queued status to
573 	 * get further refills (hence we check dmacr).
574 	 */
575 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
576 	    uart_circ_empty(&uap->port.state->xmit)) {
577 		uap->dmatx.queued = false;
578 		spin_unlock_irqrestore(&uap->port.lock, flags);
579 		return;
580 	}
581 
582 	if (pl011_dma_tx_refill(uap) <= 0)
583 		/*
584 		 * We didn't queue a DMA buffer for some reason, but we
585 		 * have data pending to be sent.  Re-enable the TX IRQ.
586 		 */
587 		pl011_start_tx_pio(uap);
588 
589 	spin_unlock_irqrestore(&uap->port.lock, flags);
590 }
591 
592 /*
593  * Try to refill the TX DMA buffer.
594  * Locking: called with port lock held and IRQs disabled.
595  * Returns:
596  *   1 if we queued up a TX DMA buffer.
597  *   0 if we didn't want to handle this by DMA
598  *  <0 on error
599  */
600 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
601 {
602 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
603 	struct dma_chan *chan = dmatx->chan;
604 	struct dma_device *dma_dev = chan->device;
605 	struct dma_async_tx_descriptor *desc;
606 	struct circ_buf *xmit = &uap->port.state->xmit;
607 	unsigned int count;
608 
609 	/*
610 	 * Try to avoid the overhead involved in using DMA if the
611 	 * transaction fits in the first half of the FIFO, by using
612 	 * the standard interrupt handling.  This ensures that we
613 	 * issue a uart_write_wakeup() at the appropriate time.
614 	 */
615 	count = uart_circ_chars_pending(xmit);
616 	if (count < (uap->fifosize >> 1)) {
617 		uap->dmatx.queued = false;
618 		return 0;
619 	}
620 
621 	/*
622 	 * Bodge: don't send the last character by DMA, as this
623 	 * will prevent XON from notifying us to restart DMA.
624 	 */
625 	count -= 1;
626 
627 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
628 	if (count > PL011_DMA_BUFFER_SIZE)
629 		count = PL011_DMA_BUFFER_SIZE;
630 
631 	if (xmit->tail < xmit->head)
632 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
633 	else {
634 		size_t first = UART_XMIT_SIZE - xmit->tail;
635 		size_t second;
636 
637 		if (first > count)
638 			first = count;
639 		second = count - first;
640 
641 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
642 		if (second)
643 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
644 	}
645 
646 	dmatx->sg.length = count;
647 
648 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
649 		uap->dmatx.queued = false;
650 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
651 		return -EBUSY;
652 	}
653 
654 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
655 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
656 	if (!desc) {
657 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
658 		uap->dmatx.queued = false;
659 		/*
660 		 * If DMA cannot be used right now, we complete this
661 		 * transaction via IRQ and let the TTY layer retry.
662 		 */
663 		dev_dbg(uap->port.dev, "TX DMA busy\n");
664 		return -EBUSY;
665 	}
666 
667 	/* Some data to go along to the callback */
668 	desc->callback = pl011_dma_tx_callback;
669 	desc->callback_param = uap;
670 
671 	/* All errors should happen at prepare time */
672 	dmaengine_submit(desc);
673 
674 	/* Fire the DMA transaction */
675 	dma_dev->device_issue_pending(chan);
676 
677 	uap->dmacr |= UART011_TXDMAE;
678 	pl011_write(uap->dmacr, uap, REG_DMACR);
679 	uap->dmatx.queued = true;
680 
681 	/*
682 	 * Now we know that DMA will fire, so advance the ring buffer
683 	 * with the stuff we just dispatched.
684 	 */
685 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
686 	uap->port.icount.tx += count;
687 
688 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
689 		uart_write_wakeup(&uap->port);
690 
691 	return 1;
692 }
693 
694 /*
695  * We received a transmit interrupt without a pending X-char but with
696  * pending characters.
697  * Locking: called with port lock held and IRQs disabled.
698  * Returns:
699  *   false if we want to use PIO to transmit
700  *   true if we queued a DMA buffer
701  */
702 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
703 {
704 	if (!uap->using_tx_dma)
705 		return false;
706 
707 	/*
708 	 * If we already have a TX buffer queued, but received a
709 	 * TX interrupt, it will be because we've just sent an X-char.
710 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
711 	 */
712 	if (uap->dmatx.queued) {
713 		uap->dmacr |= UART011_TXDMAE;
714 		pl011_write(uap->dmacr, uap, REG_DMACR);
715 		uap->im &= ~UART011_TXIM;
716 		pl011_write(uap->im, uap, REG_IMSC);
717 		return true;
718 	}
719 
720 	/*
721 	 * We don't have a TX buffer queued, so try to queue one.
722 	 * If we successfully queued a buffer, mask the TX IRQ.
723 	 */
724 	if (pl011_dma_tx_refill(uap) > 0) {
725 		uap->im &= ~UART011_TXIM;
726 		pl011_write(uap->im, uap, REG_IMSC);
727 		return true;
728 	}
729 	return false;
730 }
731 
732 /*
733  * Stop the DMA transmit (eg, due to received XOFF).
734  * Locking: called with port lock held and IRQs disabled.
735  */
736 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
737 {
738 	if (uap->dmatx.queued) {
739 		uap->dmacr &= ~UART011_TXDMAE;
740 		pl011_write(uap->dmacr, uap, REG_DMACR);
741 	}
742 }
743 
744 /*
745  * Try to start a DMA transmit, or in the case of an XON/OFF
746  * character queued for send, try to get that character out ASAP.
747  * Locking: called with port lock held and IRQs disabled.
748  * Returns:
749  *   false if we want the TX IRQ to be enabled
750  *   true if we have a buffer queued
751  */
752 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
753 {
754 	u16 dmacr;
755 
756 	if (!uap->using_tx_dma)
757 		return false;
758 
759 	if (!uap->port.x_char) {
760 		/* no X-char, try to push chars out in DMA mode */
761 		bool ret = true;
762 
763 		if (!uap->dmatx.queued) {
764 			if (pl011_dma_tx_refill(uap) > 0) {
765 				uap->im &= ~UART011_TXIM;
766 				pl011_write(uap->im, uap, REG_IMSC);
767 			} else
768 				ret = false;
769 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
770 			uap->dmacr |= UART011_TXDMAE;
771 			pl011_write(uap->dmacr, uap, REG_DMACR);
772 		}
773 		return ret;
774 	}
775 
776 	/*
777 	 * We have an X-char to send.  Disable DMA to prevent it loading
778 	 * the TX fifo, and then see if we can stuff it into the FIFO.
779 	 */
780 	dmacr = uap->dmacr;
781 	uap->dmacr &= ~UART011_TXDMAE;
782 	pl011_write(uap->dmacr, uap, REG_DMACR);
783 
784 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
785 		/*
786 		 * No space in the FIFO, so enable the transmit interrupt
787 		 * so we know when there is space.  Note that once we've
788 		 * loaded the character, we should just re-enable DMA.
789 		 */
790 		return false;
791 	}
792 
793 	pl011_write(uap->port.x_char, uap, REG_DR);
794 	uap->port.icount.tx++;
795 	uap->port.x_char = 0;
796 
797 	/* Success - restore the DMA state */
798 	uap->dmacr = dmacr;
799 	pl011_write(dmacr, uap, REG_DMACR);
800 
801 	return true;
802 }
803 
804 /*
805  * Flush the transmit buffer.
806  * Locking: called with port lock held and IRQs disabled.
807  */
808 static void pl011_dma_flush_buffer(struct uart_port *port)
809 __releases(&uap->port.lock)
810 __acquires(&uap->port.lock)
811 {
812 	struct uart_amba_port *uap =
813 	    container_of(port, struct uart_amba_port, port);
814 
815 	if (!uap->using_tx_dma)
816 		return;
817 
818 	dmaengine_terminate_async(uap->dmatx.chan);
819 
820 	if (uap->dmatx.queued) {
821 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
822 			     DMA_TO_DEVICE);
823 		uap->dmatx.queued = false;
824 		uap->dmacr &= ~UART011_TXDMAE;
825 		pl011_write(uap->dmacr, uap, REG_DMACR);
826 	}
827 }
828 
829 static void pl011_dma_rx_callback(void *data);
830 
831 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
832 {
833 	struct dma_chan *rxchan = uap->dmarx.chan;
834 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
835 	struct dma_async_tx_descriptor *desc;
836 	struct pl011_sgbuf *sgbuf;
837 
838 	if (!rxchan)
839 		return -EIO;
840 
841 	/* Start the RX DMA job */
842 	sgbuf = uap->dmarx.use_buf_b ?
843 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
844 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
845 					DMA_DEV_TO_MEM,
846 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
847 	/*
848 	 * If the DMA engine is busy and cannot prepare a
849 	 * channel, no big deal, the driver will fall back
850 	 * to interrupt mode as a result of this error code.
851 	 */
852 	if (!desc) {
853 		uap->dmarx.running = false;
854 		dmaengine_terminate_all(rxchan);
855 		return -EBUSY;
856 	}
857 
858 	/* Some data to go along to the callback */
859 	desc->callback = pl011_dma_rx_callback;
860 	desc->callback_param = uap;
861 	dmarx->cookie = dmaengine_submit(desc);
862 	dma_async_issue_pending(rxchan);
863 
864 	uap->dmacr |= UART011_RXDMAE;
865 	pl011_write(uap->dmacr, uap, REG_DMACR);
866 	uap->dmarx.running = true;
867 
868 	uap->im &= ~UART011_RXIM;
869 	pl011_write(uap->im, uap, REG_IMSC);
870 
871 	return 0;
872 }
873 
874 /*
875  * This is called when either the DMA job is complete, or
876  * the FIFO timeout interrupt occurred. This must be called
877  * with the port spinlock uap->port.lock held.
878  */
879 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
880 			       u32 pending, bool use_buf_b,
881 			       bool readfifo)
882 {
883 	struct tty_port *port = &uap->port.state->port;
884 	struct pl011_sgbuf *sgbuf = use_buf_b ?
885 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
886 	int dma_count = 0;
887 	u32 fifotaken = 0; /* only used for vdbg() */
888 
889 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
890 	int dmataken = 0;
891 
892 	if (uap->dmarx.poll_rate) {
893 		/* The data can be taken by polling */
894 		dmataken = sgbuf->sg.length - dmarx->last_residue;
895 		/* Recalculate the pending size */
896 		if (pending >= dmataken)
897 			pending -= dmataken;
898 	}
899 
900 	/* Pick the remain data from the DMA */
901 	if (pending) {
902 
903 		/*
904 		 * First take all chars in the DMA pipe, then look in the FIFO.
905 		 * Note that tty_insert_flip_buf() tries to take as many chars
906 		 * as it can.
907 		 */
908 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
909 				pending);
910 
911 		uap->port.icount.rx += dma_count;
912 		if (dma_count < pending)
913 			dev_warn(uap->port.dev,
914 				 "couldn't insert all characters (TTY is full?)\n");
915 	}
916 
917 	/* Reset the last_residue for Rx DMA poll */
918 	if (uap->dmarx.poll_rate)
919 		dmarx->last_residue = sgbuf->sg.length;
920 
921 	/*
922 	 * Only continue with trying to read the FIFO if all DMA chars have
923 	 * been taken first.
924 	 */
925 	if (dma_count == pending && readfifo) {
926 		/* Clear any error flags */
927 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
928 			    UART011_FEIS, uap, REG_ICR);
929 
930 		/*
931 		 * If we read all the DMA'd characters, and we had an
932 		 * incomplete buffer, that could be due to an rx error, or
933 		 * maybe we just timed out. Read any pending chars and check
934 		 * the error status.
935 		 *
936 		 * Error conditions will only occur in the FIFO, these will
937 		 * trigger an immediate interrupt and stop the DMA job, so we
938 		 * will always find the error in the FIFO, never in the DMA
939 		 * buffer.
940 		 */
941 		fifotaken = pl011_fifo_to_tty(uap);
942 	}
943 
944 	dev_vdbg(uap->port.dev,
945 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
946 		 dma_count, fifotaken);
947 	tty_flip_buffer_push(port);
948 }
949 
950 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
951 {
952 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
953 	struct dma_chan *rxchan = dmarx->chan;
954 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
955 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
956 	size_t pending;
957 	struct dma_tx_state state;
958 	enum dma_status dmastat;
959 
960 	/*
961 	 * Pause the transfer so we can trust the current counter,
962 	 * do this before we pause the PL011 block, else we may
963 	 * overflow the FIFO.
964 	 */
965 	if (dmaengine_pause(rxchan))
966 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
967 	dmastat = rxchan->device->device_tx_status(rxchan,
968 						   dmarx->cookie, &state);
969 	if (dmastat != DMA_PAUSED)
970 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
971 
972 	/* Disable RX DMA - incoming data will wait in the FIFO */
973 	uap->dmacr &= ~UART011_RXDMAE;
974 	pl011_write(uap->dmacr, uap, REG_DMACR);
975 	uap->dmarx.running = false;
976 
977 	pending = sgbuf->sg.length - state.residue;
978 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
979 	/* Then we terminate the transfer - we now know our residue */
980 	dmaengine_terminate_all(rxchan);
981 
982 	/*
983 	 * This will take the chars we have so far and insert
984 	 * into the framework.
985 	 */
986 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
987 
988 	/* Switch buffer & re-trigger DMA job */
989 	dmarx->use_buf_b = !dmarx->use_buf_b;
990 	if (pl011_dma_rx_trigger_dma(uap)) {
991 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
992 			"fall back to interrupt mode\n");
993 		uap->im |= UART011_RXIM;
994 		pl011_write(uap->im, uap, REG_IMSC);
995 	}
996 }
997 
998 static void pl011_dma_rx_callback(void *data)
999 {
1000 	struct uart_amba_port *uap = data;
1001 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1002 	struct dma_chan *rxchan = dmarx->chan;
1003 	bool lastbuf = dmarx->use_buf_b;
1004 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1005 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1006 	size_t pending;
1007 	struct dma_tx_state state;
1008 	int ret;
1009 
1010 	/*
1011 	 * This completion interrupt occurs typically when the
1012 	 * RX buffer is totally stuffed but no timeout has yet
1013 	 * occurred. When that happens, we just want the RX
1014 	 * routine to flush out the secondary DMA buffer while
1015 	 * we immediately trigger the next DMA job.
1016 	 */
1017 	spin_lock_irq(&uap->port.lock);
1018 	/*
1019 	 * Rx data can be taken by the UART interrupts during
1020 	 * the DMA irq handler. So we check the residue here.
1021 	 */
1022 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1023 	pending = sgbuf->sg.length - state.residue;
1024 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1025 	/* Then we terminate the transfer - we now know our residue */
1026 	dmaengine_terminate_all(rxchan);
1027 
1028 	uap->dmarx.running = false;
1029 	dmarx->use_buf_b = !lastbuf;
1030 	ret = pl011_dma_rx_trigger_dma(uap);
1031 
1032 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1033 	spin_unlock_irq(&uap->port.lock);
1034 	/*
1035 	 * Do this check after we picked the DMA chars so we don't
1036 	 * get some IRQ immediately from RX.
1037 	 */
1038 	if (ret) {
1039 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1040 			"fall back to interrupt mode\n");
1041 		uap->im |= UART011_RXIM;
1042 		pl011_write(uap->im, uap, REG_IMSC);
1043 	}
1044 }
1045 
1046 /*
1047  * Stop accepting received characters, when we're shutting down or
1048  * suspending this port.
1049  * Locking: called with port lock held and IRQs disabled.
1050  */
1051 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1052 {
1053 	/* FIXME.  Just disable the DMA enable */
1054 	uap->dmacr &= ~UART011_RXDMAE;
1055 	pl011_write(uap->dmacr, uap, REG_DMACR);
1056 }
1057 
1058 /*
1059  * Timer handler for Rx DMA polling.
1060  * Every polling, It checks the residue in the dma buffer and transfer
1061  * data to the tty. Also, last_residue is updated for the next polling.
1062  */
1063 static void pl011_dma_rx_poll(struct timer_list *t)
1064 {
1065 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1066 	struct tty_port *port = &uap->port.state->port;
1067 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1068 	struct dma_chan *rxchan = uap->dmarx.chan;
1069 	unsigned long flags;
1070 	unsigned int dmataken = 0;
1071 	unsigned int size = 0;
1072 	struct pl011_sgbuf *sgbuf;
1073 	int dma_count;
1074 	struct dma_tx_state state;
1075 
1076 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1077 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1078 	if (likely(state.residue < dmarx->last_residue)) {
1079 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1080 		size = dmarx->last_residue - state.residue;
1081 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1082 				size);
1083 		if (dma_count == size)
1084 			dmarx->last_residue =  state.residue;
1085 		dmarx->last_jiffies = jiffies;
1086 	}
1087 	tty_flip_buffer_push(port);
1088 
1089 	/*
1090 	 * If no data is received in poll_timeout, the driver will fall back
1091 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1092 	 */
1093 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1094 			> uap->dmarx.poll_timeout) {
1095 
1096 		spin_lock_irqsave(&uap->port.lock, flags);
1097 		pl011_dma_rx_stop(uap);
1098 		uap->im |= UART011_RXIM;
1099 		pl011_write(uap->im, uap, REG_IMSC);
1100 		spin_unlock_irqrestore(&uap->port.lock, flags);
1101 
1102 		uap->dmarx.running = false;
1103 		dmaengine_terminate_all(rxchan);
1104 		del_timer(&uap->dmarx.timer);
1105 	} else {
1106 		mod_timer(&uap->dmarx.timer,
1107 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1108 	}
1109 }
1110 
1111 static void pl011_dma_startup(struct uart_amba_port *uap)
1112 {
1113 	int ret;
1114 
1115 	if (!uap->dma_probed)
1116 		pl011_dma_probe(uap);
1117 
1118 	if (!uap->dmatx.chan)
1119 		return;
1120 
1121 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1122 	if (!uap->dmatx.buf) {
1123 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1124 		uap->port.fifosize = uap->fifosize;
1125 		return;
1126 	}
1127 
1128 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1129 
1130 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1131 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1132 	uap->using_tx_dma = true;
1133 
1134 	if (!uap->dmarx.chan)
1135 		goto skip_rx;
1136 
1137 	/* Allocate and map DMA RX buffers */
1138 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1139 			       DMA_FROM_DEVICE);
1140 	if (ret) {
1141 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1142 			"RX buffer A", ret);
1143 		goto skip_rx;
1144 	}
1145 
1146 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1147 			       DMA_FROM_DEVICE);
1148 	if (ret) {
1149 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1150 			"RX buffer B", ret);
1151 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1152 				 DMA_FROM_DEVICE);
1153 		goto skip_rx;
1154 	}
1155 
1156 	uap->using_rx_dma = true;
1157 
1158 skip_rx:
1159 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1160 	uap->dmacr |= UART011_DMAONERR;
1161 	pl011_write(uap->dmacr, uap, REG_DMACR);
1162 
1163 	/*
1164 	 * ST Micro variants has some specific dma burst threshold
1165 	 * compensation. Set this to 16 bytes, so burst will only
1166 	 * be issued above/below 16 bytes.
1167 	 */
1168 	if (uap->vendor->dma_threshold)
1169 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1170 			    uap, REG_ST_DMAWM);
1171 
1172 	if (uap->using_rx_dma) {
1173 		if (pl011_dma_rx_trigger_dma(uap))
1174 			dev_dbg(uap->port.dev, "could not trigger initial "
1175 				"RX DMA job, fall back to interrupt mode\n");
1176 		if (uap->dmarx.poll_rate) {
1177 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1178 			mod_timer(&uap->dmarx.timer,
1179 				jiffies +
1180 				msecs_to_jiffies(uap->dmarx.poll_rate));
1181 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1182 			uap->dmarx.last_jiffies = jiffies;
1183 		}
1184 	}
1185 }
1186 
1187 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1188 {
1189 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1190 		return;
1191 
1192 	/* Disable RX and TX DMA */
1193 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1194 		cpu_relax();
1195 
1196 	spin_lock_irq(&uap->port.lock);
1197 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1198 	pl011_write(uap->dmacr, uap, REG_DMACR);
1199 	spin_unlock_irq(&uap->port.lock);
1200 
1201 	if (uap->using_tx_dma) {
1202 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1203 		dmaengine_terminate_all(uap->dmatx.chan);
1204 		if (uap->dmatx.queued) {
1205 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1206 				     DMA_TO_DEVICE);
1207 			uap->dmatx.queued = false;
1208 		}
1209 
1210 		kfree(uap->dmatx.buf);
1211 		uap->using_tx_dma = false;
1212 	}
1213 
1214 	if (uap->using_rx_dma) {
1215 		dmaengine_terminate_all(uap->dmarx.chan);
1216 		/* Clean up the RX DMA */
1217 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1218 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1219 		if (uap->dmarx.poll_rate)
1220 			del_timer_sync(&uap->dmarx.timer);
1221 		uap->using_rx_dma = false;
1222 	}
1223 }
1224 
1225 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1226 {
1227 	return uap->using_rx_dma;
1228 }
1229 
1230 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1231 {
1232 	return uap->using_rx_dma && uap->dmarx.running;
1233 }
1234 
1235 #else
1236 /* Blank functions if the DMA engine is not available */
1237 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1238 {
1239 }
1240 
1241 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1242 {
1243 }
1244 
1245 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1246 {
1247 }
1248 
1249 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1250 {
1251 	return false;
1252 }
1253 
1254 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1255 {
1256 }
1257 
1258 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1259 {
1260 	return false;
1261 }
1262 
1263 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1264 {
1265 }
1266 
1267 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1268 {
1269 }
1270 
1271 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1272 {
1273 	return -EIO;
1274 }
1275 
1276 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1277 {
1278 	return false;
1279 }
1280 
1281 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1282 {
1283 	return false;
1284 }
1285 
1286 #define pl011_dma_flush_buffer	NULL
1287 #endif
1288 
1289 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1290 {
1291 	struct uart_port *port = &uap->port;
1292 	int i = 0;
1293 	u32 cr;
1294 
1295 	/* Wait until hardware tx queue is empty */
1296 	while (!pl011_tx_empty(port)) {
1297 		if (i == port->fifosize) {
1298 			dev_warn(port->dev,
1299 				 "timeout while draining hardware tx queue\n");
1300 			break;
1301 		}
1302 
1303 		udelay(uap->rs485_tx_drain_interval);
1304 		i++;
1305 	}
1306 
1307 	if (port->rs485.delay_rts_after_send)
1308 		mdelay(port->rs485.delay_rts_after_send);
1309 
1310 	cr = pl011_read(uap, REG_CR);
1311 
1312 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1313 		cr &= ~UART011_CR_RTS;
1314 	else
1315 		cr |= UART011_CR_RTS;
1316 
1317 	/* Disable the transmitter and reenable the transceiver */
1318 	cr &= ~UART011_CR_TXE;
1319 	cr |= UART011_CR_RXE;
1320 	pl011_write(cr, uap, REG_CR);
1321 
1322 	uap->rs485_tx_started = false;
1323 }
1324 
1325 static void pl011_stop_tx(struct uart_port *port)
1326 {
1327 	struct uart_amba_port *uap =
1328 	    container_of(port, struct uart_amba_port, port);
1329 
1330 	uap->im &= ~UART011_TXIM;
1331 	pl011_write(uap->im, uap, REG_IMSC);
1332 	pl011_dma_tx_stop(uap);
1333 
1334 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1335 		pl011_rs485_tx_stop(uap);
1336 }
1337 
1338 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1339 
1340 /* Start TX with programmed I/O only (no DMA) */
1341 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1342 {
1343 	if (pl011_tx_chars(uap, false)) {
1344 		uap->im |= UART011_TXIM;
1345 		pl011_write(uap->im, uap, REG_IMSC);
1346 	}
1347 }
1348 
1349 static void pl011_start_tx(struct uart_port *port)
1350 {
1351 	struct uart_amba_port *uap =
1352 	    container_of(port, struct uart_amba_port, port);
1353 
1354 	if (!pl011_dma_tx_start(uap))
1355 		pl011_start_tx_pio(uap);
1356 }
1357 
1358 static void pl011_stop_rx(struct uart_port *port)
1359 {
1360 	struct uart_amba_port *uap =
1361 	    container_of(port, struct uart_amba_port, port);
1362 
1363 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1364 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1365 	pl011_write(uap->im, uap, REG_IMSC);
1366 
1367 	pl011_dma_rx_stop(uap);
1368 }
1369 
1370 static void pl011_enable_ms(struct uart_port *port)
1371 {
1372 	struct uart_amba_port *uap =
1373 	    container_of(port, struct uart_amba_port, port);
1374 
1375 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1376 	pl011_write(uap->im, uap, REG_IMSC);
1377 }
1378 
1379 static void pl011_rx_chars(struct uart_amba_port *uap)
1380 __releases(&uap->port.lock)
1381 __acquires(&uap->port.lock)
1382 {
1383 	pl011_fifo_to_tty(uap);
1384 
1385 	spin_unlock(&uap->port.lock);
1386 	tty_flip_buffer_push(&uap->port.state->port);
1387 	/*
1388 	 * If we were temporarily out of DMA mode for a while,
1389 	 * attempt to switch back to DMA mode again.
1390 	 */
1391 	if (pl011_dma_rx_available(uap)) {
1392 		if (pl011_dma_rx_trigger_dma(uap)) {
1393 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1394 				"fall back to interrupt mode again\n");
1395 			uap->im |= UART011_RXIM;
1396 			pl011_write(uap->im, uap, REG_IMSC);
1397 		} else {
1398 #ifdef CONFIG_DMA_ENGINE
1399 			/* Start Rx DMA poll */
1400 			if (uap->dmarx.poll_rate) {
1401 				uap->dmarx.last_jiffies = jiffies;
1402 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1403 				mod_timer(&uap->dmarx.timer,
1404 					jiffies +
1405 					msecs_to_jiffies(uap->dmarx.poll_rate));
1406 			}
1407 #endif
1408 		}
1409 	}
1410 	spin_lock(&uap->port.lock);
1411 }
1412 
1413 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1414 			  bool from_irq)
1415 {
1416 	if (unlikely(!from_irq) &&
1417 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1418 		return false; /* unable to transmit character */
1419 
1420 	pl011_write(c, uap, REG_DR);
1421 	uap->port.icount.tx++;
1422 
1423 	return true;
1424 }
1425 
1426 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1427 {
1428 	struct uart_port *port = &uap->port;
1429 	u32 cr;
1430 
1431 	/* Enable transmitter */
1432 	cr = pl011_read(uap, REG_CR);
1433 	cr |= UART011_CR_TXE;
1434 
1435 	/* Disable receiver if half-duplex */
1436 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1437 		cr &= ~UART011_CR_RXE;
1438 
1439 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1440 		cr &= ~UART011_CR_RTS;
1441 	else
1442 		cr |= UART011_CR_RTS;
1443 
1444 	pl011_write(cr, uap, REG_CR);
1445 
1446 	if (port->rs485.delay_rts_before_send)
1447 		mdelay(port->rs485.delay_rts_before_send);
1448 
1449 	uap->rs485_tx_started = true;
1450 }
1451 
1452 /* Returns true if tx interrupts have to be (kept) enabled  */
1453 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1454 {
1455 	struct circ_buf *xmit = &uap->port.state->xmit;
1456 	int count = uap->fifosize >> 1;
1457 
1458 	if (uap->port.x_char) {
1459 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1460 			return true;
1461 		uap->port.x_char = 0;
1462 		--count;
1463 	}
1464 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1465 		pl011_stop_tx(&uap->port);
1466 		return false;
1467 	}
1468 
1469 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1470 	    !uap->rs485_tx_started)
1471 		pl011_rs485_tx_start(uap);
1472 
1473 	/* If we are using DMA mode, try to send some characters. */
1474 	if (pl011_dma_tx_irq(uap))
1475 		return true;
1476 
1477 	do {
1478 		if (likely(from_irq) && count-- == 0)
1479 			break;
1480 
1481 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1482 			break;
1483 
1484 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1485 	} while (!uart_circ_empty(xmit));
1486 
1487 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1488 		uart_write_wakeup(&uap->port);
1489 
1490 	if (uart_circ_empty(xmit)) {
1491 		pl011_stop_tx(&uap->port);
1492 		return false;
1493 	}
1494 	return true;
1495 }
1496 
1497 static void pl011_modem_status(struct uart_amba_port *uap)
1498 {
1499 	unsigned int status, delta;
1500 
1501 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1502 
1503 	delta = status ^ uap->old_status;
1504 	uap->old_status = status;
1505 
1506 	if (!delta)
1507 		return;
1508 
1509 	if (delta & UART01x_FR_DCD)
1510 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1511 
1512 	if (delta & uap->vendor->fr_dsr)
1513 		uap->port.icount.dsr++;
1514 
1515 	if (delta & uap->vendor->fr_cts)
1516 		uart_handle_cts_change(&uap->port,
1517 				       status & uap->vendor->fr_cts);
1518 
1519 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1520 }
1521 
1522 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1523 {
1524 	if (!uap->vendor->cts_event_workaround)
1525 		return;
1526 
1527 	/* workaround to make sure that all bits are unlocked.. */
1528 	pl011_write(0x00, uap, REG_ICR);
1529 
1530 	/*
1531 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1532 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1533 	 * so add 2 dummy reads
1534 	 */
1535 	pl011_read(uap, REG_ICR);
1536 	pl011_read(uap, REG_ICR);
1537 }
1538 
1539 static irqreturn_t pl011_int(int irq, void *dev_id)
1540 {
1541 	struct uart_amba_port *uap = dev_id;
1542 	unsigned long flags;
1543 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1544 	int handled = 0;
1545 
1546 	spin_lock_irqsave(&uap->port.lock, flags);
1547 	status = pl011_read(uap, REG_RIS) & uap->im;
1548 	if (status) {
1549 		do {
1550 			check_apply_cts_event_workaround(uap);
1551 
1552 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1553 					       UART011_RXIS),
1554 				    uap, REG_ICR);
1555 
1556 			if (status & (UART011_RTIS|UART011_RXIS)) {
1557 				if (pl011_dma_rx_running(uap))
1558 					pl011_dma_rx_irq(uap);
1559 				else
1560 					pl011_rx_chars(uap);
1561 			}
1562 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1563 				      UART011_CTSMIS|UART011_RIMIS))
1564 				pl011_modem_status(uap);
1565 			if (status & UART011_TXIS)
1566 				pl011_tx_chars(uap, true);
1567 
1568 			if (pass_counter-- == 0)
1569 				break;
1570 
1571 			status = pl011_read(uap, REG_RIS) & uap->im;
1572 		} while (status != 0);
1573 		handled = 1;
1574 	}
1575 
1576 	spin_unlock_irqrestore(&uap->port.lock, flags);
1577 
1578 	return IRQ_RETVAL(handled);
1579 }
1580 
1581 static unsigned int pl011_tx_empty(struct uart_port *port)
1582 {
1583 	struct uart_amba_port *uap =
1584 	    container_of(port, struct uart_amba_port, port);
1585 
1586 	/* Allow feature register bits to be inverted to work around errata */
1587 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1588 
1589 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1590 							0 : TIOCSER_TEMT;
1591 }
1592 
1593 static unsigned int pl011_get_mctrl(struct uart_port *port)
1594 {
1595 	struct uart_amba_port *uap =
1596 	    container_of(port, struct uart_amba_port, port);
1597 	unsigned int result = 0;
1598 	unsigned int status = pl011_read(uap, REG_FR);
1599 
1600 #define TIOCMBIT(uartbit, tiocmbit)	\
1601 	if (status & uartbit)		\
1602 		result |= tiocmbit
1603 
1604 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1605 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1606 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1607 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1608 #undef TIOCMBIT
1609 	return result;
1610 }
1611 
1612 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1613 {
1614 	struct uart_amba_port *uap =
1615 	    container_of(port, struct uart_amba_port, port);
1616 	unsigned int cr;
1617 
1618 	if (port->rs485.flags & SER_RS485_ENABLED)
1619 		mctrl &= ~TIOCM_RTS;
1620 
1621 	cr = pl011_read(uap, REG_CR);
1622 
1623 #define	TIOCMBIT(tiocmbit, uartbit)		\
1624 	if (mctrl & tiocmbit)		\
1625 		cr |= uartbit;		\
1626 	else				\
1627 		cr &= ~uartbit
1628 
1629 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1630 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1631 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1632 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1633 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1634 
1635 	if (port->status & UPSTAT_AUTORTS) {
1636 		/* We need to disable auto-RTS if we want to turn RTS off */
1637 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1638 	}
1639 #undef TIOCMBIT
1640 
1641 	pl011_write(cr, uap, REG_CR);
1642 }
1643 
1644 static void pl011_break_ctl(struct uart_port *port, int break_state)
1645 {
1646 	struct uart_amba_port *uap =
1647 	    container_of(port, struct uart_amba_port, port);
1648 	unsigned long flags;
1649 	unsigned int lcr_h;
1650 
1651 	spin_lock_irqsave(&uap->port.lock, flags);
1652 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1653 	if (break_state == -1)
1654 		lcr_h |= UART01x_LCRH_BRK;
1655 	else
1656 		lcr_h &= ~UART01x_LCRH_BRK;
1657 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1658 	spin_unlock_irqrestore(&uap->port.lock, flags);
1659 }
1660 
1661 #ifdef CONFIG_CONSOLE_POLL
1662 
1663 static void pl011_quiesce_irqs(struct uart_port *port)
1664 {
1665 	struct uart_amba_port *uap =
1666 	    container_of(port, struct uart_amba_port, port);
1667 
1668 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1669 	/*
1670 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1671 	 * we simply mask it. start_tx() will unmask it.
1672 	 *
1673 	 * Note we can race with start_tx(), and if the race happens, the
1674 	 * polling user might get another interrupt just after we clear it.
1675 	 * But it should be OK and can happen even w/o the race, e.g.
1676 	 * controller immediately got some new data and raised the IRQ.
1677 	 *
1678 	 * And whoever uses polling routines assumes that it manages the device
1679 	 * (including tx queue), so we're also fine with start_tx()'s caller
1680 	 * side.
1681 	 */
1682 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1683 		    REG_IMSC);
1684 }
1685 
1686 static int pl011_get_poll_char(struct uart_port *port)
1687 {
1688 	struct uart_amba_port *uap =
1689 	    container_of(port, struct uart_amba_port, port);
1690 	unsigned int status;
1691 
1692 	/*
1693 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1694 	 * debugger.
1695 	 */
1696 	pl011_quiesce_irqs(port);
1697 
1698 	status = pl011_read(uap, REG_FR);
1699 	if (status & UART01x_FR_RXFE)
1700 		return NO_POLL_CHAR;
1701 
1702 	return pl011_read(uap, REG_DR);
1703 }
1704 
1705 static void pl011_put_poll_char(struct uart_port *port,
1706 			 unsigned char ch)
1707 {
1708 	struct uart_amba_port *uap =
1709 	    container_of(port, struct uart_amba_port, port);
1710 
1711 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1712 		cpu_relax();
1713 
1714 	pl011_write(ch, uap, REG_DR);
1715 }
1716 
1717 #endif /* CONFIG_CONSOLE_POLL */
1718 
1719 static int pl011_hwinit(struct uart_port *port)
1720 {
1721 	struct uart_amba_port *uap =
1722 	    container_of(port, struct uart_amba_port, port);
1723 	int retval;
1724 
1725 	/* Optionaly enable pins to be muxed in and configured */
1726 	pinctrl_pm_select_default_state(port->dev);
1727 
1728 	/*
1729 	 * Try to enable the clock producer.
1730 	 */
1731 	retval = clk_prepare_enable(uap->clk);
1732 	if (retval)
1733 		return retval;
1734 
1735 	uap->port.uartclk = clk_get_rate(uap->clk);
1736 
1737 	/* Clear pending error and receive interrupts */
1738 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1739 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1740 		    uap, REG_ICR);
1741 
1742 	/*
1743 	 * Save interrupts enable mask, and enable RX interrupts in case if
1744 	 * the interrupt is used for NMI entry.
1745 	 */
1746 	uap->im = pl011_read(uap, REG_IMSC);
1747 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1748 
1749 	if (dev_get_platdata(uap->port.dev)) {
1750 		struct amba_pl011_data *plat;
1751 
1752 		plat = dev_get_platdata(uap->port.dev);
1753 		if (plat->init)
1754 			plat->init();
1755 	}
1756 	return 0;
1757 }
1758 
1759 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1760 {
1761 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1762 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1763 }
1764 
1765 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1766 {
1767 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1768 	if (pl011_split_lcrh(uap)) {
1769 		int i;
1770 		/*
1771 		 * Wait 10 PCLKs before writing LCRH_TX register,
1772 		 * to get this delay write read only register 10 times
1773 		 */
1774 		for (i = 0; i < 10; ++i)
1775 			pl011_write(0xff, uap, REG_MIS);
1776 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1777 	}
1778 }
1779 
1780 static void pl011_release_irq(struct uart_amba_port *uap, unsigned int max_cnt)
1781 {
1782 	struct amba_device *amba_dev = container_of(uap->port.dev, struct amba_device, dev);
1783 	int i;
1784 
1785 	for (i = 0; i < max_cnt; i++)
1786 		if (amba_dev->irq[i])
1787 			free_irq(amba_dev->irq[i], uap);
1788 }
1789 
1790 static int pl011_allocate_irq(struct uart_amba_port *uap)
1791 {
1792 	int ret = 0;
1793 	int i;
1794 	unsigned int virq;
1795 	struct amba_device *amba_dev = container_of(uap->port.dev, struct amba_device, dev);
1796 
1797 	pl011_write(uap->im, uap, REG_IMSC);
1798 
1799 	for (i = 0; i < AMBA_NR_IRQS; i++) {
1800 		virq = amba_dev->irq[i];
1801 		if (virq == 0)
1802 			break;
1803 
1804 		ret = request_irq(virq, pl011_int, IRQF_SHARED, dev_name(&amba_dev->dev), uap);
1805 		if (ret) {
1806 			dev_err(uap->port.dev, "request %u interrupt failed\n", virq);
1807 			pl011_release_irq(uap, i - 1);
1808 			break;
1809 		}
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 /*
1816  * Enable interrupts, only timeouts when using DMA
1817  * if initial RX DMA job failed, start in interrupt mode
1818  * as well.
1819  */
1820 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1821 {
1822 	unsigned int i;
1823 
1824 	spin_lock_irq(&uap->port.lock);
1825 
1826 	/* Clear out any spuriously appearing RX interrupts */
1827 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1828 
1829 	/*
1830 	 * RXIS is asserted only when the RX FIFO transitions from below
1831 	 * to above the trigger threshold.  If the RX FIFO is already
1832 	 * full to the threshold this can't happen and RXIS will now be
1833 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1834 	 */
1835 	for (i = 0; i < uap->fifosize * 2; ++i) {
1836 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1837 			break;
1838 
1839 		pl011_read(uap, REG_DR);
1840 	}
1841 
1842 	uap->im = UART011_RTIM;
1843 	if (!pl011_dma_rx_running(uap))
1844 		uap->im |= UART011_RXIM;
1845 	pl011_write(uap->im, uap, REG_IMSC);
1846 	spin_unlock_irq(&uap->port.lock);
1847 }
1848 
1849 static int pl011_startup(struct uart_port *port)
1850 {
1851 	struct uart_amba_port *uap =
1852 	    container_of(port, struct uart_amba_port, port);
1853 	unsigned int cr;
1854 	int retval;
1855 
1856 	retval = pl011_hwinit(port);
1857 	if (retval)
1858 		goto clk_dis;
1859 
1860 	retval = pl011_allocate_irq(uap);
1861 	if (retval)
1862 		goto clk_dis;
1863 
1864 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1865 
1866 	spin_lock_irq(&uap->port.lock);
1867 
1868 	/* restore RTS and DTR */
1869 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1870 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1871 
1872 	if (port->rs485.flags & SER_RS485_ENABLED) {
1873 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1874 			cr &= ~UART011_CR_RTS;
1875 		else
1876 			cr |= UART011_CR_RTS;
1877 	} else {
1878 		cr |= UART011_CR_TXE;
1879 	}
1880 
1881 	pl011_write(cr, uap, REG_CR);
1882 
1883 	spin_unlock_irq(&uap->port.lock);
1884 
1885 	/*
1886 	 * initialise the old status of the modem signals
1887 	 */
1888 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1889 
1890 	/* Startup DMA */
1891 	pl011_dma_startup(uap);
1892 
1893 	pl011_enable_interrupts(uap);
1894 
1895 	return 0;
1896 
1897  clk_dis:
1898 	clk_disable_unprepare(uap->clk);
1899 	return retval;
1900 }
1901 
1902 static int sbsa_uart_startup(struct uart_port *port)
1903 {
1904 	struct uart_amba_port *uap =
1905 		container_of(port, struct uart_amba_port, port);
1906 	int retval;
1907 
1908 	retval = pl011_hwinit(port);
1909 	if (retval)
1910 		return retval;
1911 
1912 	retval = pl011_allocate_irq(uap);
1913 	if (retval)
1914 		return retval;
1915 
1916 	/* The SBSA UART does not support any modem status lines. */
1917 	uap->old_status = 0;
1918 
1919 	pl011_enable_interrupts(uap);
1920 
1921 	return 0;
1922 }
1923 
1924 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1925 					unsigned int lcrh)
1926 {
1927       unsigned long val;
1928 
1929       val = pl011_read(uap, lcrh);
1930       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1931       pl011_write(val, uap, lcrh);
1932 }
1933 
1934 /*
1935  * disable the port. It should not disable RTS and DTR.
1936  * Also RTS and DTR state should be preserved to restore
1937  * it during startup().
1938  */
1939 static void pl011_disable_uart(struct uart_amba_port *uap)
1940 {
1941 	unsigned int cr;
1942 
1943 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1944 	spin_lock_irq(&uap->port.lock);
1945 	cr = pl011_read(uap, REG_CR);
1946 	uap->old_cr = cr;
1947 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1948 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1949 	pl011_write(cr, uap, REG_CR);
1950 	spin_unlock_irq(&uap->port.lock);
1951 
1952 	/*
1953 	 * disable break condition and fifos
1954 	 */
1955 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1956 	if (pl011_split_lcrh(uap))
1957 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1958 }
1959 
1960 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1961 {
1962 	spin_lock_irq(&uap->port.lock);
1963 
1964 	/* mask all interrupts and clear all pending ones */
1965 	uap->im = 0;
1966 	pl011_write(uap->im, uap, REG_IMSC);
1967 	pl011_write(0xffff, uap, REG_ICR);
1968 
1969 	spin_unlock_irq(&uap->port.lock);
1970 }
1971 
1972 static void pl011_shutdown(struct uart_port *port)
1973 {
1974 	struct uart_amba_port *uap =
1975 		container_of(port, struct uart_amba_port, port);
1976 
1977 	pl011_disable_interrupts(uap);
1978 
1979 	pl011_dma_shutdown(uap);
1980 
1981 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1982 		pl011_rs485_tx_stop(uap);
1983 
1984 	pl011_release_irq(uap, AMBA_NR_IRQS);
1985 
1986 	pl011_disable_uart(uap);
1987 
1988 	/*
1989 	 * Shut down the clock producer
1990 	 */
1991 	clk_disable_unprepare(uap->clk);
1992 	/* Optionally let pins go into sleep states */
1993 	pinctrl_pm_select_sleep_state(port->dev);
1994 
1995 	if (dev_get_platdata(uap->port.dev)) {
1996 		struct amba_pl011_data *plat;
1997 
1998 		plat = dev_get_platdata(uap->port.dev);
1999 		if (plat->exit)
2000 			plat->exit();
2001 	}
2002 
2003 	if (uap->port.ops->flush_buffer)
2004 		uap->port.ops->flush_buffer(port);
2005 }
2006 
2007 static void sbsa_uart_shutdown(struct uart_port *port)
2008 {
2009 	struct uart_amba_port *uap =
2010 		container_of(port, struct uart_amba_port, port);
2011 
2012 	pl011_disable_interrupts(uap);
2013 
2014 	pl011_release_irq(uap, AMBA_NR_IRQS);
2015 
2016 	if (uap->port.ops->flush_buffer)
2017 		uap->port.ops->flush_buffer(port);
2018 }
2019 
2020 static void
2021 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2022 {
2023 	port->read_status_mask = UART011_DR_OE | 255;
2024 	if (termios->c_iflag & INPCK)
2025 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2026 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2027 		port->read_status_mask |= UART011_DR_BE;
2028 
2029 	/*
2030 	 * Characters to ignore
2031 	 */
2032 	port->ignore_status_mask = 0;
2033 	if (termios->c_iflag & IGNPAR)
2034 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2035 	if (termios->c_iflag & IGNBRK) {
2036 		port->ignore_status_mask |= UART011_DR_BE;
2037 		/*
2038 		 * If we're ignoring parity and break indicators,
2039 		 * ignore overruns too (for real raw support).
2040 		 */
2041 		if (termios->c_iflag & IGNPAR)
2042 			port->ignore_status_mask |= UART011_DR_OE;
2043 	}
2044 
2045 	/*
2046 	 * Ignore all characters if CREAD is not set.
2047 	 */
2048 	if ((termios->c_cflag & CREAD) == 0)
2049 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2050 }
2051 
2052 static void
2053 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2054 		     struct ktermios *old)
2055 {
2056 	struct uart_amba_port *uap =
2057 	    container_of(port, struct uart_amba_port, port);
2058 	unsigned int lcr_h, old_cr;
2059 	unsigned long flags;
2060 	unsigned int baud, quot, clkdiv;
2061 	unsigned int bits;
2062 
2063 	if (uap->vendor->oversampling)
2064 		clkdiv = 8;
2065 	else
2066 		clkdiv = 16;
2067 
2068 	/*
2069 	 * Ask the core to calculate the divisor for us.
2070 	 */
2071 	baud = uart_get_baud_rate(port, termios, old, 0,
2072 				  port->uartclk / clkdiv);
2073 #ifdef CONFIG_DMA_ENGINE
2074 	/*
2075 	 * Adjust RX DMA polling rate with baud rate if not specified.
2076 	 */
2077 	if (uap->dmarx.auto_poll_rate)
2078 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2079 #endif
2080 
2081 	if (baud > port->uartclk/16)
2082 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2083 	else
2084 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2085 
2086 	switch (termios->c_cflag & CSIZE) {
2087 	case CS5:
2088 		lcr_h = UART01x_LCRH_WLEN_5;
2089 		break;
2090 	case CS6:
2091 		lcr_h = UART01x_LCRH_WLEN_6;
2092 		break;
2093 	case CS7:
2094 		lcr_h = UART01x_LCRH_WLEN_7;
2095 		break;
2096 	default: // CS8
2097 		lcr_h = UART01x_LCRH_WLEN_8;
2098 		break;
2099 	}
2100 	if (termios->c_cflag & CSTOPB)
2101 		lcr_h |= UART01x_LCRH_STP2;
2102 	if (termios->c_cflag & PARENB) {
2103 		lcr_h |= UART01x_LCRH_PEN;
2104 		if (!(termios->c_cflag & PARODD))
2105 			lcr_h |= UART01x_LCRH_EPS;
2106 		if (termios->c_cflag & CMSPAR)
2107 			lcr_h |= UART011_LCRH_SPS;
2108 	}
2109 	if (uap->fifosize > 1)
2110 		lcr_h |= UART01x_LCRH_FEN;
2111 
2112 	bits = tty_get_frame_size(termios->c_cflag);
2113 
2114 	spin_lock_irqsave(&port->lock, flags);
2115 
2116 	/*
2117 	 * Update the per-port timeout.
2118 	 */
2119 	uart_update_timeout(port, termios->c_cflag, baud);
2120 
2121 	/*
2122 	 * Calculate the approximated time it takes to transmit one character
2123 	 * with the given baud rate. We use this as the poll interval when we
2124 	 * wait for the tx queue to empty.
2125 	 */
2126 	uap->rs485_tx_drain_interval = (bits * 1000 * 1000) / baud;
2127 
2128 	pl011_setup_status_masks(port, termios);
2129 
2130 	if (UART_ENABLE_MS(port, termios->c_cflag))
2131 		pl011_enable_ms(port);
2132 
2133 	if (port->rs485.flags & SER_RS485_ENABLED)
2134 		termios->c_cflag &= ~CRTSCTS;
2135 
2136 	/* first, disable everything */
2137 	old_cr = pl011_read(uap, REG_CR);
2138 	pl011_write(0, uap, REG_CR);
2139 
2140 	if (termios->c_cflag & CRTSCTS) {
2141 		if (old_cr & UART011_CR_RTS)
2142 			old_cr |= UART011_CR_RTSEN;
2143 
2144 		old_cr |= UART011_CR_CTSEN;
2145 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2146 	} else {
2147 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2148 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2149 	}
2150 
2151 	if (uap->vendor->oversampling) {
2152 		if (baud > port->uartclk / 16)
2153 			old_cr |= ST_UART011_CR_OVSFACT;
2154 		else
2155 			old_cr &= ~ST_UART011_CR_OVSFACT;
2156 	}
2157 
2158 	/*
2159 	 * Workaround for the ST Micro oversampling variants to
2160 	 * increase the bitrate slightly, by lowering the divisor,
2161 	 * to avoid delayed sampling of start bit at high speeds,
2162 	 * else we see data corruption.
2163 	 */
2164 	if (uap->vendor->oversampling) {
2165 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2166 			quot -= 1;
2167 		else if ((baud > 3250000) && (quot > 2))
2168 			quot -= 2;
2169 	}
2170 	/* Set baud rate */
2171 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2172 	pl011_write(quot >> 6, uap, REG_IBRD);
2173 
2174 	/*
2175 	 * ----------v----------v----------v----------v-----
2176 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2177 	 * REG_FBRD & REG_IBRD.
2178 	 * ----------^----------^----------^----------^-----
2179 	 */
2180 	pl011_write_lcr_h(uap, lcr_h);
2181 	pl011_write(old_cr, uap, REG_CR);
2182 
2183 	spin_unlock_irqrestore(&port->lock, flags);
2184 }
2185 
2186 static void
2187 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2188 		      struct ktermios *old)
2189 {
2190 	struct uart_amba_port *uap =
2191 	    container_of(port, struct uart_amba_port, port);
2192 	unsigned long flags;
2193 
2194 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2195 
2196 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2197 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2198 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2199 	termios->c_cflag |= CS8 | CLOCAL;
2200 
2201 	spin_lock_irqsave(&port->lock, flags);
2202 	uart_update_timeout(port, CS8, uap->fixed_baud);
2203 	pl011_setup_status_masks(port, termios);
2204 	spin_unlock_irqrestore(&port->lock, flags);
2205 }
2206 
2207 static const char *pl011_type(struct uart_port *port)
2208 {
2209 	struct uart_amba_port *uap =
2210 	    container_of(port, struct uart_amba_port, port);
2211 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2212 }
2213 
2214 /*
2215  * Release the memory region(s) being used by 'port'
2216  */
2217 static void pl011_release_port(struct uart_port *port)
2218 {
2219 	release_mem_region(port->mapbase, SZ_4K);
2220 }
2221 
2222 /*
2223  * Request the memory region(s) being used by 'port'
2224  */
2225 static int pl011_request_port(struct uart_port *port)
2226 {
2227 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2228 			!= NULL ? 0 : -EBUSY;
2229 }
2230 
2231 /*
2232  * Configure/autoconfigure the port.
2233  */
2234 static void pl011_config_port(struct uart_port *port, int flags)
2235 {
2236 	if (flags & UART_CONFIG_TYPE) {
2237 		port->type = PORT_AMBA;
2238 		pl011_request_port(port);
2239 	}
2240 }
2241 
2242 /*
2243  * verify the new serial_struct (for TIOCSSERIAL).
2244  */
2245 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2246 {
2247 	int ret = 0;
2248 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2249 		ret = -EINVAL;
2250 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2251 		ret = -EINVAL;
2252 	if (ser->baud_base < 9600)
2253 		ret = -EINVAL;
2254 	return ret;
2255 }
2256 
2257 static int pl011_rs485_config(struct uart_port *port,
2258 			      struct serial_rs485 *rs485)
2259 {
2260 	struct uart_amba_port *uap =
2261 		container_of(port, struct uart_amba_port, port);
2262 
2263 	/* pick sane settings if the user hasn't */
2264 	if (!(rs485->flags & SER_RS485_RTS_ON_SEND) ==
2265 	    !(rs485->flags & SER_RS485_RTS_AFTER_SEND)) {
2266 		rs485->flags |= SER_RS485_RTS_ON_SEND;
2267 		rs485->flags &= ~SER_RS485_RTS_AFTER_SEND;
2268 	}
2269 	/* clamp the delays to [0, 100ms] */
2270 	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
2271 	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
2272 	memset(rs485->padding, 0, sizeof(rs485->padding));
2273 
2274 	if (port->rs485.flags & SER_RS485_ENABLED)
2275 		pl011_rs485_tx_stop(uap);
2276 
2277 	/* Set new configuration */
2278 	port->rs485 = *rs485;
2279 
2280 	/* Make sure auto RTS is disabled */
2281 	if (port->rs485.flags & SER_RS485_ENABLED) {
2282 		u32 cr = pl011_read(uap, REG_CR);
2283 
2284 		cr &= ~UART011_CR_RTSEN;
2285 		pl011_write(cr, uap, REG_CR);
2286 		port->status &= ~UPSTAT_AUTORTS;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 static const struct uart_ops amba_pl011_pops = {
2293 	.tx_empty	= pl011_tx_empty,
2294 	.set_mctrl	= pl011_set_mctrl,
2295 	.get_mctrl	= pl011_get_mctrl,
2296 	.stop_tx	= pl011_stop_tx,
2297 	.start_tx	= pl011_start_tx,
2298 	.stop_rx	= pl011_stop_rx,
2299 	.enable_ms	= pl011_enable_ms,
2300 	.break_ctl	= pl011_break_ctl,
2301 	.startup	= pl011_startup,
2302 	.shutdown	= pl011_shutdown,
2303 	.flush_buffer	= pl011_dma_flush_buffer,
2304 	.set_termios	= pl011_set_termios,
2305 	.type		= pl011_type,
2306 	.release_port	= pl011_release_port,
2307 	.request_port	= pl011_request_port,
2308 	.config_port	= pl011_config_port,
2309 	.verify_port	= pl011_verify_port,
2310 #ifdef CONFIG_CONSOLE_POLL
2311 	.poll_init     = pl011_hwinit,
2312 	.poll_get_char = pl011_get_poll_char,
2313 	.poll_put_char = pl011_put_poll_char,
2314 #endif
2315 };
2316 
2317 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2318 {
2319 }
2320 
2321 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2322 {
2323 	return 0;
2324 }
2325 
2326 static const struct uart_ops sbsa_uart_pops = {
2327 	.tx_empty	= pl011_tx_empty,
2328 	.set_mctrl	= sbsa_uart_set_mctrl,
2329 	.get_mctrl	= sbsa_uart_get_mctrl,
2330 	.stop_tx	= pl011_stop_tx,
2331 	.start_tx	= pl011_start_tx,
2332 	.stop_rx	= pl011_stop_rx,
2333 	.startup	= sbsa_uart_startup,
2334 	.shutdown	= sbsa_uart_shutdown,
2335 	.set_termios	= sbsa_uart_set_termios,
2336 	.type		= pl011_type,
2337 	.release_port	= pl011_release_port,
2338 	.request_port	= pl011_request_port,
2339 	.config_port	= pl011_config_port,
2340 	.verify_port	= pl011_verify_port,
2341 #ifdef CONFIG_CONSOLE_POLL
2342 	.poll_init     = pl011_hwinit,
2343 	.poll_get_char = pl011_get_poll_char,
2344 	.poll_put_char = pl011_put_poll_char,
2345 #endif
2346 };
2347 
2348 static struct uart_amba_port *amba_ports[UART_NR];
2349 
2350 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2351 
2352 static void pl011_console_putchar(struct uart_port *port, int ch)
2353 {
2354 	struct uart_amba_port *uap =
2355 	    container_of(port, struct uart_amba_port, port);
2356 
2357 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2358 		cpu_relax();
2359 	pl011_write(ch, uap, REG_DR);
2360 }
2361 
2362 static void
2363 pl011_console_write(struct console *co, const char *s, unsigned int count)
2364 {
2365 	struct uart_amba_port *uap = amba_ports[co->index];
2366 	unsigned int old_cr = 0, new_cr;
2367 	unsigned long flags;
2368 	int locked = 1;
2369 
2370 	clk_enable(uap->clk);
2371 
2372 	local_irq_save(flags);
2373 	if (uap->port.sysrq)
2374 		locked = 0;
2375 	else if (oops_in_progress)
2376 		locked = spin_trylock(&uap->port.lock);
2377 	else
2378 		spin_lock(&uap->port.lock);
2379 
2380 	/*
2381 	 *	First save the CR then disable the interrupts
2382 	 */
2383 	if (!uap->vendor->always_enabled) {
2384 		old_cr = pl011_read(uap, REG_CR);
2385 		new_cr = old_cr & ~UART011_CR_CTSEN;
2386 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2387 		pl011_write(new_cr, uap, REG_CR);
2388 	}
2389 
2390 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2391 
2392 	/*
2393 	 *	Finally, wait for transmitter to become empty and restore the
2394 	 *	TCR. Allow feature register bits to be inverted to work around
2395 	 *	errata.
2396 	 */
2397 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2398 						& uap->vendor->fr_busy)
2399 		cpu_relax();
2400 	if (!uap->vendor->always_enabled)
2401 		pl011_write(old_cr, uap, REG_CR);
2402 
2403 	if (locked)
2404 		spin_unlock(&uap->port.lock);
2405 	local_irq_restore(flags);
2406 
2407 	clk_disable(uap->clk);
2408 }
2409 
2410 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2411 				      int *parity, int *bits)
2412 {
2413 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2414 		unsigned int lcr_h, ibrd, fbrd;
2415 
2416 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2417 
2418 		*parity = 'n';
2419 		if (lcr_h & UART01x_LCRH_PEN) {
2420 			if (lcr_h & UART01x_LCRH_EPS)
2421 				*parity = 'e';
2422 			else
2423 				*parity = 'o';
2424 		}
2425 
2426 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2427 			*bits = 7;
2428 		else
2429 			*bits = 8;
2430 
2431 		ibrd = pl011_read(uap, REG_IBRD);
2432 		fbrd = pl011_read(uap, REG_FBRD);
2433 
2434 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2435 
2436 		if (uap->vendor->oversampling) {
2437 			if (pl011_read(uap, REG_CR)
2438 				  & ST_UART011_CR_OVSFACT)
2439 				*baud *= 2;
2440 		}
2441 	}
2442 }
2443 
2444 static int pl011_console_setup(struct console *co, char *options)
2445 {
2446 	struct uart_amba_port *uap;
2447 	int baud = 38400;
2448 	int bits = 8;
2449 	int parity = 'n';
2450 	int flow = 'n';
2451 	int ret;
2452 
2453 	/*
2454 	 * Check whether an invalid uart number has been specified, and
2455 	 * if so, search for the first available port that does have
2456 	 * console support.
2457 	 */
2458 	if (co->index >= UART_NR)
2459 		co->index = 0;
2460 	uap = amba_ports[co->index];
2461 	if (!uap)
2462 		return -ENODEV;
2463 
2464 	/* Allow pins to be muxed in and configured */
2465 	pinctrl_pm_select_default_state(uap->port.dev);
2466 
2467 	ret = clk_prepare(uap->clk);
2468 	if (ret)
2469 		return ret;
2470 
2471 	if (dev_get_platdata(uap->port.dev)) {
2472 		struct amba_pl011_data *plat;
2473 
2474 		plat = dev_get_platdata(uap->port.dev);
2475 		if (plat->init)
2476 			plat->init();
2477 	}
2478 
2479 	uap->port.uartclk = clk_get_rate(uap->clk);
2480 
2481 	if (uap->vendor->fixed_options) {
2482 		baud = uap->fixed_baud;
2483 	} else {
2484 		if (options)
2485 			uart_parse_options(options,
2486 					   &baud, &parity, &bits, &flow);
2487 		else
2488 			pl011_console_get_options(uap, &baud, &parity, &bits);
2489 	}
2490 
2491 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2492 }
2493 
2494 /**
2495  *	pl011_console_match - non-standard console matching
2496  *	@co:	  registering console
2497  *	@name:	  name from console command line
2498  *	@idx:	  index from console command line
2499  *	@options: ptr to option string from console command line
2500  *
2501  *	Only attempts to match console command lines of the form:
2502  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2503  *	    console=pl011,0x<addr>[,<options>]
2504  *	This form is used to register an initial earlycon boot console and
2505  *	replace it with the amba_console at pl011 driver init.
2506  *
2507  *	Performs console setup for a match (as required by interface)
2508  *	If no <options> are specified, then assume the h/w is already setup.
2509  *
2510  *	Returns 0 if console matches; otherwise non-zero to use default matching
2511  */
2512 static int pl011_console_match(struct console *co, char *name, int idx,
2513 			       char *options)
2514 {
2515 	unsigned char iotype;
2516 	resource_size_t addr;
2517 	int i;
2518 
2519 	/*
2520 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2521 	 * have a distinct console name, so make sure we check for that.
2522 	 * The actual implementation of the erratum occurs in the probe
2523 	 * function.
2524 	 */
2525 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2526 		return -ENODEV;
2527 
2528 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2529 		return -ENODEV;
2530 
2531 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2532 		return -ENODEV;
2533 
2534 	/* try to match the port specified on the command line */
2535 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2536 		struct uart_port *port;
2537 
2538 		if (!amba_ports[i])
2539 			continue;
2540 
2541 		port = &amba_ports[i]->port;
2542 
2543 		if (port->mapbase != addr)
2544 			continue;
2545 
2546 		co->index = i;
2547 		port->cons = co;
2548 		return pl011_console_setup(co, options);
2549 	}
2550 
2551 	return -ENODEV;
2552 }
2553 
2554 static struct uart_driver amba_reg;
2555 static struct console amba_console = {
2556 	.name		= "ttyAMA",
2557 	.write		= pl011_console_write,
2558 	.device		= uart_console_device,
2559 	.setup		= pl011_console_setup,
2560 	.match		= pl011_console_match,
2561 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2562 	.index		= -1,
2563 	.data		= &amba_reg,
2564 };
2565 
2566 #define AMBA_CONSOLE	(&amba_console)
2567 
2568 static void qdf2400_e44_putc(struct uart_port *port, int c)
2569 {
2570 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2571 		cpu_relax();
2572 	writel(c, port->membase + UART01x_DR);
2573 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2574 		cpu_relax();
2575 }
2576 
2577 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2578 {
2579 	struct earlycon_device *dev = con->data;
2580 
2581 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2582 }
2583 
2584 static void pl011_putc(struct uart_port *port, int c)
2585 {
2586 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2587 		cpu_relax();
2588 	if (port->iotype == UPIO_MEM32)
2589 		writel(c, port->membase + UART01x_DR);
2590 	else
2591 		writeb(c, port->membase + UART01x_DR);
2592 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2593 		cpu_relax();
2594 }
2595 
2596 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2597 {
2598 	struct earlycon_device *dev = con->data;
2599 
2600 	uart_console_write(&dev->port, s, n, pl011_putc);
2601 }
2602 
2603 #ifdef CONFIG_CONSOLE_POLL
2604 static int pl011_getc(struct uart_port *port)
2605 {
2606 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2607 		return NO_POLL_CHAR;
2608 
2609 	if (port->iotype == UPIO_MEM32)
2610 		return readl(port->membase + UART01x_DR);
2611 	else
2612 		return readb(port->membase + UART01x_DR);
2613 }
2614 
2615 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2616 {
2617 	struct earlycon_device *dev = con->data;
2618 	int ch, num_read = 0;
2619 
2620 	while (num_read < n) {
2621 		ch = pl011_getc(&dev->port);
2622 		if (ch == NO_POLL_CHAR)
2623 			break;
2624 
2625 		s[num_read++] = ch;
2626 	}
2627 
2628 	return num_read;
2629 }
2630 #else
2631 #define pl011_early_read NULL
2632 #endif
2633 
2634 /*
2635  * On non-ACPI systems, earlycon is enabled by specifying
2636  * "earlycon=pl011,<address>" on the kernel command line.
2637  *
2638  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2639  * by specifying only "earlycon" on the command line.  Because it requires
2640  * SPCR, the console starts after ACPI is parsed, which is later than a
2641  * traditional early console.
2642  *
2643  * To get the traditional early console that starts before ACPI is parsed,
2644  * specify the full "earlycon=pl011,<address>" option.
2645  */
2646 static int __init pl011_early_console_setup(struct earlycon_device *device,
2647 					    const char *opt)
2648 {
2649 	if (!device->port.membase)
2650 		return -ENODEV;
2651 
2652 	device->con->write = pl011_early_write;
2653 	device->con->read = pl011_early_read;
2654 
2655 	return 0;
2656 }
2657 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2658 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2659 
2660 /*
2661  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2662  * Erratum 44, traditional earlycon can be enabled by specifying
2663  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2664  *
2665  * Alternatively, you can just specify "earlycon", and the early console
2666  * will be enabled with the information from the SPCR table.  In this
2667  * case, the SPCR code will detect the need for the E44 work-around,
2668  * and set the console name to "qdf2400_e44".
2669  */
2670 static int __init
2671 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2672 				const char *opt)
2673 {
2674 	if (!device->port.membase)
2675 		return -ENODEV;
2676 
2677 	device->con->write = qdf2400_e44_early_write;
2678 	return 0;
2679 }
2680 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2681 
2682 #else
2683 #define AMBA_CONSOLE	NULL
2684 #endif
2685 
2686 static struct uart_driver amba_reg = {
2687 	.owner			= THIS_MODULE,
2688 	.driver_name		= "ttyAMA",
2689 	.dev_name		= "ttyAMA",
2690 	.major			= SERIAL_AMBA_MAJOR,
2691 	.minor			= SERIAL_AMBA_MINOR,
2692 	.nr			= UART_NR,
2693 	.cons			= AMBA_CONSOLE,
2694 };
2695 
2696 static int pl011_probe_dt_alias(int index, struct device *dev)
2697 {
2698 	struct device_node *np;
2699 	static bool seen_dev_with_alias = false;
2700 	static bool seen_dev_without_alias = false;
2701 	int ret = index;
2702 
2703 	if (!IS_ENABLED(CONFIG_OF))
2704 		return ret;
2705 
2706 	np = dev->of_node;
2707 	if (!np)
2708 		return ret;
2709 
2710 	ret = of_alias_get_id(np, "serial");
2711 	if (ret < 0) {
2712 		seen_dev_without_alias = true;
2713 		ret = index;
2714 	} else {
2715 		seen_dev_with_alias = true;
2716 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2717 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2718 			ret = index;
2719 		}
2720 	}
2721 
2722 	if (seen_dev_with_alias && seen_dev_without_alias)
2723 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2724 
2725 	return ret;
2726 }
2727 
2728 /* unregisters the driver also if no more ports are left */
2729 static void pl011_unregister_port(struct uart_amba_port *uap)
2730 {
2731 	int i;
2732 	bool busy = false;
2733 
2734 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2735 		if (amba_ports[i] == uap)
2736 			amba_ports[i] = NULL;
2737 		else if (amba_ports[i])
2738 			busy = true;
2739 	}
2740 	pl011_dma_remove(uap);
2741 	if (!busy)
2742 		uart_unregister_driver(&amba_reg);
2743 }
2744 
2745 static int pl011_find_free_port(void)
2746 {
2747 	int i;
2748 
2749 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2750 		if (amba_ports[i] == NULL)
2751 			return i;
2752 
2753 	return -EBUSY;
2754 }
2755 
2756 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2757 {
2758 	struct uart_port *port = &uap->port;
2759 	struct serial_rs485 *rs485 = &port->rs485;
2760 	int ret;
2761 
2762 	ret = uart_get_rs485_mode(port);
2763 	if (ret)
2764 		return ret;
2765 
2766 	/* clamp the delays to [0, 100ms] */
2767 	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
2768 	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
2769 
2770 	return 0;
2771 }
2772 
2773 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2774 			    struct resource *mmiobase, int index)
2775 {
2776 	void __iomem *base;
2777 	int ret;
2778 
2779 	base = devm_ioremap_resource(dev, mmiobase);
2780 	if (IS_ERR(base))
2781 		return PTR_ERR(base);
2782 
2783 	index = pl011_probe_dt_alias(index, dev);
2784 
2785 	uap->old_cr = 0;
2786 	uap->port.dev = dev;
2787 	uap->port.mapbase = mmiobase->start;
2788 	uap->port.membase = base;
2789 	uap->port.fifosize = uap->fifosize;
2790 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2791 	uap->port.flags = UPF_BOOT_AUTOCONF;
2792 	uap->port.line = index;
2793 
2794 	ret = pl011_get_rs485_mode(uap);
2795 	if (ret)
2796 		return ret;
2797 
2798 	amba_ports[index] = uap;
2799 
2800 	return 0;
2801 }
2802 
2803 static int pl011_register_port(struct uart_amba_port *uap)
2804 {
2805 	int ret, i;
2806 
2807 	/* Ensure interrupts from this UART are masked and cleared */
2808 	pl011_write(0, uap, REG_IMSC);
2809 	pl011_write(0xffff, uap, REG_ICR);
2810 
2811 	if (!amba_reg.state) {
2812 		ret = uart_register_driver(&amba_reg);
2813 		if (ret < 0) {
2814 			dev_err(uap->port.dev,
2815 				"Failed to register AMBA-PL011 driver\n");
2816 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2817 				if (amba_ports[i] == uap)
2818 					amba_ports[i] = NULL;
2819 			return ret;
2820 		}
2821 	}
2822 
2823 	ret = uart_add_one_port(&amba_reg, &uap->port);
2824 	if (ret)
2825 		pl011_unregister_port(uap);
2826 
2827 	return ret;
2828 }
2829 
2830 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2831 {
2832 	struct uart_amba_port *uap;
2833 	struct vendor_data *vendor = id->data;
2834 	int portnr, ret;
2835 
2836 	portnr = pl011_find_free_port();
2837 	if (portnr < 0)
2838 		return portnr;
2839 
2840 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2841 			   GFP_KERNEL);
2842 	if (!uap)
2843 		return -ENOMEM;
2844 
2845 	uap->clk = devm_clk_get(&dev->dev, NULL);
2846 	if (IS_ERR(uap->clk))
2847 		return PTR_ERR(uap->clk);
2848 
2849 	uap->reg_offset = vendor->reg_offset;
2850 	uap->vendor = vendor;
2851 	uap->fifosize = vendor->get_fifosize(dev);
2852 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2853 	uap->port.irq = dev->irq[0];
2854 	uap->port.ops = &amba_pl011_pops;
2855 	uap->port.rs485_config = pl011_rs485_config;
2856 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2857 
2858 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2859 	if (ret)
2860 		return ret;
2861 
2862 	amba_set_drvdata(dev, uap);
2863 
2864 	return pl011_register_port(uap);
2865 }
2866 
2867 static void pl011_remove(struct amba_device *dev)
2868 {
2869 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2870 
2871 	uart_remove_one_port(&amba_reg, &uap->port);
2872 	pl011_unregister_port(uap);
2873 }
2874 
2875 #ifdef CONFIG_PM_SLEEP
2876 static int pl011_suspend(struct device *dev)
2877 {
2878 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2879 
2880 	if (!uap)
2881 		return -EINVAL;
2882 
2883 	return uart_suspend_port(&amba_reg, &uap->port);
2884 }
2885 
2886 static int pl011_resume(struct device *dev)
2887 {
2888 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2889 
2890 	if (!uap)
2891 		return -EINVAL;
2892 
2893 	return uart_resume_port(&amba_reg, &uap->port);
2894 }
2895 #endif
2896 
2897 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2898 
2899 static int sbsa_uart_probe(struct platform_device *pdev)
2900 {
2901 	struct uart_amba_port *uap;
2902 	struct resource *r;
2903 	int portnr, ret;
2904 	int baudrate;
2905 
2906 	/*
2907 	 * Check the mandatory baud rate parameter in the DT node early
2908 	 * so that we can easily exit with the error.
2909 	 */
2910 	if (pdev->dev.of_node) {
2911 		struct device_node *np = pdev->dev.of_node;
2912 
2913 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2914 		if (ret)
2915 			return ret;
2916 	} else {
2917 		baudrate = 115200;
2918 	}
2919 
2920 	portnr = pl011_find_free_port();
2921 	if (portnr < 0)
2922 		return portnr;
2923 
2924 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2925 			   GFP_KERNEL);
2926 	if (!uap)
2927 		return -ENOMEM;
2928 
2929 	ret = platform_get_irq(pdev, 0);
2930 	if (ret < 0)
2931 		return ret;
2932 	uap->port.irq	= ret;
2933 
2934 #ifdef CONFIG_ACPI_SPCR_TABLE
2935 	if (qdf2400_e44_present) {
2936 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2937 		uap->vendor = &vendor_qdt_qdf2400_e44;
2938 	} else
2939 #endif
2940 		uap->vendor = &vendor_sbsa;
2941 
2942 	uap->reg_offset	= uap->vendor->reg_offset;
2943 	uap->fifosize	= 32;
2944 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2945 	uap->port.ops	= &sbsa_uart_pops;
2946 	uap->fixed_baud = baudrate;
2947 
2948 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2949 
2950 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2951 
2952 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2953 	if (ret)
2954 		return ret;
2955 
2956 	platform_set_drvdata(pdev, uap);
2957 
2958 	return pl011_register_port(uap);
2959 }
2960 
2961 static int sbsa_uart_remove(struct platform_device *pdev)
2962 {
2963 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2964 
2965 	uart_remove_one_port(&amba_reg, &uap->port);
2966 	pl011_unregister_port(uap);
2967 	return 0;
2968 }
2969 
2970 static const struct of_device_id sbsa_uart_of_match[] = {
2971 	{ .compatible = "arm,sbsa-uart", },
2972 	{},
2973 };
2974 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2975 
2976 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2977 	{ "ARMH0011", 0 },
2978 	{},
2979 };
2980 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2981 
2982 static struct platform_driver arm_sbsa_uart_platform_driver = {
2983 	.probe		= sbsa_uart_probe,
2984 	.remove		= sbsa_uart_remove,
2985 	.driver	= {
2986 		.name	= "sbsa-uart",
2987 		.pm	= &pl011_dev_pm_ops,
2988 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2989 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2990 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2991 	},
2992 };
2993 
2994 static const struct amba_id pl011_ids[] = {
2995 	{
2996 		.id	= 0x00041011,
2997 		.mask	= 0x000fffff,
2998 		.data	= &vendor_arm,
2999 	},
3000 	{
3001 		.id	= 0x00380802,
3002 		.mask	= 0x00ffffff,
3003 		.data	= &vendor_st,
3004 	},
3005 	{
3006 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
3007 		.mask	= 0x00ffffff,
3008 		.data	= &vendor_zte,
3009 	},
3010 	{ 0, 0 },
3011 };
3012 
3013 MODULE_DEVICE_TABLE(amba, pl011_ids);
3014 
3015 static struct amba_driver pl011_driver = {
3016 	.drv = {
3017 		.name	= "uart-pl011",
3018 		.pm	= &pl011_dev_pm_ops,
3019 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
3020 	},
3021 	.id_table	= pl011_ids,
3022 	.probe		= pl011_probe,
3023 	.remove		= pl011_remove,
3024 };
3025 
3026 static int __init pl011_init(void)
3027 {
3028 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
3029 
3030 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3031 		pr_warn("could not register SBSA UART platform driver\n");
3032 	return amba_driver_register(&pl011_driver);
3033 }
3034 
3035 static void __exit pl011_exit(void)
3036 {
3037 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3038 	amba_driver_unregister(&pl011_driver);
3039 }
3040 
3041 /*
3042  * While this can be a module, if builtin it's most likely the console
3043  * So let's leave module_exit but move module_init to an earlier place
3044  */
3045 arch_initcall(pl011_init);
3046 module_exit(pl011_exit);
3047 
3048 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3049 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3050 MODULE_LICENSE("GPL");
3051