1 /* 2 * linux/drivers/char/amba.c 3 * 4 * Driver for AMBA serial ports 5 * 6 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 7 * 8 * Copyright 1999 ARM Limited 9 * Copyright (C) 2000 Deep Blue Solutions Ltd. 10 * Copyright (C) 2010 ST-Ericsson SA 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 * This is a generic driver for ARM AMBA-type serial ports. They 27 * have a lot of 16550-like features, but are not register compatible. 28 * Note that although they do have CTS, DCD and DSR inputs, they do 29 * not have an RI input, nor do they have DTR or RTS outputs. If 30 * required, these have to be supplied via some other means (eg, GPIO) 31 * and hooked into this driver. 32 */ 33 34 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 35 #define SUPPORT_SYSRQ 36 #endif 37 38 #include <linux/module.h> 39 #include <linux/ioport.h> 40 #include <linux/init.h> 41 #include <linux/console.h> 42 #include <linux/sysrq.h> 43 #include <linux/device.h> 44 #include <linux/tty.h> 45 #include <linux/tty_flip.h> 46 #include <linux/serial_core.h> 47 #include <linux/serial.h> 48 #include <linux/amba/bus.h> 49 #include <linux/amba/serial.h> 50 #include <linux/clk.h> 51 #include <linux/slab.h> 52 #include <linux/dmaengine.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/scatterlist.h> 55 56 #include <asm/io.h> 57 #include <asm/sizes.h> 58 59 #define UART_NR 14 60 61 #define SERIAL_AMBA_MAJOR 204 62 #define SERIAL_AMBA_MINOR 64 63 #define SERIAL_AMBA_NR UART_NR 64 65 #define AMBA_ISR_PASS_LIMIT 256 66 67 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 68 #define UART_DUMMY_DR_RX (1 << 16) 69 70 /* There is by now at least one vendor with differing details, so handle it */ 71 struct vendor_data { 72 unsigned int ifls; 73 unsigned int fifosize; 74 unsigned int lcrh_tx; 75 unsigned int lcrh_rx; 76 bool oversampling; 77 bool dma_threshold; 78 }; 79 80 static struct vendor_data vendor_arm = { 81 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 82 .fifosize = 16, 83 .lcrh_tx = UART011_LCRH, 84 .lcrh_rx = UART011_LCRH, 85 .oversampling = false, 86 .dma_threshold = false, 87 }; 88 89 static struct vendor_data vendor_st = { 90 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 91 .fifosize = 64, 92 .lcrh_tx = ST_UART011_LCRH_TX, 93 .lcrh_rx = ST_UART011_LCRH_RX, 94 .oversampling = true, 95 .dma_threshold = true, 96 }; 97 98 /* Deals with DMA transactions */ 99 100 struct pl011_sgbuf { 101 struct scatterlist sg; 102 char *buf; 103 }; 104 105 struct pl011_dmarx_data { 106 struct dma_chan *chan; 107 struct completion complete; 108 bool use_buf_b; 109 struct pl011_sgbuf sgbuf_a; 110 struct pl011_sgbuf sgbuf_b; 111 dma_cookie_t cookie; 112 bool running; 113 }; 114 115 struct pl011_dmatx_data { 116 struct dma_chan *chan; 117 struct scatterlist sg; 118 char *buf; 119 bool queued; 120 }; 121 122 /* 123 * We wrap our port structure around the generic uart_port. 124 */ 125 struct uart_amba_port { 126 struct uart_port port; 127 struct clk *clk; 128 const struct vendor_data *vendor; 129 unsigned int dmacr; /* dma control reg */ 130 unsigned int im; /* interrupt mask */ 131 unsigned int old_status; 132 unsigned int fifosize; /* vendor-specific */ 133 unsigned int lcrh_tx; /* vendor-specific */ 134 unsigned int lcrh_rx; /* vendor-specific */ 135 bool autorts; 136 char type[12]; 137 #ifdef CONFIG_DMA_ENGINE 138 /* DMA stuff */ 139 bool using_tx_dma; 140 bool using_rx_dma; 141 struct pl011_dmarx_data dmarx; 142 struct pl011_dmatx_data dmatx; 143 #endif 144 }; 145 146 /* 147 * Reads up to 256 characters from the FIFO or until it's empty and 148 * inserts them into the TTY layer. Returns the number of characters 149 * read from the FIFO. 150 */ 151 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 152 { 153 u16 status, ch; 154 unsigned int flag, max_count = 256; 155 int fifotaken = 0; 156 157 while (max_count--) { 158 status = readw(uap->port.membase + UART01x_FR); 159 if (status & UART01x_FR_RXFE) 160 break; 161 162 /* Take chars from the FIFO and update status */ 163 ch = readw(uap->port.membase + UART01x_DR) | 164 UART_DUMMY_DR_RX; 165 flag = TTY_NORMAL; 166 uap->port.icount.rx++; 167 fifotaken++; 168 169 if (unlikely(ch & UART_DR_ERROR)) { 170 if (ch & UART011_DR_BE) { 171 ch &= ~(UART011_DR_FE | UART011_DR_PE); 172 uap->port.icount.brk++; 173 if (uart_handle_break(&uap->port)) 174 continue; 175 } else if (ch & UART011_DR_PE) 176 uap->port.icount.parity++; 177 else if (ch & UART011_DR_FE) 178 uap->port.icount.frame++; 179 if (ch & UART011_DR_OE) 180 uap->port.icount.overrun++; 181 182 ch &= uap->port.read_status_mask; 183 184 if (ch & UART011_DR_BE) 185 flag = TTY_BREAK; 186 else if (ch & UART011_DR_PE) 187 flag = TTY_PARITY; 188 else if (ch & UART011_DR_FE) 189 flag = TTY_FRAME; 190 } 191 192 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 193 continue; 194 195 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 196 } 197 198 return fifotaken; 199 } 200 201 202 /* 203 * All the DMA operation mode stuff goes inside this ifdef. 204 * This assumes that you have a generic DMA device interface, 205 * no custom DMA interfaces are supported. 206 */ 207 #ifdef CONFIG_DMA_ENGINE 208 209 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 210 211 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 212 enum dma_data_direction dir) 213 { 214 sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 215 if (!sg->buf) 216 return -ENOMEM; 217 218 sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE); 219 220 if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) { 221 kfree(sg->buf); 222 return -EINVAL; 223 } 224 return 0; 225 } 226 227 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 228 enum dma_data_direction dir) 229 { 230 if (sg->buf) { 231 dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir); 232 kfree(sg->buf); 233 } 234 } 235 236 static void pl011_dma_probe_initcall(struct uart_amba_port *uap) 237 { 238 /* DMA is the sole user of the platform data right now */ 239 struct amba_pl011_data *plat = uap->port.dev->platform_data; 240 struct dma_slave_config tx_conf = { 241 .dst_addr = uap->port.mapbase + UART01x_DR, 242 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 243 .direction = DMA_TO_DEVICE, 244 .dst_maxburst = uap->fifosize >> 1, 245 }; 246 struct dma_chan *chan; 247 dma_cap_mask_t mask; 248 249 /* We need platform data */ 250 if (!plat || !plat->dma_filter) { 251 dev_info(uap->port.dev, "no DMA platform data\n"); 252 return; 253 } 254 255 /* Try to acquire a generic DMA engine slave TX channel */ 256 dma_cap_zero(mask); 257 dma_cap_set(DMA_SLAVE, mask); 258 259 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param); 260 if (!chan) { 261 dev_err(uap->port.dev, "no TX DMA channel!\n"); 262 return; 263 } 264 265 dmaengine_slave_config(chan, &tx_conf); 266 uap->dmatx.chan = chan; 267 268 dev_info(uap->port.dev, "DMA channel TX %s\n", 269 dma_chan_name(uap->dmatx.chan)); 270 271 /* Optionally make use of an RX channel as well */ 272 if (plat->dma_rx_param) { 273 struct dma_slave_config rx_conf = { 274 .src_addr = uap->port.mapbase + UART01x_DR, 275 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 276 .direction = DMA_FROM_DEVICE, 277 .src_maxburst = uap->fifosize >> 1, 278 }; 279 280 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 281 if (!chan) { 282 dev_err(uap->port.dev, "no RX DMA channel!\n"); 283 return; 284 } 285 286 dmaengine_slave_config(chan, &rx_conf); 287 uap->dmarx.chan = chan; 288 289 dev_info(uap->port.dev, "DMA channel RX %s\n", 290 dma_chan_name(uap->dmarx.chan)); 291 } 292 } 293 294 #ifndef MODULE 295 /* 296 * Stack up the UARTs and let the above initcall be done at device 297 * initcall time, because the serial driver is called as an arch 298 * initcall, and at this time the DMA subsystem is not yet registered. 299 * At this point the driver will switch over to using DMA where desired. 300 */ 301 struct dma_uap { 302 struct list_head node; 303 struct uart_amba_port *uap; 304 }; 305 306 static LIST_HEAD(pl011_dma_uarts); 307 308 static int __init pl011_dma_initcall(void) 309 { 310 struct list_head *node, *tmp; 311 312 list_for_each_safe(node, tmp, &pl011_dma_uarts) { 313 struct dma_uap *dmau = list_entry(node, struct dma_uap, node); 314 pl011_dma_probe_initcall(dmau->uap); 315 list_del(node); 316 kfree(dmau); 317 } 318 return 0; 319 } 320 321 device_initcall(pl011_dma_initcall); 322 323 static void pl011_dma_probe(struct uart_amba_port *uap) 324 { 325 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL); 326 if (dmau) { 327 dmau->uap = uap; 328 list_add_tail(&dmau->node, &pl011_dma_uarts); 329 } 330 } 331 #else 332 static void pl011_dma_probe(struct uart_amba_port *uap) 333 { 334 pl011_dma_probe_initcall(uap); 335 } 336 #endif 337 338 static void pl011_dma_remove(struct uart_amba_port *uap) 339 { 340 /* TODO: remove the initcall if it has not yet executed */ 341 if (uap->dmatx.chan) 342 dma_release_channel(uap->dmatx.chan); 343 if (uap->dmarx.chan) 344 dma_release_channel(uap->dmarx.chan); 345 } 346 347 /* Forward declare this for the refill routine */ 348 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 349 350 /* 351 * The current DMA TX buffer has been sent. 352 * Try to queue up another DMA buffer. 353 */ 354 static void pl011_dma_tx_callback(void *data) 355 { 356 struct uart_amba_port *uap = data; 357 struct pl011_dmatx_data *dmatx = &uap->dmatx; 358 unsigned long flags; 359 u16 dmacr; 360 361 spin_lock_irqsave(&uap->port.lock, flags); 362 if (uap->dmatx.queued) 363 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 364 DMA_TO_DEVICE); 365 366 dmacr = uap->dmacr; 367 uap->dmacr = dmacr & ~UART011_TXDMAE; 368 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 369 370 /* 371 * If TX DMA was disabled, it means that we've stopped the DMA for 372 * some reason (eg, XOFF received, or we want to send an X-char.) 373 * 374 * Note: we need to be careful here of a potential race between DMA 375 * and the rest of the driver - if the driver disables TX DMA while 376 * a TX buffer completing, we must update the tx queued status to 377 * get further refills (hence we check dmacr). 378 */ 379 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 380 uart_circ_empty(&uap->port.state->xmit)) { 381 uap->dmatx.queued = false; 382 spin_unlock_irqrestore(&uap->port.lock, flags); 383 return; 384 } 385 386 if (pl011_dma_tx_refill(uap) <= 0) { 387 /* 388 * We didn't queue a DMA buffer for some reason, but we 389 * have data pending to be sent. Re-enable the TX IRQ. 390 */ 391 uap->im |= UART011_TXIM; 392 writew(uap->im, uap->port.membase + UART011_IMSC); 393 } 394 spin_unlock_irqrestore(&uap->port.lock, flags); 395 } 396 397 /* 398 * Try to refill the TX DMA buffer. 399 * Locking: called with port lock held and IRQs disabled. 400 * Returns: 401 * 1 if we queued up a TX DMA buffer. 402 * 0 if we didn't want to handle this by DMA 403 * <0 on error 404 */ 405 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 406 { 407 struct pl011_dmatx_data *dmatx = &uap->dmatx; 408 struct dma_chan *chan = dmatx->chan; 409 struct dma_device *dma_dev = chan->device; 410 struct dma_async_tx_descriptor *desc; 411 struct circ_buf *xmit = &uap->port.state->xmit; 412 unsigned int count; 413 414 /* 415 * Try to avoid the overhead involved in using DMA if the 416 * transaction fits in the first half of the FIFO, by using 417 * the standard interrupt handling. This ensures that we 418 * issue a uart_write_wakeup() at the appropriate time. 419 */ 420 count = uart_circ_chars_pending(xmit); 421 if (count < (uap->fifosize >> 1)) { 422 uap->dmatx.queued = false; 423 return 0; 424 } 425 426 /* 427 * Bodge: don't send the last character by DMA, as this 428 * will prevent XON from notifying us to restart DMA. 429 */ 430 count -= 1; 431 432 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 433 if (count > PL011_DMA_BUFFER_SIZE) 434 count = PL011_DMA_BUFFER_SIZE; 435 436 if (xmit->tail < xmit->head) 437 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 438 else { 439 size_t first = UART_XMIT_SIZE - xmit->tail; 440 size_t second = xmit->head; 441 442 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 443 if (second) 444 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 445 } 446 447 dmatx->sg.length = count; 448 449 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 450 uap->dmatx.queued = false; 451 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 452 return -EBUSY; 453 } 454 455 desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE, 456 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 457 if (!desc) { 458 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 459 uap->dmatx.queued = false; 460 /* 461 * If DMA cannot be used right now, we complete this 462 * transaction via IRQ and let the TTY layer retry. 463 */ 464 dev_dbg(uap->port.dev, "TX DMA busy\n"); 465 return -EBUSY; 466 } 467 468 /* Some data to go along to the callback */ 469 desc->callback = pl011_dma_tx_callback; 470 desc->callback_param = uap; 471 472 /* All errors should happen at prepare time */ 473 dmaengine_submit(desc); 474 475 /* Fire the DMA transaction */ 476 dma_dev->device_issue_pending(chan); 477 478 uap->dmacr |= UART011_TXDMAE; 479 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 480 uap->dmatx.queued = true; 481 482 /* 483 * Now we know that DMA will fire, so advance the ring buffer 484 * with the stuff we just dispatched. 485 */ 486 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 487 uap->port.icount.tx += count; 488 489 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 490 uart_write_wakeup(&uap->port); 491 492 return 1; 493 } 494 495 /* 496 * We received a transmit interrupt without a pending X-char but with 497 * pending characters. 498 * Locking: called with port lock held and IRQs disabled. 499 * Returns: 500 * false if we want to use PIO to transmit 501 * true if we queued a DMA buffer 502 */ 503 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 504 { 505 if (!uap->using_tx_dma) 506 return false; 507 508 /* 509 * If we already have a TX buffer queued, but received a 510 * TX interrupt, it will be because we've just sent an X-char. 511 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 512 */ 513 if (uap->dmatx.queued) { 514 uap->dmacr |= UART011_TXDMAE; 515 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 516 uap->im &= ~UART011_TXIM; 517 writew(uap->im, uap->port.membase + UART011_IMSC); 518 return true; 519 } 520 521 /* 522 * We don't have a TX buffer queued, so try to queue one. 523 * If we succesfully queued a buffer, mask the TX IRQ. 524 */ 525 if (pl011_dma_tx_refill(uap) > 0) { 526 uap->im &= ~UART011_TXIM; 527 writew(uap->im, uap->port.membase + UART011_IMSC); 528 return true; 529 } 530 return false; 531 } 532 533 /* 534 * Stop the DMA transmit (eg, due to received XOFF). 535 * Locking: called with port lock held and IRQs disabled. 536 */ 537 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 538 { 539 if (uap->dmatx.queued) { 540 uap->dmacr &= ~UART011_TXDMAE; 541 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 542 } 543 } 544 545 /* 546 * Try to start a DMA transmit, or in the case of an XON/OFF 547 * character queued for send, try to get that character out ASAP. 548 * Locking: called with port lock held and IRQs disabled. 549 * Returns: 550 * false if we want the TX IRQ to be enabled 551 * true if we have a buffer queued 552 */ 553 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 554 { 555 u16 dmacr; 556 557 if (!uap->using_tx_dma) 558 return false; 559 560 if (!uap->port.x_char) { 561 /* no X-char, try to push chars out in DMA mode */ 562 bool ret = true; 563 564 if (!uap->dmatx.queued) { 565 if (pl011_dma_tx_refill(uap) > 0) { 566 uap->im &= ~UART011_TXIM; 567 ret = true; 568 } else { 569 uap->im |= UART011_TXIM; 570 ret = false; 571 } 572 writew(uap->im, uap->port.membase + UART011_IMSC); 573 } else if (!(uap->dmacr & UART011_TXDMAE)) { 574 uap->dmacr |= UART011_TXDMAE; 575 writew(uap->dmacr, 576 uap->port.membase + UART011_DMACR); 577 } 578 return ret; 579 } 580 581 /* 582 * We have an X-char to send. Disable DMA to prevent it loading 583 * the TX fifo, and then see if we can stuff it into the FIFO. 584 */ 585 dmacr = uap->dmacr; 586 uap->dmacr &= ~UART011_TXDMAE; 587 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 588 589 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 590 /* 591 * No space in the FIFO, so enable the transmit interrupt 592 * so we know when there is space. Note that once we've 593 * loaded the character, we should just re-enable DMA. 594 */ 595 return false; 596 } 597 598 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 599 uap->port.icount.tx++; 600 uap->port.x_char = 0; 601 602 /* Success - restore the DMA state */ 603 uap->dmacr = dmacr; 604 writew(dmacr, uap->port.membase + UART011_DMACR); 605 606 return true; 607 } 608 609 /* 610 * Flush the transmit buffer. 611 * Locking: called with port lock held and IRQs disabled. 612 */ 613 static void pl011_dma_flush_buffer(struct uart_port *port) 614 { 615 struct uart_amba_port *uap = (struct uart_amba_port *)port; 616 617 if (!uap->using_tx_dma) 618 return; 619 620 /* Avoid deadlock with the DMA engine callback */ 621 spin_unlock(&uap->port.lock); 622 dmaengine_terminate_all(uap->dmatx.chan); 623 spin_lock(&uap->port.lock); 624 if (uap->dmatx.queued) { 625 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 626 DMA_TO_DEVICE); 627 uap->dmatx.queued = false; 628 uap->dmacr &= ~UART011_TXDMAE; 629 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 630 } 631 } 632 633 static void pl011_dma_rx_callback(void *data); 634 635 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 636 { 637 struct dma_chan *rxchan = uap->dmarx.chan; 638 struct dma_device *dma_dev; 639 struct pl011_dmarx_data *dmarx = &uap->dmarx; 640 struct dma_async_tx_descriptor *desc; 641 struct pl011_sgbuf *sgbuf; 642 643 if (!rxchan) 644 return -EIO; 645 646 /* Start the RX DMA job */ 647 sgbuf = uap->dmarx.use_buf_b ? 648 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 649 dma_dev = rxchan->device; 650 desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1, 651 DMA_FROM_DEVICE, 652 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 653 /* 654 * If the DMA engine is busy and cannot prepare a 655 * channel, no big deal, the driver will fall back 656 * to interrupt mode as a result of this error code. 657 */ 658 if (!desc) { 659 uap->dmarx.running = false; 660 dmaengine_terminate_all(rxchan); 661 return -EBUSY; 662 } 663 664 /* Some data to go along to the callback */ 665 desc->callback = pl011_dma_rx_callback; 666 desc->callback_param = uap; 667 dmarx->cookie = dmaengine_submit(desc); 668 dma_async_issue_pending(rxchan); 669 670 uap->dmacr |= UART011_RXDMAE; 671 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 672 uap->dmarx.running = true; 673 674 uap->im &= ~UART011_RXIM; 675 writew(uap->im, uap->port.membase + UART011_IMSC); 676 677 return 0; 678 } 679 680 /* 681 * This is called when either the DMA job is complete, or 682 * the FIFO timeout interrupt occurred. This must be called 683 * with the port spinlock uap->port.lock held. 684 */ 685 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 686 u32 pending, bool use_buf_b, 687 bool readfifo) 688 { 689 struct tty_struct *tty = uap->port.state->port.tty; 690 struct pl011_sgbuf *sgbuf = use_buf_b ? 691 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 692 struct device *dev = uap->dmarx.chan->device->dev; 693 int dma_count = 0; 694 u32 fifotaken = 0; /* only used for vdbg() */ 695 696 /* Pick everything from the DMA first */ 697 if (pending) { 698 /* Sync in buffer */ 699 dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE); 700 701 /* 702 * First take all chars in the DMA pipe, then look in the FIFO. 703 * Note that tty_insert_flip_buf() tries to take as many chars 704 * as it can. 705 */ 706 dma_count = tty_insert_flip_string(uap->port.state->port.tty, 707 sgbuf->buf, pending); 708 709 /* Return buffer to device */ 710 dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE); 711 712 uap->port.icount.rx += dma_count; 713 if (dma_count < pending) 714 dev_warn(uap->port.dev, 715 "couldn't insert all characters (TTY is full?)\n"); 716 } 717 718 /* 719 * Only continue with trying to read the FIFO if all DMA chars have 720 * been taken first. 721 */ 722 if (dma_count == pending && readfifo) { 723 /* Clear any error flags */ 724 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 725 uap->port.membase + UART011_ICR); 726 727 /* 728 * If we read all the DMA'd characters, and we had an 729 * incomplete buffer, that could be due to an rx error, or 730 * maybe we just timed out. Read any pending chars and check 731 * the error status. 732 * 733 * Error conditions will only occur in the FIFO, these will 734 * trigger an immediate interrupt and stop the DMA job, so we 735 * will always find the error in the FIFO, never in the DMA 736 * buffer. 737 */ 738 fifotaken = pl011_fifo_to_tty(uap); 739 } 740 741 spin_unlock(&uap->port.lock); 742 dev_vdbg(uap->port.dev, 743 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 744 dma_count, fifotaken); 745 tty_flip_buffer_push(tty); 746 spin_lock(&uap->port.lock); 747 } 748 749 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 750 { 751 struct pl011_dmarx_data *dmarx = &uap->dmarx; 752 struct dma_chan *rxchan = dmarx->chan; 753 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 754 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 755 size_t pending; 756 struct dma_tx_state state; 757 enum dma_status dmastat; 758 759 /* 760 * Pause the transfer so we can trust the current counter, 761 * do this before we pause the PL011 block, else we may 762 * overflow the FIFO. 763 */ 764 if (dmaengine_pause(rxchan)) 765 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 766 dmastat = rxchan->device->device_tx_status(rxchan, 767 dmarx->cookie, &state); 768 if (dmastat != DMA_PAUSED) 769 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 770 771 /* Disable RX DMA - incoming data will wait in the FIFO */ 772 uap->dmacr &= ~UART011_RXDMAE; 773 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 774 uap->dmarx.running = false; 775 776 pending = sgbuf->sg.length - state.residue; 777 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 778 /* Then we terminate the transfer - we now know our residue */ 779 dmaengine_terminate_all(rxchan); 780 781 /* 782 * This will take the chars we have so far and insert 783 * into the framework. 784 */ 785 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 786 787 /* Switch buffer & re-trigger DMA job */ 788 dmarx->use_buf_b = !dmarx->use_buf_b; 789 if (pl011_dma_rx_trigger_dma(uap)) { 790 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 791 "fall back to interrupt mode\n"); 792 uap->im |= UART011_RXIM; 793 writew(uap->im, uap->port.membase + UART011_IMSC); 794 } 795 } 796 797 static void pl011_dma_rx_callback(void *data) 798 { 799 struct uart_amba_port *uap = data; 800 struct pl011_dmarx_data *dmarx = &uap->dmarx; 801 bool lastbuf = dmarx->use_buf_b; 802 int ret; 803 804 /* 805 * This completion interrupt occurs typically when the 806 * RX buffer is totally stuffed but no timeout has yet 807 * occurred. When that happens, we just want the RX 808 * routine to flush out the secondary DMA buffer while 809 * we immediately trigger the next DMA job. 810 */ 811 spin_lock_irq(&uap->port.lock); 812 uap->dmarx.running = false; 813 dmarx->use_buf_b = !lastbuf; 814 ret = pl011_dma_rx_trigger_dma(uap); 815 816 pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false); 817 spin_unlock_irq(&uap->port.lock); 818 /* 819 * Do this check after we picked the DMA chars so we don't 820 * get some IRQ immediately from RX. 821 */ 822 if (ret) { 823 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 824 "fall back to interrupt mode\n"); 825 uap->im |= UART011_RXIM; 826 writew(uap->im, uap->port.membase + UART011_IMSC); 827 } 828 } 829 830 /* 831 * Stop accepting received characters, when we're shutting down or 832 * suspending this port. 833 * Locking: called with port lock held and IRQs disabled. 834 */ 835 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 836 { 837 /* FIXME. Just disable the DMA enable */ 838 uap->dmacr &= ~UART011_RXDMAE; 839 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 840 } 841 842 static void pl011_dma_startup(struct uart_amba_port *uap) 843 { 844 int ret; 845 846 if (!uap->dmatx.chan) 847 return; 848 849 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 850 if (!uap->dmatx.buf) { 851 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 852 uap->port.fifosize = uap->fifosize; 853 return; 854 } 855 856 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 857 858 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 859 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 860 uap->using_tx_dma = true; 861 862 if (!uap->dmarx.chan) 863 goto skip_rx; 864 865 /* Allocate and map DMA RX buffers */ 866 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 867 DMA_FROM_DEVICE); 868 if (ret) { 869 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 870 "RX buffer A", ret); 871 goto skip_rx; 872 } 873 874 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 875 DMA_FROM_DEVICE); 876 if (ret) { 877 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 878 "RX buffer B", ret); 879 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 880 DMA_FROM_DEVICE); 881 goto skip_rx; 882 } 883 884 uap->using_rx_dma = true; 885 886 skip_rx: 887 /* Turn on DMA error (RX/TX will be enabled on demand) */ 888 uap->dmacr |= UART011_DMAONERR; 889 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 890 891 /* 892 * ST Micro variants has some specific dma burst threshold 893 * compensation. Set this to 16 bytes, so burst will only 894 * be issued above/below 16 bytes. 895 */ 896 if (uap->vendor->dma_threshold) 897 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 898 uap->port.membase + ST_UART011_DMAWM); 899 900 if (uap->using_rx_dma) { 901 if (pl011_dma_rx_trigger_dma(uap)) 902 dev_dbg(uap->port.dev, "could not trigger initial " 903 "RX DMA job, fall back to interrupt mode\n"); 904 } 905 } 906 907 static void pl011_dma_shutdown(struct uart_amba_port *uap) 908 { 909 if (!(uap->using_tx_dma || uap->using_rx_dma)) 910 return; 911 912 /* Disable RX and TX DMA */ 913 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 914 barrier(); 915 916 spin_lock_irq(&uap->port.lock); 917 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 918 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 919 spin_unlock_irq(&uap->port.lock); 920 921 if (uap->using_tx_dma) { 922 /* In theory, this should already be done by pl011_dma_flush_buffer */ 923 dmaengine_terminate_all(uap->dmatx.chan); 924 if (uap->dmatx.queued) { 925 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 926 DMA_TO_DEVICE); 927 uap->dmatx.queued = false; 928 } 929 930 kfree(uap->dmatx.buf); 931 uap->using_tx_dma = false; 932 } 933 934 if (uap->using_rx_dma) { 935 dmaengine_terminate_all(uap->dmarx.chan); 936 /* Clean up the RX DMA */ 937 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 938 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 939 uap->using_rx_dma = false; 940 } 941 } 942 943 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 944 { 945 return uap->using_rx_dma; 946 } 947 948 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 949 { 950 return uap->using_rx_dma && uap->dmarx.running; 951 } 952 953 954 #else 955 /* Blank functions if the DMA engine is not available */ 956 static inline void pl011_dma_probe(struct uart_amba_port *uap) 957 { 958 } 959 960 static inline void pl011_dma_remove(struct uart_amba_port *uap) 961 { 962 } 963 964 static inline void pl011_dma_startup(struct uart_amba_port *uap) 965 { 966 } 967 968 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 969 { 970 } 971 972 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 973 { 974 return false; 975 } 976 977 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 978 { 979 } 980 981 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 982 { 983 return false; 984 } 985 986 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 987 { 988 } 989 990 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 991 { 992 } 993 994 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 995 { 996 return -EIO; 997 } 998 999 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1000 { 1001 return false; 1002 } 1003 1004 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1005 { 1006 return false; 1007 } 1008 1009 #define pl011_dma_flush_buffer NULL 1010 #endif 1011 1012 1013 static void pl011_stop_tx(struct uart_port *port) 1014 { 1015 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1016 1017 uap->im &= ~UART011_TXIM; 1018 writew(uap->im, uap->port.membase + UART011_IMSC); 1019 pl011_dma_tx_stop(uap); 1020 } 1021 1022 static void pl011_start_tx(struct uart_port *port) 1023 { 1024 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1025 1026 if (!pl011_dma_tx_start(uap)) { 1027 uap->im |= UART011_TXIM; 1028 writew(uap->im, uap->port.membase + UART011_IMSC); 1029 } 1030 } 1031 1032 static void pl011_stop_rx(struct uart_port *port) 1033 { 1034 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1035 1036 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1037 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1038 writew(uap->im, uap->port.membase + UART011_IMSC); 1039 1040 pl011_dma_rx_stop(uap); 1041 } 1042 1043 static void pl011_enable_ms(struct uart_port *port) 1044 { 1045 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1046 1047 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1048 writew(uap->im, uap->port.membase + UART011_IMSC); 1049 } 1050 1051 static void pl011_rx_chars(struct uart_amba_port *uap) 1052 { 1053 struct tty_struct *tty = uap->port.state->port.tty; 1054 1055 pl011_fifo_to_tty(uap); 1056 1057 spin_unlock(&uap->port.lock); 1058 tty_flip_buffer_push(tty); 1059 /* 1060 * If we were temporarily out of DMA mode for a while, 1061 * attempt to switch back to DMA mode again. 1062 */ 1063 if (pl011_dma_rx_available(uap)) { 1064 if (pl011_dma_rx_trigger_dma(uap)) { 1065 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1066 "fall back to interrupt mode again\n"); 1067 uap->im |= UART011_RXIM; 1068 } else 1069 uap->im &= ~UART011_RXIM; 1070 writew(uap->im, uap->port.membase + UART011_IMSC); 1071 } 1072 spin_lock(&uap->port.lock); 1073 } 1074 1075 static void pl011_tx_chars(struct uart_amba_port *uap) 1076 { 1077 struct circ_buf *xmit = &uap->port.state->xmit; 1078 int count; 1079 1080 if (uap->port.x_char) { 1081 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 1082 uap->port.icount.tx++; 1083 uap->port.x_char = 0; 1084 return; 1085 } 1086 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1087 pl011_stop_tx(&uap->port); 1088 return; 1089 } 1090 1091 /* If we are using DMA mode, try to send some characters. */ 1092 if (pl011_dma_tx_irq(uap)) 1093 return; 1094 1095 count = uap->fifosize >> 1; 1096 do { 1097 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR); 1098 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1099 uap->port.icount.tx++; 1100 if (uart_circ_empty(xmit)) 1101 break; 1102 } while (--count > 0); 1103 1104 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1105 uart_write_wakeup(&uap->port); 1106 1107 if (uart_circ_empty(xmit)) 1108 pl011_stop_tx(&uap->port); 1109 } 1110 1111 static void pl011_modem_status(struct uart_amba_port *uap) 1112 { 1113 unsigned int status, delta; 1114 1115 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1116 1117 delta = status ^ uap->old_status; 1118 uap->old_status = status; 1119 1120 if (!delta) 1121 return; 1122 1123 if (delta & UART01x_FR_DCD) 1124 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1125 1126 if (delta & UART01x_FR_DSR) 1127 uap->port.icount.dsr++; 1128 1129 if (delta & UART01x_FR_CTS) 1130 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 1131 1132 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1133 } 1134 1135 static irqreturn_t pl011_int(int irq, void *dev_id) 1136 { 1137 struct uart_amba_port *uap = dev_id; 1138 unsigned long flags; 1139 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1140 int handled = 0; 1141 1142 spin_lock_irqsave(&uap->port.lock, flags); 1143 1144 status = readw(uap->port.membase + UART011_MIS); 1145 if (status) { 1146 do { 1147 writew(status & ~(UART011_TXIS|UART011_RTIS| 1148 UART011_RXIS), 1149 uap->port.membase + UART011_ICR); 1150 1151 if (status & (UART011_RTIS|UART011_RXIS)) { 1152 if (pl011_dma_rx_running(uap)) 1153 pl011_dma_rx_irq(uap); 1154 else 1155 pl011_rx_chars(uap); 1156 } 1157 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1158 UART011_CTSMIS|UART011_RIMIS)) 1159 pl011_modem_status(uap); 1160 if (status & UART011_TXIS) 1161 pl011_tx_chars(uap); 1162 1163 if (pass_counter-- == 0) 1164 break; 1165 1166 status = readw(uap->port.membase + UART011_MIS); 1167 } while (status != 0); 1168 handled = 1; 1169 } 1170 1171 spin_unlock_irqrestore(&uap->port.lock, flags); 1172 1173 return IRQ_RETVAL(handled); 1174 } 1175 1176 static unsigned int pl01x_tx_empty(struct uart_port *port) 1177 { 1178 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1179 unsigned int status = readw(uap->port.membase + UART01x_FR); 1180 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 1181 } 1182 1183 static unsigned int pl01x_get_mctrl(struct uart_port *port) 1184 { 1185 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1186 unsigned int result = 0; 1187 unsigned int status = readw(uap->port.membase + UART01x_FR); 1188 1189 #define TIOCMBIT(uartbit, tiocmbit) \ 1190 if (status & uartbit) \ 1191 result |= tiocmbit 1192 1193 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1194 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 1195 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 1196 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 1197 #undef TIOCMBIT 1198 return result; 1199 } 1200 1201 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1202 { 1203 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1204 unsigned int cr; 1205 1206 cr = readw(uap->port.membase + UART011_CR); 1207 1208 #define TIOCMBIT(tiocmbit, uartbit) \ 1209 if (mctrl & tiocmbit) \ 1210 cr |= uartbit; \ 1211 else \ 1212 cr &= ~uartbit 1213 1214 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1215 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1216 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1217 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1218 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1219 1220 if (uap->autorts) { 1221 /* We need to disable auto-RTS if we want to turn RTS off */ 1222 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1223 } 1224 #undef TIOCMBIT 1225 1226 writew(cr, uap->port.membase + UART011_CR); 1227 } 1228 1229 static void pl011_break_ctl(struct uart_port *port, int break_state) 1230 { 1231 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1232 unsigned long flags; 1233 unsigned int lcr_h; 1234 1235 spin_lock_irqsave(&uap->port.lock, flags); 1236 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1237 if (break_state == -1) 1238 lcr_h |= UART01x_LCRH_BRK; 1239 else 1240 lcr_h &= ~UART01x_LCRH_BRK; 1241 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1242 spin_unlock_irqrestore(&uap->port.lock, flags); 1243 } 1244 1245 #ifdef CONFIG_CONSOLE_POLL 1246 static int pl010_get_poll_char(struct uart_port *port) 1247 { 1248 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1249 unsigned int status; 1250 1251 status = readw(uap->port.membase + UART01x_FR); 1252 if (status & UART01x_FR_RXFE) 1253 return NO_POLL_CHAR; 1254 1255 return readw(uap->port.membase + UART01x_DR); 1256 } 1257 1258 static void pl010_put_poll_char(struct uart_port *port, 1259 unsigned char ch) 1260 { 1261 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1262 1263 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1264 barrier(); 1265 1266 writew(ch, uap->port.membase + UART01x_DR); 1267 } 1268 1269 #endif /* CONFIG_CONSOLE_POLL */ 1270 1271 static int pl011_startup(struct uart_port *port) 1272 { 1273 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1274 unsigned int cr; 1275 int retval; 1276 1277 /* 1278 * Try to enable the clock producer. 1279 */ 1280 retval = clk_enable(uap->clk); 1281 if (retval) 1282 goto out; 1283 1284 uap->port.uartclk = clk_get_rate(uap->clk); 1285 1286 /* 1287 * Allocate the IRQ 1288 */ 1289 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1290 if (retval) 1291 goto clk_dis; 1292 1293 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 1294 1295 /* 1296 * Provoke TX FIFO interrupt into asserting. 1297 */ 1298 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE; 1299 writew(cr, uap->port.membase + UART011_CR); 1300 writew(0, uap->port.membase + UART011_FBRD); 1301 writew(1, uap->port.membase + UART011_IBRD); 1302 writew(0, uap->port.membase + uap->lcrh_rx); 1303 if (uap->lcrh_tx != uap->lcrh_rx) { 1304 int i; 1305 /* 1306 * Wait 10 PCLKs before writing LCRH_TX register, 1307 * to get this delay write read only register 10 times 1308 */ 1309 for (i = 0; i < 10; ++i) 1310 writew(0xff, uap->port.membase + UART011_MIS); 1311 writew(0, uap->port.membase + uap->lcrh_tx); 1312 } 1313 writew(0, uap->port.membase + UART01x_DR); 1314 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1315 barrier(); 1316 1317 cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1318 writew(cr, uap->port.membase + UART011_CR); 1319 1320 /* Clear pending error interrupts */ 1321 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 1322 uap->port.membase + UART011_ICR); 1323 1324 /* 1325 * initialise the old status of the modem signals 1326 */ 1327 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1328 1329 /* Startup DMA */ 1330 pl011_dma_startup(uap); 1331 1332 /* 1333 * Finally, enable interrupts, only timeouts when using DMA 1334 * if initial RX DMA job failed, start in interrupt mode 1335 * as well. 1336 */ 1337 spin_lock_irq(&uap->port.lock); 1338 uap->im = UART011_RTIM; 1339 if (!pl011_dma_rx_running(uap)) 1340 uap->im |= UART011_RXIM; 1341 writew(uap->im, uap->port.membase + UART011_IMSC); 1342 spin_unlock_irq(&uap->port.lock); 1343 1344 return 0; 1345 1346 clk_dis: 1347 clk_disable(uap->clk); 1348 out: 1349 return retval; 1350 } 1351 1352 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1353 unsigned int lcrh) 1354 { 1355 unsigned long val; 1356 1357 val = readw(uap->port.membase + lcrh); 1358 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1359 writew(val, uap->port.membase + lcrh); 1360 } 1361 1362 static void pl011_shutdown(struct uart_port *port) 1363 { 1364 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1365 1366 /* 1367 * disable all interrupts 1368 */ 1369 spin_lock_irq(&uap->port.lock); 1370 uap->im = 0; 1371 writew(uap->im, uap->port.membase + UART011_IMSC); 1372 writew(0xffff, uap->port.membase + UART011_ICR); 1373 spin_unlock_irq(&uap->port.lock); 1374 1375 pl011_dma_shutdown(uap); 1376 1377 /* 1378 * Free the interrupt 1379 */ 1380 free_irq(uap->port.irq, uap); 1381 1382 /* 1383 * disable the port 1384 */ 1385 uap->autorts = false; 1386 writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR); 1387 1388 /* 1389 * disable break condition and fifos 1390 */ 1391 pl011_shutdown_channel(uap, uap->lcrh_rx); 1392 if (uap->lcrh_rx != uap->lcrh_tx) 1393 pl011_shutdown_channel(uap, uap->lcrh_tx); 1394 1395 /* 1396 * Shut down the clock producer 1397 */ 1398 clk_disable(uap->clk); 1399 } 1400 1401 static void 1402 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1403 struct ktermios *old) 1404 { 1405 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1406 unsigned int lcr_h, old_cr; 1407 unsigned long flags; 1408 unsigned int baud, quot, clkdiv; 1409 1410 if (uap->vendor->oversampling) 1411 clkdiv = 8; 1412 else 1413 clkdiv = 16; 1414 1415 /* 1416 * Ask the core to calculate the divisor for us. 1417 */ 1418 baud = uart_get_baud_rate(port, termios, old, 0, 1419 port->uartclk / clkdiv); 1420 1421 if (baud > port->uartclk/16) 1422 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1423 else 1424 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1425 1426 switch (termios->c_cflag & CSIZE) { 1427 case CS5: 1428 lcr_h = UART01x_LCRH_WLEN_5; 1429 break; 1430 case CS6: 1431 lcr_h = UART01x_LCRH_WLEN_6; 1432 break; 1433 case CS7: 1434 lcr_h = UART01x_LCRH_WLEN_7; 1435 break; 1436 default: // CS8 1437 lcr_h = UART01x_LCRH_WLEN_8; 1438 break; 1439 } 1440 if (termios->c_cflag & CSTOPB) 1441 lcr_h |= UART01x_LCRH_STP2; 1442 if (termios->c_cflag & PARENB) { 1443 lcr_h |= UART01x_LCRH_PEN; 1444 if (!(termios->c_cflag & PARODD)) 1445 lcr_h |= UART01x_LCRH_EPS; 1446 } 1447 if (uap->fifosize > 1) 1448 lcr_h |= UART01x_LCRH_FEN; 1449 1450 spin_lock_irqsave(&port->lock, flags); 1451 1452 /* 1453 * Update the per-port timeout. 1454 */ 1455 uart_update_timeout(port, termios->c_cflag, baud); 1456 1457 port->read_status_mask = UART011_DR_OE | 255; 1458 if (termios->c_iflag & INPCK) 1459 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1460 if (termios->c_iflag & (BRKINT | PARMRK)) 1461 port->read_status_mask |= UART011_DR_BE; 1462 1463 /* 1464 * Characters to ignore 1465 */ 1466 port->ignore_status_mask = 0; 1467 if (termios->c_iflag & IGNPAR) 1468 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1469 if (termios->c_iflag & IGNBRK) { 1470 port->ignore_status_mask |= UART011_DR_BE; 1471 /* 1472 * If we're ignoring parity and break indicators, 1473 * ignore overruns too (for real raw support). 1474 */ 1475 if (termios->c_iflag & IGNPAR) 1476 port->ignore_status_mask |= UART011_DR_OE; 1477 } 1478 1479 /* 1480 * Ignore all characters if CREAD is not set. 1481 */ 1482 if ((termios->c_cflag & CREAD) == 0) 1483 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1484 1485 if (UART_ENABLE_MS(port, termios->c_cflag)) 1486 pl011_enable_ms(port); 1487 1488 /* first, disable everything */ 1489 old_cr = readw(port->membase + UART011_CR); 1490 writew(0, port->membase + UART011_CR); 1491 1492 if (termios->c_cflag & CRTSCTS) { 1493 if (old_cr & UART011_CR_RTS) 1494 old_cr |= UART011_CR_RTSEN; 1495 1496 old_cr |= UART011_CR_CTSEN; 1497 uap->autorts = true; 1498 } else { 1499 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1500 uap->autorts = false; 1501 } 1502 1503 if (uap->vendor->oversampling) { 1504 if (baud > port->uartclk / 16) 1505 old_cr |= ST_UART011_CR_OVSFACT; 1506 else 1507 old_cr &= ~ST_UART011_CR_OVSFACT; 1508 } 1509 1510 /* Set baud rate */ 1511 writew(quot & 0x3f, port->membase + UART011_FBRD); 1512 writew(quot >> 6, port->membase + UART011_IBRD); 1513 1514 /* 1515 * ----------v----------v----------v----------v----- 1516 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L 1517 * ----------^----------^----------^----------^----- 1518 */ 1519 writew(lcr_h, port->membase + uap->lcrh_rx); 1520 if (uap->lcrh_rx != uap->lcrh_tx) { 1521 int i; 1522 /* 1523 * Wait 10 PCLKs before writing LCRH_TX register, 1524 * to get this delay write read only register 10 times 1525 */ 1526 for (i = 0; i < 10; ++i) 1527 writew(0xff, uap->port.membase + UART011_MIS); 1528 writew(lcr_h, port->membase + uap->lcrh_tx); 1529 } 1530 writew(old_cr, port->membase + UART011_CR); 1531 1532 spin_unlock_irqrestore(&port->lock, flags); 1533 } 1534 1535 static const char *pl011_type(struct uart_port *port) 1536 { 1537 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1538 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1539 } 1540 1541 /* 1542 * Release the memory region(s) being used by 'port' 1543 */ 1544 static void pl010_release_port(struct uart_port *port) 1545 { 1546 release_mem_region(port->mapbase, SZ_4K); 1547 } 1548 1549 /* 1550 * Request the memory region(s) being used by 'port' 1551 */ 1552 static int pl010_request_port(struct uart_port *port) 1553 { 1554 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1555 != NULL ? 0 : -EBUSY; 1556 } 1557 1558 /* 1559 * Configure/autoconfigure the port. 1560 */ 1561 static void pl010_config_port(struct uart_port *port, int flags) 1562 { 1563 if (flags & UART_CONFIG_TYPE) { 1564 port->type = PORT_AMBA; 1565 pl010_request_port(port); 1566 } 1567 } 1568 1569 /* 1570 * verify the new serial_struct (for TIOCSSERIAL). 1571 */ 1572 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser) 1573 { 1574 int ret = 0; 1575 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1576 ret = -EINVAL; 1577 if (ser->irq < 0 || ser->irq >= nr_irqs) 1578 ret = -EINVAL; 1579 if (ser->baud_base < 9600) 1580 ret = -EINVAL; 1581 return ret; 1582 } 1583 1584 static struct uart_ops amba_pl011_pops = { 1585 .tx_empty = pl01x_tx_empty, 1586 .set_mctrl = pl011_set_mctrl, 1587 .get_mctrl = pl01x_get_mctrl, 1588 .stop_tx = pl011_stop_tx, 1589 .start_tx = pl011_start_tx, 1590 .stop_rx = pl011_stop_rx, 1591 .enable_ms = pl011_enable_ms, 1592 .break_ctl = pl011_break_ctl, 1593 .startup = pl011_startup, 1594 .shutdown = pl011_shutdown, 1595 .flush_buffer = pl011_dma_flush_buffer, 1596 .set_termios = pl011_set_termios, 1597 .type = pl011_type, 1598 .release_port = pl010_release_port, 1599 .request_port = pl010_request_port, 1600 .config_port = pl010_config_port, 1601 .verify_port = pl010_verify_port, 1602 #ifdef CONFIG_CONSOLE_POLL 1603 .poll_get_char = pl010_get_poll_char, 1604 .poll_put_char = pl010_put_poll_char, 1605 #endif 1606 }; 1607 1608 static struct uart_amba_port *amba_ports[UART_NR]; 1609 1610 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 1611 1612 static void pl011_console_putchar(struct uart_port *port, int ch) 1613 { 1614 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1615 1616 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1617 barrier(); 1618 writew(ch, uap->port.membase + UART01x_DR); 1619 } 1620 1621 static void 1622 pl011_console_write(struct console *co, const char *s, unsigned int count) 1623 { 1624 struct uart_amba_port *uap = amba_ports[co->index]; 1625 unsigned int status, old_cr, new_cr; 1626 1627 clk_enable(uap->clk); 1628 1629 /* 1630 * First save the CR then disable the interrupts 1631 */ 1632 old_cr = readw(uap->port.membase + UART011_CR); 1633 new_cr = old_cr & ~UART011_CR_CTSEN; 1634 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1635 writew(new_cr, uap->port.membase + UART011_CR); 1636 1637 uart_console_write(&uap->port, s, count, pl011_console_putchar); 1638 1639 /* 1640 * Finally, wait for transmitter to become empty 1641 * and restore the TCR 1642 */ 1643 do { 1644 status = readw(uap->port.membase + UART01x_FR); 1645 } while (status & UART01x_FR_BUSY); 1646 writew(old_cr, uap->port.membase + UART011_CR); 1647 1648 clk_disable(uap->clk); 1649 } 1650 1651 static void __init 1652 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 1653 int *parity, int *bits) 1654 { 1655 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 1656 unsigned int lcr_h, ibrd, fbrd; 1657 1658 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1659 1660 *parity = 'n'; 1661 if (lcr_h & UART01x_LCRH_PEN) { 1662 if (lcr_h & UART01x_LCRH_EPS) 1663 *parity = 'e'; 1664 else 1665 *parity = 'o'; 1666 } 1667 1668 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 1669 *bits = 7; 1670 else 1671 *bits = 8; 1672 1673 ibrd = readw(uap->port.membase + UART011_IBRD); 1674 fbrd = readw(uap->port.membase + UART011_FBRD); 1675 1676 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 1677 1678 if (uap->vendor->oversampling) { 1679 if (readw(uap->port.membase + UART011_CR) 1680 & ST_UART011_CR_OVSFACT) 1681 *baud *= 2; 1682 } 1683 } 1684 } 1685 1686 static int __init pl011_console_setup(struct console *co, char *options) 1687 { 1688 struct uart_amba_port *uap; 1689 int baud = 38400; 1690 int bits = 8; 1691 int parity = 'n'; 1692 int flow = 'n'; 1693 1694 /* 1695 * Check whether an invalid uart number has been specified, and 1696 * if so, search for the first available port that does have 1697 * console support. 1698 */ 1699 if (co->index >= UART_NR) 1700 co->index = 0; 1701 uap = amba_ports[co->index]; 1702 if (!uap) 1703 return -ENODEV; 1704 1705 uap->port.uartclk = clk_get_rate(uap->clk); 1706 1707 if (options) 1708 uart_parse_options(options, &baud, &parity, &bits, &flow); 1709 else 1710 pl011_console_get_options(uap, &baud, &parity, &bits); 1711 1712 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 1713 } 1714 1715 static struct uart_driver amba_reg; 1716 static struct console amba_console = { 1717 .name = "ttyAMA", 1718 .write = pl011_console_write, 1719 .device = uart_console_device, 1720 .setup = pl011_console_setup, 1721 .flags = CON_PRINTBUFFER, 1722 .index = -1, 1723 .data = &amba_reg, 1724 }; 1725 1726 #define AMBA_CONSOLE (&amba_console) 1727 #else 1728 #define AMBA_CONSOLE NULL 1729 #endif 1730 1731 static struct uart_driver amba_reg = { 1732 .owner = THIS_MODULE, 1733 .driver_name = "ttyAMA", 1734 .dev_name = "ttyAMA", 1735 .major = SERIAL_AMBA_MAJOR, 1736 .minor = SERIAL_AMBA_MINOR, 1737 .nr = UART_NR, 1738 .cons = AMBA_CONSOLE, 1739 }; 1740 1741 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 1742 { 1743 struct uart_amba_port *uap; 1744 struct vendor_data *vendor = id->data; 1745 void __iomem *base; 1746 int i, ret; 1747 1748 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 1749 if (amba_ports[i] == NULL) 1750 break; 1751 1752 if (i == ARRAY_SIZE(amba_ports)) { 1753 ret = -EBUSY; 1754 goto out; 1755 } 1756 1757 uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL); 1758 if (uap == NULL) { 1759 ret = -ENOMEM; 1760 goto out; 1761 } 1762 1763 base = ioremap(dev->res.start, resource_size(&dev->res)); 1764 if (!base) { 1765 ret = -ENOMEM; 1766 goto free; 1767 } 1768 1769 uap->clk = clk_get(&dev->dev, NULL); 1770 if (IS_ERR(uap->clk)) { 1771 ret = PTR_ERR(uap->clk); 1772 goto unmap; 1773 } 1774 1775 uap->vendor = vendor; 1776 uap->lcrh_rx = vendor->lcrh_rx; 1777 uap->lcrh_tx = vendor->lcrh_tx; 1778 uap->fifosize = vendor->fifosize; 1779 uap->port.dev = &dev->dev; 1780 uap->port.mapbase = dev->res.start; 1781 uap->port.membase = base; 1782 uap->port.iotype = UPIO_MEM; 1783 uap->port.irq = dev->irq[0]; 1784 uap->port.fifosize = uap->fifosize; 1785 uap->port.ops = &amba_pl011_pops; 1786 uap->port.flags = UPF_BOOT_AUTOCONF; 1787 uap->port.line = i; 1788 pl011_dma_probe(uap); 1789 1790 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 1791 1792 amba_ports[i] = uap; 1793 1794 amba_set_drvdata(dev, uap); 1795 ret = uart_add_one_port(&amba_reg, &uap->port); 1796 if (ret) { 1797 amba_set_drvdata(dev, NULL); 1798 amba_ports[i] = NULL; 1799 pl011_dma_remove(uap); 1800 clk_put(uap->clk); 1801 unmap: 1802 iounmap(base); 1803 free: 1804 kfree(uap); 1805 } 1806 out: 1807 return ret; 1808 } 1809 1810 static int pl011_remove(struct amba_device *dev) 1811 { 1812 struct uart_amba_port *uap = amba_get_drvdata(dev); 1813 int i; 1814 1815 amba_set_drvdata(dev, NULL); 1816 1817 uart_remove_one_port(&amba_reg, &uap->port); 1818 1819 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 1820 if (amba_ports[i] == uap) 1821 amba_ports[i] = NULL; 1822 1823 pl011_dma_remove(uap); 1824 iounmap(uap->port.membase); 1825 clk_put(uap->clk); 1826 kfree(uap); 1827 return 0; 1828 } 1829 1830 #ifdef CONFIG_PM 1831 static int pl011_suspend(struct amba_device *dev, pm_message_t state) 1832 { 1833 struct uart_amba_port *uap = amba_get_drvdata(dev); 1834 1835 if (!uap) 1836 return -EINVAL; 1837 1838 return uart_suspend_port(&amba_reg, &uap->port); 1839 } 1840 1841 static int pl011_resume(struct amba_device *dev) 1842 { 1843 struct uart_amba_port *uap = amba_get_drvdata(dev); 1844 1845 if (!uap) 1846 return -EINVAL; 1847 1848 return uart_resume_port(&amba_reg, &uap->port); 1849 } 1850 #endif 1851 1852 static struct amba_id pl011_ids[] = { 1853 { 1854 .id = 0x00041011, 1855 .mask = 0x000fffff, 1856 .data = &vendor_arm, 1857 }, 1858 { 1859 .id = 0x00380802, 1860 .mask = 0x00ffffff, 1861 .data = &vendor_st, 1862 }, 1863 { 0, 0 }, 1864 }; 1865 1866 static struct amba_driver pl011_driver = { 1867 .drv = { 1868 .name = "uart-pl011", 1869 }, 1870 .id_table = pl011_ids, 1871 .probe = pl011_probe, 1872 .remove = pl011_remove, 1873 #ifdef CONFIG_PM 1874 .suspend = pl011_suspend, 1875 .resume = pl011_resume, 1876 #endif 1877 }; 1878 1879 static int __init pl011_init(void) 1880 { 1881 int ret; 1882 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 1883 1884 ret = uart_register_driver(&amba_reg); 1885 if (ret == 0) { 1886 ret = amba_driver_register(&pl011_driver); 1887 if (ret) 1888 uart_unregister_driver(&amba_reg); 1889 } 1890 return ret; 1891 } 1892 1893 static void __exit pl011_exit(void) 1894 { 1895 amba_driver_unregister(&pl011_driver); 1896 uart_unregister_driver(&amba_reg); 1897 } 1898 1899 /* 1900 * While this can be a module, if builtin it's most likely the console 1901 * So let's leave module_exit but move module_init to an earlier place 1902 */ 1903 arch_initcall(pl011_init); 1904 module_exit(pl011_exit); 1905 1906 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 1907 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 1908 MODULE_LICENSE("GPL"); 1909