xref: /linux/drivers/tty/serial/amba-pl011.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  *  linux/drivers/char/amba.c
3  *
4  *  Driver for AMBA serial ports
5  *
6  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
7  *
8  *  Copyright 1999 ARM Limited
9  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
10  *  Copyright (C) 2010 ST-Ericsson SA
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * This is a generic driver for ARM AMBA-type serial ports.  They
27  * have a lot of 16550-like features, but are not register compatible.
28  * Note that although they do have CTS, DCD and DSR inputs, they do
29  * not have an RI input, nor do they have DTR or RTS outputs.  If
30  * required, these have to be supplied via some other means (eg, GPIO)
31  * and hooked into this driver.
32  */
33 
34 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
35 #define SUPPORT_SYSRQ
36 #endif
37 
38 #include <linux/module.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/console.h>
42 #include <linux/sysrq.h>
43 #include <linux/device.h>
44 #include <linux/tty.h>
45 #include <linux/tty_flip.h>
46 #include <linux/serial_core.h>
47 #include <linux/serial.h>
48 #include <linux/amba/bus.h>
49 #include <linux/amba/serial.h>
50 #include <linux/clk.h>
51 #include <linux/slab.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/scatterlist.h>
55 
56 #include <asm/io.h>
57 #include <asm/sizes.h>
58 
59 #define UART_NR			14
60 
61 #define SERIAL_AMBA_MAJOR	204
62 #define SERIAL_AMBA_MINOR	64
63 #define SERIAL_AMBA_NR		UART_NR
64 
65 #define AMBA_ISR_PASS_LIMIT	256
66 
67 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
68 #define UART_DUMMY_DR_RX	(1 << 16)
69 
70 /* There is by now at least one vendor with differing details, so handle it */
71 struct vendor_data {
72 	unsigned int		ifls;
73 	unsigned int		fifosize;
74 	unsigned int		lcrh_tx;
75 	unsigned int		lcrh_rx;
76 	bool			oversampling;
77 	bool			dma_threshold;
78 };
79 
80 static struct vendor_data vendor_arm = {
81 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
82 	.fifosize		= 16,
83 	.lcrh_tx		= UART011_LCRH,
84 	.lcrh_rx		= UART011_LCRH,
85 	.oversampling		= false,
86 	.dma_threshold		= false,
87 };
88 
89 static struct vendor_data vendor_st = {
90 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
91 	.fifosize		= 64,
92 	.lcrh_tx		= ST_UART011_LCRH_TX,
93 	.lcrh_rx		= ST_UART011_LCRH_RX,
94 	.oversampling		= true,
95 	.dma_threshold		= true,
96 };
97 
98 /* Deals with DMA transactions */
99 
100 struct pl011_sgbuf {
101 	struct scatterlist sg;
102 	char *buf;
103 };
104 
105 struct pl011_dmarx_data {
106 	struct dma_chan		*chan;
107 	struct completion	complete;
108 	bool			use_buf_b;
109 	struct pl011_sgbuf	sgbuf_a;
110 	struct pl011_sgbuf	sgbuf_b;
111 	dma_cookie_t		cookie;
112 	bool			running;
113 };
114 
115 struct pl011_dmatx_data {
116 	struct dma_chan		*chan;
117 	struct scatterlist	sg;
118 	char			*buf;
119 	bool			queued;
120 };
121 
122 /*
123  * We wrap our port structure around the generic uart_port.
124  */
125 struct uart_amba_port {
126 	struct uart_port	port;
127 	struct clk		*clk;
128 	const struct vendor_data *vendor;
129 	unsigned int		dmacr;		/* dma control reg */
130 	unsigned int		im;		/* interrupt mask */
131 	unsigned int		old_status;
132 	unsigned int		fifosize;	/* vendor-specific */
133 	unsigned int		lcrh_tx;	/* vendor-specific */
134 	unsigned int		lcrh_rx;	/* vendor-specific */
135 	bool			autorts;
136 	char			type[12];
137 #ifdef CONFIG_DMA_ENGINE
138 	/* DMA stuff */
139 	bool			using_tx_dma;
140 	bool			using_rx_dma;
141 	struct pl011_dmarx_data dmarx;
142 	struct pl011_dmatx_data	dmatx;
143 #endif
144 };
145 
146 /*
147  * Reads up to 256 characters from the FIFO or until it's empty and
148  * inserts them into the TTY layer. Returns the number of characters
149  * read from the FIFO.
150  */
151 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
152 {
153 	u16 status, ch;
154 	unsigned int flag, max_count = 256;
155 	int fifotaken = 0;
156 
157 	while (max_count--) {
158 		status = readw(uap->port.membase + UART01x_FR);
159 		if (status & UART01x_FR_RXFE)
160 			break;
161 
162 		/* Take chars from the FIFO and update status */
163 		ch = readw(uap->port.membase + UART01x_DR) |
164 			UART_DUMMY_DR_RX;
165 		flag = TTY_NORMAL;
166 		uap->port.icount.rx++;
167 		fifotaken++;
168 
169 		if (unlikely(ch & UART_DR_ERROR)) {
170 			if (ch & UART011_DR_BE) {
171 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
172 				uap->port.icount.brk++;
173 				if (uart_handle_break(&uap->port))
174 					continue;
175 			} else if (ch & UART011_DR_PE)
176 				uap->port.icount.parity++;
177 			else if (ch & UART011_DR_FE)
178 				uap->port.icount.frame++;
179 			if (ch & UART011_DR_OE)
180 				uap->port.icount.overrun++;
181 
182 			ch &= uap->port.read_status_mask;
183 
184 			if (ch & UART011_DR_BE)
185 				flag = TTY_BREAK;
186 			else if (ch & UART011_DR_PE)
187 				flag = TTY_PARITY;
188 			else if (ch & UART011_DR_FE)
189 				flag = TTY_FRAME;
190 		}
191 
192 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
193 			continue;
194 
195 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
196 	}
197 
198 	return fifotaken;
199 }
200 
201 
202 /*
203  * All the DMA operation mode stuff goes inside this ifdef.
204  * This assumes that you have a generic DMA device interface,
205  * no custom DMA interfaces are supported.
206  */
207 #ifdef CONFIG_DMA_ENGINE
208 
209 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
210 
211 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
212 	enum dma_data_direction dir)
213 {
214 	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
215 	if (!sg->buf)
216 		return -ENOMEM;
217 
218 	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
219 
220 	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
221 		kfree(sg->buf);
222 		return -EINVAL;
223 	}
224 	return 0;
225 }
226 
227 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
228 	enum dma_data_direction dir)
229 {
230 	if (sg->buf) {
231 		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
232 		kfree(sg->buf);
233 	}
234 }
235 
236 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
237 {
238 	/* DMA is the sole user of the platform data right now */
239 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
240 	struct dma_slave_config tx_conf = {
241 		.dst_addr = uap->port.mapbase + UART01x_DR,
242 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
243 		.direction = DMA_TO_DEVICE,
244 		.dst_maxburst = uap->fifosize >> 1,
245 	};
246 	struct dma_chan *chan;
247 	dma_cap_mask_t mask;
248 
249 	/* We need platform data */
250 	if (!plat || !plat->dma_filter) {
251 		dev_info(uap->port.dev, "no DMA platform data\n");
252 		return;
253 	}
254 
255 	/* Try to acquire a generic DMA engine slave TX channel */
256 	dma_cap_zero(mask);
257 	dma_cap_set(DMA_SLAVE, mask);
258 
259 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
260 	if (!chan) {
261 		dev_err(uap->port.dev, "no TX DMA channel!\n");
262 		return;
263 	}
264 
265 	dmaengine_slave_config(chan, &tx_conf);
266 	uap->dmatx.chan = chan;
267 
268 	dev_info(uap->port.dev, "DMA channel TX %s\n",
269 		 dma_chan_name(uap->dmatx.chan));
270 
271 	/* Optionally make use of an RX channel as well */
272 	if (plat->dma_rx_param) {
273 		struct dma_slave_config rx_conf = {
274 			.src_addr = uap->port.mapbase + UART01x_DR,
275 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
276 			.direction = DMA_FROM_DEVICE,
277 			.src_maxburst = uap->fifosize >> 1,
278 		};
279 
280 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
281 		if (!chan) {
282 			dev_err(uap->port.dev, "no RX DMA channel!\n");
283 			return;
284 		}
285 
286 		dmaengine_slave_config(chan, &rx_conf);
287 		uap->dmarx.chan = chan;
288 
289 		dev_info(uap->port.dev, "DMA channel RX %s\n",
290 			 dma_chan_name(uap->dmarx.chan));
291 	}
292 }
293 
294 #ifndef MODULE
295 /*
296  * Stack up the UARTs and let the above initcall be done at device
297  * initcall time, because the serial driver is called as an arch
298  * initcall, and at this time the DMA subsystem is not yet registered.
299  * At this point the driver will switch over to using DMA where desired.
300  */
301 struct dma_uap {
302 	struct list_head node;
303 	struct uart_amba_port *uap;
304 };
305 
306 static LIST_HEAD(pl011_dma_uarts);
307 
308 static int __init pl011_dma_initcall(void)
309 {
310 	struct list_head *node, *tmp;
311 
312 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
313 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
314 		pl011_dma_probe_initcall(dmau->uap);
315 		list_del(node);
316 		kfree(dmau);
317 	}
318 	return 0;
319 }
320 
321 device_initcall(pl011_dma_initcall);
322 
323 static void pl011_dma_probe(struct uart_amba_port *uap)
324 {
325 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
326 	if (dmau) {
327 		dmau->uap = uap;
328 		list_add_tail(&dmau->node, &pl011_dma_uarts);
329 	}
330 }
331 #else
332 static void pl011_dma_probe(struct uart_amba_port *uap)
333 {
334 	pl011_dma_probe_initcall(uap);
335 }
336 #endif
337 
338 static void pl011_dma_remove(struct uart_amba_port *uap)
339 {
340 	/* TODO: remove the initcall if it has not yet executed */
341 	if (uap->dmatx.chan)
342 		dma_release_channel(uap->dmatx.chan);
343 	if (uap->dmarx.chan)
344 		dma_release_channel(uap->dmarx.chan);
345 }
346 
347 /* Forward declare this for the refill routine */
348 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
349 
350 /*
351  * The current DMA TX buffer has been sent.
352  * Try to queue up another DMA buffer.
353  */
354 static void pl011_dma_tx_callback(void *data)
355 {
356 	struct uart_amba_port *uap = data;
357 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
358 	unsigned long flags;
359 	u16 dmacr;
360 
361 	spin_lock_irqsave(&uap->port.lock, flags);
362 	if (uap->dmatx.queued)
363 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
364 			     DMA_TO_DEVICE);
365 
366 	dmacr = uap->dmacr;
367 	uap->dmacr = dmacr & ~UART011_TXDMAE;
368 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
369 
370 	/*
371 	 * If TX DMA was disabled, it means that we've stopped the DMA for
372 	 * some reason (eg, XOFF received, or we want to send an X-char.)
373 	 *
374 	 * Note: we need to be careful here of a potential race between DMA
375 	 * and the rest of the driver - if the driver disables TX DMA while
376 	 * a TX buffer completing, we must update the tx queued status to
377 	 * get further refills (hence we check dmacr).
378 	 */
379 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
380 	    uart_circ_empty(&uap->port.state->xmit)) {
381 		uap->dmatx.queued = false;
382 		spin_unlock_irqrestore(&uap->port.lock, flags);
383 		return;
384 	}
385 
386 	if (pl011_dma_tx_refill(uap) <= 0) {
387 		/*
388 		 * We didn't queue a DMA buffer for some reason, but we
389 		 * have data pending to be sent.  Re-enable the TX IRQ.
390 		 */
391 		uap->im |= UART011_TXIM;
392 		writew(uap->im, uap->port.membase + UART011_IMSC);
393 	}
394 	spin_unlock_irqrestore(&uap->port.lock, flags);
395 }
396 
397 /*
398  * Try to refill the TX DMA buffer.
399  * Locking: called with port lock held and IRQs disabled.
400  * Returns:
401  *   1 if we queued up a TX DMA buffer.
402  *   0 if we didn't want to handle this by DMA
403  *  <0 on error
404  */
405 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
406 {
407 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
408 	struct dma_chan *chan = dmatx->chan;
409 	struct dma_device *dma_dev = chan->device;
410 	struct dma_async_tx_descriptor *desc;
411 	struct circ_buf *xmit = &uap->port.state->xmit;
412 	unsigned int count;
413 
414 	/*
415 	 * Try to avoid the overhead involved in using DMA if the
416 	 * transaction fits in the first half of the FIFO, by using
417 	 * the standard interrupt handling.  This ensures that we
418 	 * issue a uart_write_wakeup() at the appropriate time.
419 	 */
420 	count = uart_circ_chars_pending(xmit);
421 	if (count < (uap->fifosize >> 1)) {
422 		uap->dmatx.queued = false;
423 		return 0;
424 	}
425 
426 	/*
427 	 * Bodge: don't send the last character by DMA, as this
428 	 * will prevent XON from notifying us to restart DMA.
429 	 */
430 	count -= 1;
431 
432 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
433 	if (count > PL011_DMA_BUFFER_SIZE)
434 		count = PL011_DMA_BUFFER_SIZE;
435 
436 	if (xmit->tail < xmit->head)
437 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
438 	else {
439 		size_t first = UART_XMIT_SIZE - xmit->tail;
440 		size_t second = xmit->head;
441 
442 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
443 		if (second)
444 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
445 	}
446 
447 	dmatx->sg.length = count;
448 
449 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
450 		uap->dmatx.queued = false;
451 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
452 		return -EBUSY;
453 	}
454 
455 	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
456 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
457 	if (!desc) {
458 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
459 		uap->dmatx.queued = false;
460 		/*
461 		 * If DMA cannot be used right now, we complete this
462 		 * transaction via IRQ and let the TTY layer retry.
463 		 */
464 		dev_dbg(uap->port.dev, "TX DMA busy\n");
465 		return -EBUSY;
466 	}
467 
468 	/* Some data to go along to the callback */
469 	desc->callback = pl011_dma_tx_callback;
470 	desc->callback_param = uap;
471 
472 	/* All errors should happen at prepare time */
473 	dmaengine_submit(desc);
474 
475 	/* Fire the DMA transaction */
476 	dma_dev->device_issue_pending(chan);
477 
478 	uap->dmacr |= UART011_TXDMAE;
479 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
480 	uap->dmatx.queued = true;
481 
482 	/*
483 	 * Now we know that DMA will fire, so advance the ring buffer
484 	 * with the stuff we just dispatched.
485 	 */
486 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
487 	uap->port.icount.tx += count;
488 
489 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
490 		uart_write_wakeup(&uap->port);
491 
492 	return 1;
493 }
494 
495 /*
496  * We received a transmit interrupt without a pending X-char but with
497  * pending characters.
498  * Locking: called with port lock held and IRQs disabled.
499  * Returns:
500  *   false if we want to use PIO to transmit
501  *   true if we queued a DMA buffer
502  */
503 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
504 {
505 	if (!uap->using_tx_dma)
506 		return false;
507 
508 	/*
509 	 * If we already have a TX buffer queued, but received a
510 	 * TX interrupt, it will be because we've just sent an X-char.
511 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
512 	 */
513 	if (uap->dmatx.queued) {
514 		uap->dmacr |= UART011_TXDMAE;
515 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
516 		uap->im &= ~UART011_TXIM;
517 		writew(uap->im, uap->port.membase + UART011_IMSC);
518 		return true;
519 	}
520 
521 	/*
522 	 * We don't have a TX buffer queued, so try to queue one.
523 	 * If we succesfully queued a buffer, mask the TX IRQ.
524 	 */
525 	if (pl011_dma_tx_refill(uap) > 0) {
526 		uap->im &= ~UART011_TXIM;
527 		writew(uap->im, uap->port.membase + UART011_IMSC);
528 		return true;
529 	}
530 	return false;
531 }
532 
533 /*
534  * Stop the DMA transmit (eg, due to received XOFF).
535  * Locking: called with port lock held and IRQs disabled.
536  */
537 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
538 {
539 	if (uap->dmatx.queued) {
540 		uap->dmacr &= ~UART011_TXDMAE;
541 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
542 	}
543 }
544 
545 /*
546  * Try to start a DMA transmit, or in the case of an XON/OFF
547  * character queued for send, try to get that character out ASAP.
548  * Locking: called with port lock held and IRQs disabled.
549  * Returns:
550  *   false if we want the TX IRQ to be enabled
551  *   true if we have a buffer queued
552  */
553 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
554 {
555 	u16 dmacr;
556 
557 	if (!uap->using_tx_dma)
558 		return false;
559 
560 	if (!uap->port.x_char) {
561 		/* no X-char, try to push chars out in DMA mode */
562 		bool ret = true;
563 
564 		if (!uap->dmatx.queued) {
565 			if (pl011_dma_tx_refill(uap) > 0) {
566 				uap->im &= ~UART011_TXIM;
567 				ret = true;
568 			} else {
569 				uap->im |= UART011_TXIM;
570 				ret = false;
571 			}
572 			writew(uap->im, uap->port.membase + UART011_IMSC);
573 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
574 			uap->dmacr |= UART011_TXDMAE;
575 			writew(uap->dmacr,
576 				       uap->port.membase + UART011_DMACR);
577 		}
578 		return ret;
579 	}
580 
581 	/*
582 	 * We have an X-char to send.  Disable DMA to prevent it loading
583 	 * the TX fifo, and then see if we can stuff it into the FIFO.
584 	 */
585 	dmacr = uap->dmacr;
586 	uap->dmacr &= ~UART011_TXDMAE;
587 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
588 
589 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
590 		/*
591 		 * No space in the FIFO, so enable the transmit interrupt
592 		 * so we know when there is space.  Note that once we've
593 		 * loaded the character, we should just re-enable DMA.
594 		 */
595 		return false;
596 	}
597 
598 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
599 	uap->port.icount.tx++;
600 	uap->port.x_char = 0;
601 
602 	/* Success - restore the DMA state */
603 	uap->dmacr = dmacr;
604 	writew(dmacr, uap->port.membase + UART011_DMACR);
605 
606 	return true;
607 }
608 
609 /*
610  * Flush the transmit buffer.
611  * Locking: called with port lock held and IRQs disabled.
612  */
613 static void pl011_dma_flush_buffer(struct uart_port *port)
614 {
615 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
616 
617 	if (!uap->using_tx_dma)
618 		return;
619 
620 	/* Avoid deadlock with the DMA engine callback */
621 	spin_unlock(&uap->port.lock);
622 	dmaengine_terminate_all(uap->dmatx.chan);
623 	spin_lock(&uap->port.lock);
624 	if (uap->dmatx.queued) {
625 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
626 			     DMA_TO_DEVICE);
627 		uap->dmatx.queued = false;
628 		uap->dmacr &= ~UART011_TXDMAE;
629 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
630 	}
631 }
632 
633 static void pl011_dma_rx_callback(void *data);
634 
635 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
636 {
637 	struct dma_chan *rxchan = uap->dmarx.chan;
638 	struct dma_device *dma_dev;
639 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
640 	struct dma_async_tx_descriptor *desc;
641 	struct pl011_sgbuf *sgbuf;
642 
643 	if (!rxchan)
644 		return -EIO;
645 
646 	/* Start the RX DMA job */
647 	sgbuf = uap->dmarx.use_buf_b ?
648 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
649 	dma_dev = rxchan->device;
650 	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
651 					DMA_FROM_DEVICE,
652 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
653 	/*
654 	 * If the DMA engine is busy and cannot prepare a
655 	 * channel, no big deal, the driver will fall back
656 	 * to interrupt mode as a result of this error code.
657 	 */
658 	if (!desc) {
659 		uap->dmarx.running = false;
660 		dmaengine_terminate_all(rxchan);
661 		return -EBUSY;
662 	}
663 
664 	/* Some data to go along to the callback */
665 	desc->callback = pl011_dma_rx_callback;
666 	desc->callback_param = uap;
667 	dmarx->cookie = dmaengine_submit(desc);
668 	dma_async_issue_pending(rxchan);
669 
670 	uap->dmacr |= UART011_RXDMAE;
671 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
672 	uap->dmarx.running = true;
673 
674 	uap->im &= ~UART011_RXIM;
675 	writew(uap->im, uap->port.membase + UART011_IMSC);
676 
677 	return 0;
678 }
679 
680 /*
681  * This is called when either the DMA job is complete, or
682  * the FIFO timeout interrupt occurred. This must be called
683  * with the port spinlock uap->port.lock held.
684  */
685 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
686 			       u32 pending, bool use_buf_b,
687 			       bool readfifo)
688 {
689 	struct tty_struct *tty = uap->port.state->port.tty;
690 	struct pl011_sgbuf *sgbuf = use_buf_b ?
691 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
692 	struct device *dev = uap->dmarx.chan->device->dev;
693 	int dma_count = 0;
694 	u32 fifotaken = 0; /* only used for vdbg() */
695 
696 	/* Pick everything from the DMA first */
697 	if (pending) {
698 		/* Sync in buffer */
699 		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
700 
701 		/*
702 		 * First take all chars in the DMA pipe, then look in the FIFO.
703 		 * Note that tty_insert_flip_buf() tries to take as many chars
704 		 * as it can.
705 		 */
706 		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
707 						   sgbuf->buf, pending);
708 
709 		/* Return buffer to device */
710 		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
711 
712 		uap->port.icount.rx += dma_count;
713 		if (dma_count < pending)
714 			dev_warn(uap->port.dev,
715 				 "couldn't insert all characters (TTY is full?)\n");
716 	}
717 
718 	/*
719 	 * Only continue with trying to read the FIFO if all DMA chars have
720 	 * been taken first.
721 	 */
722 	if (dma_count == pending && readfifo) {
723 		/* Clear any error flags */
724 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
725 		       uap->port.membase + UART011_ICR);
726 
727 		/*
728 		 * If we read all the DMA'd characters, and we had an
729 		 * incomplete buffer, that could be due to an rx error, or
730 		 * maybe we just timed out. Read any pending chars and check
731 		 * the error status.
732 		 *
733 		 * Error conditions will only occur in the FIFO, these will
734 		 * trigger an immediate interrupt and stop the DMA job, so we
735 		 * will always find the error in the FIFO, never in the DMA
736 		 * buffer.
737 		 */
738 		fifotaken = pl011_fifo_to_tty(uap);
739 	}
740 
741 	spin_unlock(&uap->port.lock);
742 	dev_vdbg(uap->port.dev,
743 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
744 		 dma_count, fifotaken);
745 	tty_flip_buffer_push(tty);
746 	spin_lock(&uap->port.lock);
747 }
748 
749 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
750 {
751 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
752 	struct dma_chan *rxchan = dmarx->chan;
753 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
754 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
755 	size_t pending;
756 	struct dma_tx_state state;
757 	enum dma_status dmastat;
758 
759 	/*
760 	 * Pause the transfer so we can trust the current counter,
761 	 * do this before we pause the PL011 block, else we may
762 	 * overflow the FIFO.
763 	 */
764 	if (dmaengine_pause(rxchan))
765 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
766 	dmastat = rxchan->device->device_tx_status(rxchan,
767 						   dmarx->cookie, &state);
768 	if (dmastat != DMA_PAUSED)
769 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
770 
771 	/* Disable RX DMA - incoming data will wait in the FIFO */
772 	uap->dmacr &= ~UART011_RXDMAE;
773 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
774 	uap->dmarx.running = false;
775 
776 	pending = sgbuf->sg.length - state.residue;
777 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
778 	/* Then we terminate the transfer - we now know our residue */
779 	dmaengine_terminate_all(rxchan);
780 
781 	/*
782 	 * This will take the chars we have so far and insert
783 	 * into the framework.
784 	 */
785 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
786 
787 	/* Switch buffer & re-trigger DMA job */
788 	dmarx->use_buf_b = !dmarx->use_buf_b;
789 	if (pl011_dma_rx_trigger_dma(uap)) {
790 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
791 			"fall back to interrupt mode\n");
792 		uap->im |= UART011_RXIM;
793 		writew(uap->im, uap->port.membase + UART011_IMSC);
794 	}
795 }
796 
797 static void pl011_dma_rx_callback(void *data)
798 {
799 	struct uart_amba_port *uap = data;
800 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
801 	bool lastbuf = dmarx->use_buf_b;
802 	int ret;
803 
804 	/*
805 	 * This completion interrupt occurs typically when the
806 	 * RX buffer is totally stuffed but no timeout has yet
807 	 * occurred. When that happens, we just want the RX
808 	 * routine to flush out the secondary DMA buffer while
809 	 * we immediately trigger the next DMA job.
810 	 */
811 	spin_lock_irq(&uap->port.lock);
812 	uap->dmarx.running = false;
813 	dmarx->use_buf_b = !lastbuf;
814 	ret = pl011_dma_rx_trigger_dma(uap);
815 
816 	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
817 	spin_unlock_irq(&uap->port.lock);
818 	/*
819 	 * Do this check after we picked the DMA chars so we don't
820 	 * get some IRQ immediately from RX.
821 	 */
822 	if (ret) {
823 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
824 			"fall back to interrupt mode\n");
825 		uap->im |= UART011_RXIM;
826 		writew(uap->im, uap->port.membase + UART011_IMSC);
827 	}
828 }
829 
830 /*
831  * Stop accepting received characters, when we're shutting down or
832  * suspending this port.
833  * Locking: called with port lock held and IRQs disabled.
834  */
835 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
836 {
837 	/* FIXME.  Just disable the DMA enable */
838 	uap->dmacr &= ~UART011_RXDMAE;
839 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
840 }
841 
842 static void pl011_dma_startup(struct uart_amba_port *uap)
843 {
844 	int ret;
845 
846 	if (!uap->dmatx.chan)
847 		return;
848 
849 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
850 	if (!uap->dmatx.buf) {
851 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
852 		uap->port.fifosize = uap->fifosize;
853 		return;
854 	}
855 
856 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
857 
858 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
859 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
860 	uap->using_tx_dma = true;
861 
862 	if (!uap->dmarx.chan)
863 		goto skip_rx;
864 
865 	/* Allocate and map DMA RX buffers */
866 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
867 			       DMA_FROM_DEVICE);
868 	if (ret) {
869 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
870 			"RX buffer A", ret);
871 		goto skip_rx;
872 	}
873 
874 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
875 			       DMA_FROM_DEVICE);
876 	if (ret) {
877 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
878 			"RX buffer B", ret);
879 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
880 				 DMA_FROM_DEVICE);
881 		goto skip_rx;
882 	}
883 
884 	uap->using_rx_dma = true;
885 
886 skip_rx:
887 	/* Turn on DMA error (RX/TX will be enabled on demand) */
888 	uap->dmacr |= UART011_DMAONERR;
889 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
890 
891 	/*
892 	 * ST Micro variants has some specific dma burst threshold
893 	 * compensation. Set this to 16 bytes, so burst will only
894 	 * be issued above/below 16 bytes.
895 	 */
896 	if (uap->vendor->dma_threshold)
897 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
898 			       uap->port.membase + ST_UART011_DMAWM);
899 
900 	if (uap->using_rx_dma) {
901 		if (pl011_dma_rx_trigger_dma(uap))
902 			dev_dbg(uap->port.dev, "could not trigger initial "
903 				"RX DMA job, fall back to interrupt mode\n");
904 	}
905 }
906 
907 static void pl011_dma_shutdown(struct uart_amba_port *uap)
908 {
909 	if (!(uap->using_tx_dma || uap->using_rx_dma))
910 		return;
911 
912 	/* Disable RX and TX DMA */
913 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
914 		barrier();
915 
916 	spin_lock_irq(&uap->port.lock);
917 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
918 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
919 	spin_unlock_irq(&uap->port.lock);
920 
921 	if (uap->using_tx_dma) {
922 		/* In theory, this should already be done by pl011_dma_flush_buffer */
923 		dmaengine_terminate_all(uap->dmatx.chan);
924 		if (uap->dmatx.queued) {
925 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
926 				     DMA_TO_DEVICE);
927 			uap->dmatx.queued = false;
928 		}
929 
930 		kfree(uap->dmatx.buf);
931 		uap->using_tx_dma = false;
932 	}
933 
934 	if (uap->using_rx_dma) {
935 		dmaengine_terminate_all(uap->dmarx.chan);
936 		/* Clean up the RX DMA */
937 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
938 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
939 		uap->using_rx_dma = false;
940 	}
941 }
942 
943 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
944 {
945 	return uap->using_rx_dma;
946 }
947 
948 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
949 {
950 	return uap->using_rx_dma && uap->dmarx.running;
951 }
952 
953 
954 #else
955 /* Blank functions if the DMA engine is not available */
956 static inline void pl011_dma_probe(struct uart_amba_port *uap)
957 {
958 }
959 
960 static inline void pl011_dma_remove(struct uart_amba_port *uap)
961 {
962 }
963 
964 static inline void pl011_dma_startup(struct uart_amba_port *uap)
965 {
966 }
967 
968 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
969 {
970 }
971 
972 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
973 {
974 	return false;
975 }
976 
977 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
978 {
979 }
980 
981 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
982 {
983 	return false;
984 }
985 
986 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
987 {
988 }
989 
990 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
991 {
992 }
993 
994 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
995 {
996 	return -EIO;
997 }
998 
999 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1000 {
1001 	return false;
1002 }
1003 
1004 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1005 {
1006 	return false;
1007 }
1008 
1009 #define pl011_dma_flush_buffer	NULL
1010 #endif
1011 
1012 
1013 static void pl011_stop_tx(struct uart_port *port)
1014 {
1015 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1016 
1017 	uap->im &= ~UART011_TXIM;
1018 	writew(uap->im, uap->port.membase + UART011_IMSC);
1019 	pl011_dma_tx_stop(uap);
1020 }
1021 
1022 static void pl011_start_tx(struct uart_port *port)
1023 {
1024 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1025 
1026 	if (!pl011_dma_tx_start(uap)) {
1027 		uap->im |= UART011_TXIM;
1028 		writew(uap->im, uap->port.membase + UART011_IMSC);
1029 	}
1030 }
1031 
1032 static void pl011_stop_rx(struct uart_port *port)
1033 {
1034 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1035 
1036 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1037 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1038 	writew(uap->im, uap->port.membase + UART011_IMSC);
1039 
1040 	pl011_dma_rx_stop(uap);
1041 }
1042 
1043 static void pl011_enable_ms(struct uart_port *port)
1044 {
1045 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1046 
1047 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1048 	writew(uap->im, uap->port.membase + UART011_IMSC);
1049 }
1050 
1051 static void pl011_rx_chars(struct uart_amba_port *uap)
1052 {
1053 	struct tty_struct *tty = uap->port.state->port.tty;
1054 
1055 	pl011_fifo_to_tty(uap);
1056 
1057 	spin_unlock(&uap->port.lock);
1058 	tty_flip_buffer_push(tty);
1059 	/*
1060 	 * If we were temporarily out of DMA mode for a while,
1061 	 * attempt to switch back to DMA mode again.
1062 	 */
1063 	if (pl011_dma_rx_available(uap)) {
1064 		if (pl011_dma_rx_trigger_dma(uap)) {
1065 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1066 				"fall back to interrupt mode again\n");
1067 			uap->im |= UART011_RXIM;
1068 		} else
1069 			uap->im &= ~UART011_RXIM;
1070 		writew(uap->im, uap->port.membase + UART011_IMSC);
1071 	}
1072 	spin_lock(&uap->port.lock);
1073 }
1074 
1075 static void pl011_tx_chars(struct uart_amba_port *uap)
1076 {
1077 	struct circ_buf *xmit = &uap->port.state->xmit;
1078 	int count;
1079 
1080 	if (uap->port.x_char) {
1081 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1082 		uap->port.icount.tx++;
1083 		uap->port.x_char = 0;
1084 		return;
1085 	}
1086 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1087 		pl011_stop_tx(&uap->port);
1088 		return;
1089 	}
1090 
1091 	/* If we are using DMA mode, try to send some characters. */
1092 	if (pl011_dma_tx_irq(uap))
1093 		return;
1094 
1095 	count = uap->fifosize >> 1;
1096 	do {
1097 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1098 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1099 		uap->port.icount.tx++;
1100 		if (uart_circ_empty(xmit))
1101 			break;
1102 	} while (--count > 0);
1103 
1104 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1105 		uart_write_wakeup(&uap->port);
1106 
1107 	if (uart_circ_empty(xmit))
1108 		pl011_stop_tx(&uap->port);
1109 }
1110 
1111 static void pl011_modem_status(struct uart_amba_port *uap)
1112 {
1113 	unsigned int status, delta;
1114 
1115 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1116 
1117 	delta = status ^ uap->old_status;
1118 	uap->old_status = status;
1119 
1120 	if (!delta)
1121 		return;
1122 
1123 	if (delta & UART01x_FR_DCD)
1124 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1125 
1126 	if (delta & UART01x_FR_DSR)
1127 		uap->port.icount.dsr++;
1128 
1129 	if (delta & UART01x_FR_CTS)
1130 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1131 
1132 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1133 }
1134 
1135 static irqreturn_t pl011_int(int irq, void *dev_id)
1136 {
1137 	struct uart_amba_port *uap = dev_id;
1138 	unsigned long flags;
1139 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1140 	int handled = 0;
1141 
1142 	spin_lock_irqsave(&uap->port.lock, flags);
1143 
1144 	status = readw(uap->port.membase + UART011_MIS);
1145 	if (status) {
1146 		do {
1147 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1148 					  UART011_RXIS),
1149 			       uap->port.membase + UART011_ICR);
1150 
1151 			if (status & (UART011_RTIS|UART011_RXIS)) {
1152 				if (pl011_dma_rx_running(uap))
1153 					pl011_dma_rx_irq(uap);
1154 				else
1155 					pl011_rx_chars(uap);
1156 			}
1157 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1158 				      UART011_CTSMIS|UART011_RIMIS))
1159 				pl011_modem_status(uap);
1160 			if (status & UART011_TXIS)
1161 				pl011_tx_chars(uap);
1162 
1163 			if (pass_counter-- == 0)
1164 				break;
1165 
1166 			status = readw(uap->port.membase + UART011_MIS);
1167 		} while (status != 0);
1168 		handled = 1;
1169 	}
1170 
1171 	spin_unlock_irqrestore(&uap->port.lock, flags);
1172 
1173 	return IRQ_RETVAL(handled);
1174 }
1175 
1176 static unsigned int pl01x_tx_empty(struct uart_port *port)
1177 {
1178 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1179 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1180 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1181 }
1182 
1183 static unsigned int pl01x_get_mctrl(struct uart_port *port)
1184 {
1185 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1186 	unsigned int result = 0;
1187 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1188 
1189 #define TIOCMBIT(uartbit, tiocmbit)	\
1190 	if (status & uartbit)		\
1191 		result |= tiocmbit
1192 
1193 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1194 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1195 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1196 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1197 #undef TIOCMBIT
1198 	return result;
1199 }
1200 
1201 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1202 {
1203 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1204 	unsigned int cr;
1205 
1206 	cr = readw(uap->port.membase + UART011_CR);
1207 
1208 #define	TIOCMBIT(tiocmbit, uartbit)		\
1209 	if (mctrl & tiocmbit)		\
1210 		cr |= uartbit;		\
1211 	else				\
1212 		cr &= ~uartbit
1213 
1214 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1215 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1216 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1217 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1218 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1219 
1220 	if (uap->autorts) {
1221 		/* We need to disable auto-RTS if we want to turn RTS off */
1222 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1223 	}
1224 #undef TIOCMBIT
1225 
1226 	writew(cr, uap->port.membase + UART011_CR);
1227 }
1228 
1229 static void pl011_break_ctl(struct uart_port *port, int break_state)
1230 {
1231 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1232 	unsigned long flags;
1233 	unsigned int lcr_h;
1234 
1235 	spin_lock_irqsave(&uap->port.lock, flags);
1236 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1237 	if (break_state == -1)
1238 		lcr_h |= UART01x_LCRH_BRK;
1239 	else
1240 		lcr_h &= ~UART01x_LCRH_BRK;
1241 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1242 	spin_unlock_irqrestore(&uap->port.lock, flags);
1243 }
1244 
1245 #ifdef CONFIG_CONSOLE_POLL
1246 static int pl010_get_poll_char(struct uart_port *port)
1247 {
1248 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1249 	unsigned int status;
1250 
1251 	status = readw(uap->port.membase + UART01x_FR);
1252 	if (status & UART01x_FR_RXFE)
1253 		return NO_POLL_CHAR;
1254 
1255 	return readw(uap->port.membase + UART01x_DR);
1256 }
1257 
1258 static void pl010_put_poll_char(struct uart_port *port,
1259 			 unsigned char ch)
1260 {
1261 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1262 
1263 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1264 		barrier();
1265 
1266 	writew(ch, uap->port.membase + UART01x_DR);
1267 }
1268 
1269 #endif /* CONFIG_CONSOLE_POLL */
1270 
1271 static int pl011_startup(struct uart_port *port)
1272 {
1273 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1274 	unsigned int cr;
1275 	int retval;
1276 
1277 	/*
1278 	 * Try to enable the clock producer.
1279 	 */
1280 	retval = clk_enable(uap->clk);
1281 	if (retval)
1282 		goto out;
1283 
1284 	uap->port.uartclk = clk_get_rate(uap->clk);
1285 
1286 	/*
1287 	 * Allocate the IRQ
1288 	 */
1289 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1290 	if (retval)
1291 		goto clk_dis;
1292 
1293 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1294 
1295 	/*
1296 	 * Provoke TX FIFO interrupt into asserting.
1297 	 */
1298 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1299 	writew(cr, uap->port.membase + UART011_CR);
1300 	writew(0, uap->port.membase + UART011_FBRD);
1301 	writew(1, uap->port.membase + UART011_IBRD);
1302 	writew(0, uap->port.membase + uap->lcrh_rx);
1303 	if (uap->lcrh_tx != uap->lcrh_rx) {
1304 		int i;
1305 		/*
1306 		 * Wait 10 PCLKs before writing LCRH_TX register,
1307 		 * to get this delay write read only register 10 times
1308 		 */
1309 		for (i = 0; i < 10; ++i)
1310 			writew(0xff, uap->port.membase + UART011_MIS);
1311 		writew(0, uap->port.membase + uap->lcrh_tx);
1312 	}
1313 	writew(0, uap->port.membase + UART01x_DR);
1314 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1315 		barrier();
1316 
1317 	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1318 	writew(cr, uap->port.membase + UART011_CR);
1319 
1320 	/* Clear pending error interrupts */
1321 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1322 	       uap->port.membase + UART011_ICR);
1323 
1324 	/*
1325 	 * initialise the old status of the modem signals
1326 	 */
1327 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1328 
1329 	/* Startup DMA */
1330 	pl011_dma_startup(uap);
1331 
1332 	/*
1333 	 * Finally, enable interrupts, only timeouts when using DMA
1334 	 * if initial RX DMA job failed, start in interrupt mode
1335 	 * as well.
1336 	 */
1337 	spin_lock_irq(&uap->port.lock);
1338 	uap->im = UART011_RTIM;
1339 	if (!pl011_dma_rx_running(uap))
1340 		uap->im |= UART011_RXIM;
1341 	writew(uap->im, uap->port.membase + UART011_IMSC);
1342 	spin_unlock_irq(&uap->port.lock);
1343 
1344 	return 0;
1345 
1346  clk_dis:
1347 	clk_disable(uap->clk);
1348  out:
1349 	return retval;
1350 }
1351 
1352 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1353 					unsigned int lcrh)
1354 {
1355       unsigned long val;
1356 
1357       val = readw(uap->port.membase + lcrh);
1358       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1359       writew(val, uap->port.membase + lcrh);
1360 }
1361 
1362 static void pl011_shutdown(struct uart_port *port)
1363 {
1364 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1365 
1366 	/*
1367 	 * disable all interrupts
1368 	 */
1369 	spin_lock_irq(&uap->port.lock);
1370 	uap->im = 0;
1371 	writew(uap->im, uap->port.membase + UART011_IMSC);
1372 	writew(0xffff, uap->port.membase + UART011_ICR);
1373 	spin_unlock_irq(&uap->port.lock);
1374 
1375 	pl011_dma_shutdown(uap);
1376 
1377 	/*
1378 	 * Free the interrupt
1379 	 */
1380 	free_irq(uap->port.irq, uap);
1381 
1382 	/*
1383 	 * disable the port
1384 	 */
1385 	uap->autorts = false;
1386 	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
1387 
1388 	/*
1389 	 * disable break condition and fifos
1390 	 */
1391 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1392 	if (uap->lcrh_rx != uap->lcrh_tx)
1393 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1394 
1395 	/*
1396 	 * Shut down the clock producer
1397 	 */
1398 	clk_disable(uap->clk);
1399 }
1400 
1401 static void
1402 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1403 		     struct ktermios *old)
1404 {
1405 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1406 	unsigned int lcr_h, old_cr;
1407 	unsigned long flags;
1408 	unsigned int baud, quot, clkdiv;
1409 
1410 	if (uap->vendor->oversampling)
1411 		clkdiv = 8;
1412 	else
1413 		clkdiv = 16;
1414 
1415 	/*
1416 	 * Ask the core to calculate the divisor for us.
1417 	 */
1418 	baud = uart_get_baud_rate(port, termios, old, 0,
1419 				  port->uartclk / clkdiv);
1420 
1421 	if (baud > port->uartclk/16)
1422 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1423 	else
1424 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1425 
1426 	switch (termios->c_cflag & CSIZE) {
1427 	case CS5:
1428 		lcr_h = UART01x_LCRH_WLEN_5;
1429 		break;
1430 	case CS6:
1431 		lcr_h = UART01x_LCRH_WLEN_6;
1432 		break;
1433 	case CS7:
1434 		lcr_h = UART01x_LCRH_WLEN_7;
1435 		break;
1436 	default: // CS8
1437 		lcr_h = UART01x_LCRH_WLEN_8;
1438 		break;
1439 	}
1440 	if (termios->c_cflag & CSTOPB)
1441 		lcr_h |= UART01x_LCRH_STP2;
1442 	if (termios->c_cflag & PARENB) {
1443 		lcr_h |= UART01x_LCRH_PEN;
1444 		if (!(termios->c_cflag & PARODD))
1445 			lcr_h |= UART01x_LCRH_EPS;
1446 	}
1447 	if (uap->fifosize > 1)
1448 		lcr_h |= UART01x_LCRH_FEN;
1449 
1450 	spin_lock_irqsave(&port->lock, flags);
1451 
1452 	/*
1453 	 * Update the per-port timeout.
1454 	 */
1455 	uart_update_timeout(port, termios->c_cflag, baud);
1456 
1457 	port->read_status_mask = UART011_DR_OE | 255;
1458 	if (termios->c_iflag & INPCK)
1459 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1460 	if (termios->c_iflag & (BRKINT | PARMRK))
1461 		port->read_status_mask |= UART011_DR_BE;
1462 
1463 	/*
1464 	 * Characters to ignore
1465 	 */
1466 	port->ignore_status_mask = 0;
1467 	if (termios->c_iflag & IGNPAR)
1468 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1469 	if (termios->c_iflag & IGNBRK) {
1470 		port->ignore_status_mask |= UART011_DR_BE;
1471 		/*
1472 		 * If we're ignoring parity and break indicators,
1473 		 * ignore overruns too (for real raw support).
1474 		 */
1475 		if (termios->c_iflag & IGNPAR)
1476 			port->ignore_status_mask |= UART011_DR_OE;
1477 	}
1478 
1479 	/*
1480 	 * Ignore all characters if CREAD is not set.
1481 	 */
1482 	if ((termios->c_cflag & CREAD) == 0)
1483 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1484 
1485 	if (UART_ENABLE_MS(port, termios->c_cflag))
1486 		pl011_enable_ms(port);
1487 
1488 	/* first, disable everything */
1489 	old_cr = readw(port->membase + UART011_CR);
1490 	writew(0, port->membase + UART011_CR);
1491 
1492 	if (termios->c_cflag & CRTSCTS) {
1493 		if (old_cr & UART011_CR_RTS)
1494 			old_cr |= UART011_CR_RTSEN;
1495 
1496 		old_cr |= UART011_CR_CTSEN;
1497 		uap->autorts = true;
1498 	} else {
1499 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1500 		uap->autorts = false;
1501 	}
1502 
1503 	if (uap->vendor->oversampling) {
1504 		if (baud > port->uartclk / 16)
1505 			old_cr |= ST_UART011_CR_OVSFACT;
1506 		else
1507 			old_cr &= ~ST_UART011_CR_OVSFACT;
1508 	}
1509 
1510 	/* Set baud rate */
1511 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1512 	writew(quot >> 6, port->membase + UART011_IBRD);
1513 
1514 	/*
1515 	 * ----------v----------v----------v----------v-----
1516 	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
1517 	 * ----------^----------^----------^----------^-----
1518 	 */
1519 	writew(lcr_h, port->membase + uap->lcrh_rx);
1520 	if (uap->lcrh_rx != uap->lcrh_tx) {
1521 		int i;
1522 		/*
1523 		 * Wait 10 PCLKs before writing LCRH_TX register,
1524 		 * to get this delay write read only register 10 times
1525 		 */
1526 		for (i = 0; i < 10; ++i)
1527 			writew(0xff, uap->port.membase + UART011_MIS);
1528 		writew(lcr_h, port->membase + uap->lcrh_tx);
1529 	}
1530 	writew(old_cr, port->membase + UART011_CR);
1531 
1532 	spin_unlock_irqrestore(&port->lock, flags);
1533 }
1534 
1535 static const char *pl011_type(struct uart_port *port)
1536 {
1537 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1538 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1539 }
1540 
1541 /*
1542  * Release the memory region(s) being used by 'port'
1543  */
1544 static void pl010_release_port(struct uart_port *port)
1545 {
1546 	release_mem_region(port->mapbase, SZ_4K);
1547 }
1548 
1549 /*
1550  * Request the memory region(s) being used by 'port'
1551  */
1552 static int pl010_request_port(struct uart_port *port)
1553 {
1554 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1555 			!= NULL ? 0 : -EBUSY;
1556 }
1557 
1558 /*
1559  * Configure/autoconfigure the port.
1560  */
1561 static void pl010_config_port(struct uart_port *port, int flags)
1562 {
1563 	if (flags & UART_CONFIG_TYPE) {
1564 		port->type = PORT_AMBA;
1565 		pl010_request_port(port);
1566 	}
1567 }
1568 
1569 /*
1570  * verify the new serial_struct (for TIOCSSERIAL).
1571  */
1572 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1573 {
1574 	int ret = 0;
1575 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1576 		ret = -EINVAL;
1577 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1578 		ret = -EINVAL;
1579 	if (ser->baud_base < 9600)
1580 		ret = -EINVAL;
1581 	return ret;
1582 }
1583 
1584 static struct uart_ops amba_pl011_pops = {
1585 	.tx_empty	= pl01x_tx_empty,
1586 	.set_mctrl	= pl011_set_mctrl,
1587 	.get_mctrl	= pl01x_get_mctrl,
1588 	.stop_tx	= pl011_stop_tx,
1589 	.start_tx	= pl011_start_tx,
1590 	.stop_rx	= pl011_stop_rx,
1591 	.enable_ms	= pl011_enable_ms,
1592 	.break_ctl	= pl011_break_ctl,
1593 	.startup	= pl011_startup,
1594 	.shutdown	= pl011_shutdown,
1595 	.flush_buffer	= pl011_dma_flush_buffer,
1596 	.set_termios	= pl011_set_termios,
1597 	.type		= pl011_type,
1598 	.release_port	= pl010_release_port,
1599 	.request_port	= pl010_request_port,
1600 	.config_port	= pl010_config_port,
1601 	.verify_port	= pl010_verify_port,
1602 #ifdef CONFIG_CONSOLE_POLL
1603 	.poll_get_char = pl010_get_poll_char,
1604 	.poll_put_char = pl010_put_poll_char,
1605 #endif
1606 };
1607 
1608 static struct uart_amba_port *amba_ports[UART_NR];
1609 
1610 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1611 
1612 static void pl011_console_putchar(struct uart_port *port, int ch)
1613 {
1614 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1615 
1616 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1617 		barrier();
1618 	writew(ch, uap->port.membase + UART01x_DR);
1619 }
1620 
1621 static void
1622 pl011_console_write(struct console *co, const char *s, unsigned int count)
1623 {
1624 	struct uart_amba_port *uap = amba_ports[co->index];
1625 	unsigned int status, old_cr, new_cr;
1626 
1627 	clk_enable(uap->clk);
1628 
1629 	/*
1630 	 *	First save the CR then disable the interrupts
1631 	 */
1632 	old_cr = readw(uap->port.membase + UART011_CR);
1633 	new_cr = old_cr & ~UART011_CR_CTSEN;
1634 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1635 	writew(new_cr, uap->port.membase + UART011_CR);
1636 
1637 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1638 
1639 	/*
1640 	 *	Finally, wait for transmitter to become empty
1641 	 *	and restore the TCR
1642 	 */
1643 	do {
1644 		status = readw(uap->port.membase + UART01x_FR);
1645 	} while (status & UART01x_FR_BUSY);
1646 	writew(old_cr, uap->port.membase + UART011_CR);
1647 
1648 	clk_disable(uap->clk);
1649 }
1650 
1651 static void __init
1652 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1653 			     int *parity, int *bits)
1654 {
1655 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1656 		unsigned int lcr_h, ibrd, fbrd;
1657 
1658 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1659 
1660 		*parity = 'n';
1661 		if (lcr_h & UART01x_LCRH_PEN) {
1662 			if (lcr_h & UART01x_LCRH_EPS)
1663 				*parity = 'e';
1664 			else
1665 				*parity = 'o';
1666 		}
1667 
1668 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1669 			*bits = 7;
1670 		else
1671 			*bits = 8;
1672 
1673 		ibrd = readw(uap->port.membase + UART011_IBRD);
1674 		fbrd = readw(uap->port.membase + UART011_FBRD);
1675 
1676 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1677 
1678 		if (uap->vendor->oversampling) {
1679 			if (readw(uap->port.membase + UART011_CR)
1680 				  & ST_UART011_CR_OVSFACT)
1681 				*baud *= 2;
1682 		}
1683 	}
1684 }
1685 
1686 static int __init pl011_console_setup(struct console *co, char *options)
1687 {
1688 	struct uart_amba_port *uap;
1689 	int baud = 38400;
1690 	int bits = 8;
1691 	int parity = 'n';
1692 	int flow = 'n';
1693 
1694 	/*
1695 	 * Check whether an invalid uart number has been specified, and
1696 	 * if so, search for the first available port that does have
1697 	 * console support.
1698 	 */
1699 	if (co->index >= UART_NR)
1700 		co->index = 0;
1701 	uap = amba_ports[co->index];
1702 	if (!uap)
1703 		return -ENODEV;
1704 
1705 	uap->port.uartclk = clk_get_rate(uap->clk);
1706 
1707 	if (options)
1708 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1709 	else
1710 		pl011_console_get_options(uap, &baud, &parity, &bits);
1711 
1712 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1713 }
1714 
1715 static struct uart_driver amba_reg;
1716 static struct console amba_console = {
1717 	.name		= "ttyAMA",
1718 	.write		= pl011_console_write,
1719 	.device		= uart_console_device,
1720 	.setup		= pl011_console_setup,
1721 	.flags		= CON_PRINTBUFFER,
1722 	.index		= -1,
1723 	.data		= &amba_reg,
1724 };
1725 
1726 #define AMBA_CONSOLE	(&amba_console)
1727 #else
1728 #define AMBA_CONSOLE	NULL
1729 #endif
1730 
1731 static struct uart_driver amba_reg = {
1732 	.owner			= THIS_MODULE,
1733 	.driver_name		= "ttyAMA",
1734 	.dev_name		= "ttyAMA",
1735 	.major			= SERIAL_AMBA_MAJOR,
1736 	.minor			= SERIAL_AMBA_MINOR,
1737 	.nr			= UART_NR,
1738 	.cons			= AMBA_CONSOLE,
1739 };
1740 
1741 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1742 {
1743 	struct uart_amba_port *uap;
1744 	struct vendor_data *vendor = id->data;
1745 	void __iomem *base;
1746 	int i, ret;
1747 
1748 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1749 		if (amba_ports[i] == NULL)
1750 			break;
1751 
1752 	if (i == ARRAY_SIZE(amba_ports)) {
1753 		ret = -EBUSY;
1754 		goto out;
1755 	}
1756 
1757 	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1758 	if (uap == NULL) {
1759 		ret = -ENOMEM;
1760 		goto out;
1761 	}
1762 
1763 	base = ioremap(dev->res.start, resource_size(&dev->res));
1764 	if (!base) {
1765 		ret = -ENOMEM;
1766 		goto free;
1767 	}
1768 
1769 	uap->clk = clk_get(&dev->dev, NULL);
1770 	if (IS_ERR(uap->clk)) {
1771 		ret = PTR_ERR(uap->clk);
1772 		goto unmap;
1773 	}
1774 
1775 	uap->vendor = vendor;
1776 	uap->lcrh_rx = vendor->lcrh_rx;
1777 	uap->lcrh_tx = vendor->lcrh_tx;
1778 	uap->fifosize = vendor->fifosize;
1779 	uap->port.dev = &dev->dev;
1780 	uap->port.mapbase = dev->res.start;
1781 	uap->port.membase = base;
1782 	uap->port.iotype = UPIO_MEM;
1783 	uap->port.irq = dev->irq[0];
1784 	uap->port.fifosize = uap->fifosize;
1785 	uap->port.ops = &amba_pl011_pops;
1786 	uap->port.flags = UPF_BOOT_AUTOCONF;
1787 	uap->port.line = i;
1788 	pl011_dma_probe(uap);
1789 
1790 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1791 
1792 	amba_ports[i] = uap;
1793 
1794 	amba_set_drvdata(dev, uap);
1795 	ret = uart_add_one_port(&amba_reg, &uap->port);
1796 	if (ret) {
1797 		amba_set_drvdata(dev, NULL);
1798 		amba_ports[i] = NULL;
1799 		pl011_dma_remove(uap);
1800 		clk_put(uap->clk);
1801  unmap:
1802 		iounmap(base);
1803  free:
1804 		kfree(uap);
1805 	}
1806  out:
1807 	return ret;
1808 }
1809 
1810 static int pl011_remove(struct amba_device *dev)
1811 {
1812 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1813 	int i;
1814 
1815 	amba_set_drvdata(dev, NULL);
1816 
1817 	uart_remove_one_port(&amba_reg, &uap->port);
1818 
1819 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1820 		if (amba_ports[i] == uap)
1821 			amba_ports[i] = NULL;
1822 
1823 	pl011_dma_remove(uap);
1824 	iounmap(uap->port.membase);
1825 	clk_put(uap->clk);
1826 	kfree(uap);
1827 	return 0;
1828 }
1829 
1830 #ifdef CONFIG_PM
1831 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1832 {
1833 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1834 
1835 	if (!uap)
1836 		return -EINVAL;
1837 
1838 	return uart_suspend_port(&amba_reg, &uap->port);
1839 }
1840 
1841 static int pl011_resume(struct amba_device *dev)
1842 {
1843 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1844 
1845 	if (!uap)
1846 		return -EINVAL;
1847 
1848 	return uart_resume_port(&amba_reg, &uap->port);
1849 }
1850 #endif
1851 
1852 static struct amba_id pl011_ids[] = {
1853 	{
1854 		.id	= 0x00041011,
1855 		.mask	= 0x000fffff,
1856 		.data	= &vendor_arm,
1857 	},
1858 	{
1859 		.id	= 0x00380802,
1860 		.mask	= 0x00ffffff,
1861 		.data	= &vendor_st,
1862 	},
1863 	{ 0, 0 },
1864 };
1865 
1866 static struct amba_driver pl011_driver = {
1867 	.drv = {
1868 		.name	= "uart-pl011",
1869 	},
1870 	.id_table	= pl011_ids,
1871 	.probe		= pl011_probe,
1872 	.remove		= pl011_remove,
1873 #ifdef CONFIG_PM
1874 	.suspend	= pl011_suspend,
1875 	.resume		= pl011_resume,
1876 #endif
1877 };
1878 
1879 static int __init pl011_init(void)
1880 {
1881 	int ret;
1882 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
1883 
1884 	ret = uart_register_driver(&amba_reg);
1885 	if (ret == 0) {
1886 		ret = amba_driver_register(&pl011_driver);
1887 		if (ret)
1888 			uart_unregister_driver(&amba_reg);
1889 	}
1890 	return ret;
1891 }
1892 
1893 static void __exit pl011_exit(void)
1894 {
1895 	amba_driver_unregister(&pl011_driver);
1896 	uart_unregister_driver(&amba_reg);
1897 }
1898 
1899 /*
1900  * While this can be a module, if builtin it's most likely the console
1901  * So let's leave module_exit but move module_init to an earlier place
1902  */
1903 arch_initcall(pl011_init);
1904 module_exit(pl011_exit);
1905 
1906 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
1907 MODULE_DESCRIPTION("ARM AMBA serial port driver");
1908 MODULE_LICENSE("GPL");
1909