xref: /linux/drivers/tty/serial/amba-pl011.c (revision 9cbd5a8abca904441e36861e3a92961bec41d13f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	(1 << 16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_sgbuf {
222 	struct scatterlist sg;
223 	char *buf;
224 };
225 
226 struct pl011_dmarx_data {
227 	struct dma_chan		*chan;
228 	struct completion	complete;
229 	bool			use_buf_b;
230 	struct pl011_sgbuf	sgbuf_a;
231 	struct pl011_sgbuf	sgbuf_b;
232 	dma_cookie_t		cookie;
233 	bool			running;
234 	struct timer_list	timer;
235 	unsigned int last_residue;
236 	unsigned long last_jiffies;
237 	bool auto_poll_rate;
238 	unsigned int poll_rate;
239 	unsigned int poll_timeout;
240 };
241 
242 struct pl011_dmatx_data {
243 	struct dma_chan		*chan;
244 	struct scatterlist	sg;
245 	char			*buf;
246 	bool			queued;
247 };
248 
249 /*
250  * We wrap our port structure around the generic uart_port.
251  */
252 struct uart_amba_port {
253 	struct uart_port	port;
254 	const u16		*reg_offset;
255 	struct clk		*clk;
256 	const struct vendor_data *vendor;
257 	unsigned int		dmacr;		/* dma control reg */
258 	unsigned int		im;		/* interrupt mask */
259 	unsigned int		old_status;
260 	unsigned int		fifosize;	/* vendor-specific */
261 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
262 	char			type[12];
263 	bool			rs485_tx_started;
264 	unsigned int		rs485_tx_drain_interval; /* usecs */
265 #ifdef CONFIG_DMA_ENGINE
266 	/* DMA stuff */
267 	bool			using_tx_dma;
268 	bool			using_rx_dma;
269 	struct pl011_dmarx_data dmarx;
270 	struct pl011_dmatx_data	dmatx;
271 	bool			dma_probed;
272 #endif
273 };
274 
275 static unsigned int pl011_tx_empty(struct uart_port *port);
276 
277 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
278 	unsigned int reg)
279 {
280 	return uap->reg_offset[reg];
281 }
282 
283 static unsigned int pl011_read(const struct uart_amba_port *uap,
284 	unsigned int reg)
285 {
286 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
287 
288 	return (uap->port.iotype == UPIO_MEM32) ?
289 		readl_relaxed(addr) : readw_relaxed(addr);
290 }
291 
292 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
293 	unsigned int reg)
294 {
295 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
296 
297 	if (uap->port.iotype == UPIO_MEM32)
298 		writel_relaxed(val, addr);
299 	else
300 		writew_relaxed(val, addr);
301 }
302 
303 /*
304  * Reads up to 256 characters from the FIFO or until it's empty and
305  * inserts them into the TTY layer. Returns the number of characters
306  * read from the FIFO.
307  */
308 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
309 {
310 	unsigned int ch, flag, fifotaken;
311 	int sysrq;
312 	u16 status;
313 
314 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
315 		status = pl011_read(uap, REG_FR);
316 		if (status & UART01x_FR_RXFE)
317 			break;
318 
319 		/* Take chars from the FIFO and update status */
320 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
321 		flag = TTY_NORMAL;
322 		uap->port.icount.rx++;
323 
324 		if (unlikely(ch & UART_DR_ERROR)) {
325 			if (ch & UART011_DR_BE) {
326 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
327 				uap->port.icount.brk++;
328 				if (uart_handle_break(&uap->port))
329 					continue;
330 			} else if (ch & UART011_DR_PE)
331 				uap->port.icount.parity++;
332 			else if (ch & UART011_DR_FE)
333 				uap->port.icount.frame++;
334 			if (ch & UART011_DR_OE)
335 				uap->port.icount.overrun++;
336 
337 			ch &= uap->port.read_status_mask;
338 
339 			if (ch & UART011_DR_BE)
340 				flag = TTY_BREAK;
341 			else if (ch & UART011_DR_PE)
342 				flag = TTY_PARITY;
343 			else if (ch & UART011_DR_FE)
344 				flag = TTY_FRAME;
345 		}
346 
347 		spin_unlock(&uap->port.lock);
348 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
349 		spin_lock(&uap->port.lock);
350 
351 		if (!sysrq)
352 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
353 	}
354 
355 	return fifotaken;
356 }
357 
358 
359 /*
360  * All the DMA operation mode stuff goes inside this ifdef.
361  * This assumes that you have a generic DMA device interface,
362  * no custom DMA interfaces are supported.
363  */
364 #ifdef CONFIG_DMA_ENGINE
365 
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
367 
368 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
369 	enum dma_data_direction dir)
370 {
371 	dma_addr_t dma_addr;
372 
373 	sg->buf = dma_alloc_coherent(chan->device->dev,
374 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
375 	if (!sg->buf)
376 		return -ENOMEM;
377 
378 	sg_init_table(&sg->sg, 1);
379 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
380 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
381 	sg_dma_address(&sg->sg) = dma_addr;
382 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
383 
384 	return 0;
385 }
386 
387 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 	enum dma_data_direction dir)
389 {
390 	if (sg->buf) {
391 		dma_free_coherent(chan->device->dev,
392 			PL011_DMA_BUFFER_SIZE, sg->buf,
393 			sg_dma_address(&sg->sg));
394 	}
395 }
396 
397 static void pl011_dma_probe(struct uart_amba_port *uap)
398 {
399 	/* DMA is the sole user of the platform data right now */
400 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
401 	struct device *dev = uap->port.dev;
402 	struct dma_slave_config tx_conf = {
403 		.dst_addr = uap->port.mapbase +
404 				 pl011_reg_to_offset(uap, REG_DR),
405 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
406 		.direction = DMA_MEM_TO_DEV,
407 		.dst_maxburst = uap->fifosize >> 1,
408 		.device_fc = false,
409 	};
410 	struct dma_chan *chan;
411 	dma_cap_mask_t mask;
412 
413 	uap->dma_probed = true;
414 	chan = dma_request_chan(dev, "tx");
415 	if (IS_ERR(chan)) {
416 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
417 			uap->dma_probed = false;
418 			return;
419 		}
420 
421 		/* We need platform data */
422 		if (!plat || !plat->dma_filter) {
423 			dev_info(uap->port.dev, "no DMA platform data\n");
424 			return;
425 		}
426 
427 		/* Try to acquire a generic DMA engine slave TX channel */
428 		dma_cap_zero(mask);
429 		dma_cap_set(DMA_SLAVE, mask);
430 
431 		chan = dma_request_channel(mask, plat->dma_filter,
432 						plat->dma_tx_param);
433 		if (!chan) {
434 			dev_err(uap->port.dev, "no TX DMA channel!\n");
435 			return;
436 		}
437 	}
438 
439 	dmaengine_slave_config(chan, &tx_conf);
440 	uap->dmatx.chan = chan;
441 
442 	dev_info(uap->port.dev, "DMA channel TX %s\n",
443 		 dma_chan_name(uap->dmatx.chan));
444 
445 	/* Optionally make use of an RX channel as well */
446 	chan = dma_request_slave_channel(dev, "rx");
447 
448 	if (!chan && plat && plat->dma_rx_param) {
449 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
450 
451 		if (!chan) {
452 			dev_err(uap->port.dev, "no RX DMA channel!\n");
453 			return;
454 		}
455 	}
456 
457 	if (chan) {
458 		struct dma_slave_config rx_conf = {
459 			.src_addr = uap->port.mapbase +
460 				pl011_reg_to_offset(uap, REG_DR),
461 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
462 			.direction = DMA_DEV_TO_MEM,
463 			.src_maxburst = uap->fifosize >> 2,
464 			.device_fc = false,
465 		};
466 		struct dma_slave_caps caps;
467 
468 		/*
469 		 * Some DMA controllers provide information on their capabilities.
470 		 * If the controller does, check for suitable residue processing
471 		 * otherwise assime all is well.
472 		 */
473 		if (0 == dma_get_slave_caps(chan, &caps)) {
474 			if (caps.residue_granularity ==
475 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
476 				dma_release_channel(chan);
477 				dev_info(uap->port.dev,
478 					"RX DMA disabled - no residue processing\n");
479 				return;
480 			}
481 		}
482 		dmaengine_slave_config(chan, &rx_conf);
483 		uap->dmarx.chan = chan;
484 
485 		uap->dmarx.auto_poll_rate = false;
486 		if (plat && plat->dma_rx_poll_enable) {
487 			/* Set poll rate if specified. */
488 			if (plat->dma_rx_poll_rate) {
489 				uap->dmarx.auto_poll_rate = false;
490 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
491 			} else {
492 				/*
493 				 * 100 ms defaults to poll rate if not
494 				 * specified. This will be adjusted with
495 				 * the baud rate at set_termios.
496 				 */
497 				uap->dmarx.auto_poll_rate = true;
498 				uap->dmarx.poll_rate =  100;
499 			}
500 			/* 3 secs defaults poll_timeout if not specified. */
501 			if (plat->dma_rx_poll_timeout)
502 				uap->dmarx.poll_timeout =
503 					plat->dma_rx_poll_timeout;
504 			else
505 				uap->dmarx.poll_timeout = 3000;
506 		} else if (!plat && dev->of_node) {
507 			uap->dmarx.auto_poll_rate = of_property_read_bool(
508 						dev->of_node, "auto-poll");
509 			if (uap->dmarx.auto_poll_rate) {
510 				u32 x;
511 
512 				if (0 == of_property_read_u32(dev->of_node,
513 						"poll-rate-ms", &x))
514 					uap->dmarx.poll_rate = x;
515 				else
516 					uap->dmarx.poll_rate = 100;
517 				if (0 == of_property_read_u32(dev->of_node,
518 						"poll-timeout-ms", &x))
519 					uap->dmarx.poll_timeout = x;
520 				else
521 					uap->dmarx.poll_timeout = 3000;
522 			}
523 		}
524 		dev_info(uap->port.dev, "DMA channel RX %s\n",
525 			 dma_chan_name(uap->dmarx.chan));
526 	}
527 }
528 
529 static void pl011_dma_remove(struct uart_amba_port *uap)
530 {
531 	if (uap->dmatx.chan)
532 		dma_release_channel(uap->dmatx.chan);
533 	if (uap->dmarx.chan)
534 		dma_release_channel(uap->dmarx.chan);
535 }
536 
537 /* Forward declare these for the refill routine */
538 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
539 static void pl011_start_tx_pio(struct uart_amba_port *uap);
540 
541 /*
542  * The current DMA TX buffer has been sent.
543  * Try to queue up another DMA buffer.
544  */
545 static void pl011_dma_tx_callback(void *data)
546 {
547 	struct uart_amba_port *uap = data;
548 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
549 	unsigned long flags;
550 	u16 dmacr;
551 
552 	spin_lock_irqsave(&uap->port.lock, flags);
553 	if (uap->dmatx.queued)
554 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
555 			     DMA_TO_DEVICE);
556 
557 	dmacr = uap->dmacr;
558 	uap->dmacr = dmacr & ~UART011_TXDMAE;
559 	pl011_write(uap->dmacr, uap, REG_DMACR);
560 
561 	/*
562 	 * If TX DMA was disabled, it means that we've stopped the DMA for
563 	 * some reason (eg, XOFF received, or we want to send an X-char.)
564 	 *
565 	 * Note: we need to be careful here of a potential race between DMA
566 	 * and the rest of the driver - if the driver disables TX DMA while
567 	 * a TX buffer completing, we must update the tx queued status to
568 	 * get further refills (hence we check dmacr).
569 	 */
570 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
571 	    uart_circ_empty(&uap->port.state->xmit)) {
572 		uap->dmatx.queued = false;
573 		spin_unlock_irqrestore(&uap->port.lock, flags);
574 		return;
575 	}
576 
577 	if (pl011_dma_tx_refill(uap) <= 0)
578 		/*
579 		 * We didn't queue a DMA buffer for some reason, but we
580 		 * have data pending to be sent.  Re-enable the TX IRQ.
581 		 */
582 		pl011_start_tx_pio(uap);
583 
584 	spin_unlock_irqrestore(&uap->port.lock, flags);
585 }
586 
587 /*
588  * Try to refill the TX DMA buffer.
589  * Locking: called with port lock held and IRQs disabled.
590  * Returns:
591  *   1 if we queued up a TX DMA buffer.
592  *   0 if we didn't want to handle this by DMA
593  *  <0 on error
594  */
595 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
596 {
597 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
598 	struct dma_chan *chan = dmatx->chan;
599 	struct dma_device *dma_dev = chan->device;
600 	struct dma_async_tx_descriptor *desc;
601 	struct circ_buf *xmit = &uap->port.state->xmit;
602 	unsigned int count;
603 
604 	/*
605 	 * Try to avoid the overhead involved in using DMA if the
606 	 * transaction fits in the first half of the FIFO, by using
607 	 * the standard interrupt handling.  This ensures that we
608 	 * issue a uart_write_wakeup() at the appropriate time.
609 	 */
610 	count = uart_circ_chars_pending(xmit);
611 	if (count < (uap->fifosize >> 1)) {
612 		uap->dmatx.queued = false;
613 		return 0;
614 	}
615 
616 	/*
617 	 * Bodge: don't send the last character by DMA, as this
618 	 * will prevent XON from notifying us to restart DMA.
619 	 */
620 	count -= 1;
621 
622 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
623 	if (count > PL011_DMA_BUFFER_SIZE)
624 		count = PL011_DMA_BUFFER_SIZE;
625 
626 	if (xmit->tail < xmit->head)
627 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
628 	else {
629 		size_t first = UART_XMIT_SIZE - xmit->tail;
630 		size_t second;
631 
632 		if (first > count)
633 			first = count;
634 		second = count - first;
635 
636 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
637 		if (second)
638 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
639 	}
640 
641 	dmatx->sg.length = count;
642 
643 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
644 		uap->dmatx.queued = false;
645 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
646 		return -EBUSY;
647 	}
648 
649 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
650 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
651 	if (!desc) {
652 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
653 		uap->dmatx.queued = false;
654 		/*
655 		 * If DMA cannot be used right now, we complete this
656 		 * transaction via IRQ and let the TTY layer retry.
657 		 */
658 		dev_dbg(uap->port.dev, "TX DMA busy\n");
659 		return -EBUSY;
660 	}
661 
662 	/* Some data to go along to the callback */
663 	desc->callback = pl011_dma_tx_callback;
664 	desc->callback_param = uap;
665 
666 	/* All errors should happen at prepare time */
667 	dmaengine_submit(desc);
668 
669 	/* Fire the DMA transaction */
670 	dma_dev->device_issue_pending(chan);
671 
672 	uap->dmacr |= UART011_TXDMAE;
673 	pl011_write(uap->dmacr, uap, REG_DMACR);
674 	uap->dmatx.queued = true;
675 
676 	/*
677 	 * Now we know that DMA will fire, so advance the ring buffer
678 	 * with the stuff we just dispatched.
679 	 */
680 	uart_xmit_advance(&uap->port, count);
681 
682 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
683 		uart_write_wakeup(&uap->port);
684 
685 	return 1;
686 }
687 
688 /*
689  * We received a transmit interrupt without a pending X-char but with
690  * pending characters.
691  * Locking: called with port lock held and IRQs disabled.
692  * Returns:
693  *   false if we want to use PIO to transmit
694  *   true if we queued a DMA buffer
695  */
696 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
697 {
698 	if (!uap->using_tx_dma)
699 		return false;
700 
701 	/*
702 	 * If we already have a TX buffer queued, but received a
703 	 * TX interrupt, it will be because we've just sent an X-char.
704 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
705 	 */
706 	if (uap->dmatx.queued) {
707 		uap->dmacr |= UART011_TXDMAE;
708 		pl011_write(uap->dmacr, uap, REG_DMACR);
709 		uap->im &= ~UART011_TXIM;
710 		pl011_write(uap->im, uap, REG_IMSC);
711 		return true;
712 	}
713 
714 	/*
715 	 * We don't have a TX buffer queued, so try to queue one.
716 	 * If we successfully queued a buffer, mask the TX IRQ.
717 	 */
718 	if (pl011_dma_tx_refill(uap) > 0) {
719 		uap->im &= ~UART011_TXIM;
720 		pl011_write(uap->im, uap, REG_IMSC);
721 		return true;
722 	}
723 	return false;
724 }
725 
726 /*
727  * Stop the DMA transmit (eg, due to received XOFF).
728  * Locking: called with port lock held and IRQs disabled.
729  */
730 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
731 {
732 	if (uap->dmatx.queued) {
733 		uap->dmacr &= ~UART011_TXDMAE;
734 		pl011_write(uap->dmacr, uap, REG_DMACR);
735 	}
736 }
737 
738 /*
739  * Try to start a DMA transmit, or in the case of an XON/OFF
740  * character queued for send, try to get that character out ASAP.
741  * Locking: called with port lock held and IRQs disabled.
742  * Returns:
743  *   false if we want the TX IRQ to be enabled
744  *   true if we have a buffer queued
745  */
746 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
747 {
748 	u16 dmacr;
749 
750 	if (!uap->using_tx_dma)
751 		return false;
752 
753 	if (!uap->port.x_char) {
754 		/* no X-char, try to push chars out in DMA mode */
755 		bool ret = true;
756 
757 		if (!uap->dmatx.queued) {
758 			if (pl011_dma_tx_refill(uap) > 0) {
759 				uap->im &= ~UART011_TXIM;
760 				pl011_write(uap->im, uap, REG_IMSC);
761 			} else
762 				ret = false;
763 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
764 			uap->dmacr |= UART011_TXDMAE;
765 			pl011_write(uap->dmacr, uap, REG_DMACR);
766 		}
767 		return ret;
768 	}
769 
770 	/*
771 	 * We have an X-char to send.  Disable DMA to prevent it loading
772 	 * the TX fifo, and then see if we can stuff it into the FIFO.
773 	 */
774 	dmacr = uap->dmacr;
775 	uap->dmacr &= ~UART011_TXDMAE;
776 	pl011_write(uap->dmacr, uap, REG_DMACR);
777 
778 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
779 		/*
780 		 * No space in the FIFO, so enable the transmit interrupt
781 		 * so we know when there is space.  Note that once we've
782 		 * loaded the character, we should just re-enable DMA.
783 		 */
784 		return false;
785 	}
786 
787 	pl011_write(uap->port.x_char, uap, REG_DR);
788 	uap->port.icount.tx++;
789 	uap->port.x_char = 0;
790 
791 	/* Success - restore the DMA state */
792 	uap->dmacr = dmacr;
793 	pl011_write(dmacr, uap, REG_DMACR);
794 
795 	return true;
796 }
797 
798 /*
799  * Flush the transmit buffer.
800  * Locking: called with port lock held and IRQs disabled.
801  */
802 static void pl011_dma_flush_buffer(struct uart_port *port)
803 __releases(&uap->port.lock)
804 __acquires(&uap->port.lock)
805 {
806 	struct uart_amba_port *uap =
807 	    container_of(port, struct uart_amba_port, port);
808 
809 	if (!uap->using_tx_dma)
810 		return;
811 
812 	dmaengine_terminate_async(uap->dmatx.chan);
813 
814 	if (uap->dmatx.queued) {
815 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
816 			     DMA_TO_DEVICE);
817 		uap->dmatx.queued = false;
818 		uap->dmacr &= ~UART011_TXDMAE;
819 		pl011_write(uap->dmacr, uap, REG_DMACR);
820 	}
821 }
822 
823 static void pl011_dma_rx_callback(void *data);
824 
825 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
826 {
827 	struct dma_chan *rxchan = uap->dmarx.chan;
828 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
829 	struct dma_async_tx_descriptor *desc;
830 	struct pl011_sgbuf *sgbuf;
831 
832 	if (!rxchan)
833 		return -EIO;
834 
835 	/* Start the RX DMA job */
836 	sgbuf = uap->dmarx.use_buf_b ?
837 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
838 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
839 					DMA_DEV_TO_MEM,
840 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
841 	/*
842 	 * If the DMA engine is busy and cannot prepare a
843 	 * channel, no big deal, the driver will fall back
844 	 * to interrupt mode as a result of this error code.
845 	 */
846 	if (!desc) {
847 		uap->dmarx.running = false;
848 		dmaengine_terminate_all(rxchan);
849 		return -EBUSY;
850 	}
851 
852 	/* Some data to go along to the callback */
853 	desc->callback = pl011_dma_rx_callback;
854 	desc->callback_param = uap;
855 	dmarx->cookie = dmaengine_submit(desc);
856 	dma_async_issue_pending(rxchan);
857 
858 	uap->dmacr |= UART011_RXDMAE;
859 	pl011_write(uap->dmacr, uap, REG_DMACR);
860 	uap->dmarx.running = true;
861 
862 	uap->im &= ~UART011_RXIM;
863 	pl011_write(uap->im, uap, REG_IMSC);
864 
865 	return 0;
866 }
867 
868 /*
869  * This is called when either the DMA job is complete, or
870  * the FIFO timeout interrupt occurred. This must be called
871  * with the port spinlock uap->port.lock held.
872  */
873 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
874 			       u32 pending, bool use_buf_b,
875 			       bool readfifo)
876 {
877 	struct tty_port *port = &uap->port.state->port;
878 	struct pl011_sgbuf *sgbuf = use_buf_b ?
879 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
880 	int dma_count = 0;
881 	u32 fifotaken = 0; /* only used for vdbg() */
882 
883 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
884 	int dmataken = 0;
885 
886 	if (uap->dmarx.poll_rate) {
887 		/* The data can be taken by polling */
888 		dmataken = sgbuf->sg.length - dmarx->last_residue;
889 		/* Recalculate the pending size */
890 		if (pending >= dmataken)
891 			pending -= dmataken;
892 	}
893 
894 	/* Pick the remain data from the DMA */
895 	if (pending) {
896 
897 		/*
898 		 * First take all chars in the DMA pipe, then look in the FIFO.
899 		 * Note that tty_insert_flip_buf() tries to take as many chars
900 		 * as it can.
901 		 */
902 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
903 				pending);
904 
905 		uap->port.icount.rx += dma_count;
906 		if (dma_count < pending)
907 			dev_warn(uap->port.dev,
908 				 "couldn't insert all characters (TTY is full?)\n");
909 	}
910 
911 	/* Reset the last_residue for Rx DMA poll */
912 	if (uap->dmarx.poll_rate)
913 		dmarx->last_residue = sgbuf->sg.length;
914 
915 	/*
916 	 * Only continue with trying to read the FIFO if all DMA chars have
917 	 * been taken first.
918 	 */
919 	if (dma_count == pending && readfifo) {
920 		/* Clear any error flags */
921 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
922 			    UART011_FEIS, uap, REG_ICR);
923 
924 		/*
925 		 * If we read all the DMA'd characters, and we had an
926 		 * incomplete buffer, that could be due to an rx error, or
927 		 * maybe we just timed out. Read any pending chars and check
928 		 * the error status.
929 		 *
930 		 * Error conditions will only occur in the FIFO, these will
931 		 * trigger an immediate interrupt and stop the DMA job, so we
932 		 * will always find the error in the FIFO, never in the DMA
933 		 * buffer.
934 		 */
935 		fifotaken = pl011_fifo_to_tty(uap);
936 	}
937 
938 	dev_vdbg(uap->port.dev,
939 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
940 		 dma_count, fifotaken);
941 	tty_flip_buffer_push(port);
942 }
943 
944 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
945 {
946 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
947 	struct dma_chan *rxchan = dmarx->chan;
948 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
949 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
950 	size_t pending;
951 	struct dma_tx_state state;
952 	enum dma_status dmastat;
953 
954 	/*
955 	 * Pause the transfer so we can trust the current counter,
956 	 * do this before we pause the PL011 block, else we may
957 	 * overflow the FIFO.
958 	 */
959 	if (dmaengine_pause(rxchan))
960 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
961 	dmastat = rxchan->device->device_tx_status(rxchan,
962 						   dmarx->cookie, &state);
963 	if (dmastat != DMA_PAUSED)
964 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
965 
966 	/* Disable RX DMA - incoming data will wait in the FIFO */
967 	uap->dmacr &= ~UART011_RXDMAE;
968 	pl011_write(uap->dmacr, uap, REG_DMACR);
969 	uap->dmarx.running = false;
970 
971 	pending = sgbuf->sg.length - state.residue;
972 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
973 	/* Then we terminate the transfer - we now know our residue */
974 	dmaengine_terminate_all(rxchan);
975 
976 	/*
977 	 * This will take the chars we have so far and insert
978 	 * into the framework.
979 	 */
980 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
981 
982 	/* Switch buffer & re-trigger DMA job */
983 	dmarx->use_buf_b = !dmarx->use_buf_b;
984 	if (pl011_dma_rx_trigger_dma(uap)) {
985 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
986 			"fall back to interrupt mode\n");
987 		uap->im |= UART011_RXIM;
988 		pl011_write(uap->im, uap, REG_IMSC);
989 	}
990 }
991 
992 static void pl011_dma_rx_callback(void *data)
993 {
994 	struct uart_amba_port *uap = data;
995 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
996 	struct dma_chan *rxchan = dmarx->chan;
997 	bool lastbuf = dmarx->use_buf_b;
998 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
999 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1000 	size_t pending;
1001 	struct dma_tx_state state;
1002 	int ret;
1003 
1004 	/*
1005 	 * This completion interrupt occurs typically when the
1006 	 * RX buffer is totally stuffed but no timeout has yet
1007 	 * occurred. When that happens, we just want the RX
1008 	 * routine to flush out the secondary DMA buffer while
1009 	 * we immediately trigger the next DMA job.
1010 	 */
1011 	spin_lock_irq(&uap->port.lock);
1012 	/*
1013 	 * Rx data can be taken by the UART interrupts during
1014 	 * the DMA irq handler. So we check the residue here.
1015 	 */
1016 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1017 	pending = sgbuf->sg.length - state.residue;
1018 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1019 	/* Then we terminate the transfer - we now know our residue */
1020 	dmaengine_terminate_all(rxchan);
1021 
1022 	uap->dmarx.running = false;
1023 	dmarx->use_buf_b = !lastbuf;
1024 	ret = pl011_dma_rx_trigger_dma(uap);
1025 
1026 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1027 	spin_unlock_irq(&uap->port.lock);
1028 	/*
1029 	 * Do this check after we picked the DMA chars so we don't
1030 	 * get some IRQ immediately from RX.
1031 	 */
1032 	if (ret) {
1033 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1034 			"fall back to interrupt mode\n");
1035 		uap->im |= UART011_RXIM;
1036 		pl011_write(uap->im, uap, REG_IMSC);
1037 	}
1038 }
1039 
1040 /*
1041  * Stop accepting received characters, when we're shutting down or
1042  * suspending this port.
1043  * Locking: called with port lock held and IRQs disabled.
1044  */
1045 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1046 {
1047 	if (!uap->using_rx_dma)
1048 		return;
1049 
1050 	/* FIXME.  Just disable the DMA enable */
1051 	uap->dmacr &= ~UART011_RXDMAE;
1052 	pl011_write(uap->dmacr, uap, REG_DMACR);
1053 }
1054 
1055 /*
1056  * Timer handler for Rx DMA polling.
1057  * Every polling, It checks the residue in the dma buffer and transfer
1058  * data to the tty. Also, last_residue is updated for the next polling.
1059  */
1060 static void pl011_dma_rx_poll(struct timer_list *t)
1061 {
1062 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1063 	struct tty_port *port = &uap->port.state->port;
1064 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1065 	struct dma_chan *rxchan = uap->dmarx.chan;
1066 	unsigned long flags;
1067 	unsigned int dmataken = 0;
1068 	unsigned int size = 0;
1069 	struct pl011_sgbuf *sgbuf;
1070 	int dma_count;
1071 	struct dma_tx_state state;
1072 
1073 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1074 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1075 	if (likely(state.residue < dmarx->last_residue)) {
1076 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1077 		size = dmarx->last_residue - state.residue;
1078 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1079 				size);
1080 		if (dma_count == size)
1081 			dmarx->last_residue =  state.residue;
1082 		dmarx->last_jiffies = jiffies;
1083 	}
1084 	tty_flip_buffer_push(port);
1085 
1086 	/*
1087 	 * If no data is received in poll_timeout, the driver will fall back
1088 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1089 	 */
1090 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1091 			> uap->dmarx.poll_timeout) {
1092 
1093 		spin_lock_irqsave(&uap->port.lock, flags);
1094 		pl011_dma_rx_stop(uap);
1095 		uap->im |= UART011_RXIM;
1096 		pl011_write(uap->im, uap, REG_IMSC);
1097 		spin_unlock_irqrestore(&uap->port.lock, flags);
1098 
1099 		uap->dmarx.running = false;
1100 		dmaengine_terminate_all(rxchan);
1101 		del_timer(&uap->dmarx.timer);
1102 	} else {
1103 		mod_timer(&uap->dmarx.timer,
1104 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1105 	}
1106 }
1107 
1108 static void pl011_dma_startup(struct uart_amba_port *uap)
1109 {
1110 	int ret;
1111 
1112 	if (!uap->dma_probed)
1113 		pl011_dma_probe(uap);
1114 
1115 	if (!uap->dmatx.chan)
1116 		return;
1117 
1118 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1119 	if (!uap->dmatx.buf) {
1120 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1121 		uap->port.fifosize = uap->fifosize;
1122 		return;
1123 	}
1124 
1125 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1126 
1127 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1128 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1129 	uap->using_tx_dma = true;
1130 
1131 	if (!uap->dmarx.chan)
1132 		goto skip_rx;
1133 
1134 	/* Allocate and map DMA RX buffers */
1135 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1136 			       DMA_FROM_DEVICE);
1137 	if (ret) {
1138 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1139 			"RX buffer A", ret);
1140 		goto skip_rx;
1141 	}
1142 
1143 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1144 			       DMA_FROM_DEVICE);
1145 	if (ret) {
1146 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1147 			"RX buffer B", ret);
1148 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1149 				 DMA_FROM_DEVICE);
1150 		goto skip_rx;
1151 	}
1152 
1153 	uap->using_rx_dma = true;
1154 
1155 skip_rx:
1156 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1157 	uap->dmacr |= UART011_DMAONERR;
1158 	pl011_write(uap->dmacr, uap, REG_DMACR);
1159 
1160 	/*
1161 	 * ST Micro variants has some specific dma burst threshold
1162 	 * compensation. Set this to 16 bytes, so burst will only
1163 	 * be issued above/below 16 bytes.
1164 	 */
1165 	if (uap->vendor->dma_threshold)
1166 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1167 			    uap, REG_ST_DMAWM);
1168 
1169 	if (uap->using_rx_dma) {
1170 		if (pl011_dma_rx_trigger_dma(uap))
1171 			dev_dbg(uap->port.dev, "could not trigger initial "
1172 				"RX DMA job, fall back to interrupt mode\n");
1173 		if (uap->dmarx.poll_rate) {
1174 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1175 			mod_timer(&uap->dmarx.timer,
1176 				jiffies +
1177 				msecs_to_jiffies(uap->dmarx.poll_rate));
1178 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1179 			uap->dmarx.last_jiffies = jiffies;
1180 		}
1181 	}
1182 }
1183 
1184 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1185 {
1186 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1187 		return;
1188 
1189 	/* Disable RX and TX DMA */
1190 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1191 		cpu_relax();
1192 
1193 	spin_lock_irq(&uap->port.lock);
1194 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1195 	pl011_write(uap->dmacr, uap, REG_DMACR);
1196 	spin_unlock_irq(&uap->port.lock);
1197 
1198 	if (uap->using_tx_dma) {
1199 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1200 		dmaengine_terminate_all(uap->dmatx.chan);
1201 		if (uap->dmatx.queued) {
1202 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1203 				     DMA_TO_DEVICE);
1204 			uap->dmatx.queued = false;
1205 		}
1206 
1207 		kfree(uap->dmatx.buf);
1208 		uap->using_tx_dma = false;
1209 	}
1210 
1211 	if (uap->using_rx_dma) {
1212 		dmaengine_terminate_all(uap->dmarx.chan);
1213 		/* Clean up the RX DMA */
1214 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1215 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1216 		if (uap->dmarx.poll_rate)
1217 			del_timer_sync(&uap->dmarx.timer);
1218 		uap->using_rx_dma = false;
1219 	}
1220 }
1221 
1222 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1223 {
1224 	return uap->using_rx_dma;
1225 }
1226 
1227 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1228 {
1229 	return uap->using_rx_dma && uap->dmarx.running;
1230 }
1231 
1232 #else
1233 /* Blank functions if the DMA engine is not available */
1234 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1235 {
1236 }
1237 
1238 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1239 {
1240 }
1241 
1242 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1243 {
1244 }
1245 
1246 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1247 {
1248 	return false;
1249 }
1250 
1251 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1252 {
1253 }
1254 
1255 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1256 {
1257 	return false;
1258 }
1259 
1260 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1261 {
1262 }
1263 
1264 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1265 {
1266 }
1267 
1268 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1269 {
1270 	return -EIO;
1271 }
1272 
1273 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1274 {
1275 	return false;
1276 }
1277 
1278 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1279 {
1280 	return false;
1281 }
1282 
1283 #define pl011_dma_flush_buffer	NULL
1284 #endif
1285 
1286 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1287 {
1288 	/*
1289 	 * To be on the safe side only time out after twice as many iterations
1290 	 * as fifo size.
1291 	 */
1292 	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1293 	struct uart_port *port = &uap->port;
1294 	int i = 0;
1295 	u32 cr;
1296 
1297 	/* Wait until hardware tx queue is empty */
1298 	while (!pl011_tx_empty(port)) {
1299 		if (i > MAX_TX_DRAIN_ITERS) {
1300 			dev_warn(port->dev,
1301 				 "timeout while draining hardware tx queue\n");
1302 			break;
1303 		}
1304 
1305 		udelay(uap->rs485_tx_drain_interval);
1306 		i++;
1307 	}
1308 
1309 	if (port->rs485.delay_rts_after_send)
1310 		mdelay(port->rs485.delay_rts_after_send);
1311 
1312 	cr = pl011_read(uap, REG_CR);
1313 
1314 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1315 		cr &= ~UART011_CR_RTS;
1316 	else
1317 		cr |= UART011_CR_RTS;
1318 
1319 	/* Disable the transmitter and reenable the transceiver */
1320 	cr &= ~UART011_CR_TXE;
1321 	cr |= UART011_CR_RXE;
1322 	pl011_write(cr, uap, REG_CR);
1323 
1324 	uap->rs485_tx_started = false;
1325 }
1326 
1327 static void pl011_stop_tx(struct uart_port *port)
1328 {
1329 	struct uart_amba_port *uap =
1330 	    container_of(port, struct uart_amba_port, port);
1331 
1332 	uap->im &= ~UART011_TXIM;
1333 	pl011_write(uap->im, uap, REG_IMSC);
1334 	pl011_dma_tx_stop(uap);
1335 
1336 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1337 		pl011_rs485_tx_stop(uap);
1338 }
1339 
1340 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1341 
1342 /* Start TX with programmed I/O only (no DMA) */
1343 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1344 {
1345 	if (pl011_tx_chars(uap, false)) {
1346 		uap->im |= UART011_TXIM;
1347 		pl011_write(uap->im, uap, REG_IMSC);
1348 	}
1349 }
1350 
1351 static void pl011_start_tx(struct uart_port *port)
1352 {
1353 	struct uart_amba_port *uap =
1354 	    container_of(port, struct uart_amba_port, port);
1355 
1356 	if (!pl011_dma_tx_start(uap))
1357 		pl011_start_tx_pio(uap);
1358 }
1359 
1360 static void pl011_stop_rx(struct uart_port *port)
1361 {
1362 	struct uart_amba_port *uap =
1363 	    container_of(port, struct uart_amba_port, port);
1364 
1365 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1366 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1367 	pl011_write(uap->im, uap, REG_IMSC);
1368 
1369 	pl011_dma_rx_stop(uap);
1370 }
1371 
1372 static void pl011_throttle_rx(struct uart_port *port)
1373 {
1374 	unsigned long flags;
1375 
1376 	spin_lock_irqsave(&port->lock, flags);
1377 	pl011_stop_rx(port);
1378 	spin_unlock_irqrestore(&port->lock, flags);
1379 }
1380 
1381 static void pl011_enable_ms(struct uart_port *port)
1382 {
1383 	struct uart_amba_port *uap =
1384 	    container_of(port, struct uart_amba_port, port);
1385 
1386 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1387 	pl011_write(uap->im, uap, REG_IMSC);
1388 }
1389 
1390 static void pl011_rx_chars(struct uart_amba_port *uap)
1391 __releases(&uap->port.lock)
1392 __acquires(&uap->port.lock)
1393 {
1394 	pl011_fifo_to_tty(uap);
1395 
1396 	spin_unlock(&uap->port.lock);
1397 	tty_flip_buffer_push(&uap->port.state->port);
1398 	/*
1399 	 * If we were temporarily out of DMA mode for a while,
1400 	 * attempt to switch back to DMA mode again.
1401 	 */
1402 	if (pl011_dma_rx_available(uap)) {
1403 		if (pl011_dma_rx_trigger_dma(uap)) {
1404 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1405 				"fall back to interrupt mode again\n");
1406 			uap->im |= UART011_RXIM;
1407 			pl011_write(uap->im, uap, REG_IMSC);
1408 		} else {
1409 #ifdef CONFIG_DMA_ENGINE
1410 			/* Start Rx DMA poll */
1411 			if (uap->dmarx.poll_rate) {
1412 				uap->dmarx.last_jiffies = jiffies;
1413 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1414 				mod_timer(&uap->dmarx.timer,
1415 					jiffies +
1416 					msecs_to_jiffies(uap->dmarx.poll_rate));
1417 			}
1418 #endif
1419 		}
1420 	}
1421 	spin_lock(&uap->port.lock);
1422 }
1423 
1424 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1425 			  bool from_irq)
1426 {
1427 	if (unlikely(!from_irq) &&
1428 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1429 		return false; /* unable to transmit character */
1430 
1431 	pl011_write(c, uap, REG_DR);
1432 	uap->port.icount.tx++;
1433 
1434 	return true;
1435 }
1436 
1437 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1438 {
1439 	struct uart_port *port = &uap->port;
1440 	u32 cr;
1441 
1442 	/* Enable transmitter */
1443 	cr = pl011_read(uap, REG_CR);
1444 	cr |= UART011_CR_TXE;
1445 
1446 	/* Disable receiver if half-duplex */
1447 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1448 		cr &= ~UART011_CR_RXE;
1449 
1450 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1451 		cr &= ~UART011_CR_RTS;
1452 	else
1453 		cr |= UART011_CR_RTS;
1454 
1455 	pl011_write(cr, uap, REG_CR);
1456 
1457 	if (port->rs485.delay_rts_before_send)
1458 		mdelay(port->rs485.delay_rts_before_send);
1459 
1460 	uap->rs485_tx_started = true;
1461 }
1462 
1463 /* Returns true if tx interrupts have to be (kept) enabled  */
1464 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1465 {
1466 	struct circ_buf *xmit = &uap->port.state->xmit;
1467 	int count = uap->fifosize >> 1;
1468 
1469 	if (uap->port.x_char) {
1470 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1471 			return true;
1472 		uap->port.x_char = 0;
1473 		--count;
1474 	}
1475 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1476 		pl011_stop_tx(&uap->port);
1477 		return false;
1478 	}
1479 
1480 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1481 	    !uap->rs485_tx_started)
1482 		pl011_rs485_tx_start(uap);
1483 
1484 	/* If we are using DMA mode, try to send some characters. */
1485 	if (pl011_dma_tx_irq(uap))
1486 		return true;
1487 
1488 	do {
1489 		if (likely(from_irq) && count-- == 0)
1490 			break;
1491 
1492 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1493 			break;
1494 
1495 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1496 	} while (!uart_circ_empty(xmit));
1497 
1498 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1499 		uart_write_wakeup(&uap->port);
1500 
1501 	if (uart_circ_empty(xmit)) {
1502 		pl011_stop_tx(&uap->port);
1503 		return false;
1504 	}
1505 	return true;
1506 }
1507 
1508 static void pl011_modem_status(struct uart_amba_port *uap)
1509 {
1510 	unsigned int status, delta;
1511 
1512 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1513 
1514 	delta = status ^ uap->old_status;
1515 	uap->old_status = status;
1516 
1517 	if (!delta)
1518 		return;
1519 
1520 	if (delta & UART01x_FR_DCD)
1521 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1522 
1523 	if (delta & uap->vendor->fr_dsr)
1524 		uap->port.icount.dsr++;
1525 
1526 	if (delta & uap->vendor->fr_cts)
1527 		uart_handle_cts_change(&uap->port,
1528 				       status & uap->vendor->fr_cts);
1529 
1530 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1531 }
1532 
1533 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1534 {
1535 	if (!uap->vendor->cts_event_workaround)
1536 		return;
1537 
1538 	/* workaround to make sure that all bits are unlocked.. */
1539 	pl011_write(0x00, uap, REG_ICR);
1540 
1541 	/*
1542 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1543 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1544 	 * so add 2 dummy reads
1545 	 */
1546 	pl011_read(uap, REG_ICR);
1547 	pl011_read(uap, REG_ICR);
1548 }
1549 
1550 static irqreturn_t pl011_int(int irq, void *dev_id)
1551 {
1552 	struct uart_amba_port *uap = dev_id;
1553 	unsigned long flags;
1554 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1555 	int handled = 0;
1556 
1557 	spin_lock_irqsave(&uap->port.lock, flags);
1558 	status = pl011_read(uap, REG_RIS) & uap->im;
1559 	if (status) {
1560 		do {
1561 			check_apply_cts_event_workaround(uap);
1562 
1563 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1564 					       UART011_RXIS),
1565 				    uap, REG_ICR);
1566 
1567 			if (status & (UART011_RTIS|UART011_RXIS)) {
1568 				if (pl011_dma_rx_running(uap))
1569 					pl011_dma_rx_irq(uap);
1570 				else
1571 					pl011_rx_chars(uap);
1572 			}
1573 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1574 				      UART011_CTSMIS|UART011_RIMIS))
1575 				pl011_modem_status(uap);
1576 			if (status & UART011_TXIS)
1577 				pl011_tx_chars(uap, true);
1578 
1579 			if (pass_counter-- == 0)
1580 				break;
1581 
1582 			status = pl011_read(uap, REG_RIS) & uap->im;
1583 		} while (status != 0);
1584 		handled = 1;
1585 	}
1586 
1587 	spin_unlock_irqrestore(&uap->port.lock, flags);
1588 
1589 	return IRQ_RETVAL(handled);
1590 }
1591 
1592 static unsigned int pl011_tx_empty(struct uart_port *port)
1593 {
1594 	struct uart_amba_port *uap =
1595 	    container_of(port, struct uart_amba_port, port);
1596 
1597 	/* Allow feature register bits to be inverted to work around errata */
1598 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1599 
1600 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1601 							0 : TIOCSER_TEMT;
1602 }
1603 
1604 static unsigned int pl011_get_mctrl(struct uart_port *port)
1605 {
1606 	struct uart_amba_port *uap =
1607 	    container_of(port, struct uart_amba_port, port);
1608 	unsigned int result = 0;
1609 	unsigned int status = pl011_read(uap, REG_FR);
1610 
1611 #define TIOCMBIT(uartbit, tiocmbit)	\
1612 	if (status & uartbit)		\
1613 		result |= tiocmbit
1614 
1615 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1616 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1617 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1618 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1619 #undef TIOCMBIT
1620 	return result;
1621 }
1622 
1623 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1624 {
1625 	struct uart_amba_port *uap =
1626 	    container_of(port, struct uart_amba_port, port);
1627 	unsigned int cr;
1628 
1629 	cr = pl011_read(uap, REG_CR);
1630 
1631 #define	TIOCMBIT(tiocmbit, uartbit)		\
1632 	if (mctrl & tiocmbit)		\
1633 		cr |= uartbit;		\
1634 	else				\
1635 		cr &= ~uartbit
1636 
1637 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1638 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1639 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1640 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1641 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1642 
1643 	if (port->status & UPSTAT_AUTORTS) {
1644 		/* We need to disable auto-RTS if we want to turn RTS off */
1645 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1646 	}
1647 #undef TIOCMBIT
1648 
1649 	pl011_write(cr, uap, REG_CR);
1650 }
1651 
1652 static void pl011_break_ctl(struct uart_port *port, int break_state)
1653 {
1654 	struct uart_amba_port *uap =
1655 	    container_of(port, struct uart_amba_port, port);
1656 	unsigned long flags;
1657 	unsigned int lcr_h;
1658 
1659 	spin_lock_irqsave(&uap->port.lock, flags);
1660 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1661 	if (break_state == -1)
1662 		lcr_h |= UART01x_LCRH_BRK;
1663 	else
1664 		lcr_h &= ~UART01x_LCRH_BRK;
1665 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1666 	spin_unlock_irqrestore(&uap->port.lock, flags);
1667 }
1668 
1669 #ifdef CONFIG_CONSOLE_POLL
1670 
1671 static void pl011_quiesce_irqs(struct uart_port *port)
1672 {
1673 	struct uart_amba_port *uap =
1674 	    container_of(port, struct uart_amba_port, port);
1675 
1676 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1677 	/*
1678 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1679 	 * we simply mask it. start_tx() will unmask it.
1680 	 *
1681 	 * Note we can race with start_tx(), and if the race happens, the
1682 	 * polling user might get another interrupt just after we clear it.
1683 	 * But it should be OK and can happen even w/o the race, e.g.
1684 	 * controller immediately got some new data and raised the IRQ.
1685 	 *
1686 	 * And whoever uses polling routines assumes that it manages the device
1687 	 * (including tx queue), so we're also fine with start_tx()'s caller
1688 	 * side.
1689 	 */
1690 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1691 		    REG_IMSC);
1692 }
1693 
1694 static int pl011_get_poll_char(struct uart_port *port)
1695 {
1696 	struct uart_amba_port *uap =
1697 	    container_of(port, struct uart_amba_port, port);
1698 	unsigned int status;
1699 
1700 	/*
1701 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1702 	 * debugger.
1703 	 */
1704 	pl011_quiesce_irqs(port);
1705 
1706 	status = pl011_read(uap, REG_FR);
1707 	if (status & UART01x_FR_RXFE)
1708 		return NO_POLL_CHAR;
1709 
1710 	return pl011_read(uap, REG_DR);
1711 }
1712 
1713 static void pl011_put_poll_char(struct uart_port *port,
1714 			 unsigned char ch)
1715 {
1716 	struct uart_amba_port *uap =
1717 	    container_of(port, struct uart_amba_port, port);
1718 
1719 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1720 		cpu_relax();
1721 
1722 	pl011_write(ch, uap, REG_DR);
1723 }
1724 
1725 #endif /* CONFIG_CONSOLE_POLL */
1726 
1727 static int pl011_hwinit(struct uart_port *port)
1728 {
1729 	struct uart_amba_port *uap =
1730 	    container_of(port, struct uart_amba_port, port);
1731 	int retval;
1732 
1733 	/* Optionaly enable pins to be muxed in and configured */
1734 	pinctrl_pm_select_default_state(port->dev);
1735 
1736 	/*
1737 	 * Try to enable the clock producer.
1738 	 */
1739 	retval = clk_prepare_enable(uap->clk);
1740 	if (retval)
1741 		return retval;
1742 
1743 	uap->port.uartclk = clk_get_rate(uap->clk);
1744 
1745 	/* Clear pending error and receive interrupts */
1746 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1747 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1748 		    uap, REG_ICR);
1749 
1750 	/*
1751 	 * Save interrupts enable mask, and enable RX interrupts in case if
1752 	 * the interrupt is used for NMI entry.
1753 	 */
1754 	uap->im = pl011_read(uap, REG_IMSC);
1755 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1756 
1757 	if (dev_get_platdata(uap->port.dev)) {
1758 		struct amba_pl011_data *plat;
1759 
1760 		plat = dev_get_platdata(uap->port.dev);
1761 		if (plat->init)
1762 			plat->init();
1763 	}
1764 	return 0;
1765 }
1766 
1767 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1768 {
1769 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1770 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1771 }
1772 
1773 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1774 {
1775 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1776 	if (pl011_split_lcrh(uap)) {
1777 		int i;
1778 		/*
1779 		 * Wait 10 PCLKs before writing LCRH_TX register,
1780 		 * to get this delay write read only register 10 times
1781 		 */
1782 		for (i = 0; i < 10; ++i)
1783 			pl011_write(0xff, uap, REG_MIS);
1784 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1785 	}
1786 }
1787 
1788 static int pl011_allocate_irq(struct uart_amba_port *uap)
1789 {
1790 	pl011_write(uap->im, uap, REG_IMSC);
1791 
1792 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1793 }
1794 
1795 /*
1796  * Enable interrupts, only timeouts when using DMA
1797  * if initial RX DMA job failed, start in interrupt mode
1798  * as well.
1799  */
1800 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1801 {
1802 	unsigned long flags;
1803 	unsigned int i;
1804 
1805 	spin_lock_irqsave(&uap->port.lock, flags);
1806 
1807 	/* Clear out any spuriously appearing RX interrupts */
1808 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1809 
1810 	/*
1811 	 * RXIS is asserted only when the RX FIFO transitions from below
1812 	 * to above the trigger threshold.  If the RX FIFO is already
1813 	 * full to the threshold this can't happen and RXIS will now be
1814 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1815 	 */
1816 	for (i = 0; i < uap->fifosize * 2; ++i) {
1817 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1818 			break;
1819 
1820 		pl011_read(uap, REG_DR);
1821 	}
1822 
1823 	uap->im = UART011_RTIM;
1824 	if (!pl011_dma_rx_running(uap))
1825 		uap->im |= UART011_RXIM;
1826 	pl011_write(uap->im, uap, REG_IMSC);
1827 	spin_unlock_irqrestore(&uap->port.lock, flags);
1828 }
1829 
1830 static void pl011_unthrottle_rx(struct uart_port *port)
1831 {
1832 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1833 	unsigned long flags;
1834 
1835 	spin_lock_irqsave(&uap->port.lock, flags);
1836 
1837 	uap->im = UART011_RTIM;
1838 	if (!pl011_dma_rx_running(uap))
1839 		uap->im |= UART011_RXIM;
1840 
1841 	pl011_write(uap->im, uap, REG_IMSC);
1842 
1843 	spin_unlock_irqrestore(&uap->port.lock, flags);
1844 }
1845 
1846 static int pl011_startup(struct uart_port *port)
1847 {
1848 	struct uart_amba_port *uap =
1849 	    container_of(port, struct uart_amba_port, port);
1850 	unsigned int cr;
1851 	int retval;
1852 
1853 	retval = pl011_hwinit(port);
1854 	if (retval)
1855 		goto clk_dis;
1856 
1857 	retval = pl011_allocate_irq(uap);
1858 	if (retval)
1859 		goto clk_dis;
1860 
1861 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1862 
1863 	spin_lock_irq(&uap->port.lock);
1864 
1865 	cr = pl011_read(uap, REG_CR);
1866 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1867 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1868 
1869 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1870 		cr |= UART011_CR_TXE;
1871 
1872 	pl011_write(cr, uap, REG_CR);
1873 
1874 	spin_unlock_irq(&uap->port.lock);
1875 
1876 	/*
1877 	 * initialise the old status of the modem signals
1878 	 */
1879 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1880 
1881 	/* Startup DMA */
1882 	pl011_dma_startup(uap);
1883 
1884 	pl011_enable_interrupts(uap);
1885 
1886 	return 0;
1887 
1888  clk_dis:
1889 	clk_disable_unprepare(uap->clk);
1890 	return retval;
1891 }
1892 
1893 static int sbsa_uart_startup(struct uart_port *port)
1894 {
1895 	struct uart_amba_port *uap =
1896 		container_of(port, struct uart_amba_port, port);
1897 	int retval;
1898 
1899 	retval = pl011_hwinit(port);
1900 	if (retval)
1901 		return retval;
1902 
1903 	retval = pl011_allocate_irq(uap);
1904 	if (retval)
1905 		return retval;
1906 
1907 	/* The SBSA UART does not support any modem status lines. */
1908 	uap->old_status = 0;
1909 
1910 	pl011_enable_interrupts(uap);
1911 
1912 	return 0;
1913 }
1914 
1915 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1916 					unsigned int lcrh)
1917 {
1918       unsigned long val;
1919 
1920       val = pl011_read(uap, lcrh);
1921       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1922       pl011_write(val, uap, lcrh);
1923 }
1924 
1925 /*
1926  * disable the port. It should not disable RTS and DTR.
1927  * Also RTS and DTR state should be preserved to restore
1928  * it during startup().
1929  */
1930 static void pl011_disable_uart(struct uart_amba_port *uap)
1931 {
1932 	unsigned int cr;
1933 
1934 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1935 	spin_lock_irq(&uap->port.lock);
1936 	cr = pl011_read(uap, REG_CR);
1937 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1938 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1939 	pl011_write(cr, uap, REG_CR);
1940 	spin_unlock_irq(&uap->port.lock);
1941 
1942 	/*
1943 	 * disable break condition and fifos
1944 	 */
1945 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1946 	if (pl011_split_lcrh(uap))
1947 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1948 }
1949 
1950 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1951 {
1952 	spin_lock_irq(&uap->port.lock);
1953 
1954 	/* mask all interrupts and clear all pending ones */
1955 	uap->im = 0;
1956 	pl011_write(uap->im, uap, REG_IMSC);
1957 	pl011_write(0xffff, uap, REG_ICR);
1958 
1959 	spin_unlock_irq(&uap->port.lock);
1960 }
1961 
1962 static void pl011_shutdown(struct uart_port *port)
1963 {
1964 	struct uart_amba_port *uap =
1965 		container_of(port, struct uart_amba_port, port);
1966 
1967 	pl011_disable_interrupts(uap);
1968 
1969 	pl011_dma_shutdown(uap);
1970 
1971 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1972 		pl011_rs485_tx_stop(uap);
1973 
1974 	free_irq(uap->port.irq, uap);
1975 
1976 	pl011_disable_uart(uap);
1977 
1978 	/*
1979 	 * Shut down the clock producer
1980 	 */
1981 	clk_disable_unprepare(uap->clk);
1982 	/* Optionally let pins go into sleep states */
1983 	pinctrl_pm_select_sleep_state(port->dev);
1984 
1985 	if (dev_get_platdata(uap->port.dev)) {
1986 		struct amba_pl011_data *plat;
1987 
1988 		plat = dev_get_platdata(uap->port.dev);
1989 		if (plat->exit)
1990 			plat->exit();
1991 	}
1992 
1993 	if (uap->port.ops->flush_buffer)
1994 		uap->port.ops->flush_buffer(port);
1995 }
1996 
1997 static void sbsa_uart_shutdown(struct uart_port *port)
1998 {
1999 	struct uart_amba_port *uap =
2000 		container_of(port, struct uart_amba_port, port);
2001 
2002 	pl011_disable_interrupts(uap);
2003 
2004 	free_irq(uap->port.irq, uap);
2005 
2006 	if (uap->port.ops->flush_buffer)
2007 		uap->port.ops->flush_buffer(port);
2008 }
2009 
2010 static void
2011 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2012 {
2013 	port->read_status_mask = UART011_DR_OE | 255;
2014 	if (termios->c_iflag & INPCK)
2015 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2016 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2017 		port->read_status_mask |= UART011_DR_BE;
2018 
2019 	/*
2020 	 * Characters to ignore
2021 	 */
2022 	port->ignore_status_mask = 0;
2023 	if (termios->c_iflag & IGNPAR)
2024 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2025 	if (termios->c_iflag & IGNBRK) {
2026 		port->ignore_status_mask |= UART011_DR_BE;
2027 		/*
2028 		 * If we're ignoring parity and break indicators,
2029 		 * ignore overruns too (for real raw support).
2030 		 */
2031 		if (termios->c_iflag & IGNPAR)
2032 			port->ignore_status_mask |= UART011_DR_OE;
2033 	}
2034 
2035 	/*
2036 	 * Ignore all characters if CREAD is not set.
2037 	 */
2038 	if ((termios->c_cflag & CREAD) == 0)
2039 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2040 }
2041 
2042 static void
2043 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2044 		  const struct ktermios *old)
2045 {
2046 	struct uart_amba_port *uap =
2047 	    container_of(port, struct uart_amba_port, port);
2048 	unsigned int lcr_h, old_cr;
2049 	unsigned long flags;
2050 	unsigned int baud, quot, clkdiv;
2051 	unsigned int bits;
2052 
2053 	if (uap->vendor->oversampling)
2054 		clkdiv = 8;
2055 	else
2056 		clkdiv = 16;
2057 
2058 	/*
2059 	 * Ask the core to calculate the divisor for us.
2060 	 */
2061 	baud = uart_get_baud_rate(port, termios, old, 0,
2062 				  port->uartclk / clkdiv);
2063 #ifdef CONFIG_DMA_ENGINE
2064 	/*
2065 	 * Adjust RX DMA polling rate with baud rate if not specified.
2066 	 */
2067 	if (uap->dmarx.auto_poll_rate)
2068 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2069 #endif
2070 
2071 	if (baud > port->uartclk/16)
2072 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2073 	else
2074 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2075 
2076 	switch (termios->c_cflag & CSIZE) {
2077 	case CS5:
2078 		lcr_h = UART01x_LCRH_WLEN_5;
2079 		break;
2080 	case CS6:
2081 		lcr_h = UART01x_LCRH_WLEN_6;
2082 		break;
2083 	case CS7:
2084 		lcr_h = UART01x_LCRH_WLEN_7;
2085 		break;
2086 	default: // CS8
2087 		lcr_h = UART01x_LCRH_WLEN_8;
2088 		break;
2089 	}
2090 	if (termios->c_cflag & CSTOPB)
2091 		lcr_h |= UART01x_LCRH_STP2;
2092 	if (termios->c_cflag & PARENB) {
2093 		lcr_h |= UART01x_LCRH_PEN;
2094 		if (!(termios->c_cflag & PARODD))
2095 			lcr_h |= UART01x_LCRH_EPS;
2096 		if (termios->c_cflag & CMSPAR)
2097 			lcr_h |= UART011_LCRH_SPS;
2098 	}
2099 	if (uap->fifosize > 1)
2100 		lcr_h |= UART01x_LCRH_FEN;
2101 
2102 	bits = tty_get_frame_size(termios->c_cflag);
2103 
2104 	spin_lock_irqsave(&port->lock, flags);
2105 
2106 	/*
2107 	 * Update the per-port timeout.
2108 	 */
2109 	uart_update_timeout(port, termios->c_cflag, baud);
2110 
2111 	/*
2112 	 * Calculate the approximated time it takes to transmit one character
2113 	 * with the given baud rate. We use this as the poll interval when we
2114 	 * wait for the tx queue to empty.
2115 	 */
2116 	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2117 
2118 	pl011_setup_status_masks(port, termios);
2119 
2120 	if (UART_ENABLE_MS(port, termios->c_cflag))
2121 		pl011_enable_ms(port);
2122 
2123 	if (port->rs485.flags & SER_RS485_ENABLED)
2124 		termios->c_cflag &= ~CRTSCTS;
2125 
2126 	old_cr = pl011_read(uap, REG_CR);
2127 
2128 	if (termios->c_cflag & CRTSCTS) {
2129 		if (old_cr & UART011_CR_RTS)
2130 			old_cr |= UART011_CR_RTSEN;
2131 
2132 		old_cr |= UART011_CR_CTSEN;
2133 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2134 	} else {
2135 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2136 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2137 	}
2138 
2139 	if (uap->vendor->oversampling) {
2140 		if (baud > port->uartclk / 16)
2141 			old_cr |= ST_UART011_CR_OVSFACT;
2142 		else
2143 			old_cr &= ~ST_UART011_CR_OVSFACT;
2144 	}
2145 
2146 	/*
2147 	 * Workaround for the ST Micro oversampling variants to
2148 	 * increase the bitrate slightly, by lowering the divisor,
2149 	 * to avoid delayed sampling of start bit at high speeds,
2150 	 * else we see data corruption.
2151 	 */
2152 	if (uap->vendor->oversampling) {
2153 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2154 			quot -= 1;
2155 		else if ((baud > 3250000) && (quot > 2))
2156 			quot -= 2;
2157 	}
2158 	/* Set baud rate */
2159 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2160 	pl011_write(quot >> 6, uap, REG_IBRD);
2161 
2162 	/*
2163 	 * ----------v----------v----------v----------v-----
2164 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2165 	 * REG_FBRD & REG_IBRD.
2166 	 * ----------^----------^----------^----------^-----
2167 	 */
2168 	pl011_write_lcr_h(uap, lcr_h);
2169 	pl011_write(old_cr, uap, REG_CR);
2170 
2171 	spin_unlock_irqrestore(&port->lock, flags);
2172 }
2173 
2174 static void
2175 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2176 		      const struct ktermios *old)
2177 {
2178 	struct uart_amba_port *uap =
2179 	    container_of(port, struct uart_amba_port, port);
2180 	unsigned long flags;
2181 
2182 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2183 
2184 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2185 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2186 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2187 	termios->c_cflag |= CS8 | CLOCAL;
2188 
2189 	spin_lock_irqsave(&port->lock, flags);
2190 	uart_update_timeout(port, CS8, uap->fixed_baud);
2191 	pl011_setup_status_masks(port, termios);
2192 	spin_unlock_irqrestore(&port->lock, flags);
2193 }
2194 
2195 static const char *pl011_type(struct uart_port *port)
2196 {
2197 	struct uart_amba_port *uap =
2198 	    container_of(port, struct uart_amba_port, port);
2199 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2200 }
2201 
2202 /*
2203  * Configure/autoconfigure the port.
2204  */
2205 static void pl011_config_port(struct uart_port *port, int flags)
2206 {
2207 	if (flags & UART_CONFIG_TYPE)
2208 		port->type = PORT_AMBA;
2209 }
2210 
2211 /*
2212  * verify the new serial_struct (for TIOCSSERIAL).
2213  */
2214 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2215 {
2216 	int ret = 0;
2217 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2218 		ret = -EINVAL;
2219 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2220 		ret = -EINVAL;
2221 	if (ser->baud_base < 9600)
2222 		ret = -EINVAL;
2223 	if (port->mapbase != (unsigned long) ser->iomem_base)
2224 		ret = -EINVAL;
2225 	return ret;
2226 }
2227 
2228 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2229 			      struct serial_rs485 *rs485)
2230 {
2231 	struct uart_amba_port *uap =
2232 		container_of(port, struct uart_amba_port, port);
2233 
2234 	if (port->rs485.flags & SER_RS485_ENABLED)
2235 		pl011_rs485_tx_stop(uap);
2236 
2237 	/* Make sure auto RTS is disabled */
2238 	if (rs485->flags & SER_RS485_ENABLED) {
2239 		u32 cr = pl011_read(uap, REG_CR);
2240 
2241 		cr &= ~UART011_CR_RTSEN;
2242 		pl011_write(cr, uap, REG_CR);
2243 		port->status &= ~UPSTAT_AUTORTS;
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 static const struct uart_ops amba_pl011_pops = {
2250 	.tx_empty	= pl011_tx_empty,
2251 	.set_mctrl	= pl011_set_mctrl,
2252 	.get_mctrl	= pl011_get_mctrl,
2253 	.stop_tx	= pl011_stop_tx,
2254 	.start_tx	= pl011_start_tx,
2255 	.stop_rx	= pl011_stop_rx,
2256 	.throttle	= pl011_throttle_rx,
2257 	.unthrottle	= pl011_unthrottle_rx,
2258 	.enable_ms	= pl011_enable_ms,
2259 	.break_ctl	= pl011_break_ctl,
2260 	.startup	= pl011_startup,
2261 	.shutdown	= pl011_shutdown,
2262 	.flush_buffer	= pl011_dma_flush_buffer,
2263 	.set_termios	= pl011_set_termios,
2264 	.type		= pl011_type,
2265 	.config_port	= pl011_config_port,
2266 	.verify_port	= pl011_verify_port,
2267 #ifdef CONFIG_CONSOLE_POLL
2268 	.poll_init     = pl011_hwinit,
2269 	.poll_get_char = pl011_get_poll_char,
2270 	.poll_put_char = pl011_put_poll_char,
2271 #endif
2272 };
2273 
2274 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2275 {
2276 }
2277 
2278 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2279 {
2280 	return 0;
2281 }
2282 
2283 static const struct uart_ops sbsa_uart_pops = {
2284 	.tx_empty	= pl011_tx_empty,
2285 	.set_mctrl	= sbsa_uart_set_mctrl,
2286 	.get_mctrl	= sbsa_uart_get_mctrl,
2287 	.stop_tx	= pl011_stop_tx,
2288 	.start_tx	= pl011_start_tx,
2289 	.stop_rx	= pl011_stop_rx,
2290 	.startup	= sbsa_uart_startup,
2291 	.shutdown	= sbsa_uart_shutdown,
2292 	.set_termios	= sbsa_uart_set_termios,
2293 	.type		= pl011_type,
2294 	.config_port	= pl011_config_port,
2295 	.verify_port	= pl011_verify_port,
2296 #ifdef CONFIG_CONSOLE_POLL
2297 	.poll_init     = pl011_hwinit,
2298 	.poll_get_char = pl011_get_poll_char,
2299 	.poll_put_char = pl011_put_poll_char,
2300 #endif
2301 };
2302 
2303 static struct uart_amba_port *amba_ports[UART_NR];
2304 
2305 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2306 
2307 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2308 {
2309 	struct uart_amba_port *uap =
2310 	    container_of(port, struct uart_amba_port, port);
2311 
2312 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2313 		cpu_relax();
2314 	pl011_write(ch, uap, REG_DR);
2315 }
2316 
2317 static void
2318 pl011_console_write(struct console *co, const char *s, unsigned int count)
2319 {
2320 	struct uart_amba_port *uap = amba_ports[co->index];
2321 	unsigned int old_cr = 0, new_cr;
2322 	unsigned long flags;
2323 	int locked = 1;
2324 
2325 	clk_enable(uap->clk);
2326 
2327 	local_irq_save(flags);
2328 	if (uap->port.sysrq)
2329 		locked = 0;
2330 	else if (oops_in_progress)
2331 		locked = spin_trylock(&uap->port.lock);
2332 	else
2333 		spin_lock(&uap->port.lock);
2334 
2335 	/*
2336 	 *	First save the CR then disable the interrupts
2337 	 */
2338 	if (!uap->vendor->always_enabled) {
2339 		old_cr = pl011_read(uap, REG_CR);
2340 		new_cr = old_cr & ~UART011_CR_CTSEN;
2341 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2342 		pl011_write(new_cr, uap, REG_CR);
2343 	}
2344 
2345 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2346 
2347 	/*
2348 	 *	Finally, wait for transmitter to become empty and restore the
2349 	 *	TCR. Allow feature register bits to be inverted to work around
2350 	 *	errata.
2351 	 */
2352 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2353 						& uap->vendor->fr_busy)
2354 		cpu_relax();
2355 	if (!uap->vendor->always_enabled)
2356 		pl011_write(old_cr, uap, REG_CR);
2357 
2358 	if (locked)
2359 		spin_unlock(&uap->port.lock);
2360 	local_irq_restore(flags);
2361 
2362 	clk_disable(uap->clk);
2363 }
2364 
2365 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2366 				      int *parity, int *bits)
2367 {
2368 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2369 		unsigned int lcr_h, ibrd, fbrd;
2370 
2371 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2372 
2373 		*parity = 'n';
2374 		if (lcr_h & UART01x_LCRH_PEN) {
2375 			if (lcr_h & UART01x_LCRH_EPS)
2376 				*parity = 'e';
2377 			else
2378 				*parity = 'o';
2379 		}
2380 
2381 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2382 			*bits = 7;
2383 		else
2384 			*bits = 8;
2385 
2386 		ibrd = pl011_read(uap, REG_IBRD);
2387 		fbrd = pl011_read(uap, REG_FBRD);
2388 
2389 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2390 
2391 		if (uap->vendor->oversampling) {
2392 			if (pl011_read(uap, REG_CR)
2393 				  & ST_UART011_CR_OVSFACT)
2394 				*baud *= 2;
2395 		}
2396 	}
2397 }
2398 
2399 static int pl011_console_setup(struct console *co, char *options)
2400 {
2401 	struct uart_amba_port *uap;
2402 	int baud = 38400;
2403 	int bits = 8;
2404 	int parity = 'n';
2405 	int flow = 'n';
2406 	int ret;
2407 
2408 	/*
2409 	 * Check whether an invalid uart number has been specified, and
2410 	 * if so, search for the first available port that does have
2411 	 * console support.
2412 	 */
2413 	if (co->index >= UART_NR)
2414 		co->index = 0;
2415 	uap = amba_ports[co->index];
2416 	if (!uap)
2417 		return -ENODEV;
2418 
2419 	/* Allow pins to be muxed in and configured */
2420 	pinctrl_pm_select_default_state(uap->port.dev);
2421 
2422 	ret = clk_prepare(uap->clk);
2423 	if (ret)
2424 		return ret;
2425 
2426 	if (dev_get_platdata(uap->port.dev)) {
2427 		struct amba_pl011_data *plat;
2428 
2429 		plat = dev_get_platdata(uap->port.dev);
2430 		if (plat->init)
2431 			plat->init();
2432 	}
2433 
2434 	uap->port.uartclk = clk_get_rate(uap->clk);
2435 
2436 	if (uap->vendor->fixed_options) {
2437 		baud = uap->fixed_baud;
2438 	} else {
2439 		if (options)
2440 			uart_parse_options(options,
2441 					   &baud, &parity, &bits, &flow);
2442 		else
2443 			pl011_console_get_options(uap, &baud, &parity, &bits);
2444 	}
2445 
2446 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2447 }
2448 
2449 /**
2450  *	pl011_console_match - non-standard console matching
2451  *	@co:	  registering console
2452  *	@name:	  name from console command line
2453  *	@idx:	  index from console command line
2454  *	@options: ptr to option string from console command line
2455  *
2456  *	Only attempts to match console command lines of the form:
2457  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2458  *	    console=pl011,0x<addr>[,<options>]
2459  *	This form is used to register an initial earlycon boot console and
2460  *	replace it with the amba_console at pl011 driver init.
2461  *
2462  *	Performs console setup for a match (as required by interface)
2463  *	If no <options> are specified, then assume the h/w is already setup.
2464  *
2465  *	Returns 0 if console matches; otherwise non-zero to use default matching
2466  */
2467 static int pl011_console_match(struct console *co, char *name, int idx,
2468 			       char *options)
2469 {
2470 	unsigned char iotype;
2471 	resource_size_t addr;
2472 	int i;
2473 
2474 	/*
2475 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2476 	 * have a distinct console name, so make sure we check for that.
2477 	 * The actual implementation of the erratum occurs in the probe
2478 	 * function.
2479 	 */
2480 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2481 		return -ENODEV;
2482 
2483 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2484 		return -ENODEV;
2485 
2486 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2487 		return -ENODEV;
2488 
2489 	/* try to match the port specified on the command line */
2490 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2491 		struct uart_port *port;
2492 
2493 		if (!amba_ports[i])
2494 			continue;
2495 
2496 		port = &amba_ports[i]->port;
2497 
2498 		if (port->mapbase != addr)
2499 			continue;
2500 
2501 		co->index = i;
2502 		port->cons = co;
2503 		return pl011_console_setup(co, options);
2504 	}
2505 
2506 	return -ENODEV;
2507 }
2508 
2509 static struct uart_driver amba_reg;
2510 static struct console amba_console = {
2511 	.name		= "ttyAMA",
2512 	.write		= pl011_console_write,
2513 	.device		= uart_console_device,
2514 	.setup		= pl011_console_setup,
2515 	.match		= pl011_console_match,
2516 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2517 	.index		= -1,
2518 	.data		= &amba_reg,
2519 };
2520 
2521 #define AMBA_CONSOLE	(&amba_console)
2522 
2523 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2524 {
2525 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2526 		cpu_relax();
2527 	writel(c, port->membase + UART01x_DR);
2528 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2529 		cpu_relax();
2530 }
2531 
2532 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2533 {
2534 	struct earlycon_device *dev = con->data;
2535 
2536 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2537 }
2538 
2539 static void pl011_putc(struct uart_port *port, unsigned char c)
2540 {
2541 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2542 		cpu_relax();
2543 	if (port->iotype == UPIO_MEM32)
2544 		writel(c, port->membase + UART01x_DR);
2545 	else
2546 		writeb(c, port->membase + UART01x_DR);
2547 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2548 		cpu_relax();
2549 }
2550 
2551 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2552 {
2553 	struct earlycon_device *dev = con->data;
2554 
2555 	uart_console_write(&dev->port, s, n, pl011_putc);
2556 }
2557 
2558 #ifdef CONFIG_CONSOLE_POLL
2559 static int pl011_getc(struct uart_port *port)
2560 {
2561 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2562 		return NO_POLL_CHAR;
2563 
2564 	if (port->iotype == UPIO_MEM32)
2565 		return readl(port->membase + UART01x_DR);
2566 	else
2567 		return readb(port->membase + UART01x_DR);
2568 }
2569 
2570 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2571 {
2572 	struct earlycon_device *dev = con->data;
2573 	int ch, num_read = 0;
2574 
2575 	while (num_read < n) {
2576 		ch = pl011_getc(&dev->port);
2577 		if (ch == NO_POLL_CHAR)
2578 			break;
2579 
2580 		s[num_read++] = ch;
2581 	}
2582 
2583 	return num_read;
2584 }
2585 #else
2586 #define pl011_early_read NULL
2587 #endif
2588 
2589 /*
2590  * On non-ACPI systems, earlycon is enabled by specifying
2591  * "earlycon=pl011,<address>" on the kernel command line.
2592  *
2593  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2594  * by specifying only "earlycon" on the command line.  Because it requires
2595  * SPCR, the console starts after ACPI is parsed, which is later than a
2596  * traditional early console.
2597  *
2598  * To get the traditional early console that starts before ACPI is parsed,
2599  * specify the full "earlycon=pl011,<address>" option.
2600  */
2601 static int __init pl011_early_console_setup(struct earlycon_device *device,
2602 					    const char *opt)
2603 {
2604 	if (!device->port.membase)
2605 		return -ENODEV;
2606 
2607 	device->con->write = pl011_early_write;
2608 	device->con->read = pl011_early_read;
2609 
2610 	return 0;
2611 }
2612 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2613 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2614 
2615 /*
2616  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2617  * Erratum 44, traditional earlycon can be enabled by specifying
2618  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2619  *
2620  * Alternatively, you can just specify "earlycon", and the early console
2621  * will be enabled with the information from the SPCR table.  In this
2622  * case, the SPCR code will detect the need for the E44 work-around,
2623  * and set the console name to "qdf2400_e44".
2624  */
2625 static int __init
2626 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2627 				const char *opt)
2628 {
2629 	if (!device->port.membase)
2630 		return -ENODEV;
2631 
2632 	device->con->write = qdf2400_e44_early_write;
2633 	return 0;
2634 }
2635 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2636 
2637 #else
2638 #define AMBA_CONSOLE	NULL
2639 #endif
2640 
2641 static struct uart_driver amba_reg = {
2642 	.owner			= THIS_MODULE,
2643 	.driver_name		= "ttyAMA",
2644 	.dev_name		= "ttyAMA",
2645 	.major			= SERIAL_AMBA_MAJOR,
2646 	.minor			= SERIAL_AMBA_MINOR,
2647 	.nr			= UART_NR,
2648 	.cons			= AMBA_CONSOLE,
2649 };
2650 
2651 static int pl011_probe_dt_alias(int index, struct device *dev)
2652 {
2653 	struct device_node *np;
2654 	static bool seen_dev_with_alias = false;
2655 	static bool seen_dev_without_alias = false;
2656 	int ret = index;
2657 
2658 	if (!IS_ENABLED(CONFIG_OF))
2659 		return ret;
2660 
2661 	np = dev->of_node;
2662 	if (!np)
2663 		return ret;
2664 
2665 	ret = of_alias_get_id(np, "serial");
2666 	if (ret < 0) {
2667 		seen_dev_without_alias = true;
2668 		ret = index;
2669 	} else {
2670 		seen_dev_with_alias = true;
2671 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2672 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2673 			ret = index;
2674 		}
2675 	}
2676 
2677 	if (seen_dev_with_alias && seen_dev_without_alias)
2678 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2679 
2680 	return ret;
2681 }
2682 
2683 /* unregisters the driver also if no more ports are left */
2684 static void pl011_unregister_port(struct uart_amba_port *uap)
2685 {
2686 	int i;
2687 	bool busy = false;
2688 
2689 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690 		if (amba_ports[i] == uap)
2691 			amba_ports[i] = NULL;
2692 		else if (amba_ports[i])
2693 			busy = true;
2694 	}
2695 	pl011_dma_remove(uap);
2696 	if (!busy)
2697 		uart_unregister_driver(&amba_reg);
2698 }
2699 
2700 static int pl011_find_free_port(void)
2701 {
2702 	int i;
2703 
2704 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705 		if (amba_ports[i] == NULL)
2706 			return i;
2707 
2708 	return -EBUSY;
2709 }
2710 
2711 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2712 {
2713 	struct uart_port *port = &uap->port;
2714 	int ret;
2715 
2716 	ret = uart_get_rs485_mode(port);
2717 	if (ret)
2718 		return ret;
2719 
2720 	return 0;
2721 }
2722 
2723 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724 			    struct resource *mmiobase, int index)
2725 {
2726 	void __iomem *base;
2727 	int ret;
2728 
2729 	base = devm_ioremap_resource(dev, mmiobase);
2730 	if (IS_ERR(base))
2731 		return PTR_ERR(base);
2732 
2733 	index = pl011_probe_dt_alias(index, dev);
2734 
2735 	uap->port.dev = dev;
2736 	uap->port.mapbase = mmiobase->start;
2737 	uap->port.membase = base;
2738 	uap->port.fifosize = uap->fifosize;
2739 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740 	uap->port.flags = UPF_BOOT_AUTOCONF;
2741 	uap->port.line = index;
2742 
2743 	ret = pl011_get_rs485_mode(uap);
2744 	if (ret)
2745 		return ret;
2746 
2747 	amba_ports[index] = uap;
2748 
2749 	return 0;
2750 }
2751 
2752 static int pl011_register_port(struct uart_amba_port *uap)
2753 {
2754 	int ret, i;
2755 
2756 	/* Ensure interrupts from this UART are masked and cleared */
2757 	pl011_write(0, uap, REG_IMSC);
2758 	pl011_write(0xffff, uap, REG_ICR);
2759 
2760 	if (!amba_reg.state) {
2761 		ret = uart_register_driver(&amba_reg);
2762 		if (ret < 0) {
2763 			dev_err(uap->port.dev,
2764 				"Failed to register AMBA-PL011 driver\n");
2765 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766 				if (amba_ports[i] == uap)
2767 					amba_ports[i] = NULL;
2768 			return ret;
2769 		}
2770 	}
2771 
2772 	ret = uart_add_one_port(&amba_reg, &uap->port);
2773 	if (ret)
2774 		pl011_unregister_port(uap);
2775 
2776 	return ret;
2777 }
2778 
2779 static const struct serial_rs485 pl011_rs485_supported = {
2780 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781 		 SER_RS485_RX_DURING_TX,
2782 	.delay_rts_before_send = 1,
2783 	.delay_rts_after_send = 1,
2784 };
2785 
2786 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2787 {
2788 	struct uart_amba_port *uap;
2789 	struct vendor_data *vendor = id->data;
2790 	int portnr, ret;
2791 	u32 val;
2792 
2793 	portnr = pl011_find_free_port();
2794 	if (portnr < 0)
2795 		return portnr;
2796 
2797 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2798 			   GFP_KERNEL);
2799 	if (!uap)
2800 		return -ENOMEM;
2801 
2802 	uap->clk = devm_clk_get(&dev->dev, NULL);
2803 	if (IS_ERR(uap->clk))
2804 		return PTR_ERR(uap->clk);
2805 
2806 	uap->reg_offset = vendor->reg_offset;
2807 	uap->vendor = vendor;
2808 	uap->fifosize = vendor->get_fifosize(dev);
2809 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810 	uap->port.irq = dev->irq[0];
2811 	uap->port.ops = &amba_pl011_pops;
2812 	uap->port.rs485_config = pl011_rs485_config;
2813 	uap->port.rs485_supported = pl011_rs485_supported;
2814 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2815 
2816 	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2817 		switch (val) {
2818 		case 1:
2819 			uap->port.iotype = UPIO_MEM;
2820 			break;
2821 		case 4:
2822 			uap->port.iotype = UPIO_MEM32;
2823 			break;
2824 		default:
2825 			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2826 				 val);
2827 			return -EINVAL;
2828 		}
2829 	}
2830 
2831 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2832 	if (ret)
2833 		return ret;
2834 
2835 	amba_set_drvdata(dev, uap);
2836 
2837 	return pl011_register_port(uap);
2838 }
2839 
2840 static void pl011_remove(struct amba_device *dev)
2841 {
2842 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2843 
2844 	uart_remove_one_port(&amba_reg, &uap->port);
2845 	pl011_unregister_port(uap);
2846 }
2847 
2848 #ifdef CONFIG_PM_SLEEP
2849 static int pl011_suspend(struct device *dev)
2850 {
2851 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2852 
2853 	if (!uap)
2854 		return -EINVAL;
2855 
2856 	return uart_suspend_port(&amba_reg, &uap->port);
2857 }
2858 
2859 static int pl011_resume(struct device *dev)
2860 {
2861 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2862 
2863 	if (!uap)
2864 		return -EINVAL;
2865 
2866 	return uart_resume_port(&amba_reg, &uap->port);
2867 }
2868 #endif
2869 
2870 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2871 
2872 static int sbsa_uart_probe(struct platform_device *pdev)
2873 {
2874 	struct uart_amba_port *uap;
2875 	struct resource *r;
2876 	int portnr, ret;
2877 	int baudrate;
2878 
2879 	/*
2880 	 * Check the mandatory baud rate parameter in the DT node early
2881 	 * so that we can easily exit with the error.
2882 	 */
2883 	if (pdev->dev.of_node) {
2884 		struct device_node *np = pdev->dev.of_node;
2885 
2886 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2887 		if (ret)
2888 			return ret;
2889 	} else {
2890 		baudrate = 115200;
2891 	}
2892 
2893 	portnr = pl011_find_free_port();
2894 	if (portnr < 0)
2895 		return portnr;
2896 
2897 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2898 			   GFP_KERNEL);
2899 	if (!uap)
2900 		return -ENOMEM;
2901 
2902 	ret = platform_get_irq(pdev, 0);
2903 	if (ret < 0)
2904 		return ret;
2905 	uap->port.irq	= ret;
2906 
2907 #ifdef CONFIG_ACPI_SPCR_TABLE
2908 	if (qdf2400_e44_present) {
2909 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2910 		uap->vendor = &vendor_qdt_qdf2400_e44;
2911 	} else
2912 #endif
2913 		uap->vendor = &vendor_sbsa;
2914 
2915 	uap->reg_offset	= uap->vendor->reg_offset;
2916 	uap->fifosize	= 32;
2917 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2918 	uap->port.ops	= &sbsa_uart_pops;
2919 	uap->fixed_baud = baudrate;
2920 
2921 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2922 
2923 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2924 
2925 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2926 	if (ret)
2927 		return ret;
2928 
2929 	platform_set_drvdata(pdev, uap);
2930 
2931 	return pl011_register_port(uap);
2932 }
2933 
2934 static int sbsa_uart_remove(struct platform_device *pdev)
2935 {
2936 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2937 
2938 	uart_remove_one_port(&amba_reg, &uap->port);
2939 	pl011_unregister_port(uap);
2940 	return 0;
2941 }
2942 
2943 static const struct of_device_id sbsa_uart_of_match[] = {
2944 	{ .compatible = "arm,sbsa-uart", },
2945 	{},
2946 };
2947 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2948 
2949 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2950 	{ "ARMH0011", 0 },
2951 	{ "ARMHB000", 0 },
2952 	{},
2953 };
2954 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2955 
2956 static struct platform_driver arm_sbsa_uart_platform_driver = {
2957 	.probe		= sbsa_uart_probe,
2958 	.remove		= sbsa_uart_remove,
2959 	.driver	= {
2960 		.name	= "sbsa-uart",
2961 		.pm	= &pl011_dev_pm_ops,
2962 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2963 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2964 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2965 	},
2966 };
2967 
2968 static const struct amba_id pl011_ids[] = {
2969 	{
2970 		.id	= 0x00041011,
2971 		.mask	= 0x000fffff,
2972 		.data	= &vendor_arm,
2973 	},
2974 	{
2975 		.id	= 0x00380802,
2976 		.mask	= 0x00ffffff,
2977 		.data	= &vendor_st,
2978 	},
2979 	{ 0, 0 },
2980 };
2981 
2982 MODULE_DEVICE_TABLE(amba, pl011_ids);
2983 
2984 static struct amba_driver pl011_driver = {
2985 	.drv = {
2986 		.name	= "uart-pl011",
2987 		.pm	= &pl011_dev_pm_ops,
2988 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2989 	},
2990 	.id_table	= pl011_ids,
2991 	.probe		= pl011_probe,
2992 	.remove		= pl011_remove,
2993 };
2994 
2995 static int __init pl011_init(void)
2996 {
2997 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2998 
2999 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3000 		pr_warn("could not register SBSA UART platform driver\n");
3001 	return amba_driver_register(&pl011_driver);
3002 }
3003 
3004 static void __exit pl011_exit(void)
3005 {
3006 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3007 	amba_driver_unregister(&pl011_driver);
3008 }
3009 
3010 /*
3011  * While this can be a module, if builtin it's most likely the console
3012  * So let's leave module_exit but move module_init to an earlier place
3013  */
3014 arch_initcall(pl011_init);
3015 module_exit(pl011_exit);
3016 
3017 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3018 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3019 MODULE_LICENSE("GPL");
3020