xref: /linux/drivers/tty/serial/amba-pl011.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35 
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 #include <linux/pinctrl/consumer.h>
56 #include <linux/sizes.h>
57 
58 #include <asm/io.h>
59 
60 #define UART_NR			14
61 
62 #define SERIAL_AMBA_MAJOR	204
63 #define SERIAL_AMBA_MINOR	64
64 #define SERIAL_AMBA_NR		UART_NR
65 
66 #define AMBA_ISR_PASS_LIMIT	256
67 
68 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
69 #define UART_DUMMY_DR_RX	(1 << 16)
70 
71 /* There is by now at least one vendor with differing details, so handle it */
72 struct vendor_data {
73 	unsigned int		ifls;
74 	unsigned int		fifosize;
75 	unsigned int		lcrh_tx;
76 	unsigned int		lcrh_rx;
77 	bool			oversampling;
78 	bool			interrupt_may_hang;   /* vendor-specific */
79 	bool			dma_threshold;
80 	bool			cts_event_workaround;
81 };
82 
83 static struct vendor_data vendor_arm = {
84 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
85 	.fifosize		= 16,
86 	.lcrh_tx		= UART011_LCRH,
87 	.lcrh_rx		= UART011_LCRH,
88 	.oversampling		= false,
89 	.dma_threshold		= false,
90 	.cts_event_workaround	= false,
91 };
92 
93 static struct vendor_data vendor_st = {
94 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
95 	.fifosize		= 64,
96 	.lcrh_tx		= ST_UART011_LCRH_TX,
97 	.lcrh_rx		= ST_UART011_LCRH_RX,
98 	.oversampling		= true,
99 	.interrupt_may_hang	= true,
100 	.dma_threshold		= true,
101 	.cts_event_workaround	= true,
102 };
103 
104 static struct uart_amba_port *amba_ports[UART_NR];
105 
106 /* Deals with DMA transactions */
107 
108 struct pl011_sgbuf {
109 	struct scatterlist sg;
110 	char *buf;
111 };
112 
113 struct pl011_dmarx_data {
114 	struct dma_chan		*chan;
115 	struct completion	complete;
116 	bool			use_buf_b;
117 	struct pl011_sgbuf	sgbuf_a;
118 	struct pl011_sgbuf	sgbuf_b;
119 	dma_cookie_t		cookie;
120 	bool			running;
121 };
122 
123 struct pl011_dmatx_data {
124 	struct dma_chan		*chan;
125 	struct scatterlist	sg;
126 	char			*buf;
127 	bool			queued;
128 };
129 
130 /*
131  * We wrap our port structure around the generic uart_port.
132  */
133 struct uart_amba_port {
134 	struct uart_port	port;
135 	struct clk		*clk;
136 	/* Two optional pin states - default & sleep */
137 	struct pinctrl		*pinctrl;
138 	struct pinctrl_state	*pins_default;
139 	struct pinctrl_state	*pins_sleep;
140 	const struct vendor_data *vendor;
141 	unsigned int		dmacr;		/* dma control reg */
142 	unsigned int		im;		/* interrupt mask */
143 	unsigned int		old_status;
144 	unsigned int		fifosize;	/* vendor-specific */
145 	unsigned int		lcrh_tx;	/* vendor-specific */
146 	unsigned int		lcrh_rx;	/* vendor-specific */
147 	unsigned int		old_cr;		/* state during shutdown */
148 	bool			autorts;
149 	char			type[12];
150 	bool			interrupt_may_hang; /* vendor-specific */
151 #ifdef CONFIG_DMA_ENGINE
152 	/* DMA stuff */
153 	bool			using_tx_dma;
154 	bool			using_rx_dma;
155 	struct pl011_dmarx_data dmarx;
156 	struct pl011_dmatx_data	dmatx;
157 #endif
158 };
159 
160 /*
161  * Reads up to 256 characters from the FIFO or until it's empty and
162  * inserts them into the TTY layer. Returns the number of characters
163  * read from the FIFO.
164  */
165 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
166 {
167 	u16 status, ch;
168 	unsigned int flag, max_count = 256;
169 	int fifotaken = 0;
170 
171 	while (max_count--) {
172 		status = readw(uap->port.membase + UART01x_FR);
173 		if (status & UART01x_FR_RXFE)
174 			break;
175 
176 		/* Take chars from the FIFO and update status */
177 		ch = readw(uap->port.membase + UART01x_DR) |
178 			UART_DUMMY_DR_RX;
179 		flag = TTY_NORMAL;
180 		uap->port.icount.rx++;
181 		fifotaken++;
182 
183 		if (unlikely(ch & UART_DR_ERROR)) {
184 			if (ch & UART011_DR_BE) {
185 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
186 				uap->port.icount.brk++;
187 				if (uart_handle_break(&uap->port))
188 					continue;
189 			} else if (ch & UART011_DR_PE)
190 				uap->port.icount.parity++;
191 			else if (ch & UART011_DR_FE)
192 				uap->port.icount.frame++;
193 			if (ch & UART011_DR_OE)
194 				uap->port.icount.overrun++;
195 
196 			ch &= uap->port.read_status_mask;
197 
198 			if (ch & UART011_DR_BE)
199 				flag = TTY_BREAK;
200 			else if (ch & UART011_DR_PE)
201 				flag = TTY_PARITY;
202 			else if (ch & UART011_DR_FE)
203 				flag = TTY_FRAME;
204 		}
205 
206 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
207 			continue;
208 
209 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
210 	}
211 
212 	return fifotaken;
213 }
214 
215 
216 /*
217  * All the DMA operation mode stuff goes inside this ifdef.
218  * This assumes that you have a generic DMA device interface,
219  * no custom DMA interfaces are supported.
220  */
221 #ifdef CONFIG_DMA_ENGINE
222 
223 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
224 
225 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
226 	enum dma_data_direction dir)
227 {
228 	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
229 	if (!sg->buf)
230 		return -ENOMEM;
231 
232 	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
233 
234 	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
235 		kfree(sg->buf);
236 		return -EINVAL;
237 	}
238 	return 0;
239 }
240 
241 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
242 	enum dma_data_direction dir)
243 {
244 	if (sg->buf) {
245 		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
246 		kfree(sg->buf);
247 	}
248 }
249 
250 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
251 {
252 	/* DMA is the sole user of the platform data right now */
253 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
254 	struct dma_slave_config tx_conf = {
255 		.dst_addr = uap->port.mapbase + UART01x_DR,
256 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
257 		.direction = DMA_MEM_TO_DEV,
258 		.dst_maxburst = uap->fifosize >> 1,
259 		.device_fc = false,
260 	};
261 	struct dma_chan *chan;
262 	dma_cap_mask_t mask;
263 
264 	/* We need platform data */
265 	if (!plat || !plat->dma_filter) {
266 		dev_info(uap->port.dev, "no DMA platform data\n");
267 		return;
268 	}
269 
270 	/* Try to acquire a generic DMA engine slave TX channel */
271 	dma_cap_zero(mask);
272 	dma_cap_set(DMA_SLAVE, mask);
273 
274 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
275 	if (!chan) {
276 		dev_err(uap->port.dev, "no TX DMA channel!\n");
277 		return;
278 	}
279 
280 	dmaengine_slave_config(chan, &tx_conf);
281 	uap->dmatx.chan = chan;
282 
283 	dev_info(uap->port.dev, "DMA channel TX %s\n",
284 		 dma_chan_name(uap->dmatx.chan));
285 
286 	/* Optionally make use of an RX channel as well */
287 	if (plat->dma_rx_param) {
288 		struct dma_slave_config rx_conf = {
289 			.src_addr = uap->port.mapbase + UART01x_DR,
290 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
291 			.direction = DMA_DEV_TO_MEM,
292 			.src_maxburst = uap->fifosize >> 1,
293 			.device_fc = false,
294 		};
295 
296 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
297 		if (!chan) {
298 			dev_err(uap->port.dev, "no RX DMA channel!\n");
299 			return;
300 		}
301 
302 		dmaengine_slave_config(chan, &rx_conf);
303 		uap->dmarx.chan = chan;
304 
305 		dev_info(uap->port.dev, "DMA channel RX %s\n",
306 			 dma_chan_name(uap->dmarx.chan));
307 	}
308 }
309 
310 #ifndef MODULE
311 /*
312  * Stack up the UARTs and let the above initcall be done at device
313  * initcall time, because the serial driver is called as an arch
314  * initcall, and at this time the DMA subsystem is not yet registered.
315  * At this point the driver will switch over to using DMA where desired.
316  */
317 struct dma_uap {
318 	struct list_head node;
319 	struct uart_amba_port *uap;
320 };
321 
322 static LIST_HEAD(pl011_dma_uarts);
323 
324 static int __init pl011_dma_initcall(void)
325 {
326 	struct list_head *node, *tmp;
327 
328 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
329 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
330 		pl011_dma_probe_initcall(dmau->uap);
331 		list_del(node);
332 		kfree(dmau);
333 	}
334 	return 0;
335 }
336 
337 device_initcall(pl011_dma_initcall);
338 
339 static void pl011_dma_probe(struct uart_amba_port *uap)
340 {
341 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
342 	if (dmau) {
343 		dmau->uap = uap;
344 		list_add_tail(&dmau->node, &pl011_dma_uarts);
345 	}
346 }
347 #else
348 static void pl011_dma_probe(struct uart_amba_port *uap)
349 {
350 	pl011_dma_probe_initcall(uap);
351 }
352 #endif
353 
354 static void pl011_dma_remove(struct uart_amba_port *uap)
355 {
356 	/* TODO: remove the initcall if it has not yet executed */
357 	if (uap->dmatx.chan)
358 		dma_release_channel(uap->dmatx.chan);
359 	if (uap->dmarx.chan)
360 		dma_release_channel(uap->dmarx.chan);
361 }
362 
363 /* Forward declare this for the refill routine */
364 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
365 
366 /*
367  * The current DMA TX buffer has been sent.
368  * Try to queue up another DMA buffer.
369  */
370 static void pl011_dma_tx_callback(void *data)
371 {
372 	struct uart_amba_port *uap = data;
373 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
374 	unsigned long flags;
375 	u16 dmacr;
376 
377 	spin_lock_irqsave(&uap->port.lock, flags);
378 	if (uap->dmatx.queued)
379 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
380 			     DMA_TO_DEVICE);
381 
382 	dmacr = uap->dmacr;
383 	uap->dmacr = dmacr & ~UART011_TXDMAE;
384 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
385 
386 	/*
387 	 * If TX DMA was disabled, it means that we've stopped the DMA for
388 	 * some reason (eg, XOFF received, or we want to send an X-char.)
389 	 *
390 	 * Note: we need to be careful here of a potential race between DMA
391 	 * and the rest of the driver - if the driver disables TX DMA while
392 	 * a TX buffer completing, we must update the tx queued status to
393 	 * get further refills (hence we check dmacr).
394 	 */
395 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
396 	    uart_circ_empty(&uap->port.state->xmit)) {
397 		uap->dmatx.queued = false;
398 		spin_unlock_irqrestore(&uap->port.lock, flags);
399 		return;
400 	}
401 
402 	if (pl011_dma_tx_refill(uap) <= 0) {
403 		/*
404 		 * We didn't queue a DMA buffer for some reason, but we
405 		 * have data pending to be sent.  Re-enable the TX IRQ.
406 		 */
407 		uap->im |= UART011_TXIM;
408 		writew(uap->im, uap->port.membase + UART011_IMSC);
409 	}
410 	spin_unlock_irqrestore(&uap->port.lock, flags);
411 }
412 
413 /*
414  * Try to refill the TX DMA buffer.
415  * Locking: called with port lock held and IRQs disabled.
416  * Returns:
417  *   1 if we queued up a TX DMA buffer.
418  *   0 if we didn't want to handle this by DMA
419  *  <0 on error
420  */
421 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
422 {
423 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
424 	struct dma_chan *chan = dmatx->chan;
425 	struct dma_device *dma_dev = chan->device;
426 	struct dma_async_tx_descriptor *desc;
427 	struct circ_buf *xmit = &uap->port.state->xmit;
428 	unsigned int count;
429 
430 	/*
431 	 * Try to avoid the overhead involved in using DMA if the
432 	 * transaction fits in the first half of the FIFO, by using
433 	 * the standard interrupt handling.  This ensures that we
434 	 * issue a uart_write_wakeup() at the appropriate time.
435 	 */
436 	count = uart_circ_chars_pending(xmit);
437 	if (count < (uap->fifosize >> 1)) {
438 		uap->dmatx.queued = false;
439 		return 0;
440 	}
441 
442 	/*
443 	 * Bodge: don't send the last character by DMA, as this
444 	 * will prevent XON from notifying us to restart DMA.
445 	 */
446 	count -= 1;
447 
448 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
449 	if (count > PL011_DMA_BUFFER_SIZE)
450 		count = PL011_DMA_BUFFER_SIZE;
451 
452 	if (xmit->tail < xmit->head)
453 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
454 	else {
455 		size_t first = UART_XMIT_SIZE - xmit->tail;
456 		size_t second = xmit->head;
457 
458 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
459 		if (second)
460 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
461 	}
462 
463 	dmatx->sg.length = count;
464 
465 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
466 		uap->dmatx.queued = false;
467 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
468 		return -EBUSY;
469 	}
470 
471 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
472 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
473 	if (!desc) {
474 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
475 		uap->dmatx.queued = false;
476 		/*
477 		 * If DMA cannot be used right now, we complete this
478 		 * transaction via IRQ and let the TTY layer retry.
479 		 */
480 		dev_dbg(uap->port.dev, "TX DMA busy\n");
481 		return -EBUSY;
482 	}
483 
484 	/* Some data to go along to the callback */
485 	desc->callback = pl011_dma_tx_callback;
486 	desc->callback_param = uap;
487 
488 	/* All errors should happen at prepare time */
489 	dmaengine_submit(desc);
490 
491 	/* Fire the DMA transaction */
492 	dma_dev->device_issue_pending(chan);
493 
494 	uap->dmacr |= UART011_TXDMAE;
495 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
496 	uap->dmatx.queued = true;
497 
498 	/*
499 	 * Now we know that DMA will fire, so advance the ring buffer
500 	 * with the stuff we just dispatched.
501 	 */
502 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
503 	uap->port.icount.tx += count;
504 
505 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
506 		uart_write_wakeup(&uap->port);
507 
508 	return 1;
509 }
510 
511 /*
512  * We received a transmit interrupt without a pending X-char but with
513  * pending characters.
514  * Locking: called with port lock held and IRQs disabled.
515  * Returns:
516  *   false if we want to use PIO to transmit
517  *   true if we queued a DMA buffer
518  */
519 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
520 {
521 	if (!uap->using_tx_dma)
522 		return false;
523 
524 	/*
525 	 * If we already have a TX buffer queued, but received a
526 	 * TX interrupt, it will be because we've just sent an X-char.
527 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
528 	 */
529 	if (uap->dmatx.queued) {
530 		uap->dmacr |= UART011_TXDMAE;
531 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
532 		uap->im &= ~UART011_TXIM;
533 		writew(uap->im, uap->port.membase + UART011_IMSC);
534 		return true;
535 	}
536 
537 	/*
538 	 * We don't have a TX buffer queued, so try to queue one.
539 	 * If we successfully queued a buffer, mask the TX IRQ.
540 	 */
541 	if (pl011_dma_tx_refill(uap) > 0) {
542 		uap->im &= ~UART011_TXIM;
543 		writew(uap->im, uap->port.membase + UART011_IMSC);
544 		return true;
545 	}
546 	return false;
547 }
548 
549 /*
550  * Stop the DMA transmit (eg, due to received XOFF).
551  * Locking: called with port lock held and IRQs disabled.
552  */
553 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
554 {
555 	if (uap->dmatx.queued) {
556 		uap->dmacr &= ~UART011_TXDMAE;
557 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
558 	}
559 }
560 
561 /*
562  * Try to start a DMA transmit, or in the case of an XON/OFF
563  * character queued for send, try to get that character out ASAP.
564  * Locking: called with port lock held and IRQs disabled.
565  * Returns:
566  *   false if we want the TX IRQ to be enabled
567  *   true if we have a buffer queued
568  */
569 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
570 {
571 	u16 dmacr;
572 
573 	if (!uap->using_tx_dma)
574 		return false;
575 
576 	if (!uap->port.x_char) {
577 		/* no X-char, try to push chars out in DMA mode */
578 		bool ret = true;
579 
580 		if (!uap->dmatx.queued) {
581 			if (pl011_dma_tx_refill(uap) > 0) {
582 				uap->im &= ~UART011_TXIM;
583 				ret = true;
584 			} else {
585 				uap->im |= UART011_TXIM;
586 				ret = false;
587 			}
588 			writew(uap->im, uap->port.membase + UART011_IMSC);
589 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
590 			uap->dmacr |= UART011_TXDMAE;
591 			writew(uap->dmacr,
592 				       uap->port.membase + UART011_DMACR);
593 		}
594 		return ret;
595 	}
596 
597 	/*
598 	 * We have an X-char to send.  Disable DMA to prevent it loading
599 	 * the TX fifo, and then see if we can stuff it into the FIFO.
600 	 */
601 	dmacr = uap->dmacr;
602 	uap->dmacr &= ~UART011_TXDMAE;
603 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
604 
605 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
606 		/*
607 		 * No space in the FIFO, so enable the transmit interrupt
608 		 * so we know when there is space.  Note that once we've
609 		 * loaded the character, we should just re-enable DMA.
610 		 */
611 		return false;
612 	}
613 
614 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
615 	uap->port.icount.tx++;
616 	uap->port.x_char = 0;
617 
618 	/* Success - restore the DMA state */
619 	uap->dmacr = dmacr;
620 	writew(dmacr, uap->port.membase + UART011_DMACR);
621 
622 	return true;
623 }
624 
625 /*
626  * Flush the transmit buffer.
627  * Locking: called with port lock held and IRQs disabled.
628  */
629 static void pl011_dma_flush_buffer(struct uart_port *port)
630 {
631 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
632 
633 	if (!uap->using_tx_dma)
634 		return;
635 
636 	/* Avoid deadlock with the DMA engine callback */
637 	spin_unlock(&uap->port.lock);
638 	dmaengine_terminate_all(uap->dmatx.chan);
639 	spin_lock(&uap->port.lock);
640 	if (uap->dmatx.queued) {
641 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
642 			     DMA_TO_DEVICE);
643 		uap->dmatx.queued = false;
644 		uap->dmacr &= ~UART011_TXDMAE;
645 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
646 	}
647 }
648 
649 static void pl011_dma_rx_callback(void *data);
650 
651 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
652 {
653 	struct dma_chan *rxchan = uap->dmarx.chan;
654 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
655 	struct dma_async_tx_descriptor *desc;
656 	struct pl011_sgbuf *sgbuf;
657 
658 	if (!rxchan)
659 		return -EIO;
660 
661 	/* Start the RX DMA job */
662 	sgbuf = uap->dmarx.use_buf_b ?
663 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
664 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
665 					DMA_DEV_TO_MEM,
666 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
667 	/*
668 	 * If the DMA engine is busy and cannot prepare a
669 	 * channel, no big deal, the driver will fall back
670 	 * to interrupt mode as a result of this error code.
671 	 */
672 	if (!desc) {
673 		uap->dmarx.running = false;
674 		dmaengine_terminate_all(rxchan);
675 		return -EBUSY;
676 	}
677 
678 	/* Some data to go along to the callback */
679 	desc->callback = pl011_dma_rx_callback;
680 	desc->callback_param = uap;
681 	dmarx->cookie = dmaengine_submit(desc);
682 	dma_async_issue_pending(rxchan);
683 
684 	uap->dmacr |= UART011_RXDMAE;
685 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
686 	uap->dmarx.running = true;
687 
688 	uap->im &= ~UART011_RXIM;
689 	writew(uap->im, uap->port.membase + UART011_IMSC);
690 
691 	return 0;
692 }
693 
694 /*
695  * This is called when either the DMA job is complete, or
696  * the FIFO timeout interrupt occurred. This must be called
697  * with the port spinlock uap->port.lock held.
698  */
699 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
700 			       u32 pending, bool use_buf_b,
701 			       bool readfifo)
702 {
703 	struct tty_struct *tty = uap->port.state->port.tty;
704 	struct pl011_sgbuf *sgbuf = use_buf_b ?
705 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
706 	struct device *dev = uap->dmarx.chan->device->dev;
707 	int dma_count = 0;
708 	u32 fifotaken = 0; /* only used for vdbg() */
709 
710 	/* Pick everything from the DMA first */
711 	if (pending) {
712 		/* Sync in buffer */
713 		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
714 
715 		/*
716 		 * First take all chars in the DMA pipe, then look in the FIFO.
717 		 * Note that tty_insert_flip_buf() tries to take as many chars
718 		 * as it can.
719 		 */
720 		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
721 						   sgbuf->buf, pending);
722 
723 		/* Return buffer to device */
724 		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
725 
726 		uap->port.icount.rx += dma_count;
727 		if (dma_count < pending)
728 			dev_warn(uap->port.dev,
729 				 "couldn't insert all characters (TTY is full?)\n");
730 	}
731 
732 	/*
733 	 * Only continue with trying to read the FIFO if all DMA chars have
734 	 * been taken first.
735 	 */
736 	if (dma_count == pending && readfifo) {
737 		/* Clear any error flags */
738 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
739 		       uap->port.membase + UART011_ICR);
740 
741 		/*
742 		 * If we read all the DMA'd characters, and we had an
743 		 * incomplete buffer, that could be due to an rx error, or
744 		 * maybe we just timed out. Read any pending chars and check
745 		 * the error status.
746 		 *
747 		 * Error conditions will only occur in the FIFO, these will
748 		 * trigger an immediate interrupt and stop the DMA job, so we
749 		 * will always find the error in the FIFO, never in the DMA
750 		 * buffer.
751 		 */
752 		fifotaken = pl011_fifo_to_tty(uap);
753 	}
754 
755 	spin_unlock(&uap->port.lock);
756 	dev_vdbg(uap->port.dev,
757 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
758 		 dma_count, fifotaken);
759 	tty_flip_buffer_push(tty);
760 	spin_lock(&uap->port.lock);
761 }
762 
763 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
764 {
765 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
766 	struct dma_chan *rxchan = dmarx->chan;
767 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
768 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
769 	size_t pending;
770 	struct dma_tx_state state;
771 	enum dma_status dmastat;
772 
773 	/*
774 	 * Pause the transfer so we can trust the current counter,
775 	 * do this before we pause the PL011 block, else we may
776 	 * overflow the FIFO.
777 	 */
778 	if (dmaengine_pause(rxchan))
779 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
780 	dmastat = rxchan->device->device_tx_status(rxchan,
781 						   dmarx->cookie, &state);
782 	if (dmastat != DMA_PAUSED)
783 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
784 
785 	/* Disable RX DMA - incoming data will wait in the FIFO */
786 	uap->dmacr &= ~UART011_RXDMAE;
787 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
788 	uap->dmarx.running = false;
789 
790 	pending = sgbuf->sg.length - state.residue;
791 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
792 	/* Then we terminate the transfer - we now know our residue */
793 	dmaengine_terminate_all(rxchan);
794 
795 	/*
796 	 * This will take the chars we have so far and insert
797 	 * into the framework.
798 	 */
799 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
800 
801 	/* Switch buffer & re-trigger DMA job */
802 	dmarx->use_buf_b = !dmarx->use_buf_b;
803 	if (pl011_dma_rx_trigger_dma(uap)) {
804 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
805 			"fall back to interrupt mode\n");
806 		uap->im |= UART011_RXIM;
807 		writew(uap->im, uap->port.membase + UART011_IMSC);
808 	}
809 }
810 
811 static void pl011_dma_rx_callback(void *data)
812 {
813 	struct uart_amba_port *uap = data;
814 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
815 	struct dma_chan *rxchan = dmarx->chan;
816 	bool lastbuf = dmarx->use_buf_b;
817 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
818 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
819 	size_t pending;
820 	struct dma_tx_state state;
821 	int ret;
822 
823 	/*
824 	 * This completion interrupt occurs typically when the
825 	 * RX buffer is totally stuffed but no timeout has yet
826 	 * occurred. When that happens, we just want the RX
827 	 * routine to flush out the secondary DMA buffer while
828 	 * we immediately trigger the next DMA job.
829 	 */
830 	spin_lock_irq(&uap->port.lock);
831 	/*
832 	 * Rx data can be taken by the UART interrupts during
833 	 * the DMA irq handler. So we check the residue here.
834 	 */
835 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
836 	pending = sgbuf->sg.length - state.residue;
837 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
838 	/* Then we terminate the transfer - we now know our residue */
839 	dmaengine_terminate_all(rxchan);
840 
841 	uap->dmarx.running = false;
842 	dmarx->use_buf_b = !lastbuf;
843 	ret = pl011_dma_rx_trigger_dma(uap);
844 
845 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
846 	spin_unlock_irq(&uap->port.lock);
847 	/*
848 	 * Do this check after we picked the DMA chars so we don't
849 	 * get some IRQ immediately from RX.
850 	 */
851 	if (ret) {
852 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
853 			"fall back to interrupt mode\n");
854 		uap->im |= UART011_RXIM;
855 		writew(uap->im, uap->port.membase + UART011_IMSC);
856 	}
857 }
858 
859 /*
860  * Stop accepting received characters, when we're shutting down or
861  * suspending this port.
862  * Locking: called with port lock held and IRQs disabled.
863  */
864 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
865 {
866 	/* FIXME.  Just disable the DMA enable */
867 	uap->dmacr &= ~UART011_RXDMAE;
868 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
869 }
870 
871 static void pl011_dma_startup(struct uart_amba_port *uap)
872 {
873 	int ret;
874 
875 	if (!uap->dmatx.chan)
876 		return;
877 
878 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
879 	if (!uap->dmatx.buf) {
880 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
881 		uap->port.fifosize = uap->fifosize;
882 		return;
883 	}
884 
885 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
886 
887 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
888 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
889 	uap->using_tx_dma = true;
890 
891 	if (!uap->dmarx.chan)
892 		goto skip_rx;
893 
894 	/* Allocate and map DMA RX buffers */
895 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
896 			       DMA_FROM_DEVICE);
897 	if (ret) {
898 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
899 			"RX buffer A", ret);
900 		goto skip_rx;
901 	}
902 
903 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
904 			       DMA_FROM_DEVICE);
905 	if (ret) {
906 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
907 			"RX buffer B", ret);
908 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
909 				 DMA_FROM_DEVICE);
910 		goto skip_rx;
911 	}
912 
913 	uap->using_rx_dma = true;
914 
915 skip_rx:
916 	/* Turn on DMA error (RX/TX will be enabled on demand) */
917 	uap->dmacr |= UART011_DMAONERR;
918 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
919 
920 	/*
921 	 * ST Micro variants has some specific dma burst threshold
922 	 * compensation. Set this to 16 bytes, so burst will only
923 	 * be issued above/below 16 bytes.
924 	 */
925 	if (uap->vendor->dma_threshold)
926 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
927 			       uap->port.membase + ST_UART011_DMAWM);
928 
929 	if (uap->using_rx_dma) {
930 		if (pl011_dma_rx_trigger_dma(uap))
931 			dev_dbg(uap->port.dev, "could not trigger initial "
932 				"RX DMA job, fall back to interrupt mode\n");
933 	}
934 }
935 
936 static void pl011_dma_shutdown(struct uart_amba_port *uap)
937 {
938 	if (!(uap->using_tx_dma || uap->using_rx_dma))
939 		return;
940 
941 	/* Disable RX and TX DMA */
942 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
943 		barrier();
944 
945 	spin_lock_irq(&uap->port.lock);
946 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
947 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
948 	spin_unlock_irq(&uap->port.lock);
949 
950 	if (uap->using_tx_dma) {
951 		/* In theory, this should already be done by pl011_dma_flush_buffer */
952 		dmaengine_terminate_all(uap->dmatx.chan);
953 		if (uap->dmatx.queued) {
954 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
955 				     DMA_TO_DEVICE);
956 			uap->dmatx.queued = false;
957 		}
958 
959 		kfree(uap->dmatx.buf);
960 		uap->using_tx_dma = false;
961 	}
962 
963 	if (uap->using_rx_dma) {
964 		dmaengine_terminate_all(uap->dmarx.chan);
965 		/* Clean up the RX DMA */
966 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
967 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
968 		uap->using_rx_dma = false;
969 	}
970 }
971 
972 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
973 {
974 	return uap->using_rx_dma;
975 }
976 
977 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
978 {
979 	return uap->using_rx_dma && uap->dmarx.running;
980 }
981 
982 
983 #else
984 /* Blank functions if the DMA engine is not available */
985 static inline void pl011_dma_probe(struct uart_amba_port *uap)
986 {
987 }
988 
989 static inline void pl011_dma_remove(struct uart_amba_port *uap)
990 {
991 }
992 
993 static inline void pl011_dma_startup(struct uart_amba_port *uap)
994 {
995 }
996 
997 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
998 {
999 }
1000 
1001 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1002 {
1003 	return false;
1004 }
1005 
1006 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1007 {
1008 }
1009 
1010 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1011 {
1012 	return false;
1013 }
1014 
1015 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1016 {
1017 }
1018 
1019 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1020 {
1021 }
1022 
1023 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1024 {
1025 	return -EIO;
1026 }
1027 
1028 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1029 {
1030 	return false;
1031 }
1032 
1033 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1034 {
1035 	return false;
1036 }
1037 
1038 #define pl011_dma_flush_buffer	NULL
1039 #endif
1040 
1041 static void pl011_stop_tx(struct uart_port *port)
1042 {
1043 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1044 
1045 	uap->im &= ~UART011_TXIM;
1046 	writew(uap->im, uap->port.membase + UART011_IMSC);
1047 	pl011_dma_tx_stop(uap);
1048 }
1049 
1050 static void pl011_start_tx(struct uart_port *port)
1051 {
1052 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1053 
1054 	if (!pl011_dma_tx_start(uap)) {
1055 		uap->im |= UART011_TXIM;
1056 		writew(uap->im, uap->port.membase + UART011_IMSC);
1057 	}
1058 }
1059 
1060 static void pl011_stop_rx(struct uart_port *port)
1061 {
1062 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1063 
1064 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1065 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1066 	writew(uap->im, uap->port.membase + UART011_IMSC);
1067 
1068 	pl011_dma_rx_stop(uap);
1069 }
1070 
1071 static void pl011_enable_ms(struct uart_port *port)
1072 {
1073 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1074 
1075 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1076 	writew(uap->im, uap->port.membase + UART011_IMSC);
1077 }
1078 
1079 static void pl011_rx_chars(struct uart_amba_port *uap)
1080 {
1081 	struct tty_struct *tty = uap->port.state->port.tty;
1082 
1083 	pl011_fifo_to_tty(uap);
1084 
1085 	spin_unlock(&uap->port.lock);
1086 	tty_flip_buffer_push(tty);
1087 	/*
1088 	 * If we were temporarily out of DMA mode for a while,
1089 	 * attempt to switch back to DMA mode again.
1090 	 */
1091 	if (pl011_dma_rx_available(uap)) {
1092 		if (pl011_dma_rx_trigger_dma(uap)) {
1093 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1094 				"fall back to interrupt mode again\n");
1095 			uap->im |= UART011_RXIM;
1096 		} else
1097 			uap->im &= ~UART011_RXIM;
1098 		writew(uap->im, uap->port.membase + UART011_IMSC);
1099 	}
1100 	spin_lock(&uap->port.lock);
1101 }
1102 
1103 static void pl011_tx_chars(struct uart_amba_port *uap)
1104 {
1105 	struct circ_buf *xmit = &uap->port.state->xmit;
1106 	int count;
1107 
1108 	if (uap->port.x_char) {
1109 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1110 		uap->port.icount.tx++;
1111 		uap->port.x_char = 0;
1112 		return;
1113 	}
1114 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1115 		pl011_stop_tx(&uap->port);
1116 		return;
1117 	}
1118 
1119 	/* If we are using DMA mode, try to send some characters. */
1120 	if (pl011_dma_tx_irq(uap))
1121 		return;
1122 
1123 	count = uap->fifosize >> 1;
1124 	do {
1125 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1126 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1127 		uap->port.icount.tx++;
1128 		if (uart_circ_empty(xmit))
1129 			break;
1130 	} while (--count > 0);
1131 
1132 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1133 		uart_write_wakeup(&uap->port);
1134 
1135 	if (uart_circ_empty(xmit))
1136 		pl011_stop_tx(&uap->port);
1137 }
1138 
1139 static void pl011_modem_status(struct uart_amba_port *uap)
1140 {
1141 	unsigned int status, delta;
1142 
1143 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1144 
1145 	delta = status ^ uap->old_status;
1146 	uap->old_status = status;
1147 
1148 	if (!delta)
1149 		return;
1150 
1151 	if (delta & UART01x_FR_DCD)
1152 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1153 
1154 	if (delta & UART01x_FR_DSR)
1155 		uap->port.icount.dsr++;
1156 
1157 	if (delta & UART01x_FR_CTS)
1158 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1159 
1160 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1161 }
1162 
1163 static irqreturn_t pl011_int(int irq, void *dev_id)
1164 {
1165 	struct uart_amba_port *uap = dev_id;
1166 	unsigned long flags;
1167 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1168 	int handled = 0;
1169 	unsigned int dummy_read;
1170 
1171 	spin_lock_irqsave(&uap->port.lock, flags);
1172 
1173 	status = readw(uap->port.membase + UART011_MIS);
1174 	if (status) {
1175 		do {
1176 			if (uap->vendor->cts_event_workaround) {
1177 				/* workaround to make sure that all bits are unlocked.. */
1178 				writew(0x00, uap->port.membase + UART011_ICR);
1179 
1180 				/*
1181 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1182 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1183 				 * so add 2 dummy reads
1184 				 */
1185 				dummy_read = readw(uap->port.membase + UART011_ICR);
1186 				dummy_read = readw(uap->port.membase + UART011_ICR);
1187 			}
1188 
1189 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1190 					  UART011_RXIS),
1191 			       uap->port.membase + UART011_ICR);
1192 
1193 			if (status & (UART011_RTIS|UART011_RXIS)) {
1194 				if (pl011_dma_rx_running(uap))
1195 					pl011_dma_rx_irq(uap);
1196 				else
1197 					pl011_rx_chars(uap);
1198 			}
1199 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1200 				      UART011_CTSMIS|UART011_RIMIS))
1201 				pl011_modem_status(uap);
1202 			if (status & UART011_TXIS)
1203 				pl011_tx_chars(uap);
1204 
1205 			if (pass_counter-- == 0)
1206 				break;
1207 
1208 			status = readw(uap->port.membase + UART011_MIS);
1209 		} while (status != 0);
1210 		handled = 1;
1211 	}
1212 
1213 	spin_unlock_irqrestore(&uap->port.lock, flags);
1214 
1215 	return IRQ_RETVAL(handled);
1216 }
1217 
1218 static unsigned int pl01x_tx_empty(struct uart_port *port)
1219 {
1220 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1221 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1222 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1223 }
1224 
1225 static unsigned int pl01x_get_mctrl(struct uart_port *port)
1226 {
1227 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1228 	unsigned int result = 0;
1229 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1230 
1231 #define TIOCMBIT(uartbit, tiocmbit)	\
1232 	if (status & uartbit)		\
1233 		result |= tiocmbit
1234 
1235 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1236 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1237 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1238 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1239 #undef TIOCMBIT
1240 	return result;
1241 }
1242 
1243 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1244 {
1245 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1246 	unsigned int cr;
1247 
1248 	cr = readw(uap->port.membase + UART011_CR);
1249 
1250 #define	TIOCMBIT(tiocmbit, uartbit)		\
1251 	if (mctrl & tiocmbit)		\
1252 		cr |= uartbit;		\
1253 	else				\
1254 		cr &= ~uartbit
1255 
1256 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1257 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1258 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1259 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1260 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1261 
1262 	if (uap->autorts) {
1263 		/* We need to disable auto-RTS if we want to turn RTS off */
1264 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1265 	}
1266 #undef TIOCMBIT
1267 
1268 	writew(cr, uap->port.membase + UART011_CR);
1269 }
1270 
1271 static void pl011_break_ctl(struct uart_port *port, int break_state)
1272 {
1273 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1274 	unsigned long flags;
1275 	unsigned int lcr_h;
1276 
1277 	spin_lock_irqsave(&uap->port.lock, flags);
1278 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1279 	if (break_state == -1)
1280 		lcr_h |= UART01x_LCRH_BRK;
1281 	else
1282 		lcr_h &= ~UART01x_LCRH_BRK;
1283 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1284 	spin_unlock_irqrestore(&uap->port.lock, flags);
1285 }
1286 
1287 #ifdef CONFIG_CONSOLE_POLL
1288 static int pl010_get_poll_char(struct uart_port *port)
1289 {
1290 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1291 	unsigned int status;
1292 
1293 	status = readw(uap->port.membase + UART01x_FR);
1294 	if (status & UART01x_FR_RXFE)
1295 		return NO_POLL_CHAR;
1296 
1297 	return readw(uap->port.membase + UART01x_DR);
1298 }
1299 
1300 static void pl010_put_poll_char(struct uart_port *port,
1301 			 unsigned char ch)
1302 {
1303 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1304 
1305 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1306 		barrier();
1307 
1308 	writew(ch, uap->port.membase + UART01x_DR);
1309 }
1310 
1311 #endif /* CONFIG_CONSOLE_POLL */
1312 
1313 static int pl011_startup(struct uart_port *port)
1314 {
1315 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1316 	unsigned int cr;
1317 	int retval;
1318 
1319 	/* Optionaly enable pins to be muxed in and configured */
1320 	if (!IS_ERR(uap->pins_default)) {
1321 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1322 		if (retval)
1323 			dev_err(port->dev,
1324 				"could not set default pins\n");
1325 	}
1326 
1327 	retval = clk_prepare(uap->clk);
1328 	if (retval)
1329 		goto out;
1330 
1331 	/*
1332 	 * Try to enable the clock producer.
1333 	 */
1334 	retval = clk_enable(uap->clk);
1335 	if (retval)
1336 		goto clk_unprep;
1337 
1338 	uap->port.uartclk = clk_get_rate(uap->clk);
1339 
1340 	/* Clear pending error and receive interrupts */
1341 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1342 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1343 
1344 	/*
1345 	 * Allocate the IRQ
1346 	 */
1347 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1348 	if (retval)
1349 		goto clk_dis;
1350 
1351 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1352 
1353 	/*
1354 	 * Provoke TX FIFO interrupt into asserting.
1355 	 */
1356 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1357 	writew(cr, uap->port.membase + UART011_CR);
1358 	writew(0, uap->port.membase + UART011_FBRD);
1359 	writew(1, uap->port.membase + UART011_IBRD);
1360 	writew(0, uap->port.membase + uap->lcrh_rx);
1361 	if (uap->lcrh_tx != uap->lcrh_rx) {
1362 		int i;
1363 		/*
1364 		 * Wait 10 PCLKs before writing LCRH_TX register,
1365 		 * to get this delay write read only register 10 times
1366 		 */
1367 		for (i = 0; i < 10; ++i)
1368 			writew(0xff, uap->port.membase + UART011_MIS);
1369 		writew(0, uap->port.membase + uap->lcrh_tx);
1370 	}
1371 	writew(0, uap->port.membase + UART01x_DR);
1372 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1373 		barrier();
1374 
1375 	/* restore RTS and DTR */
1376 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1377 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1378 	writew(cr, uap->port.membase + UART011_CR);
1379 
1380 	/*
1381 	 * initialise the old status of the modem signals
1382 	 */
1383 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1384 
1385 	/* Startup DMA */
1386 	pl011_dma_startup(uap);
1387 
1388 	/*
1389 	 * Finally, enable interrupts, only timeouts when using DMA
1390 	 * if initial RX DMA job failed, start in interrupt mode
1391 	 * as well.
1392 	 */
1393 	spin_lock_irq(&uap->port.lock);
1394 	/* Clear out any spuriously appearing RX interrupts */
1395 	 writew(UART011_RTIS | UART011_RXIS,
1396 		uap->port.membase + UART011_ICR);
1397 	uap->im = UART011_RTIM;
1398 	if (!pl011_dma_rx_running(uap))
1399 		uap->im |= UART011_RXIM;
1400 	writew(uap->im, uap->port.membase + UART011_IMSC);
1401 	spin_unlock_irq(&uap->port.lock);
1402 
1403 	if (uap->port.dev->platform_data) {
1404 		struct amba_pl011_data *plat;
1405 
1406 		plat = uap->port.dev->platform_data;
1407 		if (plat->init)
1408 			plat->init();
1409 	}
1410 
1411 	return 0;
1412 
1413  clk_dis:
1414 	clk_disable(uap->clk);
1415  clk_unprep:
1416 	clk_unprepare(uap->clk);
1417  out:
1418 	return retval;
1419 }
1420 
1421 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1422 					unsigned int lcrh)
1423 {
1424       unsigned long val;
1425 
1426       val = readw(uap->port.membase + lcrh);
1427       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1428       writew(val, uap->port.membase + lcrh);
1429 }
1430 
1431 static void pl011_shutdown(struct uart_port *port)
1432 {
1433 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1434 	unsigned int cr;
1435 	int retval;
1436 
1437 	/*
1438 	 * disable all interrupts
1439 	 */
1440 	spin_lock_irq(&uap->port.lock);
1441 	uap->im = 0;
1442 	writew(uap->im, uap->port.membase + UART011_IMSC);
1443 	writew(0xffff, uap->port.membase + UART011_ICR);
1444 	spin_unlock_irq(&uap->port.lock);
1445 
1446 	pl011_dma_shutdown(uap);
1447 
1448 	/*
1449 	 * Free the interrupt
1450 	 */
1451 	free_irq(uap->port.irq, uap);
1452 
1453 	/*
1454 	 * disable the port
1455 	 * disable the port. It should not disable RTS and DTR.
1456 	 * Also RTS and DTR state should be preserved to restore
1457 	 * it during startup().
1458 	 */
1459 	uap->autorts = false;
1460 	cr = readw(uap->port.membase + UART011_CR);
1461 	uap->old_cr = cr;
1462 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1463 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1464 	writew(cr, uap->port.membase + UART011_CR);
1465 
1466 	/*
1467 	 * disable break condition and fifos
1468 	 */
1469 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1470 	if (uap->lcrh_rx != uap->lcrh_tx)
1471 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1472 
1473 	/*
1474 	 * Shut down the clock producer
1475 	 */
1476 	clk_disable(uap->clk);
1477 	clk_unprepare(uap->clk);
1478 	/* Optionally let pins go into sleep states */
1479 	if (!IS_ERR(uap->pins_sleep)) {
1480 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1481 		if (retval)
1482 			dev_err(port->dev,
1483 				"could not set pins to sleep state\n");
1484 	}
1485 
1486 
1487 	if (uap->port.dev->platform_data) {
1488 		struct amba_pl011_data *plat;
1489 
1490 		plat = uap->port.dev->platform_data;
1491 		if (plat->exit)
1492 			plat->exit();
1493 	}
1494 
1495 }
1496 
1497 static void
1498 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1499 		     struct ktermios *old)
1500 {
1501 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1502 	unsigned int lcr_h, old_cr;
1503 	unsigned long flags;
1504 	unsigned int baud, quot, clkdiv;
1505 
1506 	if (uap->vendor->oversampling)
1507 		clkdiv = 8;
1508 	else
1509 		clkdiv = 16;
1510 
1511 	/*
1512 	 * Ask the core to calculate the divisor for us.
1513 	 */
1514 	baud = uart_get_baud_rate(port, termios, old, 0,
1515 				  port->uartclk / clkdiv);
1516 
1517 	if (baud > port->uartclk/16)
1518 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1519 	else
1520 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1521 
1522 	switch (termios->c_cflag & CSIZE) {
1523 	case CS5:
1524 		lcr_h = UART01x_LCRH_WLEN_5;
1525 		break;
1526 	case CS6:
1527 		lcr_h = UART01x_LCRH_WLEN_6;
1528 		break;
1529 	case CS7:
1530 		lcr_h = UART01x_LCRH_WLEN_7;
1531 		break;
1532 	default: // CS8
1533 		lcr_h = UART01x_LCRH_WLEN_8;
1534 		break;
1535 	}
1536 	if (termios->c_cflag & CSTOPB)
1537 		lcr_h |= UART01x_LCRH_STP2;
1538 	if (termios->c_cflag & PARENB) {
1539 		lcr_h |= UART01x_LCRH_PEN;
1540 		if (!(termios->c_cflag & PARODD))
1541 			lcr_h |= UART01x_LCRH_EPS;
1542 	}
1543 	if (uap->fifosize > 1)
1544 		lcr_h |= UART01x_LCRH_FEN;
1545 
1546 	spin_lock_irqsave(&port->lock, flags);
1547 
1548 	/*
1549 	 * Update the per-port timeout.
1550 	 */
1551 	uart_update_timeout(port, termios->c_cflag, baud);
1552 
1553 	port->read_status_mask = UART011_DR_OE | 255;
1554 	if (termios->c_iflag & INPCK)
1555 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1556 	if (termios->c_iflag & (BRKINT | PARMRK))
1557 		port->read_status_mask |= UART011_DR_BE;
1558 
1559 	/*
1560 	 * Characters to ignore
1561 	 */
1562 	port->ignore_status_mask = 0;
1563 	if (termios->c_iflag & IGNPAR)
1564 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1565 	if (termios->c_iflag & IGNBRK) {
1566 		port->ignore_status_mask |= UART011_DR_BE;
1567 		/*
1568 		 * If we're ignoring parity and break indicators,
1569 		 * ignore overruns too (for real raw support).
1570 		 */
1571 		if (termios->c_iflag & IGNPAR)
1572 			port->ignore_status_mask |= UART011_DR_OE;
1573 	}
1574 
1575 	/*
1576 	 * Ignore all characters if CREAD is not set.
1577 	 */
1578 	if ((termios->c_cflag & CREAD) == 0)
1579 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1580 
1581 	if (UART_ENABLE_MS(port, termios->c_cflag))
1582 		pl011_enable_ms(port);
1583 
1584 	/* first, disable everything */
1585 	old_cr = readw(port->membase + UART011_CR);
1586 	writew(0, port->membase + UART011_CR);
1587 
1588 	if (termios->c_cflag & CRTSCTS) {
1589 		if (old_cr & UART011_CR_RTS)
1590 			old_cr |= UART011_CR_RTSEN;
1591 
1592 		old_cr |= UART011_CR_CTSEN;
1593 		uap->autorts = true;
1594 	} else {
1595 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1596 		uap->autorts = false;
1597 	}
1598 
1599 	if (uap->vendor->oversampling) {
1600 		if (baud > port->uartclk / 16)
1601 			old_cr |= ST_UART011_CR_OVSFACT;
1602 		else
1603 			old_cr &= ~ST_UART011_CR_OVSFACT;
1604 	}
1605 
1606 	/* Set baud rate */
1607 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1608 	writew(quot >> 6, port->membase + UART011_IBRD);
1609 
1610 	/*
1611 	 * ----------v----------v----------v----------v-----
1612 	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
1613 	 * ----------^----------^----------^----------^-----
1614 	 */
1615 	writew(lcr_h, port->membase + uap->lcrh_rx);
1616 	if (uap->lcrh_rx != uap->lcrh_tx) {
1617 		int i;
1618 		/*
1619 		 * Wait 10 PCLKs before writing LCRH_TX register,
1620 		 * to get this delay write read only register 10 times
1621 		 */
1622 		for (i = 0; i < 10; ++i)
1623 			writew(0xff, uap->port.membase + UART011_MIS);
1624 		writew(lcr_h, port->membase + uap->lcrh_tx);
1625 	}
1626 	writew(old_cr, port->membase + UART011_CR);
1627 
1628 	spin_unlock_irqrestore(&port->lock, flags);
1629 }
1630 
1631 static const char *pl011_type(struct uart_port *port)
1632 {
1633 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1634 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1635 }
1636 
1637 /*
1638  * Release the memory region(s) being used by 'port'
1639  */
1640 static void pl010_release_port(struct uart_port *port)
1641 {
1642 	release_mem_region(port->mapbase, SZ_4K);
1643 }
1644 
1645 /*
1646  * Request the memory region(s) being used by 'port'
1647  */
1648 static int pl010_request_port(struct uart_port *port)
1649 {
1650 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1651 			!= NULL ? 0 : -EBUSY;
1652 }
1653 
1654 /*
1655  * Configure/autoconfigure the port.
1656  */
1657 static void pl010_config_port(struct uart_port *port, int flags)
1658 {
1659 	if (flags & UART_CONFIG_TYPE) {
1660 		port->type = PORT_AMBA;
1661 		pl010_request_port(port);
1662 	}
1663 }
1664 
1665 /*
1666  * verify the new serial_struct (for TIOCSSERIAL).
1667  */
1668 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1669 {
1670 	int ret = 0;
1671 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1672 		ret = -EINVAL;
1673 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1674 		ret = -EINVAL;
1675 	if (ser->baud_base < 9600)
1676 		ret = -EINVAL;
1677 	return ret;
1678 }
1679 
1680 static struct uart_ops amba_pl011_pops = {
1681 	.tx_empty	= pl01x_tx_empty,
1682 	.set_mctrl	= pl011_set_mctrl,
1683 	.get_mctrl	= pl01x_get_mctrl,
1684 	.stop_tx	= pl011_stop_tx,
1685 	.start_tx	= pl011_start_tx,
1686 	.stop_rx	= pl011_stop_rx,
1687 	.enable_ms	= pl011_enable_ms,
1688 	.break_ctl	= pl011_break_ctl,
1689 	.startup	= pl011_startup,
1690 	.shutdown	= pl011_shutdown,
1691 	.flush_buffer	= pl011_dma_flush_buffer,
1692 	.set_termios	= pl011_set_termios,
1693 	.type		= pl011_type,
1694 	.release_port	= pl010_release_port,
1695 	.request_port	= pl010_request_port,
1696 	.config_port	= pl010_config_port,
1697 	.verify_port	= pl010_verify_port,
1698 #ifdef CONFIG_CONSOLE_POLL
1699 	.poll_get_char = pl010_get_poll_char,
1700 	.poll_put_char = pl010_put_poll_char,
1701 #endif
1702 };
1703 
1704 static struct uart_amba_port *amba_ports[UART_NR];
1705 
1706 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1707 
1708 static void pl011_console_putchar(struct uart_port *port, int ch)
1709 {
1710 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1711 
1712 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1713 		barrier();
1714 	writew(ch, uap->port.membase + UART01x_DR);
1715 }
1716 
1717 static void
1718 pl011_console_write(struct console *co, const char *s, unsigned int count)
1719 {
1720 	struct uart_amba_port *uap = amba_ports[co->index];
1721 	unsigned int status, old_cr, new_cr;
1722 	unsigned long flags;
1723 	int locked = 1;
1724 
1725 	clk_enable(uap->clk);
1726 
1727 	local_irq_save(flags);
1728 	if (uap->port.sysrq)
1729 		locked = 0;
1730 	else if (oops_in_progress)
1731 		locked = spin_trylock(&uap->port.lock);
1732 	else
1733 		spin_lock(&uap->port.lock);
1734 
1735 	/*
1736 	 *	First save the CR then disable the interrupts
1737 	 */
1738 	old_cr = readw(uap->port.membase + UART011_CR);
1739 	new_cr = old_cr & ~UART011_CR_CTSEN;
1740 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1741 	writew(new_cr, uap->port.membase + UART011_CR);
1742 
1743 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1744 
1745 	/*
1746 	 *	Finally, wait for transmitter to become empty
1747 	 *	and restore the TCR
1748 	 */
1749 	do {
1750 		status = readw(uap->port.membase + UART01x_FR);
1751 	} while (status & UART01x_FR_BUSY);
1752 	writew(old_cr, uap->port.membase + UART011_CR);
1753 
1754 	if (locked)
1755 		spin_unlock(&uap->port.lock);
1756 	local_irq_restore(flags);
1757 
1758 	clk_disable(uap->clk);
1759 }
1760 
1761 static void __init
1762 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763 			     int *parity, int *bits)
1764 {
1765 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766 		unsigned int lcr_h, ibrd, fbrd;
1767 
1768 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769 
1770 		*parity = 'n';
1771 		if (lcr_h & UART01x_LCRH_PEN) {
1772 			if (lcr_h & UART01x_LCRH_EPS)
1773 				*parity = 'e';
1774 			else
1775 				*parity = 'o';
1776 		}
1777 
1778 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779 			*bits = 7;
1780 		else
1781 			*bits = 8;
1782 
1783 		ibrd = readw(uap->port.membase + UART011_IBRD);
1784 		fbrd = readw(uap->port.membase + UART011_FBRD);
1785 
1786 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787 
1788 		if (uap->vendor->oversampling) {
1789 			if (readw(uap->port.membase + UART011_CR)
1790 				  & ST_UART011_CR_OVSFACT)
1791 				*baud *= 2;
1792 		}
1793 	}
1794 }
1795 
1796 static int __init pl011_console_setup(struct console *co, char *options)
1797 {
1798 	struct uart_amba_port *uap;
1799 	int baud = 38400;
1800 	int bits = 8;
1801 	int parity = 'n';
1802 	int flow = 'n';
1803 	int ret;
1804 
1805 	/*
1806 	 * Check whether an invalid uart number has been specified, and
1807 	 * if so, search for the first available port that does have
1808 	 * console support.
1809 	 */
1810 	if (co->index >= UART_NR)
1811 		co->index = 0;
1812 	uap = amba_ports[co->index];
1813 	if (!uap)
1814 		return -ENODEV;
1815 
1816 	/* Allow pins to be muxed in and configured */
1817 	if (!IS_ERR(uap->pins_default)) {
1818 		ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1819 		if (ret)
1820 			dev_err(uap->port.dev,
1821 				"could not set default pins\n");
1822 	}
1823 
1824 	ret = clk_prepare(uap->clk);
1825 	if (ret)
1826 		return ret;
1827 
1828 	if (uap->port.dev->platform_data) {
1829 		struct amba_pl011_data *plat;
1830 
1831 		plat = uap->port.dev->platform_data;
1832 		if (plat->init)
1833 			plat->init();
1834 	}
1835 
1836 	uap->port.uartclk = clk_get_rate(uap->clk);
1837 
1838 	if (options)
1839 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1840 	else
1841 		pl011_console_get_options(uap, &baud, &parity, &bits);
1842 
1843 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1844 }
1845 
1846 static struct uart_driver amba_reg;
1847 static struct console amba_console = {
1848 	.name		= "ttyAMA",
1849 	.write		= pl011_console_write,
1850 	.device		= uart_console_device,
1851 	.setup		= pl011_console_setup,
1852 	.flags		= CON_PRINTBUFFER,
1853 	.index		= -1,
1854 	.data		= &amba_reg,
1855 };
1856 
1857 #define AMBA_CONSOLE	(&amba_console)
1858 #else
1859 #define AMBA_CONSOLE	NULL
1860 #endif
1861 
1862 static struct uart_driver amba_reg = {
1863 	.owner			= THIS_MODULE,
1864 	.driver_name		= "ttyAMA",
1865 	.dev_name		= "ttyAMA",
1866 	.major			= SERIAL_AMBA_MAJOR,
1867 	.minor			= SERIAL_AMBA_MINOR,
1868 	.nr			= UART_NR,
1869 	.cons			= AMBA_CONSOLE,
1870 };
1871 
1872 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1873 {
1874 	struct uart_amba_port *uap;
1875 	struct vendor_data *vendor = id->data;
1876 	void __iomem *base;
1877 	int i, ret;
1878 
1879 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1880 		if (amba_ports[i] == NULL)
1881 			break;
1882 
1883 	if (i == ARRAY_SIZE(amba_ports)) {
1884 		ret = -EBUSY;
1885 		goto out;
1886 	}
1887 
1888 	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1889 	if (uap == NULL) {
1890 		ret = -ENOMEM;
1891 		goto out;
1892 	}
1893 
1894 	base = ioremap(dev->res.start, resource_size(&dev->res));
1895 	if (!base) {
1896 		ret = -ENOMEM;
1897 		goto free;
1898 	}
1899 
1900 	uap->pinctrl = devm_pinctrl_get(&dev->dev);
1901 	if (IS_ERR(uap->pinctrl)) {
1902 		ret = PTR_ERR(uap->pinctrl);
1903 		goto unmap;
1904 	}
1905 	uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
1906 						 PINCTRL_STATE_DEFAULT);
1907 	if (IS_ERR(uap->pins_default))
1908 		dev_err(&dev->dev, "could not get default pinstate\n");
1909 
1910 	uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
1911 					       PINCTRL_STATE_SLEEP);
1912 	if (IS_ERR(uap->pins_sleep))
1913 		dev_dbg(&dev->dev, "could not get sleep pinstate\n");
1914 
1915 	uap->clk = clk_get(&dev->dev, NULL);
1916 	if (IS_ERR(uap->clk)) {
1917 		ret = PTR_ERR(uap->clk);
1918 		goto unmap;
1919 	}
1920 
1921 	uap->vendor = vendor;
1922 	uap->lcrh_rx = vendor->lcrh_rx;
1923 	uap->lcrh_tx = vendor->lcrh_tx;
1924 	uap->old_cr = 0;
1925 	uap->fifosize = vendor->fifosize;
1926 	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1927 	uap->port.dev = &dev->dev;
1928 	uap->port.mapbase = dev->res.start;
1929 	uap->port.membase = base;
1930 	uap->port.iotype = UPIO_MEM;
1931 	uap->port.irq = dev->irq[0];
1932 	uap->port.fifosize = uap->fifosize;
1933 	uap->port.ops = &amba_pl011_pops;
1934 	uap->port.flags = UPF_BOOT_AUTOCONF;
1935 	uap->port.line = i;
1936 	pl011_dma_probe(uap);
1937 
1938 	/* Ensure interrupts from this UART are masked and cleared */
1939 	writew(0, uap->port.membase + UART011_IMSC);
1940 	writew(0xffff, uap->port.membase + UART011_ICR);
1941 
1942 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1943 
1944 	amba_ports[i] = uap;
1945 
1946 	amba_set_drvdata(dev, uap);
1947 	ret = uart_add_one_port(&amba_reg, &uap->port);
1948 	if (ret) {
1949 		amba_set_drvdata(dev, NULL);
1950 		amba_ports[i] = NULL;
1951 		pl011_dma_remove(uap);
1952 		clk_put(uap->clk);
1953  unmap:
1954 		iounmap(base);
1955  free:
1956 		kfree(uap);
1957 	}
1958  out:
1959 	return ret;
1960 }
1961 
1962 static int pl011_remove(struct amba_device *dev)
1963 {
1964 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1965 	int i;
1966 
1967 	amba_set_drvdata(dev, NULL);
1968 
1969 	uart_remove_one_port(&amba_reg, &uap->port);
1970 
1971 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1972 		if (amba_ports[i] == uap)
1973 			amba_ports[i] = NULL;
1974 
1975 	pl011_dma_remove(uap);
1976 	iounmap(uap->port.membase);
1977 	clk_put(uap->clk);
1978 	kfree(uap);
1979 	return 0;
1980 }
1981 
1982 #ifdef CONFIG_PM
1983 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1984 {
1985 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1986 
1987 	if (!uap)
1988 		return -EINVAL;
1989 
1990 	return uart_suspend_port(&amba_reg, &uap->port);
1991 }
1992 
1993 static int pl011_resume(struct amba_device *dev)
1994 {
1995 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1996 
1997 	if (!uap)
1998 		return -EINVAL;
1999 
2000 	return uart_resume_port(&amba_reg, &uap->port);
2001 }
2002 #endif
2003 
2004 static struct amba_id pl011_ids[] = {
2005 	{
2006 		.id	= 0x00041011,
2007 		.mask	= 0x000fffff,
2008 		.data	= &vendor_arm,
2009 	},
2010 	{
2011 		.id	= 0x00380802,
2012 		.mask	= 0x00ffffff,
2013 		.data	= &vendor_st,
2014 	},
2015 	{ 0, 0 },
2016 };
2017 
2018 MODULE_DEVICE_TABLE(amba, pl011_ids);
2019 
2020 static struct amba_driver pl011_driver = {
2021 	.drv = {
2022 		.name	= "uart-pl011",
2023 	},
2024 	.id_table	= pl011_ids,
2025 	.probe		= pl011_probe,
2026 	.remove		= pl011_remove,
2027 #ifdef CONFIG_PM
2028 	.suspend	= pl011_suspend,
2029 	.resume		= pl011_resume,
2030 #endif
2031 };
2032 
2033 static int __init pl011_init(void)
2034 {
2035 	int ret;
2036 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2037 
2038 	ret = uart_register_driver(&amba_reg);
2039 	if (ret == 0) {
2040 		ret = amba_driver_register(&pl011_driver);
2041 		if (ret)
2042 			uart_unregister_driver(&amba_reg);
2043 	}
2044 	return ret;
2045 }
2046 
2047 static void __exit pl011_exit(void)
2048 {
2049 	amba_driver_unregister(&pl011_driver);
2050 	uart_unregister_driver(&amba_reg);
2051 }
2052 
2053 /*
2054  * While this can be a module, if builtin it's most likely the console
2055  * So let's leave module_exit but move module_init to an earlier place
2056  */
2057 arch_initcall(pl011_init);
2058 module_exit(pl011_exit);
2059 
2060 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2061 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2062 MODULE_LICENSE("GPL");
2063