xref: /linux/drivers/tty/serial/amba-pl011.c (revision 84c3e03bdd1146191b7222ed62a08512199a45c7)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #include "amba-pl011.h"
64 
65 #define UART_NR			14
66 
67 #define SERIAL_AMBA_MAJOR	204
68 #define SERIAL_AMBA_MINOR	64
69 #define SERIAL_AMBA_NR		UART_NR
70 
71 #define AMBA_ISR_PASS_LIMIT	256
72 
73 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX	(1 << 16)
75 
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 	[REG_DR] = UART01x_DR,
78 	[REG_FR] = UART01x_FR,
79 	[REG_LCRH_RX] = UART011_LCRH,
80 	[REG_LCRH_TX] = UART011_LCRH,
81 	[REG_IBRD] = UART011_IBRD,
82 	[REG_FBRD] = UART011_FBRD,
83 	[REG_CR] = UART011_CR,
84 	[REG_IFLS] = UART011_IFLS,
85 	[REG_IMSC] = UART011_IMSC,
86 	[REG_RIS] = UART011_RIS,
87 	[REG_MIS] = UART011_MIS,
88 	[REG_ICR] = UART011_ICR,
89 	[REG_DMACR] = UART011_DMACR,
90 };
91 
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 	const u16		*reg_offset;
95 	unsigned int		ifls;
96 	bool			access_32b;
97 	bool			oversampling;
98 	bool			dma_threshold;
99 	bool			cts_event_workaround;
100 	bool			always_enabled;
101 	bool			fixed_options;
102 
103 	unsigned int (*get_fifosize)(struct amba_device *dev);
104 };
105 
106 static unsigned int get_fifosize_arm(struct amba_device *dev)
107 {
108 	return amba_rev(dev) < 3 ? 16 : 32;
109 }
110 
111 static struct vendor_data vendor_arm = {
112 	.reg_offset		= pl011_std_offsets,
113 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
114 	.oversampling		= false,
115 	.dma_threshold		= false,
116 	.cts_event_workaround	= false,
117 	.always_enabled		= false,
118 	.fixed_options		= false,
119 	.get_fifosize		= get_fifosize_arm,
120 };
121 
122 static struct vendor_data vendor_sbsa = {
123 	.reg_offset		= pl011_std_offsets,
124 	.oversampling		= false,
125 	.dma_threshold		= false,
126 	.cts_event_workaround	= false,
127 	.always_enabled		= true,
128 	.fixed_options		= true,
129 };
130 
131 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
132 	[REG_DR] = UART01x_DR,
133 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
134 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
135 	[REG_FR] = UART01x_FR,
136 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
137 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
138 	[REG_IBRD] = UART011_IBRD,
139 	[REG_FBRD] = UART011_FBRD,
140 	[REG_CR] = UART011_CR,
141 	[REG_IFLS] = UART011_IFLS,
142 	[REG_IMSC] = UART011_IMSC,
143 	[REG_RIS] = UART011_RIS,
144 	[REG_MIS] = UART011_MIS,
145 	[REG_ICR] = UART011_ICR,
146 	[REG_DMACR] = UART011_DMACR,
147 	[REG_ST_XFCR] = ST_UART011_XFCR,
148 	[REG_ST_XON1] = ST_UART011_XON1,
149 	[REG_ST_XON2] = ST_UART011_XON2,
150 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
151 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
152 	[REG_ST_ITCR] = ST_UART011_ITCR,
153 	[REG_ST_ITIP] = ST_UART011_ITIP,
154 	[REG_ST_ABCR] = ST_UART011_ABCR,
155 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
156 };
157 
158 static unsigned int get_fifosize_st(struct amba_device *dev)
159 {
160 	return 64;
161 }
162 
163 static struct vendor_data vendor_st = {
164 	.reg_offset		= pl011_st_offsets,
165 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
166 	.oversampling		= true,
167 	.dma_threshold		= true,
168 	.cts_event_workaround	= true,
169 	.always_enabled		= false,
170 	.fixed_options		= false,
171 	.get_fifosize		= get_fifosize_st,
172 };
173 
174 /* Deals with DMA transactions */
175 
176 struct pl011_sgbuf {
177 	struct scatterlist sg;
178 	char *buf;
179 };
180 
181 struct pl011_dmarx_data {
182 	struct dma_chan		*chan;
183 	struct completion	complete;
184 	bool			use_buf_b;
185 	struct pl011_sgbuf	sgbuf_a;
186 	struct pl011_sgbuf	sgbuf_b;
187 	dma_cookie_t		cookie;
188 	bool			running;
189 	struct timer_list	timer;
190 	unsigned int last_residue;
191 	unsigned long last_jiffies;
192 	bool auto_poll_rate;
193 	unsigned int poll_rate;
194 	unsigned int poll_timeout;
195 };
196 
197 struct pl011_dmatx_data {
198 	struct dma_chan		*chan;
199 	struct scatterlist	sg;
200 	char			*buf;
201 	bool			queued;
202 };
203 
204 /*
205  * We wrap our port structure around the generic uart_port.
206  */
207 struct uart_amba_port {
208 	struct uart_port	port;
209 	const u16		*reg_offset;
210 	struct clk		*clk;
211 	const struct vendor_data *vendor;
212 	unsigned int		dmacr;		/* dma control reg */
213 	unsigned int		im;		/* interrupt mask */
214 	unsigned int		old_status;
215 	unsigned int		fifosize;	/* vendor-specific */
216 	unsigned int		old_cr;		/* state during shutdown */
217 	bool			autorts;
218 	bool			access_32b;
219 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
220 	char			type[12];
221 #ifdef CONFIG_DMA_ENGINE
222 	/* DMA stuff */
223 	bool			using_tx_dma;
224 	bool			using_rx_dma;
225 	struct pl011_dmarx_data dmarx;
226 	struct pl011_dmatx_data	dmatx;
227 	bool			dma_probed;
228 #endif
229 };
230 
231 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
232 	unsigned int reg)
233 {
234 	return uap->reg_offset[reg];
235 }
236 
237 static unsigned int pl011_read(const struct uart_amba_port *uap,
238 	unsigned int reg)
239 {
240 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
241 
242 	return uap->access_32b ? readl(addr) : readw(addr);
243 }
244 
245 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
246 	unsigned int reg)
247 {
248 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
249 
250 	if (uap->access_32b)
251 		writel(val, addr);
252 	else
253 		writew(val, addr);
254 }
255 
256 /*
257  * Reads up to 256 characters from the FIFO or until it's empty and
258  * inserts them into the TTY layer. Returns the number of characters
259  * read from the FIFO.
260  */
261 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
262 {
263 	u16 status;
264 	unsigned int ch, flag, max_count = 256;
265 	int fifotaken = 0;
266 
267 	while (max_count--) {
268 		status = pl011_read(uap, REG_FR);
269 		if (status & UART01x_FR_RXFE)
270 			break;
271 
272 		/* Take chars from the FIFO and update status */
273 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
274 		flag = TTY_NORMAL;
275 		uap->port.icount.rx++;
276 		fifotaken++;
277 
278 		if (unlikely(ch & UART_DR_ERROR)) {
279 			if (ch & UART011_DR_BE) {
280 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
281 				uap->port.icount.brk++;
282 				if (uart_handle_break(&uap->port))
283 					continue;
284 			} else if (ch & UART011_DR_PE)
285 				uap->port.icount.parity++;
286 			else if (ch & UART011_DR_FE)
287 				uap->port.icount.frame++;
288 			if (ch & UART011_DR_OE)
289 				uap->port.icount.overrun++;
290 
291 			ch &= uap->port.read_status_mask;
292 
293 			if (ch & UART011_DR_BE)
294 				flag = TTY_BREAK;
295 			else if (ch & UART011_DR_PE)
296 				flag = TTY_PARITY;
297 			else if (ch & UART011_DR_FE)
298 				flag = TTY_FRAME;
299 		}
300 
301 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
302 			continue;
303 
304 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
305 	}
306 
307 	return fifotaken;
308 }
309 
310 
311 /*
312  * All the DMA operation mode stuff goes inside this ifdef.
313  * This assumes that you have a generic DMA device interface,
314  * no custom DMA interfaces are supported.
315  */
316 #ifdef CONFIG_DMA_ENGINE
317 
318 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
319 
320 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
321 	enum dma_data_direction dir)
322 {
323 	dma_addr_t dma_addr;
324 
325 	sg->buf = dma_alloc_coherent(chan->device->dev,
326 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
327 	if (!sg->buf)
328 		return -ENOMEM;
329 
330 	sg_init_table(&sg->sg, 1);
331 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
332 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
333 	sg_dma_address(&sg->sg) = dma_addr;
334 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
335 
336 	return 0;
337 }
338 
339 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
340 	enum dma_data_direction dir)
341 {
342 	if (sg->buf) {
343 		dma_free_coherent(chan->device->dev,
344 			PL011_DMA_BUFFER_SIZE, sg->buf,
345 			sg_dma_address(&sg->sg));
346 	}
347 }
348 
349 static void pl011_dma_probe(struct uart_amba_port *uap)
350 {
351 	/* DMA is the sole user of the platform data right now */
352 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
353 	struct device *dev = uap->port.dev;
354 	struct dma_slave_config tx_conf = {
355 		.dst_addr = uap->port.mapbase +
356 				 pl011_reg_to_offset(uap, REG_DR),
357 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
358 		.direction = DMA_MEM_TO_DEV,
359 		.dst_maxburst = uap->fifosize >> 1,
360 		.device_fc = false,
361 	};
362 	struct dma_chan *chan;
363 	dma_cap_mask_t mask;
364 
365 	uap->dma_probed = true;
366 	chan = dma_request_slave_channel_reason(dev, "tx");
367 	if (IS_ERR(chan)) {
368 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
369 			uap->dma_probed = false;
370 			return;
371 		}
372 
373 		/* We need platform data */
374 		if (!plat || !plat->dma_filter) {
375 			dev_info(uap->port.dev, "no DMA platform data\n");
376 			return;
377 		}
378 
379 		/* Try to acquire a generic DMA engine slave TX channel */
380 		dma_cap_zero(mask);
381 		dma_cap_set(DMA_SLAVE, mask);
382 
383 		chan = dma_request_channel(mask, plat->dma_filter,
384 						plat->dma_tx_param);
385 		if (!chan) {
386 			dev_err(uap->port.dev, "no TX DMA channel!\n");
387 			return;
388 		}
389 	}
390 
391 	dmaengine_slave_config(chan, &tx_conf);
392 	uap->dmatx.chan = chan;
393 
394 	dev_info(uap->port.dev, "DMA channel TX %s\n",
395 		 dma_chan_name(uap->dmatx.chan));
396 
397 	/* Optionally make use of an RX channel as well */
398 	chan = dma_request_slave_channel(dev, "rx");
399 
400 	if (!chan && plat->dma_rx_param) {
401 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
402 
403 		if (!chan) {
404 			dev_err(uap->port.dev, "no RX DMA channel!\n");
405 			return;
406 		}
407 	}
408 
409 	if (chan) {
410 		struct dma_slave_config rx_conf = {
411 			.src_addr = uap->port.mapbase +
412 				pl011_reg_to_offset(uap, REG_DR),
413 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
414 			.direction = DMA_DEV_TO_MEM,
415 			.src_maxburst = uap->fifosize >> 2,
416 			.device_fc = false,
417 		};
418 		struct dma_slave_caps caps;
419 
420 		/*
421 		 * Some DMA controllers provide information on their capabilities.
422 		 * If the controller does, check for suitable residue processing
423 		 * otherwise assime all is well.
424 		 */
425 		if (0 == dma_get_slave_caps(chan, &caps)) {
426 			if (caps.residue_granularity ==
427 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
428 				dma_release_channel(chan);
429 				dev_info(uap->port.dev,
430 					"RX DMA disabled - no residue processing\n");
431 				return;
432 			}
433 		}
434 		dmaengine_slave_config(chan, &rx_conf);
435 		uap->dmarx.chan = chan;
436 
437 		uap->dmarx.auto_poll_rate = false;
438 		if (plat && plat->dma_rx_poll_enable) {
439 			/* Set poll rate if specified. */
440 			if (plat->dma_rx_poll_rate) {
441 				uap->dmarx.auto_poll_rate = false;
442 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
443 			} else {
444 				/*
445 				 * 100 ms defaults to poll rate if not
446 				 * specified. This will be adjusted with
447 				 * the baud rate at set_termios.
448 				 */
449 				uap->dmarx.auto_poll_rate = true;
450 				uap->dmarx.poll_rate =  100;
451 			}
452 			/* 3 secs defaults poll_timeout if not specified. */
453 			if (plat->dma_rx_poll_timeout)
454 				uap->dmarx.poll_timeout =
455 					plat->dma_rx_poll_timeout;
456 			else
457 				uap->dmarx.poll_timeout = 3000;
458 		} else if (!plat && dev->of_node) {
459 			uap->dmarx.auto_poll_rate = of_property_read_bool(
460 						dev->of_node, "auto-poll");
461 			if (uap->dmarx.auto_poll_rate) {
462 				u32 x;
463 
464 				if (0 == of_property_read_u32(dev->of_node,
465 						"poll-rate-ms", &x))
466 					uap->dmarx.poll_rate = x;
467 				else
468 					uap->dmarx.poll_rate = 100;
469 				if (0 == of_property_read_u32(dev->of_node,
470 						"poll-timeout-ms", &x))
471 					uap->dmarx.poll_timeout = x;
472 				else
473 					uap->dmarx.poll_timeout = 3000;
474 			}
475 		}
476 		dev_info(uap->port.dev, "DMA channel RX %s\n",
477 			 dma_chan_name(uap->dmarx.chan));
478 	}
479 }
480 
481 static void pl011_dma_remove(struct uart_amba_port *uap)
482 {
483 	if (uap->dmatx.chan)
484 		dma_release_channel(uap->dmatx.chan);
485 	if (uap->dmarx.chan)
486 		dma_release_channel(uap->dmarx.chan);
487 }
488 
489 /* Forward declare these for the refill routine */
490 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
491 static void pl011_start_tx_pio(struct uart_amba_port *uap);
492 
493 /*
494  * The current DMA TX buffer has been sent.
495  * Try to queue up another DMA buffer.
496  */
497 static void pl011_dma_tx_callback(void *data)
498 {
499 	struct uart_amba_port *uap = data;
500 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
501 	unsigned long flags;
502 	u16 dmacr;
503 
504 	spin_lock_irqsave(&uap->port.lock, flags);
505 	if (uap->dmatx.queued)
506 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
507 			     DMA_TO_DEVICE);
508 
509 	dmacr = uap->dmacr;
510 	uap->dmacr = dmacr & ~UART011_TXDMAE;
511 	pl011_write(uap->dmacr, uap, REG_DMACR);
512 
513 	/*
514 	 * If TX DMA was disabled, it means that we've stopped the DMA for
515 	 * some reason (eg, XOFF received, or we want to send an X-char.)
516 	 *
517 	 * Note: we need to be careful here of a potential race between DMA
518 	 * and the rest of the driver - if the driver disables TX DMA while
519 	 * a TX buffer completing, we must update the tx queued status to
520 	 * get further refills (hence we check dmacr).
521 	 */
522 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
523 	    uart_circ_empty(&uap->port.state->xmit)) {
524 		uap->dmatx.queued = false;
525 		spin_unlock_irqrestore(&uap->port.lock, flags);
526 		return;
527 	}
528 
529 	if (pl011_dma_tx_refill(uap) <= 0)
530 		/*
531 		 * We didn't queue a DMA buffer for some reason, but we
532 		 * have data pending to be sent.  Re-enable the TX IRQ.
533 		 */
534 		pl011_start_tx_pio(uap);
535 
536 	spin_unlock_irqrestore(&uap->port.lock, flags);
537 }
538 
539 /*
540  * Try to refill the TX DMA buffer.
541  * Locking: called with port lock held and IRQs disabled.
542  * Returns:
543  *   1 if we queued up a TX DMA buffer.
544  *   0 if we didn't want to handle this by DMA
545  *  <0 on error
546  */
547 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
548 {
549 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
550 	struct dma_chan *chan = dmatx->chan;
551 	struct dma_device *dma_dev = chan->device;
552 	struct dma_async_tx_descriptor *desc;
553 	struct circ_buf *xmit = &uap->port.state->xmit;
554 	unsigned int count;
555 
556 	/*
557 	 * Try to avoid the overhead involved in using DMA if the
558 	 * transaction fits in the first half of the FIFO, by using
559 	 * the standard interrupt handling.  This ensures that we
560 	 * issue a uart_write_wakeup() at the appropriate time.
561 	 */
562 	count = uart_circ_chars_pending(xmit);
563 	if (count < (uap->fifosize >> 1)) {
564 		uap->dmatx.queued = false;
565 		return 0;
566 	}
567 
568 	/*
569 	 * Bodge: don't send the last character by DMA, as this
570 	 * will prevent XON from notifying us to restart DMA.
571 	 */
572 	count -= 1;
573 
574 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
575 	if (count > PL011_DMA_BUFFER_SIZE)
576 		count = PL011_DMA_BUFFER_SIZE;
577 
578 	if (xmit->tail < xmit->head)
579 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
580 	else {
581 		size_t first = UART_XMIT_SIZE - xmit->tail;
582 		size_t second;
583 
584 		if (first > count)
585 			first = count;
586 		second = count - first;
587 
588 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
589 		if (second)
590 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
591 	}
592 
593 	dmatx->sg.length = count;
594 
595 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
596 		uap->dmatx.queued = false;
597 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
598 		return -EBUSY;
599 	}
600 
601 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
602 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
603 	if (!desc) {
604 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
605 		uap->dmatx.queued = false;
606 		/*
607 		 * If DMA cannot be used right now, we complete this
608 		 * transaction via IRQ and let the TTY layer retry.
609 		 */
610 		dev_dbg(uap->port.dev, "TX DMA busy\n");
611 		return -EBUSY;
612 	}
613 
614 	/* Some data to go along to the callback */
615 	desc->callback = pl011_dma_tx_callback;
616 	desc->callback_param = uap;
617 
618 	/* All errors should happen at prepare time */
619 	dmaengine_submit(desc);
620 
621 	/* Fire the DMA transaction */
622 	dma_dev->device_issue_pending(chan);
623 
624 	uap->dmacr |= UART011_TXDMAE;
625 	pl011_write(uap->dmacr, uap, REG_DMACR);
626 	uap->dmatx.queued = true;
627 
628 	/*
629 	 * Now we know that DMA will fire, so advance the ring buffer
630 	 * with the stuff we just dispatched.
631 	 */
632 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
633 	uap->port.icount.tx += count;
634 
635 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
636 		uart_write_wakeup(&uap->port);
637 
638 	return 1;
639 }
640 
641 /*
642  * We received a transmit interrupt without a pending X-char but with
643  * pending characters.
644  * Locking: called with port lock held and IRQs disabled.
645  * Returns:
646  *   false if we want to use PIO to transmit
647  *   true if we queued a DMA buffer
648  */
649 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
650 {
651 	if (!uap->using_tx_dma)
652 		return false;
653 
654 	/*
655 	 * If we already have a TX buffer queued, but received a
656 	 * TX interrupt, it will be because we've just sent an X-char.
657 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
658 	 */
659 	if (uap->dmatx.queued) {
660 		uap->dmacr |= UART011_TXDMAE;
661 		pl011_write(uap->dmacr, uap, REG_DMACR);
662 		uap->im &= ~UART011_TXIM;
663 		pl011_write(uap->im, uap, REG_IMSC);
664 		return true;
665 	}
666 
667 	/*
668 	 * We don't have a TX buffer queued, so try to queue one.
669 	 * If we successfully queued a buffer, mask the TX IRQ.
670 	 */
671 	if (pl011_dma_tx_refill(uap) > 0) {
672 		uap->im &= ~UART011_TXIM;
673 		pl011_write(uap->im, uap, REG_IMSC);
674 		return true;
675 	}
676 	return false;
677 }
678 
679 /*
680  * Stop the DMA transmit (eg, due to received XOFF).
681  * Locking: called with port lock held and IRQs disabled.
682  */
683 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
684 {
685 	if (uap->dmatx.queued) {
686 		uap->dmacr &= ~UART011_TXDMAE;
687 		pl011_write(uap->dmacr, uap, REG_DMACR);
688 	}
689 }
690 
691 /*
692  * Try to start a DMA transmit, or in the case of an XON/OFF
693  * character queued for send, try to get that character out ASAP.
694  * Locking: called with port lock held and IRQs disabled.
695  * Returns:
696  *   false if we want the TX IRQ to be enabled
697  *   true if we have a buffer queued
698  */
699 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
700 {
701 	u16 dmacr;
702 
703 	if (!uap->using_tx_dma)
704 		return false;
705 
706 	if (!uap->port.x_char) {
707 		/* no X-char, try to push chars out in DMA mode */
708 		bool ret = true;
709 
710 		if (!uap->dmatx.queued) {
711 			if (pl011_dma_tx_refill(uap) > 0) {
712 				uap->im &= ~UART011_TXIM;
713 				pl011_write(uap->im, uap, REG_IMSC);
714 			} else
715 				ret = false;
716 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
717 			uap->dmacr |= UART011_TXDMAE;
718 			pl011_write(uap->dmacr, uap, REG_DMACR);
719 		}
720 		return ret;
721 	}
722 
723 	/*
724 	 * We have an X-char to send.  Disable DMA to prevent it loading
725 	 * the TX fifo, and then see if we can stuff it into the FIFO.
726 	 */
727 	dmacr = uap->dmacr;
728 	uap->dmacr &= ~UART011_TXDMAE;
729 	pl011_write(uap->dmacr, uap, REG_DMACR);
730 
731 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
732 		/*
733 		 * No space in the FIFO, so enable the transmit interrupt
734 		 * so we know when there is space.  Note that once we've
735 		 * loaded the character, we should just re-enable DMA.
736 		 */
737 		return false;
738 	}
739 
740 	pl011_write(uap->port.x_char, uap, REG_DR);
741 	uap->port.icount.tx++;
742 	uap->port.x_char = 0;
743 
744 	/* Success - restore the DMA state */
745 	uap->dmacr = dmacr;
746 	pl011_write(dmacr, uap, REG_DMACR);
747 
748 	return true;
749 }
750 
751 /*
752  * Flush the transmit buffer.
753  * Locking: called with port lock held and IRQs disabled.
754  */
755 static void pl011_dma_flush_buffer(struct uart_port *port)
756 __releases(&uap->port.lock)
757 __acquires(&uap->port.lock)
758 {
759 	struct uart_amba_port *uap =
760 	    container_of(port, struct uart_amba_port, port);
761 
762 	if (!uap->using_tx_dma)
763 		return;
764 
765 	/* Avoid deadlock with the DMA engine callback */
766 	spin_unlock(&uap->port.lock);
767 	dmaengine_terminate_all(uap->dmatx.chan);
768 	spin_lock(&uap->port.lock);
769 	if (uap->dmatx.queued) {
770 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
771 			     DMA_TO_DEVICE);
772 		uap->dmatx.queued = false;
773 		uap->dmacr &= ~UART011_TXDMAE;
774 		pl011_write(uap->dmacr, uap, REG_DMACR);
775 	}
776 }
777 
778 static void pl011_dma_rx_callback(void *data);
779 
780 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
781 {
782 	struct dma_chan *rxchan = uap->dmarx.chan;
783 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
784 	struct dma_async_tx_descriptor *desc;
785 	struct pl011_sgbuf *sgbuf;
786 
787 	if (!rxchan)
788 		return -EIO;
789 
790 	/* Start the RX DMA job */
791 	sgbuf = uap->dmarx.use_buf_b ?
792 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
793 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
794 					DMA_DEV_TO_MEM,
795 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
796 	/*
797 	 * If the DMA engine is busy and cannot prepare a
798 	 * channel, no big deal, the driver will fall back
799 	 * to interrupt mode as a result of this error code.
800 	 */
801 	if (!desc) {
802 		uap->dmarx.running = false;
803 		dmaengine_terminate_all(rxchan);
804 		return -EBUSY;
805 	}
806 
807 	/* Some data to go along to the callback */
808 	desc->callback = pl011_dma_rx_callback;
809 	desc->callback_param = uap;
810 	dmarx->cookie = dmaengine_submit(desc);
811 	dma_async_issue_pending(rxchan);
812 
813 	uap->dmacr |= UART011_RXDMAE;
814 	pl011_write(uap->dmacr, uap, REG_DMACR);
815 	uap->dmarx.running = true;
816 
817 	uap->im &= ~UART011_RXIM;
818 	pl011_write(uap->im, uap, REG_IMSC);
819 
820 	return 0;
821 }
822 
823 /*
824  * This is called when either the DMA job is complete, or
825  * the FIFO timeout interrupt occurred. This must be called
826  * with the port spinlock uap->port.lock held.
827  */
828 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
829 			       u32 pending, bool use_buf_b,
830 			       bool readfifo)
831 {
832 	struct tty_port *port = &uap->port.state->port;
833 	struct pl011_sgbuf *sgbuf = use_buf_b ?
834 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
835 	int dma_count = 0;
836 	u32 fifotaken = 0; /* only used for vdbg() */
837 
838 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
839 	int dmataken = 0;
840 
841 	if (uap->dmarx.poll_rate) {
842 		/* The data can be taken by polling */
843 		dmataken = sgbuf->sg.length - dmarx->last_residue;
844 		/* Recalculate the pending size */
845 		if (pending >= dmataken)
846 			pending -= dmataken;
847 	}
848 
849 	/* Pick the remain data from the DMA */
850 	if (pending) {
851 
852 		/*
853 		 * First take all chars in the DMA pipe, then look in the FIFO.
854 		 * Note that tty_insert_flip_buf() tries to take as many chars
855 		 * as it can.
856 		 */
857 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
858 				pending);
859 
860 		uap->port.icount.rx += dma_count;
861 		if (dma_count < pending)
862 			dev_warn(uap->port.dev,
863 				 "couldn't insert all characters (TTY is full?)\n");
864 	}
865 
866 	/* Reset the last_residue for Rx DMA poll */
867 	if (uap->dmarx.poll_rate)
868 		dmarx->last_residue = sgbuf->sg.length;
869 
870 	/*
871 	 * Only continue with trying to read the FIFO if all DMA chars have
872 	 * been taken first.
873 	 */
874 	if (dma_count == pending && readfifo) {
875 		/* Clear any error flags */
876 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
877 			    UART011_FEIS, uap, REG_ICR);
878 
879 		/*
880 		 * If we read all the DMA'd characters, and we had an
881 		 * incomplete buffer, that could be due to an rx error, or
882 		 * maybe we just timed out. Read any pending chars and check
883 		 * the error status.
884 		 *
885 		 * Error conditions will only occur in the FIFO, these will
886 		 * trigger an immediate interrupt and stop the DMA job, so we
887 		 * will always find the error in the FIFO, never in the DMA
888 		 * buffer.
889 		 */
890 		fifotaken = pl011_fifo_to_tty(uap);
891 	}
892 
893 	spin_unlock(&uap->port.lock);
894 	dev_vdbg(uap->port.dev,
895 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
896 		 dma_count, fifotaken);
897 	tty_flip_buffer_push(port);
898 	spin_lock(&uap->port.lock);
899 }
900 
901 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
902 {
903 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
904 	struct dma_chan *rxchan = dmarx->chan;
905 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
906 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
907 	size_t pending;
908 	struct dma_tx_state state;
909 	enum dma_status dmastat;
910 
911 	/*
912 	 * Pause the transfer so we can trust the current counter,
913 	 * do this before we pause the PL011 block, else we may
914 	 * overflow the FIFO.
915 	 */
916 	if (dmaengine_pause(rxchan))
917 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
918 	dmastat = rxchan->device->device_tx_status(rxchan,
919 						   dmarx->cookie, &state);
920 	if (dmastat != DMA_PAUSED)
921 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
922 
923 	/* Disable RX DMA - incoming data will wait in the FIFO */
924 	uap->dmacr &= ~UART011_RXDMAE;
925 	pl011_write(uap->dmacr, uap, REG_DMACR);
926 	uap->dmarx.running = false;
927 
928 	pending = sgbuf->sg.length - state.residue;
929 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
930 	/* Then we terminate the transfer - we now know our residue */
931 	dmaengine_terminate_all(rxchan);
932 
933 	/*
934 	 * This will take the chars we have so far and insert
935 	 * into the framework.
936 	 */
937 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
938 
939 	/* Switch buffer & re-trigger DMA job */
940 	dmarx->use_buf_b = !dmarx->use_buf_b;
941 	if (pl011_dma_rx_trigger_dma(uap)) {
942 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
943 			"fall back to interrupt mode\n");
944 		uap->im |= UART011_RXIM;
945 		pl011_write(uap->im, uap, REG_IMSC);
946 	}
947 }
948 
949 static void pl011_dma_rx_callback(void *data)
950 {
951 	struct uart_amba_port *uap = data;
952 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
953 	struct dma_chan *rxchan = dmarx->chan;
954 	bool lastbuf = dmarx->use_buf_b;
955 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
956 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
957 	size_t pending;
958 	struct dma_tx_state state;
959 	int ret;
960 
961 	/*
962 	 * This completion interrupt occurs typically when the
963 	 * RX buffer is totally stuffed but no timeout has yet
964 	 * occurred. When that happens, we just want the RX
965 	 * routine to flush out the secondary DMA buffer while
966 	 * we immediately trigger the next DMA job.
967 	 */
968 	spin_lock_irq(&uap->port.lock);
969 	/*
970 	 * Rx data can be taken by the UART interrupts during
971 	 * the DMA irq handler. So we check the residue here.
972 	 */
973 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
974 	pending = sgbuf->sg.length - state.residue;
975 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
976 	/* Then we terminate the transfer - we now know our residue */
977 	dmaengine_terminate_all(rxchan);
978 
979 	uap->dmarx.running = false;
980 	dmarx->use_buf_b = !lastbuf;
981 	ret = pl011_dma_rx_trigger_dma(uap);
982 
983 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
984 	spin_unlock_irq(&uap->port.lock);
985 	/*
986 	 * Do this check after we picked the DMA chars so we don't
987 	 * get some IRQ immediately from RX.
988 	 */
989 	if (ret) {
990 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
991 			"fall back to interrupt mode\n");
992 		uap->im |= UART011_RXIM;
993 		pl011_write(uap->im, uap, REG_IMSC);
994 	}
995 }
996 
997 /*
998  * Stop accepting received characters, when we're shutting down or
999  * suspending this port.
1000  * Locking: called with port lock held and IRQs disabled.
1001  */
1002 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1003 {
1004 	/* FIXME.  Just disable the DMA enable */
1005 	uap->dmacr &= ~UART011_RXDMAE;
1006 	pl011_write(uap->dmacr, uap, REG_DMACR);
1007 }
1008 
1009 /*
1010  * Timer handler for Rx DMA polling.
1011  * Every polling, It checks the residue in the dma buffer and transfer
1012  * data to the tty. Also, last_residue is updated for the next polling.
1013  */
1014 static void pl011_dma_rx_poll(unsigned long args)
1015 {
1016 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1017 	struct tty_port *port = &uap->port.state->port;
1018 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1019 	struct dma_chan *rxchan = uap->dmarx.chan;
1020 	unsigned long flags = 0;
1021 	unsigned int dmataken = 0;
1022 	unsigned int size = 0;
1023 	struct pl011_sgbuf *sgbuf;
1024 	int dma_count;
1025 	struct dma_tx_state state;
1026 
1027 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1028 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1029 	if (likely(state.residue < dmarx->last_residue)) {
1030 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1031 		size = dmarx->last_residue - state.residue;
1032 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1033 				size);
1034 		if (dma_count == size)
1035 			dmarx->last_residue =  state.residue;
1036 		dmarx->last_jiffies = jiffies;
1037 	}
1038 	tty_flip_buffer_push(port);
1039 
1040 	/*
1041 	 * If no data is received in poll_timeout, the driver will fall back
1042 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1043 	 */
1044 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1045 			> uap->dmarx.poll_timeout) {
1046 
1047 		spin_lock_irqsave(&uap->port.lock, flags);
1048 		pl011_dma_rx_stop(uap);
1049 		uap->im |= UART011_RXIM;
1050 		pl011_write(uap->im, uap, REG_IMSC);
1051 		spin_unlock_irqrestore(&uap->port.lock, flags);
1052 
1053 		uap->dmarx.running = false;
1054 		dmaengine_terminate_all(rxchan);
1055 		del_timer(&uap->dmarx.timer);
1056 	} else {
1057 		mod_timer(&uap->dmarx.timer,
1058 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1059 	}
1060 }
1061 
1062 static void pl011_dma_startup(struct uart_amba_port *uap)
1063 {
1064 	int ret;
1065 
1066 	if (!uap->dma_probed)
1067 		pl011_dma_probe(uap);
1068 
1069 	if (!uap->dmatx.chan)
1070 		return;
1071 
1072 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1073 	if (!uap->dmatx.buf) {
1074 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1075 		uap->port.fifosize = uap->fifosize;
1076 		return;
1077 	}
1078 
1079 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1080 
1081 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1082 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1083 	uap->using_tx_dma = true;
1084 
1085 	if (!uap->dmarx.chan)
1086 		goto skip_rx;
1087 
1088 	/* Allocate and map DMA RX buffers */
1089 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1090 			       DMA_FROM_DEVICE);
1091 	if (ret) {
1092 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1093 			"RX buffer A", ret);
1094 		goto skip_rx;
1095 	}
1096 
1097 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1098 			       DMA_FROM_DEVICE);
1099 	if (ret) {
1100 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1101 			"RX buffer B", ret);
1102 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1103 				 DMA_FROM_DEVICE);
1104 		goto skip_rx;
1105 	}
1106 
1107 	uap->using_rx_dma = true;
1108 
1109 skip_rx:
1110 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1111 	uap->dmacr |= UART011_DMAONERR;
1112 	pl011_write(uap->dmacr, uap, REG_DMACR);
1113 
1114 	/*
1115 	 * ST Micro variants has some specific dma burst threshold
1116 	 * compensation. Set this to 16 bytes, so burst will only
1117 	 * be issued above/below 16 bytes.
1118 	 */
1119 	if (uap->vendor->dma_threshold)
1120 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1121 			    uap, REG_ST_DMAWM);
1122 
1123 	if (uap->using_rx_dma) {
1124 		if (pl011_dma_rx_trigger_dma(uap))
1125 			dev_dbg(uap->port.dev, "could not trigger initial "
1126 				"RX DMA job, fall back to interrupt mode\n");
1127 		if (uap->dmarx.poll_rate) {
1128 			init_timer(&(uap->dmarx.timer));
1129 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1130 			uap->dmarx.timer.data = (unsigned long)uap;
1131 			mod_timer(&uap->dmarx.timer,
1132 				jiffies +
1133 				msecs_to_jiffies(uap->dmarx.poll_rate));
1134 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1135 			uap->dmarx.last_jiffies = jiffies;
1136 		}
1137 	}
1138 }
1139 
1140 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1141 {
1142 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1143 		return;
1144 
1145 	/* Disable RX and TX DMA */
1146 	while (pl011_read(uap, REG_FR) & UART01x_FR_BUSY)
1147 		barrier();
1148 
1149 	spin_lock_irq(&uap->port.lock);
1150 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1151 	pl011_write(uap->dmacr, uap, REG_DMACR);
1152 	spin_unlock_irq(&uap->port.lock);
1153 
1154 	if (uap->using_tx_dma) {
1155 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1156 		dmaengine_terminate_all(uap->dmatx.chan);
1157 		if (uap->dmatx.queued) {
1158 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1159 				     DMA_TO_DEVICE);
1160 			uap->dmatx.queued = false;
1161 		}
1162 
1163 		kfree(uap->dmatx.buf);
1164 		uap->using_tx_dma = false;
1165 	}
1166 
1167 	if (uap->using_rx_dma) {
1168 		dmaengine_terminate_all(uap->dmarx.chan);
1169 		/* Clean up the RX DMA */
1170 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1171 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1172 		if (uap->dmarx.poll_rate)
1173 			del_timer_sync(&uap->dmarx.timer);
1174 		uap->using_rx_dma = false;
1175 	}
1176 }
1177 
1178 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1179 {
1180 	return uap->using_rx_dma;
1181 }
1182 
1183 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1184 {
1185 	return uap->using_rx_dma && uap->dmarx.running;
1186 }
1187 
1188 #else
1189 /* Blank functions if the DMA engine is not available */
1190 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1191 {
1192 }
1193 
1194 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1195 {
1196 }
1197 
1198 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1199 {
1200 }
1201 
1202 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1203 {
1204 }
1205 
1206 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1207 {
1208 	return false;
1209 }
1210 
1211 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1212 {
1213 }
1214 
1215 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1216 {
1217 	return false;
1218 }
1219 
1220 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1221 {
1222 }
1223 
1224 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1225 {
1226 }
1227 
1228 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1229 {
1230 	return -EIO;
1231 }
1232 
1233 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1234 {
1235 	return false;
1236 }
1237 
1238 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1239 {
1240 	return false;
1241 }
1242 
1243 #define pl011_dma_flush_buffer	NULL
1244 #endif
1245 
1246 static void pl011_stop_tx(struct uart_port *port)
1247 {
1248 	struct uart_amba_port *uap =
1249 	    container_of(port, struct uart_amba_port, port);
1250 
1251 	uap->im &= ~UART011_TXIM;
1252 	pl011_write(uap->im, uap, REG_IMSC);
1253 	pl011_dma_tx_stop(uap);
1254 }
1255 
1256 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1257 
1258 /* Start TX with programmed I/O only (no DMA) */
1259 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1260 {
1261 	uap->im |= UART011_TXIM;
1262 	pl011_write(uap->im, uap, REG_IMSC);
1263 	pl011_tx_chars(uap, false);
1264 }
1265 
1266 static void pl011_start_tx(struct uart_port *port)
1267 {
1268 	struct uart_amba_port *uap =
1269 	    container_of(port, struct uart_amba_port, port);
1270 
1271 	if (!pl011_dma_tx_start(uap))
1272 		pl011_start_tx_pio(uap);
1273 }
1274 
1275 static void pl011_stop_rx(struct uart_port *port)
1276 {
1277 	struct uart_amba_port *uap =
1278 	    container_of(port, struct uart_amba_port, port);
1279 
1280 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1281 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1282 	pl011_write(uap->im, uap, REG_IMSC);
1283 
1284 	pl011_dma_rx_stop(uap);
1285 }
1286 
1287 static void pl011_enable_ms(struct uart_port *port)
1288 {
1289 	struct uart_amba_port *uap =
1290 	    container_of(port, struct uart_amba_port, port);
1291 
1292 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1293 	pl011_write(uap->im, uap, REG_IMSC);
1294 }
1295 
1296 static void pl011_rx_chars(struct uart_amba_port *uap)
1297 __releases(&uap->port.lock)
1298 __acquires(&uap->port.lock)
1299 {
1300 	pl011_fifo_to_tty(uap);
1301 
1302 	spin_unlock(&uap->port.lock);
1303 	tty_flip_buffer_push(&uap->port.state->port);
1304 	/*
1305 	 * If we were temporarily out of DMA mode for a while,
1306 	 * attempt to switch back to DMA mode again.
1307 	 */
1308 	if (pl011_dma_rx_available(uap)) {
1309 		if (pl011_dma_rx_trigger_dma(uap)) {
1310 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1311 				"fall back to interrupt mode again\n");
1312 			uap->im |= UART011_RXIM;
1313 			pl011_write(uap->im, uap, REG_IMSC);
1314 		} else {
1315 #ifdef CONFIG_DMA_ENGINE
1316 			/* Start Rx DMA poll */
1317 			if (uap->dmarx.poll_rate) {
1318 				uap->dmarx.last_jiffies = jiffies;
1319 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1320 				mod_timer(&uap->dmarx.timer,
1321 					jiffies +
1322 					msecs_to_jiffies(uap->dmarx.poll_rate));
1323 			}
1324 #endif
1325 		}
1326 	}
1327 	spin_lock(&uap->port.lock);
1328 }
1329 
1330 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1331 			  bool from_irq)
1332 {
1333 	if (unlikely(!from_irq) &&
1334 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1335 		return false; /* unable to transmit character */
1336 
1337 	pl011_write(c, uap, REG_DR);
1338 	uap->port.icount.tx++;
1339 
1340 	return true;
1341 }
1342 
1343 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1344 {
1345 	struct circ_buf *xmit = &uap->port.state->xmit;
1346 	int count = uap->fifosize >> 1;
1347 
1348 	if (uap->port.x_char) {
1349 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1350 			return;
1351 		uap->port.x_char = 0;
1352 		--count;
1353 	}
1354 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1355 		pl011_stop_tx(&uap->port);
1356 		return;
1357 	}
1358 
1359 	/* If we are using DMA mode, try to send some characters. */
1360 	if (pl011_dma_tx_irq(uap))
1361 		return;
1362 
1363 	do {
1364 		if (likely(from_irq) && count-- == 0)
1365 			break;
1366 
1367 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1368 			break;
1369 
1370 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1371 	} while (!uart_circ_empty(xmit));
1372 
1373 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1374 		uart_write_wakeup(&uap->port);
1375 
1376 	if (uart_circ_empty(xmit))
1377 		pl011_stop_tx(&uap->port);
1378 }
1379 
1380 static void pl011_modem_status(struct uart_amba_port *uap)
1381 {
1382 	unsigned int status, delta;
1383 
1384 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1385 
1386 	delta = status ^ uap->old_status;
1387 	uap->old_status = status;
1388 
1389 	if (!delta)
1390 		return;
1391 
1392 	if (delta & UART01x_FR_DCD)
1393 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1394 
1395 	if (delta & UART01x_FR_DSR)
1396 		uap->port.icount.dsr++;
1397 
1398 	if (delta & UART01x_FR_CTS)
1399 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1400 
1401 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1402 }
1403 
1404 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1405 {
1406 	unsigned int dummy_read;
1407 
1408 	if (!uap->vendor->cts_event_workaround)
1409 		return;
1410 
1411 	/* workaround to make sure that all bits are unlocked.. */
1412 	pl011_write(0x00, uap, REG_ICR);
1413 
1414 	/*
1415 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1416 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1417 	 * so add 2 dummy reads
1418 	 */
1419 	dummy_read = pl011_read(uap, REG_ICR);
1420 	dummy_read = pl011_read(uap, REG_ICR);
1421 }
1422 
1423 static irqreturn_t pl011_int(int irq, void *dev_id)
1424 {
1425 	struct uart_amba_port *uap = dev_id;
1426 	unsigned long flags;
1427 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1428 	u16 imsc;
1429 	int handled = 0;
1430 
1431 	spin_lock_irqsave(&uap->port.lock, flags);
1432 	imsc = pl011_read(uap, REG_IMSC);
1433 	status = pl011_read(uap, REG_RIS) & imsc;
1434 	if (status) {
1435 		do {
1436 			check_apply_cts_event_workaround(uap);
1437 
1438 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1439 					       UART011_RXIS),
1440 				    uap, REG_ICR);
1441 
1442 			if (status & (UART011_RTIS|UART011_RXIS)) {
1443 				if (pl011_dma_rx_running(uap))
1444 					pl011_dma_rx_irq(uap);
1445 				else
1446 					pl011_rx_chars(uap);
1447 			}
1448 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1449 				      UART011_CTSMIS|UART011_RIMIS))
1450 				pl011_modem_status(uap);
1451 			if (status & UART011_TXIS)
1452 				pl011_tx_chars(uap, true);
1453 
1454 			if (pass_counter-- == 0)
1455 				break;
1456 
1457 			status = pl011_read(uap, REG_RIS) & imsc;
1458 		} while (status != 0);
1459 		handled = 1;
1460 	}
1461 
1462 	spin_unlock_irqrestore(&uap->port.lock, flags);
1463 
1464 	return IRQ_RETVAL(handled);
1465 }
1466 
1467 static unsigned int pl011_tx_empty(struct uart_port *port)
1468 {
1469 	struct uart_amba_port *uap =
1470 	    container_of(port, struct uart_amba_port, port);
1471 	unsigned int status = pl011_read(uap, REG_FR);
1472 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1473 }
1474 
1475 static unsigned int pl011_get_mctrl(struct uart_port *port)
1476 {
1477 	struct uart_amba_port *uap =
1478 	    container_of(port, struct uart_amba_port, port);
1479 	unsigned int result = 0;
1480 	unsigned int status = pl011_read(uap, REG_FR);
1481 
1482 #define TIOCMBIT(uartbit, tiocmbit)	\
1483 	if (status & uartbit)		\
1484 		result |= tiocmbit
1485 
1486 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1487 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1488 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1489 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1490 #undef TIOCMBIT
1491 	return result;
1492 }
1493 
1494 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1495 {
1496 	struct uart_amba_port *uap =
1497 	    container_of(port, struct uart_amba_port, port);
1498 	unsigned int cr;
1499 
1500 	cr = pl011_read(uap, REG_CR);
1501 
1502 #define	TIOCMBIT(tiocmbit, uartbit)		\
1503 	if (mctrl & tiocmbit)		\
1504 		cr |= uartbit;		\
1505 	else				\
1506 		cr &= ~uartbit
1507 
1508 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1509 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1510 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1511 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1512 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1513 
1514 	if (uap->autorts) {
1515 		/* We need to disable auto-RTS if we want to turn RTS off */
1516 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1517 	}
1518 #undef TIOCMBIT
1519 
1520 	pl011_write(cr, uap, REG_CR);
1521 }
1522 
1523 static void pl011_break_ctl(struct uart_port *port, int break_state)
1524 {
1525 	struct uart_amba_port *uap =
1526 	    container_of(port, struct uart_amba_port, port);
1527 	unsigned long flags;
1528 	unsigned int lcr_h;
1529 
1530 	spin_lock_irqsave(&uap->port.lock, flags);
1531 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1532 	if (break_state == -1)
1533 		lcr_h |= UART01x_LCRH_BRK;
1534 	else
1535 		lcr_h &= ~UART01x_LCRH_BRK;
1536 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1537 	spin_unlock_irqrestore(&uap->port.lock, flags);
1538 }
1539 
1540 #ifdef CONFIG_CONSOLE_POLL
1541 
1542 static void pl011_quiesce_irqs(struct uart_port *port)
1543 {
1544 	struct uart_amba_port *uap =
1545 	    container_of(port, struct uart_amba_port, port);
1546 
1547 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1548 	/*
1549 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1550 	 * we simply mask it. start_tx() will unmask it.
1551 	 *
1552 	 * Note we can race with start_tx(), and if the race happens, the
1553 	 * polling user might get another interrupt just after we clear it.
1554 	 * But it should be OK and can happen even w/o the race, e.g.
1555 	 * controller immediately got some new data and raised the IRQ.
1556 	 *
1557 	 * And whoever uses polling routines assumes that it manages the device
1558 	 * (including tx queue), so we're also fine with start_tx()'s caller
1559 	 * side.
1560 	 */
1561 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1562 		    REG_IMSC);
1563 }
1564 
1565 static int pl011_get_poll_char(struct uart_port *port)
1566 {
1567 	struct uart_amba_port *uap =
1568 	    container_of(port, struct uart_amba_port, port);
1569 	unsigned int status;
1570 
1571 	/*
1572 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1573 	 * debugger.
1574 	 */
1575 	pl011_quiesce_irqs(port);
1576 
1577 	status = pl011_read(uap, REG_FR);
1578 	if (status & UART01x_FR_RXFE)
1579 		return NO_POLL_CHAR;
1580 
1581 	return pl011_read(uap, REG_DR);
1582 }
1583 
1584 static void pl011_put_poll_char(struct uart_port *port,
1585 			 unsigned char ch)
1586 {
1587 	struct uart_amba_port *uap =
1588 	    container_of(port, struct uart_amba_port, port);
1589 
1590 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1591 		barrier();
1592 
1593 	pl011_write(ch, uap, REG_DR);
1594 }
1595 
1596 #endif /* CONFIG_CONSOLE_POLL */
1597 
1598 static int pl011_hwinit(struct uart_port *port)
1599 {
1600 	struct uart_amba_port *uap =
1601 	    container_of(port, struct uart_amba_port, port);
1602 	int retval;
1603 
1604 	/* Optionaly enable pins to be muxed in and configured */
1605 	pinctrl_pm_select_default_state(port->dev);
1606 
1607 	/*
1608 	 * Try to enable the clock producer.
1609 	 */
1610 	retval = clk_prepare_enable(uap->clk);
1611 	if (retval)
1612 		return retval;
1613 
1614 	uap->port.uartclk = clk_get_rate(uap->clk);
1615 
1616 	/* Clear pending error and receive interrupts */
1617 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1618 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1619 		    uap, REG_ICR);
1620 
1621 	/*
1622 	 * Save interrupts enable mask, and enable RX interrupts in case if
1623 	 * the interrupt is used for NMI entry.
1624 	 */
1625 	uap->im = pl011_read(uap, REG_IMSC);
1626 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1627 
1628 	if (dev_get_platdata(uap->port.dev)) {
1629 		struct amba_pl011_data *plat;
1630 
1631 		plat = dev_get_platdata(uap->port.dev);
1632 		if (plat->init)
1633 			plat->init();
1634 	}
1635 	return 0;
1636 }
1637 
1638 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1639 {
1640 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1641 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1642 }
1643 
1644 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1645 {
1646 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1647 	if (pl011_split_lcrh(uap)) {
1648 		int i;
1649 		/*
1650 		 * Wait 10 PCLKs before writing LCRH_TX register,
1651 		 * to get this delay write read only register 10 times
1652 		 */
1653 		for (i = 0; i < 10; ++i)
1654 			pl011_write(0xff, uap, REG_MIS);
1655 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1656 	}
1657 }
1658 
1659 static int pl011_allocate_irq(struct uart_amba_port *uap)
1660 {
1661 	pl011_write(uap->im, uap, REG_IMSC);
1662 
1663 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1664 }
1665 
1666 /*
1667  * Enable interrupts, only timeouts when using DMA
1668  * if initial RX DMA job failed, start in interrupt mode
1669  * as well.
1670  */
1671 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1672 {
1673 	spin_lock_irq(&uap->port.lock);
1674 
1675 	/* Clear out any spuriously appearing RX interrupts */
1676 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1677 	uap->im = UART011_RTIM;
1678 	if (!pl011_dma_rx_running(uap))
1679 		uap->im |= UART011_RXIM;
1680 	pl011_write(uap->im, uap, REG_IMSC);
1681 	spin_unlock_irq(&uap->port.lock);
1682 }
1683 
1684 static int pl011_startup(struct uart_port *port)
1685 {
1686 	struct uart_amba_port *uap =
1687 	    container_of(port, struct uart_amba_port, port);
1688 	unsigned int cr;
1689 	int retval;
1690 
1691 	retval = pl011_hwinit(port);
1692 	if (retval)
1693 		goto clk_dis;
1694 
1695 	retval = pl011_allocate_irq(uap);
1696 	if (retval)
1697 		goto clk_dis;
1698 
1699 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1700 
1701 	spin_lock_irq(&uap->port.lock);
1702 
1703 	/* restore RTS and DTR */
1704 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1705 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1706 	pl011_write(cr, uap, REG_CR);
1707 
1708 	spin_unlock_irq(&uap->port.lock);
1709 
1710 	/*
1711 	 * initialise the old status of the modem signals
1712 	 */
1713 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1714 
1715 	/* Startup DMA */
1716 	pl011_dma_startup(uap);
1717 
1718 	pl011_enable_interrupts(uap);
1719 
1720 	return 0;
1721 
1722  clk_dis:
1723 	clk_disable_unprepare(uap->clk);
1724 	return retval;
1725 }
1726 
1727 static int sbsa_uart_startup(struct uart_port *port)
1728 {
1729 	struct uart_amba_port *uap =
1730 		container_of(port, struct uart_amba_port, port);
1731 	int retval;
1732 
1733 	retval = pl011_hwinit(port);
1734 	if (retval)
1735 		return retval;
1736 
1737 	retval = pl011_allocate_irq(uap);
1738 	if (retval)
1739 		return retval;
1740 
1741 	/* The SBSA UART does not support any modem status lines. */
1742 	uap->old_status = 0;
1743 
1744 	pl011_enable_interrupts(uap);
1745 
1746 	return 0;
1747 }
1748 
1749 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1750 					unsigned int lcrh)
1751 {
1752       unsigned long val;
1753 
1754       val = pl011_read(uap, lcrh);
1755       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1756       pl011_write(val, uap, lcrh);
1757 }
1758 
1759 /*
1760  * disable the port. It should not disable RTS and DTR.
1761  * Also RTS and DTR state should be preserved to restore
1762  * it during startup().
1763  */
1764 static void pl011_disable_uart(struct uart_amba_port *uap)
1765 {
1766 	unsigned int cr;
1767 
1768 	uap->autorts = false;
1769 	spin_lock_irq(&uap->port.lock);
1770 	cr = pl011_read(uap, REG_CR);
1771 	uap->old_cr = cr;
1772 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1773 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1774 	pl011_write(cr, uap, REG_CR);
1775 	spin_unlock_irq(&uap->port.lock);
1776 
1777 	/*
1778 	 * disable break condition and fifos
1779 	 */
1780 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1781 	if (pl011_split_lcrh(uap))
1782 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1783 }
1784 
1785 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1786 {
1787 	spin_lock_irq(&uap->port.lock);
1788 
1789 	/* mask all interrupts and clear all pending ones */
1790 	uap->im = 0;
1791 	pl011_write(uap->im, uap, REG_IMSC);
1792 	pl011_write(0xffff, uap, REG_ICR);
1793 
1794 	spin_unlock_irq(&uap->port.lock);
1795 }
1796 
1797 static void pl011_shutdown(struct uart_port *port)
1798 {
1799 	struct uart_amba_port *uap =
1800 		container_of(port, struct uart_amba_port, port);
1801 
1802 	pl011_disable_interrupts(uap);
1803 
1804 	pl011_dma_shutdown(uap);
1805 
1806 	free_irq(uap->port.irq, uap);
1807 
1808 	pl011_disable_uart(uap);
1809 
1810 	/*
1811 	 * Shut down the clock producer
1812 	 */
1813 	clk_disable_unprepare(uap->clk);
1814 	/* Optionally let pins go into sleep states */
1815 	pinctrl_pm_select_sleep_state(port->dev);
1816 
1817 	if (dev_get_platdata(uap->port.dev)) {
1818 		struct amba_pl011_data *plat;
1819 
1820 		plat = dev_get_platdata(uap->port.dev);
1821 		if (plat->exit)
1822 			plat->exit();
1823 	}
1824 
1825 	if (uap->port.ops->flush_buffer)
1826 		uap->port.ops->flush_buffer(port);
1827 }
1828 
1829 static void sbsa_uart_shutdown(struct uart_port *port)
1830 {
1831 	struct uart_amba_port *uap =
1832 		container_of(port, struct uart_amba_port, port);
1833 
1834 	pl011_disable_interrupts(uap);
1835 
1836 	free_irq(uap->port.irq, uap);
1837 
1838 	if (uap->port.ops->flush_buffer)
1839 		uap->port.ops->flush_buffer(port);
1840 }
1841 
1842 static void
1843 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1844 {
1845 	port->read_status_mask = UART011_DR_OE | 255;
1846 	if (termios->c_iflag & INPCK)
1847 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1848 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1849 		port->read_status_mask |= UART011_DR_BE;
1850 
1851 	/*
1852 	 * Characters to ignore
1853 	 */
1854 	port->ignore_status_mask = 0;
1855 	if (termios->c_iflag & IGNPAR)
1856 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1857 	if (termios->c_iflag & IGNBRK) {
1858 		port->ignore_status_mask |= UART011_DR_BE;
1859 		/*
1860 		 * If we're ignoring parity and break indicators,
1861 		 * ignore overruns too (for real raw support).
1862 		 */
1863 		if (termios->c_iflag & IGNPAR)
1864 			port->ignore_status_mask |= UART011_DR_OE;
1865 	}
1866 
1867 	/*
1868 	 * Ignore all characters if CREAD is not set.
1869 	 */
1870 	if ((termios->c_cflag & CREAD) == 0)
1871 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1872 }
1873 
1874 static void
1875 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1876 		     struct ktermios *old)
1877 {
1878 	struct uart_amba_port *uap =
1879 	    container_of(port, struct uart_amba_port, port);
1880 	unsigned int lcr_h, old_cr;
1881 	unsigned long flags;
1882 	unsigned int baud, quot, clkdiv;
1883 
1884 	if (uap->vendor->oversampling)
1885 		clkdiv = 8;
1886 	else
1887 		clkdiv = 16;
1888 
1889 	/*
1890 	 * Ask the core to calculate the divisor for us.
1891 	 */
1892 	baud = uart_get_baud_rate(port, termios, old, 0,
1893 				  port->uartclk / clkdiv);
1894 #ifdef CONFIG_DMA_ENGINE
1895 	/*
1896 	 * Adjust RX DMA polling rate with baud rate if not specified.
1897 	 */
1898 	if (uap->dmarx.auto_poll_rate)
1899 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1900 #endif
1901 
1902 	if (baud > port->uartclk/16)
1903 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1904 	else
1905 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1906 
1907 	switch (termios->c_cflag & CSIZE) {
1908 	case CS5:
1909 		lcr_h = UART01x_LCRH_WLEN_5;
1910 		break;
1911 	case CS6:
1912 		lcr_h = UART01x_LCRH_WLEN_6;
1913 		break;
1914 	case CS7:
1915 		lcr_h = UART01x_LCRH_WLEN_7;
1916 		break;
1917 	default: // CS8
1918 		lcr_h = UART01x_LCRH_WLEN_8;
1919 		break;
1920 	}
1921 	if (termios->c_cflag & CSTOPB)
1922 		lcr_h |= UART01x_LCRH_STP2;
1923 	if (termios->c_cflag & PARENB) {
1924 		lcr_h |= UART01x_LCRH_PEN;
1925 		if (!(termios->c_cflag & PARODD))
1926 			lcr_h |= UART01x_LCRH_EPS;
1927 	}
1928 	if (uap->fifosize > 1)
1929 		lcr_h |= UART01x_LCRH_FEN;
1930 
1931 	spin_lock_irqsave(&port->lock, flags);
1932 
1933 	/*
1934 	 * Update the per-port timeout.
1935 	 */
1936 	uart_update_timeout(port, termios->c_cflag, baud);
1937 
1938 	pl011_setup_status_masks(port, termios);
1939 
1940 	if (UART_ENABLE_MS(port, termios->c_cflag))
1941 		pl011_enable_ms(port);
1942 
1943 	/* first, disable everything */
1944 	old_cr = pl011_read(uap, REG_CR);
1945 	pl011_write(0, uap, REG_CR);
1946 
1947 	if (termios->c_cflag & CRTSCTS) {
1948 		if (old_cr & UART011_CR_RTS)
1949 			old_cr |= UART011_CR_RTSEN;
1950 
1951 		old_cr |= UART011_CR_CTSEN;
1952 		uap->autorts = true;
1953 	} else {
1954 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1955 		uap->autorts = false;
1956 	}
1957 
1958 	if (uap->vendor->oversampling) {
1959 		if (baud > port->uartclk / 16)
1960 			old_cr |= ST_UART011_CR_OVSFACT;
1961 		else
1962 			old_cr &= ~ST_UART011_CR_OVSFACT;
1963 	}
1964 
1965 	/*
1966 	 * Workaround for the ST Micro oversampling variants to
1967 	 * increase the bitrate slightly, by lowering the divisor,
1968 	 * to avoid delayed sampling of start bit at high speeds,
1969 	 * else we see data corruption.
1970 	 */
1971 	if (uap->vendor->oversampling) {
1972 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1973 			quot -= 1;
1974 		else if ((baud > 3250000) && (quot > 2))
1975 			quot -= 2;
1976 	}
1977 	/* Set baud rate */
1978 	pl011_write(quot & 0x3f, uap, REG_FBRD);
1979 	pl011_write(quot >> 6, uap, REG_IBRD);
1980 
1981 	/*
1982 	 * ----------v----------v----------v----------v-----
1983 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
1984 	 * REG_FBRD & REG_IBRD.
1985 	 * ----------^----------^----------^----------^-----
1986 	 */
1987 	pl011_write_lcr_h(uap, lcr_h);
1988 	pl011_write(old_cr, uap, REG_CR);
1989 
1990 	spin_unlock_irqrestore(&port->lock, flags);
1991 }
1992 
1993 static void
1994 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1995 		      struct ktermios *old)
1996 {
1997 	struct uart_amba_port *uap =
1998 	    container_of(port, struct uart_amba_port, port);
1999 	unsigned long flags;
2000 
2001 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2002 
2003 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2004 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2005 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2006 	termios->c_cflag |= CS8 | CLOCAL;
2007 
2008 	spin_lock_irqsave(&port->lock, flags);
2009 	uart_update_timeout(port, CS8, uap->fixed_baud);
2010 	pl011_setup_status_masks(port, termios);
2011 	spin_unlock_irqrestore(&port->lock, flags);
2012 }
2013 
2014 static const char *pl011_type(struct uart_port *port)
2015 {
2016 	struct uart_amba_port *uap =
2017 	    container_of(port, struct uart_amba_port, port);
2018 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2019 }
2020 
2021 /*
2022  * Release the memory region(s) being used by 'port'
2023  */
2024 static void pl011_release_port(struct uart_port *port)
2025 {
2026 	release_mem_region(port->mapbase, SZ_4K);
2027 }
2028 
2029 /*
2030  * Request the memory region(s) being used by 'port'
2031  */
2032 static int pl011_request_port(struct uart_port *port)
2033 {
2034 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2035 			!= NULL ? 0 : -EBUSY;
2036 }
2037 
2038 /*
2039  * Configure/autoconfigure the port.
2040  */
2041 static void pl011_config_port(struct uart_port *port, int flags)
2042 {
2043 	if (flags & UART_CONFIG_TYPE) {
2044 		port->type = PORT_AMBA;
2045 		pl011_request_port(port);
2046 	}
2047 }
2048 
2049 /*
2050  * verify the new serial_struct (for TIOCSSERIAL).
2051  */
2052 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2053 {
2054 	int ret = 0;
2055 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2056 		ret = -EINVAL;
2057 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2058 		ret = -EINVAL;
2059 	if (ser->baud_base < 9600)
2060 		ret = -EINVAL;
2061 	return ret;
2062 }
2063 
2064 static struct uart_ops amba_pl011_pops = {
2065 	.tx_empty	= pl011_tx_empty,
2066 	.set_mctrl	= pl011_set_mctrl,
2067 	.get_mctrl	= pl011_get_mctrl,
2068 	.stop_tx	= pl011_stop_tx,
2069 	.start_tx	= pl011_start_tx,
2070 	.stop_rx	= pl011_stop_rx,
2071 	.enable_ms	= pl011_enable_ms,
2072 	.break_ctl	= pl011_break_ctl,
2073 	.startup	= pl011_startup,
2074 	.shutdown	= pl011_shutdown,
2075 	.flush_buffer	= pl011_dma_flush_buffer,
2076 	.set_termios	= pl011_set_termios,
2077 	.type		= pl011_type,
2078 	.release_port	= pl011_release_port,
2079 	.request_port	= pl011_request_port,
2080 	.config_port	= pl011_config_port,
2081 	.verify_port	= pl011_verify_port,
2082 #ifdef CONFIG_CONSOLE_POLL
2083 	.poll_init     = pl011_hwinit,
2084 	.poll_get_char = pl011_get_poll_char,
2085 	.poll_put_char = pl011_put_poll_char,
2086 #endif
2087 };
2088 
2089 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2090 {
2091 }
2092 
2093 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2094 {
2095 	return 0;
2096 }
2097 
2098 static const struct uart_ops sbsa_uart_pops = {
2099 	.tx_empty	= pl011_tx_empty,
2100 	.set_mctrl	= sbsa_uart_set_mctrl,
2101 	.get_mctrl	= sbsa_uart_get_mctrl,
2102 	.stop_tx	= pl011_stop_tx,
2103 	.start_tx	= pl011_start_tx,
2104 	.stop_rx	= pl011_stop_rx,
2105 	.startup	= sbsa_uart_startup,
2106 	.shutdown	= sbsa_uart_shutdown,
2107 	.set_termios	= sbsa_uart_set_termios,
2108 	.type		= pl011_type,
2109 	.release_port	= pl011_release_port,
2110 	.request_port	= pl011_request_port,
2111 	.config_port	= pl011_config_port,
2112 	.verify_port	= pl011_verify_port,
2113 #ifdef CONFIG_CONSOLE_POLL
2114 	.poll_init     = pl011_hwinit,
2115 	.poll_get_char = pl011_get_poll_char,
2116 	.poll_put_char = pl011_put_poll_char,
2117 #endif
2118 };
2119 
2120 static struct uart_amba_port *amba_ports[UART_NR];
2121 
2122 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2123 
2124 static void pl011_console_putchar(struct uart_port *port, int ch)
2125 {
2126 	struct uart_amba_port *uap =
2127 	    container_of(port, struct uart_amba_port, port);
2128 
2129 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2130 		barrier();
2131 	pl011_write(ch, uap, REG_DR);
2132 }
2133 
2134 static void
2135 pl011_console_write(struct console *co, const char *s, unsigned int count)
2136 {
2137 	struct uart_amba_port *uap = amba_ports[co->index];
2138 	unsigned int status, old_cr = 0, new_cr;
2139 	unsigned long flags;
2140 	int locked = 1;
2141 
2142 	clk_enable(uap->clk);
2143 
2144 	local_irq_save(flags);
2145 	if (uap->port.sysrq)
2146 		locked = 0;
2147 	else if (oops_in_progress)
2148 		locked = spin_trylock(&uap->port.lock);
2149 	else
2150 		spin_lock(&uap->port.lock);
2151 
2152 	/*
2153 	 *	First save the CR then disable the interrupts
2154 	 */
2155 	if (!uap->vendor->always_enabled) {
2156 		old_cr = pl011_read(uap, REG_CR);
2157 		new_cr = old_cr & ~UART011_CR_CTSEN;
2158 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2159 		pl011_write(new_cr, uap, REG_CR);
2160 	}
2161 
2162 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2163 
2164 	/*
2165 	 *	Finally, wait for transmitter to become empty
2166 	 *	and restore the TCR
2167 	 */
2168 	do {
2169 		status = pl011_read(uap, REG_FR);
2170 	} while (status & UART01x_FR_BUSY);
2171 	if (!uap->vendor->always_enabled)
2172 		pl011_write(old_cr, uap, REG_CR);
2173 
2174 	if (locked)
2175 		spin_unlock(&uap->port.lock);
2176 	local_irq_restore(flags);
2177 
2178 	clk_disable(uap->clk);
2179 }
2180 
2181 static void __init
2182 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2183 			     int *parity, int *bits)
2184 {
2185 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2186 		unsigned int lcr_h, ibrd, fbrd;
2187 
2188 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2189 
2190 		*parity = 'n';
2191 		if (lcr_h & UART01x_LCRH_PEN) {
2192 			if (lcr_h & UART01x_LCRH_EPS)
2193 				*parity = 'e';
2194 			else
2195 				*parity = 'o';
2196 		}
2197 
2198 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2199 			*bits = 7;
2200 		else
2201 			*bits = 8;
2202 
2203 		ibrd = pl011_read(uap, REG_IBRD);
2204 		fbrd = pl011_read(uap, REG_FBRD);
2205 
2206 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2207 
2208 		if (uap->vendor->oversampling) {
2209 			if (pl011_read(uap, REG_CR)
2210 				  & ST_UART011_CR_OVSFACT)
2211 				*baud *= 2;
2212 		}
2213 	}
2214 }
2215 
2216 static int __init pl011_console_setup(struct console *co, char *options)
2217 {
2218 	struct uart_amba_port *uap;
2219 	int baud = 38400;
2220 	int bits = 8;
2221 	int parity = 'n';
2222 	int flow = 'n';
2223 	int ret;
2224 
2225 	/*
2226 	 * Check whether an invalid uart number has been specified, and
2227 	 * if so, search for the first available port that does have
2228 	 * console support.
2229 	 */
2230 	if (co->index >= UART_NR)
2231 		co->index = 0;
2232 	uap = amba_ports[co->index];
2233 	if (!uap)
2234 		return -ENODEV;
2235 
2236 	/* Allow pins to be muxed in and configured */
2237 	pinctrl_pm_select_default_state(uap->port.dev);
2238 
2239 	ret = clk_prepare(uap->clk);
2240 	if (ret)
2241 		return ret;
2242 
2243 	if (dev_get_platdata(uap->port.dev)) {
2244 		struct amba_pl011_data *plat;
2245 
2246 		plat = dev_get_platdata(uap->port.dev);
2247 		if (plat->init)
2248 			plat->init();
2249 	}
2250 
2251 	uap->port.uartclk = clk_get_rate(uap->clk);
2252 
2253 	if (uap->vendor->fixed_options) {
2254 		baud = uap->fixed_baud;
2255 	} else {
2256 		if (options)
2257 			uart_parse_options(options,
2258 					   &baud, &parity, &bits, &flow);
2259 		else
2260 			pl011_console_get_options(uap, &baud, &parity, &bits);
2261 	}
2262 
2263 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2264 }
2265 
2266 static struct uart_driver amba_reg;
2267 static struct console amba_console = {
2268 	.name		= "ttyAMA",
2269 	.write		= pl011_console_write,
2270 	.device		= uart_console_device,
2271 	.setup		= pl011_console_setup,
2272 	.flags		= CON_PRINTBUFFER,
2273 	.index		= -1,
2274 	.data		= &amba_reg,
2275 };
2276 
2277 #define AMBA_CONSOLE	(&amba_console)
2278 
2279 static void pl011_putc(struct uart_port *port, int c)
2280 {
2281 	while (readl(port->membase + REG_FR) & UART01x_FR_TXFF)
2282 		;
2283 	writeb(c, port->membase + REG_DR);
2284 	while (readl(port->membase + REG_FR) & UART01x_FR_BUSY)
2285 		;
2286 }
2287 
2288 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2289 {
2290 	struct earlycon_device *dev = con->data;
2291 
2292 	uart_console_write(&dev->port, s, n, pl011_putc);
2293 }
2294 
2295 static int __init pl011_early_console_setup(struct earlycon_device *device,
2296 					    const char *opt)
2297 {
2298 	if (!device->port.membase)
2299 		return -ENODEV;
2300 
2301 	device->con->write = pl011_early_write;
2302 	return 0;
2303 }
2304 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2305 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2306 
2307 #else
2308 #define AMBA_CONSOLE	NULL
2309 #endif
2310 
2311 static struct uart_driver amba_reg = {
2312 	.owner			= THIS_MODULE,
2313 	.driver_name		= "ttyAMA",
2314 	.dev_name		= "ttyAMA",
2315 	.major			= SERIAL_AMBA_MAJOR,
2316 	.minor			= SERIAL_AMBA_MINOR,
2317 	.nr			= UART_NR,
2318 	.cons			= AMBA_CONSOLE,
2319 };
2320 
2321 static int pl011_probe_dt_alias(int index, struct device *dev)
2322 {
2323 	struct device_node *np;
2324 	static bool seen_dev_with_alias = false;
2325 	static bool seen_dev_without_alias = false;
2326 	int ret = index;
2327 
2328 	if (!IS_ENABLED(CONFIG_OF))
2329 		return ret;
2330 
2331 	np = dev->of_node;
2332 	if (!np)
2333 		return ret;
2334 
2335 	ret = of_alias_get_id(np, "serial");
2336 	if (IS_ERR_VALUE(ret)) {
2337 		seen_dev_without_alias = true;
2338 		ret = index;
2339 	} else {
2340 		seen_dev_with_alias = true;
2341 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2342 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2343 			ret = index;
2344 		}
2345 	}
2346 
2347 	if (seen_dev_with_alias && seen_dev_without_alias)
2348 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2349 
2350 	return ret;
2351 }
2352 
2353 /* unregisters the driver also if no more ports are left */
2354 static void pl011_unregister_port(struct uart_amba_port *uap)
2355 {
2356 	int i;
2357 	bool busy = false;
2358 
2359 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2360 		if (amba_ports[i] == uap)
2361 			amba_ports[i] = NULL;
2362 		else if (amba_ports[i])
2363 			busy = true;
2364 	}
2365 	pl011_dma_remove(uap);
2366 	if (!busy)
2367 		uart_unregister_driver(&amba_reg);
2368 }
2369 
2370 static int pl011_find_free_port(void)
2371 {
2372 	int i;
2373 
2374 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2375 		if (amba_ports[i] == NULL)
2376 			return i;
2377 
2378 	return -EBUSY;
2379 }
2380 
2381 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2382 			    struct resource *mmiobase, int index)
2383 {
2384 	void __iomem *base;
2385 
2386 	base = devm_ioremap_resource(dev, mmiobase);
2387 	if (IS_ERR(base))
2388 		return PTR_ERR(base);
2389 
2390 	index = pl011_probe_dt_alias(index, dev);
2391 
2392 	uap->old_cr = 0;
2393 	uap->port.dev = dev;
2394 	uap->port.mapbase = mmiobase->start;
2395 	uap->port.membase = base;
2396 	uap->port.iotype = UPIO_MEM;
2397 	uap->port.fifosize = uap->fifosize;
2398 	uap->port.flags = UPF_BOOT_AUTOCONF;
2399 	uap->port.line = index;
2400 
2401 	amba_ports[index] = uap;
2402 
2403 	return 0;
2404 }
2405 
2406 static int pl011_register_port(struct uart_amba_port *uap)
2407 {
2408 	int ret;
2409 
2410 	/* Ensure interrupts from this UART are masked and cleared */
2411 	pl011_write(0, uap, REG_IMSC);
2412 	pl011_write(0xffff, uap, REG_ICR);
2413 
2414 	if (!amba_reg.state) {
2415 		ret = uart_register_driver(&amba_reg);
2416 		if (ret < 0) {
2417 			dev_err(uap->port.dev,
2418 				"Failed to register AMBA-PL011 driver\n");
2419 			return ret;
2420 		}
2421 	}
2422 
2423 	ret = uart_add_one_port(&amba_reg, &uap->port);
2424 	if (ret)
2425 		pl011_unregister_port(uap);
2426 
2427 	return ret;
2428 }
2429 
2430 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2431 {
2432 	struct uart_amba_port *uap;
2433 	struct vendor_data *vendor = id->data;
2434 	int portnr, ret;
2435 
2436 	portnr = pl011_find_free_port();
2437 	if (portnr < 0)
2438 		return portnr;
2439 
2440 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2441 			   GFP_KERNEL);
2442 	if (!uap)
2443 		return -ENOMEM;
2444 
2445 	uap->clk = devm_clk_get(&dev->dev, NULL);
2446 	if (IS_ERR(uap->clk))
2447 		return PTR_ERR(uap->clk);
2448 
2449 	uap->reg_offset = vendor->reg_offset;
2450 	uap->access_32b = vendor->access_32b;
2451 	uap->vendor = vendor;
2452 	uap->fifosize = vendor->get_fifosize(dev);
2453 	uap->port.irq = dev->irq[0];
2454 	uap->port.ops = &amba_pl011_pops;
2455 
2456 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2457 
2458 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2459 	if (ret)
2460 		return ret;
2461 
2462 	amba_set_drvdata(dev, uap);
2463 
2464 	return pl011_register_port(uap);
2465 }
2466 
2467 static int pl011_remove(struct amba_device *dev)
2468 {
2469 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2470 
2471 	uart_remove_one_port(&amba_reg, &uap->port);
2472 	pl011_unregister_port(uap);
2473 	return 0;
2474 }
2475 
2476 #ifdef CONFIG_PM_SLEEP
2477 static int pl011_suspend(struct device *dev)
2478 {
2479 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2480 
2481 	if (!uap)
2482 		return -EINVAL;
2483 
2484 	return uart_suspend_port(&amba_reg, &uap->port);
2485 }
2486 
2487 static int pl011_resume(struct device *dev)
2488 {
2489 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2490 
2491 	if (!uap)
2492 		return -EINVAL;
2493 
2494 	return uart_resume_port(&amba_reg, &uap->port);
2495 }
2496 #endif
2497 
2498 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2499 
2500 static int sbsa_uart_probe(struct platform_device *pdev)
2501 {
2502 	struct uart_amba_port *uap;
2503 	struct resource *r;
2504 	int portnr, ret;
2505 	int baudrate;
2506 
2507 	/*
2508 	 * Check the mandatory baud rate parameter in the DT node early
2509 	 * so that we can easily exit with the error.
2510 	 */
2511 	if (pdev->dev.of_node) {
2512 		struct device_node *np = pdev->dev.of_node;
2513 
2514 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2515 		if (ret)
2516 			return ret;
2517 	} else {
2518 		baudrate = 115200;
2519 	}
2520 
2521 	portnr = pl011_find_free_port();
2522 	if (portnr < 0)
2523 		return portnr;
2524 
2525 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2526 			   GFP_KERNEL);
2527 	if (!uap)
2528 		return -ENOMEM;
2529 
2530 	uap->reg_offset	= vendor_sbsa.reg_offset;
2531 	uap->access_32b = vendor_sbsa.access_32b;
2532 	uap->vendor	= &vendor_sbsa;
2533 	uap->fifosize	= 32;
2534 	uap->port.irq	= platform_get_irq(pdev, 0);
2535 	uap->port.ops	= &sbsa_uart_pops;
2536 	uap->fixed_baud = baudrate;
2537 
2538 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2539 
2540 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2541 
2542 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2543 	if (ret)
2544 		return ret;
2545 
2546 	platform_set_drvdata(pdev, uap);
2547 
2548 	return pl011_register_port(uap);
2549 }
2550 
2551 static int sbsa_uart_remove(struct platform_device *pdev)
2552 {
2553 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2554 
2555 	uart_remove_one_port(&amba_reg, &uap->port);
2556 	pl011_unregister_port(uap);
2557 	return 0;
2558 }
2559 
2560 static const struct of_device_id sbsa_uart_of_match[] = {
2561 	{ .compatible = "arm,sbsa-uart", },
2562 	{},
2563 };
2564 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2565 
2566 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2567 	{ "ARMH0011", 0 },
2568 	{},
2569 };
2570 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2571 
2572 static struct platform_driver arm_sbsa_uart_platform_driver = {
2573 	.probe		= sbsa_uart_probe,
2574 	.remove		= sbsa_uart_remove,
2575 	.driver	= {
2576 		.name	= "sbsa-uart",
2577 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2578 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2579 	},
2580 };
2581 
2582 static struct amba_id pl011_ids[] = {
2583 	{
2584 		.id	= 0x00041011,
2585 		.mask	= 0x000fffff,
2586 		.data	= &vendor_arm,
2587 	},
2588 	{
2589 		.id	= 0x00380802,
2590 		.mask	= 0x00ffffff,
2591 		.data	= &vendor_st,
2592 	},
2593 	{ 0, 0 },
2594 };
2595 
2596 MODULE_DEVICE_TABLE(amba, pl011_ids);
2597 
2598 static struct amba_driver pl011_driver = {
2599 	.drv = {
2600 		.name	= "uart-pl011",
2601 		.pm	= &pl011_dev_pm_ops,
2602 	},
2603 	.id_table	= pl011_ids,
2604 	.probe		= pl011_probe,
2605 	.remove		= pl011_remove,
2606 };
2607 
2608 static int __init pl011_init(void)
2609 {
2610 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2611 
2612 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2613 		pr_warn("could not register SBSA UART platform driver\n");
2614 	return amba_driver_register(&pl011_driver);
2615 }
2616 
2617 static void __exit pl011_exit(void)
2618 {
2619 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2620 	amba_driver_unregister(&pl011_driver);
2621 }
2622 
2623 /*
2624  * While this can be a module, if builtin it's most likely the console
2625  * So let's leave module_exit but move module_init to an earlier place
2626  */
2627 arch_initcall(pl011_init);
2628 module_exit(pl011_exit);
2629 
2630 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2631 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2632 MODULE_LICENSE("GPL");
2633