xref: /linux/drivers/tty/serial/amba-pl011.c (revision 7ec758718920e5e5876d0d02ece6855128c8eb1e)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #include "amba-pl011.h"
64 
65 #define UART_NR			14
66 
67 #define SERIAL_AMBA_MAJOR	204
68 #define SERIAL_AMBA_MINOR	64
69 #define SERIAL_AMBA_NR		UART_NR
70 
71 #define AMBA_ISR_PASS_LIMIT	256
72 
73 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX	(1 << 16)
75 
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 	[REG_DR] = UART01x_DR,
78 	[REG_FR] = UART01x_FR,
79 	[REG_LCRH_RX] = UART011_LCRH,
80 	[REG_LCRH_TX] = UART011_LCRH,
81 	[REG_IBRD] = UART011_IBRD,
82 	[REG_FBRD] = UART011_FBRD,
83 	[REG_CR] = UART011_CR,
84 	[REG_IFLS] = UART011_IFLS,
85 	[REG_IMSC] = UART011_IMSC,
86 	[REG_RIS] = UART011_RIS,
87 	[REG_MIS] = UART011_MIS,
88 	[REG_ICR] = UART011_ICR,
89 	[REG_DMACR] = UART011_DMACR,
90 };
91 
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 	const u16		*reg_offset;
95 	unsigned int		ifls;
96 	bool			access_32b;
97 	bool			oversampling;
98 	bool			dma_threshold;
99 	bool			cts_event_workaround;
100 	bool			always_enabled;
101 	bool			fixed_options;
102 
103 	unsigned int (*get_fifosize)(struct amba_device *dev);
104 };
105 
106 static unsigned int get_fifosize_arm(struct amba_device *dev)
107 {
108 	return amba_rev(dev) < 3 ? 16 : 32;
109 }
110 
111 static struct vendor_data vendor_arm = {
112 	.reg_offset		= pl011_std_offsets,
113 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
114 	.oversampling		= false,
115 	.dma_threshold		= false,
116 	.cts_event_workaround	= false,
117 	.always_enabled		= false,
118 	.fixed_options		= false,
119 	.get_fifosize		= get_fifosize_arm,
120 };
121 
122 static struct vendor_data vendor_sbsa = {
123 	.reg_offset		= pl011_std_offsets,
124 	.oversampling		= false,
125 	.dma_threshold		= false,
126 	.cts_event_workaround	= false,
127 	.always_enabled		= true,
128 	.fixed_options		= true,
129 };
130 
131 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
132 	[REG_DR] = UART01x_DR,
133 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
134 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
135 	[REG_FR] = UART01x_FR,
136 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
137 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
138 	[REG_IBRD] = UART011_IBRD,
139 	[REG_FBRD] = UART011_FBRD,
140 	[REG_CR] = UART011_CR,
141 	[REG_IFLS] = UART011_IFLS,
142 	[REG_IMSC] = UART011_IMSC,
143 	[REG_RIS] = UART011_RIS,
144 	[REG_MIS] = UART011_MIS,
145 	[REG_ICR] = UART011_ICR,
146 	[REG_DMACR] = UART011_DMACR,
147 	[REG_ST_XFCR] = ST_UART011_XFCR,
148 	[REG_ST_XON1] = ST_UART011_XON1,
149 	[REG_ST_XON2] = ST_UART011_XON2,
150 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
151 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
152 	[REG_ST_ITCR] = ST_UART011_ITCR,
153 	[REG_ST_ITIP] = ST_UART011_ITIP,
154 	[REG_ST_ABCR] = ST_UART011_ABCR,
155 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
156 };
157 
158 static unsigned int get_fifosize_st(struct amba_device *dev)
159 {
160 	return 64;
161 }
162 
163 static struct vendor_data vendor_st = {
164 	.reg_offset		= pl011_st_offsets,
165 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
166 	.oversampling		= true,
167 	.dma_threshold		= true,
168 	.cts_event_workaround	= true,
169 	.always_enabled		= false,
170 	.fixed_options		= false,
171 	.get_fifosize		= get_fifosize_st,
172 };
173 
174 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
175 	[REG_DR] = ZX_UART011_DR,
176 	[REG_FR] = ZX_UART011_FR,
177 	[REG_LCRH_RX] = ZX_UART011_LCRH,
178 	[REG_LCRH_TX] = ZX_UART011_LCRH,
179 	[REG_IBRD] = ZX_UART011_IBRD,
180 	[REG_FBRD] = ZX_UART011_FBRD,
181 	[REG_CR] = ZX_UART011_CR,
182 	[REG_IFLS] = ZX_UART011_IFLS,
183 	[REG_IMSC] = ZX_UART011_IMSC,
184 	[REG_RIS] = ZX_UART011_RIS,
185 	[REG_MIS] = ZX_UART011_MIS,
186 	[REG_ICR] = ZX_UART011_ICR,
187 	[REG_DMACR] = ZX_UART011_DMACR,
188 };
189 
190 static struct vendor_data vendor_zte = {
191 	.reg_offset		= pl011_zte_offsets,
192 	.access_32b		= true,
193 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
194 	.get_fifosize		= get_fifosize_arm,
195 };
196 
197 /* Deals with DMA transactions */
198 
199 struct pl011_sgbuf {
200 	struct scatterlist sg;
201 	char *buf;
202 };
203 
204 struct pl011_dmarx_data {
205 	struct dma_chan		*chan;
206 	struct completion	complete;
207 	bool			use_buf_b;
208 	struct pl011_sgbuf	sgbuf_a;
209 	struct pl011_sgbuf	sgbuf_b;
210 	dma_cookie_t		cookie;
211 	bool			running;
212 	struct timer_list	timer;
213 	unsigned int last_residue;
214 	unsigned long last_jiffies;
215 	bool auto_poll_rate;
216 	unsigned int poll_rate;
217 	unsigned int poll_timeout;
218 };
219 
220 struct pl011_dmatx_data {
221 	struct dma_chan		*chan;
222 	struct scatterlist	sg;
223 	char			*buf;
224 	bool			queued;
225 };
226 
227 /*
228  * We wrap our port structure around the generic uart_port.
229  */
230 struct uart_amba_port {
231 	struct uart_port	port;
232 	const u16		*reg_offset;
233 	struct clk		*clk;
234 	const struct vendor_data *vendor;
235 	unsigned int		dmacr;		/* dma control reg */
236 	unsigned int		im;		/* interrupt mask */
237 	unsigned int		old_status;
238 	unsigned int		fifosize;	/* vendor-specific */
239 	unsigned int		old_cr;		/* state during shutdown */
240 	bool			autorts;
241 	bool			access_32b;
242 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
243 	char			type[12];
244 #ifdef CONFIG_DMA_ENGINE
245 	/* DMA stuff */
246 	bool			using_tx_dma;
247 	bool			using_rx_dma;
248 	struct pl011_dmarx_data dmarx;
249 	struct pl011_dmatx_data	dmatx;
250 	bool			dma_probed;
251 #endif
252 };
253 
254 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
255 	unsigned int reg)
256 {
257 	return uap->reg_offset[reg];
258 }
259 
260 static unsigned int pl011_read(const struct uart_amba_port *uap,
261 	unsigned int reg)
262 {
263 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
264 
265 	return uap->access_32b ? readl(addr) : readw(addr);
266 }
267 
268 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
269 	unsigned int reg)
270 {
271 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
272 
273 	if (uap->access_32b)
274 		writel(val, addr);
275 	else
276 		writew(val, addr);
277 }
278 
279 /*
280  * Reads up to 256 characters from the FIFO or until it's empty and
281  * inserts them into the TTY layer. Returns the number of characters
282  * read from the FIFO.
283  */
284 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
285 {
286 	u16 status;
287 	unsigned int ch, flag, max_count = 256;
288 	int fifotaken = 0;
289 
290 	while (max_count--) {
291 		status = pl011_read(uap, REG_FR);
292 		if (status & UART01x_FR_RXFE)
293 			break;
294 
295 		/* Take chars from the FIFO and update status */
296 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
297 		flag = TTY_NORMAL;
298 		uap->port.icount.rx++;
299 		fifotaken++;
300 
301 		if (unlikely(ch & UART_DR_ERROR)) {
302 			if (ch & UART011_DR_BE) {
303 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
304 				uap->port.icount.brk++;
305 				if (uart_handle_break(&uap->port))
306 					continue;
307 			} else if (ch & UART011_DR_PE)
308 				uap->port.icount.parity++;
309 			else if (ch & UART011_DR_FE)
310 				uap->port.icount.frame++;
311 			if (ch & UART011_DR_OE)
312 				uap->port.icount.overrun++;
313 
314 			ch &= uap->port.read_status_mask;
315 
316 			if (ch & UART011_DR_BE)
317 				flag = TTY_BREAK;
318 			else if (ch & UART011_DR_PE)
319 				flag = TTY_PARITY;
320 			else if (ch & UART011_DR_FE)
321 				flag = TTY_FRAME;
322 		}
323 
324 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
325 			continue;
326 
327 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
328 	}
329 
330 	return fifotaken;
331 }
332 
333 
334 /*
335  * All the DMA operation mode stuff goes inside this ifdef.
336  * This assumes that you have a generic DMA device interface,
337  * no custom DMA interfaces are supported.
338  */
339 #ifdef CONFIG_DMA_ENGINE
340 
341 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
342 
343 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
344 	enum dma_data_direction dir)
345 {
346 	dma_addr_t dma_addr;
347 
348 	sg->buf = dma_alloc_coherent(chan->device->dev,
349 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
350 	if (!sg->buf)
351 		return -ENOMEM;
352 
353 	sg_init_table(&sg->sg, 1);
354 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
355 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
356 	sg_dma_address(&sg->sg) = dma_addr;
357 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
358 
359 	return 0;
360 }
361 
362 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
363 	enum dma_data_direction dir)
364 {
365 	if (sg->buf) {
366 		dma_free_coherent(chan->device->dev,
367 			PL011_DMA_BUFFER_SIZE, sg->buf,
368 			sg_dma_address(&sg->sg));
369 	}
370 }
371 
372 static void pl011_dma_probe(struct uart_amba_port *uap)
373 {
374 	/* DMA is the sole user of the platform data right now */
375 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
376 	struct device *dev = uap->port.dev;
377 	struct dma_slave_config tx_conf = {
378 		.dst_addr = uap->port.mapbase +
379 				 pl011_reg_to_offset(uap, REG_DR),
380 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
381 		.direction = DMA_MEM_TO_DEV,
382 		.dst_maxburst = uap->fifosize >> 1,
383 		.device_fc = false,
384 	};
385 	struct dma_chan *chan;
386 	dma_cap_mask_t mask;
387 
388 	uap->dma_probed = true;
389 	chan = dma_request_slave_channel_reason(dev, "tx");
390 	if (IS_ERR(chan)) {
391 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
392 			uap->dma_probed = false;
393 			return;
394 		}
395 
396 		/* We need platform data */
397 		if (!plat || !plat->dma_filter) {
398 			dev_info(uap->port.dev, "no DMA platform data\n");
399 			return;
400 		}
401 
402 		/* Try to acquire a generic DMA engine slave TX channel */
403 		dma_cap_zero(mask);
404 		dma_cap_set(DMA_SLAVE, mask);
405 
406 		chan = dma_request_channel(mask, plat->dma_filter,
407 						plat->dma_tx_param);
408 		if (!chan) {
409 			dev_err(uap->port.dev, "no TX DMA channel!\n");
410 			return;
411 		}
412 	}
413 
414 	dmaengine_slave_config(chan, &tx_conf);
415 	uap->dmatx.chan = chan;
416 
417 	dev_info(uap->port.dev, "DMA channel TX %s\n",
418 		 dma_chan_name(uap->dmatx.chan));
419 
420 	/* Optionally make use of an RX channel as well */
421 	chan = dma_request_slave_channel(dev, "rx");
422 
423 	if (!chan && plat->dma_rx_param) {
424 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
425 
426 		if (!chan) {
427 			dev_err(uap->port.dev, "no RX DMA channel!\n");
428 			return;
429 		}
430 	}
431 
432 	if (chan) {
433 		struct dma_slave_config rx_conf = {
434 			.src_addr = uap->port.mapbase +
435 				pl011_reg_to_offset(uap, REG_DR),
436 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
437 			.direction = DMA_DEV_TO_MEM,
438 			.src_maxburst = uap->fifosize >> 2,
439 			.device_fc = false,
440 		};
441 		struct dma_slave_caps caps;
442 
443 		/*
444 		 * Some DMA controllers provide information on their capabilities.
445 		 * If the controller does, check for suitable residue processing
446 		 * otherwise assime all is well.
447 		 */
448 		if (0 == dma_get_slave_caps(chan, &caps)) {
449 			if (caps.residue_granularity ==
450 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
451 				dma_release_channel(chan);
452 				dev_info(uap->port.dev,
453 					"RX DMA disabled - no residue processing\n");
454 				return;
455 			}
456 		}
457 		dmaengine_slave_config(chan, &rx_conf);
458 		uap->dmarx.chan = chan;
459 
460 		uap->dmarx.auto_poll_rate = false;
461 		if (plat && plat->dma_rx_poll_enable) {
462 			/* Set poll rate if specified. */
463 			if (plat->dma_rx_poll_rate) {
464 				uap->dmarx.auto_poll_rate = false;
465 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
466 			} else {
467 				/*
468 				 * 100 ms defaults to poll rate if not
469 				 * specified. This will be adjusted with
470 				 * the baud rate at set_termios.
471 				 */
472 				uap->dmarx.auto_poll_rate = true;
473 				uap->dmarx.poll_rate =  100;
474 			}
475 			/* 3 secs defaults poll_timeout if not specified. */
476 			if (plat->dma_rx_poll_timeout)
477 				uap->dmarx.poll_timeout =
478 					plat->dma_rx_poll_timeout;
479 			else
480 				uap->dmarx.poll_timeout = 3000;
481 		} else if (!plat && dev->of_node) {
482 			uap->dmarx.auto_poll_rate = of_property_read_bool(
483 						dev->of_node, "auto-poll");
484 			if (uap->dmarx.auto_poll_rate) {
485 				u32 x;
486 
487 				if (0 == of_property_read_u32(dev->of_node,
488 						"poll-rate-ms", &x))
489 					uap->dmarx.poll_rate = x;
490 				else
491 					uap->dmarx.poll_rate = 100;
492 				if (0 == of_property_read_u32(dev->of_node,
493 						"poll-timeout-ms", &x))
494 					uap->dmarx.poll_timeout = x;
495 				else
496 					uap->dmarx.poll_timeout = 3000;
497 			}
498 		}
499 		dev_info(uap->port.dev, "DMA channel RX %s\n",
500 			 dma_chan_name(uap->dmarx.chan));
501 	}
502 }
503 
504 static void pl011_dma_remove(struct uart_amba_port *uap)
505 {
506 	if (uap->dmatx.chan)
507 		dma_release_channel(uap->dmatx.chan);
508 	if (uap->dmarx.chan)
509 		dma_release_channel(uap->dmarx.chan);
510 }
511 
512 /* Forward declare these for the refill routine */
513 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
514 static void pl011_start_tx_pio(struct uart_amba_port *uap);
515 
516 /*
517  * The current DMA TX buffer has been sent.
518  * Try to queue up another DMA buffer.
519  */
520 static void pl011_dma_tx_callback(void *data)
521 {
522 	struct uart_amba_port *uap = data;
523 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
524 	unsigned long flags;
525 	u16 dmacr;
526 
527 	spin_lock_irqsave(&uap->port.lock, flags);
528 	if (uap->dmatx.queued)
529 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
530 			     DMA_TO_DEVICE);
531 
532 	dmacr = uap->dmacr;
533 	uap->dmacr = dmacr & ~UART011_TXDMAE;
534 	pl011_write(uap->dmacr, uap, REG_DMACR);
535 
536 	/*
537 	 * If TX DMA was disabled, it means that we've stopped the DMA for
538 	 * some reason (eg, XOFF received, or we want to send an X-char.)
539 	 *
540 	 * Note: we need to be careful here of a potential race between DMA
541 	 * and the rest of the driver - if the driver disables TX DMA while
542 	 * a TX buffer completing, we must update the tx queued status to
543 	 * get further refills (hence we check dmacr).
544 	 */
545 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
546 	    uart_circ_empty(&uap->port.state->xmit)) {
547 		uap->dmatx.queued = false;
548 		spin_unlock_irqrestore(&uap->port.lock, flags);
549 		return;
550 	}
551 
552 	if (pl011_dma_tx_refill(uap) <= 0)
553 		/*
554 		 * We didn't queue a DMA buffer for some reason, but we
555 		 * have data pending to be sent.  Re-enable the TX IRQ.
556 		 */
557 		pl011_start_tx_pio(uap);
558 
559 	spin_unlock_irqrestore(&uap->port.lock, flags);
560 }
561 
562 /*
563  * Try to refill the TX DMA buffer.
564  * Locking: called with port lock held and IRQs disabled.
565  * Returns:
566  *   1 if we queued up a TX DMA buffer.
567  *   0 if we didn't want to handle this by DMA
568  *  <0 on error
569  */
570 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
571 {
572 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
573 	struct dma_chan *chan = dmatx->chan;
574 	struct dma_device *dma_dev = chan->device;
575 	struct dma_async_tx_descriptor *desc;
576 	struct circ_buf *xmit = &uap->port.state->xmit;
577 	unsigned int count;
578 
579 	/*
580 	 * Try to avoid the overhead involved in using DMA if the
581 	 * transaction fits in the first half of the FIFO, by using
582 	 * the standard interrupt handling.  This ensures that we
583 	 * issue a uart_write_wakeup() at the appropriate time.
584 	 */
585 	count = uart_circ_chars_pending(xmit);
586 	if (count < (uap->fifosize >> 1)) {
587 		uap->dmatx.queued = false;
588 		return 0;
589 	}
590 
591 	/*
592 	 * Bodge: don't send the last character by DMA, as this
593 	 * will prevent XON from notifying us to restart DMA.
594 	 */
595 	count -= 1;
596 
597 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
598 	if (count > PL011_DMA_BUFFER_SIZE)
599 		count = PL011_DMA_BUFFER_SIZE;
600 
601 	if (xmit->tail < xmit->head)
602 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
603 	else {
604 		size_t first = UART_XMIT_SIZE - xmit->tail;
605 		size_t second;
606 
607 		if (first > count)
608 			first = count;
609 		second = count - first;
610 
611 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
612 		if (second)
613 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
614 	}
615 
616 	dmatx->sg.length = count;
617 
618 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
619 		uap->dmatx.queued = false;
620 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
621 		return -EBUSY;
622 	}
623 
624 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
625 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
626 	if (!desc) {
627 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
628 		uap->dmatx.queued = false;
629 		/*
630 		 * If DMA cannot be used right now, we complete this
631 		 * transaction via IRQ and let the TTY layer retry.
632 		 */
633 		dev_dbg(uap->port.dev, "TX DMA busy\n");
634 		return -EBUSY;
635 	}
636 
637 	/* Some data to go along to the callback */
638 	desc->callback = pl011_dma_tx_callback;
639 	desc->callback_param = uap;
640 
641 	/* All errors should happen at prepare time */
642 	dmaengine_submit(desc);
643 
644 	/* Fire the DMA transaction */
645 	dma_dev->device_issue_pending(chan);
646 
647 	uap->dmacr |= UART011_TXDMAE;
648 	pl011_write(uap->dmacr, uap, REG_DMACR);
649 	uap->dmatx.queued = true;
650 
651 	/*
652 	 * Now we know that DMA will fire, so advance the ring buffer
653 	 * with the stuff we just dispatched.
654 	 */
655 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
656 	uap->port.icount.tx += count;
657 
658 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
659 		uart_write_wakeup(&uap->port);
660 
661 	return 1;
662 }
663 
664 /*
665  * We received a transmit interrupt without a pending X-char but with
666  * pending characters.
667  * Locking: called with port lock held and IRQs disabled.
668  * Returns:
669  *   false if we want to use PIO to transmit
670  *   true if we queued a DMA buffer
671  */
672 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
673 {
674 	if (!uap->using_tx_dma)
675 		return false;
676 
677 	/*
678 	 * If we already have a TX buffer queued, but received a
679 	 * TX interrupt, it will be because we've just sent an X-char.
680 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
681 	 */
682 	if (uap->dmatx.queued) {
683 		uap->dmacr |= UART011_TXDMAE;
684 		pl011_write(uap->dmacr, uap, REG_DMACR);
685 		uap->im &= ~UART011_TXIM;
686 		pl011_write(uap->im, uap, REG_IMSC);
687 		return true;
688 	}
689 
690 	/*
691 	 * We don't have a TX buffer queued, so try to queue one.
692 	 * If we successfully queued a buffer, mask the TX IRQ.
693 	 */
694 	if (pl011_dma_tx_refill(uap) > 0) {
695 		uap->im &= ~UART011_TXIM;
696 		pl011_write(uap->im, uap, REG_IMSC);
697 		return true;
698 	}
699 	return false;
700 }
701 
702 /*
703  * Stop the DMA transmit (eg, due to received XOFF).
704  * Locking: called with port lock held and IRQs disabled.
705  */
706 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
707 {
708 	if (uap->dmatx.queued) {
709 		uap->dmacr &= ~UART011_TXDMAE;
710 		pl011_write(uap->dmacr, uap, REG_DMACR);
711 	}
712 }
713 
714 /*
715  * Try to start a DMA transmit, or in the case of an XON/OFF
716  * character queued for send, try to get that character out ASAP.
717  * Locking: called with port lock held and IRQs disabled.
718  * Returns:
719  *   false if we want the TX IRQ to be enabled
720  *   true if we have a buffer queued
721  */
722 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
723 {
724 	u16 dmacr;
725 
726 	if (!uap->using_tx_dma)
727 		return false;
728 
729 	if (!uap->port.x_char) {
730 		/* no X-char, try to push chars out in DMA mode */
731 		bool ret = true;
732 
733 		if (!uap->dmatx.queued) {
734 			if (pl011_dma_tx_refill(uap) > 0) {
735 				uap->im &= ~UART011_TXIM;
736 				pl011_write(uap->im, uap, REG_IMSC);
737 			} else
738 				ret = false;
739 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
740 			uap->dmacr |= UART011_TXDMAE;
741 			pl011_write(uap->dmacr, uap, REG_DMACR);
742 		}
743 		return ret;
744 	}
745 
746 	/*
747 	 * We have an X-char to send.  Disable DMA to prevent it loading
748 	 * the TX fifo, and then see if we can stuff it into the FIFO.
749 	 */
750 	dmacr = uap->dmacr;
751 	uap->dmacr &= ~UART011_TXDMAE;
752 	pl011_write(uap->dmacr, uap, REG_DMACR);
753 
754 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
755 		/*
756 		 * No space in the FIFO, so enable the transmit interrupt
757 		 * so we know when there is space.  Note that once we've
758 		 * loaded the character, we should just re-enable DMA.
759 		 */
760 		return false;
761 	}
762 
763 	pl011_write(uap->port.x_char, uap, REG_DR);
764 	uap->port.icount.tx++;
765 	uap->port.x_char = 0;
766 
767 	/* Success - restore the DMA state */
768 	uap->dmacr = dmacr;
769 	pl011_write(dmacr, uap, REG_DMACR);
770 
771 	return true;
772 }
773 
774 /*
775  * Flush the transmit buffer.
776  * Locking: called with port lock held and IRQs disabled.
777  */
778 static void pl011_dma_flush_buffer(struct uart_port *port)
779 __releases(&uap->port.lock)
780 __acquires(&uap->port.lock)
781 {
782 	struct uart_amba_port *uap =
783 	    container_of(port, struct uart_amba_port, port);
784 
785 	if (!uap->using_tx_dma)
786 		return;
787 
788 	/* Avoid deadlock with the DMA engine callback */
789 	spin_unlock(&uap->port.lock);
790 	dmaengine_terminate_all(uap->dmatx.chan);
791 	spin_lock(&uap->port.lock);
792 	if (uap->dmatx.queued) {
793 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
794 			     DMA_TO_DEVICE);
795 		uap->dmatx.queued = false;
796 		uap->dmacr &= ~UART011_TXDMAE;
797 		pl011_write(uap->dmacr, uap, REG_DMACR);
798 	}
799 }
800 
801 static void pl011_dma_rx_callback(void *data);
802 
803 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
804 {
805 	struct dma_chan *rxchan = uap->dmarx.chan;
806 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
807 	struct dma_async_tx_descriptor *desc;
808 	struct pl011_sgbuf *sgbuf;
809 
810 	if (!rxchan)
811 		return -EIO;
812 
813 	/* Start the RX DMA job */
814 	sgbuf = uap->dmarx.use_buf_b ?
815 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
816 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
817 					DMA_DEV_TO_MEM,
818 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
819 	/*
820 	 * If the DMA engine is busy and cannot prepare a
821 	 * channel, no big deal, the driver will fall back
822 	 * to interrupt mode as a result of this error code.
823 	 */
824 	if (!desc) {
825 		uap->dmarx.running = false;
826 		dmaengine_terminate_all(rxchan);
827 		return -EBUSY;
828 	}
829 
830 	/* Some data to go along to the callback */
831 	desc->callback = pl011_dma_rx_callback;
832 	desc->callback_param = uap;
833 	dmarx->cookie = dmaengine_submit(desc);
834 	dma_async_issue_pending(rxchan);
835 
836 	uap->dmacr |= UART011_RXDMAE;
837 	pl011_write(uap->dmacr, uap, REG_DMACR);
838 	uap->dmarx.running = true;
839 
840 	uap->im &= ~UART011_RXIM;
841 	pl011_write(uap->im, uap, REG_IMSC);
842 
843 	return 0;
844 }
845 
846 /*
847  * This is called when either the DMA job is complete, or
848  * the FIFO timeout interrupt occurred. This must be called
849  * with the port spinlock uap->port.lock held.
850  */
851 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
852 			       u32 pending, bool use_buf_b,
853 			       bool readfifo)
854 {
855 	struct tty_port *port = &uap->port.state->port;
856 	struct pl011_sgbuf *sgbuf = use_buf_b ?
857 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
858 	int dma_count = 0;
859 	u32 fifotaken = 0; /* only used for vdbg() */
860 
861 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
862 	int dmataken = 0;
863 
864 	if (uap->dmarx.poll_rate) {
865 		/* The data can be taken by polling */
866 		dmataken = sgbuf->sg.length - dmarx->last_residue;
867 		/* Recalculate the pending size */
868 		if (pending >= dmataken)
869 			pending -= dmataken;
870 	}
871 
872 	/* Pick the remain data from the DMA */
873 	if (pending) {
874 
875 		/*
876 		 * First take all chars in the DMA pipe, then look in the FIFO.
877 		 * Note that tty_insert_flip_buf() tries to take as many chars
878 		 * as it can.
879 		 */
880 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
881 				pending);
882 
883 		uap->port.icount.rx += dma_count;
884 		if (dma_count < pending)
885 			dev_warn(uap->port.dev,
886 				 "couldn't insert all characters (TTY is full?)\n");
887 	}
888 
889 	/* Reset the last_residue for Rx DMA poll */
890 	if (uap->dmarx.poll_rate)
891 		dmarx->last_residue = sgbuf->sg.length;
892 
893 	/*
894 	 * Only continue with trying to read the FIFO if all DMA chars have
895 	 * been taken first.
896 	 */
897 	if (dma_count == pending && readfifo) {
898 		/* Clear any error flags */
899 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
900 			    UART011_FEIS, uap, REG_ICR);
901 
902 		/*
903 		 * If we read all the DMA'd characters, and we had an
904 		 * incomplete buffer, that could be due to an rx error, or
905 		 * maybe we just timed out. Read any pending chars and check
906 		 * the error status.
907 		 *
908 		 * Error conditions will only occur in the FIFO, these will
909 		 * trigger an immediate interrupt and stop the DMA job, so we
910 		 * will always find the error in the FIFO, never in the DMA
911 		 * buffer.
912 		 */
913 		fifotaken = pl011_fifo_to_tty(uap);
914 	}
915 
916 	spin_unlock(&uap->port.lock);
917 	dev_vdbg(uap->port.dev,
918 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
919 		 dma_count, fifotaken);
920 	tty_flip_buffer_push(port);
921 	spin_lock(&uap->port.lock);
922 }
923 
924 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
925 {
926 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
927 	struct dma_chan *rxchan = dmarx->chan;
928 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
929 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
930 	size_t pending;
931 	struct dma_tx_state state;
932 	enum dma_status dmastat;
933 
934 	/*
935 	 * Pause the transfer so we can trust the current counter,
936 	 * do this before we pause the PL011 block, else we may
937 	 * overflow the FIFO.
938 	 */
939 	if (dmaengine_pause(rxchan))
940 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
941 	dmastat = rxchan->device->device_tx_status(rxchan,
942 						   dmarx->cookie, &state);
943 	if (dmastat != DMA_PAUSED)
944 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
945 
946 	/* Disable RX DMA - incoming data will wait in the FIFO */
947 	uap->dmacr &= ~UART011_RXDMAE;
948 	pl011_write(uap->dmacr, uap, REG_DMACR);
949 	uap->dmarx.running = false;
950 
951 	pending = sgbuf->sg.length - state.residue;
952 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
953 	/* Then we terminate the transfer - we now know our residue */
954 	dmaengine_terminate_all(rxchan);
955 
956 	/*
957 	 * This will take the chars we have so far and insert
958 	 * into the framework.
959 	 */
960 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
961 
962 	/* Switch buffer & re-trigger DMA job */
963 	dmarx->use_buf_b = !dmarx->use_buf_b;
964 	if (pl011_dma_rx_trigger_dma(uap)) {
965 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
966 			"fall back to interrupt mode\n");
967 		uap->im |= UART011_RXIM;
968 		pl011_write(uap->im, uap, REG_IMSC);
969 	}
970 }
971 
972 static void pl011_dma_rx_callback(void *data)
973 {
974 	struct uart_amba_port *uap = data;
975 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
976 	struct dma_chan *rxchan = dmarx->chan;
977 	bool lastbuf = dmarx->use_buf_b;
978 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
979 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
980 	size_t pending;
981 	struct dma_tx_state state;
982 	int ret;
983 
984 	/*
985 	 * This completion interrupt occurs typically when the
986 	 * RX buffer is totally stuffed but no timeout has yet
987 	 * occurred. When that happens, we just want the RX
988 	 * routine to flush out the secondary DMA buffer while
989 	 * we immediately trigger the next DMA job.
990 	 */
991 	spin_lock_irq(&uap->port.lock);
992 	/*
993 	 * Rx data can be taken by the UART interrupts during
994 	 * the DMA irq handler. So we check the residue here.
995 	 */
996 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
997 	pending = sgbuf->sg.length - state.residue;
998 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
999 	/* Then we terminate the transfer - we now know our residue */
1000 	dmaengine_terminate_all(rxchan);
1001 
1002 	uap->dmarx.running = false;
1003 	dmarx->use_buf_b = !lastbuf;
1004 	ret = pl011_dma_rx_trigger_dma(uap);
1005 
1006 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1007 	spin_unlock_irq(&uap->port.lock);
1008 	/*
1009 	 * Do this check after we picked the DMA chars so we don't
1010 	 * get some IRQ immediately from RX.
1011 	 */
1012 	if (ret) {
1013 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1014 			"fall back to interrupt mode\n");
1015 		uap->im |= UART011_RXIM;
1016 		pl011_write(uap->im, uap, REG_IMSC);
1017 	}
1018 }
1019 
1020 /*
1021  * Stop accepting received characters, when we're shutting down or
1022  * suspending this port.
1023  * Locking: called with port lock held and IRQs disabled.
1024  */
1025 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1026 {
1027 	/* FIXME.  Just disable the DMA enable */
1028 	uap->dmacr &= ~UART011_RXDMAE;
1029 	pl011_write(uap->dmacr, uap, REG_DMACR);
1030 }
1031 
1032 /*
1033  * Timer handler for Rx DMA polling.
1034  * Every polling, It checks the residue in the dma buffer and transfer
1035  * data to the tty. Also, last_residue is updated for the next polling.
1036  */
1037 static void pl011_dma_rx_poll(unsigned long args)
1038 {
1039 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1040 	struct tty_port *port = &uap->port.state->port;
1041 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1042 	struct dma_chan *rxchan = uap->dmarx.chan;
1043 	unsigned long flags = 0;
1044 	unsigned int dmataken = 0;
1045 	unsigned int size = 0;
1046 	struct pl011_sgbuf *sgbuf;
1047 	int dma_count;
1048 	struct dma_tx_state state;
1049 
1050 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1051 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1052 	if (likely(state.residue < dmarx->last_residue)) {
1053 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1054 		size = dmarx->last_residue - state.residue;
1055 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1056 				size);
1057 		if (dma_count == size)
1058 			dmarx->last_residue =  state.residue;
1059 		dmarx->last_jiffies = jiffies;
1060 	}
1061 	tty_flip_buffer_push(port);
1062 
1063 	/*
1064 	 * If no data is received in poll_timeout, the driver will fall back
1065 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1066 	 */
1067 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1068 			> uap->dmarx.poll_timeout) {
1069 
1070 		spin_lock_irqsave(&uap->port.lock, flags);
1071 		pl011_dma_rx_stop(uap);
1072 		uap->im |= UART011_RXIM;
1073 		pl011_write(uap->im, uap, REG_IMSC);
1074 		spin_unlock_irqrestore(&uap->port.lock, flags);
1075 
1076 		uap->dmarx.running = false;
1077 		dmaengine_terminate_all(rxchan);
1078 		del_timer(&uap->dmarx.timer);
1079 	} else {
1080 		mod_timer(&uap->dmarx.timer,
1081 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1082 	}
1083 }
1084 
1085 static void pl011_dma_startup(struct uart_amba_port *uap)
1086 {
1087 	int ret;
1088 
1089 	if (!uap->dma_probed)
1090 		pl011_dma_probe(uap);
1091 
1092 	if (!uap->dmatx.chan)
1093 		return;
1094 
1095 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1096 	if (!uap->dmatx.buf) {
1097 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1098 		uap->port.fifosize = uap->fifosize;
1099 		return;
1100 	}
1101 
1102 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1103 
1104 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1105 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1106 	uap->using_tx_dma = true;
1107 
1108 	if (!uap->dmarx.chan)
1109 		goto skip_rx;
1110 
1111 	/* Allocate and map DMA RX buffers */
1112 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1113 			       DMA_FROM_DEVICE);
1114 	if (ret) {
1115 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1116 			"RX buffer A", ret);
1117 		goto skip_rx;
1118 	}
1119 
1120 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1121 			       DMA_FROM_DEVICE);
1122 	if (ret) {
1123 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1124 			"RX buffer B", ret);
1125 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1126 				 DMA_FROM_DEVICE);
1127 		goto skip_rx;
1128 	}
1129 
1130 	uap->using_rx_dma = true;
1131 
1132 skip_rx:
1133 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1134 	uap->dmacr |= UART011_DMAONERR;
1135 	pl011_write(uap->dmacr, uap, REG_DMACR);
1136 
1137 	/*
1138 	 * ST Micro variants has some specific dma burst threshold
1139 	 * compensation. Set this to 16 bytes, so burst will only
1140 	 * be issued above/below 16 bytes.
1141 	 */
1142 	if (uap->vendor->dma_threshold)
1143 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1144 			    uap, REG_ST_DMAWM);
1145 
1146 	if (uap->using_rx_dma) {
1147 		if (pl011_dma_rx_trigger_dma(uap))
1148 			dev_dbg(uap->port.dev, "could not trigger initial "
1149 				"RX DMA job, fall back to interrupt mode\n");
1150 		if (uap->dmarx.poll_rate) {
1151 			init_timer(&(uap->dmarx.timer));
1152 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1153 			uap->dmarx.timer.data = (unsigned long)uap;
1154 			mod_timer(&uap->dmarx.timer,
1155 				jiffies +
1156 				msecs_to_jiffies(uap->dmarx.poll_rate));
1157 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1158 			uap->dmarx.last_jiffies = jiffies;
1159 		}
1160 	}
1161 }
1162 
1163 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1164 {
1165 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1166 		return;
1167 
1168 	/* Disable RX and TX DMA */
1169 	while (pl011_read(uap, REG_FR) & UART01x_FR_BUSY)
1170 		barrier();
1171 
1172 	spin_lock_irq(&uap->port.lock);
1173 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1174 	pl011_write(uap->dmacr, uap, REG_DMACR);
1175 	spin_unlock_irq(&uap->port.lock);
1176 
1177 	if (uap->using_tx_dma) {
1178 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1179 		dmaengine_terminate_all(uap->dmatx.chan);
1180 		if (uap->dmatx.queued) {
1181 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1182 				     DMA_TO_DEVICE);
1183 			uap->dmatx.queued = false;
1184 		}
1185 
1186 		kfree(uap->dmatx.buf);
1187 		uap->using_tx_dma = false;
1188 	}
1189 
1190 	if (uap->using_rx_dma) {
1191 		dmaengine_terminate_all(uap->dmarx.chan);
1192 		/* Clean up the RX DMA */
1193 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1194 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1195 		if (uap->dmarx.poll_rate)
1196 			del_timer_sync(&uap->dmarx.timer);
1197 		uap->using_rx_dma = false;
1198 	}
1199 }
1200 
1201 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1202 {
1203 	return uap->using_rx_dma;
1204 }
1205 
1206 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1207 {
1208 	return uap->using_rx_dma && uap->dmarx.running;
1209 }
1210 
1211 #else
1212 /* Blank functions if the DMA engine is not available */
1213 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1214 {
1215 }
1216 
1217 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1218 {
1219 }
1220 
1221 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1222 {
1223 }
1224 
1225 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1226 {
1227 }
1228 
1229 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1230 {
1231 	return false;
1232 }
1233 
1234 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1235 {
1236 }
1237 
1238 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1239 {
1240 	return false;
1241 }
1242 
1243 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1244 {
1245 }
1246 
1247 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1248 {
1249 }
1250 
1251 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1252 {
1253 	return -EIO;
1254 }
1255 
1256 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1257 {
1258 	return false;
1259 }
1260 
1261 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1262 {
1263 	return false;
1264 }
1265 
1266 #define pl011_dma_flush_buffer	NULL
1267 #endif
1268 
1269 static void pl011_stop_tx(struct uart_port *port)
1270 {
1271 	struct uart_amba_port *uap =
1272 	    container_of(port, struct uart_amba_port, port);
1273 
1274 	uap->im &= ~UART011_TXIM;
1275 	pl011_write(uap->im, uap, REG_IMSC);
1276 	pl011_dma_tx_stop(uap);
1277 }
1278 
1279 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1280 
1281 /* Start TX with programmed I/O only (no DMA) */
1282 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1283 {
1284 	uap->im |= UART011_TXIM;
1285 	pl011_write(uap->im, uap, REG_IMSC);
1286 	pl011_tx_chars(uap, false);
1287 }
1288 
1289 static void pl011_start_tx(struct uart_port *port)
1290 {
1291 	struct uart_amba_port *uap =
1292 	    container_of(port, struct uart_amba_port, port);
1293 
1294 	if (!pl011_dma_tx_start(uap))
1295 		pl011_start_tx_pio(uap);
1296 }
1297 
1298 static void pl011_stop_rx(struct uart_port *port)
1299 {
1300 	struct uart_amba_port *uap =
1301 	    container_of(port, struct uart_amba_port, port);
1302 
1303 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1304 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1305 	pl011_write(uap->im, uap, REG_IMSC);
1306 
1307 	pl011_dma_rx_stop(uap);
1308 }
1309 
1310 static void pl011_enable_ms(struct uart_port *port)
1311 {
1312 	struct uart_amba_port *uap =
1313 	    container_of(port, struct uart_amba_port, port);
1314 
1315 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1316 	pl011_write(uap->im, uap, REG_IMSC);
1317 }
1318 
1319 static void pl011_rx_chars(struct uart_amba_port *uap)
1320 __releases(&uap->port.lock)
1321 __acquires(&uap->port.lock)
1322 {
1323 	pl011_fifo_to_tty(uap);
1324 
1325 	spin_unlock(&uap->port.lock);
1326 	tty_flip_buffer_push(&uap->port.state->port);
1327 	/*
1328 	 * If we were temporarily out of DMA mode for a while,
1329 	 * attempt to switch back to DMA mode again.
1330 	 */
1331 	if (pl011_dma_rx_available(uap)) {
1332 		if (pl011_dma_rx_trigger_dma(uap)) {
1333 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1334 				"fall back to interrupt mode again\n");
1335 			uap->im |= UART011_RXIM;
1336 			pl011_write(uap->im, uap, REG_IMSC);
1337 		} else {
1338 #ifdef CONFIG_DMA_ENGINE
1339 			/* Start Rx DMA poll */
1340 			if (uap->dmarx.poll_rate) {
1341 				uap->dmarx.last_jiffies = jiffies;
1342 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1343 				mod_timer(&uap->dmarx.timer,
1344 					jiffies +
1345 					msecs_to_jiffies(uap->dmarx.poll_rate));
1346 			}
1347 #endif
1348 		}
1349 	}
1350 	spin_lock(&uap->port.lock);
1351 }
1352 
1353 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1354 			  bool from_irq)
1355 {
1356 	if (unlikely(!from_irq) &&
1357 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1358 		return false; /* unable to transmit character */
1359 
1360 	pl011_write(c, uap, REG_DR);
1361 	uap->port.icount.tx++;
1362 
1363 	return true;
1364 }
1365 
1366 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1367 {
1368 	struct circ_buf *xmit = &uap->port.state->xmit;
1369 	int count = uap->fifosize >> 1;
1370 
1371 	if (uap->port.x_char) {
1372 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1373 			return;
1374 		uap->port.x_char = 0;
1375 		--count;
1376 	}
1377 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1378 		pl011_stop_tx(&uap->port);
1379 		return;
1380 	}
1381 
1382 	/* If we are using DMA mode, try to send some characters. */
1383 	if (pl011_dma_tx_irq(uap))
1384 		return;
1385 
1386 	do {
1387 		if (likely(from_irq) && count-- == 0)
1388 			break;
1389 
1390 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1391 			break;
1392 
1393 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1394 	} while (!uart_circ_empty(xmit));
1395 
1396 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1397 		uart_write_wakeup(&uap->port);
1398 
1399 	if (uart_circ_empty(xmit))
1400 		pl011_stop_tx(&uap->port);
1401 }
1402 
1403 static void pl011_modem_status(struct uart_amba_port *uap)
1404 {
1405 	unsigned int status, delta;
1406 
1407 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1408 
1409 	delta = status ^ uap->old_status;
1410 	uap->old_status = status;
1411 
1412 	if (!delta)
1413 		return;
1414 
1415 	if (delta & UART01x_FR_DCD)
1416 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1417 
1418 	if (delta & UART01x_FR_DSR)
1419 		uap->port.icount.dsr++;
1420 
1421 	if (delta & UART01x_FR_CTS)
1422 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1423 
1424 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1425 }
1426 
1427 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1428 {
1429 	unsigned int dummy_read;
1430 
1431 	if (!uap->vendor->cts_event_workaround)
1432 		return;
1433 
1434 	/* workaround to make sure that all bits are unlocked.. */
1435 	pl011_write(0x00, uap, REG_ICR);
1436 
1437 	/*
1438 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1439 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1440 	 * so add 2 dummy reads
1441 	 */
1442 	dummy_read = pl011_read(uap, REG_ICR);
1443 	dummy_read = pl011_read(uap, REG_ICR);
1444 }
1445 
1446 static irqreturn_t pl011_int(int irq, void *dev_id)
1447 {
1448 	struct uart_amba_port *uap = dev_id;
1449 	unsigned long flags;
1450 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1451 	u16 imsc;
1452 	int handled = 0;
1453 
1454 	spin_lock_irqsave(&uap->port.lock, flags);
1455 	imsc = pl011_read(uap, REG_IMSC);
1456 	status = pl011_read(uap, REG_RIS) & imsc;
1457 	if (status) {
1458 		do {
1459 			check_apply_cts_event_workaround(uap);
1460 
1461 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1462 					       UART011_RXIS),
1463 				    uap, REG_ICR);
1464 
1465 			if (status & (UART011_RTIS|UART011_RXIS)) {
1466 				if (pl011_dma_rx_running(uap))
1467 					pl011_dma_rx_irq(uap);
1468 				else
1469 					pl011_rx_chars(uap);
1470 			}
1471 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1472 				      UART011_CTSMIS|UART011_RIMIS))
1473 				pl011_modem_status(uap);
1474 			if (status & UART011_TXIS)
1475 				pl011_tx_chars(uap, true);
1476 
1477 			if (pass_counter-- == 0)
1478 				break;
1479 
1480 			status = pl011_read(uap, REG_RIS) & imsc;
1481 		} while (status != 0);
1482 		handled = 1;
1483 	}
1484 
1485 	spin_unlock_irqrestore(&uap->port.lock, flags);
1486 
1487 	return IRQ_RETVAL(handled);
1488 }
1489 
1490 static unsigned int pl011_tx_empty(struct uart_port *port)
1491 {
1492 	struct uart_amba_port *uap =
1493 	    container_of(port, struct uart_amba_port, port);
1494 	unsigned int status = pl011_read(uap, REG_FR);
1495 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1496 }
1497 
1498 static unsigned int pl011_get_mctrl(struct uart_port *port)
1499 {
1500 	struct uart_amba_port *uap =
1501 	    container_of(port, struct uart_amba_port, port);
1502 	unsigned int result = 0;
1503 	unsigned int status = pl011_read(uap, REG_FR);
1504 
1505 #define TIOCMBIT(uartbit, tiocmbit)	\
1506 	if (status & uartbit)		\
1507 		result |= tiocmbit
1508 
1509 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1510 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1511 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1512 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1513 #undef TIOCMBIT
1514 	return result;
1515 }
1516 
1517 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1518 {
1519 	struct uart_amba_port *uap =
1520 	    container_of(port, struct uart_amba_port, port);
1521 	unsigned int cr;
1522 
1523 	cr = pl011_read(uap, REG_CR);
1524 
1525 #define	TIOCMBIT(tiocmbit, uartbit)		\
1526 	if (mctrl & tiocmbit)		\
1527 		cr |= uartbit;		\
1528 	else				\
1529 		cr &= ~uartbit
1530 
1531 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1532 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1533 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1534 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1535 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1536 
1537 	if (uap->autorts) {
1538 		/* We need to disable auto-RTS if we want to turn RTS off */
1539 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1540 	}
1541 #undef TIOCMBIT
1542 
1543 	pl011_write(cr, uap, REG_CR);
1544 }
1545 
1546 static void pl011_break_ctl(struct uart_port *port, int break_state)
1547 {
1548 	struct uart_amba_port *uap =
1549 	    container_of(port, struct uart_amba_port, port);
1550 	unsigned long flags;
1551 	unsigned int lcr_h;
1552 
1553 	spin_lock_irqsave(&uap->port.lock, flags);
1554 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1555 	if (break_state == -1)
1556 		lcr_h |= UART01x_LCRH_BRK;
1557 	else
1558 		lcr_h &= ~UART01x_LCRH_BRK;
1559 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1560 	spin_unlock_irqrestore(&uap->port.lock, flags);
1561 }
1562 
1563 #ifdef CONFIG_CONSOLE_POLL
1564 
1565 static void pl011_quiesce_irqs(struct uart_port *port)
1566 {
1567 	struct uart_amba_port *uap =
1568 	    container_of(port, struct uart_amba_port, port);
1569 
1570 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1571 	/*
1572 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1573 	 * we simply mask it. start_tx() will unmask it.
1574 	 *
1575 	 * Note we can race with start_tx(), and if the race happens, the
1576 	 * polling user might get another interrupt just after we clear it.
1577 	 * But it should be OK and can happen even w/o the race, e.g.
1578 	 * controller immediately got some new data and raised the IRQ.
1579 	 *
1580 	 * And whoever uses polling routines assumes that it manages the device
1581 	 * (including tx queue), so we're also fine with start_tx()'s caller
1582 	 * side.
1583 	 */
1584 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1585 		    REG_IMSC);
1586 }
1587 
1588 static int pl011_get_poll_char(struct uart_port *port)
1589 {
1590 	struct uart_amba_port *uap =
1591 	    container_of(port, struct uart_amba_port, port);
1592 	unsigned int status;
1593 
1594 	/*
1595 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1596 	 * debugger.
1597 	 */
1598 	pl011_quiesce_irqs(port);
1599 
1600 	status = pl011_read(uap, REG_FR);
1601 	if (status & UART01x_FR_RXFE)
1602 		return NO_POLL_CHAR;
1603 
1604 	return pl011_read(uap, REG_DR);
1605 }
1606 
1607 static void pl011_put_poll_char(struct uart_port *port,
1608 			 unsigned char ch)
1609 {
1610 	struct uart_amba_port *uap =
1611 	    container_of(port, struct uart_amba_port, port);
1612 
1613 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1614 		barrier();
1615 
1616 	pl011_write(ch, uap, REG_DR);
1617 }
1618 
1619 #endif /* CONFIG_CONSOLE_POLL */
1620 
1621 static int pl011_hwinit(struct uart_port *port)
1622 {
1623 	struct uart_amba_port *uap =
1624 	    container_of(port, struct uart_amba_port, port);
1625 	int retval;
1626 
1627 	/* Optionaly enable pins to be muxed in and configured */
1628 	pinctrl_pm_select_default_state(port->dev);
1629 
1630 	/*
1631 	 * Try to enable the clock producer.
1632 	 */
1633 	retval = clk_prepare_enable(uap->clk);
1634 	if (retval)
1635 		return retval;
1636 
1637 	uap->port.uartclk = clk_get_rate(uap->clk);
1638 
1639 	/* Clear pending error and receive interrupts */
1640 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1641 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1642 		    uap, REG_ICR);
1643 
1644 	/*
1645 	 * Save interrupts enable mask, and enable RX interrupts in case if
1646 	 * the interrupt is used for NMI entry.
1647 	 */
1648 	uap->im = pl011_read(uap, REG_IMSC);
1649 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1650 
1651 	if (dev_get_platdata(uap->port.dev)) {
1652 		struct amba_pl011_data *plat;
1653 
1654 		plat = dev_get_platdata(uap->port.dev);
1655 		if (plat->init)
1656 			plat->init();
1657 	}
1658 	return 0;
1659 }
1660 
1661 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1662 {
1663 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1664 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1665 }
1666 
1667 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1668 {
1669 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1670 	if (pl011_split_lcrh(uap)) {
1671 		int i;
1672 		/*
1673 		 * Wait 10 PCLKs before writing LCRH_TX register,
1674 		 * to get this delay write read only register 10 times
1675 		 */
1676 		for (i = 0; i < 10; ++i)
1677 			pl011_write(0xff, uap, REG_MIS);
1678 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1679 	}
1680 }
1681 
1682 static int pl011_allocate_irq(struct uart_amba_port *uap)
1683 {
1684 	pl011_write(uap->im, uap, REG_IMSC);
1685 
1686 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1687 }
1688 
1689 /*
1690  * Enable interrupts, only timeouts when using DMA
1691  * if initial RX DMA job failed, start in interrupt mode
1692  * as well.
1693  */
1694 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1695 {
1696 	spin_lock_irq(&uap->port.lock);
1697 
1698 	/* Clear out any spuriously appearing RX interrupts */
1699 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1700 	uap->im = UART011_RTIM;
1701 	if (!pl011_dma_rx_running(uap))
1702 		uap->im |= UART011_RXIM;
1703 	pl011_write(uap->im, uap, REG_IMSC);
1704 	spin_unlock_irq(&uap->port.lock);
1705 }
1706 
1707 static int pl011_startup(struct uart_port *port)
1708 {
1709 	struct uart_amba_port *uap =
1710 	    container_of(port, struct uart_amba_port, port);
1711 	unsigned int cr;
1712 	int retval;
1713 
1714 	retval = pl011_hwinit(port);
1715 	if (retval)
1716 		goto clk_dis;
1717 
1718 	retval = pl011_allocate_irq(uap);
1719 	if (retval)
1720 		goto clk_dis;
1721 
1722 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1723 
1724 	spin_lock_irq(&uap->port.lock);
1725 
1726 	/* restore RTS and DTR */
1727 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1728 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1729 	pl011_write(cr, uap, REG_CR);
1730 
1731 	spin_unlock_irq(&uap->port.lock);
1732 
1733 	/*
1734 	 * initialise the old status of the modem signals
1735 	 */
1736 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1737 
1738 	/* Startup DMA */
1739 	pl011_dma_startup(uap);
1740 
1741 	pl011_enable_interrupts(uap);
1742 
1743 	return 0;
1744 
1745  clk_dis:
1746 	clk_disable_unprepare(uap->clk);
1747 	return retval;
1748 }
1749 
1750 static int sbsa_uart_startup(struct uart_port *port)
1751 {
1752 	struct uart_amba_port *uap =
1753 		container_of(port, struct uart_amba_port, port);
1754 	int retval;
1755 
1756 	retval = pl011_hwinit(port);
1757 	if (retval)
1758 		return retval;
1759 
1760 	retval = pl011_allocate_irq(uap);
1761 	if (retval)
1762 		return retval;
1763 
1764 	/* The SBSA UART does not support any modem status lines. */
1765 	uap->old_status = 0;
1766 
1767 	pl011_enable_interrupts(uap);
1768 
1769 	return 0;
1770 }
1771 
1772 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1773 					unsigned int lcrh)
1774 {
1775       unsigned long val;
1776 
1777       val = pl011_read(uap, lcrh);
1778       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1779       pl011_write(val, uap, lcrh);
1780 }
1781 
1782 /*
1783  * disable the port. It should not disable RTS and DTR.
1784  * Also RTS and DTR state should be preserved to restore
1785  * it during startup().
1786  */
1787 static void pl011_disable_uart(struct uart_amba_port *uap)
1788 {
1789 	unsigned int cr;
1790 
1791 	uap->autorts = false;
1792 	spin_lock_irq(&uap->port.lock);
1793 	cr = pl011_read(uap, REG_CR);
1794 	uap->old_cr = cr;
1795 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1796 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1797 	pl011_write(cr, uap, REG_CR);
1798 	spin_unlock_irq(&uap->port.lock);
1799 
1800 	/*
1801 	 * disable break condition and fifos
1802 	 */
1803 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1804 	if (pl011_split_lcrh(uap))
1805 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1806 }
1807 
1808 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1809 {
1810 	spin_lock_irq(&uap->port.lock);
1811 
1812 	/* mask all interrupts and clear all pending ones */
1813 	uap->im = 0;
1814 	pl011_write(uap->im, uap, REG_IMSC);
1815 	pl011_write(0xffff, uap, REG_ICR);
1816 
1817 	spin_unlock_irq(&uap->port.lock);
1818 }
1819 
1820 static void pl011_shutdown(struct uart_port *port)
1821 {
1822 	struct uart_amba_port *uap =
1823 		container_of(port, struct uart_amba_port, port);
1824 
1825 	pl011_disable_interrupts(uap);
1826 
1827 	pl011_dma_shutdown(uap);
1828 
1829 	free_irq(uap->port.irq, uap);
1830 
1831 	pl011_disable_uart(uap);
1832 
1833 	/*
1834 	 * Shut down the clock producer
1835 	 */
1836 	clk_disable_unprepare(uap->clk);
1837 	/* Optionally let pins go into sleep states */
1838 	pinctrl_pm_select_sleep_state(port->dev);
1839 
1840 	if (dev_get_platdata(uap->port.dev)) {
1841 		struct amba_pl011_data *plat;
1842 
1843 		plat = dev_get_platdata(uap->port.dev);
1844 		if (plat->exit)
1845 			plat->exit();
1846 	}
1847 
1848 	if (uap->port.ops->flush_buffer)
1849 		uap->port.ops->flush_buffer(port);
1850 }
1851 
1852 static void sbsa_uart_shutdown(struct uart_port *port)
1853 {
1854 	struct uart_amba_port *uap =
1855 		container_of(port, struct uart_amba_port, port);
1856 
1857 	pl011_disable_interrupts(uap);
1858 
1859 	free_irq(uap->port.irq, uap);
1860 
1861 	if (uap->port.ops->flush_buffer)
1862 		uap->port.ops->flush_buffer(port);
1863 }
1864 
1865 static void
1866 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1867 {
1868 	port->read_status_mask = UART011_DR_OE | 255;
1869 	if (termios->c_iflag & INPCK)
1870 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1871 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1872 		port->read_status_mask |= UART011_DR_BE;
1873 
1874 	/*
1875 	 * Characters to ignore
1876 	 */
1877 	port->ignore_status_mask = 0;
1878 	if (termios->c_iflag & IGNPAR)
1879 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1880 	if (termios->c_iflag & IGNBRK) {
1881 		port->ignore_status_mask |= UART011_DR_BE;
1882 		/*
1883 		 * If we're ignoring parity and break indicators,
1884 		 * ignore overruns too (for real raw support).
1885 		 */
1886 		if (termios->c_iflag & IGNPAR)
1887 			port->ignore_status_mask |= UART011_DR_OE;
1888 	}
1889 
1890 	/*
1891 	 * Ignore all characters if CREAD is not set.
1892 	 */
1893 	if ((termios->c_cflag & CREAD) == 0)
1894 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1895 }
1896 
1897 static void
1898 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1899 		     struct ktermios *old)
1900 {
1901 	struct uart_amba_port *uap =
1902 	    container_of(port, struct uart_amba_port, port);
1903 	unsigned int lcr_h, old_cr;
1904 	unsigned long flags;
1905 	unsigned int baud, quot, clkdiv;
1906 
1907 	if (uap->vendor->oversampling)
1908 		clkdiv = 8;
1909 	else
1910 		clkdiv = 16;
1911 
1912 	/*
1913 	 * Ask the core to calculate the divisor for us.
1914 	 */
1915 	baud = uart_get_baud_rate(port, termios, old, 0,
1916 				  port->uartclk / clkdiv);
1917 #ifdef CONFIG_DMA_ENGINE
1918 	/*
1919 	 * Adjust RX DMA polling rate with baud rate if not specified.
1920 	 */
1921 	if (uap->dmarx.auto_poll_rate)
1922 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1923 #endif
1924 
1925 	if (baud > port->uartclk/16)
1926 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1927 	else
1928 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1929 
1930 	switch (termios->c_cflag & CSIZE) {
1931 	case CS5:
1932 		lcr_h = UART01x_LCRH_WLEN_5;
1933 		break;
1934 	case CS6:
1935 		lcr_h = UART01x_LCRH_WLEN_6;
1936 		break;
1937 	case CS7:
1938 		lcr_h = UART01x_LCRH_WLEN_7;
1939 		break;
1940 	default: // CS8
1941 		lcr_h = UART01x_LCRH_WLEN_8;
1942 		break;
1943 	}
1944 	if (termios->c_cflag & CSTOPB)
1945 		lcr_h |= UART01x_LCRH_STP2;
1946 	if (termios->c_cflag & PARENB) {
1947 		lcr_h |= UART01x_LCRH_PEN;
1948 		if (!(termios->c_cflag & PARODD))
1949 			lcr_h |= UART01x_LCRH_EPS;
1950 	}
1951 	if (uap->fifosize > 1)
1952 		lcr_h |= UART01x_LCRH_FEN;
1953 
1954 	spin_lock_irqsave(&port->lock, flags);
1955 
1956 	/*
1957 	 * Update the per-port timeout.
1958 	 */
1959 	uart_update_timeout(port, termios->c_cflag, baud);
1960 
1961 	pl011_setup_status_masks(port, termios);
1962 
1963 	if (UART_ENABLE_MS(port, termios->c_cflag))
1964 		pl011_enable_ms(port);
1965 
1966 	/* first, disable everything */
1967 	old_cr = pl011_read(uap, REG_CR);
1968 	pl011_write(0, uap, REG_CR);
1969 
1970 	if (termios->c_cflag & CRTSCTS) {
1971 		if (old_cr & UART011_CR_RTS)
1972 			old_cr |= UART011_CR_RTSEN;
1973 
1974 		old_cr |= UART011_CR_CTSEN;
1975 		uap->autorts = true;
1976 	} else {
1977 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1978 		uap->autorts = false;
1979 	}
1980 
1981 	if (uap->vendor->oversampling) {
1982 		if (baud > port->uartclk / 16)
1983 			old_cr |= ST_UART011_CR_OVSFACT;
1984 		else
1985 			old_cr &= ~ST_UART011_CR_OVSFACT;
1986 	}
1987 
1988 	/*
1989 	 * Workaround for the ST Micro oversampling variants to
1990 	 * increase the bitrate slightly, by lowering the divisor,
1991 	 * to avoid delayed sampling of start bit at high speeds,
1992 	 * else we see data corruption.
1993 	 */
1994 	if (uap->vendor->oversampling) {
1995 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1996 			quot -= 1;
1997 		else if ((baud > 3250000) && (quot > 2))
1998 			quot -= 2;
1999 	}
2000 	/* Set baud rate */
2001 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2002 	pl011_write(quot >> 6, uap, REG_IBRD);
2003 
2004 	/*
2005 	 * ----------v----------v----------v----------v-----
2006 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2007 	 * REG_FBRD & REG_IBRD.
2008 	 * ----------^----------^----------^----------^-----
2009 	 */
2010 	pl011_write_lcr_h(uap, lcr_h);
2011 	pl011_write(old_cr, uap, REG_CR);
2012 
2013 	spin_unlock_irqrestore(&port->lock, flags);
2014 }
2015 
2016 static void
2017 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2018 		      struct ktermios *old)
2019 {
2020 	struct uart_amba_port *uap =
2021 	    container_of(port, struct uart_amba_port, port);
2022 	unsigned long flags;
2023 
2024 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2025 
2026 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2027 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2028 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2029 	termios->c_cflag |= CS8 | CLOCAL;
2030 
2031 	spin_lock_irqsave(&port->lock, flags);
2032 	uart_update_timeout(port, CS8, uap->fixed_baud);
2033 	pl011_setup_status_masks(port, termios);
2034 	spin_unlock_irqrestore(&port->lock, flags);
2035 }
2036 
2037 static const char *pl011_type(struct uart_port *port)
2038 {
2039 	struct uart_amba_port *uap =
2040 	    container_of(port, struct uart_amba_port, port);
2041 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2042 }
2043 
2044 /*
2045  * Release the memory region(s) being used by 'port'
2046  */
2047 static void pl011_release_port(struct uart_port *port)
2048 {
2049 	release_mem_region(port->mapbase, SZ_4K);
2050 }
2051 
2052 /*
2053  * Request the memory region(s) being used by 'port'
2054  */
2055 static int pl011_request_port(struct uart_port *port)
2056 {
2057 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2058 			!= NULL ? 0 : -EBUSY;
2059 }
2060 
2061 /*
2062  * Configure/autoconfigure the port.
2063  */
2064 static void pl011_config_port(struct uart_port *port, int flags)
2065 {
2066 	if (flags & UART_CONFIG_TYPE) {
2067 		port->type = PORT_AMBA;
2068 		pl011_request_port(port);
2069 	}
2070 }
2071 
2072 /*
2073  * verify the new serial_struct (for TIOCSSERIAL).
2074  */
2075 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2076 {
2077 	int ret = 0;
2078 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2079 		ret = -EINVAL;
2080 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2081 		ret = -EINVAL;
2082 	if (ser->baud_base < 9600)
2083 		ret = -EINVAL;
2084 	return ret;
2085 }
2086 
2087 static struct uart_ops amba_pl011_pops = {
2088 	.tx_empty	= pl011_tx_empty,
2089 	.set_mctrl	= pl011_set_mctrl,
2090 	.get_mctrl	= pl011_get_mctrl,
2091 	.stop_tx	= pl011_stop_tx,
2092 	.start_tx	= pl011_start_tx,
2093 	.stop_rx	= pl011_stop_rx,
2094 	.enable_ms	= pl011_enable_ms,
2095 	.break_ctl	= pl011_break_ctl,
2096 	.startup	= pl011_startup,
2097 	.shutdown	= pl011_shutdown,
2098 	.flush_buffer	= pl011_dma_flush_buffer,
2099 	.set_termios	= pl011_set_termios,
2100 	.type		= pl011_type,
2101 	.release_port	= pl011_release_port,
2102 	.request_port	= pl011_request_port,
2103 	.config_port	= pl011_config_port,
2104 	.verify_port	= pl011_verify_port,
2105 #ifdef CONFIG_CONSOLE_POLL
2106 	.poll_init     = pl011_hwinit,
2107 	.poll_get_char = pl011_get_poll_char,
2108 	.poll_put_char = pl011_put_poll_char,
2109 #endif
2110 };
2111 
2112 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2113 {
2114 }
2115 
2116 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2117 {
2118 	return 0;
2119 }
2120 
2121 static const struct uart_ops sbsa_uart_pops = {
2122 	.tx_empty	= pl011_tx_empty,
2123 	.set_mctrl	= sbsa_uart_set_mctrl,
2124 	.get_mctrl	= sbsa_uart_get_mctrl,
2125 	.stop_tx	= pl011_stop_tx,
2126 	.start_tx	= pl011_start_tx,
2127 	.stop_rx	= pl011_stop_rx,
2128 	.startup	= sbsa_uart_startup,
2129 	.shutdown	= sbsa_uart_shutdown,
2130 	.set_termios	= sbsa_uart_set_termios,
2131 	.type		= pl011_type,
2132 	.release_port	= pl011_release_port,
2133 	.request_port	= pl011_request_port,
2134 	.config_port	= pl011_config_port,
2135 	.verify_port	= pl011_verify_port,
2136 #ifdef CONFIG_CONSOLE_POLL
2137 	.poll_init     = pl011_hwinit,
2138 	.poll_get_char = pl011_get_poll_char,
2139 	.poll_put_char = pl011_put_poll_char,
2140 #endif
2141 };
2142 
2143 static struct uart_amba_port *amba_ports[UART_NR];
2144 
2145 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2146 
2147 static void pl011_console_putchar(struct uart_port *port, int ch)
2148 {
2149 	struct uart_amba_port *uap =
2150 	    container_of(port, struct uart_amba_port, port);
2151 
2152 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2153 		barrier();
2154 	pl011_write(ch, uap, REG_DR);
2155 }
2156 
2157 static void
2158 pl011_console_write(struct console *co, const char *s, unsigned int count)
2159 {
2160 	struct uart_amba_port *uap = amba_ports[co->index];
2161 	unsigned int status, old_cr = 0, new_cr;
2162 	unsigned long flags;
2163 	int locked = 1;
2164 
2165 	clk_enable(uap->clk);
2166 
2167 	local_irq_save(flags);
2168 	if (uap->port.sysrq)
2169 		locked = 0;
2170 	else if (oops_in_progress)
2171 		locked = spin_trylock(&uap->port.lock);
2172 	else
2173 		spin_lock(&uap->port.lock);
2174 
2175 	/*
2176 	 *	First save the CR then disable the interrupts
2177 	 */
2178 	if (!uap->vendor->always_enabled) {
2179 		old_cr = pl011_read(uap, REG_CR);
2180 		new_cr = old_cr & ~UART011_CR_CTSEN;
2181 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2182 		pl011_write(new_cr, uap, REG_CR);
2183 	}
2184 
2185 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2186 
2187 	/*
2188 	 *	Finally, wait for transmitter to become empty
2189 	 *	and restore the TCR
2190 	 */
2191 	do {
2192 		status = pl011_read(uap, REG_FR);
2193 	} while (status & UART01x_FR_BUSY);
2194 	if (!uap->vendor->always_enabled)
2195 		pl011_write(old_cr, uap, REG_CR);
2196 
2197 	if (locked)
2198 		spin_unlock(&uap->port.lock);
2199 	local_irq_restore(flags);
2200 
2201 	clk_disable(uap->clk);
2202 }
2203 
2204 static void __init
2205 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2206 			     int *parity, int *bits)
2207 {
2208 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2209 		unsigned int lcr_h, ibrd, fbrd;
2210 
2211 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2212 
2213 		*parity = 'n';
2214 		if (lcr_h & UART01x_LCRH_PEN) {
2215 			if (lcr_h & UART01x_LCRH_EPS)
2216 				*parity = 'e';
2217 			else
2218 				*parity = 'o';
2219 		}
2220 
2221 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2222 			*bits = 7;
2223 		else
2224 			*bits = 8;
2225 
2226 		ibrd = pl011_read(uap, REG_IBRD);
2227 		fbrd = pl011_read(uap, REG_FBRD);
2228 
2229 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2230 
2231 		if (uap->vendor->oversampling) {
2232 			if (pl011_read(uap, REG_CR)
2233 				  & ST_UART011_CR_OVSFACT)
2234 				*baud *= 2;
2235 		}
2236 	}
2237 }
2238 
2239 static int __init pl011_console_setup(struct console *co, char *options)
2240 {
2241 	struct uart_amba_port *uap;
2242 	int baud = 38400;
2243 	int bits = 8;
2244 	int parity = 'n';
2245 	int flow = 'n';
2246 	int ret;
2247 
2248 	/*
2249 	 * Check whether an invalid uart number has been specified, and
2250 	 * if so, search for the first available port that does have
2251 	 * console support.
2252 	 */
2253 	if (co->index >= UART_NR)
2254 		co->index = 0;
2255 	uap = amba_ports[co->index];
2256 	if (!uap)
2257 		return -ENODEV;
2258 
2259 	/* Allow pins to be muxed in and configured */
2260 	pinctrl_pm_select_default_state(uap->port.dev);
2261 
2262 	ret = clk_prepare(uap->clk);
2263 	if (ret)
2264 		return ret;
2265 
2266 	if (dev_get_platdata(uap->port.dev)) {
2267 		struct amba_pl011_data *plat;
2268 
2269 		plat = dev_get_platdata(uap->port.dev);
2270 		if (plat->init)
2271 			plat->init();
2272 	}
2273 
2274 	uap->port.uartclk = clk_get_rate(uap->clk);
2275 
2276 	if (uap->vendor->fixed_options) {
2277 		baud = uap->fixed_baud;
2278 	} else {
2279 		if (options)
2280 			uart_parse_options(options,
2281 					   &baud, &parity, &bits, &flow);
2282 		else
2283 			pl011_console_get_options(uap, &baud, &parity, &bits);
2284 	}
2285 
2286 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2287 }
2288 
2289 static struct uart_driver amba_reg;
2290 static struct console amba_console = {
2291 	.name		= "ttyAMA",
2292 	.write		= pl011_console_write,
2293 	.device		= uart_console_device,
2294 	.setup		= pl011_console_setup,
2295 	.flags		= CON_PRINTBUFFER,
2296 	.index		= -1,
2297 	.data		= &amba_reg,
2298 };
2299 
2300 #define AMBA_CONSOLE	(&amba_console)
2301 
2302 static void pl011_putc(struct uart_port *port, int c)
2303 {
2304 	while (readl(port->membase + REG_FR) & UART01x_FR_TXFF)
2305 		;
2306 	writeb(c, port->membase + REG_DR);
2307 	while (readl(port->membase + REG_FR) & UART01x_FR_BUSY)
2308 		;
2309 }
2310 
2311 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2312 {
2313 	struct earlycon_device *dev = con->data;
2314 
2315 	uart_console_write(&dev->port, s, n, pl011_putc);
2316 }
2317 
2318 static int __init pl011_early_console_setup(struct earlycon_device *device,
2319 					    const char *opt)
2320 {
2321 	if (!device->port.membase)
2322 		return -ENODEV;
2323 
2324 	device->con->write = pl011_early_write;
2325 	return 0;
2326 }
2327 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2328 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2329 
2330 #else
2331 #define AMBA_CONSOLE	NULL
2332 #endif
2333 
2334 static struct uart_driver amba_reg = {
2335 	.owner			= THIS_MODULE,
2336 	.driver_name		= "ttyAMA",
2337 	.dev_name		= "ttyAMA",
2338 	.major			= SERIAL_AMBA_MAJOR,
2339 	.minor			= SERIAL_AMBA_MINOR,
2340 	.nr			= UART_NR,
2341 	.cons			= AMBA_CONSOLE,
2342 };
2343 
2344 static int pl011_probe_dt_alias(int index, struct device *dev)
2345 {
2346 	struct device_node *np;
2347 	static bool seen_dev_with_alias = false;
2348 	static bool seen_dev_without_alias = false;
2349 	int ret = index;
2350 
2351 	if (!IS_ENABLED(CONFIG_OF))
2352 		return ret;
2353 
2354 	np = dev->of_node;
2355 	if (!np)
2356 		return ret;
2357 
2358 	ret = of_alias_get_id(np, "serial");
2359 	if (IS_ERR_VALUE(ret)) {
2360 		seen_dev_without_alias = true;
2361 		ret = index;
2362 	} else {
2363 		seen_dev_with_alias = true;
2364 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2365 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2366 			ret = index;
2367 		}
2368 	}
2369 
2370 	if (seen_dev_with_alias && seen_dev_without_alias)
2371 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2372 
2373 	return ret;
2374 }
2375 
2376 /* unregisters the driver also if no more ports are left */
2377 static void pl011_unregister_port(struct uart_amba_port *uap)
2378 {
2379 	int i;
2380 	bool busy = false;
2381 
2382 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2383 		if (amba_ports[i] == uap)
2384 			amba_ports[i] = NULL;
2385 		else if (amba_ports[i])
2386 			busy = true;
2387 	}
2388 	pl011_dma_remove(uap);
2389 	if (!busy)
2390 		uart_unregister_driver(&amba_reg);
2391 }
2392 
2393 static int pl011_find_free_port(void)
2394 {
2395 	int i;
2396 
2397 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2398 		if (amba_ports[i] == NULL)
2399 			return i;
2400 
2401 	return -EBUSY;
2402 }
2403 
2404 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2405 			    struct resource *mmiobase, int index)
2406 {
2407 	void __iomem *base;
2408 
2409 	base = devm_ioremap_resource(dev, mmiobase);
2410 	if (IS_ERR(base))
2411 		return PTR_ERR(base);
2412 
2413 	index = pl011_probe_dt_alias(index, dev);
2414 
2415 	uap->old_cr = 0;
2416 	uap->port.dev = dev;
2417 	uap->port.mapbase = mmiobase->start;
2418 	uap->port.membase = base;
2419 	uap->port.iotype = UPIO_MEM;
2420 	uap->port.fifosize = uap->fifosize;
2421 	uap->port.flags = UPF_BOOT_AUTOCONF;
2422 	uap->port.line = index;
2423 
2424 	amba_ports[index] = uap;
2425 
2426 	return 0;
2427 }
2428 
2429 static int pl011_register_port(struct uart_amba_port *uap)
2430 {
2431 	int ret;
2432 
2433 	/* Ensure interrupts from this UART are masked and cleared */
2434 	pl011_write(0, uap, REG_IMSC);
2435 	pl011_write(0xffff, uap, REG_ICR);
2436 
2437 	if (!amba_reg.state) {
2438 		ret = uart_register_driver(&amba_reg);
2439 		if (ret < 0) {
2440 			dev_err(uap->port.dev,
2441 				"Failed to register AMBA-PL011 driver\n");
2442 			return ret;
2443 		}
2444 	}
2445 
2446 	ret = uart_add_one_port(&amba_reg, &uap->port);
2447 	if (ret)
2448 		pl011_unregister_port(uap);
2449 
2450 	return ret;
2451 }
2452 
2453 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2454 {
2455 	struct uart_amba_port *uap;
2456 	struct vendor_data *vendor = id->data;
2457 	int portnr, ret;
2458 
2459 	portnr = pl011_find_free_port();
2460 	if (portnr < 0)
2461 		return portnr;
2462 
2463 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2464 			   GFP_KERNEL);
2465 	if (!uap)
2466 		return -ENOMEM;
2467 
2468 	uap->clk = devm_clk_get(&dev->dev, NULL);
2469 	if (IS_ERR(uap->clk))
2470 		return PTR_ERR(uap->clk);
2471 
2472 	uap->reg_offset = vendor->reg_offset;
2473 	uap->access_32b = vendor->access_32b;
2474 	uap->vendor = vendor;
2475 	uap->fifosize = vendor->get_fifosize(dev);
2476 	uap->port.irq = dev->irq[0];
2477 	uap->port.ops = &amba_pl011_pops;
2478 
2479 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2480 
2481 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2482 	if (ret)
2483 		return ret;
2484 
2485 	amba_set_drvdata(dev, uap);
2486 
2487 	return pl011_register_port(uap);
2488 }
2489 
2490 static int pl011_remove(struct amba_device *dev)
2491 {
2492 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2493 
2494 	uart_remove_one_port(&amba_reg, &uap->port);
2495 	pl011_unregister_port(uap);
2496 	return 0;
2497 }
2498 
2499 #ifdef CONFIG_PM_SLEEP
2500 static int pl011_suspend(struct device *dev)
2501 {
2502 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2503 
2504 	if (!uap)
2505 		return -EINVAL;
2506 
2507 	return uart_suspend_port(&amba_reg, &uap->port);
2508 }
2509 
2510 static int pl011_resume(struct device *dev)
2511 {
2512 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2513 
2514 	if (!uap)
2515 		return -EINVAL;
2516 
2517 	return uart_resume_port(&amba_reg, &uap->port);
2518 }
2519 #endif
2520 
2521 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2522 
2523 static int sbsa_uart_probe(struct platform_device *pdev)
2524 {
2525 	struct uart_amba_port *uap;
2526 	struct resource *r;
2527 	int portnr, ret;
2528 	int baudrate;
2529 
2530 	/*
2531 	 * Check the mandatory baud rate parameter in the DT node early
2532 	 * so that we can easily exit with the error.
2533 	 */
2534 	if (pdev->dev.of_node) {
2535 		struct device_node *np = pdev->dev.of_node;
2536 
2537 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2538 		if (ret)
2539 			return ret;
2540 	} else {
2541 		baudrate = 115200;
2542 	}
2543 
2544 	portnr = pl011_find_free_port();
2545 	if (portnr < 0)
2546 		return portnr;
2547 
2548 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2549 			   GFP_KERNEL);
2550 	if (!uap)
2551 		return -ENOMEM;
2552 
2553 	uap->reg_offset	= vendor_sbsa.reg_offset;
2554 	uap->access_32b = vendor_sbsa.access_32b;
2555 	uap->vendor	= &vendor_sbsa;
2556 	uap->fifosize	= 32;
2557 	uap->port.irq	= platform_get_irq(pdev, 0);
2558 	uap->port.ops	= &sbsa_uart_pops;
2559 	uap->fixed_baud = baudrate;
2560 
2561 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2562 
2563 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2564 
2565 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2566 	if (ret)
2567 		return ret;
2568 
2569 	platform_set_drvdata(pdev, uap);
2570 
2571 	return pl011_register_port(uap);
2572 }
2573 
2574 static int sbsa_uart_remove(struct platform_device *pdev)
2575 {
2576 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2577 
2578 	uart_remove_one_port(&amba_reg, &uap->port);
2579 	pl011_unregister_port(uap);
2580 	return 0;
2581 }
2582 
2583 static const struct of_device_id sbsa_uart_of_match[] = {
2584 	{ .compatible = "arm,sbsa-uart", },
2585 	{},
2586 };
2587 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2588 
2589 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2590 	{ "ARMH0011", 0 },
2591 	{},
2592 };
2593 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2594 
2595 static struct platform_driver arm_sbsa_uart_platform_driver = {
2596 	.probe		= sbsa_uart_probe,
2597 	.remove		= sbsa_uart_remove,
2598 	.driver	= {
2599 		.name	= "sbsa-uart",
2600 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2601 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2602 	},
2603 };
2604 
2605 static struct amba_id pl011_ids[] = {
2606 	{
2607 		.id	= 0x00041011,
2608 		.mask	= 0x000fffff,
2609 		.data	= &vendor_arm,
2610 	},
2611 	{
2612 		.id	= 0x00380802,
2613 		.mask	= 0x00ffffff,
2614 		.data	= &vendor_st,
2615 	},
2616 	{ 0, 0 },
2617 };
2618 
2619 MODULE_DEVICE_TABLE(amba, pl011_ids);
2620 
2621 static struct amba_driver pl011_driver = {
2622 	.drv = {
2623 		.name	= "uart-pl011",
2624 		.pm	= &pl011_dev_pm_ops,
2625 	},
2626 	.id_table	= pl011_ids,
2627 	.probe		= pl011_probe,
2628 	.remove		= pl011_remove,
2629 };
2630 
2631 static int __init pl011_init(void)
2632 {
2633 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2634 
2635 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2636 		pr_warn("could not register SBSA UART platform driver\n");
2637 	return amba_driver_register(&pl011_driver);
2638 }
2639 
2640 static void __exit pl011_exit(void)
2641 {
2642 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2643 	amba_driver_unregister(&pl011_driver);
2644 }
2645 
2646 /*
2647  * While this can be a module, if builtin it's most likely the console
2648  * So let's leave module_exit but move module_init to an earlier place
2649  */
2650 arch_initcall(pl011_init);
2651 module_exit(pl011_exit);
2652 
2653 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2654 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2655 MODULE_LICENSE("GPL");
2656