xref: /linux/drivers/tty/serial/amba-pl011.c (revision 7255fcc80d4b525cc10cfaaf7f485830d4ed2000)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	BIT(16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_dmabuf {
222 	dma_addr_t		dma;
223 	size_t			len;
224 	char			*buf;
225 };
226 
227 struct pl011_dmarx_data {
228 	struct dma_chan		*chan;
229 	struct completion	complete;
230 	bool			use_buf_b;
231 	struct pl011_dmabuf	dbuf_a;
232 	struct pl011_dmabuf	dbuf_b;
233 	dma_cookie_t		cookie;
234 	bool			running;
235 	struct timer_list	timer;
236 	unsigned int last_residue;
237 	unsigned long last_jiffies;
238 	bool auto_poll_rate;
239 	unsigned int poll_rate;
240 	unsigned int poll_timeout;
241 };
242 
243 struct pl011_dmatx_data {
244 	struct dma_chan		*chan;
245 	dma_addr_t		dma;
246 	size_t			len;
247 	char			*buf;
248 	bool			queued;
249 };
250 
251 /*
252  * We wrap our port structure around the generic uart_port.
253  */
254 struct uart_amba_port {
255 	struct uart_port	port;
256 	const u16		*reg_offset;
257 	struct clk		*clk;
258 	const struct vendor_data *vendor;
259 	unsigned int		dmacr;		/* dma control reg */
260 	unsigned int		im;		/* interrupt mask */
261 	unsigned int		old_status;
262 	unsigned int		fifosize;	/* vendor-specific */
263 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
264 	char			type[12];
265 	bool			rs485_tx_started;
266 	unsigned int		rs485_tx_drain_interval; /* usecs */
267 #ifdef CONFIG_DMA_ENGINE
268 	/* DMA stuff */
269 	bool			using_tx_dma;
270 	bool			using_rx_dma;
271 	struct pl011_dmarx_data dmarx;
272 	struct pl011_dmatx_data	dmatx;
273 	bool			dma_probed;
274 #endif
275 };
276 
277 static unsigned int pl011_tx_empty(struct uart_port *port);
278 
279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 					unsigned int reg)
281 {
282 	return uap->reg_offset[reg];
283 }
284 
285 static unsigned int pl011_read(const struct uart_amba_port *uap,
286 			       unsigned int reg)
287 {
288 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289 
290 	return (uap->port.iotype == UPIO_MEM32) ?
291 		readl_relaxed(addr) : readw_relaxed(addr);
292 }
293 
294 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 			unsigned int reg)
296 {
297 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298 
299 	if (uap->port.iotype == UPIO_MEM32)
300 		writel_relaxed(val, addr);
301 	else
302 		writew_relaxed(val, addr);
303 }
304 
305 /*
306  * Reads up to 256 characters from the FIFO or until it's empty and
307  * inserts them into the TTY layer. Returns the number of characters
308  * read from the FIFO.
309  */
310 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311 {
312 	unsigned int ch, fifotaken;
313 	int sysrq;
314 	u16 status;
315 	u8 flag;
316 
317 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 		status = pl011_read(uap, REG_FR);
319 		if (status & UART01x_FR_RXFE)
320 			break;
321 
322 		/* Take chars from the FIFO and update status */
323 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324 		flag = TTY_NORMAL;
325 		uap->port.icount.rx++;
326 
327 		if (unlikely(ch & UART_DR_ERROR)) {
328 			if (ch & UART011_DR_BE) {
329 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 				uap->port.icount.brk++;
331 				if (uart_handle_break(&uap->port))
332 					continue;
333 			} else if (ch & UART011_DR_PE) {
334 				uap->port.icount.parity++;
335 			} else if (ch & UART011_DR_FE) {
336 				uap->port.icount.frame++;
337 			}
338 			if (ch & UART011_DR_OE)
339 				uap->port.icount.overrun++;
340 
341 			ch &= uap->port.read_status_mask;
342 
343 			if (ch & UART011_DR_BE)
344 				flag = TTY_BREAK;
345 			else if (ch & UART011_DR_PE)
346 				flag = TTY_PARITY;
347 			else if (ch & UART011_DR_FE)
348 				flag = TTY_FRAME;
349 		}
350 
351 		sysrq = uart_prepare_sysrq_char(&uap->port, ch & 255);
352 		if (!sysrq)
353 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 	}
355 
356 	return fifotaken;
357 }
358 
359 /*
360  * All the DMA operation mode stuff goes inside this ifdef.
361  * This assumes that you have a generic DMA device interface,
362  * no custom DMA interfaces are supported.
363  */
364 #ifdef CONFIG_DMA_ENGINE
365 
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
367 
368 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
369 			     enum dma_data_direction dir)
370 {
371 	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
372 				     &db->dma, GFP_KERNEL);
373 	if (!db->buf)
374 		return -ENOMEM;
375 	db->len = PL011_DMA_BUFFER_SIZE;
376 
377 	return 0;
378 }
379 
380 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
381 			      enum dma_data_direction dir)
382 {
383 	if (db->buf) {
384 		dma_free_coherent(chan->device->dev,
385 				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
386 	}
387 }
388 
389 static void pl011_dma_probe(struct uart_amba_port *uap)
390 {
391 	/* DMA is the sole user of the platform data right now */
392 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
393 	struct device *dev = uap->port.dev;
394 	struct dma_slave_config tx_conf = {
395 		.dst_addr = uap->port.mapbase +
396 				 pl011_reg_to_offset(uap, REG_DR),
397 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
398 		.direction = DMA_MEM_TO_DEV,
399 		.dst_maxburst = uap->fifosize >> 1,
400 		.device_fc = false,
401 	};
402 	struct dma_chan *chan;
403 	dma_cap_mask_t mask;
404 
405 	uap->dma_probed = true;
406 	chan = dma_request_chan(dev, "tx");
407 	if (IS_ERR(chan)) {
408 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
409 			uap->dma_probed = false;
410 			return;
411 		}
412 
413 		/* We need platform data */
414 		if (!plat || !plat->dma_filter) {
415 			dev_dbg(uap->port.dev, "no DMA platform data\n");
416 			return;
417 		}
418 
419 		/* Try to acquire a generic DMA engine slave TX channel */
420 		dma_cap_zero(mask);
421 		dma_cap_set(DMA_SLAVE, mask);
422 
423 		chan = dma_request_channel(mask, plat->dma_filter,
424 					   plat->dma_tx_param);
425 		if (!chan) {
426 			dev_err(uap->port.dev, "no TX DMA channel!\n");
427 			return;
428 		}
429 	}
430 
431 	dmaengine_slave_config(chan, &tx_conf);
432 	uap->dmatx.chan = chan;
433 
434 	dev_info(uap->port.dev, "DMA channel TX %s\n",
435 		 dma_chan_name(uap->dmatx.chan));
436 
437 	/* Optionally make use of an RX channel as well */
438 	chan = dma_request_chan(dev, "rx");
439 
440 	if (IS_ERR(chan) && plat && plat->dma_rx_param) {
441 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
442 
443 		if (!chan) {
444 			dev_err(uap->port.dev, "no RX DMA channel!\n");
445 			return;
446 		}
447 	}
448 
449 	if (!IS_ERR(chan)) {
450 		struct dma_slave_config rx_conf = {
451 			.src_addr = uap->port.mapbase +
452 				pl011_reg_to_offset(uap, REG_DR),
453 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
454 			.direction = DMA_DEV_TO_MEM,
455 			.src_maxburst = uap->fifosize >> 2,
456 			.device_fc = false,
457 		};
458 		struct dma_slave_caps caps;
459 
460 		/*
461 		 * Some DMA controllers provide information on their capabilities.
462 		 * If the controller does, check for suitable residue processing
463 		 * otherwise assime all is well.
464 		 */
465 		if (dma_get_slave_caps(chan, &caps) == 0) {
466 			if (caps.residue_granularity ==
467 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
468 				dma_release_channel(chan);
469 				dev_info(uap->port.dev,
470 					 "RX DMA disabled - no residue processing\n");
471 				return;
472 			}
473 		}
474 		dmaengine_slave_config(chan, &rx_conf);
475 		uap->dmarx.chan = chan;
476 
477 		uap->dmarx.auto_poll_rate = false;
478 		if (plat && plat->dma_rx_poll_enable) {
479 			/* Set poll rate if specified. */
480 			if (plat->dma_rx_poll_rate) {
481 				uap->dmarx.auto_poll_rate = false;
482 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
483 			} else {
484 				/*
485 				 * 100 ms defaults to poll rate if not
486 				 * specified. This will be adjusted with
487 				 * the baud rate at set_termios.
488 				 */
489 				uap->dmarx.auto_poll_rate = true;
490 				uap->dmarx.poll_rate =  100;
491 			}
492 			/* 3 secs defaults poll_timeout if not specified. */
493 			if (plat->dma_rx_poll_timeout)
494 				uap->dmarx.poll_timeout =
495 					plat->dma_rx_poll_timeout;
496 			else
497 				uap->dmarx.poll_timeout = 3000;
498 		} else if (!plat && dev->of_node) {
499 			uap->dmarx.auto_poll_rate =
500 					of_property_read_bool(dev->of_node, "auto-poll");
501 			if (uap->dmarx.auto_poll_rate) {
502 				u32 x;
503 
504 				if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
505 					uap->dmarx.poll_rate = x;
506 				else
507 					uap->dmarx.poll_rate = 100;
508 				if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
509 					uap->dmarx.poll_timeout = x;
510 				else
511 					uap->dmarx.poll_timeout = 3000;
512 			}
513 		}
514 		dev_info(uap->port.dev, "DMA channel RX %s\n",
515 			 dma_chan_name(uap->dmarx.chan));
516 	}
517 }
518 
519 static void pl011_dma_remove(struct uart_amba_port *uap)
520 {
521 	if (uap->dmatx.chan)
522 		dma_release_channel(uap->dmatx.chan);
523 	if (uap->dmarx.chan)
524 		dma_release_channel(uap->dmarx.chan);
525 }
526 
527 /* Forward declare these for the refill routine */
528 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
529 static void pl011_start_tx_pio(struct uart_amba_port *uap);
530 
531 /*
532  * The current DMA TX buffer has been sent.
533  * Try to queue up another DMA buffer.
534  */
535 static void pl011_dma_tx_callback(void *data)
536 {
537 	struct uart_amba_port *uap = data;
538 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
539 	unsigned long flags;
540 	u16 dmacr;
541 
542 	uart_port_lock_irqsave(&uap->port, &flags);
543 	if (uap->dmatx.queued)
544 		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
545 				 dmatx->len, DMA_TO_DEVICE);
546 
547 	dmacr = uap->dmacr;
548 	uap->dmacr = dmacr & ~UART011_TXDMAE;
549 	pl011_write(uap->dmacr, uap, REG_DMACR);
550 
551 	/*
552 	 * If TX DMA was disabled, it means that we've stopped the DMA for
553 	 * some reason (eg, XOFF received, or we want to send an X-char.)
554 	 *
555 	 * Note: we need to be careful here of a potential race between DMA
556 	 * and the rest of the driver - if the driver disables TX DMA while
557 	 * a TX buffer completing, we must update the tx queued status to
558 	 * get further refills (hence we check dmacr).
559 	 */
560 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
561 	    uart_circ_empty(&uap->port.state->xmit)) {
562 		uap->dmatx.queued = false;
563 		uart_port_unlock_irqrestore(&uap->port, flags);
564 		return;
565 	}
566 
567 	if (pl011_dma_tx_refill(uap) <= 0)
568 		/*
569 		 * We didn't queue a DMA buffer for some reason, but we
570 		 * have data pending to be sent.  Re-enable the TX IRQ.
571 		 */
572 		pl011_start_tx_pio(uap);
573 
574 	uart_port_unlock_irqrestore(&uap->port, flags);
575 }
576 
577 /*
578  * Try to refill the TX DMA buffer.
579  * Locking: called with port lock held and IRQs disabled.
580  * Returns:
581  *   1 if we queued up a TX DMA buffer.
582  *   0 if we didn't want to handle this by DMA
583  *  <0 on error
584  */
585 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
586 {
587 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
588 	struct dma_chan *chan = dmatx->chan;
589 	struct dma_device *dma_dev = chan->device;
590 	struct dma_async_tx_descriptor *desc;
591 	struct circ_buf *xmit = &uap->port.state->xmit;
592 	unsigned int count;
593 
594 	/*
595 	 * Try to avoid the overhead involved in using DMA if the
596 	 * transaction fits in the first half of the FIFO, by using
597 	 * the standard interrupt handling.  This ensures that we
598 	 * issue a uart_write_wakeup() at the appropriate time.
599 	 */
600 	count = uart_circ_chars_pending(xmit);
601 	if (count < (uap->fifosize >> 1)) {
602 		uap->dmatx.queued = false;
603 		return 0;
604 	}
605 
606 	/*
607 	 * Bodge: don't send the last character by DMA, as this
608 	 * will prevent XON from notifying us to restart DMA.
609 	 */
610 	count -= 1;
611 
612 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
613 	if (count > PL011_DMA_BUFFER_SIZE)
614 		count = PL011_DMA_BUFFER_SIZE;
615 
616 	if (xmit->tail < xmit->head) {
617 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
618 	} else {
619 		size_t first = UART_XMIT_SIZE - xmit->tail;
620 		size_t second;
621 
622 		if (first > count)
623 			first = count;
624 		second = count - first;
625 
626 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
627 		if (second)
628 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
629 	}
630 
631 	dmatx->len = count;
632 	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
633 				    DMA_TO_DEVICE);
634 	if (dmatx->dma == DMA_MAPPING_ERROR) {
635 		uap->dmatx.queued = false;
636 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
637 		return -EBUSY;
638 	}
639 
640 	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
641 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
642 	if (!desc) {
643 		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
644 		uap->dmatx.queued = false;
645 		/*
646 		 * If DMA cannot be used right now, we complete this
647 		 * transaction via IRQ and let the TTY layer retry.
648 		 */
649 		dev_dbg(uap->port.dev, "TX DMA busy\n");
650 		return -EBUSY;
651 	}
652 
653 	/* Some data to go along to the callback */
654 	desc->callback = pl011_dma_tx_callback;
655 	desc->callback_param = uap;
656 
657 	/* All errors should happen at prepare time */
658 	dmaengine_submit(desc);
659 
660 	/* Fire the DMA transaction */
661 	dma_dev->device_issue_pending(chan);
662 
663 	uap->dmacr |= UART011_TXDMAE;
664 	pl011_write(uap->dmacr, uap, REG_DMACR);
665 	uap->dmatx.queued = true;
666 
667 	/*
668 	 * Now we know that DMA will fire, so advance the ring buffer
669 	 * with the stuff we just dispatched.
670 	 */
671 	uart_xmit_advance(&uap->port, count);
672 
673 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
674 		uart_write_wakeup(&uap->port);
675 
676 	return 1;
677 }
678 
679 /*
680  * We received a transmit interrupt without a pending X-char but with
681  * pending characters.
682  * Locking: called with port lock held and IRQs disabled.
683  * Returns:
684  *   false if we want to use PIO to transmit
685  *   true if we queued a DMA buffer
686  */
687 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
688 {
689 	if (!uap->using_tx_dma)
690 		return false;
691 
692 	/*
693 	 * If we already have a TX buffer queued, but received a
694 	 * TX interrupt, it will be because we've just sent an X-char.
695 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
696 	 */
697 	if (uap->dmatx.queued) {
698 		uap->dmacr |= UART011_TXDMAE;
699 		pl011_write(uap->dmacr, uap, REG_DMACR);
700 		uap->im &= ~UART011_TXIM;
701 		pl011_write(uap->im, uap, REG_IMSC);
702 		return true;
703 	}
704 
705 	/*
706 	 * We don't have a TX buffer queued, so try to queue one.
707 	 * If we successfully queued a buffer, mask the TX IRQ.
708 	 */
709 	if (pl011_dma_tx_refill(uap) > 0) {
710 		uap->im &= ~UART011_TXIM;
711 		pl011_write(uap->im, uap, REG_IMSC);
712 		return true;
713 	}
714 	return false;
715 }
716 
717 /*
718  * Stop the DMA transmit (eg, due to received XOFF).
719  * Locking: called with port lock held and IRQs disabled.
720  */
721 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
722 {
723 	if (uap->dmatx.queued) {
724 		uap->dmacr &= ~UART011_TXDMAE;
725 		pl011_write(uap->dmacr, uap, REG_DMACR);
726 	}
727 }
728 
729 /*
730  * Try to start a DMA transmit, or in the case of an XON/OFF
731  * character queued for send, try to get that character out ASAP.
732  * Locking: called with port lock held and IRQs disabled.
733  * Returns:
734  *   false if we want the TX IRQ to be enabled
735  *   true if we have a buffer queued
736  */
737 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
738 {
739 	u16 dmacr;
740 
741 	if (!uap->using_tx_dma)
742 		return false;
743 
744 	if (!uap->port.x_char) {
745 		/* no X-char, try to push chars out in DMA mode */
746 		bool ret = true;
747 
748 		if (!uap->dmatx.queued) {
749 			if (pl011_dma_tx_refill(uap) > 0) {
750 				uap->im &= ~UART011_TXIM;
751 				pl011_write(uap->im, uap, REG_IMSC);
752 			} else {
753 				ret = false;
754 			}
755 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
756 			uap->dmacr |= UART011_TXDMAE;
757 			pl011_write(uap->dmacr, uap, REG_DMACR);
758 		}
759 		return ret;
760 	}
761 
762 	/*
763 	 * We have an X-char to send.  Disable DMA to prevent it loading
764 	 * the TX fifo, and then see if we can stuff it into the FIFO.
765 	 */
766 	dmacr = uap->dmacr;
767 	uap->dmacr &= ~UART011_TXDMAE;
768 	pl011_write(uap->dmacr, uap, REG_DMACR);
769 
770 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
771 		/*
772 		 * No space in the FIFO, so enable the transmit interrupt
773 		 * so we know when there is space.  Note that once we've
774 		 * loaded the character, we should just re-enable DMA.
775 		 */
776 		return false;
777 	}
778 
779 	pl011_write(uap->port.x_char, uap, REG_DR);
780 	uap->port.icount.tx++;
781 	uap->port.x_char = 0;
782 
783 	/* Success - restore the DMA state */
784 	uap->dmacr = dmacr;
785 	pl011_write(dmacr, uap, REG_DMACR);
786 
787 	return true;
788 }
789 
790 /*
791  * Flush the transmit buffer.
792  * Locking: called with port lock held and IRQs disabled.
793  */
794 static void pl011_dma_flush_buffer(struct uart_port *port)
795 __releases(&uap->port.lock)
796 __acquires(&uap->port.lock)
797 {
798 	struct uart_amba_port *uap =
799 	    container_of(port, struct uart_amba_port, port);
800 
801 	if (!uap->using_tx_dma)
802 		return;
803 
804 	dmaengine_terminate_async(uap->dmatx.chan);
805 
806 	if (uap->dmatx.queued) {
807 		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
808 				 uap->dmatx.len, DMA_TO_DEVICE);
809 		uap->dmatx.queued = false;
810 		uap->dmacr &= ~UART011_TXDMAE;
811 		pl011_write(uap->dmacr, uap, REG_DMACR);
812 	}
813 }
814 
815 static void pl011_dma_rx_callback(void *data);
816 
817 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
818 {
819 	struct dma_chan *rxchan = uap->dmarx.chan;
820 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
821 	struct dma_async_tx_descriptor *desc;
822 	struct pl011_dmabuf *dbuf;
823 
824 	if (!rxchan)
825 		return -EIO;
826 
827 	/* Start the RX DMA job */
828 	dbuf = uap->dmarx.use_buf_b ?
829 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
830 	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
831 					   DMA_DEV_TO_MEM,
832 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
833 	/*
834 	 * If the DMA engine is busy and cannot prepare a
835 	 * channel, no big deal, the driver will fall back
836 	 * to interrupt mode as a result of this error code.
837 	 */
838 	if (!desc) {
839 		uap->dmarx.running = false;
840 		dmaengine_terminate_all(rxchan);
841 		return -EBUSY;
842 	}
843 
844 	/* Some data to go along to the callback */
845 	desc->callback = pl011_dma_rx_callback;
846 	desc->callback_param = uap;
847 	dmarx->cookie = dmaengine_submit(desc);
848 	dma_async_issue_pending(rxchan);
849 
850 	uap->dmacr |= UART011_RXDMAE;
851 	pl011_write(uap->dmacr, uap, REG_DMACR);
852 	uap->dmarx.running = true;
853 
854 	uap->im &= ~UART011_RXIM;
855 	pl011_write(uap->im, uap, REG_IMSC);
856 
857 	return 0;
858 }
859 
860 /*
861  * This is called when either the DMA job is complete, or
862  * the FIFO timeout interrupt occurred. This must be called
863  * with the port spinlock uap->port.lock held.
864  */
865 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
866 			       u32 pending, bool use_buf_b,
867 			       bool readfifo)
868 {
869 	struct tty_port *port = &uap->port.state->port;
870 	struct pl011_dmabuf *dbuf = use_buf_b ?
871 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
872 	int dma_count = 0;
873 	u32 fifotaken = 0; /* only used for vdbg() */
874 
875 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
876 	int dmataken = 0;
877 
878 	if (uap->dmarx.poll_rate) {
879 		/* The data can be taken by polling */
880 		dmataken = dbuf->len - dmarx->last_residue;
881 		/* Recalculate the pending size */
882 		if (pending >= dmataken)
883 			pending -= dmataken;
884 	}
885 
886 	/* Pick the remain data from the DMA */
887 	if (pending) {
888 		/*
889 		 * First take all chars in the DMA pipe, then look in the FIFO.
890 		 * Note that tty_insert_flip_buf() tries to take as many chars
891 		 * as it can.
892 		 */
893 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
894 
895 		uap->port.icount.rx += dma_count;
896 		if (dma_count < pending)
897 			dev_warn(uap->port.dev,
898 				 "couldn't insert all characters (TTY is full?)\n");
899 	}
900 
901 	/* Reset the last_residue for Rx DMA poll */
902 	if (uap->dmarx.poll_rate)
903 		dmarx->last_residue = dbuf->len;
904 
905 	/*
906 	 * Only continue with trying to read the FIFO if all DMA chars have
907 	 * been taken first.
908 	 */
909 	if (dma_count == pending && readfifo) {
910 		/* Clear any error flags */
911 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
912 			    UART011_FEIS, uap, REG_ICR);
913 
914 		/*
915 		 * If we read all the DMA'd characters, and we had an
916 		 * incomplete buffer, that could be due to an rx error, or
917 		 * maybe we just timed out. Read any pending chars and check
918 		 * the error status.
919 		 *
920 		 * Error conditions will only occur in the FIFO, these will
921 		 * trigger an immediate interrupt and stop the DMA job, so we
922 		 * will always find the error in the FIFO, never in the DMA
923 		 * buffer.
924 		 */
925 		fifotaken = pl011_fifo_to_tty(uap);
926 	}
927 
928 	dev_vdbg(uap->port.dev,
929 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
930 		 dma_count, fifotaken);
931 	tty_flip_buffer_push(port);
932 }
933 
934 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
935 {
936 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
937 	struct dma_chan *rxchan = dmarx->chan;
938 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
939 		&dmarx->dbuf_b : &dmarx->dbuf_a;
940 	size_t pending;
941 	struct dma_tx_state state;
942 	enum dma_status dmastat;
943 
944 	/*
945 	 * Pause the transfer so we can trust the current counter,
946 	 * do this before we pause the PL011 block, else we may
947 	 * overflow the FIFO.
948 	 */
949 	if (dmaengine_pause(rxchan))
950 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
951 	dmastat = rxchan->device->device_tx_status(rxchan,
952 						   dmarx->cookie, &state);
953 	if (dmastat != DMA_PAUSED)
954 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
955 
956 	/* Disable RX DMA - incoming data will wait in the FIFO */
957 	uap->dmacr &= ~UART011_RXDMAE;
958 	pl011_write(uap->dmacr, uap, REG_DMACR);
959 	uap->dmarx.running = false;
960 
961 	pending = dbuf->len - state.residue;
962 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
963 	/* Then we terminate the transfer - we now know our residue */
964 	dmaengine_terminate_all(rxchan);
965 
966 	/*
967 	 * This will take the chars we have so far and insert
968 	 * into the framework.
969 	 */
970 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
971 
972 	/* Switch buffer & re-trigger DMA job */
973 	dmarx->use_buf_b = !dmarx->use_buf_b;
974 	if (pl011_dma_rx_trigger_dma(uap)) {
975 		dev_dbg(uap->port.dev,
976 			"could not retrigger RX DMA job fall back to interrupt mode\n");
977 		uap->im |= UART011_RXIM;
978 		pl011_write(uap->im, uap, REG_IMSC);
979 	}
980 }
981 
982 static void pl011_dma_rx_callback(void *data)
983 {
984 	struct uart_amba_port *uap = data;
985 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
986 	struct dma_chan *rxchan = dmarx->chan;
987 	bool lastbuf = dmarx->use_buf_b;
988 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
989 		&dmarx->dbuf_b : &dmarx->dbuf_a;
990 	size_t pending;
991 	struct dma_tx_state state;
992 	int ret;
993 
994 	/*
995 	 * This completion interrupt occurs typically when the
996 	 * RX buffer is totally stuffed but no timeout has yet
997 	 * occurred. When that happens, we just want the RX
998 	 * routine to flush out the secondary DMA buffer while
999 	 * we immediately trigger the next DMA job.
1000 	 */
1001 	uart_port_lock_irq(&uap->port);
1002 	/*
1003 	 * Rx data can be taken by the UART interrupts during
1004 	 * the DMA irq handler. So we check the residue here.
1005 	 */
1006 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1007 	pending = dbuf->len - state.residue;
1008 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1009 	/* Then we terminate the transfer - we now know our residue */
1010 	dmaengine_terminate_all(rxchan);
1011 
1012 	uap->dmarx.running = false;
1013 	dmarx->use_buf_b = !lastbuf;
1014 	ret = pl011_dma_rx_trigger_dma(uap);
1015 
1016 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1017 	uart_unlock_and_check_sysrq(&uap->port);
1018 	/*
1019 	 * Do this check after we picked the DMA chars so we don't
1020 	 * get some IRQ immediately from RX.
1021 	 */
1022 	if (ret) {
1023 		dev_dbg(uap->port.dev,
1024 			"could not retrigger RX DMA job fall back to interrupt mode\n");
1025 		uap->im |= UART011_RXIM;
1026 		pl011_write(uap->im, uap, REG_IMSC);
1027 	}
1028 }
1029 
1030 /*
1031  * Stop accepting received characters, when we're shutting down or
1032  * suspending this port.
1033  * Locking: called with port lock held and IRQs disabled.
1034  */
1035 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1036 {
1037 	if (!uap->using_rx_dma)
1038 		return;
1039 
1040 	/* FIXME.  Just disable the DMA enable */
1041 	uap->dmacr &= ~UART011_RXDMAE;
1042 	pl011_write(uap->dmacr, uap, REG_DMACR);
1043 }
1044 
1045 /*
1046  * Timer handler for Rx DMA polling.
1047  * Every polling, It checks the residue in the dma buffer and transfer
1048  * data to the tty. Also, last_residue is updated for the next polling.
1049  */
1050 static void pl011_dma_rx_poll(struct timer_list *t)
1051 {
1052 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1053 	struct tty_port *port = &uap->port.state->port;
1054 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1055 	struct dma_chan *rxchan = uap->dmarx.chan;
1056 	unsigned long flags;
1057 	unsigned int dmataken = 0;
1058 	unsigned int size = 0;
1059 	struct pl011_dmabuf *dbuf;
1060 	int dma_count;
1061 	struct dma_tx_state state;
1062 
1063 	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1064 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1065 	if (likely(state.residue < dmarx->last_residue)) {
1066 		dmataken = dbuf->len - dmarx->last_residue;
1067 		size = dmarx->last_residue - state.residue;
1068 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1069 						   size);
1070 		if (dma_count == size)
1071 			dmarx->last_residue =  state.residue;
1072 		dmarx->last_jiffies = jiffies;
1073 	}
1074 	tty_flip_buffer_push(port);
1075 
1076 	/*
1077 	 * If no data is received in poll_timeout, the driver will fall back
1078 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1079 	 */
1080 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1081 			> uap->dmarx.poll_timeout) {
1082 		uart_port_lock_irqsave(&uap->port, &flags);
1083 		pl011_dma_rx_stop(uap);
1084 		uap->im |= UART011_RXIM;
1085 		pl011_write(uap->im, uap, REG_IMSC);
1086 		uart_port_unlock_irqrestore(&uap->port, flags);
1087 
1088 		uap->dmarx.running = false;
1089 		dmaengine_terminate_all(rxchan);
1090 		del_timer(&uap->dmarx.timer);
1091 	} else {
1092 		mod_timer(&uap->dmarx.timer,
1093 			  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1094 	}
1095 }
1096 
1097 static void pl011_dma_startup(struct uart_amba_port *uap)
1098 {
1099 	int ret;
1100 
1101 	if (!uap->dma_probed)
1102 		pl011_dma_probe(uap);
1103 
1104 	if (!uap->dmatx.chan)
1105 		return;
1106 
1107 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1108 	if (!uap->dmatx.buf) {
1109 		uap->port.fifosize = uap->fifosize;
1110 		return;
1111 	}
1112 
1113 	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1114 
1115 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1116 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1117 	uap->using_tx_dma = true;
1118 
1119 	if (!uap->dmarx.chan)
1120 		goto skip_rx;
1121 
1122 	/* Allocate and map DMA RX buffers */
1123 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1124 				DMA_FROM_DEVICE);
1125 	if (ret) {
1126 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1127 			"RX buffer A", ret);
1128 		goto skip_rx;
1129 	}
1130 
1131 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1132 				DMA_FROM_DEVICE);
1133 	if (ret) {
1134 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1135 			"RX buffer B", ret);
1136 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1137 				  DMA_FROM_DEVICE);
1138 		goto skip_rx;
1139 	}
1140 
1141 	uap->using_rx_dma = true;
1142 
1143 skip_rx:
1144 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1145 	uap->dmacr |= UART011_DMAONERR;
1146 	pl011_write(uap->dmacr, uap, REG_DMACR);
1147 
1148 	/*
1149 	 * ST Micro variants has some specific dma burst threshold
1150 	 * compensation. Set this to 16 bytes, so burst will only
1151 	 * be issued above/below 16 bytes.
1152 	 */
1153 	if (uap->vendor->dma_threshold)
1154 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1155 			    uap, REG_ST_DMAWM);
1156 
1157 	if (uap->using_rx_dma) {
1158 		if (pl011_dma_rx_trigger_dma(uap))
1159 			dev_dbg(uap->port.dev,
1160 				"could not trigger initial RX DMA job, fall back to interrupt mode\n");
1161 		if (uap->dmarx.poll_rate) {
1162 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1163 			mod_timer(&uap->dmarx.timer,
1164 				  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1165 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1166 			uap->dmarx.last_jiffies = jiffies;
1167 		}
1168 	}
1169 }
1170 
1171 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1172 {
1173 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1174 		return;
1175 
1176 	/* Disable RX and TX DMA */
1177 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1178 		cpu_relax();
1179 
1180 	uart_port_lock_irq(&uap->port);
1181 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1182 	pl011_write(uap->dmacr, uap, REG_DMACR);
1183 	uart_port_unlock_irq(&uap->port);
1184 
1185 	if (uap->using_tx_dma) {
1186 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1187 		dmaengine_terminate_all(uap->dmatx.chan);
1188 		if (uap->dmatx.queued) {
1189 			dma_unmap_single(uap->dmatx.chan->device->dev,
1190 					 uap->dmatx.dma, uap->dmatx.len,
1191 					 DMA_TO_DEVICE);
1192 			uap->dmatx.queued = false;
1193 		}
1194 
1195 		kfree(uap->dmatx.buf);
1196 		uap->using_tx_dma = false;
1197 	}
1198 
1199 	if (uap->using_rx_dma) {
1200 		dmaengine_terminate_all(uap->dmarx.chan);
1201 		/* Clean up the RX DMA */
1202 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1203 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1204 		if (uap->dmarx.poll_rate)
1205 			del_timer_sync(&uap->dmarx.timer);
1206 		uap->using_rx_dma = false;
1207 	}
1208 }
1209 
1210 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1211 {
1212 	return uap->using_rx_dma;
1213 }
1214 
1215 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1216 {
1217 	return uap->using_rx_dma && uap->dmarx.running;
1218 }
1219 
1220 #else
1221 /* Blank functions if the DMA engine is not available */
1222 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1223 {
1224 }
1225 
1226 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1227 {
1228 }
1229 
1230 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1231 {
1232 }
1233 
1234 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1235 {
1236 	return false;
1237 }
1238 
1239 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1240 {
1241 }
1242 
1243 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1244 {
1245 	return false;
1246 }
1247 
1248 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1249 {
1250 }
1251 
1252 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1253 {
1254 }
1255 
1256 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1257 {
1258 	return -EIO;
1259 }
1260 
1261 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1262 {
1263 	return false;
1264 }
1265 
1266 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1267 {
1268 	return false;
1269 }
1270 
1271 #define pl011_dma_flush_buffer	NULL
1272 #endif
1273 
1274 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1275 {
1276 	/*
1277 	 * To be on the safe side only time out after twice as many iterations
1278 	 * as fifo size.
1279 	 */
1280 	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1281 	struct uart_port *port = &uap->port;
1282 	int i = 0;
1283 	u32 cr;
1284 
1285 	/* Wait until hardware tx queue is empty */
1286 	while (!pl011_tx_empty(port)) {
1287 		if (i > MAX_TX_DRAIN_ITERS) {
1288 			dev_warn(port->dev,
1289 				 "timeout while draining hardware tx queue\n");
1290 			break;
1291 		}
1292 
1293 		udelay(uap->rs485_tx_drain_interval);
1294 		i++;
1295 	}
1296 
1297 	if (port->rs485.delay_rts_after_send)
1298 		mdelay(port->rs485.delay_rts_after_send);
1299 
1300 	cr = pl011_read(uap, REG_CR);
1301 
1302 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1303 		cr &= ~UART011_CR_RTS;
1304 	else
1305 		cr |= UART011_CR_RTS;
1306 
1307 	/* Disable the transmitter and reenable the transceiver */
1308 	cr &= ~UART011_CR_TXE;
1309 	cr |= UART011_CR_RXE;
1310 	pl011_write(cr, uap, REG_CR);
1311 
1312 	uap->rs485_tx_started = false;
1313 }
1314 
1315 static void pl011_stop_tx(struct uart_port *port)
1316 {
1317 	struct uart_amba_port *uap =
1318 	    container_of(port, struct uart_amba_port, port);
1319 
1320 	uap->im &= ~UART011_TXIM;
1321 	pl011_write(uap->im, uap, REG_IMSC);
1322 	pl011_dma_tx_stop(uap);
1323 
1324 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1325 		pl011_rs485_tx_stop(uap);
1326 }
1327 
1328 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1329 
1330 /* Start TX with programmed I/O only (no DMA) */
1331 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1332 {
1333 	if (pl011_tx_chars(uap, false)) {
1334 		uap->im |= UART011_TXIM;
1335 		pl011_write(uap->im, uap, REG_IMSC);
1336 	}
1337 }
1338 
1339 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1340 {
1341 	struct uart_port *port = &uap->port;
1342 	u32 cr;
1343 
1344 	/* Enable transmitter */
1345 	cr = pl011_read(uap, REG_CR);
1346 	cr |= UART011_CR_TXE;
1347 
1348 	/* Disable receiver if half-duplex */
1349 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1350 		cr &= ~UART011_CR_RXE;
1351 
1352 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1353 		cr &= ~UART011_CR_RTS;
1354 	else
1355 		cr |= UART011_CR_RTS;
1356 
1357 	pl011_write(cr, uap, REG_CR);
1358 
1359 	if (port->rs485.delay_rts_before_send)
1360 		mdelay(port->rs485.delay_rts_before_send);
1361 
1362 	uap->rs485_tx_started = true;
1363 }
1364 
1365 static void pl011_start_tx(struct uart_port *port)
1366 {
1367 	struct uart_amba_port *uap =
1368 	    container_of(port, struct uart_amba_port, port);
1369 
1370 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1371 	    !uap->rs485_tx_started)
1372 		pl011_rs485_tx_start(uap);
1373 
1374 	if (!pl011_dma_tx_start(uap))
1375 		pl011_start_tx_pio(uap);
1376 }
1377 
1378 static void pl011_stop_rx(struct uart_port *port)
1379 {
1380 	struct uart_amba_port *uap =
1381 	    container_of(port, struct uart_amba_port, port);
1382 
1383 	uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1384 		     UART011_PEIM | UART011_BEIM | UART011_OEIM);
1385 	pl011_write(uap->im, uap, REG_IMSC);
1386 
1387 	pl011_dma_rx_stop(uap);
1388 }
1389 
1390 static void pl011_throttle_rx(struct uart_port *port)
1391 {
1392 	unsigned long flags;
1393 
1394 	uart_port_lock_irqsave(port, &flags);
1395 	pl011_stop_rx(port);
1396 	uart_port_unlock_irqrestore(port, flags);
1397 }
1398 
1399 static void pl011_enable_ms(struct uart_port *port)
1400 {
1401 	struct uart_amba_port *uap =
1402 	    container_of(port, struct uart_amba_port, port);
1403 
1404 	uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1405 	pl011_write(uap->im, uap, REG_IMSC);
1406 }
1407 
1408 static void pl011_rx_chars(struct uart_amba_port *uap)
1409 __releases(&uap->port.lock)
1410 __acquires(&uap->port.lock)
1411 {
1412 	pl011_fifo_to_tty(uap);
1413 
1414 	uart_port_unlock(&uap->port);
1415 	tty_flip_buffer_push(&uap->port.state->port);
1416 	/*
1417 	 * If we were temporarily out of DMA mode for a while,
1418 	 * attempt to switch back to DMA mode again.
1419 	 */
1420 	if (pl011_dma_rx_available(uap)) {
1421 		if (pl011_dma_rx_trigger_dma(uap)) {
1422 			dev_dbg(uap->port.dev,
1423 				"could not trigger RX DMA job fall back to interrupt mode again\n");
1424 			uap->im |= UART011_RXIM;
1425 			pl011_write(uap->im, uap, REG_IMSC);
1426 		} else {
1427 #ifdef CONFIG_DMA_ENGINE
1428 			/* Start Rx DMA poll */
1429 			if (uap->dmarx.poll_rate) {
1430 				uap->dmarx.last_jiffies = jiffies;
1431 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1432 				mod_timer(&uap->dmarx.timer,
1433 					  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1434 			}
1435 #endif
1436 		}
1437 	}
1438 	uart_port_lock(&uap->port);
1439 }
1440 
1441 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1442 			  bool from_irq)
1443 {
1444 	if (unlikely(!from_irq) &&
1445 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1446 		return false; /* unable to transmit character */
1447 
1448 	pl011_write(c, uap, REG_DR);
1449 	uap->port.icount.tx++;
1450 
1451 	return true;
1452 }
1453 
1454 /* Returns true if tx interrupts have to be (kept) enabled  */
1455 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1456 {
1457 	struct circ_buf *xmit = &uap->port.state->xmit;
1458 	int count = uap->fifosize >> 1;
1459 
1460 	if (uap->port.x_char) {
1461 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1462 			return true;
1463 		uap->port.x_char = 0;
1464 		--count;
1465 	}
1466 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1467 		pl011_stop_tx(&uap->port);
1468 		return false;
1469 	}
1470 
1471 	/* If we are using DMA mode, try to send some characters. */
1472 	if (pl011_dma_tx_irq(uap))
1473 		return true;
1474 
1475 	do {
1476 		if (likely(from_irq) && count-- == 0)
1477 			break;
1478 
1479 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1480 			break;
1481 
1482 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1483 	} while (!uart_circ_empty(xmit));
1484 
1485 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1486 		uart_write_wakeup(&uap->port);
1487 
1488 	if (uart_circ_empty(xmit)) {
1489 		pl011_stop_tx(&uap->port);
1490 		return false;
1491 	}
1492 	return true;
1493 }
1494 
1495 static void pl011_modem_status(struct uart_amba_port *uap)
1496 {
1497 	unsigned int status, delta;
1498 
1499 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1500 
1501 	delta = status ^ uap->old_status;
1502 	uap->old_status = status;
1503 
1504 	if (!delta)
1505 		return;
1506 
1507 	if (delta & UART01x_FR_DCD)
1508 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1509 
1510 	if (delta & uap->vendor->fr_dsr)
1511 		uap->port.icount.dsr++;
1512 
1513 	if (delta & uap->vendor->fr_cts)
1514 		uart_handle_cts_change(&uap->port,
1515 				       status & uap->vendor->fr_cts);
1516 
1517 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1518 }
1519 
1520 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1521 {
1522 	if (!uap->vendor->cts_event_workaround)
1523 		return;
1524 
1525 	/* workaround to make sure that all bits are unlocked.. */
1526 	pl011_write(0x00, uap, REG_ICR);
1527 
1528 	/*
1529 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1530 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1531 	 * so add 2 dummy reads
1532 	 */
1533 	pl011_read(uap, REG_ICR);
1534 	pl011_read(uap, REG_ICR);
1535 }
1536 
1537 static irqreturn_t pl011_int(int irq, void *dev_id)
1538 {
1539 	struct uart_amba_port *uap = dev_id;
1540 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1541 	int handled = 0;
1542 
1543 	uart_port_lock(&uap->port);
1544 	status = pl011_read(uap, REG_RIS) & uap->im;
1545 	if (status) {
1546 		do {
1547 			check_apply_cts_event_workaround(uap);
1548 
1549 			pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1550 				    uap, REG_ICR);
1551 
1552 			if (status & (UART011_RTIS | UART011_RXIS)) {
1553 				if (pl011_dma_rx_running(uap))
1554 					pl011_dma_rx_irq(uap);
1555 				else
1556 					pl011_rx_chars(uap);
1557 			}
1558 			if (status & (UART011_DSRMIS | UART011_DCDMIS |
1559 				      UART011_CTSMIS | UART011_RIMIS))
1560 				pl011_modem_status(uap);
1561 			if (status & UART011_TXIS)
1562 				pl011_tx_chars(uap, true);
1563 
1564 			if (pass_counter-- == 0)
1565 				break;
1566 
1567 			status = pl011_read(uap, REG_RIS) & uap->im;
1568 		} while (status != 0);
1569 		handled = 1;
1570 	}
1571 
1572 	uart_unlock_and_check_sysrq(&uap->port);
1573 
1574 	return IRQ_RETVAL(handled);
1575 }
1576 
1577 static unsigned int pl011_tx_empty(struct uart_port *port)
1578 {
1579 	struct uart_amba_port *uap =
1580 	    container_of(port, struct uart_amba_port, port);
1581 
1582 	/* Allow feature register bits to be inverted to work around errata */
1583 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1584 
1585 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1586 							0 : TIOCSER_TEMT;
1587 }
1588 
1589 static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1590 {
1591 	if (cond)
1592 		*ptr |= mask;
1593 }
1594 
1595 static unsigned int pl011_get_mctrl(struct uart_port *port)
1596 {
1597 	struct uart_amba_port *uap =
1598 	    container_of(port, struct uart_amba_port, port);
1599 	unsigned int result = 0;
1600 	unsigned int status = pl011_read(uap, REG_FR);
1601 
1602 	pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1603 	pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1604 	pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1605 	pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1606 
1607 	return result;
1608 }
1609 
1610 static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1611 {
1612 	if (cond)
1613 		*ptr |= mask;
1614 	else
1615 		*ptr &= ~mask;
1616 }
1617 
1618 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1619 {
1620 	struct uart_amba_port *uap =
1621 	    container_of(port, struct uart_amba_port, port);
1622 	unsigned int cr;
1623 
1624 	cr = pl011_read(uap, REG_CR);
1625 
1626 	pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1627 	pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1628 	pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1629 	pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1630 	pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1631 
1632 	if (port->status & UPSTAT_AUTORTS) {
1633 		/* We need to disable auto-RTS if we want to turn RTS off */
1634 		pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1635 	}
1636 
1637 	pl011_write(cr, uap, REG_CR);
1638 }
1639 
1640 static void pl011_break_ctl(struct uart_port *port, int break_state)
1641 {
1642 	struct uart_amba_port *uap =
1643 	    container_of(port, struct uart_amba_port, port);
1644 	unsigned long flags;
1645 	unsigned int lcr_h;
1646 
1647 	uart_port_lock_irqsave(&uap->port, &flags);
1648 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1649 	if (break_state == -1)
1650 		lcr_h |= UART01x_LCRH_BRK;
1651 	else
1652 		lcr_h &= ~UART01x_LCRH_BRK;
1653 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1654 	uart_port_unlock_irqrestore(&uap->port, flags);
1655 }
1656 
1657 #ifdef CONFIG_CONSOLE_POLL
1658 
1659 static void pl011_quiesce_irqs(struct uart_port *port)
1660 {
1661 	struct uart_amba_port *uap =
1662 	    container_of(port, struct uart_amba_port, port);
1663 
1664 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1665 	/*
1666 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1667 	 * we simply mask it. start_tx() will unmask it.
1668 	 *
1669 	 * Note we can race with start_tx(), and if the race happens, the
1670 	 * polling user might get another interrupt just after we clear it.
1671 	 * But it should be OK and can happen even w/o the race, e.g.
1672 	 * controller immediately got some new data and raised the IRQ.
1673 	 *
1674 	 * And whoever uses polling routines assumes that it manages the device
1675 	 * (including tx queue), so we're also fine with start_tx()'s caller
1676 	 * side.
1677 	 */
1678 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1679 		    REG_IMSC);
1680 }
1681 
1682 static int pl011_get_poll_char(struct uart_port *port)
1683 {
1684 	struct uart_amba_port *uap =
1685 	    container_of(port, struct uart_amba_port, port);
1686 	unsigned int status;
1687 
1688 	/*
1689 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1690 	 * debugger.
1691 	 */
1692 	pl011_quiesce_irqs(port);
1693 
1694 	status = pl011_read(uap, REG_FR);
1695 	if (status & UART01x_FR_RXFE)
1696 		return NO_POLL_CHAR;
1697 
1698 	return pl011_read(uap, REG_DR);
1699 }
1700 
1701 static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1702 {
1703 	struct uart_amba_port *uap =
1704 	    container_of(port, struct uart_amba_port, port);
1705 
1706 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1707 		cpu_relax();
1708 
1709 	pl011_write(ch, uap, REG_DR);
1710 }
1711 
1712 #endif /* CONFIG_CONSOLE_POLL */
1713 
1714 static int pl011_hwinit(struct uart_port *port)
1715 {
1716 	struct uart_amba_port *uap =
1717 	    container_of(port, struct uart_amba_port, port);
1718 	int retval;
1719 
1720 	/* Optionaly enable pins to be muxed in and configured */
1721 	pinctrl_pm_select_default_state(port->dev);
1722 
1723 	/*
1724 	 * Try to enable the clock producer.
1725 	 */
1726 	retval = clk_prepare_enable(uap->clk);
1727 	if (retval)
1728 		return retval;
1729 
1730 	uap->port.uartclk = clk_get_rate(uap->clk);
1731 
1732 	/* Clear pending error and receive interrupts */
1733 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1734 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1735 		    uap, REG_ICR);
1736 
1737 	/*
1738 	 * Save interrupts enable mask, and enable RX interrupts in case if
1739 	 * the interrupt is used for NMI entry.
1740 	 */
1741 	uap->im = pl011_read(uap, REG_IMSC);
1742 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1743 
1744 	if (dev_get_platdata(uap->port.dev)) {
1745 		struct amba_pl011_data *plat;
1746 
1747 		plat = dev_get_platdata(uap->port.dev);
1748 		if (plat->init)
1749 			plat->init();
1750 	}
1751 	return 0;
1752 }
1753 
1754 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1755 {
1756 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1757 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1758 }
1759 
1760 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1761 {
1762 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1763 	if (pl011_split_lcrh(uap)) {
1764 		int i;
1765 		/*
1766 		 * Wait 10 PCLKs before writing LCRH_TX register,
1767 		 * to get this delay write read only register 10 times
1768 		 */
1769 		for (i = 0; i < 10; ++i)
1770 			pl011_write(0xff, uap, REG_MIS);
1771 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1772 	}
1773 }
1774 
1775 static int pl011_allocate_irq(struct uart_amba_port *uap)
1776 {
1777 	pl011_write(uap->im, uap, REG_IMSC);
1778 
1779 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1780 }
1781 
1782 /*
1783  * Enable interrupts, only timeouts when using DMA
1784  * if initial RX DMA job failed, start in interrupt mode
1785  * as well.
1786  */
1787 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1788 {
1789 	unsigned long flags;
1790 	unsigned int i;
1791 
1792 	uart_port_lock_irqsave(&uap->port, &flags);
1793 
1794 	/* Clear out any spuriously appearing RX interrupts */
1795 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1796 
1797 	/*
1798 	 * RXIS is asserted only when the RX FIFO transitions from below
1799 	 * to above the trigger threshold.  If the RX FIFO is already
1800 	 * full to the threshold this can't happen and RXIS will now be
1801 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1802 	 */
1803 	for (i = 0; i < uap->fifosize * 2; ++i) {
1804 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1805 			break;
1806 
1807 		pl011_read(uap, REG_DR);
1808 	}
1809 
1810 	uap->im = UART011_RTIM;
1811 	if (!pl011_dma_rx_running(uap))
1812 		uap->im |= UART011_RXIM;
1813 	pl011_write(uap->im, uap, REG_IMSC);
1814 	uart_port_unlock_irqrestore(&uap->port, flags);
1815 }
1816 
1817 static void pl011_unthrottle_rx(struct uart_port *port)
1818 {
1819 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1820 	unsigned long flags;
1821 
1822 	uart_port_lock_irqsave(&uap->port, &flags);
1823 
1824 	uap->im = UART011_RTIM;
1825 	if (!pl011_dma_rx_running(uap))
1826 		uap->im |= UART011_RXIM;
1827 
1828 	pl011_write(uap->im, uap, REG_IMSC);
1829 
1830 	uart_port_unlock_irqrestore(&uap->port, flags);
1831 }
1832 
1833 static int pl011_startup(struct uart_port *port)
1834 {
1835 	struct uart_amba_port *uap =
1836 	    container_of(port, struct uart_amba_port, port);
1837 	unsigned int cr;
1838 	int retval;
1839 
1840 	retval = pl011_hwinit(port);
1841 	if (retval)
1842 		goto clk_dis;
1843 
1844 	retval = pl011_allocate_irq(uap);
1845 	if (retval)
1846 		goto clk_dis;
1847 
1848 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1849 
1850 	uart_port_lock_irq(&uap->port);
1851 
1852 	cr = pl011_read(uap, REG_CR);
1853 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1854 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1855 
1856 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1857 		cr |= UART011_CR_TXE;
1858 
1859 	pl011_write(cr, uap, REG_CR);
1860 
1861 	uart_port_unlock_irq(&uap->port);
1862 
1863 	/*
1864 	 * initialise the old status of the modem signals
1865 	 */
1866 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1867 
1868 	/* Startup DMA */
1869 	pl011_dma_startup(uap);
1870 
1871 	pl011_enable_interrupts(uap);
1872 
1873 	return 0;
1874 
1875  clk_dis:
1876 	clk_disable_unprepare(uap->clk);
1877 	return retval;
1878 }
1879 
1880 static int sbsa_uart_startup(struct uart_port *port)
1881 {
1882 	struct uart_amba_port *uap =
1883 		container_of(port, struct uart_amba_port, port);
1884 	int retval;
1885 
1886 	retval = pl011_hwinit(port);
1887 	if (retval)
1888 		return retval;
1889 
1890 	retval = pl011_allocate_irq(uap);
1891 	if (retval)
1892 		return retval;
1893 
1894 	/* The SBSA UART does not support any modem status lines. */
1895 	uap->old_status = 0;
1896 
1897 	pl011_enable_interrupts(uap);
1898 
1899 	return 0;
1900 }
1901 
1902 static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1903 {
1904 	unsigned long val;
1905 
1906 	val = pl011_read(uap, lcrh);
1907 	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1908 	pl011_write(val, uap, lcrh);
1909 }
1910 
1911 /*
1912  * disable the port. It should not disable RTS and DTR.
1913  * Also RTS and DTR state should be preserved to restore
1914  * it during startup().
1915  */
1916 static void pl011_disable_uart(struct uart_amba_port *uap)
1917 {
1918 	unsigned int cr;
1919 
1920 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1921 	uart_port_lock_irq(&uap->port);
1922 	cr = pl011_read(uap, REG_CR);
1923 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1924 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1925 	pl011_write(cr, uap, REG_CR);
1926 	uart_port_unlock_irq(&uap->port);
1927 
1928 	/*
1929 	 * disable break condition and fifos
1930 	 */
1931 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1932 	if (pl011_split_lcrh(uap))
1933 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1934 }
1935 
1936 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1937 {
1938 	uart_port_lock_irq(&uap->port);
1939 
1940 	/* mask all interrupts and clear all pending ones */
1941 	uap->im = 0;
1942 	pl011_write(uap->im, uap, REG_IMSC);
1943 	pl011_write(0xffff, uap, REG_ICR);
1944 
1945 	uart_port_unlock_irq(&uap->port);
1946 }
1947 
1948 static void pl011_shutdown(struct uart_port *port)
1949 {
1950 	struct uart_amba_port *uap =
1951 		container_of(port, struct uart_amba_port, port);
1952 
1953 	pl011_disable_interrupts(uap);
1954 
1955 	pl011_dma_shutdown(uap);
1956 
1957 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1958 		pl011_rs485_tx_stop(uap);
1959 
1960 	free_irq(uap->port.irq, uap);
1961 
1962 	pl011_disable_uart(uap);
1963 
1964 	/*
1965 	 * Shut down the clock producer
1966 	 */
1967 	clk_disable_unprepare(uap->clk);
1968 	/* Optionally let pins go into sleep states */
1969 	pinctrl_pm_select_sleep_state(port->dev);
1970 
1971 	if (dev_get_platdata(uap->port.dev)) {
1972 		struct amba_pl011_data *plat;
1973 
1974 		plat = dev_get_platdata(uap->port.dev);
1975 		if (plat->exit)
1976 			plat->exit();
1977 	}
1978 
1979 	if (uap->port.ops->flush_buffer)
1980 		uap->port.ops->flush_buffer(port);
1981 }
1982 
1983 static void sbsa_uart_shutdown(struct uart_port *port)
1984 {
1985 	struct uart_amba_port *uap =
1986 		container_of(port, struct uart_amba_port, port);
1987 
1988 	pl011_disable_interrupts(uap);
1989 
1990 	free_irq(uap->port.irq, uap);
1991 
1992 	if (uap->port.ops->flush_buffer)
1993 		uap->port.ops->flush_buffer(port);
1994 }
1995 
1996 static void
1997 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1998 {
1999 	port->read_status_mask = UART011_DR_OE | 255;
2000 	if (termios->c_iflag & INPCK)
2001 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2002 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2003 		port->read_status_mask |= UART011_DR_BE;
2004 
2005 	/*
2006 	 * Characters to ignore
2007 	 */
2008 	port->ignore_status_mask = 0;
2009 	if (termios->c_iflag & IGNPAR)
2010 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2011 	if (termios->c_iflag & IGNBRK) {
2012 		port->ignore_status_mask |= UART011_DR_BE;
2013 		/*
2014 		 * If we're ignoring parity and break indicators,
2015 		 * ignore overruns too (for real raw support).
2016 		 */
2017 		if (termios->c_iflag & IGNPAR)
2018 			port->ignore_status_mask |= UART011_DR_OE;
2019 	}
2020 
2021 	/*
2022 	 * Ignore all characters if CREAD is not set.
2023 	 */
2024 	if ((termios->c_cflag & CREAD) == 0)
2025 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2026 }
2027 
2028 static void
2029 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2030 		  const struct ktermios *old)
2031 {
2032 	struct uart_amba_port *uap =
2033 	    container_of(port, struct uart_amba_port, port);
2034 	unsigned int lcr_h, old_cr;
2035 	unsigned long flags;
2036 	unsigned int baud, quot, clkdiv;
2037 	unsigned int bits;
2038 
2039 	if (uap->vendor->oversampling)
2040 		clkdiv = 8;
2041 	else
2042 		clkdiv = 16;
2043 
2044 	/*
2045 	 * Ask the core to calculate the divisor for us.
2046 	 */
2047 	baud = uart_get_baud_rate(port, termios, old, 0,
2048 				  port->uartclk / clkdiv);
2049 #ifdef CONFIG_DMA_ENGINE
2050 	/*
2051 	 * Adjust RX DMA polling rate with baud rate if not specified.
2052 	 */
2053 	if (uap->dmarx.auto_poll_rate)
2054 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2055 #endif
2056 
2057 	if (baud > port->uartclk / 16)
2058 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2059 	else
2060 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2061 
2062 	switch (termios->c_cflag & CSIZE) {
2063 	case CS5:
2064 		lcr_h = UART01x_LCRH_WLEN_5;
2065 		break;
2066 	case CS6:
2067 		lcr_h = UART01x_LCRH_WLEN_6;
2068 		break;
2069 	case CS7:
2070 		lcr_h = UART01x_LCRH_WLEN_7;
2071 		break;
2072 	default: // CS8
2073 		lcr_h = UART01x_LCRH_WLEN_8;
2074 		break;
2075 	}
2076 	if (termios->c_cflag & CSTOPB)
2077 		lcr_h |= UART01x_LCRH_STP2;
2078 	if (termios->c_cflag & PARENB) {
2079 		lcr_h |= UART01x_LCRH_PEN;
2080 		if (!(termios->c_cflag & PARODD))
2081 			lcr_h |= UART01x_LCRH_EPS;
2082 		if (termios->c_cflag & CMSPAR)
2083 			lcr_h |= UART011_LCRH_SPS;
2084 	}
2085 	if (uap->fifosize > 1)
2086 		lcr_h |= UART01x_LCRH_FEN;
2087 
2088 	bits = tty_get_frame_size(termios->c_cflag);
2089 
2090 	uart_port_lock_irqsave(port, &flags);
2091 
2092 	/*
2093 	 * Update the per-port timeout.
2094 	 */
2095 	uart_update_timeout(port, termios->c_cflag, baud);
2096 
2097 	/*
2098 	 * Calculate the approximated time it takes to transmit one character
2099 	 * with the given baud rate. We use this as the poll interval when we
2100 	 * wait for the tx queue to empty.
2101 	 */
2102 	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2103 
2104 	pl011_setup_status_masks(port, termios);
2105 
2106 	if (UART_ENABLE_MS(port, termios->c_cflag))
2107 		pl011_enable_ms(port);
2108 
2109 	if (port->rs485.flags & SER_RS485_ENABLED)
2110 		termios->c_cflag &= ~CRTSCTS;
2111 
2112 	old_cr = pl011_read(uap, REG_CR);
2113 
2114 	if (termios->c_cflag & CRTSCTS) {
2115 		if (old_cr & UART011_CR_RTS)
2116 			old_cr |= UART011_CR_RTSEN;
2117 
2118 		old_cr |= UART011_CR_CTSEN;
2119 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2120 	} else {
2121 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2122 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2123 	}
2124 
2125 	if (uap->vendor->oversampling) {
2126 		if (baud > port->uartclk / 16)
2127 			old_cr |= ST_UART011_CR_OVSFACT;
2128 		else
2129 			old_cr &= ~ST_UART011_CR_OVSFACT;
2130 	}
2131 
2132 	/*
2133 	 * Workaround for the ST Micro oversampling variants to
2134 	 * increase the bitrate slightly, by lowering the divisor,
2135 	 * to avoid delayed sampling of start bit at high speeds,
2136 	 * else we see data corruption.
2137 	 */
2138 	if (uap->vendor->oversampling) {
2139 		if (baud >= 3000000 && baud < 3250000 && quot > 1)
2140 			quot -= 1;
2141 		else if (baud > 3250000 && quot > 2)
2142 			quot -= 2;
2143 	}
2144 	/* Set baud rate */
2145 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2146 	pl011_write(quot >> 6, uap, REG_IBRD);
2147 
2148 	/*
2149 	 * ----------v----------v----------v----------v-----
2150 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2151 	 * REG_FBRD & REG_IBRD.
2152 	 * ----------^----------^----------^----------^-----
2153 	 */
2154 	pl011_write_lcr_h(uap, lcr_h);
2155 
2156 	/*
2157 	 * Receive was disabled by pl011_disable_uart during shutdown.
2158 	 * Need to reenable receive if you need to use a tty_driver
2159 	 * returns from tty_find_polling_driver() after a port shutdown.
2160 	 */
2161 	old_cr |= UART011_CR_RXE;
2162 	pl011_write(old_cr, uap, REG_CR);
2163 
2164 	uart_port_unlock_irqrestore(port, flags);
2165 }
2166 
2167 static void
2168 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2169 		      const struct ktermios *old)
2170 {
2171 	struct uart_amba_port *uap =
2172 	    container_of(port, struct uart_amba_port, port);
2173 	unsigned long flags;
2174 
2175 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2176 
2177 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2178 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2179 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2180 	termios->c_cflag |= CS8 | CLOCAL;
2181 
2182 	uart_port_lock_irqsave(port, &flags);
2183 	uart_update_timeout(port, CS8, uap->fixed_baud);
2184 	pl011_setup_status_masks(port, termios);
2185 	uart_port_unlock_irqrestore(port, flags);
2186 }
2187 
2188 static const char *pl011_type(struct uart_port *port)
2189 {
2190 	struct uart_amba_port *uap =
2191 	    container_of(port, struct uart_amba_port, port);
2192 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2193 }
2194 
2195 /*
2196  * Configure/autoconfigure the port.
2197  */
2198 static void pl011_config_port(struct uart_port *port, int flags)
2199 {
2200 	if (flags & UART_CONFIG_TYPE)
2201 		port->type = PORT_AMBA;
2202 }
2203 
2204 /*
2205  * verify the new serial_struct (for TIOCSSERIAL).
2206  */
2207 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2208 {
2209 	int ret = 0;
2210 
2211 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2212 		ret = -EINVAL;
2213 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2214 		ret = -EINVAL;
2215 	if (ser->baud_base < 9600)
2216 		ret = -EINVAL;
2217 	if (port->mapbase != (unsigned long)ser->iomem_base)
2218 		ret = -EINVAL;
2219 	return ret;
2220 }
2221 
2222 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2223 			      struct serial_rs485 *rs485)
2224 {
2225 	struct uart_amba_port *uap =
2226 		container_of(port, struct uart_amba_port, port);
2227 
2228 	if (port->rs485.flags & SER_RS485_ENABLED)
2229 		pl011_rs485_tx_stop(uap);
2230 
2231 	/* Make sure auto RTS is disabled */
2232 	if (rs485->flags & SER_RS485_ENABLED) {
2233 		u32 cr = pl011_read(uap, REG_CR);
2234 
2235 		cr &= ~UART011_CR_RTSEN;
2236 		pl011_write(cr, uap, REG_CR);
2237 		port->status &= ~UPSTAT_AUTORTS;
2238 	}
2239 
2240 	return 0;
2241 }
2242 
2243 static const struct uart_ops amba_pl011_pops = {
2244 	.tx_empty	= pl011_tx_empty,
2245 	.set_mctrl	= pl011_set_mctrl,
2246 	.get_mctrl	= pl011_get_mctrl,
2247 	.stop_tx	= pl011_stop_tx,
2248 	.start_tx	= pl011_start_tx,
2249 	.stop_rx	= pl011_stop_rx,
2250 	.throttle	= pl011_throttle_rx,
2251 	.unthrottle	= pl011_unthrottle_rx,
2252 	.enable_ms	= pl011_enable_ms,
2253 	.break_ctl	= pl011_break_ctl,
2254 	.startup	= pl011_startup,
2255 	.shutdown	= pl011_shutdown,
2256 	.flush_buffer	= pl011_dma_flush_buffer,
2257 	.set_termios	= pl011_set_termios,
2258 	.type		= pl011_type,
2259 	.config_port	= pl011_config_port,
2260 	.verify_port	= pl011_verify_port,
2261 #ifdef CONFIG_CONSOLE_POLL
2262 	.poll_init     = pl011_hwinit,
2263 	.poll_get_char = pl011_get_poll_char,
2264 	.poll_put_char = pl011_put_poll_char,
2265 #endif
2266 };
2267 
2268 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2269 {
2270 }
2271 
2272 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2273 {
2274 	return 0;
2275 }
2276 
2277 static const struct uart_ops sbsa_uart_pops = {
2278 	.tx_empty	= pl011_tx_empty,
2279 	.set_mctrl	= sbsa_uart_set_mctrl,
2280 	.get_mctrl	= sbsa_uart_get_mctrl,
2281 	.stop_tx	= pl011_stop_tx,
2282 	.start_tx	= pl011_start_tx,
2283 	.stop_rx	= pl011_stop_rx,
2284 	.startup	= sbsa_uart_startup,
2285 	.shutdown	= sbsa_uart_shutdown,
2286 	.set_termios	= sbsa_uart_set_termios,
2287 	.type		= pl011_type,
2288 	.config_port	= pl011_config_port,
2289 	.verify_port	= pl011_verify_port,
2290 #ifdef CONFIG_CONSOLE_POLL
2291 	.poll_init     = pl011_hwinit,
2292 	.poll_get_char = pl011_get_poll_char,
2293 	.poll_put_char = pl011_put_poll_char,
2294 #endif
2295 };
2296 
2297 static struct uart_amba_port *amba_ports[UART_NR];
2298 
2299 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2300 
2301 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2302 {
2303 	struct uart_amba_port *uap =
2304 	    container_of(port, struct uart_amba_port, port);
2305 
2306 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2307 		cpu_relax();
2308 	pl011_write(ch, uap, REG_DR);
2309 }
2310 
2311 static void
2312 pl011_console_write(struct console *co, const char *s, unsigned int count)
2313 {
2314 	struct uart_amba_port *uap = amba_ports[co->index];
2315 	unsigned int old_cr = 0, new_cr;
2316 	unsigned long flags;
2317 	int locked = 1;
2318 
2319 	clk_enable(uap->clk);
2320 
2321 	if (oops_in_progress)
2322 		locked = uart_port_trylock_irqsave(&uap->port, &flags);
2323 	else
2324 		uart_port_lock_irqsave(&uap->port, &flags);
2325 
2326 	/*
2327 	 *	First save the CR then disable the interrupts
2328 	 */
2329 	if (!uap->vendor->always_enabled) {
2330 		old_cr = pl011_read(uap, REG_CR);
2331 		new_cr = old_cr & ~UART011_CR_CTSEN;
2332 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2333 		pl011_write(new_cr, uap, REG_CR);
2334 	}
2335 
2336 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2337 
2338 	/*
2339 	 *	Finally, wait for transmitter to become empty and restore the
2340 	 *	TCR. Allow feature register bits to be inverted to work around
2341 	 *	errata.
2342 	 */
2343 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2344 						& uap->vendor->fr_busy)
2345 		cpu_relax();
2346 	if (!uap->vendor->always_enabled)
2347 		pl011_write(old_cr, uap, REG_CR);
2348 
2349 	if (locked)
2350 		uart_port_unlock_irqrestore(&uap->port, flags);
2351 
2352 	clk_disable(uap->clk);
2353 }
2354 
2355 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2356 				      int *parity, int *bits)
2357 {
2358 	unsigned int lcr_h, ibrd, fbrd;
2359 
2360 	if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2361 		return;
2362 
2363 	lcr_h = pl011_read(uap, REG_LCRH_TX);
2364 
2365 	*parity = 'n';
2366 	if (lcr_h & UART01x_LCRH_PEN) {
2367 		if (lcr_h & UART01x_LCRH_EPS)
2368 			*parity = 'e';
2369 		else
2370 			*parity = 'o';
2371 	}
2372 
2373 	if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2374 		*bits = 7;
2375 	else
2376 		*bits = 8;
2377 
2378 	ibrd = pl011_read(uap, REG_IBRD);
2379 	fbrd = pl011_read(uap, REG_FBRD);
2380 
2381 	*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2382 
2383 	if (uap->vendor->oversampling &&
2384 	    (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2385 		*baud *= 2;
2386 }
2387 
2388 static int pl011_console_setup(struct console *co, char *options)
2389 {
2390 	struct uart_amba_port *uap;
2391 	int baud = 38400;
2392 	int bits = 8;
2393 	int parity = 'n';
2394 	int flow = 'n';
2395 	int ret;
2396 
2397 	/*
2398 	 * Check whether an invalid uart number has been specified, and
2399 	 * if so, search for the first available port that does have
2400 	 * console support.
2401 	 */
2402 	if (co->index >= UART_NR)
2403 		co->index = 0;
2404 	uap = amba_ports[co->index];
2405 	if (!uap)
2406 		return -ENODEV;
2407 
2408 	/* Allow pins to be muxed in and configured */
2409 	pinctrl_pm_select_default_state(uap->port.dev);
2410 
2411 	ret = clk_prepare(uap->clk);
2412 	if (ret)
2413 		return ret;
2414 
2415 	if (dev_get_platdata(uap->port.dev)) {
2416 		struct amba_pl011_data *plat;
2417 
2418 		plat = dev_get_platdata(uap->port.dev);
2419 		if (plat->init)
2420 			plat->init();
2421 	}
2422 
2423 	uap->port.uartclk = clk_get_rate(uap->clk);
2424 
2425 	if (uap->vendor->fixed_options) {
2426 		baud = uap->fixed_baud;
2427 	} else {
2428 		if (options)
2429 			uart_parse_options(options,
2430 					   &baud, &parity, &bits, &flow);
2431 		else
2432 			pl011_console_get_options(uap, &baud, &parity, &bits);
2433 	}
2434 
2435 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2436 }
2437 
2438 /**
2439  *	pl011_console_match - non-standard console matching
2440  *	@co:	  registering console
2441  *	@name:	  name from console command line
2442  *	@idx:	  index from console command line
2443  *	@options: ptr to option string from console command line
2444  *
2445  *	Only attempts to match console command lines of the form:
2446  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2447  *	    console=pl011,0x<addr>[,<options>]
2448  *	This form is used to register an initial earlycon boot console and
2449  *	replace it with the amba_console at pl011 driver init.
2450  *
2451  *	Performs console setup for a match (as required by interface)
2452  *	If no <options> are specified, then assume the h/w is already setup.
2453  *
2454  *	Returns 0 if console matches; otherwise non-zero to use default matching
2455  */
2456 static int pl011_console_match(struct console *co, char *name, int idx,
2457 			       char *options)
2458 {
2459 	unsigned char iotype;
2460 	resource_size_t addr;
2461 	int i;
2462 
2463 	/*
2464 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2465 	 * have a distinct console name, so make sure we check for that.
2466 	 * The actual implementation of the erratum occurs in the probe
2467 	 * function.
2468 	 */
2469 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2470 		return -ENODEV;
2471 
2472 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2473 		return -ENODEV;
2474 
2475 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2476 		return -ENODEV;
2477 
2478 	/* try to match the port specified on the command line */
2479 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2480 		struct uart_port *port;
2481 
2482 		if (!amba_ports[i])
2483 			continue;
2484 
2485 		port = &amba_ports[i]->port;
2486 
2487 		if (port->mapbase != addr)
2488 			continue;
2489 
2490 		co->index = i;
2491 		port->cons = co;
2492 		return pl011_console_setup(co, options);
2493 	}
2494 
2495 	return -ENODEV;
2496 }
2497 
2498 static struct uart_driver amba_reg;
2499 static struct console amba_console = {
2500 	.name		= "ttyAMA",
2501 	.write		= pl011_console_write,
2502 	.device		= uart_console_device,
2503 	.setup		= pl011_console_setup,
2504 	.match		= pl011_console_match,
2505 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2506 	.index		= -1,
2507 	.data		= &amba_reg,
2508 };
2509 
2510 #define AMBA_CONSOLE	(&amba_console)
2511 
2512 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2513 {
2514 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2515 		cpu_relax();
2516 	writel(c, port->membase + UART01x_DR);
2517 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2518 		cpu_relax();
2519 }
2520 
2521 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2522 {
2523 	struct earlycon_device *dev = con->data;
2524 
2525 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2526 }
2527 
2528 static void pl011_putc(struct uart_port *port, unsigned char c)
2529 {
2530 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2531 		cpu_relax();
2532 	if (port->iotype == UPIO_MEM32)
2533 		writel(c, port->membase + UART01x_DR);
2534 	else
2535 		writeb(c, port->membase + UART01x_DR);
2536 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2537 		cpu_relax();
2538 }
2539 
2540 static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2541 {
2542 	struct earlycon_device *dev = con->data;
2543 
2544 	uart_console_write(&dev->port, s, n, pl011_putc);
2545 }
2546 
2547 #ifdef CONFIG_CONSOLE_POLL
2548 static int pl011_getc(struct uart_port *port)
2549 {
2550 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2551 		return NO_POLL_CHAR;
2552 
2553 	if (port->iotype == UPIO_MEM32)
2554 		return readl(port->membase + UART01x_DR);
2555 	else
2556 		return readb(port->membase + UART01x_DR);
2557 }
2558 
2559 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2560 {
2561 	struct earlycon_device *dev = con->data;
2562 	int ch, num_read = 0;
2563 
2564 	while (num_read < n) {
2565 		ch = pl011_getc(&dev->port);
2566 		if (ch == NO_POLL_CHAR)
2567 			break;
2568 
2569 		s[num_read++] = ch;
2570 	}
2571 
2572 	return num_read;
2573 }
2574 #else
2575 #define pl011_early_read NULL
2576 #endif
2577 
2578 /*
2579  * On non-ACPI systems, earlycon is enabled by specifying
2580  * "earlycon=pl011,<address>" on the kernel command line.
2581  *
2582  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2583  * by specifying only "earlycon" on the command line.  Because it requires
2584  * SPCR, the console starts after ACPI is parsed, which is later than a
2585  * traditional early console.
2586  *
2587  * To get the traditional early console that starts before ACPI is parsed,
2588  * specify the full "earlycon=pl011,<address>" option.
2589  */
2590 static int __init pl011_early_console_setup(struct earlycon_device *device,
2591 					    const char *opt)
2592 {
2593 	if (!device->port.membase)
2594 		return -ENODEV;
2595 
2596 	device->con->write = pl011_early_write;
2597 	device->con->read = pl011_early_read;
2598 
2599 	return 0;
2600 }
2601 
2602 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2603 
2604 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2605 
2606 /*
2607  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2608  * Erratum 44, traditional earlycon can be enabled by specifying
2609  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2610  *
2611  * Alternatively, you can just specify "earlycon", and the early console
2612  * will be enabled with the information from the SPCR table.  In this
2613  * case, the SPCR code will detect the need for the E44 work-around,
2614  * and set the console name to "qdf2400_e44".
2615  */
2616 static int __init
2617 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2618 				const char *opt)
2619 {
2620 	if (!device->port.membase)
2621 		return -ENODEV;
2622 
2623 	device->con->write = qdf2400_e44_early_write;
2624 	return 0;
2625 }
2626 
2627 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2628 
2629 #else
2630 #define AMBA_CONSOLE	NULL
2631 #endif
2632 
2633 static struct uart_driver amba_reg = {
2634 	.owner			= THIS_MODULE,
2635 	.driver_name		= "ttyAMA",
2636 	.dev_name		= "ttyAMA",
2637 	.major			= SERIAL_AMBA_MAJOR,
2638 	.minor			= SERIAL_AMBA_MINOR,
2639 	.nr			= UART_NR,
2640 	.cons			= AMBA_CONSOLE,
2641 };
2642 
2643 static int pl011_probe_dt_alias(int index, struct device *dev)
2644 {
2645 	struct device_node *np;
2646 	static bool seen_dev_with_alias;
2647 	static bool seen_dev_without_alias;
2648 	int ret = index;
2649 
2650 	if (!IS_ENABLED(CONFIG_OF))
2651 		return ret;
2652 
2653 	np = dev->of_node;
2654 	if (!np)
2655 		return ret;
2656 
2657 	ret = of_alias_get_id(np, "serial");
2658 	if (ret < 0) {
2659 		seen_dev_without_alias = true;
2660 		ret = index;
2661 	} else {
2662 		seen_dev_with_alias = true;
2663 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2664 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2665 			ret = index;
2666 		}
2667 	}
2668 
2669 	if (seen_dev_with_alias && seen_dev_without_alias)
2670 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2671 
2672 	return ret;
2673 }
2674 
2675 /* unregisters the driver also if no more ports are left */
2676 static void pl011_unregister_port(struct uart_amba_port *uap)
2677 {
2678 	int i;
2679 	bool busy = false;
2680 
2681 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2682 		if (amba_ports[i] == uap)
2683 			amba_ports[i] = NULL;
2684 		else if (amba_ports[i])
2685 			busy = true;
2686 	}
2687 	pl011_dma_remove(uap);
2688 	if (!busy)
2689 		uart_unregister_driver(&amba_reg);
2690 }
2691 
2692 static int pl011_find_free_port(void)
2693 {
2694 	int i;
2695 
2696 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2697 		if (!amba_ports[i])
2698 			return i;
2699 
2700 	return -EBUSY;
2701 }
2702 
2703 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2704 {
2705 	struct uart_port *port = &uap->port;
2706 	int ret;
2707 
2708 	ret = uart_get_rs485_mode(port);
2709 	if (ret)
2710 		return ret;
2711 
2712 	return 0;
2713 }
2714 
2715 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2716 			    struct resource *mmiobase, int index)
2717 {
2718 	void __iomem *base;
2719 	int ret;
2720 
2721 	base = devm_ioremap_resource(dev, mmiobase);
2722 	if (IS_ERR(base))
2723 		return PTR_ERR(base);
2724 
2725 	index = pl011_probe_dt_alias(index, dev);
2726 
2727 	uap->port.dev = dev;
2728 	uap->port.mapbase = mmiobase->start;
2729 	uap->port.membase = base;
2730 	uap->port.fifosize = uap->fifosize;
2731 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2732 	uap->port.flags = UPF_BOOT_AUTOCONF;
2733 	uap->port.line = index;
2734 
2735 	ret = pl011_get_rs485_mode(uap);
2736 	if (ret)
2737 		return ret;
2738 
2739 	amba_ports[index] = uap;
2740 
2741 	return 0;
2742 }
2743 
2744 static int pl011_register_port(struct uart_amba_port *uap)
2745 {
2746 	int ret, i;
2747 
2748 	/* Ensure interrupts from this UART are masked and cleared */
2749 	pl011_write(0, uap, REG_IMSC);
2750 	pl011_write(0xffff, uap, REG_ICR);
2751 
2752 	if (!amba_reg.state) {
2753 		ret = uart_register_driver(&amba_reg);
2754 		if (ret < 0) {
2755 			dev_err(uap->port.dev,
2756 				"Failed to register AMBA-PL011 driver\n");
2757 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2758 				if (amba_ports[i] == uap)
2759 					amba_ports[i] = NULL;
2760 			return ret;
2761 		}
2762 	}
2763 
2764 	ret = uart_add_one_port(&amba_reg, &uap->port);
2765 	if (ret)
2766 		pl011_unregister_port(uap);
2767 
2768 	return ret;
2769 }
2770 
2771 static const struct serial_rs485 pl011_rs485_supported = {
2772 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2773 		 SER_RS485_RX_DURING_TX,
2774 	.delay_rts_before_send = 1,
2775 	.delay_rts_after_send = 1,
2776 };
2777 
2778 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2779 {
2780 	struct uart_amba_port *uap;
2781 	struct vendor_data *vendor = id->data;
2782 	int portnr, ret;
2783 	u32 val;
2784 
2785 	portnr = pl011_find_free_port();
2786 	if (portnr < 0)
2787 		return portnr;
2788 
2789 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2790 			   GFP_KERNEL);
2791 	if (!uap)
2792 		return -ENOMEM;
2793 
2794 	uap->clk = devm_clk_get(&dev->dev, NULL);
2795 	if (IS_ERR(uap->clk))
2796 		return PTR_ERR(uap->clk);
2797 
2798 	uap->reg_offset = vendor->reg_offset;
2799 	uap->vendor = vendor;
2800 	uap->fifosize = vendor->get_fifosize(dev);
2801 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2802 	uap->port.irq = dev->irq[0];
2803 	uap->port.ops = &amba_pl011_pops;
2804 	uap->port.rs485_config = pl011_rs485_config;
2805 	uap->port.rs485_supported = pl011_rs485_supported;
2806 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2807 
2808 	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2809 		switch (val) {
2810 		case 1:
2811 			uap->port.iotype = UPIO_MEM;
2812 			break;
2813 		case 4:
2814 			uap->port.iotype = UPIO_MEM32;
2815 			break;
2816 		default:
2817 			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2818 				 val);
2819 			return -EINVAL;
2820 		}
2821 	}
2822 
2823 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2824 	if (ret)
2825 		return ret;
2826 
2827 	amba_set_drvdata(dev, uap);
2828 
2829 	return pl011_register_port(uap);
2830 }
2831 
2832 static void pl011_remove(struct amba_device *dev)
2833 {
2834 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2835 
2836 	uart_remove_one_port(&amba_reg, &uap->port);
2837 	pl011_unregister_port(uap);
2838 }
2839 
2840 #ifdef CONFIG_PM_SLEEP
2841 static int pl011_suspend(struct device *dev)
2842 {
2843 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2844 
2845 	if (!uap)
2846 		return -EINVAL;
2847 
2848 	return uart_suspend_port(&amba_reg, &uap->port);
2849 }
2850 
2851 static int pl011_resume(struct device *dev)
2852 {
2853 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2854 
2855 	if (!uap)
2856 		return -EINVAL;
2857 
2858 	return uart_resume_port(&amba_reg, &uap->port);
2859 }
2860 #endif
2861 
2862 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2863 
2864 #ifdef CONFIG_ACPI_SPCR_TABLE
2865 static void qpdf2400_erratum44_workaround(struct device *dev,
2866 					  struct uart_amba_port *uap)
2867 {
2868 	if (!qdf2400_e44_present)
2869 		return;
2870 
2871 	dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2872 	uap->vendor = &vendor_qdt_qdf2400_e44;
2873 }
2874 #else
2875 static void qpdf2400_erratum44_workaround(struct device *dev,
2876 					  struct uart_amba_port *uap)
2877 { /* empty */ }
2878 #endif
2879 
2880 static int sbsa_uart_probe(struct platform_device *pdev)
2881 {
2882 	struct uart_amba_port *uap;
2883 	struct resource *r;
2884 	int portnr, ret;
2885 	int baudrate;
2886 
2887 	/*
2888 	 * Check the mandatory baud rate parameter in the DT node early
2889 	 * so that we can easily exit with the error.
2890 	 */
2891 	if (pdev->dev.of_node) {
2892 		struct device_node *np = pdev->dev.of_node;
2893 
2894 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2895 		if (ret)
2896 			return ret;
2897 	} else {
2898 		baudrate = 115200;
2899 	}
2900 
2901 	portnr = pl011_find_free_port();
2902 	if (portnr < 0)
2903 		return portnr;
2904 
2905 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2906 			   GFP_KERNEL);
2907 	if (!uap)
2908 		return -ENOMEM;
2909 
2910 	ret = platform_get_irq(pdev, 0);
2911 	if (ret < 0)
2912 		return ret;
2913 	uap->port.irq	= ret;
2914 
2915 	uap->vendor = &vendor_sbsa;
2916 	qpdf2400_erratum44_workaround(&pdev->dev, uap);
2917 
2918 	uap->reg_offset	= uap->vendor->reg_offset;
2919 	uap->fifosize	= 32;
2920 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2921 	uap->port.ops	= &sbsa_uart_pops;
2922 	uap->fixed_baud = baudrate;
2923 
2924 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2925 
2926 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2927 
2928 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2929 	if (ret)
2930 		return ret;
2931 
2932 	platform_set_drvdata(pdev, uap);
2933 
2934 	return pl011_register_port(uap);
2935 }
2936 
2937 static void sbsa_uart_remove(struct platform_device *pdev)
2938 {
2939 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2940 
2941 	uart_remove_one_port(&amba_reg, &uap->port);
2942 	pl011_unregister_port(uap);
2943 }
2944 
2945 static const struct of_device_id sbsa_uart_of_match[] = {
2946 	{ .compatible = "arm,sbsa-uart", },
2947 	{},
2948 };
2949 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2950 
2951 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2952 	{ "ARMH0011", 0 },
2953 	{ "ARMHB000", 0 },
2954 	{},
2955 };
2956 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2957 
2958 static struct platform_driver arm_sbsa_uart_platform_driver = {
2959 	.probe		= sbsa_uart_probe,
2960 	.remove_new	= sbsa_uart_remove,
2961 	.driver	= {
2962 		.name	= "sbsa-uart",
2963 		.pm	= &pl011_dev_pm_ops,
2964 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2965 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2966 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2967 	},
2968 };
2969 
2970 static const struct amba_id pl011_ids[] = {
2971 	{
2972 		.id	= 0x00041011,
2973 		.mask	= 0x000fffff,
2974 		.data	= &vendor_arm,
2975 	},
2976 	{
2977 		.id	= 0x00380802,
2978 		.mask	= 0x00ffffff,
2979 		.data	= &vendor_st,
2980 	},
2981 	{ 0, 0 },
2982 };
2983 
2984 MODULE_DEVICE_TABLE(amba, pl011_ids);
2985 
2986 static struct amba_driver pl011_driver = {
2987 	.drv = {
2988 		.name	= "uart-pl011",
2989 		.pm	= &pl011_dev_pm_ops,
2990 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2991 	},
2992 	.id_table	= pl011_ids,
2993 	.probe		= pl011_probe,
2994 	.remove		= pl011_remove,
2995 };
2996 
2997 static int __init pl011_init(void)
2998 {
2999 	pr_info("Serial: AMBA PL011 UART driver\n");
3000 
3001 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3002 		pr_warn("could not register SBSA UART platform driver\n");
3003 	return amba_driver_register(&pl011_driver);
3004 }
3005 
3006 static void __exit pl011_exit(void)
3007 {
3008 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3009 	amba_driver_unregister(&pl011_driver);
3010 }
3011 
3012 /*
3013  * While this can be a module, if builtin it's most likely the console
3014  * So let's leave module_exit but move module_init to an earlier place
3015  */
3016 arch_initcall(pl011_init);
3017 module_exit(pl011_exit);
3018 
3019 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3020 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3021 MODULE_LICENSE("GPL");
3022