xref: /linux/drivers/tty/serial/amba-pl011.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	BIT(16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_dmabuf {
222 	dma_addr_t		dma;
223 	size_t			len;
224 	char			*buf;
225 };
226 
227 struct pl011_dmarx_data {
228 	struct dma_chan		*chan;
229 	struct completion	complete;
230 	bool			use_buf_b;
231 	struct pl011_dmabuf	dbuf_a;
232 	struct pl011_dmabuf	dbuf_b;
233 	dma_cookie_t		cookie;
234 	bool			running;
235 	struct timer_list	timer;
236 	unsigned int last_residue;
237 	unsigned long last_jiffies;
238 	bool auto_poll_rate;
239 	unsigned int poll_rate;
240 	unsigned int poll_timeout;
241 };
242 
243 struct pl011_dmatx_data {
244 	struct dma_chan		*chan;
245 	dma_addr_t		dma;
246 	size_t			len;
247 	char			*buf;
248 	bool			queued;
249 };
250 
251 /*
252  * We wrap our port structure around the generic uart_port.
253  */
254 struct uart_amba_port {
255 	struct uart_port	port;
256 	const u16		*reg_offset;
257 	struct clk		*clk;
258 	const struct vendor_data *vendor;
259 	unsigned int		im;		/* interrupt mask */
260 	unsigned int		old_status;
261 	unsigned int		fifosize;	/* vendor-specific */
262 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
263 	char			type[12];
264 	bool			rs485_tx_started;
265 	unsigned int		rs485_tx_drain_interval; /* usecs */
266 #ifdef CONFIG_DMA_ENGINE
267 	/* DMA stuff */
268 	unsigned int		dmacr;		/* dma control reg */
269 	bool			using_tx_dma;
270 	bool			using_rx_dma;
271 	struct pl011_dmarx_data dmarx;
272 	struct pl011_dmatx_data	dmatx;
273 	bool			dma_probed;
274 #endif
275 };
276 
277 static unsigned int pl011_tx_empty(struct uart_port *port);
278 
279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 					unsigned int reg)
281 {
282 	return uap->reg_offset[reg];
283 }
284 
285 static unsigned int pl011_read(const struct uart_amba_port *uap,
286 			       unsigned int reg)
287 {
288 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289 
290 	return (uap->port.iotype == UPIO_MEM32) ?
291 		readl_relaxed(addr) : readw_relaxed(addr);
292 }
293 
294 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 			unsigned int reg)
296 {
297 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298 
299 	if (uap->port.iotype == UPIO_MEM32)
300 		writel_relaxed(val, addr);
301 	else
302 		writew_relaxed(val, addr);
303 }
304 
305 /*
306  * Reads up to 256 characters from the FIFO or until it's empty and
307  * inserts them into the TTY layer. Returns the number of characters
308  * read from the FIFO.
309  */
310 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311 {
312 	unsigned int ch, fifotaken;
313 	int sysrq;
314 	u16 status;
315 	u8 flag;
316 
317 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 		status = pl011_read(uap, REG_FR);
319 		if (status & UART01x_FR_RXFE)
320 			break;
321 
322 		/* Take chars from the FIFO and update status */
323 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324 		flag = TTY_NORMAL;
325 		uap->port.icount.rx++;
326 
327 		if (unlikely(ch & UART_DR_ERROR)) {
328 			if (ch & UART011_DR_BE) {
329 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 				uap->port.icount.brk++;
331 				if (uart_handle_break(&uap->port))
332 					continue;
333 			} else if (ch & UART011_DR_PE) {
334 				uap->port.icount.parity++;
335 			} else if (ch & UART011_DR_FE) {
336 				uap->port.icount.frame++;
337 			}
338 			if (ch & UART011_DR_OE)
339 				uap->port.icount.overrun++;
340 
341 			ch &= uap->port.read_status_mask;
342 
343 			if (ch & UART011_DR_BE)
344 				flag = TTY_BREAK;
345 			else if (ch & UART011_DR_PE)
346 				flag = TTY_PARITY;
347 			else if (ch & UART011_DR_FE)
348 				flag = TTY_FRAME;
349 		}
350 
351 		sysrq = uart_prepare_sysrq_char(&uap->port, ch & 255);
352 		if (!sysrq)
353 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 	}
355 
356 	return fifotaken;
357 }
358 
359 /*
360  * All the DMA operation mode stuff goes inside this ifdef.
361  * This assumes that you have a generic DMA device interface,
362  * no custom DMA interfaces are supported.
363  */
364 #ifdef CONFIG_DMA_ENGINE
365 
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
367 
368 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
369 			     enum dma_data_direction dir)
370 {
371 	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
372 				     &db->dma, GFP_KERNEL);
373 	if (!db->buf)
374 		return -ENOMEM;
375 	db->len = PL011_DMA_BUFFER_SIZE;
376 
377 	return 0;
378 }
379 
380 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
381 			      enum dma_data_direction dir)
382 {
383 	if (db->buf) {
384 		dma_free_coherent(chan->device->dev,
385 				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
386 	}
387 }
388 
389 static void pl011_dma_probe(struct uart_amba_port *uap)
390 {
391 	/* DMA is the sole user of the platform data right now */
392 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
393 	struct device *dev = uap->port.dev;
394 	struct dma_slave_config tx_conf = {
395 		.dst_addr = uap->port.mapbase +
396 				 pl011_reg_to_offset(uap, REG_DR),
397 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
398 		.direction = DMA_MEM_TO_DEV,
399 		.dst_maxburst = uap->fifosize >> 1,
400 		.device_fc = false,
401 	};
402 	struct dma_chan *chan;
403 	dma_cap_mask_t mask;
404 
405 	uap->dma_probed = true;
406 	chan = dma_request_chan(dev, "tx");
407 	if (IS_ERR(chan)) {
408 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
409 			uap->dma_probed = false;
410 			return;
411 		}
412 
413 		/* We need platform data */
414 		if (!plat || !plat->dma_filter) {
415 			dev_dbg(uap->port.dev, "no DMA platform data\n");
416 			return;
417 		}
418 
419 		/* Try to acquire a generic DMA engine slave TX channel */
420 		dma_cap_zero(mask);
421 		dma_cap_set(DMA_SLAVE, mask);
422 
423 		chan = dma_request_channel(mask, plat->dma_filter,
424 					   plat->dma_tx_param);
425 		if (!chan) {
426 			dev_err(uap->port.dev, "no TX DMA channel!\n");
427 			return;
428 		}
429 	}
430 
431 	dmaengine_slave_config(chan, &tx_conf);
432 	uap->dmatx.chan = chan;
433 
434 	dev_info(uap->port.dev, "DMA channel TX %s\n",
435 		 dma_chan_name(uap->dmatx.chan));
436 
437 	/* Optionally make use of an RX channel as well */
438 	chan = dma_request_chan(dev, "rx");
439 
440 	if (IS_ERR(chan) && plat && plat->dma_rx_param) {
441 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
442 
443 		if (!chan) {
444 			dev_err(uap->port.dev, "no RX DMA channel!\n");
445 			return;
446 		}
447 	}
448 
449 	if (!IS_ERR(chan)) {
450 		struct dma_slave_config rx_conf = {
451 			.src_addr = uap->port.mapbase +
452 				pl011_reg_to_offset(uap, REG_DR),
453 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
454 			.direction = DMA_DEV_TO_MEM,
455 			.src_maxburst = uap->fifosize >> 2,
456 			.device_fc = false,
457 		};
458 		struct dma_slave_caps caps;
459 
460 		/*
461 		 * Some DMA controllers provide information on their capabilities.
462 		 * If the controller does, check for suitable residue processing
463 		 * otherwise assime all is well.
464 		 */
465 		if (dma_get_slave_caps(chan, &caps) == 0) {
466 			if (caps.residue_granularity ==
467 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
468 				dma_release_channel(chan);
469 				dev_info(uap->port.dev,
470 					 "RX DMA disabled - no residue processing\n");
471 				return;
472 			}
473 		}
474 		dmaengine_slave_config(chan, &rx_conf);
475 		uap->dmarx.chan = chan;
476 
477 		uap->dmarx.auto_poll_rate = false;
478 		if (plat && plat->dma_rx_poll_enable) {
479 			/* Set poll rate if specified. */
480 			if (plat->dma_rx_poll_rate) {
481 				uap->dmarx.auto_poll_rate = false;
482 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
483 			} else {
484 				/*
485 				 * 100 ms defaults to poll rate if not
486 				 * specified. This will be adjusted with
487 				 * the baud rate at set_termios.
488 				 */
489 				uap->dmarx.auto_poll_rate = true;
490 				uap->dmarx.poll_rate =  100;
491 			}
492 			/* 3 secs defaults poll_timeout if not specified. */
493 			if (plat->dma_rx_poll_timeout)
494 				uap->dmarx.poll_timeout =
495 					plat->dma_rx_poll_timeout;
496 			else
497 				uap->dmarx.poll_timeout = 3000;
498 		} else if (!plat && dev->of_node) {
499 			uap->dmarx.auto_poll_rate =
500 					of_property_read_bool(dev->of_node, "auto-poll");
501 			if (uap->dmarx.auto_poll_rate) {
502 				u32 x;
503 
504 				if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
505 					uap->dmarx.poll_rate = x;
506 				else
507 					uap->dmarx.poll_rate = 100;
508 				if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
509 					uap->dmarx.poll_timeout = x;
510 				else
511 					uap->dmarx.poll_timeout = 3000;
512 			}
513 		}
514 		dev_info(uap->port.dev, "DMA channel RX %s\n",
515 			 dma_chan_name(uap->dmarx.chan));
516 	}
517 }
518 
519 static void pl011_dma_remove(struct uart_amba_port *uap)
520 {
521 	if (uap->dmatx.chan)
522 		dma_release_channel(uap->dmatx.chan);
523 	if (uap->dmarx.chan)
524 		dma_release_channel(uap->dmarx.chan);
525 }
526 
527 /* Forward declare these for the refill routine */
528 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
529 static void pl011_start_tx_pio(struct uart_amba_port *uap);
530 
531 /*
532  * The current DMA TX buffer has been sent.
533  * Try to queue up another DMA buffer.
534  */
535 static void pl011_dma_tx_callback(void *data)
536 {
537 	struct uart_amba_port *uap = data;
538 	struct tty_port *tport = &uap->port.state->port;
539 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
540 	unsigned long flags;
541 	u16 dmacr;
542 
543 	uart_port_lock_irqsave(&uap->port, &flags);
544 	if (uap->dmatx.queued)
545 		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
546 				 dmatx->len, DMA_TO_DEVICE);
547 
548 	dmacr = uap->dmacr;
549 	uap->dmacr = dmacr & ~UART011_TXDMAE;
550 	pl011_write(uap->dmacr, uap, REG_DMACR);
551 
552 	/*
553 	 * If TX DMA was disabled, it means that we've stopped the DMA for
554 	 * some reason (eg, XOFF received, or we want to send an X-char.)
555 	 *
556 	 * Note: we need to be careful here of a potential race between DMA
557 	 * and the rest of the driver - if the driver disables TX DMA while
558 	 * a TX buffer completing, we must update the tx queued status to
559 	 * get further refills (hence we check dmacr).
560 	 */
561 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
562 	    kfifo_is_empty(&tport->xmit_fifo)) {
563 		uap->dmatx.queued = false;
564 		uart_port_unlock_irqrestore(&uap->port, flags);
565 		return;
566 	}
567 
568 	if (pl011_dma_tx_refill(uap) <= 0)
569 		/*
570 		 * We didn't queue a DMA buffer for some reason, but we
571 		 * have data pending to be sent.  Re-enable the TX IRQ.
572 		 */
573 		pl011_start_tx_pio(uap);
574 
575 	uart_port_unlock_irqrestore(&uap->port, flags);
576 }
577 
578 /*
579  * Try to refill the TX DMA buffer.
580  * Locking: called with port lock held and IRQs disabled.
581  * Returns:
582  *   1 if we queued up a TX DMA buffer.
583  *   0 if we didn't want to handle this by DMA
584  *  <0 on error
585  */
586 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
587 {
588 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
589 	struct dma_chan *chan = dmatx->chan;
590 	struct dma_device *dma_dev = chan->device;
591 	struct dma_async_tx_descriptor *desc;
592 	struct tty_port *tport = &uap->port.state->port;
593 	unsigned int count;
594 
595 	/*
596 	 * Try to avoid the overhead involved in using DMA if the
597 	 * transaction fits in the first half of the FIFO, by using
598 	 * the standard interrupt handling.  This ensures that we
599 	 * issue a uart_write_wakeup() at the appropriate time.
600 	 */
601 	count = kfifo_len(&tport->xmit_fifo);
602 	if (count < (uap->fifosize >> 1)) {
603 		uap->dmatx.queued = false;
604 		return 0;
605 	}
606 
607 	/*
608 	 * Bodge: don't send the last character by DMA, as this
609 	 * will prevent XON from notifying us to restart DMA.
610 	 */
611 	count -= 1;
612 
613 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
614 	if (count > PL011_DMA_BUFFER_SIZE)
615 		count = PL011_DMA_BUFFER_SIZE;
616 
617 	count = kfifo_out_peek(&tport->xmit_fifo, dmatx->buf, count);
618 	dmatx->len = count;
619 	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
620 				    DMA_TO_DEVICE);
621 	if (dmatx->dma == DMA_MAPPING_ERROR) {
622 		uap->dmatx.queued = false;
623 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
624 		return -EBUSY;
625 	}
626 
627 	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
628 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
629 	if (!desc) {
630 		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
631 		uap->dmatx.queued = false;
632 		/*
633 		 * If DMA cannot be used right now, we complete this
634 		 * transaction via IRQ and let the TTY layer retry.
635 		 */
636 		dev_dbg(uap->port.dev, "TX DMA busy\n");
637 		return -EBUSY;
638 	}
639 
640 	/* Some data to go along to the callback */
641 	desc->callback = pl011_dma_tx_callback;
642 	desc->callback_param = uap;
643 
644 	/* All errors should happen at prepare time */
645 	dmaengine_submit(desc);
646 
647 	/* Fire the DMA transaction */
648 	dma_dev->device_issue_pending(chan);
649 
650 	uap->dmacr |= UART011_TXDMAE;
651 	pl011_write(uap->dmacr, uap, REG_DMACR);
652 	uap->dmatx.queued = true;
653 
654 	/*
655 	 * Now we know that DMA will fire, so advance the ring buffer
656 	 * with the stuff we just dispatched.
657 	 */
658 	uart_xmit_advance(&uap->port, count);
659 
660 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
661 		uart_write_wakeup(&uap->port);
662 
663 	return 1;
664 }
665 
666 /*
667  * We received a transmit interrupt without a pending X-char but with
668  * pending characters.
669  * Locking: called with port lock held and IRQs disabled.
670  * Returns:
671  *   false if we want to use PIO to transmit
672  *   true if we queued a DMA buffer
673  */
674 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
675 {
676 	if (!uap->using_tx_dma)
677 		return false;
678 
679 	/*
680 	 * If we already have a TX buffer queued, but received a
681 	 * TX interrupt, it will be because we've just sent an X-char.
682 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
683 	 */
684 	if (uap->dmatx.queued) {
685 		uap->dmacr |= UART011_TXDMAE;
686 		pl011_write(uap->dmacr, uap, REG_DMACR);
687 		uap->im &= ~UART011_TXIM;
688 		pl011_write(uap->im, uap, REG_IMSC);
689 		return true;
690 	}
691 
692 	/*
693 	 * We don't have a TX buffer queued, so try to queue one.
694 	 * If we successfully queued a buffer, mask the TX IRQ.
695 	 */
696 	if (pl011_dma_tx_refill(uap) > 0) {
697 		uap->im &= ~UART011_TXIM;
698 		pl011_write(uap->im, uap, REG_IMSC);
699 		return true;
700 	}
701 	return false;
702 }
703 
704 /*
705  * Stop the DMA transmit (eg, due to received XOFF).
706  * Locking: called with port lock held and IRQs disabled.
707  */
708 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
709 {
710 	if (uap->dmatx.queued) {
711 		uap->dmacr &= ~UART011_TXDMAE;
712 		pl011_write(uap->dmacr, uap, REG_DMACR);
713 	}
714 }
715 
716 /*
717  * Try to start a DMA transmit, or in the case of an XON/OFF
718  * character queued for send, try to get that character out ASAP.
719  * Locking: called with port lock held and IRQs disabled.
720  * Returns:
721  *   false if we want the TX IRQ to be enabled
722  *   true if we have a buffer queued
723  */
724 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
725 {
726 	u16 dmacr;
727 
728 	if (!uap->using_tx_dma)
729 		return false;
730 
731 	if (!uap->port.x_char) {
732 		/* no X-char, try to push chars out in DMA mode */
733 		bool ret = true;
734 
735 		if (!uap->dmatx.queued) {
736 			if (pl011_dma_tx_refill(uap) > 0) {
737 				uap->im &= ~UART011_TXIM;
738 				pl011_write(uap->im, uap, REG_IMSC);
739 			} else {
740 				ret = false;
741 			}
742 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
743 			uap->dmacr |= UART011_TXDMAE;
744 			pl011_write(uap->dmacr, uap, REG_DMACR);
745 		}
746 		return ret;
747 	}
748 
749 	/*
750 	 * We have an X-char to send.  Disable DMA to prevent it loading
751 	 * the TX fifo, and then see if we can stuff it into the FIFO.
752 	 */
753 	dmacr = uap->dmacr;
754 	uap->dmacr &= ~UART011_TXDMAE;
755 	pl011_write(uap->dmacr, uap, REG_DMACR);
756 
757 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
758 		/*
759 		 * No space in the FIFO, so enable the transmit interrupt
760 		 * so we know when there is space.  Note that once we've
761 		 * loaded the character, we should just re-enable DMA.
762 		 */
763 		return false;
764 	}
765 
766 	pl011_write(uap->port.x_char, uap, REG_DR);
767 	uap->port.icount.tx++;
768 	uap->port.x_char = 0;
769 
770 	/* Success - restore the DMA state */
771 	uap->dmacr = dmacr;
772 	pl011_write(dmacr, uap, REG_DMACR);
773 
774 	return true;
775 }
776 
777 /*
778  * Flush the transmit buffer.
779  * Locking: called with port lock held and IRQs disabled.
780  */
781 static void pl011_dma_flush_buffer(struct uart_port *port)
782 __releases(&uap->port.lock)
783 __acquires(&uap->port.lock)
784 {
785 	struct uart_amba_port *uap =
786 	    container_of(port, struct uart_amba_port, port);
787 
788 	if (!uap->using_tx_dma)
789 		return;
790 
791 	dmaengine_terminate_async(uap->dmatx.chan);
792 
793 	if (uap->dmatx.queued) {
794 		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
795 				 uap->dmatx.len, DMA_TO_DEVICE);
796 		uap->dmatx.queued = false;
797 		uap->dmacr &= ~UART011_TXDMAE;
798 		pl011_write(uap->dmacr, uap, REG_DMACR);
799 	}
800 }
801 
802 static void pl011_dma_rx_callback(void *data);
803 
804 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
805 {
806 	struct dma_chan *rxchan = uap->dmarx.chan;
807 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
808 	struct dma_async_tx_descriptor *desc;
809 	struct pl011_dmabuf *dbuf;
810 
811 	if (!rxchan)
812 		return -EIO;
813 
814 	/* Start the RX DMA job */
815 	dbuf = uap->dmarx.use_buf_b ?
816 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
817 	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
818 					   DMA_DEV_TO_MEM,
819 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
820 	/*
821 	 * If the DMA engine is busy and cannot prepare a
822 	 * channel, no big deal, the driver will fall back
823 	 * to interrupt mode as a result of this error code.
824 	 */
825 	if (!desc) {
826 		uap->dmarx.running = false;
827 		dmaengine_terminate_all(rxchan);
828 		return -EBUSY;
829 	}
830 
831 	/* Some data to go along to the callback */
832 	desc->callback = pl011_dma_rx_callback;
833 	desc->callback_param = uap;
834 	dmarx->cookie = dmaengine_submit(desc);
835 	dma_async_issue_pending(rxchan);
836 
837 	uap->dmacr |= UART011_RXDMAE;
838 	pl011_write(uap->dmacr, uap, REG_DMACR);
839 	uap->dmarx.running = true;
840 
841 	uap->im &= ~UART011_RXIM;
842 	pl011_write(uap->im, uap, REG_IMSC);
843 
844 	return 0;
845 }
846 
847 /*
848  * This is called when either the DMA job is complete, or
849  * the FIFO timeout interrupt occurred. This must be called
850  * with the port spinlock uap->port.lock held.
851  */
852 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
853 			       u32 pending, bool use_buf_b,
854 			       bool readfifo)
855 {
856 	struct tty_port *port = &uap->port.state->port;
857 	struct pl011_dmabuf *dbuf = use_buf_b ?
858 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
859 	int dma_count = 0;
860 	u32 fifotaken = 0; /* only used for vdbg() */
861 
862 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
863 	int dmataken = 0;
864 
865 	if (uap->dmarx.poll_rate) {
866 		/* The data can be taken by polling */
867 		dmataken = dbuf->len - dmarx->last_residue;
868 		/* Recalculate the pending size */
869 		if (pending >= dmataken)
870 			pending -= dmataken;
871 	}
872 
873 	/* Pick the remain data from the DMA */
874 	if (pending) {
875 		/*
876 		 * First take all chars in the DMA pipe, then look in the FIFO.
877 		 * Note that tty_insert_flip_buf() tries to take as many chars
878 		 * as it can.
879 		 */
880 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
881 
882 		uap->port.icount.rx += dma_count;
883 		if (dma_count < pending)
884 			dev_warn(uap->port.dev,
885 				 "couldn't insert all characters (TTY is full?)\n");
886 	}
887 
888 	/* Reset the last_residue for Rx DMA poll */
889 	if (uap->dmarx.poll_rate)
890 		dmarx->last_residue = dbuf->len;
891 
892 	/*
893 	 * Only continue with trying to read the FIFO if all DMA chars have
894 	 * been taken first.
895 	 */
896 	if (dma_count == pending && readfifo) {
897 		/* Clear any error flags */
898 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
899 			    UART011_FEIS, uap, REG_ICR);
900 
901 		/*
902 		 * If we read all the DMA'd characters, and we had an
903 		 * incomplete buffer, that could be due to an rx error, or
904 		 * maybe we just timed out. Read any pending chars and check
905 		 * the error status.
906 		 *
907 		 * Error conditions will only occur in the FIFO, these will
908 		 * trigger an immediate interrupt and stop the DMA job, so we
909 		 * will always find the error in the FIFO, never in the DMA
910 		 * buffer.
911 		 */
912 		fifotaken = pl011_fifo_to_tty(uap);
913 	}
914 
915 	dev_vdbg(uap->port.dev,
916 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
917 		 dma_count, fifotaken);
918 	tty_flip_buffer_push(port);
919 }
920 
921 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
922 {
923 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
924 	struct dma_chan *rxchan = dmarx->chan;
925 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
926 		&dmarx->dbuf_b : &dmarx->dbuf_a;
927 	size_t pending;
928 	struct dma_tx_state state;
929 	enum dma_status dmastat;
930 
931 	/*
932 	 * Pause the transfer so we can trust the current counter,
933 	 * do this before we pause the PL011 block, else we may
934 	 * overflow the FIFO.
935 	 */
936 	if (dmaengine_pause(rxchan))
937 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
938 	dmastat = rxchan->device->device_tx_status(rxchan,
939 						   dmarx->cookie, &state);
940 	if (dmastat != DMA_PAUSED)
941 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
942 
943 	/* Disable RX DMA - incoming data will wait in the FIFO */
944 	uap->dmacr &= ~UART011_RXDMAE;
945 	pl011_write(uap->dmacr, uap, REG_DMACR);
946 	uap->dmarx.running = false;
947 
948 	pending = dbuf->len - state.residue;
949 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
950 	/* Then we terminate the transfer - we now know our residue */
951 	dmaengine_terminate_all(rxchan);
952 
953 	/*
954 	 * This will take the chars we have so far and insert
955 	 * into the framework.
956 	 */
957 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
958 
959 	/* Switch buffer & re-trigger DMA job */
960 	dmarx->use_buf_b = !dmarx->use_buf_b;
961 	if (pl011_dma_rx_trigger_dma(uap)) {
962 		dev_dbg(uap->port.dev,
963 			"could not retrigger RX DMA job fall back to interrupt mode\n");
964 		uap->im |= UART011_RXIM;
965 		pl011_write(uap->im, uap, REG_IMSC);
966 	}
967 }
968 
969 static void pl011_dma_rx_callback(void *data)
970 {
971 	struct uart_amba_port *uap = data;
972 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
973 	struct dma_chan *rxchan = dmarx->chan;
974 	bool lastbuf = dmarx->use_buf_b;
975 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
976 		&dmarx->dbuf_b : &dmarx->dbuf_a;
977 	size_t pending;
978 	struct dma_tx_state state;
979 	int ret;
980 
981 	/*
982 	 * This completion interrupt occurs typically when the
983 	 * RX buffer is totally stuffed but no timeout has yet
984 	 * occurred. When that happens, we just want the RX
985 	 * routine to flush out the secondary DMA buffer while
986 	 * we immediately trigger the next DMA job.
987 	 */
988 	uart_port_lock_irq(&uap->port);
989 	/*
990 	 * Rx data can be taken by the UART interrupts during
991 	 * the DMA irq handler. So we check the residue here.
992 	 */
993 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
994 	pending = dbuf->len - state.residue;
995 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
996 	/* Then we terminate the transfer - we now know our residue */
997 	dmaengine_terminate_all(rxchan);
998 
999 	uap->dmarx.running = false;
1000 	dmarx->use_buf_b = !lastbuf;
1001 	ret = pl011_dma_rx_trigger_dma(uap);
1002 
1003 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1004 	uart_unlock_and_check_sysrq(&uap->port);
1005 	/*
1006 	 * Do this check after we picked the DMA chars so we don't
1007 	 * get some IRQ immediately from RX.
1008 	 */
1009 	if (ret) {
1010 		dev_dbg(uap->port.dev,
1011 			"could not retrigger RX DMA job fall back to interrupt mode\n");
1012 		uap->im |= UART011_RXIM;
1013 		pl011_write(uap->im, uap, REG_IMSC);
1014 	}
1015 }
1016 
1017 /*
1018  * Stop accepting received characters, when we're shutting down or
1019  * suspending this port.
1020  * Locking: called with port lock held and IRQs disabled.
1021  */
1022 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1023 {
1024 	if (!uap->using_rx_dma)
1025 		return;
1026 
1027 	/* FIXME.  Just disable the DMA enable */
1028 	uap->dmacr &= ~UART011_RXDMAE;
1029 	pl011_write(uap->dmacr, uap, REG_DMACR);
1030 }
1031 
1032 /*
1033  * Timer handler for Rx DMA polling.
1034  * Every polling, It checks the residue in the dma buffer and transfer
1035  * data to the tty. Also, last_residue is updated for the next polling.
1036  */
1037 static void pl011_dma_rx_poll(struct timer_list *t)
1038 {
1039 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1040 	struct tty_port *port = &uap->port.state->port;
1041 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1042 	struct dma_chan *rxchan = uap->dmarx.chan;
1043 	unsigned long flags;
1044 	unsigned int dmataken = 0;
1045 	unsigned int size = 0;
1046 	struct pl011_dmabuf *dbuf;
1047 	int dma_count;
1048 	struct dma_tx_state state;
1049 
1050 	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1051 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1052 	if (likely(state.residue < dmarx->last_residue)) {
1053 		dmataken = dbuf->len - dmarx->last_residue;
1054 		size = dmarx->last_residue - state.residue;
1055 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1056 						   size);
1057 		if (dma_count == size)
1058 			dmarx->last_residue =  state.residue;
1059 		dmarx->last_jiffies = jiffies;
1060 	}
1061 	tty_flip_buffer_push(port);
1062 
1063 	/*
1064 	 * If no data is received in poll_timeout, the driver will fall back
1065 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1066 	 */
1067 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1068 			> uap->dmarx.poll_timeout) {
1069 		uart_port_lock_irqsave(&uap->port, &flags);
1070 		pl011_dma_rx_stop(uap);
1071 		uap->im |= UART011_RXIM;
1072 		pl011_write(uap->im, uap, REG_IMSC);
1073 		uart_port_unlock_irqrestore(&uap->port, flags);
1074 
1075 		uap->dmarx.running = false;
1076 		dmaengine_terminate_all(rxchan);
1077 		del_timer(&uap->dmarx.timer);
1078 	} else {
1079 		mod_timer(&uap->dmarx.timer,
1080 			  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1081 	}
1082 }
1083 
1084 static void pl011_dma_startup(struct uart_amba_port *uap)
1085 {
1086 	int ret;
1087 
1088 	if (!uap->dma_probed)
1089 		pl011_dma_probe(uap);
1090 
1091 	if (!uap->dmatx.chan)
1092 		return;
1093 
1094 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1095 	if (!uap->dmatx.buf) {
1096 		uap->port.fifosize = uap->fifosize;
1097 		return;
1098 	}
1099 
1100 	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1101 
1102 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1103 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1104 	uap->using_tx_dma = true;
1105 
1106 	if (!uap->dmarx.chan)
1107 		goto skip_rx;
1108 
1109 	/* Allocate and map DMA RX buffers */
1110 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1111 				DMA_FROM_DEVICE);
1112 	if (ret) {
1113 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1114 			"RX buffer A", ret);
1115 		goto skip_rx;
1116 	}
1117 
1118 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1119 				DMA_FROM_DEVICE);
1120 	if (ret) {
1121 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1122 			"RX buffer B", ret);
1123 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1124 				  DMA_FROM_DEVICE);
1125 		goto skip_rx;
1126 	}
1127 
1128 	uap->using_rx_dma = true;
1129 
1130 skip_rx:
1131 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1132 	uap->dmacr |= UART011_DMAONERR;
1133 	pl011_write(uap->dmacr, uap, REG_DMACR);
1134 
1135 	/*
1136 	 * ST Micro variants has some specific dma burst threshold
1137 	 * compensation. Set this to 16 bytes, so burst will only
1138 	 * be issued above/below 16 bytes.
1139 	 */
1140 	if (uap->vendor->dma_threshold)
1141 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1142 			    uap, REG_ST_DMAWM);
1143 
1144 	if (uap->using_rx_dma) {
1145 		if (pl011_dma_rx_trigger_dma(uap))
1146 			dev_dbg(uap->port.dev,
1147 				"could not trigger initial RX DMA job, fall back to interrupt mode\n");
1148 		if (uap->dmarx.poll_rate) {
1149 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1150 			mod_timer(&uap->dmarx.timer,
1151 				  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1152 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1153 			uap->dmarx.last_jiffies = jiffies;
1154 		}
1155 	}
1156 }
1157 
1158 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1159 {
1160 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1161 		return;
1162 
1163 	/* Disable RX and TX DMA */
1164 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1165 		cpu_relax();
1166 
1167 	uart_port_lock_irq(&uap->port);
1168 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1169 	pl011_write(uap->dmacr, uap, REG_DMACR);
1170 	uart_port_unlock_irq(&uap->port);
1171 
1172 	if (uap->using_tx_dma) {
1173 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1174 		dmaengine_terminate_all(uap->dmatx.chan);
1175 		if (uap->dmatx.queued) {
1176 			dma_unmap_single(uap->dmatx.chan->device->dev,
1177 					 uap->dmatx.dma, uap->dmatx.len,
1178 					 DMA_TO_DEVICE);
1179 			uap->dmatx.queued = false;
1180 		}
1181 
1182 		kfree(uap->dmatx.buf);
1183 		uap->using_tx_dma = false;
1184 	}
1185 
1186 	if (uap->using_rx_dma) {
1187 		dmaengine_terminate_all(uap->dmarx.chan);
1188 		/* Clean up the RX DMA */
1189 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1190 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1191 		if (uap->dmarx.poll_rate)
1192 			del_timer_sync(&uap->dmarx.timer);
1193 		uap->using_rx_dma = false;
1194 	}
1195 }
1196 
1197 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1198 {
1199 	return uap->using_rx_dma;
1200 }
1201 
1202 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1203 {
1204 	return uap->using_rx_dma && uap->dmarx.running;
1205 }
1206 
1207 #else
1208 /* Blank functions if the DMA engine is not available */
1209 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1210 {
1211 }
1212 
1213 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1214 {
1215 }
1216 
1217 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1218 {
1219 }
1220 
1221 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1222 {
1223 	return false;
1224 }
1225 
1226 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1227 {
1228 }
1229 
1230 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1231 {
1232 	return false;
1233 }
1234 
1235 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1236 {
1237 }
1238 
1239 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1240 {
1241 }
1242 
1243 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1244 {
1245 	return -EIO;
1246 }
1247 
1248 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1249 {
1250 	return false;
1251 }
1252 
1253 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1254 {
1255 	return false;
1256 }
1257 
1258 #define pl011_dma_flush_buffer	NULL
1259 #endif
1260 
1261 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1262 {
1263 	/*
1264 	 * To be on the safe side only time out after twice as many iterations
1265 	 * as fifo size.
1266 	 */
1267 	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1268 	struct uart_port *port = &uap->port;
1269 	int i = 0;
1270 	u32 cr;
1271 
1272 	/* Wait until hardware tx queue is empty */
1273 	while (!pl011_tx_empty(port)) {
1274 		if (i > MAX_TX_DRAIN_ITERS) {
1275 			dev_warn(port->dev,
1276 				 "timeout while draining hardware tx queue\n");
1277 			break;
1278 		}
1279 
1280 		udelay(uap->rs485_tx_drain_interval);
1281 		i++;
1282 	}
1283 
1284 	if (port->rs485.delay_rts_after_send)
1285 		mdelay(port->rs485.delay_rts_after_send);
1286 
1287 	cr = pl011_read(uap, REG_CR);
1288 
1289 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1290 		cr &= ~UART011_CR_RTS;
1291 	else
1292 		cr |= UART011_CR_RTS;
1293 
1294 	/* Disable the transmitter and reenable the transceiver */
1295 	cr &= ~UART011_CR_TXE;
1296 	cr |= UART011_CR_RXE;
1297 	pl011_write(cr, uap, REG_CR);
1298 
1299 	uap->rs485_tx_started = false;
1300 }
1301 
1302 static void pl011_stop_tx(struct uart_port *port)
1303 {
1304 	struct uart_amba_port *uap =
1305 	    container_of(port, struct uart_amba_port, port);
1306 
1307 	uap->im &= ~UART011_TXIM;
1308 	pl011_write(uap->im, uap, REG_IMSC);
1309 	pl011_dma_tx_stop(uap);
1310 
1311 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1312 		pl011_rs485_tx_stop(uap);
1313 }
1314 
1315 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1316 
1317 /* Start TX with programmed I/O only (no DMA) */
1318 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1319 {
1320 	if (pl011_tx_chars(uap, false)) {
1321 		uap->im |= UART011_TXIM;
1322 		pl011_write(uap->im, uap, REG_IMSC);
1323 	}
1324 }
1325 
1326 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1327 {
1328 	struct uart_port *port = &uap->port;
1329 	u32 cr;
1330 
1331 	/* Enable transmitter */
1332 	cr = pl011_read(uap, REG_CR);
1333 	cr |= UART011_CR_TXE;
1334 
1335 	/* Disable receiver if half-duplex */
1336 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1337 		cr &= ~UART011_CR_RXE;
1338 
1339 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1340 		cr &= ~UART011_CR_RTS;
1341 	else
1342 		cr |= UART011_CR_RTS;
1343 
1344 	pl011_write(cr, uap, REG_CR);
1345 
1346 	if (port->rs485.delay_rts_before_send)
1347 		mdelay(port->rs485.delay_rts_before_send);
1348 
1349 	uap->rs485_tx_started = true;
1350 }
1351 
1352 static void pl011_start_tx(struct uart_port *port)
1353 {
1354 	struct uart_amba_port *uap =
1355 	    container_of(port, struct uart_amba_port, port);
1356 
1357 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1358 	    !uap->rs485_tx_started)
1359 		pl011_rs485_tx_start(uap);
1360 
1361 	if (!pl011_dma_tx_start(uap))
1362 		pl011_start_tx_pio(uap);
1363 }
1364 
1365 static void pl011_stop_rx(struct uart_port *port)
1366 {
1367 	struct uart_amba_port *uap =
1368 	    container_of(port, struct uart_amba_port, port);
1369 
1370 	uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1371 		     UART011_PEIM | UART011_BEIM | UART011_OEIM);
1372 	pl011_write(uap->im, uap, REG_IMSC);
1373 
1374 	pl011_dma_rx_stop(uap);
1375 }
1376 
1377 static void pl011_throttle_rx(struct uart_port *port)
1378 {
1379 	unsigned long flags;
1380 
1381 	uart_port_lock_irqsave(port, &flags);
1382 	pl011_stop_rx(port);
1383 	uart_port_unlock_irqrestore(port, flags);
1384 }
1385 
1386 static void pl011_enable_ms(struct uart_port *port)
1387 {
1388 	struct uart_amba_port *uap =
1389 	    container_of(port, struct uart_amba_port, port);
1390 
1391 	uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1392 	pl011_write(uap->im, uap, REG_IMSC);
1393 }
1394 
1395 static void pl011_rx_chars(struct uart_amba_port *uap)
1396 __releases(&uap->port.lock)
1397 __acquires(&uap->port.lock)
1398 {
1399 	pl011_fifo_to_tty(uap);
1400 
1401 	uart_port_unlock(&uap->port);
1402 	tty_flip_buffer_push(&uap->port.state->port);
1403 	/*
1404 	 * If we were temporarily out of DMA mode for a while,
1405 	 * attempt to switch back to DMA mode again.
1406 	 */
1407 	if (pl011_dma_rx_available(uap)) {
1408 		if (pl011_dma_rx_trigger_dma(uap)) {
1409 			dev_dbg(uap->port.dev,
1410 				"could not trigger RX DMA job fall back to interrupt mode again\n");
1411 			uap->im |= UART011_RXIM;
1412 			pl011_write(uap->im, uap, REG_IMSC);
1413 		} else {
1414 #ifdef CONFIG_DMA_ENGINE
1415 			/* Start Rx DMA poll */
1416 			if (uap->dmarx.poll_rate) {
1417 				uap->dmarx.last_jiffies = jiffies;
1418 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1419 				mod_timer(&uap->dmarx.timer,
1420 					  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1421 			}
1422 #endif
1423 		}
1424 	}
1425 	uart_port_lock(&uap->port);
1426 }
1427 
1428 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1429 			  bool from_irq)
1430 {
1431 	if (unlikely(!from_irq) &&
1432 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1433 		return false; /* unable to transmit character */
1434 
1435 	pl011_write(c, uap, REG_DR);
1436 	uap->port.icount.tx++;
1437 
1438 	return true;
1439 }
1440 
1441 /* Returns true if tx interrupts have to be (kept) enabled  */
1442 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1443 {
1444 	struct tty_port *tport = &uap->port.state->port;
1445 	int count = uap->fifosize >> 1;
1446 
1447 	if (uap->port.x_char) {
1448 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1449 			return true;
1450 		uap->port.x_char = 0;
1451 		--count;
1452 	}
1453 	if (kfifo_is_empty(&tport->xmit_fifo) || uart_tx_stopped(&uap->port)) {
1454 		pl011_stop_tx(&uap->port);
1455 		return false;
1456 	}
1457 
1458 	/* If we are using DMA mode, try to send some characters. */
1459 	if (pl011_dma_tx_irq(uap))
1460 		return true;
1461 
1462 	while (1) {
1463 		unsigned char c;
1464 
1465 		if (likely(from_irq) && count-- == 0)
1466 			break;
1467 
1468 		if (!kfifo_peek(&tport->xmit_fifo, &c))
1469 			break;
1470 
1471 		if (!pl011_tx_char(uap, c, from_irq))
1472 			break;
1473 
1474 		kfifo_skip(&tport->xmit_fifo);
1475 	}
1476 
1477 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1478 		uart_write_wakeup(&uap->port);
1479 
1480 	if (kfifo_is_empty(&tport->xmit_fifo)) {
1481 		pl011_stop_tx(&uap->port);
1482 		return false;
1483 	}
1484 	return true;
1485 }
1486 
1487 static void pl011_modem_status(struct uart_amba_port *uap)
1488 {
1489 	unsigned int status, delta;
1490 
1491 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1492 
1493 	delta = status ^ uap->old_status;
1494 	uap->old_status = status;
1495 
1496 	if (!delta)
1497 		return;
1498 
1499 	if (delta & UART01x_FR_DCD)
1500 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1501 
1502 	if (delta & uap->vendor->fr_dsr)
1503 		uap->port.icount.dsr++;
1504 
1505 	if (delta & uap->vendor->fr_cts)
1506 		uart_handle_cts_change(&uap->port,
1507 				       status & uap->vendor->fr_cts);
1508 
1509 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1510 }
1511 
1512 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1513 {
1514 	if (!uap->vendor->cts_event_workaround)
1515 		return;
1516 
1517 	/* workaround to make sure that all bits are unlocked.. */
1518 	pl011_write(0x00, uap, REG_ICR);
1519 
1520 	/*
1521 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1522 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1523 	 * so add 2 dummy reads
1524 	 */
1525 	pl011_read(uap, REG_ICR);
1526 	pl011_read(uap, REG_ICR);
1527 }
1528 
1529 static irqreturn_t pl011_int(int irq, void *dev_id)
1530 {
1531 	struct uart_amba_port *uap = dev_id;
1532 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1533 	int handled = 0;
1534 
1535 	uart_port_lock(&uap->port);
1536 	status = pl011_read(uap, REG_RIS) & uap->im;
1537 	if (status) {
1538 		do {
1539 			check_apply_cts_event_workaround(uap);
1540 
1541 			pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1542 				    uap, REG_ICR);
1543 
1544 			if (status & (UART011_RTIS | UART011_RXIS)) {
1545 				if (pl011_dma_rx_running(uap))
1546 					pl011_dma_rx_irq(uap);
1547 				else
1548 					pl011_rx_chars(uap);
1549 			}
1550 			if (status & (UART011_DSRMIS | UART011_DCDMIS |
1551 				      UART011_CTSMIS | UART011_RIMIS))
1552 				pl011_modem_status(uap);
1553 			if (status & UART011_TXIS)
1554 				pl011_tx_chars(uap, true);
1555 
1556 			if (pass_counter-- == 0)
1557 				break;
1558 
1559 			status = pl011_read(uap, REG_RIS) & uap->im;
1560 		} while (status != 0);
1561 		handled = 1;
1562 	}
1563 
1564 	uart_unlock_and_check_sysrq(&uap->port);
1565 
1566 	return IRQ_RETVAL(handled);
1567 }
1568 
1569 static unsigned int pl011_tx_empty(struct uart_port *port)
1570 {
1571 	struct uart_amba_port *uap =
1572 	    container_of(port, struct uart_amba_port, port);
1573 
1574 	/* Allow feature register bits to be inverted to work around errata */
1575 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1576 
1577 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1578 							0 : TIOCSER_TEMT;
1579 }
1580 
1581 static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1582 {
1583 	if (cond)
1584 		*ptr |= mask;
1585 }
1586 
1587 static unsigned int pl011_get_mctrl(struct uart_port *port)
1588 {
1589 	struct uart_amba_port *uap =
1590 	    container_of(port, struct uart_amba_port, port);
1591 	unsigned int result = 0;
1592 	unsigned int status = pl011_read(uap, REG_FR);
1593 
1594 	pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1595 	pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1596 	pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1597 	pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1598 
1599 	return result;
1600 }
1601 
1602 static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1603 {
1604 	if (cond)
1605 		*ptr |= mask;
1606 	else
1607 		*ptr &= ~mask;
1608 }
1609 
1610 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1611 {
1612 	struct uart_amba_port *uap =
1613 	    container_of(port, struct uart_amba_port, port);
1614 	unsigned int cr;
1615 
1616 	cr = pl011_read(uap, REG_CR);
1617 
1618 	pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1619 	pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1620 	pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1621 	pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1622 	pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1623 
1624 	if (port->status & UPSTAT_AUTORTS) {
1625 		/* We need to disable auto-RTS if we want to turn RTS off */
1626 		pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1627 	}
1628 
1629 	pl011_write(cr, uap, REG_CR);
1630 }
1631 
1632 static void pl011_break_ctl(struct uart_port *port, int break_state)
1633 {
1634 	struct uart_amba_port *uap =
1635 	    container_of(port, struct uart_amba_port, port);
1636 	unsigned long flags;
1637 	unsigned int lcr_h;
1638 
1639 	uart_port_lock_irqsave(&uap->port, &flags);
1640 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1641 	if (break_state == -1)
1642 		lcr_h |= UART01x_LCRH_BRK;
1643 	else
1644 		lcr_h &= ~UART01x_LCRH_BRK;
1645 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1646 	uart_port_unlock_irqrestore(&uap->port, flags);
1647 }
1648 
1649 #ifdef CONFIG_CONSOLE_POLL
1650 
1651 static void pl011_quiesce_irqs(struct uart_port *port)
1652 {
1653 	struct uart_amba_port *uap =
1654 	    container_of(port, struct uart_amba_port, port);
1655 
1656 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1657 	/*
1658 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1659 	 * we simply mask it. start_tx() will unmask it.
1660 	 *
1661 	 * Note we can race with start_tx(), and if the race happens, the
1662 	 * polling user might get another interrupt just after we clear it.
1663 	 * But it should be OK and can happen even w/o the race, e.g.
1664 	 * controller immediately got some new data and raised the IRQ.
1665 	 *
1666 	 * And whoever uses polling routines assumes that it manages the device
1667 	 * (including tx queue), so we're also fine with start_tx()'s caller
1668 	 * side.
1669 	 */
1670 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1671 		    REG_IMSC);
1672 }
1673 
1674 static int pl011_get_poll_char(struct uart_port *port)
1675 {
1676 	struct uart_amba_port *uap =
1677 	    container_of(port, struct uart_amba_port, port);
1678 	unsigned int status;
1679 
1680 	/*
1681 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1682 	 * debugger.
1683 	 */
1684 	pl011_quiesce_irqs(port);
1685 
1686 	status = pl011_read(uap, REG_FR);
1687 	if (status & UART01x_FR_RXFE)
1688 		return NO_POLL_CHAR;
1689 
1690 	return pl011_read(uap, REG_DR);
1691 }
1692 
1693 static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1694 {
1695 	struct uart_amba_port *uap =
1696 	    container_of(port, struct uart_amba_port, port);
1697 
1698 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1699 		cpu_relax();
1700 
1701 	pl011_write(ch, uap, REG_DR);
1702 }
1703 
1704 #endif /* CONFIG_CONSOLE_POLL */
1705 
1706 static int pl011_hwinit(struct uart_port *port)
1707 {
1708 	struct uart_amba_port *uap =
1709 	    container_of(port, struct uart_amba_port, port);
1710 	int retval;
1711 
1712 	/* Optionaly enable pins to be muxed in and configured */
1713 	pinctrl_pm_select_default_state(port->dev);
1714 
1715 	/*
1716 	 * Try to enable the clock producer.
1717 	 */
1718 	retval = clk_prepare_enable(uap->clk);
1719 	if (retval)
1720 		return retval;
1721 
1722 	uap->port.uartclk = clk_get_rate(uap->clk);
1723 
1724 	/* Clear pending error and receive interrupts */
1725 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1726 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1727 		    uap, REG_ICR);
1728 
1729 	/*
1730 	 * Save interrupts enable mask, and enable RX interrupts in case if
1731 	 * the interrupt is used for NMI entry.
1732 	 */
1733 	uap->im = pl011_read(uap, REG_IMSC);
1734 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1735 
1736 	if (dev_get_platdata(uap->port.dev)) {
1737 		struct amba_pl011_data *plat;
1738 
1739 		plat = dev_get_platdata(uap->port.dev);
1740 		if (plat->init)
1741 			plat->init();
1742 	}
1743 	return 0;
1744 }
1745 
1746 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1747 {
1748 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1749 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1750 }
1751 
1752 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1753 {
1754 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1755 	if (pl011_split_lcrh(uap)) {
1756 		int i;
1757 		/*
1758 		 * Wait 10 PCLKs before writing LCRH_TX register,
1759 		 * to get this delay write read only register 10 times
1760 		 */
1761 		for (i = 0; i < 10; ++i)
1762 			pl011_write(0xff, uap, REG_MIS);
1763 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1764 	}
1765 }
1766 
1767 static int pl011_allocate_irq(struct uart_amba_port *uap)
1768 {
1769 	pl011_write(uap->im, uap, REG_IMSC);
1770 
1771 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1772 }
1773 
1774 /*
1775  * Enable interrupts, only timeouts when using DMA
1776  * if initial RX DMA job failed, start in interrupt mode
1777  * as well.
1778  */
1779 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1780 {
1781 	unsigned long flags;
1782 	unsigned int i;
1783 
1784 	uart_port_lock_irqsave(&uap->port, &flags);
1785 
1786 	/* Clear out any spuriously appearing RX interrupts */
1787 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1788 
1789 	/*
1790 	 * RXIS is asserted only when the RX FIFO transitions from below
1791 	 * to above the trigger threshold.  If the RX FIFO is already
1792 	 * full to the threshold this can't happen and RXIS will now be
1793 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1794 	 */
1795 	for (i = 0; i < uap->fifosize * 2; ++i) {
1796 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1797 			break;
1798 
1799 		pl011_read(uap, REG_DR);
1800 	}
1801 
1802 	uap->im = UART011_RTIM;
1803 	if (!pl011_dma_rx_running(uap))
1804 		uap->im |= UART011_RXIM;
1805 	pl011_write(uap->im, uap, REG_IMSC);
1806 	uart_port_unlock_irqrestore(&uap->port, flags);
1807 }
1808 
1809 static void pl011_unthrottle_rx(struct uart_port *port)
1810 {
1811 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1812 	unsigned long flags;
1813 
1814 	uart_port_lock_irqsave(&uap->port, &flags);
1815 
1816 	uap->im = UART011_RTIM;
1817 	if (!pl011_dma_rx_running(uap))
1818 		uap->im |= UART011_RXIM;
1819 
1820 	pl011_write(uap->im, uap, REG_IMSC);
1821 
1822 	uart_port_unlock_irqrestore(&uap->port, flags);
1823 }
1824 
1825 static int pl011_startup(struct uart_port *port)
1826 {
1827 	struct uart_amba_port *uap =
1828 	    container_of(port, struct uart_amba_port, port);
1829 	unsigned int cr;
1830 	int retval;
1831 
1832 	retval = pl011_hwinit(port);
1833 	if (retval)
1834 		goto clk_dis;
1835 
1836 	retval = pl011_allocate_irq(uap);
1837 	if (retval)
1838 		goto clk_dis;
1839 
1840 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1841 
1842 	uart_port_lock_irq(&uap->port);
1843 
1844 	cr = pl011_read(uap, REG_CR);
1845 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1846 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1847 
1848 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1849 		cr |= UART011_CR_TXE;
1850 
1851 	pl011_write(cr, uap, REG_CR);
1852 
1853 	uart_port_unlock_irq(&uap->port);
1854 
1855 	/*
1856 	 * initialise the old status of the modem signals
1857 	 */
1858 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1859 
1860 	/* Startup DMA */
1861 	pl011_dma_startup(uap);
1862 
1863 	pl011_enable_interrupts(uap);
1864 
1865 	return 0;
1866 
1867  clk_dis:
1868 	clk_disable_unprepare(uap->clk);
1869 	return retval;
1870 }
1871 
1872 static int sbsa_uart_startup(struct uart_port *port)
1873 {
1874 	struct uart_amba_port *uap =
1875 		container_of(port, struct uart_amba_port, port);
1876 	int retval;
1877 
1878 	retval = pl011_hwinit(port);
1879 	if (retval)
1880 		return retval;
1881 
1882 	retval = pl011_allocate_irq(uap);
1883 	if (retval)
1884 		return retval;
1885 
1886 	/* The SBSA UART does not support any modem status lines. */
1887 	uap->old_status = 0;
1888 
1889 	pl011_enable_interrupts(uap);
1890 
1891 	return 0;
1892 }
1893 
1894 static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1895 {
1896 	unsigned long val;
1897 
1898 	val = pl011_read(uap, lcrh);
1899 	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1900 	pl011_write(val, uap, lcrh);
1901 }
1902 
1903 /*
1904  * disable the port. It should not disable RTS and DTR.
1905  * Also RTS and DTR state should be preserved to restore
1906  * it during startup().
1907  */
1908 static void pl011_disable_uart(struct uart_amba_port *uap)
1909 {
1910 	unsigned int cr;
1911 
1912 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1913 	uart_port_lock_irq(&uap->port);
1914 	cr = pl011_read(uap, REG_CR);
1915 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1916 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1917 	pl011_write(cr, uap, REG_CR);
1918 	uart_port_unlock_irq(&uap->port);
1919 
1920 	/*
1921 	 * disable break condition and fifos
1922 	 */
1923 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1924 	if (pl011_split_lcrh(uap))
1925 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1926 }
1927 
1928 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1929 {
1930 	uart_port_lock_irq(&uap->port);
1931 
1932 	/* mask all interrupts and clear all pending ones */
1933 	uap->im = 0;
1934 	pl011_write(uap->im, uap, REG_IMSC);
1935 	pl011_write(0xffff, uap, REG_ICR);
1936 
1937 	uart_port_unlock_irq(&uap->port);
1938 }
1939 
1940 static void pl011_shutdown(struct uart_port *port)
1941 {
1942 	struct uart_amba_port *uap =
1943 		container_of(port, struct uart_amba_port, port);
1944 
1945 	pl011_disable_interrupts(uap);
1946 
1947 	pl011_dma_shutdown(uap);
1948 
1949 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1950 		pl011_rs485_tx_stop(uap);
1951 
1952 	free_irq(uap->port.irq, uap);
1953 
1954 	pl011_disable_uart(uap);
1955 
1956 	/*
1957 	 * Shut down the clock producer
1958 	 */
1959 	clk_disable_unprepare(uap->clk);
1960 	/* Optionally let pins go into sleep states */
1961 	pinctrl_pm_select_sleep_state(port->dev);
1962 
1963 	if (dev_get_platdata(uap->port.dev)) {
1964 		struct amba_pl011_data *plat;
1965 
1966 		plat = dev_get_platdata(uap->port.dev);
1967 		if (plat->exit)
1968 			plat->exit();
1969 	}
1970 
1971 	if (uap->port.ops->flush_buffer)
1972 		uap->port.ops->flush_buffer(port);
1973 }
1974 
1975 static void sbsa_uart_shutdown(struct uart_port *port)
1976 {
1977 	struct uart_amba_port *uap =
1978 		container_of(port, struct uart_amba_port, port);
1979 
1980 	pl011_disable_interrupts(uap);
1981 
1982 	free_irq(uap->port.irq, uap);
1983 
1984 	if (uap->port.ops->flush_buffer)
1985 		uap->port.ops->flush_buffer(port);
1986 }
1987 
1988 static void
1989 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1990 {
1991 	port->read_status_mask = UART011_DR_OE | 255;
1992 	if (termios->c_iflag & INPCK)
1993 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1994 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1995 		port->read_status_mask |= UART011_DR_BE;
1996 
1997 	/*
1998 	 * Characters to ignore
1999 	 */
2000 	port->ignore_status_mask = 0;
2001 	if (termios->c_iflag & IGNPAR)
2002 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2003 	if (termios->c_iflag & IGNBRK) {
2004 		port->ignore_status_mask |= UART011_DR_BE;
2005 		/*
2006 		 * If we're ignoring parity and break indicators,
2007 		 * ignore overruns too (for real raw support).
2008 		 */
2009 		if (termios->c_iflag & IGNPAR)
2010 			port->ignore_status_mask |= UART011_DR_OE;
2011 	}
2012 
2013 	/*
2014 	 * Ignore all characters if CREAD is not set.
2015 	 */
2016 	if ((termios->c_cflag & CREAD) == 0)
2017 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2018 }
2019 
2020 static void
2021 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2022 		  const struct ktermios *old)
2023 {
2024 	struct uart_amba_port *uap =
2025 	    container_of(port, struct uart_amba_port, port);
2026 	unsigned int lcr_h, old_cr;
2027 	unsigned long flags;
2028 	unsigned int baud, quot, clkdiv;
2029 	unsigned int bits;
2030 
2031 	if (uap->vendor->oversampling)
2032 		clkdiv = 8;
2033 	else
2034 		clkdiv = 16;
2035 
2036 	/*
2037 	 * Ask the core to calculate the divisor for us.
2038 	 */
2039 	baud = uart_get_baud_rate(port, termios, old, 0,
2040 				  port->uartclk / clkdiv);
2041 #ifdef CONFIG_DMA_ENGINE
2042 	/*
2043 	 * Adjust RX DMA polling rate with baud rate if not specified.
2044 	 */
2045 	if (uap->dmarx.auto_poll_rate)
2046 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2047 #endif
2048 
2049 	if (baud > port->uartclk / 16)
2050 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2051 	else
2052 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2053 
2054 	switch (termios->c_cflag & CSIZE) {
2055 	case CS5:
2056 		lcr_h = UART01x_LCRH_WLEN_5;
2057 		break;
2058 	case CS6:
2059 		lcr_h = UART01x_LCRH_WLEN_6;
2060 		break;
2061 	case CS7:
2062 		lcr_h = UART01x_LCRH_WLEN_7;
2063 		break;
2064 	default: // CS8
2065 		lcr_h = UART01x_LCRH_WLEN_8;
2066 		break;
2067 	}
2068 	if (termios->c_cflag & CSTOPB)
2069 		lcr_h |= UART01x_LCRH_STP2;
2070 	if (termios->c_cflag & PARENB) {
2071 		lcr_h |= UART01x_LCRH_PEN;
2072 		if (!(termios->c_cflag & PARODD))
2073 			lcr_h |= UART01x_LCRH_EPS;
2074 		if (termios->c_cflag & CMSPAR)
2075 			lcr_h |= UART011_LCRH_SPS;
2076 	}
2077 	if (uap->fifosize > 1)
2078 		lcr_h |= UART01x_LCRH_FEN;
2079 
2080 	bits = tty_get_frame_size(termios->c_cflag);
2081 
2082 	uart_port_lock_irqsave(port, &flags);
2083 
2084 	/*
2085 	 * Update the per-port timeout.
2086 	 */
2087 	uart_update_timeout(port, termios->c_cflag, baud);
2088 
2089 	/*
2090 	 * Calculate the approximated time it takes to transmit one character
2091 	 * with the given baud rate. We use this as the poll interval when we
2092 	 * wait for the tx queue to empty.
2093 	 */
2094 	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2095 
2096 	pl011_setup_status_masks(port, termios);
2097 
2098 	if (UART_ENABLE_MS(port, termios->c_cflag))
2099 		pl011_enable_ms(port);
2100 
2101 	if (port->rs485.flags & SER_RS485_ENABLED)
2102 		termios->c_cflag &= ~CRTSCTS;
2103 
2104 	old_cr = pl011_read(uap, REG_CR);
2105 
2106 	if (termios->c_cflag & CRTSCTS) {
2107 		if (old_cr & UART011_CR_RTS)
2108 			old_cr |= UART011_CR_RTSEN;
2109 
2110 		old_cr |= UART011_CR_CTSEN;
2111 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2112 	} else {
2113 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2114 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2115 	}
2116 
2117 	if (uap->vendor->oversampling) {
2118 		if (baud > port->uartclk / 16)
2119 			old_cr |= ST_UART011_CR_OVSFACT;
2120 		else
2121 			old_cr &= ~ST_UART011_CR_OVSFACT;
2122 	}
2123 
2124 	/*
2125 	 * Workaround for the ST Micro oversampling variants to
2126 	 * increase the bitrate slightly, by lowering the divisor,
2127 	 * to avoid delayed sampling of start bit at high speeds,
2128 	 * else we see data corruption.
2129 	 */
2130 	if (uap->vendor->oversampling) {
2131 		if (baud >= 3000000 && baud < 3250000 && quot > 1)
2132 			quot -= 1;
2133 		else if (baud > 3250000 && quot > 2)
2134 			quot -= 2;
2135 	}
2136 	/* Set baud rate */
2137 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2138 	pl011_write(quot >> 6, uap, REG_IBRD);
2139 
2140 	/*
2141 	 * ----------v----------v----------v----------v-----
2142 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2143 	 * REG_FBRD & REG_IBRD.
2144 	 * ----------^----------^----------^----------^-----
2145 	 */
2146 	pl011_write_lcr_h(uap, lcr_h);
2147 
2148 	/*
2149 	 * Receive was disabled by pl011_disable_uart during shutdown.
2150 	 * Need to reenable receive if you need to use a tty_driver
2151 	 * returns from tty_find_polling_driver() after a port shutdown.
2152 	 */
2153 	old_cr |= UART011_CR_RXE;
2154 	pl011_write(old_cr, uap, REG_CR);
2155 
2156 	uart_port_unlock_irqrestore(port, flags);
2157 }
2158 
2159 static void
2160 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2161 		      const struct ktermios *old)
2162 {
2163 	struct uart_amba_port *uap =
2164 	    container_of(port, struct uart_amba_port, port);
2165 	unsigned long flags;
2166 
2167 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2168 
2169 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2170 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2171 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2172 	termios->c_cflag |= CS8 | CLOCAL;
2173 
2174 	uart_port_lock_irqsave(port, &flags);
2175 	uart_update_timeout(port, CS8, uap->fixed_baud);
2176 	pl011_setup_status_masks(port, termios);
2177 	uart_port_unlock_irqrestore(port, flags);
2178 }
2179 
2180 static const char *pl011_type(struct uart_port *port)
2181 {
2182 	struct uart_amba_port *uap =
2183 	    container_of(port, struct uart_amba_port, port);
2184 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2185 }
2186 
2187 /*
2188  * Configure/autoconfigure the port.
2189  */
2190 static void pl011_config_port(struct uart_port *port, int flags)
2191 {
2192 	if (flags & UART_CONFIG_TYPE)
2193 		port->type = PORT_AMBA;
2194 }
2195 
2196 /*
2197  * verify the new serial_struct (for TIOCSSERIAL).
2198  */
2199 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2200 {
2201 	int ret = 0;
2202 
2203 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2204 		ret = -EINVAL;
2205 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2206 		ret = -EINVAL;
2207 	if (ser->baud_base < 9600)
2208 		ret = -EINVAL;
2209 	if (port->mapbase != (unsigned long)ser->iomem_base)
2210 		ret = -EINVAL;
2211 	return ret;
2212 }
2213 
2214 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2215 			      struct serial_rs485 *rs485)
2216 {
2217 	struct uart_amba_port *uap =
2218 		container_of(port, struct uart_amba_port, port);
2219 
2220 	if (port->rs485.flags & SER_RS485_ENABLED)
2221 		pl011_rs485_tx_stop(uap);
2222 
2223 	/* Make sure auto RTS is disabled */
2224 	if (rs485->flags & SER_RS485_ENABLED) {
2225 		u32 cr = pl011_read(uap, REG_CR);
2226 
2227 		cr &= ~UART011_CR_RTSEN;
2228 		pl011_write(cr, uap, REG_CR);
2229 		port->status &= ~UPSTAT_AUTORTS;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 static const struct uart_ops amba_pl011_pops = {
2236 	.tx_empty	= pl011_tx_empty,
2237 	.set_mctrl	= pl011_set_mctrl,
2238 	.get_mctrl	= pl011_get_mctrl,
2239 	.stop_tx	= pl011_stop_tx,
2240 	.start_tx	= pl011_start_tx,
2241 	.stop_rx	= pl011_stop_rx,
2242 	.throttle	= pl011_throttle_rx,
2243 	.unthrottle	= pl011_unthrottle_rx,
2244 	.enable_ms	= pl011_enable_ms,
2245 	.break_ctl	= pl011_break_ctl,
2246 	.startup	= pl011_startup,
2247 	.shutdown	= pl011_shutdown,
2248 	.flush_buffer	= pl011_dma_flush_buffer,
2249 	.set_termios	= pl011_set_termios,
2250 	.type		= pl011_type,
2251 	.config_port	= pl011_config_port,
2252 	.verify_port	= pl011_verify_port,
2253 #ifdef CONFIG_CONSOLE_POLL
2254 	.poll_init     = pl011_hwinit,
2255 	.poll_get_char = pl011_get_poll_char,
2256 	.poll_put_char = pl011_put_poll_char,
2257 #endif
2258 };
2259 
2260 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2261 {
2262 }
2263 
2264 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2265 {
2266 	return 0;
2267 }
2268 
2269 static const struct uart_ops sbsa_uart_pops = {
2270 	.tx_empty	= pl011_tx_empty,
2271 	.set_mctrl	= sbsa_uart_set_mctrl,
2272 	.get_mctrl	= sbsa_uart_get_mctrl,
2273 	.stop_tx	= pl011_stop_tx,
2274 	.start_tx	= pl011_start_tx,
2275 	.stop_rx	= pl011_stop_rx,
2276 	.startup	= sbsa_uart_startup,
2277 	.shutdown	= sbsa_uart_shutdown,
2278 	.set_termios	= sbsa_uart_set_termios,
2279 	.type		= pl011_type,
2280 	.config_port	= pl011_config_port,
2281 	.verify_port	= pl011_verify_port,
2282 #ifdef CONFIG_CONSOLE_POLL
2283 	.poll_init     = pl011_hwinit,
2284 	.poll_get_char = pl011_get_poll_char,
2285 	.poll_put_char = pl011_put_poll_char,
2286 #endif
2287 };
2288 
2289 static struct uart_amba_port *amba_ports[UART_NR];
2290 
2291 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2292 
2293 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2294 {
2295 	struct uart_amba_port *uap =
2296 	    container_of(port, struct uart_amba_port, port);
2297 
2298 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2299 		cpu_relax();
2300 	pl011_write(ch, uap, REG_DR);
2301 }
2302 
2303 static void
2304 pl011_console_write(struct console *co, const char *s, unsigned int count)
2305 {
2306 	struct uart_amba_port *uap = amba_ports[co->index];
2307 	unsigned int old_cr = 0, new_cr;
2308 	unsigned long flags;
2309 	int locked = 1;
2310 
2311 	clk_enable(uap->clk);
2312 
2313 	if (oops_in_progress)
2314 		locked = uart_port_trylock_irqsave(&uap->port, &flags);
2315 	else
2316 		uart_port_lock_irqsave(&uap->port, &flags);
2317 
2318 	/*
2319 	 *	First save the CR then disable the interrupts
2320 	 */
2321 	if (!uap->vendor->always_enabled) {
2322 		old_cr = pl011_read(uap, REG_CR);
2323 		new_cr = old_cr & ~UART011_CR_CTSEN;
2324 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2325 		pl011_write(new_cr, uap, REG_CR);
2326 	}
2327 
2328 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2329 
2330 	/*
2331 	 *	Finally, wait for transmitter to become empty and restore the
2332 	 *	TCR. Allow feature register bits to be inverted to work around
2333 	 *	errata.
2334 	 */
2335 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2336 						& uap->vendor->fr_busy)
2337 		cpu_relax();
2338 	if (!uap->vendor->always_enabled)
2339 		pl011_write(old_cr, uap, REG_CR);
2340 
2341 	if (locked)
2342 		uart_port_unlock_irqrestore(&uap->port, flags);
2343 
2344 	clk_disable(uap->clk);
2345 }
2346 
2347 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2348 				      int *parity, int *bits)
2349 {
2350 	unsigned int lcr_h, ibrd, fbrd;
2351 
2352 	if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2353 		return;
2354 
2355 	lcr_h = pl011_read(uap, REG_LCRH_TX);
2356 
2357 	*parity = 'n';
2358 	if (lcr_h & UART01x_LCRH_PEN) {
2359 		if (lcr_h & UART01x_LCRH_EPS)
2360 			*parity = 'e';
2361 		else
2362 			*parity = 'o';
2363 	}
2364 
2365 	if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2366 		*bits = 7;
2367 	else
2368 		*bits = 8;
2369 
2370 	ibrd = pl011_read(uap, REG_IBRD);
2371 	fbrd = pl011_read(uap, REG_FBRD);
2372 
2373 	*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2374 
2375 	if (uap->vendor->oversampling &&
2376 	    (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2377 		*baud *= 2;
2378 }
2379 
2380 static int pl011_console_setup(struct console *co, char *options)
2381 {
2382 	struct uart_amba_port *uap;
2383 	int baud = 38400;
2384 	int bits = 8;
2385 	int parity = 'n';
2386 	int flow = 'n';
2387 	int ret;
2388 
2389 	/*
2390 	 * Check whether an invalid uart number has been specified, and
2391 	 * if so, search for the first available port that does have
2392 	 * console support.
2393 	 */
2394 	if (co->index >= UART_NR)
2395 		co->index = 0;
2396 	uap = amba_ports[co->index];
2397 	if (!uap)
2398 		return -ENODEV;
2399 
2400 	/* Allow pins to be muxed in and configured */
2401 	pinctrl_pm_select_default_state(uap->port.dev);
2402 
2403 	ret = clk_prepare(uap->clk);
2404 	if (ret)
2405 		return ret;
2406 
2407 	if (dev_get_platdata(uap->port.dev)) {
2408 		struct amba_pl011_data *plat;
2409 
2410 		plat = dev_get_platdata(uap->port.dev);
2411 		if (plat->init)
2412 			plat->init();
2413 	}
2414 
2415 	uap->port.uartclk = clk_get_rate(uap->clk);
2416 
2417 	if (uap->vendor->fixed_options) {
2418 		baud = uap->fixed_baud;
2419 	} else {
2420 		if (options)
2421 			uart_parse_options(options,
2422 					   &baud, &parity, &bits, &flow);
2423 		else
2424 			pl011_console_get_options(uap, &baud, &parity, &bits);
2425 	}
2426 
2427 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2428 }
2429 
2430 /**
2431  *	pl011_console_match - non-standard console matching
2432  *	@co:	  registering console
2433  *	@name:	  name from console command line
2434  *	@idx:	  index from console command line
2435  *	@options: ptr to option string from console command line
2436  *
2437  *	Only attempts to match console command lines of the form:
2438  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2439  *	    console=pl011,0x<addr>[,<options>]
2440  *	This form is used to register an initial earlycon boot console and
2441  *	replace it with the amba_console at pl011 driver init.
2442  *
2443  *	Performs console setup for a match (as required by interface)
2444  *	If no <options> are specified, then assume the h/w is already setup.
2445  *
2446  *	Returns 0 if console matches; otherwise non-zero to use default matching
2447  */
2448 static int pl011_console_match(struct console *co, char *name, int idx,
2449 			       char *options)
2450 {
2451 	unsigned char iotype;
2452 	resource_size_t addr;
2453 	int i;
2454 
2455 	/*
2456 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2457 	 * have a distinct console name, so make sure we check for that.
2458 	 * The actual implementation of the erratum occurs in the probe
2459 	 * function.
2460 	 */
2461 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2462 		return -ENODEV;
2463 
2464 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2465 		return -ENODEV;
2466 
2467 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2468 		return -ENODEV;
2469 
2470 	/* try to match the port specified on the command line */
2471 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2472 		struct uart_port *port;
2473 
2474 		if (!amba_ports[i])
2475 			continue;
2476 
2477 		port = &amba_ports[i]->port;
2478 
2479 		if (port->mapbase != addr)
2480 			continue;
2481 
2482 		co->index = i;
2483 		uart_port_set_cons(port, co);
2484 		return pl011_console_setup(co, options);
2485 	}
2486 
2487 	return -ENODEV;
2488 }
2489 
2490 static struct uart_driver amba_reg;
2491 static struct console amba_console = {
2492 	.name		= "ttyAMA",
2493 	.write		= pl011_console_write,
2494 	.device		= uart_console_device,
2495 	.setup		= pl011_console_setup,
2496 	.match		= pl011_console_match,
2497 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2498 	.index		= -1,
2499 	.data		= &amba_reg,
2500 };
2501 
2502 #define AMBA_CONSOLE	(&amba_console)
2503 
2504 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2505 {
2506 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2507 		cpu_relax();
2508 	writel(c, port->membase + UART01x_DR);
2509 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2510 		cpu_relax();
2511 }
2512 
2513 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2514 {
2515 	struct earlycon_device *dev = con->data;
2516 
2517 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2518 }
2519 
2520 static void pl011_putc(struct uart_port *port, unsigned char c)
2521 {
2522 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2523 		cpu_relax();
2524 	if (port->iotype == UPIO_MEM32)
2525 		writel(c, port->membase + UART01x_DR);
2526 	else
2527 		writeb(c, port->membase + UART01x_DR);
2528 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2529 		cpu_relax();
2530 }
2531 
2532 static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2533 {
2534 	struct earlycon_device *dev = con->data;
2535 
2536 	uart_console_write(&dev->port, s, n, pl011_putc);
2537 }
2538 
2539 #ifdef CONFIG_CONSOLE_POLL
2540 static int pl011_getc(struct uart_port *port)
2541 {
2542 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2543 		return NO_POLL_CHAR;
2544 
2545 	if (port->iotype == UPIO_MEM32)
2546 		return readl(port->membase + UART01x_DR);
2547 	else
2548 		return readb(port->membase + UART01x_DR);
2549 }
2550 
2551 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2552 {
2553 	struct earlycon_device *dev = con->data;
2554 	int ch, num_read = 0;
2555 
2556 	while (num_read < n) {
2557 		ch = pl011_getc(&dev->port);
2558 		if (ch == NO_POLL_CHAR)
2559 			break;
2560 
2561 		s[num_read++] = ch;
2562 	}
2563 
2564 	return num_read;
2565 }
2566 #else
2567 #define pl011_early_read NULL
2568 #endif
2569 
2570 /*
2571  * On non-ACPI systems, earlycon is enabled by specifying
2572  * "earlycon=pl011,<address>" on the kernel command line.
2573  *
2574  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2575  * by specifying only "earlycon" on the command line.  Because it requires
2576  * SPCR, the console starts after ACPI is parsed, which is later than a
2577  * traditional early console.
2578  *
2579  * To get the traditional early console that starts before ACPI is parsed,
2580  * specify the full "earlycon=pl011,<address>" option.
2581  */
2582 static int __init pl011_early_console_setup(struct earlycon_device *device,
2583 					    const char *opt)
2584 {
2585 	if (!device->port.membase)
2586 		return -ENODEV;
2587 
2588 	device->con->write = pl011_early_write;
2589 	device->con->read = pl011_early_read;
2590 
2591 	return 0;
2592 }
2593 
2594 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2595 
2596 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2597 
2598 /*
2599  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2600  * Erratum 44, traditional earlycon can be enabled by specifying
2601  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2602  *
2603  * Alternatively, you can just specify "earlycon", and the early console
2604  * will be enabled with the information from the SPCR table.  In this
2605  * case, the SPCR code will detect the need for the E44 work-around,
2606  * and set the console name to "qdf2400_e44".
2607  */
2608 static int __init
2609 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2610 				const char *opt)
2611 {
2612 	if (!device->port.membase)
2613 		return -ENODEV;
2614 
2615 	device->con->write = qdf2400_e44_early_write;
2616 	return 0;
2617 }
2618 
2619 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2620 
2621 #else
2622 #define AMBA_CONSOLE	NULL
2623 #endif
2624 
2625 static struct uart_driver amba_reg = {
2626 	.owner			= THIS_MODULE,
2627 	.driver_name		= "ttyAMA",
2628 	.dev_name		= "ttyAMA",
2629 	.major			= SERIAL_AMBA_MAJOR,
2630 	.minor			= SERIAL_AMBA_MINOR,
2631 	.nr			= UART_NR,
2632 	.cons			= AMBA_CONSOLE,
2633 };
2634 
2635 static int pl011_probe_dt_alias(int index, struct device *dev)
2636 {
2637 	struct device_node *np;
2638 	static bool seen_dev_with_alias;
2639 	static bool seen_dev_without_alias;
2640 	int ret = index;
2641 
2642 	if (!IS_ENABLED(CONFIG_OF))
2643 		return ret;
2644 
2645 	np = dev->of_node;
2646 	if (!np)
2647 		return ret;
2648 
2649 	ret = of_alias_get_id(np, "serial");
2650 	if (ret < 0) {
2651 		seen_dev_without_alias = true;
2652 		ret = index;
2653 	} else {
2654 		seen_dev_with_alias = true;
2655 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2656 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2657 			ret = index;
2658 		}
2659 	}
2660 
2661 	if (seen_dev_with_alias && seen_dev_without_alias)
2662 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2663 
2664 	return ret;
2665 }
2666 
2667 /* unregisters the driver also if no more ports are left */
2668 static void pl011_unregister_port(struct uart_amba_port *uap)
2669 {
2670 	int i;
2671 	bool busy = false;
2672 
2673 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2674 		if (amba_ports[i] == uap)
2675 			amba_ports[i] = NULL;
2676 		else if (amba_ports[i])
2677 			busy = true;
2678 	}
2679 	pl011_dma_remove(uap);
2680 	if (!busy)
2681 		uart_unregister_driver(&amba_reg);
2682 }
2683 
2684 static int pl011_find_free_port(void)
2685 {
2686 	int i;
2687 
2688 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2689 		if (!amba_ports[i])
2690 			return i;
2691 
2692 	return -EBUSY;
2693 }
2694 
2695 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2696 			    struct resource *mmiobase, int index)
2697 {
2698 	void __iomem *base;
2699 	int ret;
2700 
2701 	base = devm_ioremap_resource(dev, mmiobase);
2702 	if (IS_ERR(base))
2703 		return PTR_ERR(base);
2704 
2705 	index = pl011_probe_dt_alias(index, dev);
2706 
2707 	uap->port.dev = dev;
2708 	uap->port.mapbase = mmiobase->start;
2709 	uap->port.membase = base;
2710 	uap->port.fifosize = uap->fifosize;
2711 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2712 	uap->port.flags = UPF_BOOT_AUTOCONF;
2713 	uap->port.line = index;
2714 
2715 	ret = uart_get_rs485_mode(&uap->port);
2716 	if (ret)
2717 		return ret;
2718 
2719 	amba_ports[index] = uap;
2720 
2721 	return 0;
2722 }
2723 
2724 static int pl011_register_port(struct uart_amba_port *uap)
2725 {
2726 	int ret, i;
2727 
2728 	/* Ensure interrupts from this UART are masked and cleared */
2729 	pl011_write(0, uap, REG_IMSC);
2730 	pl011_write(0xffff, uap, REG_ICR);
2731 
2732 	if (!amba_reg.state) {
2733 		ret = uart_register_driver(&amba_reg);
2734 		if (ret < 0) {
2735 			dev_err(uap->port.dev,
2736 				"Failed to register AMBA-PL011 driver\n");
2737 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2738 				if (amba_ports[i] == uap)
2739 					amba_ports[i] = NULL;
2740 			return ret;
2741 		}
2742 	}
2743 
2744 	ret = uart_add_one_port(&amba_reg, &uap->port);
2745 	if (ret)
2746 		pl011_unregister_port(uap);
2747 
2748 	return ret;
2749 }
2750 
2751 static const struct serial_rs485 pl011_rs485_supported = {
2752 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2753 		 SER_RS485_RX_DURING_TX,
2754 	.delay_rts_before_send = 1,
2755 	.delay_rts_after_send = 1,
2756 };
2757 
2758 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2759 {
2760 	struct uart_amba_port *uap;
2761 	struct vendor_data *vendor = id->data;
2762 	int portnr, ret;
2763 	u32 val;
2764 
2765 	portnr = pl011_find_free_port();
2766 	if (portnr < 0)
2767 		return portnr;
2768 
2769 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2770 			   GFP_KERNEL);
2771 	if (!uap)
2772 		return -ENOMEM;
2773 
2774 	uap->clk = devm_clk_get(&dev->dev, NULL);
2775 	if (IS_ERR(uap->clk))
2776 		return PTR_ERR(uap->clk);
2777 
2778 	uap->reg_offset = vendor->reg_offset;
2779 	uap->vendor = vendor;
2780 	uap->fifosize = vendor->get_fifosize(dev);
2781 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2782 	uap->port.irq = dev->irq[0];
2783 	uap->port.ops = &amba_pl011_pops;
2784 	uap->port.rs485_config = pl011_rs485_config;
2785 	uap->port.rs485_supported = pl011_rs485_supported;
2786 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2787 
2788 	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2789 		switch (val) {
2790 		case 1:
2791 			uap->port.iotype = UPIO_MEM;
2792 			break;
2793 		case 4:
2794 			uap->port.iotype = UPIO_MEM32;
2795 			break;
2796 		default:
2797 			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2798 				 val);
2799 			return -EINVAL;
2800 		}
2801 	}
2802 
2803 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2804 	if (ret)
2805 		return ret;
2806 
2807 	amba_set_drvdata(dev, uap);
2808 
2809 	return pl011_register_port(uap);
2810 }
2811 
2812 static void pl011_remove(struct amba_device *dev)
2813 {
2814 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2815 
2816 	uart_remove_one_port(&amba_reg, &uap->port);
2817 	pl011_unregister_port(uap);
2818 }
2819 
2820 #ifdef CONFIG_PM_SLEEP
2821 static int pl011_suspend(struct device *dev)
2822 {
2823 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2824 
2825 	if (!uap)
2826 		return -EINVAL;
2827 
2828 	return uart_suspend_port(&amba_reg, &uap->port);
2829 }
2830 
2831 static int pl011_resume(struct device *dev)
2832 {
2833 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2834 
2835 	if (!uap)
2836 		return -EINVAL;
2837 
2838 	return uart_resume_port(&amba_reg, &uap->port);
2839 }
2840 #endif
2841 
2842 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2843 
2844 #ifdef CONFIG_ACPI_SPCR_TABLE
2845 static void qpdf2400_erratum44_workaround(struct device *dev,
2846 					  struct uart_amba_port *uap)
2847 {
2848 	if (!qdf2400_e44_present)
2849 		return;
2850 
2851 	dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2852 	uap->vendor = &vendor_qdt_qdf2400_e44;
2853 }
2854 #else
2855 static void qpdf2400_erratum44_workaround(struct device *dev,
2856 					  struct uart_amba_port *uap)
2857 { /* empty */ }
2858 #endif
2859 
2860 static int sbsa_uart_probe(struct platform_device *pdev)
2861 {
2862 	struct uart_amba_port *uap;
2863 	struct resource *r;
2864 	int portnr, ret;
2865 	int baudrate;
2866 
2867 	/*
2868 	 * Check the mandatory baud rate parameter in the DT node early
2869 	 * so that we can easily exit with the error.
2870 	 */
2871 	if (pdev->dev.of_node) {
2872 		struct device_node *np = pdev->dev.of_node;
2873 
2874 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2875 		if (ret)
2876 			return ret;
2877 	} else {
2878 		baudrate = 115200;
2879 	}
2880 
2881 	portnr = pl011_find_free_port();
2882 	if (portnr < 0)
2883 		return portnr;
2884 
2885 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2886 			   GFP_KERNEL);
2887 	if (!uap)
2888 		return -ENOMEM;
2889 
2890 	ret = platform_get_irq(pdev, 0);
2891 	if (ret < 0)
2892 		return ret;
2893 	uap->port.irq	= ret;
2894 
2895 	uap->vendor = &vendor_sbsa;
2896 	qpdf2400_erratum44_workaround(&pdev->dev, uap);
2897 
2898 	uap->reg_offset	= uap->vendor->reg_offset;
2899 	uap->fifosize	= 32;
2900 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2901 	uap->port.ops	= &sbsa_uart_pops;
2902 	uap->fixed_baud = baudrate;
2903 
2904 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2905 
2906 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2907 
2908 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2909 	if (ret)
2910 		return ret;
2911 
2912 	platform_set_drvdata(pdev, uap);
2913 
2914 	return pl011_register_port(uap);
2915 }
2916 
2917 static void sbsa_uart_remove(struct platform_device *pdev)
2918 {
2919 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2920 
2921 	uart_remove_one_port(&amba_reg, &uap->port);
2922 	pl011_unregister_port(uap);
2923 }
2924 
2925 static const struct of_device_id sbsa_uart_of_match[] = {
2926 	{ .compatible = "arm,sbsa-uart", },
2927 	{},
2928 };
2929 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2930 
2931 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2932 	{ "ARMH0011", 0 },
2933 	{ "ARMHB000", 0 },
2934 	{},
2935 };
2936 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2937 
2938 static struct platform_driver arm_sbsa_uart_platform_driver = {
2939 	.probe		= sbsa_uart_probe,
2940 	.remove_new	= sbsa_uart_remove,
2941 	.driver	= {
2942 		.name	= "sbsa-uart",
2943 		.pm	= &pl011_dev_pm_ops,
2944 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2945 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2946 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2947 	},
2948 };
2949 
2950 static const struct amba_id pl011_ids[] = {
2951 	{
2952 		.id	= 0x00041011,
2953 		.mask	= 0x000fffff,
2954 		.data	= &vendor_arm,
2955 	},
2956 	{
2957 		.id	= 0x00380802,
2958 		.mask	= 0x00ffffff,
2959 		.data	= &vendor_st,
2960 	},
2961 	{ 0, 0 },
2962 };
2963 
2964 MODULE_DEVICE_TABLE(amba, pl011_ids);
2965 
2966 static struct amba_driver pl011_driver = {
2967 	.drv = {
2968 		.name	= "uart-pl011",
2969 		.pm	= &pl011_dev_pm_ops,
2970 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2971 	},
2972 	.id_table	= pl011_ids,
2973 	.probe		= pl011_probe,
2974 	.remove		= pl011_remove,
2975 };
2976 
2977 static int __init pl011_init(void)
2978 {
2979 	pr_info("Serial: AMBA PL011 UART driver\n");
2980 
2981 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2982 		pr_warn("could not register SBSA UART platform driver\n");
2983 	return amba_driver_register(&pl011_driver);
2984 }
2985 
2986 static void __exit pl011_exit(void)
2987 {
2988 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2989 	amba_driver_unregister(&pl011_driver);
2990 }
2991 
2992 /*
2993  * While this can be a module, if builtin it's most likely the console
2994  * So let's leave module_exit but move module_init to an earlier place
2995  */
2996 arch_initcall(pl011_init);
2997 module_exit(pl011_exit);
2998 
2999 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3000 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3001 MODULE_LICENSE("GPL");
3002