1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for AMBA serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Copyright 1999 ARM Limited 8 * Copyright (C) 2000 Deep Blue Solutions Ltd. 9 * Copyright (C) 2010 ST-Ericsson SA 10 * 11 * This is a generic driver for ARM AMBA-type serial ports. They 12 * have a lot of 16550-like features, but are not register compatible. 13 * Note that although they do have CTS, DCD and DSR inputs, they do 14 * not have an RI input, nor do they have DTR or RTS outputs. If 15 * required, these have to be supplied via some other means (eg, GPIO) 16 * and hooked into this driver. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/ioport.h> 21 #include <linux/init.h> 22 #include <linux/console.h> 23 #include <linux/platform_device.h> 24 #include <linux/sysrq.h> 25 #include <linux/device.h> 26 #include <linux/tty.h> 27 #include <linux/tty_flip.h> 28 #include <linux/serial_core.h> 29 #include <linux/serial.h> 30 #include <linux/amba/bus.h> 31 #include <linux/amba/serial.h> 32 #include <linux/clk.h> 33 #include <linux/slab.h> 34 #include <linux/dmaengine.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/scatterlist.h> 37 #include <linux/delay.h> 38 #include <linux/types.h> 39 #include <linux/of.h> 40 #include <linux/pinctrl/consumer.h> 41 #include <linux/sizes.h> 42 #include <linux/io.h> 43 #include <linux/acpi.h> 44 45 #define UART_NR 14 46 47 #define SERIAL_AMBA_MAJOR 204 48 #define SERIAL_AMBA_MINOR 64 49 #define SERIAL_AMBA_NR UART_NR 50 51 #define AMBA_ISR_PASS_LIMIT 256 52 53 #define UART_DR_ERROR (UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE) 54 #define UART_DUMMY_DR_RX BIT(16) 55 56 enum { 57 REG_DR, 58 REG_ST_DMAWM, 59 REG_ST_TIMEOUT, 60 REG_FR, 61 REG_LCRH_RX, 62 REG_LCRH_TX, 63 REG_IBRD, 64 REG_FBRD, 65 REG_CR, 66 REG_IFLS, 67 REG_IMSC, 68 REG_RIS, 69 REG_MIS, 70 REG_ICR, 71 REG_DMACR, 72 REG_ST_XFCR, 73 REG_ST_XON1, 74 REG_ST_XON2, 75 REG_ST_XOFF1, 76 REG_ST_XOFF2, 77 REG_ST_ITCR, 78 REG_ST_ITIP, 79 REG_ST_ABCR, 80 REG_ST_ABIMSC, 81 82 /* The size of the array - must be last */ 83 REG_ARRAY_SIZE, 84 }; 85 86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = { 87 [REG_DR] = UART01x_DR, 88 [REG_FR] = UART01x_FR, 89 [REG_LCRH_RX] = UART011_LCRH, 90 [REG_LCRH_TX] = UART011_LCRH, 91 [REG_IBRD] = UART011_IBRD, 92 [REG_FBRD] = UART011_FBRD, 93 [REG_CR] = UART011_CR, 94 [REG_IFLS] = UART011_IFLS, 95 [REG_IMSC] = UART011_IMSC, 96 [REG_RIS] = UART011_RIS, 97 [REG_MIS] = UART011_MIS, 98 [REG_ICR] = UART011_ICR, 99 [REG_DMACR] = UART011_DMACR, 100 }; 101 102 /* There is by now at least one vendor with differing details, so handle it */ 103 struct vendor_data { 104 const u16 *reg_offset; 105 unsigned int ifls; 106 unsigned int fr_busy; 107 unsigned int fr_dsr; 108 unsigned int fr_cts; 109 unsigned int fr_ri; 110 unsigned int inv_fr; 111 bool access_32b; 112 bool oversampling; 113 bool dma_threshold; 114 bool cts_event_workaround; 115 bool always_enabled; 116 bool fixed_options; 117 118 unsigned int (*get_fifosize)(struct amba_device *dev); 119 }; 120 121 static unsigned int get_fifosize_arm(struct amba_device *dev) 122 { 123 return amba_rev(dev) < 3 ? 16 : 32; 124 } 125 126 static struct vendor_data vendor_arm = { 127 .reg_offset = pl011_std_offsets, 128 .ifls = UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8, 129 .fr_busy = UART01x_FR_BUSY, 130 .fr_dsr = UART01x_FR_DSR, 131 .fr_cts = UART01x_FR_CTS, 132 .fr_ri = UART011_FR_RI, 133 .oversampling = false, 134 .dma_threshold = false, 135 .cts_event_workaround = false, 136 .always_enabled = false, 137 .fixed_options = false, 138 .get_fifosize = get_fifosize_arm, 139 }; 140 141 static const struct vendor_data vendor_sbsa = { 142 .reg_offset = pl011_std_offsets, 143 .fr_busy = UART01x_FR_BUSY, 144 .fr_dsr = UART01x_FR_DSR, 145 .fr_cts = UART01x_FR_CTS, 146 .fr_ri = UART011_FR_RI, 147 .access_32b = true, 148 .oversampling = false, 149 .dma_threshold = false, 150 .cts_event_workaround = false, 151 .always_enabled = true, 152 .fixed_options = true, 153 }; 154 155 #ifdef CONFIG_ACPI_SPCR_TABLE 156 static const struct vendor_data vendor_qdt_qdf2400_e44 = { 157 .reg_offset = pl011_std_offsets, 158 .fr_busy = UART011_FR_TXFE, 159 .fr_dsr = UART01x_FR_DSR, 160 .fr_cts = UART01x_FR_CTS, 161 .fr_ri = UART011_FR_RI, 162 .inv_fr = UART011_FR_TXFE, 163 .access_32b = true, 164 .oversampling = false, 165 .dma_threshold = false, 166 .cts_event_workaround = false, 167 .always_enabled = true, 168 .fixed_options = true, 169 }; 170 #endif 171 172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = { 173 [REG_DR] = UART01x_DR, 174 [REG_ST_DMAWM] = ST_UART011_DMAWM, 175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT, 176 [REG_FR] = UART01x_FR, 177 [REG_LCRH_RX] = ST_UART011_LCRH_RX, 178 [REG_LCRH_TX] = ST_UART011_LCRH_TX, 179 [REG_IBRD] = UART011_IBRD, 180 [REG_FBRD] = UART011_FBRD, 181 [REG_CR] = UART011_CR, 182 [REG_IFLS] = UART011_IFLS, 183 [REG_IMSC] = UART011_IMSC, 184 [REG_RIS] = UART011_RIS, 185 [REG_MIS] = UART011_MIS, 186 [REG_ICR] = UART011_ICR, 187 [REG_DMACR] = UART011_DMACR, 188 [REG_ST_XFCR] = ST_UART011_XFCR, 189 [REG_ST_XON1] = ST_UART011_XON1, 190 [REG_ST_XON2] = ST_UART011_XON2, 191 [REG_ST_XOFF1] = ST_UART011_XOFF1, 192 [REG_ST_XOFF2] = ST_UART011_XOFF2, 193 [REG_ST_ITCR] = ST_UART011_ITCR, 194 [REG_ST_ITIP] = ST_UART011_ITIP, 195 [REG_ST_ABCR] = ST_UART011_ABCR, 196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC, 197 }; 198 199 static unsigned int get_fifosize_st(struct amba_device *dev) 200 { 201 return 64; 202 } 203 204 static struct vendor_data vendor_st = { 205 .reg_offset = pl011_st_offsets, 206 .ifls = UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF, 207 .fr_busy = UART01x_FR_BUSY, 208 .fr_dsr = UART01x_FR_DSR, 209 .fr_cts = UART01x_FR_CTS, 210 .fr_ri = UART011_FR_RI, 211 .oversampling = true, 212 .dma_threshold = true, 213 .cts_event_workaround = true, 214 .always_enabled = false, 215 .fixed_options = false, 216 .get_fifosize = get_fifosize_st, 217 }; 218 219 /* Deals with DMA transactions */ 220 221 struct pl011_dmabuf { 222 dma_addr_t dma; 223 size_t len; 224 char *buf; 225 }; 226 227 struct pl011_dmarx_data { 228 struct dma_chan *chan; 229 struct completion complete; 230 bool use_buf_b; 231 struct pl011_dmabuf dbuf_a; 232 struct pl011_dmabuf dbuf_b; 233 dma_cookie_t cookie; 234 bool running; 235 struct timer_list timer; 236 unsigned int last_residue; 237 unsigned long last_jiffies; 238 bool auto_poll_rate; 239 unsigned int poll_rate; 240 unsigned int poll_timeout; 241 }; 242 243 struct pl011_dmatx_data { 244 struct dma_chan *chan; 245 dma_addr_t dma; 246 size_t len; 247 char *buf; 248 bool queued; 249 }; 250 251 /* 252 * We wrap our port structure around the generic uart_port. 253 */ 254 struct uart_amba_port { 255 struct uart_port port; 256 const u16 *reg_offset; 257 struct clk *clk; 258 const struct vendor_data *vendor; 259 unsigned int im; /* interrupt mask */ 260 unsigned int old_status; 261 unsigned int fifosize; /* vendor-specific */ 262 unsigned int fixed_baud; /* vendor-set fixed baud rate */ 263 char type[12]; 264 bool rs485_tx_started; 265 unsigned int rs485_tx_drain_interval; /* usecs */ 266 #ifdef CONFIG_DMA_ENGINE 267 /* DMA stuff */ 268 unsigned int dmacr; /* dma control reg */ 269 bool using_tx_dma; 270 bool using_rx_dma; 271 struct pl011_dmarx_data dmarx; 272 struct pl011_dmatx_data dmatx; 273 bool dma_probed; 274 #endif 275 }; 276 277 static unsigned int pl011_tx_empty(struct uart_port *port); 278 279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap, 280 unsigned int reg) 281 { 282 return uap->reg_offset[reg]; 283 } 284 285 static unsigned int pl011_read(const struct uart_amba_port *uap, 286 unsigned int reg) 287 { 288 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); 289 290 return (uap->port.iotype == UPIO_MEM32) ? 291 readl_relaxed(addr) : readw_relaxed(addr); 292 } 293 294 static void pl011_write(unsigned int val, const struct uart_amba_port *uap, 295 unsigned int reg) 296 { 297 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); 298 299 if (uap->port.iotype == UPIO_MEM32) 300 writel_relaxed(val, addr); 301 else 302 writew_relaxed(val, addr); 303 } 304 305 /* 306 * Reads up to 256 characters from the FIFO or until it's empty and 307 * inserts them into the TTY layer. Returns the number of characters 308 * read from the FIFO. 309 */ 310 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 311 { 312 unsigned int ch, fifotaken; 313 int sysrq; 314 u16 status; 315 u8 flag; 316 317 for (fifotaken = 0; fifotaken != 256; fifotaken++) { 318 status = pl011_read(uap, REG_FR); 319 if (status & UART01x_FR_RXFE) 320 break; 321 322 /* Take chars from the FIFO and update status */ 323 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX; 324 flag = TTY_NORMAL; 325 uap->port.icount.rx++; 326 327 if (unlikely(ch & UART_DR_ERROR)) { 328 if (ch & UART011_DR_BE) { 329 ch &= ~(UART011_DR_FE | UART011_DR_PE); 330 uap->port.icount.brk++; 331 if (uart_handle_break(&uap->port)) 332 continue; 333 } else if (ch & UART011_DR_PE) { 334 uap->port.icount.parity++; 335 } else if (ch & UART011_DR_FE) { 336 uap->port.icount.frame++; 337 } 338 if (ch & UART011_DR_OE) 339 uap->port.icount.overrun++; 340 341 ch &= uap->port.read_status_mask; 342 343 if (ch & UART011_DR_BE) 344 flag = TTY_BREAK; 345 else if (ch & UART011_DR_PE) 346 flag = TTY_PARITY; 347 else if (ch & UART011_DR_FE) 348 flag = TTY_FRAME; 349 } 350 351 sysrq = uart_prepare_sysrq_char(&uap->port, ch & 255); 352 if (!sysrq) 353 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 354 } 355 356 return fifotaken; 357 } 358 359 /* 360 * All the DMA operation mode stuff goes inside this ifdef. 361 * This assumes that you have a generic DMA device interface, 362 * no custom DMA interfaces are supported. 363 */ 364 #ifdef CONFIG_DMA_ENGINE 365 366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 367 368 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db, 369 enum dma_data_direction dir) 370 { 371 db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE, 372 &db->dma, GFP_KERNEL); 373 if (!db->buf) 374 return -ENOMEM; 375 db->len = PL011_DMA_BUFFER_SIZE; 376 377 return 0; 378 } 379 380 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db, 381 enum dma_data_direction dir) 382 { 383 if (db->buf) { 384 dma_free_coherent(chan->device->dev, 385 PL011_DMA_BUFFER_SIZE, db->buf, db->dma); 386 } 387 } 388 389 static void pl011_dma_probe(struct uart_amba_port *uap) 390 { 391 /* DMA is the sole user of the platform data right now */ 392 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); 393 struct device *dev = uap->port.dev; 394 struct dma_slave_config tx_conf = { 395 .dst_addr = uap->port.mapbase + 396 pl011_reg_to_offset(uap, REG_DR), 397 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 398 .direction = DMA_MEM_TO_DEV, 399 .dst_maxburst = uap->fifosize >> 1, 400 .device_fc = false, 401 }; 402 struct dma_chan *chan; 403 dma_cap_mask_t mask; 404 405 uap->dma_probed = true; 406 chan = dma_request_chan(dev, "tx"); 407 if (IS_ERR(chan)) { 408 if (PTR_ERR(chan) == -EPROBE_DEFER) { 409 uap->dma_probed = false; 410 return; 411 } 412 413 /* We need platform data */ 414 if (!plat || !plat->dma_filter) { 415 dev_dbg(uap->port.dev, "no DMA platform data\n"); 416 return; 417 } 418 419 /* Try to acquire a generic DMA engine slave TX channel */ 420 dma_cap_zero(mask); 421 dma_cap_set(DMA_SLAVE, mask); 422 423 chan = dma_request_channel(mask, plat->dma_filter, 424 plat->dma_tx_param); 425 if (!chan) { 426 dev_err(uap->port.dev, "no TX DMA channel!\n"); 427 return; 428 } 429 } 430 431 dmaengine_slave_config(chan, &tx_conf); 432 uap->dmatx.chan = chan; 433 434 dev_info(uap->port.dev, "DMA channel TX %s\n", 435 dma_chan_name(uap->dmatx.chan)); 436 437 /* Optionally make use of an RX channel as well */ 438 chan = dma_request_chan(dev, "rx"); 439 440 if (IS_ERR(chan) && plat && plat->dma_rx_param) { 441 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 442 443 if (!chan) { 444 dev_err(uap->port.dev, "no RX DMA channel!\n"); 445 return; 446 } 447 } 448 449 if (!IS_ERR(chan)) { 450 struct dma_slave_config rx_conf = { 451 .src_addr = uap->port.mapbase + 452 pl011_reg_to_offset(uap, REG_DR), 453 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 454 .direction = DMA_DEV_TO_MEM, 455 .src_maxburst = uap->fifosize >> 2, 456 .device_fc = false, 457 }; 458 struct dma_slave_caps caps; 459 460 /* 461 * Some DMA controllers provide information on their capabilities. 462 * If the controller does, check for suitable residue processing 463 * otherwise assime all is well. 464 */ 465 if (dma_get_slave_caps(chan, &caps) == 0) { 466 if (caps.residue_granularity == 467 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) { 468 dma_release_channel(chan); 469 dev_info(uap->port.dev, 470 "RX DMA disabled - no residue processing\n"); 471 return; 472 } 473 } 474 dmaengine_slave_config(chan, &rx_conf); 475 uap->dmarx.chan = chan; 476 477 uap->dmarx.auto_poll_rate = false; 478 if (plat && plat->dma_rx_poll_enable) { 479 /* Set poll rate if specified. */ 480 if (plat->dma_rx_poll_rate) { 481 uap->dmarx.auto_poll_rate = false; 482 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 483 } else { 484 /* 485 * 100 ms defaults to poll rate if not 486 * specified. This will be adjusted with 487 * the baud rate at set_termios. 488 */ 489 uap->dmarx.auto_poll_rate = true; 490 uap->dmarx.poll_rate = 100; 491 } 492 /* 3 secs defaults poll_timeout if not specified. */ 493 if (plat->dma_rx_poll_timeout) 494 uap->dmarx.poll_timeout = 495 plat->dma_rx_poll_timeout; 496 else 497 uap->dmarx.poll_timeout = 3000; 498 } else if (!plat && dev->of_node) { 499 uap->dmarx.auto_poll_rate = 500 of_property_read_bool(dev->of_node, "auto-poll"); 501 if (uap->dmarx.auto_poll_rate) { 502 u32 x; 503 504 if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0) 505 uap->dmarx.poll_rate = x; 506 else 507 uap->dmarx.poll_rate = 100; 508 if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0) 509 uap->dmarx.poll_timeout = x; 510 else 511 uap->dmarx.poll_timeout = 3000; 512 } 513 } 514 dev_info(uap->port.dev, "DMA channel RX %s\n", 515 dma_chan_name(uap->dmarx.chan)); 516 } 517 } 518 519 static void pl011_dma_remove(struct uart_amba_port *uap) 520 { 521 if (uap->dmatx.chan) 522 dma_release_channel(uap->dmatx.chan); 523 if (uap->dmarx.chan) 524 dma_release_channel(uap->dmarx.chan); 525 } 526 527 /* Forward declare these for the refill routine */ 528 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 529 static void pl011_start_tx_pio(struct uart_amba_port *uap); 530 531 /* 532 * The current DMA TX buffer has been sent. 533 * Try to queue up another DMA buffer. 534 */ 535 static void pl011_dma_tx_callback(void *data) 536 { 537 struct uart_amba_port *uap = data; 538 struct tty_port *tport = &uap->port.state->port; 539 struct pl011_dmatx_data *dmatx = &uap->dmatx; 540 unsigned long flags; 541 u16 dmacr; 542 543 uart_port_lock_irqsave(&uap->port, &flags); 544 if (uap->dmatx.queued) 545 dma_unmap_single(dmatx->chan->device->dev, dmatx->dma, 546 dmatx->len, DMA_TO_DEVICE); 547 548 dmacr = uap->dmacr; 549 uap->dmacr = dmacr & ~UART011_TXDMAE; 550 pl011_write(uap->dmacr, uap, REG_DMACR); 551 552 /* 553 * If TX DMA was disabled, it means that we've stopped the DMA for 554 * some reason (eg, XOFF received, or we want to send an X-char.) 555 * 556 * Note: we need to be careful here of a potential race between DMA 557 * and the rest of the driver - if the driver disables TX DMA while 558 * a TX buffer completing, we must update the tx queued status to 559 * get further refills (hence we check dmacr). 560 */ 561 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 562 kfifo_is_empty(&tport->xmit_fifo)) { 563 uap->dmatx.queued = false; 564 uart_port_unlock_irqrestore(&uap->port, flags); 565 return; 566 } 567 568 if (pl011_dma_tx_refill(uap) <= 0) 569 /* 570 * We didn't queue a DMA buffer for some reason, but we 571 * have data pending to be sent. Re-enable the TX IRQ. 572 */ 573 pl011_start_tx_pio(uap); 574 575 uart_port_unlock_irqrestore(&uap->port, flags); 576 } 577 578 /* 579 * Try to refill the TX DMA buffer. 580 * Locking: called with port lock held and IRQs disabled. 581 * Returns: 582 * 1 if we queued up a TX DMA buffer. 583 * 0 if we didn't want to handle this by DMA 584 * <0 on error 585 */ 586 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 587 { 588 struct pl011_dmatx_data *dmatx = &uap->dmatx; 589 struct dma_chan *chan = dmatx->chan; 590 struct dma_device *dma_dev = chan->device; 591 struct dma_async_tx_descriptor *desc; 592 struct tty_port *tport = &uap->port.state->port; 593 unsigned int count; 594 595 /* 596 * Try to avoid the overhead involved in using DMA if the 597 * transaction fits in the first half of the FIFO, by using 598 * the standard interrupt handling. This ensures that we 599 * issue a uart_write_wakeup() at the appropriate time. 600 */ 601 count = kfifo_len(&tport->xmit_fifo); 602 if (count < (uap->fifosize >> 1)) { 603 uap->dmatx.queued = false; 604 return 0; 605 } 606 607 /* 608 * Bodge: don't send the last character by DMA, as this 609 * will prevent XON from notifying us to restart DMA. 610 */ 611 count -= 1; 612 613 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 614 if (count > PL011_DMA_BUFFER_SIZE) 615 count = PL011_DMA_BUFFER_SIZE; 616 617 count = kfifo_out_peek(&tport->xmit_fifo, dmatx->buf, count); 618 dmatx->len = count; 619 dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count, 620 DMA_TO_DEVICE); 621 if (dmatx->dma == DMA_MAPPING_ERROR) { 622 uap->dmatx.queued = false; 623 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 624 return -EBUSY; 625 } 626 627 desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV, 628 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 629 if (!desc) { 630 dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE); 631 uap->dmatx.queued = false; 632 /* 633 * If DMA cannot be used right now, we complete this 634 * transaction via IRQ and let the TTY layer retry. 635 */ 636 dev_dbg(uap->port.dev, "TX DMA busy\n"); 637 return -EBUSY; 638 } 639 640 /* Some data to go along to the callback */ 641 desc->callback = pl011_dma_tx_callback; 642 desc->callback_param = uap; 643 644 /* All errors should happen at prepare time */ 645 dmaengine_submit(desc); 646 647 /* Fire the DMA transaction */ 648 dma_dev->device_issue_pending(chan); 649 650 uap->dmacr |= UART011_TXDMAE; 651 pl011_write(uap->dmacr, uap, REG_DMACR); 652 uap->dmatx.queued = true; 653 654 /* 655 * Now we know that DMA will fire, so advance the ring buffer 656 * with the stuff we just dispatched. 657 */ 658 uart_xmit_advance(&uap->port, count); 659 660 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 661 uart_write_wakeup(&uap->port); 662 663 return 1; 664 } 665 666 /* 667 * We received a transmit interrupt without a pending X-char but with 668 * pending characters. 669 * Locking: called with port lock held and IRQs disabled. 670 * Returns: 671 * false if we want to use PIO to transmit 672 * true if we queued a DMA buffer 673 */ 674 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 675 { 676 if (!uap->using_tx_dma) 677 return false; 678 679 /* 680 * If we already have a TX buffer queued, but received a 681 * TX interrupt, it will be because we've just sent an X-char. 682 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 683 */ 684 if (uap->dmatx.queued) { 685 uap->dmacr |= UART011_TXDMAE; 686 pl011_write(uap->dmacr, uap, REG_DMACR); 687 uap->im &= ~UART011_TXIM; 688 pl011_write(uap->im, uap, REG_IMSC); 689 return true; 690 } 691 692 /* 693 * We don't have a TX buffer queued, so try to queue one. 694 * If we successfully queued a buffer, mask the TX IRQ. 695 */ 696 if (pl011_dma_tx_refill(uap) > 0) { 697 uap->im &= ~UART011_TXIM; 698 pl011_write(uap->im, uap, REG_IMSC); 699 return true; 700 } 701 return false; 702 } 703 704 /* 705 * Stop the DMA transmit (eg, due to received XOFF). 706 * Locking: called with port lock held and IRQs disabled. 707 */ 708 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 709 { 710 if (uap->dmatx.queued) { 711 uap->dmacr &= ~UART011_TXDMAE; 712 pl011_write(uap->dmacr, uap, REG_DMACR); 713 } 714 } 715 716 /* 717 * Try to start a DMA transmit, or in the case of an XON/OFF 718 * character queued for send, try to get that character out ASAP. 719 * Locking: called with port lock held and IRQs disabled. 720 * Returns: 721 * false if we want the TX IRQ to be enabled 722 * true if we have a buffer queued 723 */ 724 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 725 { 726 u16 dmacr; 727 728 if (!uap->using_tx_dma) 729 return false; 730 731 if (!uap->port.x_char) { 732 /* no X-char, try to push chars out in DMA mode */ 733 bool ret = true; 734 735 if (!uap->dmatx.queued) { 736 if (pl011_dma_tx_refill(uap) > 0) { 737 uap->im &= ~UART011_TXIM; 738 pl011_write(uap->im, uap, REG_IMSC); 739 } else { 740 ret = false; 741 } 742 } else if (!(uap->dmacr & UART011_TXDMAE)) { 743 uap->dmacr |= UART011_TXDMAE; 744 pl011_write(uap->dmacr, uap, REG_DMACR); 745 } 746 return ret; 747 } 748 749 /* 750 * We have an X-char to send. Disable DMA to prevent it loading 751 * the TX fifo, and then see if we can stuff it into the FIFO. 752 */ 753 dmacr = uap->dmacr; 754 uap->dmacr &= ~UART011_TXDMAE; 755 pl011_write(uap->dmacr, uap, REG_DMACR); 756 757 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) { 758 /* 759 * No space in the FIFO, so enable the transmit interrupt 760 * so we know when there is space. Note that once we've 761 * loaded the character, we should just re-enable DMA. 762 */ 763 return false; 764 } 765 766 pl011_write(uap->port.x_char, uap, REG_DR); 767 uap->port.icount.tx++; 768 uap->port.x_char = 0; 769 770 /* Success - restore the DMA state */ 771 uap->dmacr = dmacr; 772 pl011_write(dmacr, uap, REG_DMACR); 773 774 return true; 775 } 776 777 /* 778 * Flush the transmit buffer. 779 * Locking: called with port lock held and IRQs disabled. 780 */ 781 static void pl011_dma_flush_buffer(struct uart_port *port) 782 __releases(&uap->port.lock) 783 __acquires(&uap->port.lock) 784 { 785 struct uart_amba_port *uap = 786 container_of(port, struct uart_amba_port, port); 787 788 if (!uap->using_tx_dma) 789 return; 790 791 dmaengine_terminate_async(uap->dmatx.chan); 792 793 if (uap->dmatx.queued) { 794 dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma, 795 uap->dmatx.len, DMA_TO_DEVICE); 796 uap->dmatx.queued = false; 797 uap->dmacr &= ~UART011_TXDMAE; 798 pl011_write(uap->dmacr, uap, REG_DMACR); 799 } 800 } 801 802 static void pl011_dma_rx_callback(void *data); 803 804 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 805 { 806 struct dma_chan *rxchan = uap->dmarx.chan; 807 struct pl011_dmarx_data *dmarx = &uap->dmarx; 808 struct dma_async_tx_descriptor *desc; 809 struct pl011_dmabuf *dbuf; 810 811 if (!rxchan) 812 return -EIO; 813 814 /* Start the RX DMA job */ 815 dbuf = uap->dmarx.use_buf_b ? 816 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a; 817 desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len, 818 DMA_DEV_TO_MEM, 819 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 820 /* 821 * If the DMA engine is busy and cannot prepare a 822 * channel, no big deal, the driver will fall back 823 * to interrupt mode as a result of this error code. 824 */ 825 if (!desc) { 826 uap->dmarx.running = false; 827 dmaengine_terminate_all(rxchan); 828 return -EBUSY; 829 } 830 831 /* Some data to go along to the callback */ 832 desc->callback = pl011_dma_rx_callback; 833 desc->callback_param = uap; 834 dmarx->cookie = dmaengine_submit(desc); 835 dma_async_issue_pending(rxchan); 836 837 uap->dmacr |= UART011_RXDMAE; 838 pl011_write(uap->dmacr, uap, REG_DMACR); 839 uap->dmarx.running = true; 840 841 uap->im &= ~UART011_RXIM; 842 pl011_write(uap->im, uap, REG_IMSC); 843 844 return 0; 845 } 846 847 /* 848 * This is called when either the DMA job is complete, or 849 * the FIFO timeout interrupt occurred. This must be called 850 * with the port spinlock uap->port.lock held. 851 */ 852 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 853 u32 pending, bool use_buf_b, 854 bool readfifo) 855 { 856 struct tty_port *port = &uap->port.state->port; 857 struct pl011_dmabuf *dbuf = use_buf_b ? 858 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a; 859 int dma_count = 0; 860 u32 fifotaken = 0; /* only used for vdbg() */ 861 862 struct pl011_dmarx_data *dmarx = &uap->dmarx; 863 int dmataken = 0; 864 865 if (uap->dmarx.poll_rate) { 866 /* The data can be taken by polling */ 867 dmataken = dbuf->len - dmarx->last_residue; 868 /* Recalculate the pending size */ 869 if (pending >= dmataken) 870 pending -= dmataken; 871 } 872 873 /* Pick the remain data from the DMA */ 874 if (pending) { 875 /* 876 * First take all chars in the DMA pipe, then look in the FIFO. 877 * Note that tty_insert_flip_buf() tries to take as many chars 878 * as it can. 879 */ 880 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending); 881 882 uap->port.icount.rx += dma_count; 883 if (dma_count < pending) 884 dev_warn(uap->port.dev, 885 "couldn't insert all characters (TTY is full?)\n"); 886 } 887 888 /* Reset the last_residue for Rx DMA poll */ 889 if (uap->dmarx.poll_rate) 890 dmarx->last_residue = dbuf->len; 891 892 /* 893 * Only continue with trying to read the FIFO if all DMA chars have 894 * been taken first. 895 */ 896 if (dma_count == pending && readfifo) { 897 /* Clear any error flags */ 898 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | 899 UART011_FEIS, uap, REG_ICR); 900 901 /* 902 * If we read all the DMA'd characters, and we had an 903 * incomplete buffer, that could be due to an rx error, or 904 * maybe we just timed out. Read any pending chars and check 905 * the error status. 906 * 907 * Error conditions will only occur in the FIFO, these will 908 * trigger an immediate interrupt and stop the DMA job, so we 909 * will always find the error in the FIFO, never in the DMA 910 * buffer. 911 */ 912 fifotaken = pl011_fifo_to_tty(uap); 913 } 914 915 dev_vdbg(uap->port.dev, 916 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 917 dma_count, fifotaken); 918 tty_flip_buffer_push(port); 919 } 920 921 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 922 { 923 struct pl011_dmarx_data *dmarx = &uap->dmarx; 924 struct dma_chan *rxchan = dmarx->chan; 925 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ? 926 &dmarx->dbuf_b : &dmarx->dbuf_a; 927 size_t pending; 928 struct dma_tx_state state; 929 enum dma_status dmastat; 930 931 /* 932 * Pause the transfer so we can trust the current counter, 933 * do this before we pause the PL011 block, else we may 934 * overflow the FIFO. 935 */ 936 if (dmaengine_pause(rxchan)) 937 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 938 dmastat = rxchan->device->device_tx_status(rxchan, 939 dmarx->cookie, &state); 940 if (dmastat != DMA_PAUSED) 941 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 942 943 /* Disable RX DMA - incoming data will wait in the FIFO */ 944 uap->dmacr &= ~UART011_RXDMAE; 945 pl011_write(uap->dmacr, uap, REG_DMACR); 946 uap->dmarx.running = false; 947 948 pending = dbuf->len - state.residue; 949 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 950 /* Then we terminate the transfer - we now know our residue */ 951 dmaengine_terminate_all(rxchan); 952 953 /* 954 * This will take the chars we have so far and insert 955 * into the framework. 956 */ 957 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 958 959 /* Switch buffer & re-trigger DMA job */ 960 dmarx->use_buf_b = !dmarx->use_buf_b; 961 if (pl011_dma_rx_trigger_dma(uap)) { 962 dev_dbg(uap->port.dev, 963 "could not retrigger RX DMA job fall back to interrupt mode\n"); 964 uap->im |= UART011_RXIM; 965 pl011_write(uap->im, uap, REG_IMSC); 966 } 967 } 968 969 static void pl011_dma_rx_callback(void *data) 970 { 971 struct uart_amba_port *uap = data; 972 struct pl011_dmarx_data *dmarx = &uap->dmarx; 973 struct dma_chan *rxchan = dmarx->chan; 974 bool lastbuf = dmarx->use_buf_b; 975 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ? 976 &dmarx->dbuf_b : &dmarx->dbuf_a; 977 size_t pending; 978 struct dma_tx_state state; 979 int ret; 980 981 /* 982 * This completion interrupt occurs typically when the 983 * RX buffer is totally stuffed but no timeout has yet 984 * occurred. When that happens, we just want the RX 985 * routine to flush out the secondary DMA buffer while 986 * we immediately trigger the next DMA job. 987 */ 988 uart_port_lock_irq(&uap->port); 989 /* 990 * Rx data can be taken by the UART interrupts during 991 * the DMA irq handler. So we check the residue here. 992 */ 993 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 994 pending = dbuf->len - state.residue; 995 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 996 /* Then we terminate the transfer - we now know our residue */ 997 dmaengine_terminate_all(rxchan); 998 999 uap->dmarx.running = false; 1000 dmarx->use_buf_b = !lastbuf; 1001 ret = pl011_dma_rx_trigger_dma(uap); 1002 1003 pl011_dma_rx_chars(uap, pending, lastbuf, false); 1004 uart_unlock_and_check_sysrq(&uap->port); 1005 /* 1006 * Do this check after we picked the DMA chars so we don't 1007 * get some IRQ immediately from RX. 1008 */ 1009 if (ret) { 1010 dev_dbg(uap->port.dev, 1011 "could not retrigger RX DMA job fall back to interrupt mode\n"); 1012 uap->im |= UART011_RXIM; 1013 pl011_write(uap->im, uap, REG_IMSC); 1014 } 1015 } 1016 1017 /* 1018 * Stop accepting received characters, when we're shutting down or 1019 * suspending this port. 1020 * Locking: called with port lock held and IRQs disabled. 1021 */ 1022 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1023 { 1024 if (!uap->using_rx_dma) 1025 return; 1026 1027 /* FIXME. Just disable the DMA enable */ 1028 uap->dmacr &= ~UART011_RXDMAE; 1029 pl011_write(uap->dmacr, uap, REG_DMACR); 1030 } 1031 1032 /* 1033 * Timer handler for Rx DMA polling. 1034 * Every polling, It checks the residue in the dma buffer and transfer 1035 * data to the tty. Also, last_residue is updated for the next polling. 1036 */ 1037 static void pl011_dma_rx_poll(struct timer_list *t) 1038 { 1039 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer); 1040 struct tty_port *port = &uap->port.state->port; 1041 struct pl011_dmarx_data *dmarx = &uap->dmarx; 1042 struct dma_chan *rxchan = uap->dmarx.chan; 1043 unsigned long flags; 1044 unsigned int dmataken = 0; 1045 unsigned int size = 0; 1046 struct pl011_dmabuf *dbuf; 1047 int dma_count; 1048 struct dma_tx_state state; 1049 1050 dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a; 1051 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 1052 if (likely(state.residue < dmarx->last_residue)) { 1053 dmataken = dbuf->len - dmarx->last_residue; 1054 size = dmarx->last_residue - state.residue; 1055 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, 1056 size); 1057 if (dma_count == size) 1058 dmarx->last_residue = state.residue; 1059 dmarx->last_jiffies = jiffies; 1060 } 1061 tty_flip_buffer_push(port); 1062 1063 /* 1064 * If no data is received in poll_timeout, the driver will fall back 1065 * to interrupt mode. We will retrigger DMA at the first interrupt. 1066 */ 1067 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 1068 > uap->dmarx.poll_timeout) { 1069 uart_port_lock_irqsave(&uap->port, &flags); 1070 pl011_dma_rx_stop(uap); 1071 uap->im |= UART011_RXIM; 1072 pl011_write(uap->im, uap, REG_IMSC); 1073 uart_port_unlock_irqrestore(&uap->port, flags); 1074 1075 uap->dmarx.running = false; 1076 dmaengine_terminate_all(rxchan); 1077 del_timer(&uap->dmarx.timer); 1078 } else { 1079 mod_timer(&uap->dmarx.timer, 1080 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 1081 } 1082 } 1083 1084 static void pl011_dma_startup(struct uart_amba_port *uap) 1085 { 1086 int ret; 1087 1088 if (!uap->dma_probed) 1089 pl011_dma_probe(uap); 1090 1091 if (!uap->dmatx.chan) 1092 return; 1093 1094 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA); 1095 if (!uap->dmatx.buf) { 1096 uap->port.fifosize = uap->fifosize; 1097 return; 1098 } 1099 1100 uap->dmatx.len = PL011_DMA_BUFFER_SIZE; 1101 1102 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 1103 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 1104 uap->using_tx_dma = true; 1105 1106 if (!uap->dmarx.chan) 1107 goto skip_rx; 1108 1109 /* Allocate and map DMA RX buffers */ 1110 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a, 1111 DMA_FROM_DEVICE); 1112 if (ret) { 1113 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1114 "RX buffer A", ret); 1115 goto skip_rx; 1116 } 1117 1118 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b, 1119 DMA_FROM_DEVICE); 1120 if (ret) { 1121 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1122 "RX buffer B", ret); 1123 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, 1124 DMA_FROM_DEVICE); 1125 goto skip_rx; 1126 } 1127 1128 uap->using_rx_dma = true; 1129 1130 skip_rx: 1131 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1132 uap->dmacr |= UART011_DMAONERR; 1133 pl011_write(uap->dmacr, uap, REG_DMACR); 1134 1135 /* 1136 * ST Micro variants has some specific dma burst threshold 1137 * compensation. Set this to 16 bytes, so burst will only 1138 * be issued above/below 16 bytes. 1139 */ 1140 if (uap->vendor->dma_threshold) 1141 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1142 uap, REG_ST_DMAWM); 1143 1144 if (uap->using_rx_dma) { 1145 if (pl011_dma_rx_trigger_dma(uap)) 1146 dev_dbg(uap->port.dev, 1147 "could not trigger initial RX DMA job, fall back to interrupt mode\n"); 1148 if (uap->dmarx.poll_rate) { 1149 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0); 1150 mod_timer(&uap->dmarx.timer, 1151 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 1152 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1153 uap->dmarx.last_jiffies = jiffies; 1154 } 1155 } 1156 } 1157 1158 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1159 { 1160 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1161 return; 1162 1163 /* Disable RX and TX DMA */ 1164 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy) 1165 cpu_relax(); 1166 1167 uart_port_lock_irq(&uap->port); 1168 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1169 pl011_write(uap->dmacr, uap, REG_DMACR); 1170 uart_port_unlock_irq(&uap->port); 1171 1172 if (uap->using_tx_dma) { 1173 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1174 dmaengine_terminate_all(uap->dmatx.chan); 1175 if (uap->dmatx.queued) { 1176 dma_unmap_single(uap->dmatx.chan->device->dev, 1177 uap->dmatx.dma, uap->dmatx.len, 1178 DMA_TO_DEVICE); 1179 uap->dmatx.queued = false; 1180 } 1181 1182 kfree(uap->dmatx.buf); 1183 uap->using_tx_dma = false; 1184 } 1185 1186 if (uap->using_rx_dma) { 1187 dmaengine_terminate_all(uap->dmarx.chan); 1188 /* Clean up the RX DMA */ 1189 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE); 1190 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE); 1191 if (uap->dmarx.poll_rate) 1192 del_timer_sync(&uap->dmarx.timer); 1193 uap->using_rx_dma = false; 1194 } 1195 } 1196 1197 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1198 { 1199 return uap->using_rx_dma; 1200 } 1201 1202 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1203 { 1204 return uap->using_rx_dma && uap->dmarx.running; 1205 } 1206 1207 #else 1208 /* Blank functions if the DMA engine is not available */ 1209 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1210 { 1211 } 1212 1213 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1214 { 1215 } 1216 1217 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1218 { 1219 } 1220 1221 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1222 { 1223 return false; 1224 } 1225 1226 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1227 { 1228 } 1229 1230 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1231 { 1232 return false; 1233 } 1234 1235 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1236 { 1237 } 1238 1239 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1240 { 1241 } 1242 1243 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1244 { 1245 return -EIO; 1246 } 1247 1248 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1249 { 1250 return false; 1251 } 1252 1253 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1254 { 1255 return false; 1256 } 1257 1258 #define pl011_dma_flush_buffer NULL 1259 #endif 1260 1261 static void pl011_rs485_tx_stop(struct uart_amba_port *uap) 1262 { 1263 /* 1264 * To be on the safe side only time out after twice as many iterations 1265 * as fifo size. 1266 */ 1267 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2; 1268 struct uart_port *port = &uap->port; 1269 int i = 0; 1270 u32 cr; 1271 1272 /* Wait until hardware tx queue is empty */ 1273 while (!pl011_tx_empty(port)) { 1274 if (i > MAX_TX_DRAIN_ITERS) { 1275 dev_warn(port->dev, 1276 "timeout while draining hardware tx queue\n"); 1277 break; 1278 } 1279 1280 udelay(uap->rs485_tx_drain_interval); 1281 i++; 1282 } 1283 1284 if (port->rs485.delay_rts_after_send) 1285 mdelay(port->rs485.delay_rts_after_send); 1286 1287 cr = pl011_read(uap, REG_CR); 1288 1289 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1290 cr &= ~UART011_CR_RTS; 1291 else 1292 cr |= UART011_CR_RTS; 1293 1294 /* Disable the transmitter and reenable the transceiver */ 1295 cr &= ~UART011_CR_TXE; 1296 cr |= UART011_CR_RXE; 1297 pl011_write(cr, uap, REG_CR); 1298 1299 uap->rs485_tx_started = false; 1300 } 1301 1302 static void pl011_stop_tx(struct uart_port *port) 1303 { 1304 struct uart_amba_port *uap = 1305 container_of(port, struct uart_amba_port, port); 1306 1307 uap->im &= ~UART011_TXIM; 1308 pl011_write(uap->im, uap, REG_IMSC); 1309 pl011_dma_tx_stop(uap); 1310 1311 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started) 1312 pl011_rs485_tx_stop(uap); 1313 } 1314 1315 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq); 1316 1317 /* Start TX with programmed I/O only (no DMA) */ 1318 static void pl011_start_tx_pio(struct uart_amba_port *uap) 1319 { 1320 if (pl011_tx_chars(uap, false)) { 1321 uap->im |= UART011_TXIM; 1322 pl011_write(uap->im, uap, REG_IMSC); 1323 } 1324 } 1325 1326 static void pl011_rs485_tx_start(struct uart_amba_port *uap) 1327 { 1328 struct uart_port *port = &uap->port; 1329 u32 cr; 1330 1331 /* Enable transmitter */ 1332 cr = pl011_read(uap, REG_CR); 1333 cr |= UART011_CR_TXE; 1334 1335 /* Disable receiver if half-duplex */ 1336 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 1337 cr &= ~UART011_CR_RXE; 1338 1339 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 1340 cr &= ~UART011_CR_RTS; 1341 else 1342 cr |= UART011_CR_RTS; 1343 1344 pl011_write(cr, uap, REG_CR); 1345 1346 if (port->rs485.delay_rts_before_send) 1347 mdelay(port->rs485.delay_rts_before_send); 1348 1349 uap->rs485_tx_started = true; 1350 } 1351 1352 static void pl011_start_tx(struct uart_port *port) 1353 { 1354 struct uart_amba_port *uap = 1355 container_of(port, struct uart_amba_port, port); 1356 1357 if ((uap->port.rs485.flags & SER_RS485_ENABLED) && 1358 !uap->rs485_tx_started) 1359 pl011_rs485_tx_start(uap); 1360 1361 if (!pl011_dma_tx_start(uap)) 1362 pl011_start_tx_pio(uap); 1363 } 1364 1365 static void pl011_stop_rx(struct uart_port *port) 1366 { 1367 struct uart_amba_port *uap = 1368 container_of(port, struct uart_amba_port, port); 1369 1370 uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM | 1371 UART011_PEIM | UART011_BEIM | UART011_OEIM); 1372 pl011_write(uap->im, uap, REG_IMSC); 1373 1374 pl011_dma_rx_stop(uap); 1375 } 1376 1377 static void pl011_throttle_rx(struct uart_port *port) 1378 { 1379 unsigned long flags; 1380 1381 uart_port_lock_irqsave(port, &flags); 1382 pl011_stop_rx(port); 1383 uart_port_unlock_irqrestore(port, flags); 1384 } 1385 1386 static void pl011_enable_ms(struct uart_port *port) 1387 { 1388 struct uart_amba_port *uap = 1389 container_of(port, struct uart_amba_port, port); 1390 1391 uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM; 1392 pl011_write(uap->im, uap, REG_IMSC); 1393 } 1394 1395 static void pl011_rx_chars(struct uart_amba_port *uap) 1396 __releases(&uap->port.lock) 1397 __acquires(&uap->port.lock) 1398 { 1399 pl011_fifo_to_tty(uap); 1400 1401 uart_port_unlock(&uap->port); 1402 tty_flip_buffer_push(&uap->port.state->port); 1403 /* 1404 * If we were temporarily out of DMA mode for a while, 1405 * attempt to switch back to DMA mode again. 1406 */ 1407 if (pl011_dma_rx_available(uap)) { 1408 if (pl011_dma_rx_trigger_dma(uap)) { 1409 dev_dbg(uap->port.dev, 1410 "could not trigger RX DMA job fall back to interrupt mode again\n"); 1411 uap->im |= UART011_RXIM; 1412 pl011_write(uap->im, uap, REG_IMSC); 1413 } else { 1414 #ifdef CONFIG_DMA_ENGINE 1415 /* Start Rx DMA poll */ 1416 if (uap->dmarx.poll_rate) { 1417 uap->dmarx.last_jiffies = jiffies; 1418 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1419 mod_timer(&uap->dmarx.timer, 1420 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 1421 } 1422 #endif 1423 } 1424 } 1425 uart_port_lock(&uap->port); 1426 } 1427 1428 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c, 1429 bool from_irq) 1430 { 1431 if (unlikely(!from_irq) && 1432 pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 1433 return false; /* unable to transmit character */ 1434 1435 pl011_write(c, uap, REG_DR); 1436 uap->port.icount.tx++; 1437 1438 return true; 1439 } 1440 1441 /* Returns true if tx interrupts have to be (kept) enabled */ 1442 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq) 1443 { 1444 struct tty_port *tport = &uap->port.state->port; 1445 int count = uap->fifosize >> 1; 1446 1447 if (uap->port.x_char) { 1448 if (!pl011_tx_char(uap, uap->port.x_char, from_irq)) 1449 return true; 1450 uap->port.x_char = 0; 1451 --count; 1452 } 1453 if (kfifo_is_empty(&tport->xmit_fifo) || uart_tx_stopped(&uap->port)) { 1454 pl011_stop_tx(&uap->port); 1455 return false; 1456 } 1457 1458 /* If we are using DMA mode, try to send some characters. */ 1459 if (pl011_dma_tx_irq(uap)) 1460 return true; 1461 1462 while (1) { 1463 unsigned char c; 1464 1465 if (likely(from_irq) && count-- == 0) 1466 break; 1467 1468 if (!kfifo_peek(&tport->xmit_fifo, &c)) 1469 break; 1470 1471 if (!pl011_tx_char(uap, c, from_irq)) 1472 break; 1473 1474 kfifo_skip(&tport->xmit_fifo); 1475 } 1476 1477 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) 1478 uart_write_wakeup(&uap->port); 1479 1480 if (kfifo_is_empty(&tport->xmit_fifo)) { 1481 pl011_stop_tx(&uap->port); 1482 return false; 1483 } 1484 return true; 1485 } 1486 1487 static void pl011_modem_status(struct uart_amba_port *uap) 1488 { 1489 unsigned int status, delta; 1490 1491 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; 1492 1493 delta = status ^ uap->old_status; 1494 uap->old_status = status; 1495 1496 if (!delta) 1497 return; 1498 1499 if (delta & UART01x_FR_DCD) 1500 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1501 1502 if (delta & uap->vendor->fr_dsr) 1503 uap->port.icount.dsr++; 1504 1505 if (delta & uap->vendor->fr_cts) 1506 uart_handle_cts_change(&uap->port, 1507 status & uap->vendor->fr_cts); 1508 1509 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1510 } 1511 1512 static void check_apply_cts_event_workaround(struct uart_amba_port *uap) 1513 { 1514 if (!uap->vendor->cts_event_workaround) 1515 return; 1516 1517 /* workaround to make sure that all bits are unlocked.. */ 1518 pl011_write(0x00, uap, REG_ICR); 1519 1520 /* 1521 * WA: introduce 26ns(1 uart clk) delay before W1C; 1522 * single apb access will incur 2 pclk(133.12Mhz) delay, 1523 * so add 2 dummy reads 1524 */ 1525 pl011_read(uap, REG_ICR); 1526 pl011_read(uap, REG_ICR); 1527 } 1528 1529 static irqreturn_t pl011_int(int irq, void *dev_id) 1530 { 1531 struct uart_amba_port *uap = dev_id; 1532 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1533 int handled = 0; 1534 1535 uart_port_lock(&uap->port); 1536 status = pl011_read(uap, REG_RIS) & uap->im; 1537 if (status) { 1538 do { 1539 check_apply_cts_event_workaround(uap); 1540 1541 pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS), 1542 uap, REG_ICR); 1543 1544 if (status & (UART011_RTIS | UART011_RXIS)) { 1545 if (pl011_dma_rx_running(uap)) 1546 pl011_dma_rx_irq(uap); 1547 else 1548 pl011_rx_chars(uap); 1549 } 1550 if (status & (UART011_DSRMIS | UART011_DCDMIS | 1551 UART011_CTSMIS | UART011_RIMIS)) 1552 pl011_modem_status(uap); 1553 if (status & UART011_TXIS) 1554 pl011_tx_chars(uap, true); 1555 1556 if (pass_counter-- == 0) 1557 break; 1558 1559 status = pl011_read(uap, REG_RIS) & uap->im; 1560 } while (status != 0); 1561 handled = 1; 1562 } 1563 1564 uart_unlock_and_check_sysrq(&uap->port); 1565 1566 return IRQ_RETVAL(handled); 1567 } 1568 1569 static unsigned int pl011_tx_empty(struct uart_port *port) 1570 { 1571 struct uart_amba_port *uap = 1572 container_of(port, struct uart_amba_port, port); 1573 1574 /* Allow feature register bits to be inverted to work around errata */ 1575 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr; 1576 1577 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ? 1578 0 : TIOCSER_TEMT; 1579 } 1580 1581 static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask) 1582 { 1583 if (cond) 1584 *ptr |= mask; 1585 } 1586 1587 static unsigned int pl011_get_mctrl(struct uart_port *port) 1588 { 1589 struct uart_amba_port *uap = 1590 container_of(port, struct uart_amba_port, port); 1591 unsigned int result = 0; 1592 unsigned int status = pl011_read(uap, REG_FR); 1593 1594 pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR); 1595 pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR); 1596 pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS); 1597 pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG); 1598 1599 return result; 1600 } 1601 1602 static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask) 1603 { 1604 if (cond) 1605 *ptr |= mask; 1606 else 1607 *ptr &= ~mask; 1608 } 1609 1610 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1611 { 1612 struct uart_amba_port *uap = 1613 container_of(port, struct uart_amba_port, port); 1614 unsigned int cr; 1615 1616 cr = pl011_read(uap, REG_CR); 1617 1618 pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS); 1619 pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR); 1620 pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1); 1621 pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2); 1622 pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE); 1623 1624 if (port->status & UPSTAT_AUTORTS) { 1625 /* We need to disable auto-RTS if we want to turn RTS off */ 1626 pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN); 1627 } 1628 1629 pl011_write(cr, uap, REG_CR); 1630 } 1631 1632 static void pl011_break_ctl(struct uart_port *port, int break_state) 1633 { 1634 struct uart_amba_port *uap = 1635 container_of(port, struct uart_amba_port, port); 1636 unsigned long flags; 1637 unsigned int lcr_h; 1638 1639 uart_port_lock_irqsave(&uap->port, &flags); 1640 lcr_h = pl011_read(uap, REG_LCRH_TX); 1641 if (break_state == -1) 1642 lcr_h |= UART01x_LCRH_BRK; 1643 else 1644 lcr_h &= ~UART01x_LCRH_BRK; 1645 pl011_write(lcr_h, uap, REG_LCRH_TX); 1646 uart_port_unlock_irqrestore(&uap->port, flags); 1647 } 1648 1649 #ifdef CONFIG_CONSOLE_POLL 1650 1651 static void pl011_quiesce_irqs(struct uart_port *port) 1652 { 1653 struct uart_amba_port *uap = 1654 container_of(port, struct uart_amba_port, port); 1655 1656 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR); 1657 /* 1658 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1659 * we simply mask it. start_tx() will unmask it. 1660 * 1661 * Note we can race with start_tx(), and if the race happens, the 1662 * polling user might get another interrupt just after we clear it. 1663 * But it should be OK and can happen even w/o the race, e.g. 1664 * controller immediately got some new data and raised the IRQ. 1665 * 1666 * And whoever uses polling routines assumes that it manages the device 1667 * (including tx queue), so we're also fine with start_tx()'s caller 1668 * side. 1669 */ 1670 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap, 1671 REG_IMSC); 1672 } 1673 1674 static int pl011_get_poll_char(struct uart_port *port) 1675 { 1676 struct uart_amba_port *uap = 1677 container_of(port, struct uart_amba_port, port); 1678 unsigned int status; 1679 1680 /* 1681 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1682 * debugger. 1683 */ 1684 pl011_quiesce_irqs(port); 1685 1686 status = pl011_read(uap, REG_FR); 1687 if (status & UART01x_FR_RXFE) 1688 return NO_POLL_CHAR; 1689 1690 return pl011_read(uap, REG_DR); 1691 } 1692 1693 static void pl011_put_poll_char(struct uart_port *port, unsigned char ch) 1694 { 1695 struct uart_amba_port *uap = 1696 container_of(port, struct uart_amba_port, port); 1697 1698 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 1699 cpu_relax(); 1700 1701 pl011_write(ch, uap, REG_DR); 1702 } 1703 1704 #endif /* CONFIG_CONSOLE_POLL */ 1705 1706 static int pl011_hwinit(struct uart_port *port) 1707 { 1708 struct uart_amba_port *uap = 1709 container_of(port, struct uart_amba_port, port); 1710 int retval; 1711 1712 /* Optionaly enable pins to be muxed in and configured */ 1713 pinctrl_pm_select_default_state(port->dev); 1714 1715 /* 1716 * Try to enable the clock producer. 1717 */ 1718 retval = clk_prepare_enable(uap->clk); 1719 if (retval) 1720 return retval; 1721 1722 uap->port.uartclk = clk_get_rate(uap->clk); 1723 1724 /* Clear pending error and receive interrupts */ 1725 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | 1726 UART011_FEIS | UART011_RTIS | UART011_RXIS, 1727 uap, REG_ICR); 1728 1729 /* 1730 * Save interrupts enable mask, and enable RX interrupts in case if 1731 * the interrupt is used for NMI entry. 1732 */ 1733 uap->im = pl011_read(uap, REG_IMSC); 1734 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC); 1735 1736 if (dev_get_platdata(uap->port.dev)) { 1737 struct amba_pl011_data *plat; 1738 1739 plat = dev_get_platdata(uap->port.dev); 1740 if (plat->init) 1741 plat->init(); 1742 } 1743 return 0; 1744 } 1745 1746 static bool pl011_split_lcrh(const struct uart_amba_port *uap) 1747 { 1748 return pl011_reg_to_offset(uap, REG_LCRH_RX) != 1749 pl011_reg_to_offset(uap, REG_LCRH_TX); 1750 } 1751 1752 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) 1753 { 1754 pl011_write(lcr_h, uap, REG_LCRH_RX); 1755 if (pl011_split_lcrh(uap)) { 1756 int i; 1757 /* 1758 * Wait 10 PCLKs before writing LCRH_TX register, 1759 * to get this delay write read only register 10 times 1760 */ 1761 for (i = 0; i < 10; ++i) 1762 pl011_write(0xff, uap, REG_MIS); 1763 pl011_write(lcr_h, uap, REG_LCRH_TX); 1764 } 1765 } 1766 1767 static int pl011_allocate_irq(struct uart_amba_port *uap) 1768 { 1769 pl011_write(uap->im, uap, REG_IMSC); 1770 1771 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap); 1772 } 1773 1774 /* 1775 * Enable interrupts, only timeouts when using DMA 1776 * if initial RX DMA job failed, start in interrupt mode 1777 * as well. 1778 */ 1779 static void pl011_enable_interrupts(struct uart_amba_port *uap) 1780 { 1781 unsigned long flags; 1782 unsigned int i; 1783 1784 uart_port_lock_irqsave(&uap->port, &flags); 1785 1786 /* Clear out any spuriously appearing RX interrupts */ 1787 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR); 1788 1789 /* 1790 * RXIS is asserted only when the RX FIFO transitions from below 1791 * to above the trigger threshold. If the RX FIFO is already 1792 * full to the threshold this can't happen and RXIS will now be 1793 * stuck off. Drain the RX FIFO explicitly to fix this: 1794 */ 1795 for (i = 0; i < uap->fifosize * 2; ++i) { 1796 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE) 1797 break; 1798 1799 pl011_read(uap, REG_DR); 1800 } 1801 1802 uap->im = UART011_RTIM; 1803 if (!pl011_dma_rx_running(uap)) 1804 uap->im |= UART011_RXIM; 1805 pl011_write(uap->im, uap, REG_IMSC); 1806 uart_port_unlock_irqrestore(&uap->port, flags); 1807 } 1808 1809 static void pl011_unthrottle_rx(struct uart_port *port) 1810 { 1811 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port); 1812 unsigned long flags; 1813 1814 uart_port_lock_irqsave(&uap->port, &flags); 1815 1816 uap->im = UART011_RTIM; 1817 if (!pl011_dma_rx_running(uap)) 1818 uap->im |= UART011_RXIM; 1819 1820 pl011_write(uap->im, uap, REG_IMSC); 1821 1822 uart_port_unlock_irqrestore(&uap->port, flags); 1823 } 1824 1825 static int pl011_startup(struct uart_port *port) 1826 { 1827 struct uart_amba_port *uap = 1828 container_of(port, struct uart_amba_port, port); 1829 unsigned int cr; 1830 int retval; 1831 1832 retval = pl011_hwinit(port); 1833 if (retval) 1834 goto clk_dis; 1835 1836 retval = pl011_allocate_irq(uap); 1837 if (retval) 1838 goto clk_dis; 1839 1840 pl011_write(uap->vendor->ifls, uap, REG_IFLS); 1841 1842 uart_port_lock_irq(&uap->port); 1843 1844 cr = pl011_read(uap, REG_CR); 1845 cr &= UART011_CR_RTS | UART011_CR_DTR; 1846 cr |= UART01x_CR_UARTEN | UART011_CR_RXE; 1847 1848 if (!(port->rs485.flags & SER_RS485_ENABLED)) 1849 cr |= UART011_CR_TXE; 1850 1851 pl011_write(cr, uap, REG_CR); 1852 1853 uart_port_unlock_irq(&uap->port); 1854 1855 /* 1856 * initialise the old status of the modem signals 1857 */ 1858 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; 1859 1860 /* Startup DMA */ 1861 pl011_dma_startup(uap); 1862 1863 pl011_enable_interrupts(uap); 1864 1865 return 0; 1866 1867 clk_dis: 1868 clk_disable_unprepare(uap->clk); 1869 return retval; 1870 } 1871 1872 static int sbsa_uart_startup(struct uart_port *port) 1873 { 1874 struct uart_amba_port *uap = 1875 container_of(port, struct uart_amba_port, port); 1876 int retval; 1877 1878 retval = pl011_hwinit(port); 1879 if (retval) 1880 return retval; 1881 1882 retval = pl011_allocate_irq(uap); 1883 if (retval) 1884 return retval; 1885 1886 /* The SBSA UART does not support any modem status lines. */ 1887 uap->old_status = 0; 1888 1889 pl011_enable_interrupts(uap); 1890 1891 return 0; 1892 } 1893 1894 static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh) 1895 { 1896 unsigned long val; 1897 1898 val = pl011_read(uap, lcrh); 1899 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1900 pl011_write(val, uap, lcrh); 1901 } 1902 1903 /* 1904 * disable the port. It should not disable RTS and DTR. 1905 * Also RTS and DTR state should be preserved to restore 1906 * it during startup(). 1907 */ 1908 static void pl011_disable_uart(struct uart_amba_port *uap) 1909 { 1910 unsigned int cr; 1911 1912 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); 1913 uart_port_lock_irq(&uap->port); 1914 cr = pl011_read(uap, REG_CR); 1915 cr &= UART011_CR_RTS | UART011_CR_DTR; 1916 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1917 pl011_write(cr, uap, REG_CR); 1918 uart_port_unlock_irq(&uap->port); 1919 1920 /* 1921 * disable break condition and fifos 1922 */ 1923 pl011_shutdown_channel(uap, REG_LCRH_RX); 1924 if (pl011_split_lcrh(uap)) 1925 pl011_shutdown_channel(uap, REG_LCRH_TX); 1926 } 1927 1928 static void pl011_disable_interrupts(struct uart_amba_port *uap) 1929 { 1930 uart_port_lock_irq(&uap->port); 1931 1932 /* mask all interrupts and clear all pending ones */ 1933 uap->im = 0; 1934 pl011_write(uap->im, uap, REG_IMSC); 1935 pl011_write(0xffff, uap, REG_ICR); 1936 1937 uart_port_unlock_irq(&uap->port); 1938 } 1939 1940 static void pl011_shutdown(struct uart_port *port) 1941 { 1942 struct uart_amba_port *uap = 1943 container_of(port, struct uart_amba_port, port); 1944 1945 pl011_disable_interrupts(uap); 1946 1947 pl011_dma_shutdown(uap); 1948 1949 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started) 1950 pl011_rs485_tx_stop(uap); 1951 1952 free_irq(uap->port.irq, uap); 1953 1954 pl011_disable_uart(uap); 1955 1956 /* 1957 * Shut down the clock producer 1958 */ 1959 clk_disable_unprepare(uap->clk); 1960 /* Optionally let pins go into sleep states */ 1961 pinctrl_pm_select_sleep_state(port->dev); 1962 1963 if (dev_get_platdata(uap->port.dev)) { 1964 struct amba_pl011_data *plat; 1965 1966 plat = dev_get_platdata(uap->port.dev); 1967 if (plat->exit) 1968 plat->exit(); 1969 } 1970 1971 if (uap->port.ops->flush_buffer) 1972 uap->port.ops->flush_buffer(port); 1973 } 1974 1975 static void sbsa_uart_shutdown(struct uart_port *port) 1976 { 1977 struct uart_amba_port *uap = 1978 container_of(port, struct uart_amba_port, port); 1979 1980 pl011_disable_interrupts(uap); 1981 1982 free_irq(uap->port.irq, uap); 1983 1984 if (uap->port.ops->flush_buffer) 1985 uap->port.ops->flush_buffer(port); 1986 } 1987 1988 static void 1989 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios) 1990 { 1991 port->read_status_mask = UART011_DR_OE | 255; 1992 if (termios->c_iflag & INPCK) 1993 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1994 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 1995 port->read_status_mask |= UART011_DR_BE; 1996 1997 /* 1998 * Characters to ignore 1999 */ 2000 port->ignore_status_mask = 0; 2001 if (termios->c_iflag & IGNPAR) 2002 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 2003 if (termios->c_iflag & IGNBRK) { 2004 port->ignore_status_mask |= UART011_DR_BE; 2005 /* 2006 * If we're ignoring parity and break indicators, 2007 * ignore overruns too (for real raw support). 2008 */ 2009 if (termios->c_iflag & IGNPAR) 2010 port->ignore_status_mask |= UART011_DR_OE; 2011 } 2012 2013 /* 2014 * Ignore all characters if CREAD is not set. 2015 */ 2016 if ((termios->c_cflag & CREAD) == 0) 2017 port->ignore_status_mask |= UART_DUMMY_DR_RX; 2018 } 2019 2020 static void 2021 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 2022 const struct ktermios *old) 2023 { 2024 struct uart_amba_port *uap = 2025 container_of(port, struct uart_amba_port, port); 2026 unsigned int lcr_h, old_cr; 2027 unsigned long flags; 2028 unsigned int baud, quot, clkdiv; 2029 unsigned int bits; 2030 2031 if (uap->vendor->oversampling) 2032 clkdiv = 8; 2033 else 2034 clkdiv = 16; 2035 2036 /* 2037 * Ask the core to calculate the divisor for us. 2038 */ 2039 baud = uart_get_baud_rate(port, termios, old, 0, 2040 port->uartclk / clkdiv); 2041 #ifdef CONFIG_DMA_ENGINE 2042 /* 2043 * Adjust RX DMA polling rate with baud rate if not specified. 2044 */ 2045 if (uap->dmarx.auto_poll_rate) 2046 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 2047 #endif 2048 2049 if (baud > port->uartclk / 16) 2050 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 2051 else 2052 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 2053 2054 switch (termios->c_cflag & CSIZE) { 2055 case CS5: 2056 lcr_h = UART01x_LCRH_WLEN_5; 2057 break; 2058 case CS6: 2059 lcr_h = UART01x_LCRH_WLEN_6; 2060 break; 2061 case CS7: 2062 lcr_h = UART01x_LCRH_WLEN_7; 2063 break; 2064 default: // CS8 2065 lcr_h = UART01x_LCRH_WLEN_8; 2066 break; 2067 } 2068 if (termios->c_cflag & CSTOPB) 2069 lcr_h |= UART01x_LCRH_STP2; 2070 if (termios->c_cflag & PARENB) { 2071 lcr_h |= UART01x_LCRH_PEN; 2072 if (!(termios->c_cflag & PARODD)) 2073 lcr_h |= UART01x_LCRH_EPS; 2074 if (termios->c_cflag & CMSPAR) 2075 lcr_h |= UART011_LCRH_SPS; 2076 } 2077 if (uap->fifosize > 1) 2078 lcr_h |= UART01x_LCRH_FEN; 2079 2080 bits = tty_get_frame_size(termios->c_cflag); 2081 2082 uart_port_lock_irqsave(port, &flags); 2083 2084 /* 2085 * Update the per-port timeout. 2086 */ 2087 uart_update_timeout(port, termios->c_cflag, baud); 2088 2089 /* 2090 * Calculate the approximated time it takes to transmit one character 2091 * with the given baud rate. We use this as the poll interval when we 2092 * wait for the tx queue to empty. 2093 */ 2094 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud); 2095 2096 pl011_setup_status_masks(port, termios); 2097 2098 if (UART_ENABLE_MS(port, termios->c_cflag)) 2099 pl011_enable_ms(port); 2100 2101 if (port->rs485.flags & SER_RS485_ENABLED) 2102 termios->c_cflag &= ~CRTSCTS; 2103 2104 old_cr = pl011_read(uap, REG_CR); 2105 2106 if (termios->c_cflag & CRTSCTS) { 2107 if (old_cr & UART011_CR_RTS) 2108 old_cr |= UART011_CR_RTSEN; 2109 2110 old_cr |= UART011_CR_CTSEN; 2111 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS; 2112 } else { 2113 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 2114 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); 2115 } 2116 2117 if (uap->vendor->oversampling) { 2118 if (baud > port->uartclk / 16) 2119 old_cr |= ST_UART011_CR_OVSFACT; 2120 else 2121 old_cr &= ~ST_UART011_CR_OVSFACT; 2122 } 2123 2124 /* 2125 * Workaround for the ST Micro oversampling variants to 2126 * increase the bitrate slightly, by lowering the divisor, 2127 * to avoid delayed sampling of start bit at high speeds, 2128 * else we see data corruption. 2129 */ 2130 if (uap->vendor->oversampling) { 2131 if (baud >= 3000000 && baud < 3250000 && quot > 1) 2132 quot -= 1; 2133 else if (baud > 3250000 && quot > 2) 2134 quot -= 2; 2135 } 2136 /* Set baud rate */ 2137 pl011_write(quot & 0x3f, uap, REG_FBRD); 2138 pl011_write(quot >> 6, uap, REG_IBRD); 2139 2140 /* 2141 * ----------v----------v----------v----------v----- 2142 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER 2143 * REG_FBRD & REG_IBRD. 2144 * ----------^----------^----------^----------^----- 2145 */ 2146 pl011_write_lcr_h(uap, lcr_h); 2147 2148 /* 2149 * Receive was disabled by pl011_disable_uart during shutdown. 2150 * Need to reenable receive if you need to use a tty_driver 2151 * returns from tty_find_polling_driver() after a port shutdown. 2152 */ 2153 old_cr |= UART011_CR_RXE; 2154 pl011_write(old_cr, uap, REG_CR); 2155 2156 uart_port_unlock_irqrestore(port, flags); 2157 } 2158 2159 static void 2160 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios, 2161 const struct ktermios *old) 2162 { 2163 struct uart_amba_port *uap = 2164 container_of(port, struct uart_amba_port, port); 2165 unsigned long flags; 2166 2167 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud); 2168 2169 /* The SBSA UART only supports 8n1 without hardware flow control. */ 2170 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD); 2171 termios->c_cflag &= ~(CMSPAR | CRTSCTS); 2172 termios->c_cflag |= CS8 | CLOCAL; 2173 2174 uart_port_lock_irqsave(port, &flags); 2175 uart_update_timeout(port, CS8, uap->fixed_baud); 2176 pl011_setup_status_masks(port, termios); 2177 uart_port_unlock_irqrestore(port, flags); 2178 } 2179 2180 static const char *pl011_type(struct uart_port *port) 2181 { 2182 struct uart_amba_port *uap = 2183 container_of(port, struct uart_amba_port, port); 2184 return uap->port.type == PORT_AMBA ? uap->type : NULL; 2185 } 2186 2187 /* 2188 * Configure/autoconfigure the port. 2189 */ 2190 static void pl011_config_port(struct uart_port *port, int flags) 2191 { 2192 if (flags & UART_CONFIG_TYPE) 2193 port->type = PORT_AMBA; 2194 } 2195 2196 /* 2197 * verify the new serial_struct (for TIOCSSERIAL). 2198 */ 2199 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 2200 { 2201 int ret = 0; 2202 2203 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 2204 ret = -EINVAL; 2205 if (ser->irq < 0 || ser->irq >= nr_irqs) 2206 ret = -EINVAL; 2207 if (ser->baud_base < 9600) 2208 ret = -EINVAL; 2209 if (port->mapbase != (unsigned long)ser->iomem_base) 2210 ret = -EINVAL; 2211 return ret; 2212 } 2213 2214 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios, 2215 struct serial_rs485 *rs485) 2216 { 2217 struct uart_amba_port *uap = 2218 container_of(port, struct uart_amba_port, port); 2219 2220 if (port->rs485.flags & SER_RS485_ENABLED) 2221 pl011_rs485_tx_stop(uap); 2222 2223 /* Make sure auto RTS is disabled */ 2224 if (rs485->flags & SER_RS485_ENABLED) { 2225 u32 cr = pl011_read(uap, REG_CR); 2226 2227 cr &= ~UART011_CR_RTSEN; 2228 pl011_write(cr, uap, REG_CR); 2229 port->status &= ~UPSTAT_AUTORTS; 2230 } 2231 2232 return 0; 2233 } 2234 2235 static const struct uart_ops amba_pl011_pops = { 2236 .tx_empty = pl011_tx_empty, 2237 .set_mctrl = pl011_set_mctrl, 2238 .get_mctrl = pl011_get_mctrl, 2239 .stop_tx = pl011_stop_tx, 2240 .start_tx = pl011_start_tx, 2241 .stop_rx = pl011_stop_rx, 2242 .throttle = pl011_throttle_rx, 2243 .unthrottle = pl011_unthrottle_rx, 2244 .enable_ms = pl011_enable_ms, 2245 .break_ctl = pl011_break_ctl, 2246 .startup = pl011_startup, 2247 .shutdown = pl011_shutdown, 2248 .flush_buffer = pl011_dma_flush_buffer, 2249 .set_termios = pl011_set_termios, 2250 .type = pl011_type, 2251 .config_port = pl011_config_port, 2252 .verify_port = pl011_verify_port, 2253 #ifdef CONFIG_CONSOLE_POLL 2254 .poll_init = pl011_hwinit, 2255 .poll_get_char = pl011_get_poll_char, 2256 .poll_put_char = pl011_put_poll_char, 2257 #endif 2258 }; 2259 2260 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 2261 { 2262 } 2263 2264 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port) 2265 { 2266 return 0; 2267 } 2268 2269 static const struct uart_ops sbsa_uart_pops = { 2270 .tx_empty = pl011_tx_empty, 2271 .set_mctrl = sbsa_uart_set_mctrl, 2272 .get_mctrl = sbsa_uart_get_mctrl, 2273 .stop_tx = pl011_stop_tx, 2274 .start_tx = pl011_start_tx, 2275 .stop_rx = pl011_stop_rx, 2276 .startup = sbsa_uart_startup, 2277 .shutdown = sbsa_uart_shutdown, 2278 .set_termios = sbsa_uart_set_termios, 2279 .type = pl011_type, 2280 .config_port = pl011_config_port, 2281 .verify_port = pl011_verify_port, 2282 #ifdef CONFIG_CONSOLE_POLL 2283 .poll_init = pl011_hwinit, 2284 .poll_get_char = pl011_get_poll_char, 2285 .poll_put_char = pl011_put_poll_char, 2286 #endif 2287 }; 2288 2289 static struct uart_amba_port *amba_ports[UART_NR]; 2290 2291 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 2292 2293 static void pl011_console_putchar(struct uart_port *port, unsigned char ch) 2294 { 2295 struct uart_amba_port *uap = 2296 container_of(port, struct uart_amba_port, port); 2297 2298 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 2299 cpu_relax(); 2300 pl011_write(ch, uap, REG_DR); 2301 } 2302 2303 static void 2304 pl011_console_write(struct console *co, const char *s, unsigned int count) 2305 { 2306 struct uart_amba_port *uap = amba_ports[co->index]; 2307 unsigned int old_cr = 0, new_cr; 2308 unsigned long flags; 2309 int locked = 1; 2310 2311 clk_enable(uap->clk); 2312 2313 if (oops_in_progress) 2314 locked = uart_port_trylock_irqsave(&uap->port, &flags); 2315 else 2316 uart_port_lock_irqsave(&uap->port, &flags); 2317 2318 /* 2319 * First save the CR then disable the interrupts 2320 */ 2321 if (!uap->vendor->always_enabled) { 2322 old_cr = pl011_read(uap, REG_CR); 2323 new_cr = old_cr & ~UART011_CR_CTSEN; 2324 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 2325 pl011_write(new_cr, uap, REG_CR); 2326 } 2327 2328 uart_console_write(&uap->port, s, count, pl011_console_putchar); 2329 2330 /* 2331 * Finally, wait for transmitter to become empty and restore the 2332 * TCR. Allow feature register bits to be inverted to work around 2333 * errata. 2334 */ 2335 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr) 2336 & uap->vendor->fr_busy) 2337 cpu_relax(); 2338 if (!uap->vendor->always_enabled) 2339 pl011_write(old_cr, uap, REG_CR); 2340 2341 if (locked) 2342 uart_port_unlock_irqrestore(&uap->port, flags); 2343 2344 clk_disable(uap->clk); 2345 } 2346 2347 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud, 2348 int *parity, int *bits) 2349 { 2350 unsigned int lcr_h, ibrd, fbrd; 2351 2352 if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN)) 2353 return; 2354 2355 lcr_h = pl011_read(uap, REG_LCRH_TX); 2356 2357 *parity = 'n'; 2358 if (lcr_h & UART01x_LCRH_PEN) { 2359 if (lcr_h & UART01x_LCRH_EPS) 2360 *parity = 'e'; 2361 else 2362 *parity = 'o'; 2363 } 2364 2365 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 2366 *bits = 7; 2367 else 2368 *bits = 8; 2369 2370 ibrd = pl011_read(uap, REG_IBRD); 2371 fbrd = pl011_read(uap, REG_FBRD); 2372 2373 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 2374 2375 if (uap->vendor->oversampling && 2376 (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT)) 2377 *baud *= 2; 2378 } 2379 2380 static int pl011_console_setup(struct console *co, char *options) 2381 { 2382 struct uart_amba_port *uap; 2383 int baud = 38400; 2384 int bits = 8; 2385 int parity = 'n'; 2386 int flow = 'n'; 2387 int ret; 2388 2389 /* 2390 * Check whether an invalid uart number has been specified, and 2391 * if so, search for the first available port that does have 2392 * console support. 2393 */ 2394 if (co->index >= UART_NR) 2395 co->index = 0; 2396 uap = amba_ports[co->index]; 2397 if (!uap) 2398 return -ENODEV; 2399 2400 /* Allow pins to be muxed in and configured */ 2401 pinctrl_pm_select_default_state(uap->port.dev); 2402 2403 ret = clk_prepare(uap->clk); 2404 if (ret) 2405 return ret; 2406 2407 if (dev_get_platdata(uap->port.dev)) { 2408 struct amba_pl011_data *plat; 2409 2410 plat = dev_get_platdata(uap->port.dev); 2411 if (plat->init) 2412 plat->init(); 2413 } 2414 2415 uap->port.uartclk = clk_get_rate(uap->clk); 2416 2417 if (uap->vendor->fixed_options) { 2418 baud = uap->fixed_baud; 2419 } else { 2420 if (options) 2421 uart_parse_options(options, 2422 &baud, &parity, &bits, &flow); 2423 else 2424 pl011_console_get_options(uap, &baud, &parity, &bits); 2425 } 2426 2427 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2428 } 2429 2430 /** 2431 * pl011_console_match - non-standard console matching 2432 * @co: registering console 2433 * @name: name from console command line 2434 * @idx: index from console command line 2435 * @options: ptr to option string from console command line 2436 * 2437 * Only attempts to match console command lines of the form: 2438 * console=pl011,mmio|mmio32,<addr>[,<options>] 2439 * console=pl011,0x<addr>[,<options>] 2440 * This form is used to register an initial earlycon boot console and 2441 * replace it with the amba_console at pl011 driver init. 2442 * 2443 * Performs console setup for a match (as required by interface) 2444 * If no <options> are specified, then assume the h/w is already setup. 2445 * 2446 * Returns 0 if console matches; otherwise non-zero to use default matching 2447 */ 2448 static int pl011_console_match(struct console *co, char *name, int idx, 2449 char *options) 2450 { 2451 unsigned char iotype; 2452 resource_size_t addr; 2453 int i; 2454 2455 /* 2456 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum 2457 * have a distinct console name, so make sure we check for that. 2458 * The actual implementation of the erratum occurs in the probe 2459 * function. 2460 */ 2461 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0)) 2462 return -ENODEV; 2463 2464 if (uart_parse_earlycon(options, &iotype, &addr, &options)) 2465 return -ENODEV; 2466 2467 if (iotype != UPIO_MEM && iotype != UPIO_MEM32) 2468 return -ENODEV; 2469 2470 /* try to match the port specified on the command line */ 2471 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { 2472 struct uart_port *port; 2473 2474 if (!amba_ports[i]) 2475 continue; 2476 2477 port = &amba_ports[i]->port; 2478 2479 if (port->mapbase != addr) 2480 continue; 2481 2482 co->index = i; 2483 uart_port_set_cons(port, co); 2484 return pl011_console_setup(co, options); 2485 } 2486 2487 return -ENODEV; 2488 } 2489 2490 static struct uart_driver amba_reg; 2491 static struct console amba_console = { 2492 .name = "ttyAMA", 2493 .write = pl011_console_write, 2494 .device = uart_console_device, 2495 .setup = pl011_console_setup, 2496 .match = pl011_console_match, 2497 .flags = CON_PRINTBUFFER | CON_ANYTIME, 2498 .index = -1, 2499 .data = &amba_reg, 2500 }; 2501 2502 #define AMBA_CONSOLE (&amba_console) 2503 2504 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c) 2505 { 2506 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2507 cpu_relax(); 2508 writel(c, port->membase + UART01x_DR); 2509 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE)) 2510 cpu_relax(); 2511 } 2512 2513 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n) 2514 { 2515 struct earlycon_device *dev = con->data; 2516 2517 uart_console_write(&dev->port, s, n, qdf2400_e44_putc); 2518 } 2519 2520 static void pl011_putc(struct uart_port *port, unsigned char c) 2521 { 2522 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2523 cpu_relax(); 2524 if (port->iotype == UPIO_MEM32) 2525 writel(c, port->membase + UART01x_DR); 2526 else 2527 writeb(c, port->membase + UART01x_DR); 2528 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) 2529 cpu_relax(); 2530 } 2531 2532 static void pl011_early_write(struct console *con, const char *s, unsigned int n) 2533 { 2534 struct earlycon_device *dev = con->data; 2535 2536 uart_console_write(&dev->port, s, n, pl011_putc); 2537 } 2538 2539 #ifdef CONFIG_CONSOLE_POLL 2540 static int pl011_getc(struct uart_port *port) 2541 { 2542 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE) 2543 return NO_POLL_CHAR; 2544 2545 if (port->iotype == UPIO_MEM32) 2546 return readl(port->membase + UART01x_DR); 2547 else 2548 return readb(port->membase + UART01x_DR); 2549 } 2550 2551 static int pl011_early_read(struct console *con, char *s, unsigned int n) 2552 { 2553 struct earlycon_device *dev = con->data; 2554 int ch, num_read = 0; 2555 2556 while (num_read < n) { 2557 ch = pl011_getc(&dev->port); 2558 if (ch == NO_POLL_CHAR) 2559 break; 2560 2561 s[num_read++] = ch; 2562 } 2563 2564 return num_read; 2565 } 2566 #else 2567 #define pl011_early_read NULL 2568 #endif 2569 2570 /* 2571 * On non-ACPI systems, earlycon is enabled by specifying 2572 * "earlycon=pl011,<address>" on the kernel command line. 2573 * 2574 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table, 2575 * by specifying only "earlycon" on the command line. Because it requires 2576 * SPCR, the console starts after ACPI is parsed, which is later than a 2577 * traditional early console. 2578 * 2579 * To get the traditional early console that starts before ACPI is parsed, 2580 * specify the full "earlycon=pl011,<address>" option. 2581 */ 2582 static int __init pl011_early_console_setup(struct earlycon_device *device, 2583 const char *opt) 2584 { 2585 if (!device->port.membase) 2586 return -ENODEV; 2587 2588 device->con->write = pl011_early_write; 2589 device->con->read = pl011_early_read; 2590 2591 return 0; 2592 } 2593 2594 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); 2595 2596 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup); 2597 2598 /* 2599 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by 2600 * Erratum 44, traditional earlycon can be enabled by specifying 2601 * "earlycon=qdf2400_e44,<address>". Any options are ignored. 2602 * 2603 * Alternatively, you can just specify "earlycon", and the early console 2604 * will be enabled with the information from the SPCR table. In this 2605 * case, the SPCR code will detect the need for the E44 work-around, 2606 * and set the console name to "qdf2400_e44". 2607 */ 2608 static int __init 2609 qdf2400_e44_early_console_setup(struct earlycon_device *device, 2610 const char *opt) 2611 { 2612 if (!device->port.membase) 2613 return -ENODEV; 2614 2615 device->con->write = qdf2400_e44_early_write; 2616 return 0; 2617 } 2618 2619 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup); 2620 2621 #else 2622 #define AMBA_CONSOLE NULL 2623 #endif 2624 2625 static struct uart_driver amba_reg = { 2626 .owner = THIS_MODULE, 2627 .driver_name = "ttyAMA", 2628 .dev_name = "ttyAMA", 2629 .major = SERIAL_AMBA_MAJOR, 2630 .minor = SERIAL_AMBA_MINOR, 2631 .nr = UART_NR, 2632 .cons = AMBA_CONSOLE, 2633 }; 2634 2635 static int pl011_probe_dt_alias(int index, struct device *dev) 2636 { 2637 struct device_node *np; 2638 static bool seen_dev_with_alias; 2639 static bool seen_dev_without_alias; 2640 int ret = index; 2641 2642 if (!IS_ENABLED(CONFIG_OF)) 2643 return ret; 2644 2645 np = dev->of_node; 2646 if (!np) 2647 return ret; 2648 2649 ret = of_alias_get_id(np, "serial"); 2650 if (ret < 0) { 2651 seen_dev_without_alias = true; 2652 ret = index; 2653 } else { 2654 seen_dev_with_alias = true; 2655 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) { 2656 dev_warn(dev, "requested serial port %d not available.\n", ret); 2657 ret = index; 2658 } 2659 } 2660 2661 if (seen_dev_with_alias && seen_dev_without_alias) 2662 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2663 2664 return ret; 2665 } 2666 2667 /* unregisters the driver also if no more ports are left */ 2668 static void pl011_unregister_port(struct uart_amba_port *uap) 2669 { 2670 int i; 2671 bool busy = false; 2672 2673 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { 2674 if (amba_ports[i] == uap) 2675 amba_ports[i] = NULL; 2676 else if (amba_ports[i]) 2677 busy = true; 2678 } 2679 pl011_dma_remove(uap); 2680 if (!busy) 2681 uart_unregister_driver(&amba_reg); 2682 } 2683 2684 static int pl011_find_free_port(void) 2685 { 2686 int i; 2687 2688 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2689 if (!amba_ports[i]) 2690 return i; 2691 2692 return -EBUSY; 2693 } 2694 2695 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap, 2696 struct resource *mmiobase, int index) 2697 { 2698 void __iomem *base; 2699 int ret; 2700 2701 base = devm_ioremap_resource(dev, mmiobase); 2702 if (IS_ERR(base)) 2703 return PTR_ERR(base); 2704 2705 index = pl011_probe_dt_alias(index, dev); 2706 2707 uap->port.dev = dev; 2708 uap->port.mapbase = mmiobase->start; 2709 uap->port.membase = base; 2710 uap->port.fifosize = uap->fifosize; 2711 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE); 2712 uap->port.flags = UPF_BOOT_AUTOCONF; 2713 uap->port.line = index; 2714 2715 ret = uart_get_rs485_mode(&uap->port); 2716 if (ret) 2717 return ret; 2718 2719 amba_ports[index] = uap; 2720 2721 return 0; 2722 } 2723 2724 static int pl011_register_port(struct uart_amba_port *uap) 2725 { 2726 int ret, i; 2727 2728 /* Ensure interrupts from this UART are masked and cleared */ 2729 pl011_write(0, uap, REG_IMSC); 2730 pl011_write(0xffff, uap, REG_ICR); 2731 2732 if (!amba_reg.state) { 2733 ret = uart_register_driver(&amba_reg); 2734 if (ret < 0) { 2735 dev_err(uap->port.dev, 2736 "Failed to register AMBA-PL011 driver\n"); 2737 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2738 if (amba_ports[i] == uap) 2739 amba_ports[i] = NULL; 2740 return ret; 2741 } 2742 } 2743 2744 ret = uart_add_one_port(&amba_reg, &uap->port); 2745 if (ret) 2746 pl011_unregister_port(uap); 2747 2748 return ret; 2749 } 2750 2751 static const struct serial_rs485 pl011_rs485_supported = { 2752 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2753 SER_RS485_RX_DURING_TX, 2754 .delay_rts_before_send = 1, 2755 .delay_rts_after_send = 1, 2756 }; 2757 2758 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2759 { 2760 struct uart_amba_port *uap; 2761 struct vendor_data *vendor = id->data; 2762 int portnr, ret; 2763 u32 val; 2764 2765 portnr = pl011_find_free_port(); 2766 if (portnr < 0) 2767 return portnr; 2768 2769 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2770 GFP_KERNEL); 2771 if (!uap) 2772 return -ENOMEM; 2773 2774 uap->clk = devm_clk_get(&dev->dev, NULL); 2775 if (IS_ERR(uap->clk)) 2776 return PTR_ERR(uap->clk); 2777 2778 uap->reg_offset = vendor->reg_offset; 2779 uap->vendor = vendor; 2780 uap->fifosize = vendor->get_fifosize(dev); 2781 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; 2782 uap->port.irq = dev->irq[0]; 2783 uap->port.ops = &amba_pl011_pops; 2784 uap->port.rs485_config = pl011_rs485_config; 2785 uap->port.rs485_supported = pl011_rs485_supported; 2786 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2787 2788 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) { 2789 switch (val) { 2790 case 1: 2791 uap->port.iotype = UPIO_MEM; 2792 break; 2793 case 4: 2794 uap->port.iotype = UPIO_MEM32; 2795 break; 2796 default: 2797 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n", 2798 val); 2799 return -EINVAL; 2800 } 2801 } 2802 2803 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr); 2804 if (ret) 2805 return ret; 2806 2807 amba_set_drvdata(dev, uap); 2808 2809 return pl011_register_port(uap); 2810 } 2811 2812 static void pl011_remove(struct amba_device *dev) 2813 { 2814 struct uart_amba_port *uap = amba_get_drvdata(dev); 2815 2816 uart_remove_one_port(&amba_reg, &uap->port); 2817 pl011_unregister_port(uap); 2818 } 2819 2820 #ifdef CONFIG_PM_SLEEP 2821 static int pl011_suspend(struct device *dev) 2822 { 2823 struct uart_amba_port *uap = dev_get_drvdata(dev); 2824 2825 if (!uap) 2826 return -EINVAL; 2827 2828 return uart_suspend_port(&amba_reg, &uap->port); 2829 } 2830 2831 static int pl011_resume(struct device *dev) 2832 { 2833 struct uart_amba_port *uap = dev_get_drvdata(dev); 2834 2835 if (!uap) 2836 return -EINVAL; 2837 2838 return uart_resume_port(&amba_reg, &uap->port); 2839 } 2840 #endif 2841 2842 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); 2843 2844 #ifdef CONFIG_ACPI_SPCR_TABLE 2845 static void qpdf2400_erratum44_workaround(struct device *dev, 2846 struct uart_amba_port *uap) 2847 { 2848 if (!qdf2400_e44_present) 2849 return; 2850 2851 dev_info(dev, "working around QDF2400 SoC erratum 44\n"); 2852 uap->vendor = &vendor_qdt_qdf2400_e44; 2853 } 2854 #else 2855 static void qpdf2400_erratum44_workaround(struct device *dev, 2856 struct uart_amba_port *uap) 2857 { /* empty */ } 2858 #endif 2859 2860 static int sbsa_uart_probe(struct platform_device *pdev) 2861 { 2862 struct uart_amba_port *uap; 2863 struct resource *r; 2864 int portnr, ret; 2865 int baudrate; 2866 2867 /* 2868 * Check the mandatory baud rate parameter in the DT node early 2869 * so that we can easily exit with the error. 2870 */ 2871 if (pdev->dev.of_node) { 2872 struct device_node *np = pdev->dev.of_node; 2873 2874 ret = of_property_read_u32(np, "current-speed", &baudrate); 2875 if (ret) 2876 return ret; 2877 } else { 2878 baudrate = 115200; 2879 } 2880 2881 portnr = pl011_find_free_port(); 2882 if (portnr < 0) 2883 return portnr; 2884 2885 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port), 2886 GFP_KERNEL); 2887 if (!uap) 2888 return -ENOMEM; 2889 2890 ret = platform_get_irq(pdev, 0); 2891 if (ret < 0) 2892 return ret; 2893 uap->port.irq = ret; 2894 2895 uap->vendor = &vendor_sbsa; 2896 qpdf2400_erratum44_workaround(&pdev->dev, uap); 2897 2898 uap->reg_offset = uap->vendor->reg_offset; 2899 uap->fifosize = 32; 2900 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; 2901 uap->port.ops = &sbsa_uart_pops; 2902 uap->fixed_baud = baudrate; 2903 2904 snprintf(uap->type, sizeof(uap->type), "SBSA"); 2905 2906 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2907 2908 ret = pl011_setup_port(&pdev->dev, uap, r, portnr); 2909 if (ret) 2910 return ret; 2911 2912 platform_set_drvdata(pdev, uap); 2913 2914 return pl011_register_port(uap); 2915 } 2916 2917 static void sbsa_uart_remove(struct platform_device *pdev) 2918 { 2919 struct uart_amba_port *uap = platform_get_drvdata(pdev); 2920 2921 uart_remove_one_port(&amba_reg, &uap->port); 2922 pl011_unregister_port(uap); 2923 } 2924 2925 static const struct of_device_id sbsa_uart_of_match[] = { 2926 { .compatible = "arm,sbsa-uart", }, 2927 {}, 2928 }; 2929 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match); 2930 2931 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = { 2932 { "ARMH0011", 0 }, 2933 { "ARMHB000", 0 }, 2934 {}, 2935 }; 2936 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match); 2937 2938 static struct platform_driver arm_sbsa_uart_platform_driver = { 2939 .probe = sbsa_uart_probe, 2940 .remove_new = sbsa_uart_remove, 2941 .driver = { 2942 .name = "sbsa-uart", 2943 .pm = &pl011_dev_pm_ops, 2944 .of_match_table = of_match_ptr(sbsa_uart_of_match), 2945 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match), 2946 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011), 2947 }, 2948 }; 2949 2950 static const struct amba_id pl011_ids[] = { 2951 { 2952 .id = 0x00041011, 2953 .mask = 0x000fffff, 2954 .data = &vendor_arm, 2955 }, 2956 { 2957 .id = 0x00380802, 2958 .mask = 0x00ffffff, 2959 .data = &vendor_st, 2960 }, 2961 { 0, 0 }, 2962 }; 2963 2964 MODULE_DEVICE_TABLE(amba, pl011_ids); 2965 2966 static struct amba_driver pl011_driver = { 2967 .drv = { 2968 .name = "uart-pl011", 2969 .pm = &pl011_dev_pm_ops, 2970 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011), 2971 }, 2972 .id_table = pl011_ids, 2973 .probe = pl011_probe, 2974 .remove = pl011_remove, 2975 }; 2976 2977 static int __init pl011_init(void) 2978 { 2979 pr_info("Serial: AMBA PL011 UART driver\n"); 2980 2981 if (platform_driver_register(&arm_sbsa_uart_platform_driver)) 2982 pr_warn("could not register SBSA UART platform driver\n"); 2983 return amba_driver_register(&pl011_driver); 2984 } 2985 2986 static void __exit pl011_exit(void) 2987 { 2988 platform_driver_unregister(&arm_sbsa_uart_platform_driver); 2989 amba_driver_unregister(&pl011_driver); 2990 } 2991 2992 /* 2993 * While this can be a module, if builtin it's most likely the console 2994 * So let's leave module_exit but move module_init to an earlier place 2995 */ 2996 arch_initcall(pl011_init); 2997 module_exit(pl011_exit); 2998 2999 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 3000 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 3001 MODULE_LICENSE("GPL"); 3002