1 /* 2 * Driver for AMBA serial ports 3 * 4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 5 * 6 * Copyright 1999 ARM Limited 7 * Copyright (C) 2000 Deep Blue Solutions Ltd. 8 * Copyright (C) 2010 ST-Ericsson SA 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 * 24 * This is a generic driver for ARM AMBA-type serial ports. They 25 * have a lot of 16550-like features, but are not register compatible. 26 * Note that although they do have CTS, DCD and DSR inputs, they do 27 * not have an RI input, nor do they have DTR or RTS outputs. If 28 * required, these have to be supplied via some other means (eg, GPIO) 29 * and hooked into this driver. 30 */ 31 32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 33 #define SUPPORT_SYSRQ 34 #endif 35 36 #include <linux/module.h> 37 #include <linux/ioport.h> 38 #include <linux/init.h> 39 #include <linux/console.h> 40 #include <linux/sysrq.h> 41 #include <linux/device.h> 42 #include <linux/tty.h> 43 #include <linux/tty_flip.h> 44 #include <linux/serial_core.h> 45 #include <linux/serial.h> 46 #include <linux/amba/bus.h> 47 #include <linux/amba/serial.h> 48 #include <linux/clk.h> 49 #include <linux/slab.h> 50 #include <linux/dmaengine.h> 51 #include <linux/dma-mapping.h> 52 #include <linux/scatterlist.h> 53 54 #include <asm/io.h> 55 #include <asm/sizes.h> 56 57 #define UART_NR 14 58 59 #define SERIAL_AMBA_MAJOR 204 60 #define SERIAL_AMBA_MINOR 64 61 #define SERIAL_AMBA_NR UART_NR 62 63 #define AMBA_ISR_PASS_LIMIT 256 64 65 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 66 #define UART_DUMMY_DR_RX (1 << 16) 67 68 /* There is by now at least one vendor with differing details, so handle it */ 69 struct vendor_data { 70 unsigned int ifls; 71 unsigned int fifosize; 72 unsigned int lcrh_tx; 73 unsigned int lcrh_rx; 74 bool oversampling; 75 bool dma_threshold; 76 }; 77 78 static struct vendor_data vendor_arm = { 79 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 80 .fifosize = 16, 81 .lcrh_tx = UART011_LCRH, 82 .lcrh_rx = UART011_LCRH, 83 .oversampling = false, 84 .dma_threshold = false, 85 }; 86 87 static struct vendor_data vendor_st = { 88 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 89 .fifosize = 64, 90 .lcrh_tx = ST_UART011_LCRH_TX, 91 .lcrh_rx = ST_UART011_LCRH_RX, 92 .oversampling = true, 93 .dma_threshold = true, 94 }; 95 96 /* Deals with DMA transactions */ 97 98 struct pl011_sgbuf { 99 struct scatterlist sg; 100 char *buf; 101 }; 102 103 struct pl011_dmarx_data { 104 struct dma_chan *chan; 105 struct completion complete; 106 bool use_buf_b; 107 struct pl011_sgbuf sgbuf_a; 108 struct pl011_sgbuf sgbuf_b; 109 dma_cookie_t cookie; 110 bool running; 111 }; 112 113 struct pl011_dmatx_data { 114 struct dma_chan *chan; 115 struct scatterlist sg; 116 char *buf; 117 bool queued; 118 }; 119 120 /* 121 * We wrap our port structure around the generic uart_port. 122 */ 123 struct uart_amba_port { 124 struct uart_port port; 125 struct clk *clk; 126 const struct vendor_data *vendor; 127 unsigned int dmacr; /* dma control reg */ 128 unsigned int im; /* interrupt mask */ 129 unsigned int old_status; 130 unsigned int fifosize; /* vendor-specific */ 131 unsigned int lcrh_tx; /* vendor-specific */ 132 unsigned int lcrh_rx; /* vendor-specific */ 133 bool autorts; 134 char type[12]; 135 #ifdef CONFIG_DMA_ENGINE 136 /* DMA stuff */ 137 bool using_tx_dma; 138 bool using_rx_dma; 139 struct pl011_dmarx_data dmarx; 140 struct pl011_dmatx_data dmatx; 141 #endif 142 }; 143 144 /* 145 * Reads up to 256 characters from the FIFO or until it's empty and 146 * inserts them into the TTY layer. Returns the number of characters 147 * read from the FIFO. 148 */ 149 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 150 { 151 u16 status, ch; 152 unsigned int flag, max_count = 256; 153 int fifotaken = 0; 154 155 while (max_count--) { 156 status = readw(uap->port.membase + UART01x_FR); 157 if (status & UART01x_FR_RXFE) 158 break; 159 160 /* Take chars from the FIFO and update status */ 161 ch = readw(uap->port.membase + UART01x_DR) | 162 UART_DUMMY_DR_RX; 163 flag = TTY_NORMAL; 164 uap->port.icount.rx++; 165 fifotaken++; 166 167 if (unlikely(ch & UART_DR_ERROR)) { 168 if (ch & UART011_DR_BE) { 169 ch &= ~(UART011_DR_FE | UART011_DR_PE); 170 uap->port.icount.brk++; 171 if (uart_handle_break(&uap->port)) 172 continue; 173 } else if (ch & UART011_DR_PE) 174 uap->port.icount.parity++; 175 else if (ch & UART011_DR_FE) 176 uap->port.icount.frame++; 177 if (ch & UART011_DR_OE) 178 uap->port.icount.overrun++; 179 180 ch &= uap->port.read_status_mask; 181 182 if (ch & UART011_DR_BE) 183 flag = TTY_BREAK; 184 else if (ch & UART011_DR_PE) 185 flag = TTY_PARITY; 186 else if (ch & UART011_DR_FE) 187 flag = TTY_FRAME; 188 } 189 190 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 191 continue; 192 193 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 194 } 195 196 return fifotaken; 197 } 198 199 200 /* 201 * All the DMA operation mode stuff goes inside this ifdef. 202 * This assumes that you have a generic DMA device interface, 203 * no custom DMA interfaces are supported. 204 */ 205 #ifdef CONFIG_DMA_ENGINE 206 207 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 208 209 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 210 enum dma_data_direction dir) 211 { 212 sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 213 if (!sg->buf) 214 return -ENOMEM; 215 216 sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE); 217 218 if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) { 219 kfree(sg->buf); 220 return -EINVAL; 221 } 222 return 0; 223 } 224 225 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 226 enum dma_data_direction dir) 227 { 228 if (sg->buf) { 229 dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir); 230 kfree(sg->buf); 231 } 232 } 233 234 static void pl011_dma_probe_initcall(struct uart_amba_port *uap) 235 { 236 /* DMA is the sole user of the platform data right now */ 237 struct amba_pl011_data *plat = uap->port.dev->platform_data; 238 struct dma_slave_config tx_conf = { 239 .dst_addr = uap->port.mapbase + UART01x_DR, 240 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 241 .direction = DMA_TO_DEVICE, 242 .dst_maxburst = uap->fifosize >> 1, 243 }; 244 struct dma_chan *chan; 245 dma_cap_mask_t mask; 246 247 /* We need platform data */ 248 if (!plat || !plat->dma_filter) { 249 dev_info(uap->port.dev, "no DMA platform data\n"); 250 return; 251 } 252 253 /* Try to acquire a generic DMA engine slave TX channel */ 254 dma_cap_zero(mask); 255 dma_cap_set(DMA_SLAVE, mask); 256 257 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param); 258 if (!chan) { 259 dev_err(uap->port.dev, "no TX DMA channel!\n"); 260 return; 261 } 262 263 dmaengine_slave_config(chan, &tx_conf); 264 uap->dmatx.chan = chan; 265 266 dev_info(uap->port.dev, "DMA channel TX %s\n", 267 dma_chan_name(uap->dmatx.chan)); 268 269 /* Optionally make use of an RX channel as well */ 270 if (plat->dma_rx_param) { 271 struct dma_slave_config rx_conf = { 272 .src_addr = uap->port.mapbase + UART01x_DR, 273 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 274 .direction = DMA_FROM_DEVICE, 275 .src_maxburst = uap->fifosize >> 1, 276 }; 277 278 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 279 if (!chan) { 280 dev_err(uap->port.dev, "no RX DMA channel!\n"); 281 return; 282 } 283 284 dmaengine_slave_config(chan, &rx_conf); 285 uap->dmarx.chan = chan; 286 287 dev_info(uap->port.dev, "DMA channel RX %s\n", 288 dma_chan_name(uap->dmarx.chan)); 289 } 290 } 291 292 #ifndef MODULE 293 /* 294 * Stack up the UARTs and let the above initcall be done at device 295 * initcall time, because the serial driver is called as an arch 296 * initcall, and at this time the DMA subsystem is not yet registered. 297 * At this point the driver will switch over to using DMA where desired. 298 */ 299 struct dma_uap { 300 struct list_head node; 301 struct uart_amba_port *uap; 302 }; 303 304 static LIST_HEAD(pl011_dma_uarts); 305 306 static int __init pl011_dma_initcall(void) 307 { 308 struct list_head *node, *tmp; 309 310 list_for_each_safe(node, tmp, &pl011_dma_uarts) { 311 struct dma_uap *dmau = list_entry(node, struct dma_uap, node); 312 pl011_dma_probe_initcall(dmau->uap); 313 list_del(node); 314 kfree(dmau); 315 } 316 return 0; 317 } 318 319 device_initcall(pl011_dma_initcall); 320 321 static void pl011_dma_probe(struct uart_amba_port *uap) 322 { 323 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL); 324 if (dmau) { 325 dmau->uap = uap; 326 list_add_tail(&dmau->node, &pl011_dma_uarts); 327 } 328 } 329 #else 330 static void pl011_dma_probe(struct uart_amba_port *uap) 331 { 332 pl011_dma_probe_initcall(uap); 333 } 334 #endif 335 336 static void pl011_dma_remove(struct uart_amba_port *uap) 337 { 338 /* TODO: remove the initcall if it has not yet executed */ 339 if (uap->dmatx.chan) 340 dma_release_channel(uap->dmatx.chan); 341 if (uap->dmarx.chan) 342 dma_release_channel(uap->dmarx.chan); 343 } 344 345 /* Forward declare this for the refill routine */ 346 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 347 348 /* 349 * The current DMA TX buffer has been sent. 350 * Try to queue up another DMA buffer. 351 */ 352 static void pl011_dma_tx_callback(void *data) 353 { 354 struct uart_amba_port *uap = data; 355 struct pl011_dmatx_data *dmatx = &uap->dmatx; 356 unsigned long flags; 357 u16 dmacr; 358 359 spin_lock_irqsave(&uap->port.lock, flags); 360 if (uap->dmatx.queued) 361 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 362 DMA_TO_DEVICE); 363 364 dmacr = uap->dmacr; 365 uap->dmacr = dmacr & ~UART011_TXDMAE; 366 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 367 368 /* 369 * If TX DMA was disabled, it means that we've stopped the DMA for 370 * some reason (eg, XOFF received, or we want to send an X-char.) 371 * 372 * Note: we need to be careful here of a potential race between DMA 373 * and the rest of the driver - if the driver disables TX DMA while 374 * a TX buffer completing, we must update the tx queued status to 375 * get further refills (hence we check dmacr). 376 */ 377 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 378 uart_circ_empty(&uap->port.state->xmit)) { 379 uap->dmatx.queued = false; 380 spin_unlock_irqrestore(&uap->port.lock, flags); 381 return; 382 } 383 384 if (pl011_dma_tx_refill(uap) <= 0) { 385 /* 386 * We didn't queue a DMA buffer for some reason, but we 387 * have data pending to be sent. Re-enable the TX IRQ. 388 */ 389 uap->im |= UART011_TXIM; 390 writew(uap->im, uap->port.membase + UART011_IMSC); 391 } 392 spin_unlock_irqrestore(&uap->port.lock, flags); 393 } 394 395 /* 396 * Try to refill the TX DMA buffer. 397 * Locking: called with port lock held and IRQs disabled. 398 * Returns: 399 * 1 if we queued up a TX DMA buffer. 400 * 0 if we didn't want to handle this by DMA 401 * <0 on error 402 */ 403 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 404 { 405 struct pl011_dmatx_data *dmatx = &uap->dmatx; 406 struct dma_chan *chan = dmatx->chan; 407 struct dma_device *dma_dev = chan->device; 408 struct dma_async_tx_descriptor *desc; 409 struct circ_buf *xmit = &uap->port.state->xmit; 410 unsigned int count; 411 412 /* 413 * Try to avoid the overhead involved in using DMA if the 414 * transaction fits in the first half of the FIFO, by using 415 * the standard interrupt handling. This ensures that we 416 * issue a uart_write_wakeup() at the appropriate time. 417 */ 418 count = uart_circ_chars_pending(xmit); 419 if (count < (uap->fifosize >> 1)) { 420 uap->dmatx.queued = false; 421 return 0; 422 } 423 424 /* 425 * Bodge: don't send the last character by DMA, as this 426 * will prevent XON from notifying us to restart DMA. 427 */ 428 count -= 1; 429 430 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 431 if (count > PL011_DMA_BUFFER_SIZE) 432 count = PL011_DMA_BUFFER_SIZE; 433 434 if (xmit->tail < xmit->head) 435 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 436 else { 437 size_t first = UART_XMIT_SIZE - xmit->tail; 438 size_t second = xmit->head; 439 440 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 441 if (second) 442 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 443 } 444 445 dmatx->sg.length = count; 446 447 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 448 uap->dmatx.queued = false; 449 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 450 return -EBUSY; 451 } 452 453 desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE, 454 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 455 if (!desc) { 456 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 457 uap->dmatx.queued = false; 458 /* 459 * If DMA cannot be used right now, we complete this 460 * transaction via IRQ and let the TTY layer retry. 461 */ 462 dev_dbg(uap->port.dev, "TX DMA busy\n"); 463 return -EBUSY; 464 } 465 466 /* Some data to go along to the callback */ 467 desc->callback = pl011_dma_tx_callback; 468 desc->callback_param = uap; 469 470 /* All errors should happen at prepare time */ 471 dmaengine_submit(desc); 472 473 /* Fire the DMA transaction */ 474 dma_dev->device_issue_pending(chan); 475 476 uap->dmacr |= UART011_TXDMAE; 477 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 478 uap->dmatx.queued = true; 479 480 /* 481 * Now we know that DMA will fire, so advance the ring buffer 482 * with the stuff we just dispatched. 483 */ 484 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 485 uap->port.icount.tx += count; 486 487 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 488 uart_write_wakeup(&uap->port); 489 490 return 1; 491 } 492 493 /* 494 * We received a transmit interrupt without a pending X-char but with 495 * pending characters. 496 * Locking: called with port lock held and IRQs disabled. 497 * Returns: 498 * false if we want to use PIO to transmit 499 * true if we queued a DMA buffer 500 */ 501 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 502 { 503 if (!uap->using_tx_dma) 504 return false; 505 506 /* 507 * If we already have a TX buffer queued, but received a 508 * TX interrupt, it will be because we've just sent an X-char. 509 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 510 */ 511 if (uap->dmatx.queued) { 512 uap->dmacr |= UART011_TXDMAE; 513 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 514 uap->im &= ~UART011_TXIM; 515 writew(uap->im, uap->port.membase + UART011_IMSC); 516 return true; 517 } 518 519 /* 520 * We don't have a TX buffer queued, so try to queue one. 521 * If we successfully queued a buffer, mask the TX IRQ. 522 */ 523 if (pl011_dma_tx_refill(uap) > 0) { 524 uap->im &= ~UART011_TXIM; 525 writew(uap->im, uap->port.membase + UART011_IMSC); 526 return true; 527 } 528 return false; 529 } 530 531 /* 532 * Stop the DMA transmit (eg, due to received XOFF). 533 * Locking: called with port lock held and IRQs disabled. 534 */ 535 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 536 { 537 if (uap->dmatx.queued) { 538 uap->dmacr &= ~UART011_TXDMAE; 539 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 540 } 541 } 542 543 /* 544 * Try to start a DMA transmit, or in the case of an XON/OFF 545 * character queued for send, try to get that character out ASAP. 546 * Locking: called with port lock held and IRQs disabled. 547 * Returns: 548 * false if we want the TX IRQ to be enabled 549 * true if we have a buffer queued 550 */ 551 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 552 { 553 u16 dmacr; 554 555 if (!uap->using_tx_dma) 556 return false; 557 558 if (!uap->port.x_char) { 559 /* no X-char, try to push chars out in DMA mode */ 560 bool ret = true; 561 562 if (!uap->dmatx.queued) { 563 if (pl011_dma_tx_refill(uap) > 0) { 564 uap->im &= ~UART011_TXIM; 565 ret = true; 566 } else { 567 uap->im |= UART011_TXIM; 568 ret = false; 569 } 570 writew(uap->im, uap->port.membase + UART011_IMSC); 571 } else if (!(uap->dmacr & UART011_TXDMAE)) { 572 uap->dmacr |= UART011_TXDMAE; 573 writew(uap->dmacr, 574 uap->port.membase + UART011_DMACR); 575 } 576 return ret; 577 } 578 579 /* 580 * We have an X-char to send. Disable DMA to prevent it loading 581 * the TX fifo, and then see if we can stuff it into the FIFO. 582 */ 583 dmacr = uap->dmacr; 584 uap->dmacr &= ~UART011_TXDMAE; 585 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 586 587 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 588 /* 589 * No space in the FIFO, so enable the transmit interrupt 590 * so we know when there is space. Note that once we've 591 * loaded the character, we should just re-enable DMA. 592 */ 593 return false; 594 } 595 596 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 597 uap->port.icount.tx++; 598 uap->port.x_char = 0; 599 600 /* Success - restore the DMA state */ 601 uap->dmacr = dmacr; 602 writew(dmacr, uap->port.membase + UART011_DMACR); 603 604 return true; 605 } 606 607 /* 608 * Flush the transmit buffer. 609 * Locking: called with port lock held and IRQs disabled. 610 */ 611 static void pl011_dma_flush_buffer(struct uart_port *port) 612 { 613 struct uart_amba_port *uap = (struct uart_amba_port *)port; 614 615 if (!uap->using_tx_dma) 616 return; 617 618 /* Avoid deadlock with the DMA engine callback */ 619 spin_unlock(&uap->port.lock); 620 dmaengine_terminate_all(uap->dmatx.chan); 621 spin_lock(&uap->port.lock); 622 if (uap->dmatx.queued) { 623 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 624 DMA_TO_DEVICE); 625 uap->dmatx.queued = false; 626 uap->dmacr &= ~UART011_TXDMAE; 627 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 628 } 629 } 630 631 static void pl011_dma_rx_callback(void *data); 632 633 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 634 { 635 struct dma_chan *rxchan = uap->dmarx.chan; 636 struct dma_device *dma_dev; 637 struct pl011_dmarx_data *dmarx = &uap->dmarx; 638 struct dma_async_tx_descriptor *desc; 639 struct pl011_sgbuf *sgbuf; 640 641 if (!rxchan) 642 return -EIO; 643 644 /* Start the RX DMA job */ 645 sgbuf = uap->dmarx.use_buf_b ? 646 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 647 dma_dev = rxchan->device; 648 desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1, 649 DMA_FROM_DEVICE, 650 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 651 /* 652 * If the DMA engine is busy and cannot prepare a 653 * channel, no big deal, the driver will fall back 654 * to interrupt mode as a result of this error code. 655 */ 656 if (!desc) { 657 uap->dmarx.running = false; 658 dmaengine_terminate_all(rxchan); 659 return -EBUSY; 660 } 661 662 /* Some data to go along to the callback */ 663 desc->callback = pl011_dma_rx_callback; 664 desc->callback_param = uap; 665 dmarx->cookie = dmaengine_submit(desc); 666 dma_async_issue_pending(rxchan); 667 668 uap->dmacr |= UART011_RXDMAE; 669 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 670 uap->dmarx.running = true; 671 672 uap->im &= ~UART011_RXIM; 673 writew(uap->im, uap->port.membase + UART011_IMSC); 674 675 return 0; 676 } 677 678 /* 679 * This is called when either the DMA job is complete, or 680 * the FIFO timeout interrupt occurred. This must be called 681 * with the port spinlock uap->port.lock held. 682 */ 683 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 684 u32 pending, bool use_buf_b, 685 bool readfifo) 686 { 687 struct tty_struct *tty = uap->port.state->port.tty; 688 struct pl011_sgbuf *sgbuf = use_buf_b ? 689 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 690 struct device *dev = uap->dmarx.chan->device->dev; 691 int dma_count = 0; 692 u32 fifotaken = 0; /* only used for vdbg() */ 693 694 /* Pick everything from the DMA first */ 695 if (pending) { 696 /* Sync in buffer */ 697 dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE); 698 699 /* 700 * First take all chars in the DMA pipe, then look in the FIFO. 701 * Note that tty_insert_flip_buf() tries to take as many chars 702 * as it can. 703 */ 704 dma_count = tty_insert_flip_string(uap->port.state->port.tty, 705 sgbuf->buf, pending); 706 707 /* Return buffer to device */ 708 dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE); 709 710 uap->port.icount.rx += dma_count; 711 if (dma_count < pending) 712 dev_warn(uap->port.dev, 713 "couldn't insert all characters (TTY is full?)\n"); 714 } 715 716 /* 717 * Only continue with trying to read the FIFO if all DMA chars have 718 * been taken first. 719 */ 720 if (dma_count == pending && readfifo) { 721 /* Clear any error flags */ 722 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 723 uap->port.membase + UART011_ICR); 724 725 /* 726 * If we read all the DMA'd characters, and we had an 727 * incomplete buffer, that could be due to an rx error, or 728 * maybe we just timed out. Read any pending chars and check 729 * the error status. 730 * 731 * Error conditions will only occur in the FIFO, these will 732 * trigger an immediate interrupt and stop the DMA job, so we 733 * will always find the error in the FIFO, never in the DMA 734 * buffer. 735 */ 736 fifotaken = pl011_fifo_to_tty(uap); 737 } 738 739 spin_unlock(&uap->port.lock); 740 dev_vdbg(uap->port.dev, 741 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 742 dma_count, fifotaken); 743 tty_flip_buffer_push(tty); 744 spin_lock(&uap->port.lock); 745 } 746 747 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 748 { 749 struct pl011_dmarx_data *dmarx = &uap->dmarx; 750 struct dma_chan *rxchan = dmarx->chan; 751 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 752 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 753 size_t pending; 754 struct dma_tx_state state; 755 enum dma_status dmastat; 756 757 /* 758 * Pause the transfer so we can trust the current counter, 759 * do this before we pause the PL011 block, else we may 760 * overflow the FIFO. 761 */ 762 if (dmaengine_pause(rxchan)) 763 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 764 dmastat = rxchan->device->device_tx_status(rxchan, 765 dmarx->cookie, &state); 766 if (dmastat != DMA_PAUSED) 767 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 768 769 /* Disable RX DMA - incoming data will wait in the FIFO */ 770 uap->dmacr &= ~UART011_RXDMAE; 771 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 772 uap->dmarx.running = false; 773 774 pending = sgbuf->sg.length - state.residue; 775 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 776 /* Then we terminate the transfer - we now know our residue */ 777 dmaengine_terminate_all(rxchan); 778 779 /* 780 * This will take the chars we have so far and insert 781 * into the framework. 782 */ 783 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 784 785 /* Switch buffer & re-trigger DMA job */ 786 dmarx->use_buf_b = !dmarx->use_buf_b; 787 if (pl011_dma_rx_trigger_dma(uap)) { 788 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 789 "fall back to interrupt mode\n"); 790 uap->im |= UART011_RXIM; 791 writew(uap->im, uap->port.membase + UART011_IMSC); 792 } 793 } 794 795 static void pl011_dma_rx_callback(void *data) 796 { 797 struct uart_amba_port *uap = data; 798 struct pl011_dmarx_data *dmarx = &uap->dmarx; 799 bool lastbuf = dmarx->use_buf_b; 800 int ret; 801 802 /* 803 * This completion interrupt occurs typically when the 804 * RX buffer is totally stuffed but no timeout has yet 805 * occurred. When that happens, we just want the RX 806 * routine to flush out the secondary DMA buffer while 807 * we immediately trigger the next DMA job. 808 */ 809 spin_lock_irq(&uap->port.lock); 810 uap->dmarx.running = false; 811 dmarx->use_buf_b = !lastbuf; 812 ret = pl011_dma_rx_trigger_dma(uap); 813 814 pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false); 815 spin_unlock_irq(&uap->port.lock); 816 /* 817 * Do this check after we picked the DMA chars so we don't 818 * get some IRQ immediately from RX. 819 */ 820 if (ret) { 821 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 822 "fall back to interrupt mode\n"); 823 uap->im |= UART011_RXIM; 824 writew(uap->im, uap->port.membase + UART011_IMSC); 825 } 826 } 827 828 /* 829 * Stop accepting received characters, when we're shutting down or 830 * suspending this port. 831 * Locking: called with port lock held and IRQs disabled. 832 */ 833 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 834 { 835 /* FIXME. Just disable the DMA enable */ 836 uap->dmacr &= ~UART011_RXDMAE; 837 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 838 } 839 840 static void pl011_dma_startup(struct uart_amba_port *uap) 841 { 842 int ret; 843 844 if (!uap->dmatx.chan) 845 return; 846 847 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 848 if (!uap->dmatx.buf) { 849 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 850 uap->port.fifosize = uap->fifosize; 851 return; 852 } 853 854 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 855 856 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 857 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 858 uap->using_tx_dma = true; 859 860 if (!uap->dmarx.chan) 861 goto skip_rx; 862 863 /* Allocate and map DMA RX buffers */ 864 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 865 DMA_FROM_DEVICE); 866 if (ret) { 867 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 868 "RX buffer A", ret); 869 goto skip_rx; 870 } 871 872 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 873 DMA_FROM_DEVICE); 874 if (ret) { 875 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 876 "RX buffer B", ret); 877 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 878 DMA_FROM_DEVICE); 879 goto skip_rx; 880 } 881 882 uap->using_rx_dma = true; 883 884 skip_rx: 885 /* Turn on DMA error (RX/TX will be enabled on demand) */ 886 uap->dmacr |= UART011_DMAONERR; 887 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 888 889 /* 890 * ST Micro variants has some specific dma burst threshold 891 * compensation. Set this to 16 bytes, so burst will only 892 * be issued above/below 16 bytes. 893 */ 894 if (uap->vendor->dma_threshold) 895 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 896 uap->port.membase + ST_UART011_DMAWM); 897 898 if (uap->using_rx_dma) { 899 if (pl011_dma_rx_trigger_dma(uap)) 900 dev_dbg(uap->port.dev, "could not trigger initial " 901 "RX DMA job, fall back to interrupt mode\n"); 902 } 903 } 904 905 static void pl011_dma_shutdown(struct uart_amba_port *uap) 906 { 907 if (!(uap->using_tx_dma || uap->using_rx_dma)) 908 return; 909 910 /* Disable RX and TX DMA */ 911 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 912 barrier(); 913 914 spin_lock_irq(&uap->port.lock); 915 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 916 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 917 spin_unlock_irq(&uap->port.lock); 918 919 if (uap->using_tx_dma) { 920 /* In theory, this should already be done by pl011_dma_flush_buffer */ 921 dmaengine_terminate_all(uap->dmatx.chan); 922 if (uap->dmatx.queued) { 923 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 924 DMA_TO_DEVICE); 925 uap->dmatx.queued = false; 926 } 927 928 kfree(uap->dmatx.buf); 929 uap->using_tx_dma = false; 930 } 931 932 if (uap->using_rx_dma) { 933 dmaengine_terminate_all(uap->dmarx.chan); 934 /* Clean up the RX DMA */ 935 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 936 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 937 uap->using_rx_dma = false; 938 } 939 } 940 941 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 942 { 943 return uap->using_rx_dma; 944 } 945 946 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 947 { 948 return uap->using_rx_dma && uap->dmarx.running; 949 } 950 951 952 #else 953 /* Blank functions if the DMA engine is not available */ 954 static inline void pl011_dma_probe(struct uart_amba_port *uap) 955 { 956 } 957 958 static inline void pl011_dma_remove(struct uart_amba_port *uap) 959 { 960 } 961 962 static inline void pl011_dma_startup(struct uart_amba_port *uap) 963 { 964 } 965 966 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 967 { 968 } 969 970 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 971 { 972 return false; 973 } 974 975 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 976 { 977 } 978 979 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 980 { 981 return false; 982 } 983 984 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 985 { 986 } 987 988 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 989 { 990 } 991 992 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 993 { 994 return -EIO; 995 } 996 997 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 998 { 999 return false; 1000 } 1001 1002 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1003 { 1004 return false; 1005 } 1006 1007 #define pl011_dma_flush_buffer NULL 1008 #endif 1009 1010 1011 static void pl011_stop_tx(struct uart_port *port) 1012 { 1013 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1014 1015 uap->im &= ~UART011_TXIM; 1016 writew(uap->im, uap->port.membase + UART011_IMSC); 1017 pl011_dma_tx_stop(uap); 1018 } 1019 1020 static void pl011_start_tx(struct uart_port *port) 1021 { 1022 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1023 1024 if (!pl011_dma_tx_start(uap)) { 1025 uap->im |= UART011_TXIM; 1026 writew(uap->im, uap->port.membase + UART011_IMSC); 1027 } 1028 } 1029 1030 static void pl011_stop_rx(struct uart_port *port) 1031 { 1032 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1033 1034 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1035 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1036 writew(uap->im, uap->port.membase + UART011_IMSC); 1037 1038 pl011_dma_rx_stop(uap); 1039 } 1040 1041 static void pl011_enable_ms(struct uart_port *port) 1042 { 1043 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1044 1045 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1046 writew(uap->im, uap->port.membase + UART011_IMSC); 1047 } 1048 1049 static void pl011_rx_chars(struct uart_amba_port *uap) 1050 { 1051 struct tty_struct *tty = uap->port.state->port.tty; 1052 1053 pl011_fifo_to_tty(uap); 1054 1055 spin_unlock(&uap->port.lock); 1056 tty_flip_buffer_push(tty); 1057 /* 1058 * If we were temporarily out of DMA mode for a while, 1059 * attempt to switch back to DMA mode again. 1060 */ 1061 if (pl011_dma_rx_available(uap)) { 1062 if (pl011_dma_rx_trigger_dma(uap)) { 1063 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1064 "fall back to interrupt mode again\n"); 1065 uap->im |= UART011_RXIM; 1066 } else 1067 uap->im &= ~UART011_RXIM; 1068 writew(uap->im, uap->port.membase + UART011_IMSC); 1069 } 1070 spin_lock(&uap->port.lock); 1071 } 1072 1073 static void pl011_tx_chars(struct uart_amba_port *uap) 1074 { 1075 struct circ_buf *xmit = &uap->port.state->xmit; 1076 int count; 1077 1078 if (uap->port.x_char) { 1079 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 1080 uap->port.icount.tx++; 1081 uap->port.x_char = 0; 1082 return; 1083 } 1084 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1085 pl011_stop_tx(&uap->port); 1086 return; 1087 } 1088 1089 /* If we are using DMA mode, try to send some characters. */ 1090 if (pl011_dma_tx_irq(uap)) 1091 return; 1092 1093 count = uap->fifosize >> 1; 1094 do { 1095 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR); 1096 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1097 uap->port.icount.tx++; 1098 if (uart_circ_empty(xmit)) 1099 break; 1100 } while (--count > 0); 1101 1102 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1103 uart_write_wakeup(&uap->port); 1104 1105 if (uart_circ_empty(xmit)) 1106 pl011_stop_tx(&uap->port); 1107 } 1108 1109 static void pl011_modem_status(struct uart_amba_port *uap) 1110 { 1111 unsigned int status, delta; 1112 1113 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1114 1115 delta = status ^ uap->old_status; 1116 uap->old_status = status; 1117 1118 if (!delta) 1119 return; 1120 1121 if (delta & UART01x_FR_DCD) 1122 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1123 1124 if (delta & UART01x_FR_DSR) 1125 uap->port.icount.dsr++; 1126 1127 if (delta & UART01x_FR_CTS) 1128 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 1129 1130 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1131 } 1132 1133 static irqreturn_t pl011_int(int irq, void *dev_id) 1134 { 1135 struct uart_amba_port *uap = dev_id; 1136 unsigned long flags; 1137 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1138 int handled = 0; 1139 1140 spin_lock_irqsave(&uap->port.lock, flags); 1141 1142 status = readw(uap->port.membase + UART011_MIS); 1143 if (status) { 1144 do { 1145 writew(status & ~(UART011_TXIS|UART011_RTIS| 1146 UART011_RXIS), 1147 uap->port.membase + UART011_ICR); 1148 1149 if (status & (UART011_RTIS|UART011_RXIS)) { 1150 if (pl011_dma_rx_running(uap)) 1151 pl011_dma_rx_irq(uap); 1152 else 1153 pl011_rx_chars(uap); 1154 } 1155 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1156 UART011_CTSMIS|UART011_RIMIS)) 1157 pl011_modem_status(uap); 1158 if (status & UART011_TXIS) 1159 pl011_tx_chars(uap); 1160 1161 if (pass_counter-- == 0) 1162 break; 1163 1164 status = readw(uap->port.membase + UART011_MIS); 1165 } while (status != 0); 1166 handled = 1; 1167 } 1168 1169 spin_unlock_irqrestore(&uap->port.lock, flags); 1170 1171 return IRQ_RETVAL(handled); 1172 } 1173 1174 static unsigned int pl01x_tx_empty(struct uart_port *port) 1175 { 1176 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1177 unsigned int status = readw(uap->port.membase + UART01x_FR); 1178 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 1179 } 1180 1181 static unsigned int pl01x_get_mctrl(struct uart_port *port) 1182 { 1183 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1184 unsigned int result = 0; 1185 unsigned int status = readw(uap->port.membase + UART01x_FR); 1186 1187 #define TIOCMBIT(uartbit, tiocmbit) \ 1188 if (status & uartbit) \ 1189 result |= tiocmbit 1190 1191 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1192 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 1193 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 1194 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 1195 #undef TIOCMBIT 1196 return result; 1197 } 1198 1199 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1200 { 1201 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1202 unsigned int cr; 1203 1204 cr = readw(uap->port.membase + UART011_CR); 1205 1206 #define TIOCMBIT(tiocmbit, uartbit) \ 1207 if (mctrl & tiocmbit) \ 1208 cr |= uartbit; \ 1209 else \ 1210 cr &= ~uartbit 1211 1212 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1213 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1214 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1215 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1216 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1217 1218 if (uap->autorts) { 1219 /* We need to disable auto-RTS if we want to turn RTS off */ 1220 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1221 } 1222 #undef TIOCMBIT 1223 1224 writew(cr, uap->port.membase + UART011_CR); 1225 } 1226 1227 static void pl011_break_ctl(struct uart_port *port, int break_state) 1228 { 1229 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1230 unsigned long flags; 1231 unsigned int lcr_h; 1232 1233 spin_lock_irqsave(&uap->port.lock, flags); 1234 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1235 if (break_state == -1) 1236 lcr_h |= UART01x_LCRH_BRK; 1237 else 1238 lcr_h &= ~UART01x_LCRH_BRK; 1239 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1240 spin_unlock_irqrestore(&uap->port.lock, flags); 1241 } 1242 1243 #ifdef CONFIG_CONSOLE_POLL 1244 static int pl010_get_poll_char(struct uart_port *port) 1245 { 1246 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1247 unsigned int status; 1248 1249 status = readw(uap->port.membase + UART01x_FR); 1250 if (status & UART01x_FR_RXFE) 1251 return NO_POLL_CHAR; 1252 1253 return readw(uap->port.membase + UART01x_DR); 1254 } 1255 1256 static void pl010_put_poll_char(struct uart_port *port, 1257 unsigned char ch) 1258 { 1259 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1260 1261 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1262 barrier(); 1263 1264 writew(ch, uap->port.membase + UART01x_DR); 1265 } 1266 1267 #endif /* CONFIG_CONSOLE_POLL */ 1268 1269 static int pl011_startup(struct uart_port *port) 1270 { 1271 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1272 unsigned int cr; 1273 int retval; 1274 1275 /* 1276 * Try to enable the clock producer. 1277 */ 1278 retval = clk_enable(uap->clk); 1279 if (retval) 1280 goto out; 1281 1282 uap->port.uartclk = clk_get_rate(uap->clk); 1283 1284 /* 1285 * Allocate the IRQ 1286 */ 1287 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1288 if (retval) 1289 goto clk_dis; 1290 1291 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 1292 1293 /* 1294 * Provoke TX FIFO interrupt into asserting. 1295 */ 1296 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE; 1297 writew(cr, uap->port.membase + UART011_CR); 1298 writew(0, uap->port.membase + UART011_FBRD); 1299 writew(1, uap->port.membase + UART011_IBRD); 1300 writew(0, uap->port.membase + uap->lcrh_rx); 1301 if (uap->lcrh_tx != uap->lcrh_rx) { 1302 int i; 1303 /* 1304 * Wait 10 PCLKs before writing LCRH_TX register, 1305 * to get this delay write read only register 10 times 1306 */ 1307 for (i = 0; i < 10; ++i) 1308 writew(0xff, uap->port.membase + UART011_MIS); 1309 writew(0, uap->port.membase + uap->lcrh_tx); 1310 } 1311 writew(0, uap->port.membase + UART01x_DR); 1312 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1313 barrier(); 1314 1315 cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1316 writew(cr, uap->port.membase + UART011_CR); 1317 1318 /* Clear pending error interrupts */ 1319 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 1320 uap->port.membase + UART011_ICR); 1321 1322 /* 1323 * initialise the old status of the modem signals 1324 */ 1325 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1326 1327 /* Startup DMA */ 1328 pl011_dma_startup(uap); 1329 1330 /* 1331 * Finally, enable interrupts, only timeouts when using DMA 1332 * if initial RX DMA job failed, start in interrupt mode 1333 * as well. 1334 */ 1335 spin_lock_irq(&uap->port.lock); 1336 uap->im = UART011_RTIM; 1337 if (!pl011_dma_rx_running(uap)) 1338 uap->im |= UART011_RXIM; 1339 writew(uap->im, uap->port.membase + UART011_IMSC); 1340 spin_unlock_irq(&uap->port.lock); 1341 1342 return 0; 1343 1344 clk_dis: 1345 clk_disable(uap->clk); 1346 out: 1347 return retval; 1348 } 1349 1350 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1351 unsigned int lcrh) 1352 { 1353 unsigned long val; 1354 1355 val = readw(uap->port.membase + lcrh); 1356 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1357 writew(val, uap->port.membase + lcrh); 1358 } 1359 1360 static void pl011_shutdown(struct uart_port *port) 1361 { 1362 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1363 1364 /* 1365 * disable all interrupts 1366 */ 1367 spin_lock_irq(&uap->port.lock); 1368 uap->im = 0; 1369 writew(uap->im, uap->port.membase + UART011_IMSC); 1370 writew(0xffff, uap->port.membase + UART011_ICR); 1371 spin_unlock_irq(&uap->port.lock); 1372 1373 pl011_dma_shutdown(uap); 1374 1375 /* 1376 * Free the interrupt 1377 */ 1378 free_irq(uap->port.irq, uap); 1379 1380 /* 1381 * disable the port 1382 */ 1383 uap->autorts = false; 1384 writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR); 1385 1386 /* 1387 * disable break condition and fifos 1388 */ 1389 pl011_shutdown_channel(uap, uap->lcrh_rx); 1390 if (uap->lcrh_rx != uap->lcrh_tx) 1391 pl011_shutdown_channel(uap, uap->lcrh_tx); 1392 1393 /* 1394 * Shut down the clock producer 1395 */ 1396 clk_disable(uap->clk); 1397 } 1398 1399 static void 1400 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1401 struct ktermios *old) 1402 { 1403 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1404 unsigned int lcr_h, old_cr; 1405 unsigned long flags; 1406 unsigned int baud, quot, clkdiv; 1407 1408 if (uap->vendor->oversampling) 1409 clkdiv = 8; 1410 else 1411 clkdiv = 16; 1412 1413 /* 1414 * Ask the core to calculate the divisor for us. 1415 */ 1416 baud = uart_get_baud_rate(port, termios, old, 0, 1417 port->uartclk / clkdiv); 1418 1419 if (baud > port->uartclk/16) 1420 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1421 else 1422 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1423 1424 switch (termios->c_cflag & CSIZE) { 1425 case CS5: 1426 lcr_h = UART01x_LCRH_WLEN_5; 1427 break; 1428 case CS6: 1429 lcr_h = UART01x_LCRH_WLEN_6; 1430 break; 1431 case CS7: 1432 lcr_h = UART01x_LCRH_WLEN_7; 1433 break; 1434 default: // CS8 1435 lcr_h = UART01x_LCRH_WLEN_8; 1436 break; 1437 } 1438 if (termios->c_cflag & CSTOPB) 1439 lcr_h |= UART01x_LCRH_STP2; 1440 if (termios->c_cflag & PARENB) { 1441 lcr_h |= UART01x_LCRH_PEN; 1442 if (!(termios->c_cflag & PARODD)) 1443 lcr_h |= UART01x_LCRH_EPS; 1444 } 1445 if (uap->fifosize > 1) 1446 lcr_h |= UART01x_LCRH_FEN; 1447 1448 spin_lock_irqsave(&port->lock, flags); 1449 1450 /* 1451 * Update the per-port timeout. 1452 */ 1453 uart_update_timeout(port, termios->c_cflag, baud); 1454 1455 port->read_status_mask = UART011_DR_OE | 255; 1456 if (termios->c_iflag & INPCK) 1457 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1458 if (termios->c_iflag & (BRKINT | PARMRK)) 1459 port->read_status_mask |= UART011_DR_BE; 1460 1461 /* 1462 * Characters to ignore 1463 */ 1464 port->ignore_status_mask = 0; 1465 if (termios->c_iflag & IGNPAR) 1466 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1467 if (termios->c_iflag & IGNBRK) { 1468 port->ignore_status_mask |= UART011_DR_BE; 1469 /* 1470 * If we're ignoring parity and break indicators, 1471 * ignore overruns too (for real raw support). 1472 */ 1473 if (termios->c_iflag & IGNPAR) 1474 port->ignore_status_mask |= UART011_DR_OE; 1475 } 1476 1477 /* 1478 * Ignore all characters if CREAD is not set. 1479 */ 1480 if ((termios->c_cflag & CREAD) == 0) 1481 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1482 1483 if (UART_ENABLE_MS(port, termios->c_cflag)) 1484 pl011_enable_ms(port); 1485 1486 /* first, disable everything */ 1487 old_cr = readw(port->membase + UART011_CR); 1488 writew(0, port->membase + UART011_CR); 1489 1490 if (termios->c_cflag & CRTSCTS) { 1491 if (old_cr & UART011_CR_RTS) 1492 old_cr |= UART011_CR_RTSEN; 1493 1494 old_cr |= UART011_CR_CTSEN; 1495 uap->autorts = true; 1496 } else { 1497 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1498 uap->autorts = false; 1499 } 1500 1501 if (uap->vendor->oversampling) { 1502 if (baud > port->uartclk / 16) 1503 old_cr |= ST_UART011_CR_OVSFACT; 1504 else 1505 old_cr &= ~ST_UART011_CR_OVSFACT; 1506 } 1507 1508 /* Set baud rate */ 1509 writew(quot & 0x3f, port->membase + UART011_FBRD); 1510 writew(quot >> 6, port->membase + UART011_IBRD); 1511 1512 /* 1513 * ----------v----------v----------v----------v----- 1514 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L 1515 * ----------^----------^----------^----------^----- 1516 */ 1517 writew(lcr_h, port->membase + uap->lcrh_rx); 1518 if (uap->lcrh_rx != uap->lcrh_tx) { 1519 int i; 1520 /* 1521 * Wait 10 PCLKs before writing LCRH_TX register, 1522 * to get this delay write read only register 10 times 1523 */ 1524 for (i = 0; i < 10; ++i) 1525 writew(0xff, uap->port.membase + UART011_MIS); 1526 writew(lcr_h, port->membase + uap->lcrh_tx); 1527 } 1528 writew(old_cr, port->membase + UART011_CR); 1529 1530 spin_unlock_irqrestore(&port->lock, flags); 1531 } 1532 1533 static const char *pl011_type(struct uart_port *port) 1534 { 1535 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1536 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1537 } 1538 1539 /* 1540 * Release the memory region(s) being used by 'port' 1541 */ 1542 static void pl010_release_port(struct uart_port *port) 1543 { 1544 release_mem_region(port->mapbase, SZ_4K); 1545 } 1546 1547 /* 1548 * Request the memory region(s) being used by 'port' 1549 */ 1550 static int pl010_request_port(struct uart_port *port) 1551 { 1552 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1553 != NULL ? 0 : -EBUSY; 1554 } 1555 1556 /* 1557 * Configure/autoconfigure the port. 1558 */ 1559 static void pl010_config_port(struct uart_port *port, int flags) 1560 { 1561 if (flags & UART_CONFIG_TYPE) { 1562 port->type = PORT_AMBA; 1563 pl010_request_port(port); 1564 } 1565 } 1566 1567 /* 1568 * verify the new serial_struct (for TIOCSSERIAL). 1569 */ 1570 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser) 1571 { 1572 int ret = 0; 1573 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1574 ret = -EINVAL; 1575 if (ser->irq < 0 || ser->irq >= nr_irqs) 1576 ret = -EINVAL; 1577 if (ser->baud_base < 9600) 1578 ret = -EINVAL; 1579 return ret; 1580 } 1581 1582 static struct uart_ops amba_pl011_pops = { 1583 .tx_empty = pl01x_tx_empty, 1584 .set_mctrl = pl011_set_mctrl, 1585 .get_mctrl = pl01x_get_mctrl, 1586 .stop_tx = pl011_stop_tx, 1587 .start_tx = pl011_start_tx, 1588 .stop_rx = pl011_stop_rx, 1589 .enable_ms = pl011_enable_ms, 1590 .break_ctl = pl011_break_ctl, 1591 .startup = pl011_startup, 1592 .shutdown = pl011_shutdown, 1593 .flush_buffer = pl011_dma_flush_buffer, 1594 .set_termios = pl011_set_termios, 1595 .type = pl011_type, 1596 .release_port = pl010_release_port, 1597 .request_port = pl010_request_port, 1598 .config_port = pl010_config_port, 1599 .verify_port = pl010_verify_port, 1600 #ifdef CONFIG_CONSOLE_POLL 1601 .poll_get_char = pl010_get_poll_char, 1602 .poll_put_char = pl010_put_poll_char, 1603 #endif 1604 }; 1605 1606 static struct uart_amba_port *amba_ports[UART_NR]; 1607 1608 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 1609 1610 static void pl011_console_putchar(struct uart_port *port, int ch) 1611 { 1612 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1613 1614 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1615 barrier(); 1616 writew(ch, uap->port.membase + UART01x_DR); 1617 } 1618 1619 static void 1620 pl011_console_write(struct console *co, const char *s, unsigned int count) 1621 { 1622 struct uart_amba_port *uap = amba_ports[co->index]; 1623 unsigned int status, old_cr, new_cr; 1624 1625 clk_enable(uap->clk); 1626 1627 /* 1628 * First save the CR then disable the interrupts 1629 */ 1630 old_cr = readw(uap->port.membase + UART011_CR); 1631 new_cr = old_cr & ~UART011_CR_CTSEN; 1632 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1633 writew(new_cr, uap->port.membase + UART011_CR); 1634 1635 uart_console_write(&uap->port, s, count, pl011_console_putchar); 1636 1637 /* 1638 * Finally, wait for transmitter to become empty 1639 * and restore the TCR 1640 */ 1641 do { 1642 status = readw(uap->port.membase + UART01x_FR); 1643 } while (status & UART01x_FR_BUSY); 1644 writew(old_cr, uap->port.membase + UART011_CR); 1645 1646 clk_disable(uap->clk); 1647 } 1648 1649 static void __init 1650 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 1651 int *parity, int *bits) 1652 { 1653 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 1654 unsigned int lcr_h, ibrd, fbrd; 1655 1656 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1657 1658 *parity = 'n'; 1659 if (lcr_h & UART01x_LCRH_PEN) { 1660 if (lcr_h & UART01x_LCRH_EPS) 1661 *parity = 'e'; 1662 else 1663 *parity = 'o'; 1664 } 1665 1666 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 1667 *bits = 7; 1668 else 1669 *bits = 8; 1670 1671 ibrd = readw(uap->port.membase + UART011_IBRD); 1672 fbrd = readw(uap->port.membase + UART011_FBRD); 1673 1674 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 1675 1676 if (uap->vendor->oversampling) { 1677 if (readw(uap->port.membase + UART011_CR) 1678 & ST_UART011_CR_OVSFACT) 1679 *baud *= 2; 1680 } 1681 } 1682 } 1683 1684 static int __init pl011_console_setup(struct console *co, char *options) 1685 { 1686 struct uart_amba_port *uap; 1687 int baud = 38400; 1688 int bits = 8; 1689 int parity = 'n'; 1690 int flow = 'n'; 1691 1692 /* 1693 * Check whether an invalid uart number has been specified, and 1694 * if so, search for the first available port that does have 1695 * console support. 1696 */ 1697 if (co->index >= UART_NR) 1698 co->index = 0; 1699 uap = amba_ports[co->index]; 1700 if (!uap) 1701 return -ENODEV; 1702 1703 uap->port.uartclk = clk_get_rate(uap->clk); 1704 1705 if (options) 1706 uart_parse_options(options, &baud, &parity, &bits, &flow); 1707 else 1708 pl011_console_get_options(uap, &baud, &parity, &bits); 1709 1710 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 1711 } 1712 1713 static struct uart_driver amba_reg; 1714 static struct console amba_console = { 1715 .name = "ttyAMA", 1716 .write = pl011_console_write, 1717 .device = uart_console_device, 1718 .setup = pl011_console_setup, 1719 .flags = CON_PRINTBUFFER, 1720 .index = -1, 1721 .data = &amba_reg, 1722 }; 1723 1724 #define AMBA_CONSOLE (&amba_console) 1725 #else 1726 #define AMBA_CONSOLE NULL 1727 #endif 1728 1729 static struct uart_driver amba_reg = { 1730 .owner = THIS_MODULE, 1731 .driver_name = "ttyAMA", 1732 .dev_name = "ttyAMA", 1733 .major = SERIAL_AMBA_MAJOR, 1734 .minor = SERIAL_AMBA_MINOR, 1735 .nr = UART_NR, 1736 .cons = AMBA_CONSOLE, 1737 }; 1738 1739 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 1740 { 1741 struct uart_amba_port *uap; 1742 struct vendor_data *vendor = id->data; 1743 void __iomem *base; 1744 int i, ret; 1745 1746 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 1747 if (amba_ports[i] == NULL) 1748 break; 1749 1750 if (i == ARRAY_SIZE(amba_ports)) { 1751 ret = -EBUSY; 1752 goto out; 1753 } 1754 1755 uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL); 1756 if (uap == NULL) { 1757 ret = -ENOMEM; 1758 goto out; 1759 } 1760 1761 base = ioremap(dev->res.start, resource_size(&dev->res)); 1762 if (!base) { 1763 ret = -ENOMEM; 1764 goto free; 1765 } 1766 1767 uap->clk = clk_get(&dev->dev, NULL); 1768 if (IS_ERR(uap->clk)) { 1769 ret = PTR_ERR(uap->clk); 1770 goto unmap; 1771 } 1772 1773 uap->vendor = vendor; 1774 uap->lcrh_rx = vendor->lcrh_rx; 1775 uap->lcrh_tx = vendor->lcrh_tx; 1776 uap->fifosize = vendor->fifosize; 1777 uap->port.dev = &dev->dev; 1778 uap->port.mapbase = dev->res.start; 1779 uap->port.membase = base; 1780 uap->port.iotype = UPIO_MEM; 1781 uap->port.irq = dev->irq[0]; 1782 uap->port.fifosize = uap->fifosize; 1783 uap->port.ops = &amba_pl011_pops; 1784 uap->port.flags = UPF_BOOT_AUTOCONF; 1785 uap->port.line = i; 1786 pl011_dma_probe(uap); 1787 1788 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 1789 1790 amba_ports[i] = uap; 1791 1792 amba_set_drvdata(dev, uap); 1793 ret = uart_add_one_port(&amba_reg, &uap->port); 1794 if (ret) { 1795 amba_set_drvdata(dev, NULL); 1796 amba_ports[i] = NULL; 1797 pl011_dma_remove(uap); 1798 clk_put(uap->clk); 1799 unmap: 1800 iounmap(base); 1801 free: 1802 kfree(uap); 1803 } 1804 out: 1805 return ret; 1806 } 1807 1808 static int pl011_remove(struct amba_device *dev) 1809 { 1810 struct uart_amba_port *uap = amba_get_drvdata(dev); 1811 int i; 1812 1813 amba_set_drvdata(dev, NULL); 1814 1815 uart_remove_one_port(&amba_reg, &uap->port); 1816 1817 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 1818 if (amba_ports[i] == uap) 1819 amba_ports[i] = NULL; 1820 1821 pl011_dma_remove(uap); 1822 iounmap(uap->port.membase); 1823 clk_put(uap->clk); 1824 kfree(uap); 1825 return 0; 1826 } 1827 1828 #ifdef CONFIG_PM 1829 static int pl011_suspend(struct amba_device *dev, pm_message_t state) 1830 { 1831 struct uart_amba_port *uap = amba_get_drvdata(dev); 1832 1833 if (!uap) 1834 return -EINVAL; 1835 1836 return uart_suspend_port(&amba_reg, &uap->port); 1837 } 1838 1839 static int pl011_resume(struct amba_device *dev) 1840 { 1841 struct uart_amba_port *uap = amba_get_drvdata(dev); 1842 1843 if (!uap) 1844 return -EINVAL; 1845 1846 return uart_resume_port(&amba_reg, &uap->port); 1847 } 1848 #endif 1849 1850 static struct amba_id pl011_ids[] = { 1851 { 1852 .id = 0x00041011, 1853 .mask = 0x000fffff, 1854 .data = &vendor_arm, 1855 }, 1856 { 1857 .id = 0x00380802, 1858 .mask = 0x00ffffff, 1859 .data = &vendor_st, 1860 }, 1861 { 0, 0 }, 1862 }; 1863 1864 static struct amba_driver pl011_driver = { 1865 .drv = { 1866 .name = "uart-pl011", 1867 }, 1868 .id_table = pl011_ids, 1869 .probe = pl011_probe, 1870 .remove = pl011_remove, 1871 #ifdef CONFIG_PM 1872 .suspend = pl011_suspend, 1873 .resume = pl011_resume, 1874 #endif 1875 }; 1876 1877 static int __init pl011_init(void) 1878 { 1879 int ret; 1880 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 1881 1882 ret = uart_register_driver(&amba_reg); 1883 if (ret == 0) { 1884 ret = amba_driver_register(&pl011_driver); 1885 if (ret) 1886 uart_unregister_driver(&amba_reg); 1887 } 1888 return ret; 1889 } 1890 1891 static void __exit pl011_exit(void) 1892 { 1893 amba_driver_unregister(&pl011_driver); 1894 uart_unregister_driver(&amba_reg); 1895 } 1896 1897 /* 1898 * While this can be a module, if builtin it's most likely the console 1899 * So let's leave module_exit but move module_init to an earlier place 1900 */ 1901 arch_initcall(pl011_init); 1902 module_exit(pl011_exit); 1903 1904 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 1905 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 1906 MODULE_LICENSE("GPL"); 1907