xref: /linux/drivers/tty/serial/amba-pl011.c (revision 1f2d9c9dd8276b1c19ef80e6d8059fe47506d4c3)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35 
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 
54 #include <asm/io.h>
55 #include <asm/sizes.h>
56 
57 #define UART_NR			14
58 
59 #define SERIAL_AMBA_MAJOR	204
60 #define SERIAL_AMBA_MINOR	64
61 #define SERIAL_AMBA_NR		UART_NR
62 
63 #define AMBA_ISR_PASS_LIMIT	256
64 
65 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
66 #define UART_DUMMY_DR_RX	(1 << 16)
67 
68 /* There is by now at least one vendor with differing details, so handle it */
69 struct vendor_data {
70 	unsigned int		ifls;
71 	unsigned int		fifosize;
72 	unsigned int		lcrh_tx;
73 	unsigned int		lcrh_rx;
74 	bool			oversampling;
75 	bool			dma_threshold;
76 };
77 
78 static struct vendor_data vendor_arm = {
79 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
80 	.fifosize		= 16,
81 	.lcrh_tx		= UART011_LCRH,
82 	.lcrh_rx		= UART011_LCRH,
83 	.oversampling		= false,
84 	.dma_threshold		= false,
85 };
86 
87 static struct vendor_data vendor_st = {
88 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
89 	.fifosize		= 64,
90 	.lcrh_tx		= ST_UART011_LCRH_TX,
91 	.lcrh_rx		= ST_UART011_LCRH_RX,
92 	.oversampling		= true,
93 	.dma_threshold		= true,
94 };
95 
96 /* Deals with DMA transactions */
97 
98 struct pl011_sgbuf {
99 	struct scatterlist sg;
100 	char *buf;
101 };
102 
103 struct pl011_dmarx_data {
104 	struct dma_chan		*chan;
105 	struct completion	complete;
106 	bool			use_buf_b;
107 	struct pl011_sgbuf	sgbuf_a;
108 	struct pl011_sgbuf	sgbuf_b;
109 	dma_cookie_t		cookie;
110 	bool			running;
111 };
112 
113 struct pl011_dmatx_data {
114 	struct dma_chan		*chan;
115 	struct scatterlist	sg;
116 	char			*buf;
117 	bool			queued;
118 };
119 
120 /*
121  * We wrap our port structure around the generic uart_port.
122  */
123 struct uart_amba_port {
124 	struct uart_port	port;
125 	struct clk		*clk;
126 	const struct vendor_data *vendor;
127 	unsigned int		dmacr;		/* dma control reg */
128 	unsigned int		im;		/* interrupt mask */
129 	unsigned int		old_status;
130 	unsigned int		fifosize;	/* vendor-specific */
131 	unsigned int		lcrh_tx;	/* vendor-specific */
132 	unsigned int		lcrh_rx;	/* vendor-specific */
133 	bool			autorts;
134 	char			type[12];
135 #ifdef CONFIG_DMA_ENGINE
136 	/* DMA stuff */
137 	bool			using_tx_dma;
138 	bool			using_rx_dma;
139 	struct pl011_dmarx_data dmarx;
140 	struct pl011_dmatx_data	dmatx;
141 #endif
142 };
143 
144 /*
145  * Reads up to 256 characters from the FIFO or until it's empty and
146  * inserts them into the TTY layer. Returns the number of characters
147  * read from the FIFO.
148  */
149 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
150 {
151 	u16 status, ch;
152 	unsigned int flag, max_count = 256;
153 	int fifotaken = 0;
154 
155 	while (max_count--) {
156 		status = readw(uap->port.membase + UART01x_FR);
157 		if (status & UART01x_FR_RXFE)
158 			break;
159 
160 		/* Take chars from the FIFO and update status */
161 		ch = readw(uap->port.membase + UART01x_DR) |
162 			UART_DUMMY_DR_RX;
163 		flag = TTY_NORMAL;
164 		uap->port.icount.rx++;
165 		fifotaken++;
166 
167 		if (unlikely(ch & UART_DR_ERROR)) {
168 			if (ch & UART011_DR_BE) {
169 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
170 				uap->port.icount.brk++;
171 				if (uart_handle_break(&uap->port))
172 					continue;
173 			} else if (ch & UART011_DR_PE)
174 				uap->port.icount.parity++;
175 			else if (ch & UART011_DR_FE)
176 				uap->port.icount.frame++;
177 			if (ch & UART011_DR_OE)
178 				uap->port.icount.overrun++;
179 
180 			ch &= uap->port.read_status_mask;
181 
182 			if (ch & UART011_DR_BE)
183 				flag = TTY_BREAK;
184 			else if (ch & UART011_DR_PE)
185 				flag = TTY_PARITY;
186 			else if (ch & UART011_DR_FE)
187 				flag = TTY_FRAME;
188 		}
189 
190 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
191 			continue;
192 
193 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
194 	}
195 
196 	return fifotaken;
197 }
198 
199 
200 /*
201  * All the DMA operation mode stuff goes inside this ifdef.
202  * This assumes that you have a generic DMA device interface,
203  * no custom DMA interfaces are supported.
204  */
205 #ifdef CONFIG_DMA_ENGINE
206 
207 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
208 
209 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
210 	enum dma_data_direction dir)
211 {
212 	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
213 	if (!sg->buf)
214 		return -ENOMEM;
215 
216 	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
217 
218 	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
219 		kfree(sg->buf);
220 		return -EINVAL;
221 	}
222 	return 0;
223 }
224 
225 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
226 	enum dma_data_direction dir)
227 {
228 	if (sg->buf) {
229 		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
230 		kfree(sg->buf);
231 	}
232 }
233 
234 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
235 {
236 	/* DMA is the sole user of the platform data right now */
237 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
238 	struct dma_slave_config tx_conf = {
239 		.dst_addr = uap->port.mapbase + UART01x_DR,
240 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
241 		.direction = DMA_TO_DEVICE,
242 		.dst_maxburst = uap->fifosize >> 1,
243 	};
244 	struct dma_chan *chan;
245 	dma_cap_mask_t mask;
246 
247 	/* We need platform data */
248 	if (!plat || !plat->dma_filter) {
249 		dev_info(uap->port.dev, "no DMA platform data\n");
250 		return;
251 	}
252 
253 	/* Try to acquire a generic DMA engine slave TX channel */
254 	dma_cap_zero(mask);
255 	dma_cap_set(DMA_SLAVE, mask);
256 
257 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
258 	if (!chan) {
259 		dev_err(uap->port.dev, "no TX DMA channel!\n");
260 		return;
261 	}
262 
263 	dmaengine_slave_config(chan, &tx_conf);
264 	uap->dmatx.chan = chan;
265 
266 	dev_info(uap->port.dev, "DMA channel TX %s\n",
267 		 dma_chan_name(uap->dmatx.chan));
268 
269 	/* Optionally make use of an RX channel as well */
270 	if (plat->dma_rx_param) {
271 		struct dma_slave_config rx_conf = {
272 			.src_addr = uap->port.mapbase + UART01x_DR,
273 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
274 			.direction = DMA_FROM_DEVICE,
275 			.src_maxburst = uap->fifosize >> 1,
276 		};
277 
278 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
279 		if (!chan) {
280 			dev_err(uap->port.dev, "no RX DMA channel!\n");
281 			return;
282 		}
283 
284 		dmaengine_slave_config(chan, &rx_conf);
285 		uap->dmarx.chan = chan;
286 
287 		dev_info(uap->port.dev, "DMA channel RX %s\n",
288 			 dma_chan_name(uap->dmarx.chan));
289 	}
290 }
291 
292 #ifndef MODULE
293 /*
294  * Stack up the UARTs and let the above initcall be done at device
295  * initcall time, because the serial driver is called as an arch
296  * initcall, and at this time the DMA subsystem is not yet registered.
297  * At this point the driver will switch over to using DMA where desired.
298  */
299 struct dma_uap {
300 	struct list_head node;
301 	struct uart_amba_port *uap;
302 };
303 
304 static LIST_HEAD(pl011_dma_uarts);
305 
306 static int __init pl011_dma_initcall(void)
307 {
308 	struct list_head *node, *tmp;
309 
310 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
311 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
312 		pl011_dma_probe_initcall(dmau->uap);
313 		list_del(node);
314 		kfree(dmau);
315 	}
316 	return 0;
317 }
318 
319 device_initcall(pl011_dma_initcall);
320 
321 static void pl011_dma_probe(struct uart_amba_port *uap)
322 {
323 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
324 	if (dmau) {
325 		dmau->uap = uap;
326 		list_add_tail(&dmau->node, &pl011_dma_uarts);
327 	}
328 }
329 #else
330 static void pl011_dma_probe(struct uart_amba_port *uap)
331 {
332 	pl011_dma_probe_initcall(uap);
333 }
334 #endif
335 
336 static void pl011_dma_remove(struct uart_amba_port *uap)
337 {
338 	/* TODO: remove the initcall if it has not yet executed */
339 	if (uap->dmatx.chan)
340 		dma_release_channel(uap->dmatx.chan);
341 	if (uap->dmarx.chan)
342 		dma_release_channel(uap->dmarx.chan);
343 }
344 
345 /* Forward declare this for the refill routine */
346 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
347 
348 /*
349  * The current DMA TX buffer has been sent.
350  * Try to queue up another DMA buffer.
351  */
352 static void pl011_dma_tx_callback(void *data)
353 {
354 	struct uart_amba_port *uap = data;
355 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
356 	unsigned long flags;
357 	u16 dmacr;
358 
359 	spin_lock_irqsave(&uap->port.lock, flags);
360 	if (uap->dmatx.queued)
361 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
362 			     DMA_TO_DEVICE);
363 
364 	dmacr = uap->dmacr;
365 	uap->dmacr = dmacr & ~UART011_TXDMAE;
366 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
367 
368 	/*
369 	 * If TX DMA was disabled, it means that we've stopped the DMA for
370 	 * some reason (eg, XOFF received, or we want to send an X-char.)
371 	 *
372 	 * Note: we need to be careful here of a potential race between DMA
373 	 * and the rest of the driver - if the driver disables TX DMA while
374 	 * a TX buffer completing, we must update the tx queued status to
375 	 * get further refills (hence we check dmacr).
376 	 */
377 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
378 	    uart_circ_empty(&uap->port.state->xmit)) {
379 		uap->dmatx.queued = false;
380 		spin_unlock_irqrestore(&uap->port.lock, flags);
381 		return;
382 	}
383 
384 	if (pl011_dma_tx_refill(uap) <= 0) {
385 		/*
386 		 * We didn't queue a DMA buffer for some reason, but we
387 		 * have data pending to be sent.  Re-enable the TX IRQ.
388 		 */
389 		uap->im |= UART011_TXIM;
390 		writew(uap->im, uap->port.membase + UART011_IMSC);
391 	}
392 	spin_unlock_irqrestore(&uap->port.lock, flags);
393 }
394 
395 /*
396  * Try to refill the TX DMA buffer.
397  * Locking: called with port lock held and IRQs disabled.
398  * Returns:
399  *   1 if we queued up a TX DMA buffer.
400  *   0 if we didn't want to handle this by DMA
401  *  <0 on error
402  */
403 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
404 {
405 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
406 	struct dma_chan *chan = dmatx->chan;
407 	struct dma_device *dma_dev = chan->device;
408 	struct dma_async_tx_descriptor *desc;
409 	struct circ_buf *xmit = &uap->port.state->xmit;
410 	unsigned int count;
411 
412 	/*
413 	 * Try to avoid the overhead involved in using DMA if the
414 	 * transaction fits in the first half of the FIFO, by using
415 	 * the standard interrupt handling.  This ensures that we
416 	 * issue a uart_write_wakeup() at the appropriate time.
417 	 */
418 	count = uart_circ_chars_pending(xmit);
419 	if (count < (uap->fifosize >> 1)) {
420 		uap->dmatx.queued = false;
421 		return 0;
422 	}
423 
424 	/*
425 	 * Bodge: don't send the last character by DMA, as this
426 	 * will prevent XON from notifying us to restart DMA.
427 	 */
428 	count -= 1;
429 
430 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
431 	if (count > PL011_DMA_BUFFER_SIZE)
432 		count = PL011_DMA_BUFFER_SIZE;
433 
434 	if (xmit->tail < xmit->head)
435 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
436 	else {
437 		size_t first = UART_XMIT_SIZE - xmit->tail;
438 		size_t second = xmit->head;
439 
440 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
441 		if (second)
442 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
443 	}
444 
445 	dmatx->sg.length = count;
446 
447 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
448 		uap->dmatx.queued = false;
449 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
450 		return -EBUSY;
451 	}
452 
453 	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
454 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
455 	if (!desc) {
456 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
457 		uap->dmatx.queued = false;
458 		/*
459 		 * If DMA cannot be used right now, we complete this
460 		 * transaction via IRQ and let the TTY layer retry.
461 		 */
462 		dev_dbg(uap->port.dev, "TX DMA busy\n");
463 		return -EBUSY;
464 	}
465 
466 	/* Some data to go along to the callback */
467 	desc->callback = pl011_dma_tx_callback;
468 	desc->callback_param = uap;
469 
470 	/* All errors should happen at prepare time */
471 	dmaengine_submit(desc);
472 
473 	/* Fire the DMA transaction */
474 	dma_dev->device_issue_pending(chan);
475 
476 	uap->dmacr |= UART011_TXDMAE;
477 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
478 	uap->dmatx.queued = true;
479 
480 	/*
481 	 * Now we know that DMA will fire, so advance the ring buffer
482 	 * with the stuff we just dispatched.
483 	 */
484 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
485 	uap->port.icount.tx += count;
486 
487 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
488 		uart_write_wakeup(&uap->port);
489 
490 	return 1;
491 }
492 
493 /*
494  * We received a transmit interrupt without a pending X-char but with
495  * pending characters.
496  * Locking: called with port lock held and IRQs disabled.
497  * Returns:
498  *   false if we want to use PIO to transmit
499  *   true if we queued a DMA buffer
500  */
501 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
502 {
503 	if (!uap->using_tx_dma)
504 		return false;
505 
506 	/*
507 	 * If we already have a TX buffer queued, but received a
508 	 * TX interrupt, it will be because we've just sent an X-char.
509 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
510 	 */
511 	if (uap->dmatx.queued) {
512 		uap->dmacr |= UART011_TXDMAE;
513 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
514 		uap->im &= ~UART011_TXIM;
515 		writew(uap->im, uap->port.membase + UART011_IMSC);
516 		return true;
517 	}
518 
519 	/*
520 	 * We don't have a TX buffer queued, so try to queue one.
521 	 * If we successfully queued a buffer, mask the TX IRQ.
522 	 */
523 	if (pl011_dma_tx_refill(uap) > 0) {
524 		uap->im &= ~UART011_TXIM;
525 		writew(uap->im, uap->port.membase + UART011_IMSC);
526 		return true;
527 	}
528 	return false;
529 }
530 
531 /*
532  * Stop the DMA transmit (eg, due to received XOFF).
533  * Locking: called with port lock held and IRQs disabled.
534  */
535 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
536 {
537 	if (uap->dmatx.queued) {
538 		uap->dmacr &= ~UART011_TXDMAE;
539 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
540 	}
541 }
542 
543 /*
544  * Try to start a DMA transmit, or in the case of an XON/OFF
545  * character queued for send, try to get that character out ASAP.
546  * Locking: called with port lock held and IRQs disabled.
547  * Returns:
548  *   false if we want the TX IRQ to be enabled
549  *   true if we have a buffer queued
550  */
551 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
552 {
553 	u16 dmacr;
554 
555 	if (!uap->using_tx_dma)
556 		return false;
557 
558 	if (!uap->port.x_char) {
559 		/* no X-char, try to push chars out in DMA mode */
560 		bool ret = true;
561 
562 		if (!uap->dmatx.queued) {
563 			if (pl011_dma_tx_refill(uap) > 0) {
564 				uap->im &= ~UART011_TXIM;
565 				ret = true;
566 			} else {
567 				uap->im |= UART011_TXIM;
568 				ret = false;
569 			}
570 			writew(uap->im, uap->port.membase + UART011_IMSC);
571 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
572 			uap->dmacr |= UART011_TXDMAE;
573 			writew(uap->dmacr,
574 				       uap->port.membase + UART011_DMACR);
575 		}
576 		return ret;
577 	}
578 
579 	/*
580 	 * We have an X-char to send.  Disable DMA to prevent it loading
581 	 * the TX fifo, and then see if we can stuff it into the FIFO.
582 	 */
583 	dmacr = uap->dmacr;
584 	uap->dmacr &= ~UART011_TXDMAE;
585 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
586 
587 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
588 		/*
589 		 * No space in the FIFO, so enable the transmit interrupt
590 		 * so we know when there is space.  Note that once we've
591 		 * loaded the character, we should just re-enable DMA.
592 		 */
593 		return false;
594 	}
595 
596 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
597 	uap->port.icount.tx++;
598 	uap->port.x_char = 0;
599 
600 	/* Success - restore the DMA state */
601 	uap->dmacr = dmacr;
602 	writew(dmacr, uap->port.membase + UART011_DMACR);
603 
604 	return true;
605 }
606 
607 /*
608  * Flush the transmit buffer.
609  * Locking: called with port lock held and IRQs disabled.
610  */
611 static void pl011_dma_flush_buffer(struct uart_port *port)
612 {
613 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
614 
615 	if (!uap->using_tx_dma)
616 		return;
617 
618 	/* Avoid deadlock with the DMA engine callback */
619 	spin_unlock(&uap->port.lock);
620 	dmaengine_terminate_all(uap->dmatx.chan);
621 	spin_lock(&uap->port.lock);
622 	if (uap->dmatx.queued) {
623 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
624 			     DMA_TO_DEVICE);
625 		uap->dmatx.queued = false;
626 		uap->dmacr &= ~UART011_TXDMAE;
627 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
628 	}
629 }
630 
631 static void pl011_dma_rx_callback(void *data);
632 
633 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
634 {
635 	struct dma_chan *rxchan = uap->dmarx.chan;
636 	struct dma_device *dma_dev;
637 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
638 	struct dma_async_tx_descriptor *desc;
639 	struct pl011_sgbuf *sgbuf;
640 
641 	if (!rxchan)
642 		return -EIO;
643 
644 	/* Start the RX DMA job */
645 	sgbuf = uap->dmarx.use_buf_b ?
646 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
647 	dma_dev = rxchan->device;
648 	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
649 					DMA_FROM_DEVICE,
650 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
651 	/*
652 	 * If the DMA engine is busy and cannot prepare a
653 	 * channel, no big deal, the driver will fall back
654 	 * to interrupt mode as a result of this error code.
655 	 */
656 	if (!desc) {
657 		uap->dmarx.running = false;
658 		dmaengine_terminate_all(rxchan);
659 		return -EBUSY;
660 	}
661 
662 	/* Some data to go along to the callback */
663 	desc->callback = pl011_dma_rx_callback;
664 	desc->callback_param = uap;
665 	dmarx->cookie = dmaengine_submit(desc);
666 	dma_async_issue_pending(rxchan);
667 
668 	uap->dmacr |= UART011_RXDMAE;
669 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
670 	uap->dmarx.running = true;
671 
672 	uap->im &= ~UART011_RXIM;
673 	writew(uap->im, uap->port.membase + UART011_IMSC);
674 
675 	return 0;
676 }
677 
678 /*
679  * This is called when either the DMA job is complete, or
680  * the FIFO timeout interrupt occurred. This must be called
681  * with the port spinlock uap->port.lock held.
682  */
683 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
684 			       u32 pending, bool use_buf_b,
685 			       bool readfifo)
686 {
687 	struct tty_struct *tty = uap->port.state->port.tty;
688 	struct pl011_sgbuf *sgbuf = use_buf_b ?
689 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
690 	struct device *dev = uap->dmarx.chan->device->dev;
691 	int dma_count = 0;
692 	u32 fifotaken = 0; /* only used for vdbg() */
693 
694 	/* Pick everything from the DMA first */
695 	if (pending) {
696 		/* Sync in buffer */
697 		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
698 
699 		/*
700 		 * First take all chars in the DMA pipe, then look in the FIFO.
701 		 * Note that tty_insert_flip_buf() tries to take as many chars
702 		 * as it can.
703 		 */
704 		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
705 						   sgbuf->buf, pending);
706 
707 		/* Return buffer to device */
708 		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
709 
710 		uap->port.icount.rx += dma_count;
711 		if (dma_count < pending)
712 			dev_warn(uap->port.dev,
713 				 "couldn't insert all characters (TTY is full?)\n");
714 	}
715 
716 	/*
717 	 * Only continue with trying to read the FIFO if all DMA chars have
718 	 * been taken first.
719 	 */
720 	if (dma_count == pending && readfifo) {
721 		/* Clear any error flags */
722 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
723 		       uap->port.membase + UART011_ICR);
724 
725 		/*
726 		 * If we read all the DMA'd characters, and we had an
727 		 * incomplete buffer, that could be due to an rx error, or
728 		 * maybe we just timed out. Read any pending chars and check
729 		 * the error status.
730 		 *
731 		 * Error conditions will only occur in the FIFO, these will
732 		 * trigger an immediate interrupt and stop the DMA job, so we
733 		 * will always find the error in the FIFO, never in the DMA
734 		 * buffer.
735 		 */
736 		fifotaken = pl011_fifo_to_tty(uap);
737 	}
738 
739 	spin_unlock(&uap->port.lock);
740 	dev_vdbg(uap->port.dev,
741 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
742 		 dma_count, fifotaken);
743 	tty_flip_buffer_push(tty);
744 	spin_lock(&uap->port.lock);
745 }
746 
747 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
748 {
749 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
750 	struct dma_chan *rxchan = dmarx->chan;
751 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
752 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
753 	size_t pending;
754 	struct dma_tx_state state;
755 	enum dma_status dmastat;
756 
757 	/*
758 	 * Pause the transfer so we can trust the current counter,
759 	 * do this before we pause the PL011 block, else we may
760 	 * overflow the FIFO.
761 	 */
762 	if (dmaengine_pause(rxchan))
763 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
764 	dmastat = rxchan->device->device_tx_status(rxchan,
765 						   dmarx->cookie, &state);
766 	if (dmastat != DMA_PAUSED)
767 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
768 
769 	/* Disable RX DMA - incoming data will wait in the FIFO */
770 	uap->dmacr &= ~UART011_RXDMAE;
771 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
772 	uap->dmarx.running = false;
773 
774 	pending = sgbuf->sg.length - state.residue;
775 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
776 	/* Then we terminate the transfer - we now know our residue */
777 	dmaengine_terminate_all(rxchan);
778 
779 	/*
780 	 * This will take the chars we have so far and insert
781 	 * into the framework.
782 	 */
783 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
784 
785 	/* Switch buffer & re-trigger DMA job */
786 	dmarx->use_buf_b = !dmarx->use_buf_b;
787 	if (pl011_dma_rx_trigger_dma(uap)) {
788 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
789 			"fall back to interrupt mode\n");
790 		uap->im |= UART011_RXIM;
791 		writew(uap->im, uap->port.membase + UART011_IMSC);
792 	}
793 }
794 
795 static void pl011_dma_rx_callback(void *data)
796 {
797 	struct uart_amba_port *uap = data;
798 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
799 	bool lastbuf = dmarx->use_buf_b;
800 	int ret;
801 
802 	/*
803 	 * This completion interrupt occurs typically when the
804 	 * RX buffer is totally stuffed but no timeout has yet
805 	 * occurred. When that happens, we just want the RX
806 	 * routine to flush out the secondary DMA buffer while
807 	 * we immediately trigger the next DMA job.
808 	 */
809 	spin_lock_irq(&uap->port.lock);
810 	uap->dmarx.running = false;
811 	dmarx->use_buf_b = !lastbuf;
812 	ret = pl011_dma_rx_trigger_dma(uap);
813 
814 	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
815 	spin_unlock_irq(&uap->port.lock);
816 	/*
817 	 * Do this check after we picked the DMA chars so we don't
818 	 * get some IRQ immediately from RX.
819 	 */
820 	if (ret) {
821 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
822 			"fall back to interrupt mode\n");
823 		uap->im |= UART011_RXIM;
824 		writew(uap->im, uap->port.membase + UART011_IMSC);
825 	}
826 }
827 
828 /*
829  * Stop accepting received characters, when we're shutting down or
830  * suspending this port.
831  * Locking: called with port lock held and IRQs disabled.
832  */
833 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
834 {
835 	/* FIXME.  Just disable the DMA enable */
836 	uap->dmacr &= ~UART011_RXDMAE;
837 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
838 }
839 
840 static void pl011_dma_startup(struct uart_amba_port *uap)
841 {
842 	int ret;
843 
844 	if (!uap->dmatx.chan)
845 		return;
846 
847 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
848 	if (!uap->dmatx.buf) {
849 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
850 		uap->port.fifosize = uap->fifosize;
851 		return;
852 	}
853 
854 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
855 
856 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
857 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
858 	uap->using_tx_dma = true;
859 
860 	if (!uap->dmarx.chan)
861 		goto skip_rx;
862 
863 	/* Allocate and map DMA RX buffers */
864 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
865 			       DMA_FROM_DEVICE);
866 	if (ret) {
867 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
868 			"RX buffer A", ret);
869 		goto skip_rx;
870 	}
871 
872 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
873 			       DMA_FROM_DEVICE);
874 	if (ret) {
875 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
876 			"RX buffer B", ret);
877 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
878 				 DMA_FROM_DEVICE);
879 		goto skip_rx;
880 	}
881 
882 	uap->using_rx_dma = true;
883 
884 skip_rx:
885 	/* Turn on DMA error (RX/TX will be enabled on demand) */
886 	uap->dmacr |= UART011_DMAONERR;
887 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
888 
889 	/*
890 	 * ST Micro variants has some specific dma burst threshold
891 	 * compensation. Set this to 16 bytes, so burst will only
892 	 * be issued above/below 16 bytes.
893 	 */
894 	if (uap->vendor->dma_threshold)
895 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
896 			       uap->port.membase + ST_UART011_DMAWM);
897 
898 	if (uap->using_rx_dma) {
899 		if (pl011_dma_rx_trigger_dma(uap))
900 			dev_dbg(uap->port.dev, "could not trigger initial "
901 				"RX DMA job, fall back to interrupt mode\n");
902 	}
903 }
904 
905 static void pl011_dma_shutdown(struct uart_amba_port *uap)
906 {
907 	if (!(uap->using_tx_dma || uap->using_rx_dma))
908 		return;
909 
910 	/* Disable RX and TX DMA */
911 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
912 		barrier();
913 
914 	spin_lock_irq(&uap->port.lock);
915 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
916 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
917 	spin_unlock_irq(&uap->port.lock);
918 
919 	if (uap->using_tx_dma) {
920 		/* In theory, this should already be done by pl011_dma_flush_buffer */
921 		dmaengine_terminate_all(uap->dmatx.chan);
922 		if (uap->dmatx.queued) {
923 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
924 				     DMA_TO_DEVICE);
925 			uap->dmatx.queued = false;
926 		}
927 
928 		kfree(uap->dmatx.buf);
929 		uap->using_tx_dma = false;
930 	}
931 
932 	if (uap->using_rx_dma) {
933 		dmaengine_terminate_all(uap->dmarx.chan);
934 		/* Clean up the RX DMA */
935 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
936 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
937 		uap->using_rx_dma = false;
938 	}
939 }
940 
941 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
942 {
943 	return uap->using_rx_dma;
944 }
945 
946 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
947 {
948 	return uap->using_rx_dma && uap->dmarx.running;
949 }
950 
951 
952 #else
953 /* Blank functions if the DMA engine is not available */
954 static inline void pl011_dma_probe(struct uart_amba_port *uap)
955 {
956 }
957 
958 static inline void pl011_dma_remove(struct uart_amba_port *uap)
959 {
960 }
961 
962 static inline void pl011_dma_startup(struct uart_amba_port *uap)
963 {
964 }
965 
966 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
967 {
968 }
969 
970 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
971 {
972 	return false;
973 }
974 
975 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
976 {
977 }
978 
979 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
980 {
981 	return false;
982 }
983 
984 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
985 {
986 }
987 
988 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
989 {
990 }
991 
992 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
993 {
994 	return -EIO;
995 }
996 
997 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
998 {
999 	return false;
1000 }
1001 
1002 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1003 {
1004 	return false;
1005 }
1006 
1007 #define pl011_dma_flush_buffer	NULL
1008 #endif
1009 
1010 
1011 static void pl011_stop_tx(struct uart_port *port)
1012 {
1013 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1014 
1015 	uap->im &= ~UART011_TXIM;
1016 	writew(uap->im, uap->port.membase + UART011_IMSC);
1017 	pl011_dma_tx_stop(uap);
1018 }
1019 
1020 static void pl011_start_tx(struct uart_port *port)
1021 {
1022 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1023 
1024 	if (!pl011_dma_tx_start(uap)) {
1025 		uap->im |= UART011_TXIM;
1026 		writew(uap->im, uap->port.membase + UART011_IMSC);
1027 	}
1028 }
1029 
1030 static void pl011_stop_rx(struct uart_port *port)
1031 {
1032 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1033 
1034 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1035 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1036 	writew(uap->im, uap->port.membase + UART011_IMSC);
1037 
1038 	pl011_dma_rx_stop(uap);
1039 }
1040 
1041 static void pl011_enable_ms(struct uart_port *port)
1042 {
1043 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1044 
1045 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1046 	writew(uap->im, uap->port.membase + UART011_IMSC);
1047 }
1048 
1049 static void pl011_rx_chars(struct uart_amba_port *uap)
1050 {
1051 	struct tty_struct *tty = uap->port.state->port.tty;
1052 
1053 	pl011_fifo_to_tty(uap);
1054 
1055 	spin_unlock(&uap->port.lock);
1056 	tty_flip_buffer_push(tty);
1057 	/*
1058 	 * If we were temporarily out of DMA mode for a while,
1059 	 * attempt to switch back to DMA mode again.
1060 	 */
1061 	if (pl011_dma_rx_available(uap)) {
1062 		if (pl011_dma_rx_trigger_dma(uap)) {
1063 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1064 				"fall back to interrupt mode again\n");
1065 			uap->im |= UART011_RXIM;
1066 		} else
1067 			uap->im &= ~UART011_RXIM;
1068 		writew(uap->im, uap->port.membase + UART011_IMSC);
1069 	}
1070 	spin_lock(&uap->port.lock);
1071 }
1072 
1073 static void pl011_tx_chars(struct uart_amba_port *uap)
1074 {
1075 	struct circ_buf *xmit = &uap->port.state->xmit;
1076 	int count;
1077 
1078 	if (uap->port.x_char) {
1079 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1080 		uap->port.icount.tx++;
1081 		uap->port.x_char = 0;
1082 		return;
1083 	}
1084 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1085 		pl011_stop_tx(&uap->port);
1086 		return;
1087 	}
1088 
1089 	/* If we are using DMA mode, try to send some characters. */
1090 	if (pl011_dma_tx_irq(uap))
1091 		return;
1092 
1093 	count = uap->fifosize >> 1;
1094 	do {
1095 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1096 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1097 		uap->port.icount.tx++;
1098 		if (uart_circ_empty(xmit))
1099 			break;
1100 	} while (--count > 0);
1101 
1102 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1103 		uart_write_wakeup(&uap->port);
1104 
1105 	if (uart_circ_empty(xmit))
1106 		pl011_stop_tx(&uap->port);
1107 }
1108 
1109 static void pl011_modem_status(struct uart_amba_port *uap)
1110 {
1111 	unsigned int status, delta;
1112 
1113 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1114 
1115 	delta = status ^ uap->old_status;
1116 	uap->old_status = status;
1117 
1118 	if (!delta)
1119 		return;
1120 
1121 	if (delta & UART01x_FR_DCD)
1122 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1123 
1124 	if (delta & UART01x_FR_DSR)
1125 		uap->port.icount.dsr++;
1126 
1127 	if (delta & UART01x_FR_CTS)
1128 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1129 
1130 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1131 }
1132 
1133 static irqreturn_t pl011_int(int irq, void *dev_id)
1134 {
1135 	struct uart_amba_port *uap = dev_id;
1136 	unsigned long flags;
1137 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1138 	int handled = 0;
1139 
1140 	spin_lock_irqsave(&uap->port.lock, flags);
1141 
1142 	status = readw(uap->port.membase + UART011_MIS);
1143 	if (status) {
1144 		do {
1145 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1146 					  UART011_RXIS),
1147 			       uap->port.membase + UART011_ICR);
1148 
1149 			if (status & (UART011_RTIS|UART011_RXIS)) {
1150 				if (pl011_dma_rx_running(uap))
1151 					pl011_dma_rx_irq(uap);
1152 				else
1153 					pl011_rx_chars(uap);
1154 			}
1155 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1156 				      UART011_CTSMIS|UART011_RIMIS))
1157 				pl011_modem_status(uap);
1158 			if (status & UART011_TXIS)
1159 				pl011_tx_chars(uap);
1160 
1161 			if (pass_counter-- == 0)
1162 				break;
1163 
1164 			status = readw(uap->port.membase + UART011_MIS);
1165 		} while (status != 0);
1166 		handled = 1;
1167 	}
1168 
1169 	spin_unlock_irqrestore(&uap->port.lock, flags);
1170 
1171 	return IRQ_RETVAL(handled);
1172 }
1173 
1174 static unsigned int pl01x_tx_empty(struct uart_port *port)
1175 {
1176 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1177 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1178 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1179 }
1180 
1181 static unsigned int pl01x_get_mctrl(struct uart_port *port)
1182 {
1183 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1184 	unsigned int result = 0;
1185 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1186 
1187 #define TIOCMBIT(uartbit, tiocmbit)	\
1188 	if (status & uartbit)		\
1189 		result |= tiocmbit
1190 
1191 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1192 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1193 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1194 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1195 #undef TIOCMBIT
1196 	return result;
1197 }
1198 
1199 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1200 {
1201 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1202 	unsigned int cr;
1203 
1204 	cr = readw(uap->port.membase + UART011_CR);
1205 
1206 #define	TIOCMBIT(tiocmbit, uartbit)		\
1207 	if (mctrl & tiocmbit)		\
1208 		cr |= uartbit;		\
1209 	else				\
1210 		cr &= ~uartbit
1211 
1212 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1213 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1214 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1215 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1216 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1217 
1218 	if (uap->autorts) {
1219 		/* We need to disable auto-RTS if we want to turn RTS off */
1220 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1221 	}
1222 #undef TIOCMBIT
1223 
1224 	writew(cr, uap->port.membase + UART011_CR);
1225 }
1226 
1227 static void pl011_break_ctl(struct uart_port *port, int break_state)
1228 {
1229 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1230 	unsigned long flags;
1231 	unsigned int lcr_h;
1232 
1233 	spin_lock_irqsave(&uap->port.lock, flags);
1234 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1235 	if (break_state == -1)
1236 		lcr_h |= UART01x_LCRH_BRK;
1237 	else
1238 		lcr_h &= ~UART01x_LCRH_BRK;
1239 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1240 	spin_unlock_irqrestore(&uap->port.lock, flags);
1241 }
1242 
1243 #ifdef CONFIG_CONSOLE_POLL
1244 static int pl010_get_poll_char(struct uart_port *port)
1245 {
1246 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1247 	unsigned int status;
1248 
1249 	status = readw(uap->port.membase + UART01x_FR);
1250 	if (status & UART01x_FR_RXFE)
1251 		return NO_POLL_CHAR;
1252 
1253 	return readw(uap->port.membase + UART01x_DR);
1254 }
1255 
1256 static void pl010_put_poll_char(struct uart_port *port,
1257 			 unsigned char ch)
1258 {
1259 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1260 
1261 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1262 		barrier();
1263 
1264 	writew(ch, uap->port.membase + UART01x_DR);
1265 }
1266 
1267 #endif /* CONFIG_CONSOLE_POLL */
1268 
1269 static int pl011_startup(struct uart_port *port)
1270 {
1271 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272 	unsigned int cr;
1273 	int retval;
1274 
1275 	/*
1276 	 * Try to enable the clock producer.
1277 	 */
1278 	retval = clk_enable(uap->clk);
1279 	if (retval)
1280 		goto out;
1281 
1282 	uap->port.uartclk = clk_get_rate(uap->clk);
1283 
1284 	/*
1285 	 * Allocate the IRQ
1286 	 */
1287 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1288 	if (retval)
1289 		goto clk_dis;
1290 
1291 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1292 
1293 	/*
1294 	 * Provoke TX FIFO interrupt into asserting.
1295 	 */
1296 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1297 	writew(cr, uap->port.membase + UART011_CR);
1298 	writew(0, uap->port.membase + UART011_FBRD);
1299 	writew(1, uap->port.membase + UART011_IBRD);
1300 	writew(0, uap->port.membase + uap->lcrh_rx);
1301 	if (uap->lcrh_tx != uap->lcrh_rx) {
1302 		int i;
1303 		/*
1304 		 * Wait 10 PCLKs before writing LCRH_TX register,
1305 		 * to get this delay write read only register 10 times
1306 		 */
1307 		for (i = 0; i < 10; ++i)
1308 			writew(0xff, uap->port.membase + UART011_MIS);
1309 		writew(0, uap->port.membase + uap->lcrh_tx);
1310 	}
1311 	writew(0, uap->port.membase + UART01x_DR);
1312 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1313 		barrier();
1314 
1315 	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1316 	writew(cr, uap->port.membase + UART011_CR);
1317 
1318 	/* Clear pending error interrupts */
1319 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1320 	       uap->port.membase + UART011_ICR);
1321 
1322 	/*
1323 	 * initialise the old status of the modem signals
1324 	 */
1325 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1326 
1327 	/* Startup DMA */
1328 	pl011_dma_startup(uap);
1329 
1330 	/*
1331 	 * Finally, enable interrupts, only timeouts when using DMA
1332 	 * if initial RX DMA job failed, start in interrupt mode
1333 	 * as well.
1334 	 */
1335 	spin_lock_irq(&uap->port.lock);
1336 	uap->im = UART011_RTIM;
1337 	if (!pl011_dma_rx_running(uap))
1338 		uap->im |= UART011_RXIM;
1339 	writew(uap->im, uap->port.membase + UART011_IMSC);
1340 	spin_unlock_irq(&uap->port.lock);
1341 
1342 	return 0;
1343 
1344  clk_dis:
1345 	clk_disable(uap->clk);
1346  out:
1347 	return retval;
1348 }
1349 
1350 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1351 					unsigned int lcrh)
1352 {
1353       unsigned long val;
1354 
1355       val = readw(uap->port.membase + lcrh);
1356       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1357       writew(val, uap->port.membase + lcrh);
1358 }
1359 
1360 static void pl011_shutdown(struct uart_port *port)
1361 {
1362 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1363 
1364 	/*
1365 	 * disable all interrupts
1366 	 */
1367 	spin_lock_irq(&uap->port.lock);
1368 	uap->im = 0;
1369 	writew(uap->im, uap->port.membase + UART011_IMSC);
1370 	writew(0xffff, uap->port.membase + UART011_ICR);
1371 	spin_unlock_irq(&uap->port.lock);
1372 
1373 	pl011_dma_shutdown(uap);
1374 
1375 	/*
1376 	 * Free the interrupt
1377 	 */
1378 	free_irq(uap->port.irq, uap);
1379 
1380 	/*
1381 	 * disable the port
1382 	 */
1383 	uap->autorts = false;
1384 	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
1385 
1386 	/*
1387 	 * disable break condition and fifos
1388 	 */
1389 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1390 	if (uap->lcrh_rx != uap->lcrh_tx)
1391 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1392 
1393 	/*
1394 	 * Shut down the clock producer
1395 	 */
1396 	clk_disable(uap->clk);
1397 }
1398 
1399 static void
1400 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1401 		     struct ktermios *old)
1402 {
1403 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1404 	unsigned int lcr_h, old_cr;
1405 	unsigned long flags;
1406 	unsigned int baud, quot, clkdiv;
1407 
1408 	if (uap->vendor->oversampling)
1409 		clkdiv = 8;
1410 	else
1411 		clkdiv = 16;
1412 
1413 	/*
1414 	 * Ask the core to calculate the divisor for us.
1415 	 */
1416 	baud = uart_get_baud_rate(port, termios, old, 0,
1417 				  port->uartclk / clkdiv);
1418 
1419 	if (baud > port->uartclk/16)
1420 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1421 	else
1422 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1423 
1424 	switch (termios->c_cflag & CSIZE) {
1425 	case CS5:
1426 		lcr_h = UART01x_LCRH_WLEN_5;
1427 		break;
1428 	case CS6:
1429 		lcr_h = UART01x_LCRH_WLEN_6;
1430 		break;
1431 	case CS7:
1432 		lcr_h = UART01x_LCRH_WLEN_7;
1433 		break;
1434 	default: // CS8
1435 		lcr_h = UART01x_LCRH_WLEN_8;
1436 		break;
1437 	}
1438 	if (termios->c_cflag & CSTOPB)
1439 		lcr_h |= UART01x_LCRH_STP2;
1440 	if (termios->c_cflag & PARENB) {
1441 		lcr_h |= UART01x_LCRH_PEN;
1442 		if (!(termios->c_cflag & PARODD))
1443 			lcr_h |= UART01x_LCRH_EPS;
1444 	}
1445 	if (uap->fifosize > 1)
1446 		lcr_h |= UART01x_LCRH_FEN;
1447 
1448 	spin_lock_irqsave(&port->lock, flags);
1449 
1450 	/*
1451 	 * Update the per-port timeout.
1452 	 */
1453 	uart_update_timeout(port, termios->c_cflag, baud);
1454 
1455 	port->read_status_mask = UART011_DR_OE | 255;
1456 	if (termios->c_iflag & INPCK)
1457 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1458 	if (termios->c_iflag & (BRKINT | PARMRK))
1459 		port->read_status_mask |= UART011_DR_BE;
1460 
1461 	/*
1462 	 * Characters to ignore
1463 	 */
1464 	port->ignore_status_mask = 0;
1465 	if (termios->c_iflag & IGNPAR)
1466 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1467 	if (termios->c_iflag & IGNBRK) {
1468 		port->ignore_status_mask |= UART011_DR_BE;
1469 		/*
1470 		 * If we're ignoring parity and break indicators,
1471 		 * ignore overruns too (for real raw support).
1472 		 */
1473 		if (termios->c_iflag & IGNPAR)
1474 			port->ignore_status_mask |= UART011_DR_OE;
1475 	}
1476 
1477 	/*
1478 	 * Ignore all characters if CREAD is not set.
1479 	 */
1480 	if ((termios->c_cflag & CREAD) == 0)
1481 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1482 
1483 	if (UART_ENABLE_MS(port, termios->c_cflag))
1484 		pl011_enable_ms(port);
1485 
1486 	/* first, disable everything */
1487 	old_cr = readw(port->membase + UART011_CR);
1488 	writew(0, port->membase + UART011_CR);
1489 
1490 	if (termios->c_cflag & CRTSCTS) {
1491 		if (old_cr & UART011_CR_RTS)
1492 			old_cr |= UART011_CR_RTSEN;
1493 
1494 		old_cr |= UART011_CR_CTSEN;
1495 		uap->autorts = true;
1496 	} else {
1497 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1498 		uap->autorts = false;
1499 	}
1500 
1501 	if (uap->vendor->oversampling) {
1502 		if (baud > port->uartclk / 16)
1503 			old_cr |= ST_UART011_CR_OVSFACT;
1504 		else
1505 			old_cr &= ~ST_UART011_CR_OVSFACT;
1506 	}
1507 
1508 	/* Set baud rate */
1509 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1510 	writew(quot >> 6, port->membase + UART011_IBRD);
1511 
1512 	/*
1513 	 * ----------v----------v----------v----------v-----
1514 	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
1515 	 * ----------^----------^----------^----------^-----
1516 	 */
1517 	writew(lcr_h, port->membase + uap->lcrh_rx);
1518 	if (uap->lcrh_rx != uap->lcrh_tx) {
1519 		int i;
1520 		/*
1521 		 * Wait 10 PCLKs before writing LCRH_TX register,
1522 		 * to get this delay write read only register 10 times
1523 		 */
1524 		for (i = 0; i < 10; ++i)
1525 			writew(0xff, uap->port.membase + UART011_MIS);
1526 		writew(lcr_h, port->membase + uap->lcrh_tx);
1527 	}
1528 	writew(old_cr, port->membase + UART011_CR);
1529 
1530 	spin_unlock_irqrestore(&port->lock, flags);
1531 }
1532 
1533 static const char *pl011_type(struct uart_port *port)
1534 {
1535 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1536 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1537 }
1538 
1539 /*
1540  * Release the memory region(s) being used by 'port'
1541  */
1542 static void pl010_release_port(struct uart_port *port)
1543 {
1544 	release_mem_region(port->mapbase, SZ_4K);
1545 }
1546 
1547 /*
1548  * Request the memory region(s) being used by 'port'
1549  */
1550 static int pl010_request_port(struct uart_port *port)
1551 {
1552 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1553 			!= NULL ? 0 : -EBUSY;
1554 }
1555 
1556 /*
1557  * Configure/autoconfigure the port.
1558  */
1559 static void pl010_config_port(struct uart_port *port, int flags)
1560 {
1561 	if (flags & UART_CONFIG_TYPE) {
1562 		port->type = PORT_AMBA;
1563 		pl010_request_port(port);
1564 	}
1565 }
1566 
1567 /*
1568  * verify the new serial_struct (for TIOCSSERIAL).
1569  */
1570 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1571 {
1572 	int ret = 0;
1573 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1574 		ret = -EINVAL;
1575 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1576 		ret = -EINVAL;
1577 	if (ser->baud_base < 9600)
1578 		ret = -EINVAL;
1579 	return ret;
1580 }
1581 
1582 static struct uart_ops amba_pl011_pops = {
1583 	.tx_empty	= pl01x_tx_empty,
1584 	.set_mctrl	= pl011_set_mctrl,
1585 	.get_mctrl	= pl01x_get_mctrl,
1586 	.stop_tx	= pl011_stop_tx,
1587 	.start_tx	= pl011_start_tx,
1588 	.stop_rx	= pl011_stop_rx,
1589 	.enable_ms	= pl011_enable_ms,
1590 	.break_ctl	= pl011_break_ctl,
1591 	.startup	= pl011_startup,
1592 	.shutdown	= pl011_shutdown,
1593 	.flush_buffer	= pl011_dma_flush_buffer,
1594 	.set_termios	= pl011_set_termios,
1595 	.type		= pl011_type,
1596 	.release_port	= pl010_release_port,
1597 	.request_port	= pl010_request_port,
1598 	.config_port	= pl010_config_port,
1599 	.verify_port	= pl010_verify_port,
1600 #ifdef CONFIG_CONSOLE_POLL
1601 	.poll_get_char = pl010_get_poll_char,
1602 	.poll_put_char = pl010_put_poll_char,
1603 #endif
1604 };
1605 
1606 static struct uart_amba_port *amba_ports[UART_NR];
1607 
1608 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1609 
1610 static void pl011_console_putchar(struct uart_port *port, int ch)
1611 {
1612 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1613 
1614 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1615 		barrier();
1616 	writew(ch, uap->port.membase + UART01x_DR);
1617 }
1618 
1619 static void
1620 pl011_console_write(struct console *co, const char *s, unsigned int count)
1621 {
1622 	struct uart_amba_port *uap = amba_ports[co->index];
1623 	unsigned int status, old_cr, new_cr;
1624 
1625 	clk_enable(uap->clk);
1626 
1627 	/*
1628 	 *	First save the CR then disable the interrupts
1629 	 */
1630 	old_cr = readw(uap->port.membase + UART011_CR);
1631 	new_cr = old_cr & ~UART011_CR_CTSEN;
1632 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1633 	writew(new_cr, uap->port.membase + UART011_CR);
1634 
1635 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1636 
1637 	/*
1638 	 *	Finally, wait for transmitter to become empty
1639 	 *	and restore the TCR
1640 	 */
1641 	do {
1642 		status = readw(uap->port.membase + UART01x_FR);
1643 	} while (status & UART01x_FR_BUSY);
1644 	writew(old_cr, uap->port.membase + UART011_CR);
1645 
1646 	clk_disable(uap->clk);
1647 }
1648 
1649 static void __init
1650 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1651 			     int *parity, int *bits)
1652 {
1653 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1654 		unsigned int lcr_h, ibrd, fbrd;
1655 
1656 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1657 
1658 		*parity = 'n';
1659 		if (lcr_h & UART01x_LCRH_PEN) {
1660 			if (lcr_h & UART01x_LCRH_EPS)
1661 				*parity = 'e';
1662 			else
1663 				*parity = 'o';
1664 		}
1665 
1666 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1667 			*bits = 7;
1668 		else
1669 			*bits = 8;
1670 
1671 		ibrd = readw(uap->port.membase + UART011_IBRD);
1672 		fbrd = readw(uap->port.membase + UART011_FBRD);
1673 
1674 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1675 
1676 		if (uap->vendor->oversampling) {
1677 			if (readw(uap->port.membase + UART011_CR)
1678 				  & ST_UART011_CR_OVSFACT)
1679 				*baud *= 2;
1680 		}
1681 	}
1682 }
1683 
1684 static int __init pl011_console_setup(struct console *co, char *options)
1685 {
1686 	struct uart_amba_port *uap;
1687 	int baud = 38400;
1688 	int bits = 8;
1689 	int parity = 'n';
1690 	int flow = 'n';
1691 
1692 	/*
1693 	 * Check whether an invalid uart number has been specified, and
1694 	 * if so, search for the first available port that does have
1695 	 * console support.
1696 	 */
1697 	if (co->index >= UART_NR)
1698 		co->index = 0;
1699 	uap = amba_ports[co->index];
1700 	if (!uap)
1701 		return -ENODEV;
1702 
1703 	uap->port.uartclk = clk_get_rate(uap->clk);
1704 
1705 	if (options)
1706 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1707 	else
1708 		pl011_console_get_options(uap, &baud, &parity, &bits);
1709 
1710 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1711 }
1712 
1713 static struct uart_driver amba_reg;
1714 static struct console amba_console = {
1715 	.name		= "ttyAMA",
1716 	.write		= pl011_console_write,
1717 	.device		= uart_console_device,
1718 	.setup		= pl011_console_setup,
1719 	.flags		= CON_PRINTBUFFER,
1720 	.index		= -1,
1721 	.data		= &amba_reg,
1722 };
1723 
1724 #define AMBA_CONSOLE	(&amba_console)
1725 #else
1726 #define AMBA_CONSOLE	NULL
1727 #endif
1728 
1729 static struct uart_driver amba_reg = {
1730 	.owner			= THIS_MODULE,
1731 	.driver_name		= "ttyAMA",
1732 	.dev_name		= "ttyAMA",
1733 	.major			= SERIAL_AMBA_MAJOR,
1734 	.minor			= SERIAL_AMBA_MINOR,
1735 	.nr			= UART_NR,
1736 	.cons			= AMBA_CONSOLE,
1737 };
1738 
1739 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1740 {
1741 	struct uart_amba_port *uap;
1742 	struct vendor_data *vendor = id->data;
1743 	void __iomem *base;
1744 	int i, ret;
1745 
1746 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1747 		if (amba_ports[i] == NULL)
1748 			break;
1749 
1750 	if (i == ARRAY_SIZE(amba_ports)) {
1751 		ret = -EBUSY;
1752 		goto out;
1753 	}
1754 
1755 	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1756 	if (uap == NULL) {
1757 		ret = -ENOMEM;
1758 		goto out;
1759 	}
1760 
1761 	base = ioremap(dev->res.start, resource_size(&dev->res));
1762 	if (!base) {
1763 		ret = -ENOMEM;
1764 		goto free;
1765 	}
1766 
1767 	uap->clk = clk_get(&dev->dev, NULL);
1768 	if (IS_ERR(uap->clk)) {
1769 		ret = PTR_ERR(uap->clk);
1770 		goto unmap;
1771 	}
1772 
1773 	uap->vendor = vendor;
1774 	uap->lcrh_rx = vendor->lcrh_rx;
1775 	uap->lcrh_tx = vendor->lcrh_tx;
1776 	uap->fifosize = vendor->fifosize;
1777 	uap->port.dev = &dev->dev;
1778 	uap->port.mapbase = dev->res.start;
1779 	uap->port.membase = base;
1780 	uap->port.iotype = UPIO_MEM;
1781 	uap->port.irq = dev->irq[0];
1782 	uap->port.fifosize = uap->fifosize;
1783 	uap->port.ops = &amba_pl011_pops;
1784 	uap->port.flags = UPF_BOOT_AUTOCONF;
1785 	uap->port.line = i;
1786 	pl011_dma_probe(uap);
1787 
1788 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1789 
1790 	amba_ports[i] = uap;
1791 
1792 	amba_set_drvdata(dev, uap);
1793 	ret = uart_add_one_port(&amba_reg, &uap->port);
1794 	if (ret) {
1795 		amba_set_drvdata(dev, NULL);
1796 		amba_ports[i] = NULL;
1797 		pl011_dma_remove(uap);
1798 		clk_put(uap->clk);
1799  unmap:
1800 		iounmap(base);
1801  free:
1802 		kfree(uap);
1803 	}
1804  out:
1805 	return ret;
1806 }
1807 
1808 static int pl011_remove(struct amba_device *dev)
1809 {
1810 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1811 	int i;
1812 
1813 	amba_set_drvdata(dev, NULL);
1814 
1815 	uart_remove_one_port(&amba_reg, &uap->port);
1816 
1817 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1818 		if (amba_ports[i] == uap)
1819 			amba_ports[i] = NULL;
1820 
1821 	pl011_dma_remove(uap);
1822 	iounmap(uap->port.membase);
1823 	clk_put(uap->clk);
1824 	kfree(uap);
1825 	return 0;
1826 }
1827 
1828 #ifdef CONFIG_PM
1829 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1830 {
1831 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1832 
1833 	if (!uap)
1834 		return -EINVAL;
1835 
1836 	return uart_suspend_port(&amba_reg, &uap->port);
1837 }
1838 
1839 static int pl011_resume(struct amba_device *dev)
1840 {
1841 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1842 
1843 	if (!uap)
1844 		return -EINVAL;
1845 
1846 	return uart_resume_port(&amba_reg, &uap->port);
1847 }
1848 #endif
1849 
1850 static struct amba_id pl011_ids[] = {
1851 	{
1852 		.id	= 0x00041011,
1853 		.mask	= 0x000fffff,
1854 		.data	= &vendor_arm,
1855 	},
1856 	{
1857 		.id	= 0x00380802,
1858 		.mask	= 0x00ffffff,
1859 		.data	= &vendor_st,
1860 	},
1861 	{ 0, 0 },
1862 };
1863 
1864 static struct amba_driver pl011_driver = {
1865 	.drv = {
1866 		.name	= "uart-pl011",
1867 	},
1868 	.id_table	= pl011_ids,
1869 	.probe		= pl011_probe,
1870 	.remove		= pl011_remove,
1871 #ifdef CONFIG_PM
1872 	.suspend	= pl011_suspend,
1873 	.resume		= pl011_resume,
1874 #endif
1875 };
1876 
1877 static int __init pl011_init(void)
1878 {
1879 	int ret;
1880 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
1881 
1882 	ret = uart_register_driver(&amba_reg);
1883 	if (ret == 0) {
1884 		ret = amba_driver_register(&pl011_driver);
1885 		if (ret)
1886 			uart_unregister_driver(&amba_reg);
1887 	}
1888 	return ret;
1889 }
1890 
1891 static void __exit pl011_exit(void)
1892 {
1893 	amba_driver_unregister(&pl011_driver);
1894 	uart_unregister_driver(&amba_reg);
1895 }
1896 
1897 /*
1898  * While this can be a module, if builtin it's most likely the console
1899  * So let's leave module_exit but move module_init to an earlier place
1900  */
1901 arch_initcall(pl011_init);
1902 module_exit(pl011_exit);
1903 
1904 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
1905 MODULE_DESCRIPTION("ARM AMBA serial port driver");
1906 MODULE_LICENSE("GPL");
1907