1 /* 2 * Driver for AMBA serial ports 3 * 4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 5 * 6 * Copyright 1999 ARM Limited 7 * Copyright (C) 2000 Deep Blue Solutions Ltd. 8 * Copyright (C) 2010 ST-Ericsson SA 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 * 24 * This is a generic driver for ARM AMBA-type serial ports. They 25 * have a lot of 16550-like features, but are not register compatible. 26 * Note that although they do have CTS, DCD and DSR inputs, they do 27 * not have an RI input, nor do they have DTR or RTS outputs. If 28 * required, these have to be supplied via some other means (eg, GPIO) 29 * and hooked into this driver. 30 */ 31 32 33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 34 #define SUPPORT_SYSRQ 35 #endif 36 37 #include <linux/module.h> 38 #include <linux/ioport.h> 39 #include <linux/init.h> 40 #include <linux/console.h> 41 #include <linux/sysrq.h> 42 #include <linux/device.h> 43 #include <linux/tty.h> 44 #include <linux/tty_flip.h> 45 #include <linux/serial_core.h> 46 #include <linux/serial.h> 47 #include <linux/amba/bus.h> 48 #include <linux/amba/serial.h> 49 #include <linux/clk.h> 50 #include <linux/slab.h> 51 #include <linux/dmaengine.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/scatterlist.h> 54 #include <linux/delay.h> 55 #include <linux/types.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/pinctrl/consumer.h> 59 #include <linux/sizes.h> 60 #include <linux/io.h> 61 62 #define UART_NR 14 63 64 #define SERIAL_AMBA_MAJOR 204 65 #define SERIAL_AMBA_MINOR 64 66 #define SERIAL_AMBA_NR UART_NR 67 68 #define AMBA_ISR_PASS_LIMIT 256 69 70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 71 #define UART_DUMMY_DR_RX (1 << 16) 72 73 /* There is by now at least one vendor with differing details, so handle it */ 74 struct vendor_data { 75 unsigned int ifls; 76 unsigned int lcrh_tx; 77 unsigned int lcrh_rx; 78 bool oversampling; 79 bool dma_threshold; 80 bool cts_event_workaround; 81 82 unsigned int (*get_fifosize)(struct amba_device *dev); 83 }; 84 85 static unsigned int get_fifosize_arm(struct amba_device *dev) 86 { 87 return amba_rev(dev) < 3 ? 16 : 32; 88 } 89 90 static struct vendor_data vendor_arm = { 91 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 92 .lcrh_tx = UART011_LCRH, 93 .lcrh_rx = UART011_LCRH, 94 .oversampling = false, 95 .dma_threshold = false, 96 .cts_event_workaround = false, 97 .get_fifosize = get_fifosize_arm, 98 }; 99 100 static unsigned int get_fifosize_st(struct amba_device *dev) 101 { 102 return 64; 103 } 104 105 static struct vendor_data vendor_st = { 106 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 107 .lcrh_tx = ST_UART011_LCRH_TX, 108 .lcrh_rx = ST_UART011_LCRH_RX, 109 .oversampling = true, 110 .dma_threshold = true, 111 .cts_event_workaround = true, 112 .get_fifosize = get_fifosize_st, 113 }; 114 115 static struct uart_amba_port *amba_ports[UART_NR]; 116 117 /* Deals with DMA transactions */ 118 119 struct pl011_sgbuf { 120 struct scatterlist sg; 121 char *buf; 122 }; 123 124 struct pl011_dmarx_data { 125 struct dma_chan *chan; 126 struct completion complete; 127 bool use_buf_b; 128 struct pl011_sgbuf sgbuf_a; 129 struct pl011_sgbuf sgbuf_b; 130 dma_cookie_t cookie; 131 bool running; 132 struct timer_list timer; 133 unsigned int last_residue; 134 unsigned long last_jiffies; 135 bool auto_poll_rate; 136 unsigned int poll_rate; 137 unsigned int poll_timeout; 138 }; 139 140 struct pl011_dmatx_data { 141 struct dma_chan *chan; 142 struct scatterlist sg; 143 char *buf; 144 bool queued; 145 }; 146 147 /* 148 * We wrap our port structure around the generic uart_port. 149 */ 150 struct uart_amba_port { 151 struct uart_port port; 152 struct clk *clk; 153 const struct vendor_data *vendor; 154 unsigned int dmacr; /* dma control reg */ 155 unsigned int im; /* interrupt mask */ 156 unsigned int old_status; 157 unsigned int fifosize; /* vendor-specific */ 158 unsigned int lcrh_tx; /* vendor-specific */ 159 unsigned int lcrh_rx; /* vendor-specific */ 160 unsigned int old_cr; /* state during shutdown */ 161 bool autorts; 162 char type[12]; 163 #ifdef CONFIG_DMA_ENGINE 164 /* DMA stuff */ 165 bool using_tx_dma; 166 bool using_rx_dma; 167 struct pl011_dmarx_data dmarx; 168 struct pl011_dmatx_data dmatx; 169 #endif 170 }; 171 172 /* 173 * Reads up to 256 characters from the FIFO or until it's empty and 174 * inserts them into the TTY layer. Returns the number of characters 175 * read from the FIFO. 176 */ 177 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 178 { 179 u16 status, ch; 180 unsigned int flag, max_count = 256; 181 int fifotaken = 0; 182 183 while (max_count--) { 184 status = readw(uap->port.membase + UART01x_FR); 185 if (status & UART01x_FR_RXFE) 186 break; 187 188 /* Take chars from the FIFO and update status */ 189 ch = readw(uap->port.membase + UART01x_DR) | 190 UART_DUMMY_DR_RX; 191 flag = TTY_NORMAL; 192 uap->port.icount.rx++; 193 fifotaken++; 194 195 if (unlikely(ch & UART_DR_ERROR)) { 196 if (ch & UART011_DR_BE) { 197 ch &= ~(UART011_DR_FE | UART011_DR_PE); 198 uap->port.icount.brk++; 199 if (uart_handle_break(&uap->port)) 200 continue; 201 } else if (ch & UART011_DR_PE) 202 uap->port.icount.parity++; 203 else if (ch & UART011_DR_FE) 204 uap->port.icount.frame++; 205 if (ch & UART011_DR_OE) 206 uap->port.icount.overrun++; 207 208 ch &= uap->port.read_status_mask; 209 210 if (ch & UART011_DR_BE) 211 flag = TTY_BREAK; 212 else if (ch & UART011_DR_PE) 213 flag = TTY_PARITY; 214 else if (ch & UART011_DR_FE) 215 flag = TTY_FRAME; 216 } 217 218 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 219 continue; 220 221 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 222 } 223 224 return fifotaken; 225 } 226 227 228 /* 229 * All the DMA operation mode stuff goes inside this ifdef. 230 * This assumes that you have a generic DMA device interface, 231 * no custom DMA interfaces are supported. 232 */ 233 #ifdef CONFIG_DMA_ENGINE 234 235 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 236 237 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 238 enum dma_data_direction dir) 239 { 240 dma_addr_t dma_addr; 241 242 sg->buf = dma_alloc_coherent(chan->device->dev, 243 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); 244 if (!sg->buf) 245 return -ENOMEM; 246 247 sg_init_table(&sg->sg, 1); 248 sg_set_page(&sg->sg, phys_to_page(dma_addr), 249 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); 250 sg_dma_address(&sg->sg) = dma_addr; 251 252 return 0; 253 } 254 255 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 256 enum dma_data_direction dir) 257 { 258 if (sg->buf) { 259 dma_free_coherent(chan->device->dev, 260 PL011_DMA_BUFFER_SIZE, sg->buf, 261 sg_dma_address(&sg->sg)); 262 } 263 } 264 265 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap) 266 { 267 /* DMA is the sole user of the platform data right now */ 268 struct amba_pl011_data *plat = uap->port.dev->platform_data; 269 struct dma_slave_config tx_conf = { 270 .dst_addr = uap->port.mapbase + UART01x_DR, 271 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 272 .direction = DMA_MEM_TO_DEV, 273 .dst_maxburst = uap->fifosize >> 1, 274 .device_fc = false, 275 }; 276 struct dma_chan *chan; 277 dma_cap_mask_t mask; 278 279 chan = dma_request_slave_channel(dev, "tx"); 280 281 if (!chan) { 282 /* We need platform data */ 283 if (!plat || !plat->dma_filter) { 284 dev_info(uap->port.dev, "no DMA platform data\n"); 285 return; 286 } 287 288 /* Try to acquire a generic DMA engine slave TX channel */ 289 dma_cap_zero(mask); 290 dma_cap_set(DMA_SLAVE, mask); 291 292 chan = dma_request_channel(mask, plat->dma_filter, 293 plat->dma_tx_param); 294 if (!chan) { 295 dev_err(uap->port.dev, "no TX DMA channel!\n"); 296 return; 297 } 298 } 299 300 dmaengine_slave_config(chan, &tx_conf); 301 uap->dmatx.chan = chan; 302 303 dev_info(uap->port.dev, "DMA channel TX %s\n", 304 dma_chan_name(uap->dmatx.chan)); 305 306 /* Optionally make use of an RX channel as well */ 307 chan = dma_request_slave_channel(dev, "rx"); 308 309 if (!chan && plat->dma_rx_param) { 310 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 311 312 if (!chan) { 313 dev_err(uap->port.dev, "no RX DMA channel!\n"); 314 return; 315 } 316 } 317 318 if (chan) { 319 struct dma_slave_config rx_conf = { 320 .src_addr = uap->port.mapbase + UART01x_DR, 321 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 322 .direction = DMA_DEV_TO_MEM, 323 .src_maxburst = uap->fifosize >> 1, 324 .device_fc = false, 325 }; 326 327 dmaengine_slave_config(chan, &rx_conf); 328 uap->dmarx.chan = chan; 329 330 if (plat && plat->dma_rx_poll_enable) { 331 /* Set poll rate if specified. */ 332 if (plat->dma_rx_poll_rate) { 333 uap->dmarx.auto_poll_rate = false; 334 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 335 } else { 336 /* 337 * 100 ms defaults to poll rate if not 338 * specified. This will be adjusted with 339 * the baud rate at set_termios. 340 */ 341 uap->dmarx.auto_poll_rate = true; 342 uap->dmarx.poll_rate = 100; 343 } 344 /* 3 secs defaults poll_timeout if not specified. */ 345 if (plat->dma_rx_poll_timeout) 346 uap->dmarx.poll_timeout = 347 plat->dma_rx_poll_timeout; 348 else 349 uap->dmarx.poll_timeout = 3000; 350 } else 351 uap->dmarx.auto_poll_rate = false; 352 353 dev_info(uap->port.dev, "DMA channel RX %s\n", 354 dma_chan_name(uap->dmarx.chan)); 355 } 356 } 357 358 #ifndef MODULE 359 /* 360 * Stack up the UARTs and let the above initcall be done at device 361 * initcall time, because the serial driver is called as an arch 362 * initcall, and at this time the DMA subsystem is not yet registered. 363 * At this point the driver will switch over to using DMA where desired. 364 */ 365 struct dma_uap { 366 struct list_head node; 367 struct uart_amba_port *uap; 368 struct device *dev; 369 }; 370 371 static LIST_HEAD(pl011_dma_uarts); 372 373 static int __init pl011_dma_initcall(void) 374 { 375 struct list_head *node, *tmp; 376 377 list_for_each_safe(node, tmp, &pl011_dma_uarts) { 378 struct dma_uap *dmau = list_entry(node, struct dma_uap, node); 379 pl011_dma_probe_initcall(dmau->dev, dmau->uap); 380 list_del(node); 381 kfree(dmau); 382 } 383 return 0; 384 } 385 386 device_initcall(pl011_dma_initcall); 387 388 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 389 { 390 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL); 391 if (dmau) { 392 dmau->uap = uap; 393 dmau->dev = dev; 394 list_add_tail(&dmau->node, &pl011_dma_uarts); 395 } 396 } 397 #else 398 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 399 { 400 pl011_dma_probe_initcall(dev, uap); 401 } 402 #endif 403 404 static void pl011_dma_remove(struct uart_amba_port *uap) 405 { 406 /* TODO: remove the initcall if it has not yet executed */ 407 if (uap->dmatx.chan) 408 dma_release_channel(uap->dmatx.chan); 409 if (uap->dmarx.chan) 410 dma_release_channel(uap->dmarx.chan); 411 } 412 413 /* Forward declare this for the refill routine */ 414 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 415 416 /* 417 * The current DMA TX buffer has been sent. 418 * Try to queue up another DMA buffer. 419 */ 420 static void pl011_dma_tx_callback(void *data) 421 { 422 struct uart_amba_port *uap = data; 423 struct pl011_dmatx_data *dmatx = &uap->dmatx; 424 unsigned long flags; 425 u16 dmacr; 426 427 spin_lock_irqsave(&uap->port.lock, flags); 428 if (uap->dmatx.queued) 429 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 430 DMA_TO_DEVICE); 431 432 dmacr = uap->dmacr; 433 uap->dmacr = dmacr & ~UART011_TXDMAE; 434 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 435 436 /* 437 * If TX DMA was disabled, it means that we've stopped the DMA for 438 * some reason (eg, XOFF received, or we want to send an X-char.) 439 * 440 * Note: we need to be careful here of a potential race between DMA 441 * and the rest of the driver - if the driver disables TX DMA while 442 * a TX buffer completing, we must update the tx queued status to 443 * get further refills (hence we check dmacr). 444 */ 445 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 446 uart_circ_empty(&uap->port.state->xmit)) { 447 uap->dmatx.queued = false; 448 spin_unlock_irqrestore(&uap->port.lock, flags); 449 return; 450 } 451 452 if (pl011_dma_tx_refill(uap) <= 0) { 453 /* 454 * We didn't queue a DMA buffer for some reason, but we 455 * have data pending to be sent. Re-enable the TX IRQ. 456 */ 457 uap->im |= UART011_TXIM; 458 writew(uap->im, uap->port.membase + UART011_IMSC); 459 } 460 spin_unlock_irqrestore(&uap->port.lock, flags); 461 } 462 463 /* 464 * Try to refill the TX DMA buffer. 465 * Locking: called with port lock held and IRQs disabled. 466 * Returns: 467 * 1 if we queued up a TX DMA buffer. 468 * 0 if we didn't want to handle this by DMA 469 * <0 on error 470 */ 471 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 472 { 473 struct pl011_dmatx_data *dmatx = &uap->dmatx; 474 struct dma_chan *chan = dmatx->chan; 475 struct dma_device *dma_dev = chan->device; 476 struct dma_async_tx_descriptor *desc; 477 struct circ_buf *xmit = &uap->port.state->xmit; 478 unsigned int count; 479 480 /* 481 * Try to avoid the overhead involved in using DMA if the 482 * transaction fits in the first half of the FIFO, by using 483 * the standard interrupt handling. This ensures that we 484 * issue a uart_write_wakeup() at the appropriate time. 485 */ 486 count = uart_circ_chars_pending(xmit); 487 if (count < (uap->fifosize >> 1)) { 488 uap->dmatx.queued = false; 489 return 0; 490 } 491 492 /* 493 * Bodge: don't send the last character by DMA, as this 494 * will prevent XON from notifying us to restart DMA. 495 */ 496 count -= 1; 497 498 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 499 if (count > PL011_DMA_BUFFER_SIZE) 500 count = PL011_DMA_BUFFER_SIZE; 501 502 if (xmit->tail < xmit->head) 503 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 504 else { 505 size_t first = UART_XMIT_SIZE - xmit->tail; 506 size_t second = xmit->head; 507 508 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 509 if (second) 510 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 511 } 512 513 dmatx->sg.length = count; 514 515 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 516 uap->dmatx.queued = false; 517 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 518 return -EBUSY; 519 } 520 521 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, 522 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 523 if (!desc) { 524 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 525 uap->dmatx.queued = false; 526 /* 527 * If DMA cannot be used right now, we complete this 528 * transaction via IRQ and let the TTY layer retry. 529 */ 530 dev_dbg(uap->port.dev, "TX DMA busy\n"); 531 return -EBUSY; 532 } 533 534 /* Some data to go along to the callback */ 535 desc->callback = pl011_dma_tx_callback; 536 desc->callback_param = uap; 537 538 /* All errors should happen at prepare time */ 539 dmaengine_submit(desc); 540 541 /* Fire the DMA transaction */ 542 dma_dev->device_issue_pending(chan); 543 544 uap->dmacr |= UART011_TXDMAE; 545 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 546 uap->dmatx.queued = true; 547 548 /* 549 * Now we know that DMA will fire, so advance the ring buffer 550 * with the stuff we just dispatched. 551 */ 552 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 553 uap->port.icount.tx += count; 554 555 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 556 uart_write_wakeup(&uap->port); 557 558 return 1; 559 } 560 561 /* 562 * We received a transmit interrupt without a pending X-char but with 563 * pending characters. 564 * Locking: called with port lock held and IRQs disabled. 565 * Returns: 566 * false if we want to use PIO to transmit 567 * true if we queued a DMA buffer 568 */ 569 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 570 { 571 if (!uap->using_tx_dma) 572 return false; 573 574 /* 575 * If we already have a TX buffer queued, but received a 576 * TX interrupt, it will be because we've just sent an X-char. 577 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 578 */ 579 if (uap->dmatx.queued) { 580 uap->dmacr |= UART011_TXDMAE; 581 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 582 uap->im &= ~UART011_TXIM; 583 writew(uap->im, uap->port.membase + UART011_IMSC); 584 return true; 585 } 586 587 /* 588 * We don't have a TX buffer queued, so try to queue one. 589 * If we successfully queued a buffer, mask the TX IRQ. 590 */ 591 if (pl011_dma_tx_refill(uap) > 0) { 592 uap->im &= ~UART011_TXIM; 593 writew(uap->im, uap->port.membase + UART011_IMSC); 594 return true; 595 } 596 return false; 597 } 598 599 /* 600 * Stop the DMA transmit (eg, due to received XOFF). 601 * Locking: called with port lock held and IRQs disabled. 602 */ 603 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 604 { 605 if (uap->dmatx.queued) { 606 uap->dmacr &= ~UART011_TXDMAE; 607 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 608 } 609 } 610 611 /* 612 * Try to start a DMA transmit, or in the case of an XON/OFF 613 * character queued for send, try to get that character out ASAP. 614 * Locking: called with port lock held and IRQs disabled. 615 * Returns: 616 * false if we want the TX IRQ to be enabled 617 * true if we have a buffer queued 618 */ 619 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 620 { 621 u16 dmacr; 622 623 if (!uap->using_tx_dma) 624 return false; 625 626 if (!uap->port.x_char) { 627 /* no X-char, try to push chars out in DMA mode */ 628 bool ret = true; 629 630 if (!uap->dmatx.queued) { 631 if (pl011_dma_tx_refill(uap) > 0) { 632 uap->im &= ~UART011_TXIM; 633 ret = true; 634 } else { 635 uap->im |= UART011_TXIM; 636 ret = false; 637 } 638 writew(uap->im, uap->port.membase + UART011_IMSC); 639 } else if (!(uap->dmacr & UART011_TXDMAE)) { 640 uap->dmacr |= UART011_TXDMAE; 641 writew(uap->dmacr, 642 uap->port.membase + UART011_DMACR); 643 } 644 return ret; 645 } 646 647 /* 648 * We have an X-char to send. Disable DMA to prevent it loading 649 * the TX fifo, and then see if we can stuff it into the FIFO. 650 */ 651 dmacr = uap->dmacr; 652 uap->dmacr &= ~UART011_TXDMAE; 653 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 654 655 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 656 /* 657 * No space in the FIFO, so enable the transmit interrupt 658 * so we know when there is space. Note that once we've 659 * loaded the character, we should just re-enable DMA. 660 */ 661 return false; 662 } 663 664 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 665 uap->port.icount.tx++; 666 uap->port.x_char = 0; 667 668 /* Success - restore the DMA state */ 669 uap->dmacr = dmacr; 670 writew(dmacr, uap->port.membase + UART011_DMACR); 671 672 return true; 673 } 674 675 /* 676 * Flush the transmit buffer. 677 * Locking: called with port lock held and IRQs disabled. 678 */ 679 static void pl011_dma_flush_buffer(struct uart_port *port) 680 { 681 struct uart_amba_port *uap = (struct uart_amba_port *)port; 682 683 if (!uap->using_tx_dma) 684 return; 685 686 /* Avoid deadlock with the DMA engine callback */ 687 spin_unlock(&uap->port.lock); 688 dmaengine_terminate_all(uap->dmatx.chan); 689 spin_lock(&uap->port.lock); 690 if (uap->dmatx.queued) { 691 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 692 DMA_TO_DEVICE); 693 uap->dmatx.queued = false; 694 uap->dmacr &= ~UART011_TXDMAE; 695 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 696 } 697 } 698 699 static void pl011_dma_rx_callback(void *data); 700 701 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 702 { 703 struct dma_chan *rxchan = uap->dmarx.chan; 704 struct pl011_dmarx_data *dmarx = &uap->dmarx; 705 struct dma_async_tx_descriptor *desc; 706 struct pl011_sgbuf *sgbuf; 707 708 if (!rxchan) 709 return -EIO; 710 711 /* Start the RX DMA job */ 712 sgbuf = uap->dmarx.use_buf_b ? 713 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 714 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, 715 DMA_DEV_TO_MEM, 716 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 717 /* 718 * If the DMA engine is busy and cannot prepare a 719 * channel, no big deal, the driver will fall back 720 * to interrupt mode as a result of this error code. 721 */ 722 if (!desc) { 723 uap->dmarx.running = false; 724 dmaengine_terminate_all(rxchan); 725 return -EBUSY; 726 } 727 728 /* Some data to go along to the callback */ 729 desc->callback = pl011_dma_rx_callback; 730 desc->callback_param = uap; 731 dmarx->cookie = dmaengine_submit(desc); 732 dma_async_issue_pending(rxchan); 733 734 uap->dmacr |= UART011_RXDMAE; 735 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 736 uap->dmarx.running = true; 737 738 uap->im &= ~UART011_RXIM; 739 writew(uap->im, uap->port.membase + UART011_IMSC); 740 741 return 0; 742 } 743 744 /* 745 * This is called when either the DMA job is complete, or 746 * the FIFO timeout interrupt occurred. This must be called 747 * with the port spinlock uap->port.lock held. 748 */ 749 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 750 u32 pending, bool use_buf_b, 751 bool readfifo) 752 { 753 struct tty_port *port = &uap->port.state->port; 754 struct pl011_sgbuf *sgbuf = use_buf_b ? 755 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 756 int dma_count = 0; 757 u32 fifotaken = 0; /* only used for vdbg() */ 758 759 struct pl011_dmarx_data *dmarx = &uap->dmarx; 760 int dmataken = 0; 761 762 if (uap->dmarx.poll_rate) { 763 /* The data can be taken by polling */ 764 dmataken = sgbuf->sg.length - dmarx->last_residue; 765 /* Recalculate the pending size */ 766 if (pending >= dmataken) 767 pending -= dmataken; 768 } 769 770 /* Pick the remain data from the DMA */ 771 if (pending) { 772 773 /* 774 * First take all chars in the DMA pipe, then look in the FIFO. 775 * Note that tty_insert_flip_buf() tries to take as many chars 776 * as it can. 777 */ 778 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 779 pending); 780 781 uap->port.icount.rx += dma_count; 782 if (dma_count < pending) 783 dev_warn(uap->port.dev, 784 "couldn't insert all characters (TTY is full?)\n"); 785 } 786 787 /* Reset the last_residue for Rx DMA poll */ 788 if (uap->dmarx.poll_rate) 789 dmarx->last_residue = sgbuf->sg.length; 790 791 /* 792 * Only continue with trying to read the FIFO if all DMA chars have 793 * been taken first. 794 */ 795 if (dma_count == pending && readfifo) { 796 /* Clear any error flags */ 797 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 798 uap->port.membase + UART011_ICR); 799 800 /* 801 * If we read all the DMA'd characters, and we had an 802 * incomplete buffer, that could be due to an rx error, or 803 * maybe we just timed out. Read any pending chars and check 804 * the error status. 805 * 806 * Error conditions will only occur in the FIFO, these will 807 * trigger an immediate interrupt and stop the DMA job, so we 808 * will always find the error in the FIFO, never in the DMA 809 * buffer. 810 */ 811 fifotaken = pl011_fifo_to_tty(uap); 812 } 813 814 spin_unlock(&uap->port.lock); 815 dev_vdbg(uap->port.dev, 816 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 817 dma_count, fifotaken); 818 tty_flip_buffer_push(port); 819 spin_lock(&uap->port.lock); 820 } 821 822 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 823 { 824 struct pl011_dmarx_data *dmarx = &uap->dmarx; 825 struct dma_chan *rxchan = dmarx->chan; 826 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 827 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 828 size_t pending; 829 struct dma_tx_state state; 830 enum dma_status dmastat; 831 832 /* 833 * Pause the transfer so we can trust the current counter, 834 * do this before we pause the PL011 block, else we may 835 * overflow the FIFO. 836 */ 837 if (dmaengine_pause(rxchan)) 838 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 839 dmastat = rxchan->device->device_tx_status(rxchan, 840 dmarx->cookie, &state); 841 if (dmastat != DMA_PAUSED) 842 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 843 844 /* Disable RX DMA - incoming data will wait in the FIFO */ 845 uap->dmacr &= ~UART011_RXDMAE; 846 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 847 uap->dmarx.running = false; 848 849 pending = sgbuf->sg.length - state.residue; 850 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 851 /* Then we terminate the transfer - we now know our residue */ 852 dmaengine_terminate_all(rxchan); 853 854 /* 855 * This will take the chars we have so far and insert 856 * into the framework. 857 */ 858 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 859 860 /* Switch buffer & re-trigger DMA job */ 861 dmarx->use_buf_b = !dmarx->use_buf_b; 862 if (pl011_dma_rx_trigger_dma(uap)) { 863 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 864 "fall back to interrupt mode\n"); 865 uap->im |= UART011_RXIM; 866 writew(uap->im, uap->port.membase + UART011_IMSC); 867 } 868 } 869 870 static void pl011_dma_rx_callback(void *data) 871 { 872 struct uart_amba_port *uap = data; 873 struct pl011_dmarx_data *dmarx = &uap->dmarx; 874 struct dma_chan *rxchan = dmarx->chan; 875 bool lastbuf = dmarx->use_buf_b; 876 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 877 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 878 size_t pending; 879 struct dma_tx_state state; 880 int ret; 881 882 /* 883 * This completion interrupt occurs typically when the 884 * RX buffer is totally stuffed but no timeout has yet 885 * occurred. When that happens, we just want the RX 886 * routine to flush out the secondary DMA buffer while 887 * we immediately trigger the next DMA job. 888 */ 889 spin_lock_irq(&uap->port.lock); 890 /* 891 * Rx data can be taken by the UART interrupts during 892 * the DMA irq handler. So we check the residue here. 893 */ 894 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 895 pending = sgbuf->sg.length - state.residue; 896 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 897 /* Then we terminate the transfer - we now know our residue */ 898 dmaengine_terminate_all(rxchan); 899 900 uap->dmarx.running = false; 901 dmarx->use_buf_b = !lastbuf; 902 ret = pl011_dma_rx_trigger_dma(uap); 903 904 pl011_dma_rx_chars(uap, pending, lastbuf, false); 905 spin_unlock_irq(&uap->port.lock); 906 /* 907 * Do this check after we picked the DMA chars so we don't 908 * get some IRQ immediately from RX. 909 */ 910 if (ret) { 911 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 912 "fall back to interrupt mode\n"); 913 uap->im |= UART011_RXIM; 914 writew(uap->im, uap->port.membase + UART011_IMSC); 915 } 916 } 917 918 /* 919 * Stop accepting received characters, when we're shutting down or 920 * suspending this port. 921 * Locking: called with port lock held and IRQs disabled. 922 */ 923 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 924 { 925 /* FIXME. Just disable the DMA enable */ 926 uap->dmacr &= ~UART011_RXDMAE; 927 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 928 } 929 930 /* 931 * Timer handler for Rx DMA polling. 932 * Every polling, It checks the residue in the dma buffer and transfer 933 * data to the tty. Also, last_residue is updated for the next polling. 934 */ 935 static void pl011_dma_rx_poll(unsigned long args) 936 { 937 struct uart_amba_port *uap = (struct uart_amba_port *)args; 938 struct tty_port *port = &uap->port.state->port; 939 struct pl011_dmarx_data *dmarx = &uap->dmarx; 940 struct dma_chan *rxchan = uap->dmarx.chan; 941 unsigned long flags = 0; 942 unsigned int dmataken = 0; 943 unsigned int size = 0; 944 struct pl011_sgbuf *sgbuf; 945 int dma_count; 946 struct dma_tx_state state; 947 948 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 949 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 950 if (likely(state.residue < dmarx->last_residue)) { 951 dmataken = sgbuf->sg.length - dmarx->last_residue; 952 size = dmarx->last_residue - state.residue; 953 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 954 size); 955 if (dma_count == size) 956 dmarx->last_residue = state.residue; 957 dmarx->last_jiffies = jiffies; 958 } 959 tty_flip_buffer_push(port); 960 961 /* 962 * If no data is received in poll_timeout, the driver will fall back 963 * to interrupt mode. We will retrigger DMA at the first interrupt. 964 */ 965 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 966 > uap->dmarx.poll_timeout) { 967 968 spin_lock_irqsave(&uap->port.lock, flags); 969 pl011_dma_rx_stop(uap); 970 spin_unlock_irqrestore(&uap->port.lock, flags); 971 972 uap->dmarx.running = false; 973 dmaengine_terminate_all(rxchan); 974 del_timer(&uap->dmarx.timer); 975 } else { 976 mod_timer(&uap->dmarx.timer, 977 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 978 } 979 } 980 981 static void pl011_dma_startup(struct uart_amba_port *uap) 982 { 983 int ret; 984 985 if (!uap->dmatx.chan) 986 return; 987 988 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 989 if (!uap->dmatx.buf) { 990 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 991 uap->port.fifosize = uap->fifosize; 992 return; 993 } 994 995 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 996 997 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 998 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 999 uap->using_tx_dma = true; 1000 1001 if (!uap->dmarx.chan) 1002 goto skip_rx; 1003 1004 /* Allocate and map DMA RX buffers */ 1005 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1006 DMA_FROM_DEVICE); 1007 if (ret) { 1008 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1009 "RX buffer A", ret); 1010 goto skip_rx; 1011 } 1012 1013 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 1014 DMA_FROM_DEVICE); 1015 if (ret) { 1016 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1017 "RX buffer B", ret); 1018 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1019 DMA_FROM_DEVICE); 1020 goto skip_rx; 1021 } 1022 1023 uap->using_rx_dma = true; 1024 1025 skip_rx: 1026 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1027 uap->dmacr |= UART011_DMAONERR; 1028 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1029 1030 /* 1031 * ST Micro variants has some specific dma burst threshold 1032 * compensation. Set this to 16 bytes, so burst will only 1033 * be issued above/below 16 bytes. 1034 */ 1035 if (uap->vendor->dma_threshold) 1036 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1037 uap->port.membase + ST_UART011_DMAWM); 1038 1039 if (uap->using_rx_dma) { 1040 if (pl011_dma_rx_trigger_dma(uap)) 1041 dev_dbg(uap->port.dev, "could not trigger initial " 1042 "RX DMA job, fall back to interrupt mode\n"); 1043 if (uap->dmarx.poll_rate) { 1044 init_timer(&(uap->dmarx.timer)); 1045 uap->dmarx.timer.function = pl011_dma_rx_poll; 1046 uap->dmarx.timer.data = (unsigned long)uap; 1047 mod_timer(&uap->dmarx.timer, 1048 jiffies + 1049 msecs_to_jiffies(uap->dmarx.poll_rate)); 1050 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1051 uap->dmarx.last_jiffies = jiffies; 1052 } 1053 } 1054 } 1055 1056 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1057 { 1058 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1059 return; 1060 1061 /* Disable RX and TX DMA */ 1062 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1063 barrier(); 1064 1065 spin_lock_irq(&uap->port.lock); 1066 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1067 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1068 spin_unlock_irq(&uap->port.lock); 1069 1070 if (uap->using_tx_dma) { 1071 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1072 dmaengine_terminate_all(uap->dmatx.chan); 1073 if (uap->dmatx.queued) { 1074 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 1075 DMA_TO_DEVICE); 1076 uap->dmatx.queued = false; 1077 } 1078 1079 kfree(uap->dmatx.buf); 1080 uap->using_tx_dma = false; 1081 } 1082 1083 if (uap->using_rx_dma) { 1084 dmaengine_terminate_all(uap->dmarx.chan); 1085 /* Clean up the RX DMA */ 1086 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 1087 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 1088 if (uap->dmarx.poll_rate) 1089 del_timer_sync(&uap->dmarx.timer); 1090 uap->using_rx_dma = false; 1091 } 1092 } 1093 1094 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1095 { 1096 return uap->using_rx_dma; 1097 } 1098 1099 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1100 { 1101 return uap->using_rx_dma && uap->dmarx.running; 1102 } 1103 1104 #else 1105 /* Blank functions if the DMA engine is not available */ 1106 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 1107 { 1108 } 1109 1110 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1111 { 1112 } 1113 1114 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1115 { 1116 } 1117 1118 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1119 { 1120 } 1121 1122 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1123 { 1124 return false; 1125 } 1126 1127 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1128 { 1129 } 1130 1131 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1132 { 1133 return false; 1134 } 1135 1136 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1137 { 1138 } 1139 1140 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1141 { 1142 } 1143 1144 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1145 { 1146 return -EIO; 1147 } 1148 1149 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1150 { 1151 return false; 1152 } 1153 1154 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1155 { 1156 return false; 1157 } 1158 1159 #define pl011_dma_flush_buffer NULL 1160 #endif 1161 1162 static void pl011_stop_tx(struct uart_port *port) 1163 { 1164 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1165 1166 uap->im &= ~UART011_TXIM; 1167 writew(uap->im, uap->port.membase + UART011_IMSC); 1168 pl011_dma_tx_stop(uap); 1169 } 1170 1171 static void pl011_start_tx(struct uart_port *port) 1172 { 1173 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1174 1175 if (!pl011_dma_tx_start(uap)) { 1176 uap->im |= UART011_TXIM; 1177 writew(uap->im, uap->port.membase + UART011_IMSC); 1178 } 1179 } 1180 1181 static void pl011_stop_rx(struct uart_port *port) 1182 { 1183 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1184 1185 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1186 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1187 writew(uap->im, uap->port.membase + UART011_IMSC); 1188 1189 pl011_dma_rx_stop(uap); 1190 } 1191 1192 static void pl011_enable_ms(struct uart_port *port) 1193 { 1194 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1195 1196 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1197 writew(uap->im, uap->port.membase + UART011_IMSC); 1198 } 1199 1200 static void pl011_rx_chars(struct uart_amba_port *uap) 1201 { 1202 pl011_fifo_to_tty(uap); 1203 1204 spin_unlock(&uap->port.lock); 1205 tty_flip_buffer_push(&uap->port.state->port); 1206 /* 1207 * If we were temporarily out of DMA mode for a while, 1208 * attempt to switch back to DMA mode again. 1209 */ 1210 if (pl011_dma_rx_available(uap)) { 1211 if (pl011_dma_rx_trigger_dma(uap)) { 1212 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1213 "fall back to interrupt mode again\n"); 1214 uap->im |= UART011_RXIM; 1215 } else { 1216 uap->im &= ~UART011_RXIM; 1217 #ifdef CONFIG_DMA_ENGINE 1218 /* Start Rx DMA poll */ 1219 if (uap->dmarx.poll_rate) { 1220 uap->dmarx.last_jiffies = jiffies; 1221 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1222 mod_timer(&uap->dmarx.timer, 1223 jiffies + 1224 msecs_to_jiffies(uap->dmarx.poll_rate)); 1225 } 1226 #endif 1227 } 1228 1229 writew(uap->im, uap->port.membase + UART011_IMSC); 1230 } 1231 spin_lock(&uap->port.lock); 1232 } 1233 1234 static void pl011_tx_chars(struct uart_amba_port *uap) 1235 { 1236 struct circ_buf *xmit = &uap->port.state->xmit; 1237 int count; 1238 1239 if (uap->port.x_char) { 1240 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 1241 uap->port.icount.tx++; 1242 uap->port.x_char = 0; 1243 return; 1244 } 1245 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1246 pl011_stop_tx(&uap->port); 1247 return; 1248 } 1249 1250 /* If we are using DMA mode, try to send some characters. */ 1251 if (pl011_dma_tx_irq(uap)) 1252 return; 1253 1254 count = uap->fifosize >> 1; 1255 do { 1256 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR); 1257 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1258 uap->port.icount.tx++; 1259 if (uart_circ_empty(xmit)) 1260 break; 1261 } while (--count > 0); 1262 1263 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1264 uart_write_wakeup(&uap->port); 1265 1266 if (uart_circ_empty(xmit)) 1267 pl011_stop_tx(&uap->port); 1268 } 1269 1270 static void pl011_modem_status(struct uart_amba_port *uap) 1271 { 1272 unsigned int status, delta; 1273 1274 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1275 1276 delta = status ^ uap->old_status; 1277 uap->old_status = status; 1278 1279 if (!delta) 1280 return; 1281 1282 if (delta & UART01x_FR_DCD) 1283 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1284 1285 if (delta & UART01x_FR_DSR) 1286 uap->port.icount.dsr++; 1287 1288 if (delta & UART01x_FR_CTS) 1289 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 1290 1291 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1292 } 1293 1294 static irqreturn_t pl011_int(int irq, void *dev_id) 1295 { 1296 struct uart_amba_port *uap = dev_id; 1297 unsigned long flags; 1298 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1299 int handled = 0; 1300 unsigned int dummy_read; 1301 1302 spin_lock_irqsave(&uap->port.lock, flags); 1303 status = readw(uap->port.membase + UART011_MIS); 1304 if (status) { 1305 do { 1306 if (uap->vendor->cts_event_workaround) { 1307 /* workaround to make sure that all bits are unlocked.. */ 1308 writew(0x00, uap->port.membase + UART011_ICR); 1309 1310 /* 1311 * WA: introduce 26ns(1 uart clk) delay before W1C; 1312 * single apb access will incur 2 pclk(133.12Mhz) delay, 1313 * so add 2 dummy reads 1314 */ 1315 dummy_read = readw(uap->port.membase + UART011_ICR); 1316 dummy_read = readw(uap->port.membase + UART011_ICR); 1317 } 1318 1319 writew(status & ~(UART011_TXIS|UART011_RTIS| 1320 UART011_RXIS), 1321 uap->port.membase + UART011_ICR); 1322 1323 if (status & (UART011_RTIS|UART011_RXIS)) { 1324 if (pl011_dma_rx_running(uap)) 1325 pl011_dma_rx_irq(uap); 1326 else 1327 pl011_rx_chars(uap); 1328 } 1329 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1330 UART011_CTSMIS|UART011_RIMIS)) 1331 pl011_modem_status(uap); 1332 if (status & UART011_TXIS) 1333 pl011_tx_chars(uap); 1334 1335 if (pass_counter-- == 0) 1336 break; 1337 1338 status = readw(uap->port.membase + UART011_MIS); 1339 } while (status != 0); 1340 handled = 1; 1341 } 1342 1343 spin_unlock_irqrestore(&uap->port.lock, flags); 1344 1345 return IRQ_RETVAL(handled); 1346 } 1347 1348 static unsigned int pl011_tx_empty(struct uart_port *port) 1349 { 1350 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1351 unsigned int status = readw(uap->port.membase + UART01x_FR); 1352 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 1353 } 1354 1355 static unsigned int pl011_get_mctrl(struct uart_port *port) 1356 { 1357 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1358 unsigned int result = 0; 1359 unsigned int status = readw(uap->port.membase + UART01x_FR); 1360 1361 #define TIOCMBIT(uartbit, tiocmbit) \ 1362 if (status & uartbit) \ 1363 result |= tiocmbit 1364 1365 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1366 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 1367 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 1368 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 1369 #undef TIOCMBIT 1370 return result; 1371 } 1372 1373 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1374 { 1375 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1376 unsigned int cr; 1377 1378 cr = readw(uap->port.membase + UART011_CR); 1379 1380 #define TIOCMBIT(tiocmbit, uartbit) \ 1381 if (mctrl & tiocmbit) \ 1382 cr |= uartbit; \ 1383 else \ 1384 cr &= ~uartbit 1385 1386 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1387 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1388 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1389 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1390 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1391 1392 if (uap->autorts) { 1393 /* We need to disable auto-RTS if we want to turn RTS off */ 1394 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1395 } 1396 #undef TIOCMBIT 1397 1398 writew(cr, uap->port.membase + UART011_CR); 1399 } 1400 1401 static void pl011_break_ctl(struct uart_port *port, int break_state) 1402 { 1403 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1404 unsigned long flags; 1405 unsigned int lcr_h; 1406 1407 spin_lock_irqsave(&uap->port.lock, flags); 1408 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1409 if (break_state == -1) 1410 lcr_h |= UART01x_LCRH_BRK; 1411 else 1412 lcr_h &= ~UART01x_LCRH_BRK; 1413 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1414 spin_unlock_irqrestore(&uap->port.lock, flags); 1415 } 1416 1417 #ifdef CONFIG_CONSOLE_POLL 1418 1419 static void pl011_quiesce_irqs(struct uart_port *port) 1420 { 1421 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1422 unsigned char __iomem *regs = uap->port.membase; 1423 1424 writew(readw(regs + UART011_MIS), regs + UART011_ICR); 1425 /* 1426 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1427 * we simply mask it. start_tx() will unmask it. 1428 * 1429 * Note we can race with start_tx(), and if the race happens, the 1430 * polling user might get another interrupt just after we clear it. 1431 * But it should be OK and can happen even w/o the race, e.g. 1432 * controller immediately got some new data and raised the IRQ. 1433 * 1434 * And whoever uses polling routines assumes that it manages the device 1435 * (including tx queue), so we're also fine with start_tx()'s caller 1436 * side. 1437 */ 1438 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC); 1439 } 1440 1441 static int pl011_get_poll_char(struct uart_port *port) 1442 { 1443 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1444 unsigned int status; 1445 1446 /* 1447 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1448 * debugger. 1449 */ 1450 pl011_quiesce_irqs(port); 1451 1452 status = readw(uap->port.membase + UART01x_FR); 1453 if (status & UART01x_FR_RXFE) 1454 return NO_POLL_CHAR; 1455 1456 return readw(uap->port.membase + UART01x_DR); 1457 } 1458 1459 static void pl011_put_poll_char(struct uart_port *port, 1460 unsigned char ch) 1461 { 1462 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1463 1464 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1465 barrier(); 1466 1467 writew(ch, uap->port.membase + UART01x_DR); 1468 } 1469 1470 #endif /* CONFIG_CONSOLE_POLL */ 1471 1472 static int pl011_hwinit(struct uart_port *port) 1473 { 1474 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1475 int retval; 1476 1477 /* Optionaly enable pins to be muxed in and configured */ 1478 pinctrl_pm_select_default_state(port->dev); 1479 1480 /* 1481 * Try to enable the clock producer. 1482 */ 1483 retval = clk_prepare_enable(uap->clk); 1484 if (retval) 1485 goto out; 1486 1487 uap->port.uartclk = clk_get_rate(uap->clk); 1488 1489 /* Clear pending error and receive interrupts */ 1490 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS | 1491 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR); 1492 1493 /* 1494 * Save interrupts enable mask, and enable RX interrupts in case if 1495 * the interrupt is used for NMI entry. 1496 */ 1497 uap->im = readw(uap->port.membase + UART011_IMSC); 1498 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC); 1499 1500 if (uap->port.dev->platform_data) { 1501 struct amba_pl011_data *plat; 1502 1503 plat = uap->port.dev->platform_data; 1504 if (plat->init) 1505 plat->init(); 1506 } 1507 return 0; 1508 out: 1509 return retval; 1510 } 1511 1512 static int pl011_startup(struct uart_port *port) 1513 { 1514 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1515 unsigned int cr; 1516 int retval; 1517 1518 retval = pl011_hwinit(port); 1519 if (retval) 1520 goto clk_dis; 1521 1522 writew(uap->im, uap->port.membase + UART011_IMSC); 1523 1524 /* 1525 * Allocate the IRQ 1526 */ 1527 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1528 if (retval) 1529 goto clk_dis; 1530 1531 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 1532 1533 /* 1534 * Provoke TX FIFO interrupt into asserting. 1535 */ 1536 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE; 1537 writew(cr, uap->port.membase + UART011_CR); 1538 writew(0, uap->port.membase + UART011_FBRD); 1539 writew(1, uap->port.membase + UART011_IBRD); 1540 writew(0, uap->port.membase + uap->lcrh_rx); 1541 if (uap->lcrh_tx != uap->lcrh_rx) { 1542 int i; 1543 /* 1544 * Wait 10 PCLKs before writing LCRH_TX register, 1545 * to get this delay write read only register 10 times 1546 */ 1547 for (i = 0; i < 10; ++i) 1548 writew(0xff, uap->port.membase + UART011_MIS); 1549 writew(0, uap->port.membase + uap->lcrh_tx); 1550 } 1551 writew(0, uap->port.membase + UART01x_DR); 1552 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1553 barrier(); 1554 1555 /* restore RTS and DTR */ 1556 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR); 1557 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1558 writew(cr, uap->port.membase + UART011_CR); 1559 1560 /* 1561 * initialise the old status of the modem signals 1562 */ 1563 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1564 1565 /* Startup DMA */ 1566 pl011_dma_startup(uap); 1567 1568 /* 1569 * Finally, enable interrupts, only timeouts when using DMA 1570 * if initial RX DMA job failed, start in interrupt mode 1571 * as well. 1572 */ 1573 spin_lock_irq(&uap->port.lock); 1574 /* Clear out any spuriously appearing RX interrupts */ 1575 writew(UART011_RTIS | UART011_RXIS, 1576 uap->port.membase + UART011_ICR); 1577 uap->im = UART011_RTIM; 1578 if (!pl011_dma_rx_running(uap)) 1579 uap->im |= UART011_RXIM; 1580 writew(uap->im, uap->port.membase + UART011_IMSC); 1581 spin_unlock_irq(&uap->port.lock); 1582 1583 return 0; 1584 1585 clk_dis: 1586 clk_disable_unprepare(uap->clk); 1587 return retval; 1588 } 1589 1590 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1591 unsigned int lcrh) 1592 { 1593 unsigned long val; 1594 1595 val = readw(uap->port.membase + lcrh); 1596 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1597 writew(val, uap->port.membase + lcrh); 1598 } 1599 1600 static void pl011_shutdown(struct uart_port *port) 1601 { 1602 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1603 unsigned int cr; 1604 1605 /* 1606 * disable all interrupts 1607 */ 1608 spin_lock_irq(&uap->port.lock); 1609 uap->im = 0; 1610 writew(uap->im, uap->port.membase + UART011_IMSC); 1611 writew(0xffff, uap->port.membase + UART011_ICR); 1612 spin_unlock_irq(&uap->port.lock); 1613 1614 pl011_dma_shutdown(uap); 1615 1616 /* 1617 * Free the interrupt 1618 */ 1619 free_irq(uap->port.irq, uap); 1620 1621 /* 1622 * disable the port 1623 * disable the port. It should not disable RTS and DTR. 1624 * Also RTS and DTR state should be preserved to restore 1625 * it during startup(). 1626 */ 1627 uap->autorts = false; 1628 cr = readw(uap->port.membase + UART011_CR); 1629 uap->old_cr = cr; 1630 cr &= UART011_CR_RTS | UART011_CR_DTR; 1631 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1632 writew(cr, uap->port.membase + UART011_CR); 1633 1634 /* 1635 * disable break condition and fifos 1636 */ 1637 pl011_shutdown_channel(uap, uap->lcrh_rx); 1638 if (uap->lcrh_rx != uap->lcrh_tx) 1639 pl011_shutdown_channel(uap, uap->lcrh_tx); 1640 1641 /* 1642 * Shut down the clock producer 1643 */ 1644 clk_disable_unprepare(uap->clk); 1645 /* Optionally let pins go into sleep states */ 1646 pinctrl_pm_select_sleep_state(port->dev); 1647 1648 if (uap->port.dev->platform_data) { 1649 struct amba_pl011_data *plat; 1650 1651 plat = uap->port.dev->platform_data; 1652 if (plat->exit) 1653 plat->exit(); 1654 } 1655 1656 } 1657 1658 static void 1659 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1660 struct ktermios *old) 1661 { 1662 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1663 unsigned int lcr_h, old_cr; 1664 unsigned long flags; 1665 unsigned int baud, quot, clkdiv; 1666 1667 if (uap->vendor->oversampling) 1668 clkdiv = 8; 1669 else 1670 clkdiv = 16; 1671 1672 /* 1673 * Ask the core to calculate the divisor for us. 1674 */ 1675 baud = uart_get_baud_rate(port, termios, old, 0, 1676 port->uartclk / clkdiv); 1677 #ifdef CONFIG_DMA_ENGINE 1678 /* 1679 * Adjust RX DMA polling rate with baud rate if not specified. 1680 */ 1681 if (uap->dmarx.auto_poll_rate) 1682 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 1683 #endif 1684 1685 if (baud > port->uartclk/16) 1686 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1687 else 1688 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1689 1690 switch (termios->c_cflag & CSIZE) { 1691 case CS5: 1692 lcr_h = UART01x_LCRH_WLEN_5; 1693 break; 1694 case CS6: 1695 lcr_h = UART01x_LCRH_WLEN_6; 1696 break; 1697 case CS7: 1698 lcr_h = UART01x_LCRH_WLEN_7; 1699 break; 1700 default: // CS8 1701 lcr_h = UART01x_LCRH_WLEN_8; 1702 break; 1703 } 1704 if (termios->c_cflag & CSTOPB) 1705 lcr_h |= UART01x_LCRH_STP2; 1706 if (termios->c_cflag & PARENB) { 1707 lcr_h |= UART01x_LCRH_PEN; 1708 if (!(termios->c_cflag & PARODD)) 1709 lcr_h |= UART01x_LCRH_EPS; 1710 } 1711 if (uap->fifosize > 1) 1712 lcr_h |= UART01x_LCRH_FEN; 1713 1714 spin_lock_irqsave(&port->lock, flags); 1715 1716 /* 1717 * Update the per-port timeout. 1718 */ 1719 uart_update_timeout(port, termios->c_cflag, baud); 1720 1721 port->read_status_mask = UART011_DR_OE | 255; 1722 if (termios->c_iflag & INPCK) 1723 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1724 if (termios->c_iflag & (BRKINT | PARMRK)) 1725 port->read_status_mask |= UART011_DR_BE; 1726 1727 /* 1728 * Characters to ignore 1729 */ 1730 port->ignore_status_mask = 0; 1731 if (termios->c_iflag & IGNPAR) 1732 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1733 if (termios->c_iflag & IGNBRK) { 1734 port->ignore_status_mask |= UART011_DR_BE; 1735 /* 1736 * If we're ignoring parity and break indicators, 1737 * ignore overruns too (for real raw support). 1738 */ 1739 if (termios->c_iflag & IGNPAR) 1740 port->ignore_status_mask |= UART011_DR_OE; 1741 } 1742 1743 /* 1744 * Ignore all characters if CREAD is not set. 1745 */ 1746 if ((termios->c_cflag & CREAD) == 0) 1747 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1748 1749 if (UART_ENABLE_MS(port, termios->c_cflag)) 1750 pl011_enable_ms(port); 1751 1752 /* first, disable everything */ 1753 old_cr = readw(port->membase + UART011_CR); 1754 writew(0, port->membase + UART011_CR); 1755 1756 if (termios->c_cflag & CRTSCTS) { 1757 if (old_cr & UART011_CR_RTS) 1758 old_cr |= UART011_CR_RTSEN; 1759 1760 old_cr |= UART011_CR_CTSEN; 1761 uap->autorts = true; 1762 } else { 1763 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1764 uap->autorts = false; 1765 } 1766 1767 if (uap->vendor->oversampling) { 1768 if (baud > port->uartclk / 16) 1769 old_cr |= ST_UART011_CR_OVSFACT; 1770 else 1771 old_cr &= ~ST_UART011_CR_OVSFACT; 1772 } 1773 1774 /* 1775 * Workaround for the ST Micro oversampling variants to 1776 * increase the bitrate slightly, by lowering the divisor, 1777 * to avoid delayed sampling of start bit at high speeds, 1778 * else we see data corruption. 1779 */ 1780 if (uap->vendor->oversampling) { 1781 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) 1782 quot -= 1; 1783 else if ((baud > 3250000) && (quot > 2)) 1784 quot -= 2; 1785 } 1786 /* Set baud rate */ 1787 writew(quot & 0x3f, port->membase + UART011_FBRD); 1788 writew(quot >> 6, port->membase + UART011_IBRD); 1789 1790 /* 1791 * ----------v----------v----------v----------v----- 1792 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER 1793 * UART011_FBRD & UART011_IBRD. 1794 * ----------^----------^----------^----------^----- 1795 */ 1796 writew(lcr_h, port->membase + uap->lcrh_rx); 1797 if (uap->lcrh_rx != uap->lcrh_tx) { 1798 int i; 1799 /* 1800 * Wait 10 PCLKs before writing LCRH_TX register, 1801 * to get this delay write read only register 10 times 1802 */ 1803 for (i = 0; i < 10; ++i) 1804 writew(0xff, uap->port.membase + UART011_MIS); 1805 writew(lcr_h, port->membase + uap->lcrh_tx); 1806 } 1807 writew(old_cr, port->membase + UART011_CR); 1808 1809 spin_unlock_irqrestore(&port->lock, flags); 1810 } 1811 1812 static const char *pl011_type(struct uart_port *port) 1813 { 1814 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1815 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1816 } 1817 1818 /* 1819 * Release the memory region(s) being used by 'port' 1820 */ 1821 static void pl011_release_port(struct uart_port *port) 1822 { 1823 release_mem_region(port->mapbase, SZ_4K); 1824 } 1825 1826 /* 1827 * Request the memory region(s) being used by 'port' 1828 */ 1829 static int pl011_request_port(struct uart_port *port) 1830 { 1831 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1832 != NULL ? 0 : -EBUSY; 1833 } 1834 1835 /* 1836 * Configure/autoconfigure the port. 1837 */ 1838 static void pl011_config_port(struct uart_port *port, int flags) 1839 { 1840 if (flags & UART_CONFIG_TYPE) { 1841 port->type = PORT_AMBA; 1842 pl011_request_port(port); 1843 } 1844 } 1845 1846 /* 1847 * verify the new serial_struct (for TIOCSSERIAL). 1848 */ 1849 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 1850 { 1851 int ret = 0; 1852 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1853 ret = -EINVAL; 1854 if (ser->irq < 0 || ser->irq >= nr_irqs) 1855 ret = -EINVAL; 1856 if (ser->baud_base < 9600) 1857 ret = -EINVAL; 1858 return ret; 1859 } 1860 1861 static struct uart_ops amba_pl011_pops = { 1862 .tx_empty = pl011_tx_empty, 1863 .set_mctrl = pl011_set_mctrl, 1864 .get_mctrl = pl011_get_mctrl, 1865 .stop_tx = pl011_stop_tx, 1866 .start_tx = pl011_start_tx, 1867 .stop_rx = pl011_stop_rx, 1868 .enable_ms = pl011_enable_ms, 1869 .break_ctl = pl011_break_ctl, 1870 .startup = pl011_startup, 1871 .shutdown = pl011_shutdown, 1872 .flush_buffer = pl011_dma_flush_buffer, 1873 .set_termios = pl011_set_termios, 1874 .type = pl011_type, 1875 .release_port = pl011_release_port, 1876 .request_port = pl011_request_port, 1877 .config_port = pl011_config_port, 1878 .verify_port = pl011_verify_port, 1879 #ifdef CONFIG_CONSOLE_POLL 1880 .poll_init = pl011_hwinit, 1881 .poll_get_char = pl011_get_poll_char, 1882 .poll_put_char = pl011_put_poll_char, 1883 #endif 1884 }; 1885 1886 static struct uart_amba_port *amba_ports[UART_NR]; 1887 1888 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 1889 1890 static void pl011_console_putchar(struct uart_port *port, int ch) 1891 { 1892 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1893 1894 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1895 barrier(); 1896 writew(ch, uap->port.membase + UART01x_DR); 1897 } 1898 1899 static void 1900 pl011_console_write(struct console *co, const char *s, unsigned int count) 1901 { 1902 struct uart_amba_port *uap = amba_ports[co->index]; 1903 unsigned int status, old_cr, new_cr; 1904 unsigned long flags; 1905 int locked = 1; 1906 1907 clk_enable(uap->clk); 1908 1909 local_irq_save(flags); 1910 if (uap->port.sysrq) 1911 locked = 0; 1912 else if (oops_in_progress) 1913 locked = spin_trylock(&uap->port.lock); 1914 else 1915 spin_lock(&uap->port.lock); 1916 1917 /* 1918 * First save the CR then disable the interrupts 1919 */ 1920 old_cr = readw(uap->port.membase + UART011_CR); 1921 new_cr = old_cr & ~UART011_CR_CTSEN; 1922 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1923 writew(new_cr, uap->port.membase + UART011_CR); 1924 1925 uart_console_write(&uap->port, s, count, pl011_console_putchar); 1926 1927 /* 1928 * Finally, wait for transmitter to become empty 1929 * and restore the TCR 1930 */ 1931 do { 1932 status = readw(uap->port.membase + UART01x_FR); 1933 } while (status & UART01x_FR_BUSY); 1934 writew(old_cr, uap->port.membase + UART011_CR); 1935 1936 if (locked) 1937 spin_unlock(&uap->port.lock); 1938 local_irq_restore(flags); 1939 1940 clk_disable(uap->clk); 1941 } 1942 1943 static void __init 1944 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 1945 int *parity, int *bits) 1946 { 1947 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 1948 unsigned int lcr_h, ibrd, fbrd; 1949 1950 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1951 1952 *parity = 'n'; 1953 if (lcr_h & UART01x_LCRH_PEN) { 1954 if (lcr_h & UART01x_LCRH_EPS) 1955 *parity = 'e'; 1956 else 1957 *parity = 'o'; 1958 } 1959 1960 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 1961 *bits = 7; 1962 else 1963 *bits = 8; 1964 1965 ibrd = readw(uap->port.membase + UART011_IBRD); 1966 fbrd = readw(uap->port.membase + UART011_FBRD); 1967 1968 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 1969 1970 if (uap->vendor->oversampling) { 1971 if (readw(uap->port.membase + UART011_CR) 1972 & ST_UART011_CR_OVSFACT) 1973 *baud *= 2; 1974 } 1975 } 1976 } 1977 1978 static int __init pl011_console_setup(struct console *co, char *options) 1979 { 1980 struct uart_amba_port *uap; 1981 int baud = 38400; 1982 int bits = 8; 1983 int parity = 'n'; 1984 int flow = 'n'; 1985 int ret; 1986 1987 /* 1988 * Check whether an invalid uart number has been specified, and 1989 * if so, search for the first available port that does have 1990 * console support. 1991 */ 1992 if (co->index >= UART_NR) 1993 co->index = 0; 1994 uap = amba_ports[co->index]; 1995 if (!uap) 1996 return -ENODEV; 1997 1998 /* Allow pins to be muxed in and configured */ 1999 pinctrl_pm_select_default_state(uap->port.dev); 2000 2001 ret = clk_prepare(uap->clk); 2002 if (ret) 2003 return ret; 2004 2005 if (uap->port.dev->platform_data) { 2006 struct amba_pl011_data *plat; 2007 2008 plat = uap->port.dev->platform_data; 2009 if (plat->init) 2010 plat->init(); 2011 } 2012 2013 uap->port.uartclk = clk_get_rate(uap->clk); 2014 2015 if (options) 2016 uart_parse_options(options, &baud, &parity, &bits, &flow); 2017 else 2018 pl011_console_get_options(uap, &baud, &parity, &bits); 2019 2020 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2021 } 2022 2023 static struct uart_driver amba_reg; 2024 static struct console amba_console = { 2025 .name = "ttyAMA", 2026 .write = pl011_console_write, 2027 .device = uart_console_device, 2028 .setup = pl011_console_setup, 2029 .flags = CON_PRINTBUFFER, 2030 .index = -1, 2031 .data = &amba_reg, 2032 }; 2033 2034 #define AMBA_CONSOLE (&amba_console) 2035 #else 2036 #define AMBA_CONSOLE NULL 2037 #endif 2038 2039 static struct uart_driver amba_reg = { 2040 .owner = THIS_MODULE, 2041 .driver_name = "ttyAMA", 2042 .dev_name = "ttyAMA", 2043 .major = SERIAL_AMBA_MAJOR, 2044 .minor = SERIAL_AMBA_MINOR, 2045 .nr = UART_NR, 2046 .cons = AMBA_CONSOLE, 2047 }; 2048 2049 static int pl011_probe_dt_alias(int index, struct device *dev) 2050 { 2051 struct device_node *np; 2052 static bool seen_dev_with_alias = false; 2053 static bool seen_dev_without_alias = false; 2054 int ret = index; 2055 2056 if (!IS_ENABLED(CONFIG_OF)) 2057 return ret; 2058 2059 np = dev->of_node; 2060 if (!np) 2061 return ret; 2062 2063 ret = of_alias_get_id(np, "serial"); 2064 if (IS_ERR_VALUE(ret)) { 2065 seen_dev_without_alias = true; 2066 ret = index; 2067 } else { 2068 seen_dev_with_alias = true; 2069 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { 2070 dev_warn(dev, "requested serial port %d not available.\n", ret); 2071 ret = index; 2072 } 2073 } 2074 2075 if (seen_dev_with_alias && seen_dev_without_alias) 2076 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2077 2078 return ret; 2079 } 2080 2081 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2082 { 2083 struct uart_amba_port *uap; 2084 struct vendor_data *vendor = id->data; 2085 void __iomem *base; 2086 int i, ret; 2087 2088 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2089 if (amba_ports[i] == NULL) 2090 break; 2091 2092 if (i == ARRAY_SIZE(amba_ports)) { 2093 ret = -EBUSY; 2094 goto out; 2095 } 2096 2097 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2098 GFP_KERNEL); 2099 if (uap == NULL) { 2100 ret = -ENOMEM; 2101 goto out; 2102 } 2103 2104 i = pl011_probe_dt_alias(i, &dev->dev); 2105 2106 base = devm_ioremap(&dev->dev, dev->res.start, 2107 resource_size(&dev->res)); 2108 if (!base) { 2109 ret = -ENOMEM; 2110 goto out; 2111 } 2112 2113 uap->clk = devm_clk_get(&dev->dev, NULL); 2114 if (IS_ERR(uap->clk)) { 2115 ret = PTR_ERR(uap->clk); 2116 goto out; 2117 } 2118 2119 uap->vendor = vendor; 2120 uap->lcrh_rx = vendor->lcrh_rx; 2121 uap->lcrh_tx = vendor->lcrh_tx; 2122 uap->old_cr = 0; 2123 uap->fifosize = vendor->get_fifosize(dev); 2124 uap->port.dev = &dev->dev; 2125 uap->port.mapbase = dev->res.start; 2126 uap->port.membase = base; 2127 uap->port.iotype = UPIO_MEM; 2128 uap->port.irq = dev->irq[0]; 2129 uap->port.fifosize = uap->fifosize; 2130 uap->port.ops = &amba_pl011_pops; 2131 uap->port.flags = UPF_BOOT_AUTOCONF; 2132 uap->port.line = i; 2133 pl011_dma_probe(&dev->dev, uap); 2134 2135 /* Ensure interrupts from this UART are masked and cleared */ 2136 writew(0, uap->port.membase + UART011_IMSC); 2137 writew(0xffff, uap->port.membase + UART011_ICR); 2138 2139 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2140 2141 amba_ports[i] = uap; 2142 2143 amba_set_drvdata(dev, uap); 2144 ret = uart_add_one_port(&amba_reg, &uap->port); 2145 if (ret) { 2146 amba_set_drvdata(dev, NULL); 2147 amba_ports[i] = NULL; 2148 pl011_dma_remove(uap); 2149 } 2150 out: 2151 return ret; 2152 } 2153 2154 static int pl011_remove(struct amba_device *dev) 2155 { 2156 struct uart_amba_port *uap = amba_get_drvdata(dev); 2157 int i; 2158 2159 amba_set_drvdata(dev, NULL); 2160 2161 uart_remove_one_port(&amba_reg, &uap->port); 2162 2163 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2164 if (amba_ports[i] == uap) 2165 amba_ports[i] = NULL; 2166 2167 pl011_dma_remove(uap); 2168 return 0; 2169 } 2170 2171 #ifdef CONFIG_PM 2172 static int pl011_suspend(struct amba_device *dev, pm_message_t state) 2173 { 2174 struct uart_amba_port *uap = amba_get_drvdata(dev); 2175 2176 if (!uap) 2177 return -EINVAL; 2178 2179 return uart_suspend_port(&amba_reg, &uap->port); 2180 } 2181 2182 static int pl011_resume(struct amba_device *dev) 2183 { 2184 struct uart_amba_port *uap = amba_get_drvdata(dev); 2185 2186 if (!uap) 2187 return -EINVAL; 2188 2189 return uart_resume_port(&amba_reg, &uap->port); 2190 } 2191 #endif 2192 2193 static struct amba_id pl011_ids[] = { 2194 { 2195 .id = 0x00041011, 2196 .mask = 0x000fffff, 2197 .data = &vendor_arm, 2198 }, 2199 { 2200 .id = 0x00380802, 2201 .mask = 0x00ffffff, 2202 .data = &vendor_st, 2203 }, 2204 { 0, 0 }, 2205 }; 2206 2207 MODULE_DEVICE_TABLE(amba, pl011_ids); 2208 2209 static struct amba_driver pl011_driver = { 2210 .drv = { 2211 .name = "uart-pl011", 2212 }, 2213 .id_table = pl011_ids, 2214 .probe = pl011_probe, 2215 .remove = pl011_remove, 2216 #ifdef CONFIG_PM 2217 .suspend = pl011_suspend, 2218 .resume = pl011_resume, 2219 #endif 2220 }; 2221 2222 static int __init pl011_init(void) 2223 { 2224 int ret; 2225 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 2226 2227 ret = uart_register_driver(&amba_reg); 2228 if (ret == 0) { 2229 ret = amba_driver_register(&pl011_driver); 2230 if (ret) 2231 uart_unregister_driver(&amba_reg); 2232 } 2233 return ret; 2234 } 2235 2236 static void __exit pl011_exit(void) 2237 { 2238 amba_driver_unregister(&pl011_driver); 2239 uart_unregister_driver(&amba_reg); 2240 } 2241 2242 /* 2243 * While this can be a module, if builtin it's most likely the console 2244 * So let's leave module_exit but move module_init to an earlier place 2245 */ 2246 arch_initcall(pl011_init); 2247 module_exit(pl011_exit); 2248 2249 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 2250 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 2251 MODULE_LICENSE("GPL"); 2252