xref: /linux/drivers/tty/serial/amba-pl011.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35 
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 #include <linux/of.h>
56 #include <linux/of_device.h>
57 #include <linux/pinctrl/consumer.h>
58 #include <linux/sizes.h>
59 
60 #include <asm/io.h>
61 
62 #define UART_NR			14
63 
64 #define SERIAL_AMBA_MAJOR	204
65 #define SERIAL_AMBA_MINOR	64
66 #define SERIAL_AMBA_NR		UART_NR
67 
68 #define AMBA_ISR_PASS_LIMIT	256
69 
70 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX	(1 << 16)
72 
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 	unsigned int		ifls;
76 	unsigned int		fifosize;
77 	unsigned int		lcrh_tx;
78 	unsigned int		lcrh_rx;
79 	bool			oversampling;
80 	bool			dma_threshold;
81 	bool			cts_event_workaround;
82 };
83 
84 static struct vendor_data vendor_arm = {
85 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
86 	.fifosize		= 16,
87 	.lcrh_tx		= UART011_LCRH,
88 	.lcrh_rx		= UART011_LCRH,
89 	.oversampling		= false,
90 	.dma_threshold		= false,
91 	.cts_event_workaround	= false,
92 };
93 
94 static struct vendor_data vendor_st = {
95 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
96 	.fifosize		= 64,
97 	.lcrh_tx		= ST_UART011_LCRH_TX,
98 	.lcrh_rx		= ST_UART011_LCRH_RX,
99 	.oversampling		= true,
100 	.dma_threshold		= true,
101 	.cts_event_workaround	= true,
102 };
103 
104 static struct uart_amba_port *amba_ports[UART_NR];
105 
106 /* Deals with DMA transactions */
107 
108 struct pl011_sgbuf {
109 	struct scatterlist sg;
110 	char *buf;
111 };
112 
113 struct pl011_dmarx_data {
114 	struct dma_chan		*chan;
115 	struct completion	complete;
116 	bool			use_buf_b;
117 	struct pl011_sgbuf	sgbuf_a;
118 	struct pl011_sgbuf	sgbuf_b;
119 	dma_cookie_t		cookie;
120 	bool			running;
121 };
122 
123 struct pl011_dmatx_data {
124 	struct dma_chan		*chan;
125 	struct scatterlist	sg;
126 	char			*buf;
127 	bool			queued;
128 };
129 
130 /*
131  * We wrap our port structure around the generic uart_port.
132  */
133 struct uart_amba_port {
134 	struct uart_port	port;
135 	struct clk		*clk;
136 	/* Two optional pin states - default & sleep */
137 	struct pinctrl		*pinctrl;
138 	struct pinctrl_state	*pins_default;
139 	struct pinctrl_state	*pins_sleep;
140 	const struct vendor_data *vendor;
141 	unsigned int		dmacr;		/* dma control reg */
142 	unsigned int		im;		/* interrupt mask */
143 	unsigned int		old_status;
144 	unsigned int		fifosize;	/* vendor-specific */
145 	unsigned int		lcrh_tx;	/* vendor-specific */
146 	unsigned int		lcrh_rx;	/* vendor-specific */
147 	unsigned int		old_cr;		/* state during shutdown */
148 	bool			autorts;
149 	char			type[12];
150 #ifdef CONFIG_DMA_ENGINE
151 	/* DMA stuff */
152 	bool			using_tx_dma;
153 	bool			using_rx_dma;
154 	struct pl011_dmarx_data dmarx;
155 	struct pl011_dmatx_data	dmatx;
156 #endif
157 };
158 
159 /*
160  * Reads up to 256 characters from the FIFO or until it's empty and
161  * inserts them into the TTY layer. Returns the number of characters
162  * read from the FIFO.
163  */
164 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
165 {
166 	u16 status, ch;
167 	unsigned int flag, max_count = 256;
168 	int fifotaken = 0;
169 
170 	while (max_count--) {
171 		status = readw(uap->port.membase + UART01x_FR);
172 		if (status & UART01x_FR_RXFE)
173 			break;
174 
175 		/* Take chars from the FIFO and update status */
176 		ch = readw(uap->port.membase + UART01x_DR) |
177 			UART_DUMMY_DR_RX;
178 		flag = TTY_NORMAL;
179 		uap->port.icount.rx++;
180 		fifotaken++;
181 
182 		if (unlikely(ch & UART_DR_ERROR)) {
183 			if (ch & UART011_DR_BE) {
184 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
185 				uap->port.icount.brk++;
186 				if (uart_handle_break(&uap->port))
187 					continue;
188 			} else if (ch & UART011_DR_PE)
189 				uap->port.icount.parity++;
190 			else if (ch & UART011_DR_FE)
191 				uap->port.icount.frame++;
192 			if (ch & UART011_DR_OE)
193 				uap->port.icount.overrun++;
194 
195 			ch &= uap->port.read_status_mask;
196 
197 			if (ch & UART011_DR_BE)
198 				flag = TTY_BREAK;
199 			else if (ch & UART011_DR_PE)
200 				flag = TTY_PARITY;
201 			else if (ch & UART011_DR_FE)
202 				flag = TTY_FRAME;
203 		}
204 
205 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
206 			continue;
207 
208 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
209 	}
210 
211 	return fifotaken;
212 }
213 
214 
215 /*
216  * All the DMA operation mode stuff goes inside this ifdef.
217  * This assumes that you have a generic DMA device interface,
218  * no custom DMA interfaces are supported.
219  */
220 #ifdef CONFIG_DMA_ENGINE
221 
222 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
223 
224 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
225 	enum dma_data_direction dir)
226 {
227 	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
228 	if (!sg->buf)
229 		return -ENOMEM;
230 
231 	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
232 
233 	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
234 		kfree(sg->buf);
235 		return -EINVAL;
236 	}
237 	return 0;
238 }
239 
240 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
241 	enum dma_data_direction dir)
242 {
243 	if (sg->buf) {
244 		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
245 		kfree(sg->buf);
246 	}
247 }
248 
249 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
250 {
251 	/* DMA is the sole user of the platform data right now */
252 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
253 	struct dma_slave_config tx_conf = {
254 		.dst_addr = uap->port.mapbase + UART01x_DR,
255 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
256 		.direction = DMA_MEM_TO_DEV,
257 		.dst_maxburst = uap->fifosize >> 1,
258 		.device_fc = false,
259 	};
260 	struct dma_chan *chan;
261 	dma_cap_mask_t mask;
262 
263 	/* We need platform data */
264 	if (!plat || !plat->dma_filter) {
265 		dev_info(uap->port.dev, "no DMA platform data\n");
266 		return;
267 	}
268 
269 	/* Try to acquire a generic DMA engine slave TX channel */
270 	dma_cap_zero(mask);
271 	dma_cap_set(DMA_SLAVE, mask);
272 
273 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
274 	if (!chan) {
275 		dev_err(uap->port.dev, "no TX DMA channel!\n");
276 		return;
277 	}
278 
279 	dmaengine_slave_config(chan, &tx_conf);
280 	uap->dmatx.chan = chan;
281 
282 	dev_info(uap->port.dev, "DMA channel TX %s\n",
283 		 dma_chan_name(uap->dmatx.chan));
284 
285 	/* Optionally make use of an RX channel as well */
286 	if (plat->dma_rx_param) {
287 		struct dma_slave_config rx_conf = {
288 			.src_addr = uap->port.mapbase + UART01x_DR,
289 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
290 			.direction = DMA_DEV_TO_MEM,
291 			.src_maxburst = uap->fifosize >> 1,
292 			.device_fc = false,
293 		};
294 
295 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
296 		if (!chan) {
297 			dev_err(uap->port.dev, "no RX DMA channel!\n");
298 			return;
299 		}
300 
301 		dmaengine_slave_config(chan, &rx_conf);
302 		uap->dmarx.chan = chan;
303 
304 		dev_info(uap->port.dev, "DMA channel RX %s\n",
305 			 dma_chan_name(uap->dmarx.chan));
306 	}
307 }
308 
309 #ifndef MODULE
310 /*
311  * Stack up the UARTs and let the above initcall be done at device
312  * initcall time, because the serial driver is called as an arch
313  * initcall, and at this time the DMA subsystem is not yet registered.
314  * At this point the driver will switch over to using DMA where desired.
315  */
316 struct dma_uap {
317 	struct list_head node;
318 	struct uart_amba_port *uap;
319 };
320 
321 static LIST_HEAD(pl011_dma_uarts);
322 
323 static int __init pl011_dma_initcall(void)
324 {
325 	struct list_head *node, *tmp;
326 
327 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
328 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
329 		pl011_dma_probe_initcall(dmau->uap);
330 		list_del(node);
331 		kfree(dmau);
332 	}
333 	return 0;
334 }
335 
336 device_initcall(pl011_dma_initcall);
337 
338 static void pl011_dma_probe(struct uart_amba_port *uap)
339 {
340 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
341 	if (dmau) {
342 		dmau->uap = uap;
343 		list_add_tail(&dmau->node, &pl011_dma_uarts);
344 	}
345 }
346 #else
347 static void pl011_dma_probe(struct uart_amba_port *uap)
348 {
349 	pl011_dma_probe_initcall(uap);
350 }
351 #endif
352 
353 static void pl011_dma_remove(struct uart_amba_port *uap)
354 {
355 	/* TODO: remove the initcall if it has not yet executed */
356 	if (uap->dmatx.chan)
357 		dma_release_channel(uap->dmatx.chan);
358 	if (uap->dmarx.chan)
359 		dma_release_channel(uap->dmarx.chan);
360 }
361 
362 /* Forward declare this for the refill routine */
363 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
364 
365 /*
366  * The current DMA TX buffer has been sent.
367  * Try to queue up another DMA buffer.
368  */
369 static void pl011_dma_tx_callback(void *data)
370 {
371 	struct uart_amba_port *uap = data;
372 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
373 	unsigned long flags;
374 	u16 dmacr;
375 
376 	spin_lock_irqsave(&uap->port.lock, flags);
377 	if (uap->dmatx.queued)
378 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
379 			     DMA_TO_DEVICE);
380 
381 	dmacr = uap->dmacr;
382 	uap->dmacr = dmacr & ~UART011_TXDMAE;
383 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
384 
385 	/*
386 	 * If TX DMA was disabled, it means that we've stopped the DMA for
387 	 * some reason (eg, XOFF received, or we want to send an X-char.)
388 	 *
389 	 * Note: we need to be careful here of a potential race between DMA
390 	 * and the rest of the driver - if the driver disables TX DMA while
391 	 * a TX buffer completing, we must update the tx queued status to
392 	 * get further refills (hence we check dmacr).
393 	 */
394 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
395 	    uart_circ_empty(&uap->port.state->xmit)) {
396 		uap->dmatx.queued = false;
397 		spin_unlock_irqrestore(&uap->port.lock, flags);
398 		return;
399 	}
400 
401 	if (pl011_dma_tx_refill(uap) <= 0) {
402 		/*
403 		 * We didn't queue a DMA buffer for some reason, but we
404 		 * have data pending to be sent.  Re-enable the TX IRQ.
405 		 */
406 		uap->im |= UART011_TXIM;
407 		writew(uap->im, uap->port.membase + UART011_IMSC);
408 	}
409 	spin_unlock_irqrestore(&uap->port.lock, flags);
410 }
411 
412 /*
413  * Try to refill the TX DMA buffer.
414  * Locking: called with port lock held and IRQs disabled.
415  * Returns:
416  *   1 if we queued up a TX DMA buffer.
417  *   0 if we didn't want to handle this by DMA
418  *  <0 on error
419  */
420 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
421 {
422 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
423 	struct dma_chan *chan = dmatx->chan;
424 	struct dma_device *dma_dev = chan->device;
425 	struct dma_async_tx_descriptor *desc;
426 	struct circ_buf *xmit = &uap->port.state->xmit;
427 	unsigned int count;
428 
429 	/*
430 	 * Try to avoid the overhead involved in using DMA if the
431 	 * transaction fits in the first half of the FIFO, by using
432 	 * the standard interrupt handling.  This ensures that we
433 	 * issue a uart_write_wakeup() at the appropriate time.
434 	 */
435 	count = uart_circ_chars_pending(xmit);
436 	if (count < (uap->fifosize >> 1)) {
437 		uap->dmatx.queued = false;
438 		return 0;
439 	}
440 
441 	/*
442 	 * Bodge: don't send the last character by DMA, as this
443 	 * will prevent XON from notifying us to restart DMA.
444 	 */
445 	count -= 1;
446 
447 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
448 	if (count > PL011_DMA_BUFFER_SIZE)
449 		count = PL011_DMA_BUFFER_SIZE;
450 
451 	if (xmit->tail < xmit->head)
452 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
453 	else {
454 		size_t first = UART_XMIT_SIZE - xmit->tail;
455 		size_t second = xmit->head;
456 
457 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
458 		if (second)
459 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
460 	}
461 
462 	dmatx->sg.length = count;
463 
464 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
465 		uap->dmatx.queued = false;
466 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
467 		return -EBUSY;
468 	}
469 
470 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
471 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
472 	if (!desc) {
473 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
474 		uap->dmatx.queued = false;
475 		/*
476 		 * If DMA cannot be used right now, we complete this
477 		 * transaction via IRQ and let the TTY layer retry.
478 		 */
479 		dev_dbg(uap->port.dev, "TX DMA busy\n");
480 		return -EBUSY;
481 	}
482 
483 	/* Some data to go along to the callback */
484 	desc->callback = pl011_dma_tx_callback;
485 	desc->callback_param = uap;
486 
487 	/* All errors should happen at prepare time */
488 	dmaengine_submit(desc);
489 
490 	/* Fire the DMA transaction */
491 	dma_dev->device_issue_pending(chan);
492 
493 	uap->dmacr |= UART011_TXDMAE;
494 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
495 	uap->dmatx.queued = true;
496 
497 	/*
498 	 * Now we know that DMA will fire, so advance the ring buffer
499 	 * with the stuff we just dispatched.
500 	 */
501 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
502 	uap->port.icount.tx += count;
503 
504 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
505 		uart_write_wakeup(&uap->port);
506 
507 	return 1;
508 }
509 
510 /*
511  * We received a transmit interrupt without a pending X-char but with
512  * pending characters.
513  * Locking: called with port lock held and IRQs disabled.
514  * Returns:
515  *   false if we want to use PIO to transmit
516  *   true if we queued a DMA buffer
517  */
518 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
519 {
520 	if (!uap->using_tx_dma)
521 		return false;
522 
523 	/*
524 	 * If we already have a TX buffer queued, but received a
525 	 * TX interrupt, it will be because we've just sent an X-char.
526 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
527 	 */
528 	if (uap->dmatx.queued) {
529 		uap->dmacr |= UART011_TXDMAE;
530 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
531 		uap->im &= ~UART011_TXIM;
532 		writew(uap->im, uap->port.membase + UART011_IMSC);
533 		return true;
534 	}
535 
536 	/*
537 	 * We don't have a TX buffer queued, so try to queue one.
538 	 * If we successfully queued a buffer, mask the TX IRQ.
539 	 */
540 	if (pl011_dma_tx_refill(uap) > 0) {
541 		uap->im &= ~UART011_TXIM;
542 		writew(uap->im, uap->port.membase + UART011_IMSC);
543 		return true;
544 	}
545 	return false;
546 }
547 
548 /*
549  * Stop the DMA transmit (eg, due to received XOFF).
550  * Locking: called with port lock held and IRQs disabled.
551  */
552 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
553 {
554 	if (uap->dmatx.queued) {
555 		uap->dmacr &= ~UART011_TXDMAE;
556 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
557 	}
558 }
559 
560 /*
561  * Try to start a DMA transmit, or in the case of an XON/OFF
562  * character queued for send, try to get that character out ASAP.
563  * Locking: called with port lock held and IRQs disabled.
564  * Returns:
565  *   false if we want the TX IRQ to be enabled
566  *   true if we have a buffer queued
567  */
568 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
569 {
570 	u16 dmacr;
571 
572 	if (!uap->using_tx_dma)
573 		return false;
574 
575 	if (!uap->port.x_char) {
576 		/* no X-char, try to push chars out in DMA mode */
577 		bool ret = true;
578 
579 		if (!uap->dmatx.queued) {
580 			if (pl011_dma_tx_refill(uap) > 0) {
581 				uap->im &= ~UART011_TXIM;
582 				ret = true;
583 			} else {
584 				uap->im |= UART011_TXIM;
585 				ret = false;
586 			}
587 			writew(uap->im, uap->port.membase + UART011_IMSC);
588 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
589 			uap->dmacr |= UART011_TXDMAE;
590 			writew(uap->dmacr,
591 				       uap->port.membase + UART011_DMACR);
592 		}
593 		return ret;
594 	}
595 
596 	/*
597 	 * We have an X-char to send.  Disable DMA to prevent it loading
598 	 * the TX fifo, and then see if we can stuff it into the FIFO.
599 	 */
600 	dmacr = uap->dmacr;
601 	uap->dmacr &= ~UART011_TXDMAE;
602 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
603 
604 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
605 		/*
606 		 * No space in the FIFO, so enable the transmit interrupt
607 		 * so we know when there is space.  Note that once we've
608 		 * loaded the character, we should just re-enable DMA.
609 		 */
610 		return false;
611 	}
612 
613 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
614 	uap->port.icount.tx++;
615 	uap->port.x_char = 0;
616 
617 	/* Success - restore the DMA state */
618 	uap->dmacr = dmacr;
619 	writew(dmacr, uap->port.membase + UART011_DMACR);
620 
621 	return true;
622 }
623 
624 /*
625  * Flush the transmit buffer.
626  * Locking: called with port lock held and IRQs disabled.
627  */
628 static void pl011_dma_flush_buffer(struct uart_port *port)
629 {
630 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
631 
632 	if (!uap->using_tx_dma)
633 		return;
634 
635 	/* Avoid deadlock with the DMA engine callback */
636 	spin_unlock(&uap->port.lock);
637 	dmaengine_terminate_all(uap->dmatx.chan);
638 	spin_lock(&uap->port.lock);
639 	if (uap->dmatx.queued) {
640 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
641 			     DMA_TO_DEVICE);
642 		uap->dmatx.queued = false;
643 		uap->dmacr &= ~UART011_TXDMAE;
644 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
645 	}
646 }
647 
648 static void pl011_dma_rx_callback(void *data);
649 
650 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
651 {
652 	struct dma_chan *rxchan = uap->dmarx.chan;
653 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
654 	struct dma_async_tx_descriptor *desc;
655 	struct pl011_sgbuf *sgbuf;
656 
657 	if (!rxchan)
658 		return -EIO;
659 
660 	/* Start the RX DMA job */
661 	sgbuf = uap->dmarx.use_buf_b ?
662 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
663 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
664 					DMA_DEV_TO_MEM,
665 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666 	/*
667 	 * If the DMA engine is busy and cannot prepare a
668 	 * channel, no big deal, the driver will fall back
669 	 * to interrupt mode as a result of this error code.
670 	 */
671 	if (!desc) {
672 		uap->dmarx.running = false;
673 		dmaengine_terminate_all(rxchan);
674 		return -EBUSY;
675 	}
676 
677 	/* Some data to go along to the callback */
678 	desc->callback = pl011_dma_rx_callback;
679 	desc->callback_param = uap;
680 	dmarx->cookie = dmaengine_submit(desc);
681 	dma_async_issue_pending(rxchan);
682 
683 	uap->dmacr |= UART011_RXDMAE;
684 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
685 	uap->dmarx.running = true;
686 
687 	uap->im &= ~UART011_RXIM;
688 	writew(uap->im, uap->port.membase + UART011_IMSC);
689 
690 	return 0;
691 }
692 
693 /*
694  * This is called when either the DMA job is complete, or
695  * the FIFO timeout interrupt occurred. This must be called
696  * with the port spinlock uap->port.lock held.
697  */
698 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
699 			       u32 pending, bool use_buf_b,
700 			       bool readfifo)
701 {
702 	struct tty_struct *tty = uap->port.state->port.tty;
703 	struct pl011_sgbuf *sgbuf = use_buf_b ?
704 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
705 	struct device *dev = uap->dmarx.chan->device->dev;
706 	int dma_count = 0;
707 	u32 fifotaken = 0; /* only used for vdbg() */
708 
709 	/* Pick everything from the DMA first */
710 	if (pending) {
711 		/* Sync in buffer */
712 		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
713 
714 		/*
715 		 * First take all chars in the DMA pipe, then look in the FIFO.
716 		 * Note that tty_insert_flip_buf() tries to take as many chars
717 		 * as it can.
718 		 */
719 		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
720 						   sgbuf->buf, pending);
721 
722 		/* Return buffer to device */
723 		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
724 
725 		uap->port.icount.rx += dma_count;
726 		if (dma_count < pending)
727 			dev_warn(uap->port.dev,
728 				 "couldn't insert all characters (TTY is full?)\n");
729 	}
730 
731 	/*
732 	 * Only continue with trying to read the FIFO if all DMA chars have
733 	 * been taken first.
734 	 */
735 	if (dma_count == pending && readfifo) {
736 		/* Clear any error flags */
737 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
738 		       uap->port.membase + UART011_ICR);
739 
740 		/*
741 		 * If we read all the DMA'd characters, and we had an
742 		 * incomplete buffer, that could be due to an rx error, or
743 		 * maybe we just timed out. Read any pending chars and check
744 		 * the error status.
745 		 *
746 		 * Error conditions will only occur in the FIFO, these will
747 		 * trigger an immediate interrupt and stop the DMA job, so we
748 		 * will always find the error in the FIFO, never in the DMA
749 		 * buffer.
750 		 */
751 		fifotaken = pl011_fifo_to_tty(uap);
752 	}
753 
754 	spin_unlock(&uap->port.lock);
755 	dev_vdbg(uap->port.dev,
756 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
757 		 dma_count, fifotaken);
758 	tty_flip_buffer_push(tty);
759 	spin_lock(&uap->port.lock);
760 }
761 
762 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
763 {
764 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
765 	struct dma_chan *rxchan = dmarx->chan;
766 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
767 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
768 	size_t pending;
769 	struct dma_tx_state state;
770 	enum dma_status dmastat;
771 
772 	/*
773 	 * Pause the transfer so we can trust the current counter,
774 	 * do this before we pause the PL011 block, else we may
775 	 * overflow the FIFO.
776 	 */
777 	if (dmaengine_pause(rxchan))
778 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
779 	dmastat = rxchan->device->device_tx_status(rxchan,
780 						   dmarx->cookie, &state);
781 	if (dmastat != DMA_PAUSED)
782 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
783 
784 	/* Disable RX DMA - incoming data will wait in the FIFO */
785 	uap->dmacr &= ~UART011_RXDMAE;
786 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
787 	uap->dmarx.running = false;
788 
789 	pending = sgbuf->sg.length - state.residue;
790 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
791 	/* Then we terminate the transfer - we now know our residue */
792 	dmaengine_terminate_all(rxchan);
793 
794 	/*
795 	 * This will take the chars we have so far and insert
796 	 * into the framework.
797 	 */
798 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
799 
800 	/* Switch buffer & re-trigger DMA job */
801 	dmarx->use_buf_b = !dmarx->use_buf_b;
802 	if (pl011_dma_rx_trigger_dma(uap)) {
803 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
804 			"fall back to interrupt mode\n");
805 		uap->im |= UART011_RXIM;
806 		writew(uap->im, uap->port.membase + UART011_IMSC);
807 	}
808 }
809 
810 static void pl011_dma_rx_callback(void *data)
811 {
812 	struct uart_amba_port *uap = data;
813 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
814 	struct dma_chan *rxchan = dmarx->chan;
815 	bool lastbuf = dmarx->use_buf_b;
816 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
817 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
818 	size_t pending;
819 	struct dma_tx_state state;
820 	int ret;
821 
822 	/*
823 	 * This completion interrupt occurs typically when the
824 	 * RX buffer is totally stuffed but no timeout has yet
825 	 * occurred. When that happens, we just want the RX
826 	 * routine to flush out the secondary DMA buffer while
827 	 * we immediately trigger the next DMA job.
828 	 */
829 	spin_lock_irq(&uap->port.lock);
830 	/*
831 	 * Rx data can be taken by the UART interrupts during
832 	 * the DMA irq handler. So we check the residue here.
833 	 */
834 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
835 	pending = sgbuf->sg.length - state.residue;
836 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
837 	/* Then we terminate the transfer - we now know our residue */
838 	dmaengine_terminate_all(rxchan);
839 
840 	uap->dmarx.running = false;
841 	dmarx->use_buf_b = !lastbuf;
842 	ret = pl011_dma_rx_trigger_dma(uap);
843 
844 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
845 	spin_unlock_irq(&uap->port.lock);
846 	/*
847 	 * Do this check after we picked the DMA chars so we don't
848 	 * get some IRQ immediately from RX.
849 	 */
850 	if (ret) {
851 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
852 			"fall back to interrupt mode\n");
853 		uap->im |= UART011_RXIM;
854 		writew(uap->im, uap->port.membase + UART011_IMSC);
855 	}
856 }
857 
858 /*
859  * Stop accepting received characters, when we're shutting down or
860  * suspending this port.
861  * Locking: called with port lock held and IRQs disabled.
862  */
863 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
864 {
865 	/* FIXME.  Just disable the DMA enable */
866 	uap->dmacr &= ~UART011_RXDMAE;
867 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
868 }
869 
870 static void pl011_dma_startup(struct uart_amba_port *uap)
871 {
872 	int ret;
873 
874 	if (!uap->dmatx.chan)
875 		return;
876 
877 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
878 	if (!uap->dmatx.buf) {
879 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
880 		uap->port.fifosize = uap->fifosize;
881 		return;
882 	}
883 
884 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
885 
886 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
887 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
888 	uap->using_tx_dma = true;
889 
890 	if (!uap->dmarx.chan)
891 		goto skip_rx;
892 
893 	/* Allocate and map DMA RX buffers */
894 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
895 			       DMA_FROM_DEVICE);
896 	if (ret) {
897 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
898 			"RX buffer A", ret);
899 		goto skip_rx;
900 	}
901 
902 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
903 			       DMA_FROM_DEVICE);
904 	if (ret) {
905 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
906 			"RX buffer B", ret);
907 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
908 				 DMA_FROM_DEVICE);
909 		goto skip_rx;
910 	}
911 
912 	uap->using_rx_dma = true;
913 
914 skip_rx:
915 	/* Turn on DMA error (RX/TX will be enabled on demand) */
916 	uap->dmacr |= UART011_DMAONERR;
917 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
918 
919 	/*
920 	 * ST Micro variants has some specific dma burst threshold
921 	 * compensation. Set this to 16 bytes, so burst will only
922 	 * be issued above/below 16 bytes.
923 	 */
924 	if (uap->vendor->dma_threshold)
925 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
926 			       uap->port.membase + ST_UART011_DMAWM);
927 
928 	if (uap->using_rx_dma) {
929 		if (pl011_dma_rx_trigger_dma(uap))
930 			dev_dbg(uap->port.dev, "could not trigger initial "
931 				"RX DMA job, fall back to interrupt mode\n");
932 	}
933 }
934 
935 static void pl011_dma_shutdown(struct uart_amba_port *uap)
936 {
937 	if (!(uap->using_tx_dma || uap->using_rx_dma))
938 		return;
939 
940 	/* Disable RX and TX DMA */
941 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
942 		barrier();
943 
944 	spin_lock_irq(&uap->port.lock);
945 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
946 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
947 	spin_unlock_irq(&uap->port.lock);
948 
949 	if (uap->using_tx_dma) {
950 		/* In theory, this should already be done by pl011_dma_flush_buffer */
951 		dmaengine_terminate_all(uap->dmatx.chan);
952 		if (uap->dmatx.queued) {
953 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
954 				     DMA_TO_DEVICE);
955 			uap->dmatx.queued = false;
956 		}
957 
958 		kfree(uap->dmatx.buf);
959 		uap->using_tx_dma = false;
960 	}
961 
962 	if (uap->using_rx_dma) {
963 		dmaengine_terminate_all(uap->dmarx.chan);
964 		/* Clean up the RX DMA */
965 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
966 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
967 		uap->using_rx_dma = false;
968 	}
969 }
970 
971 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
972 {
973 	return uap->using_rx_dma;
974 }
975 
976 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
977 {
978 	return uap->using_rx_dma && uap->dmarx.running;
979 }
980 
981 
982 #else
983 /* Blank functions if the DMA engine is not available */
984 static inline void pl011_dma_probe(struct uart_amba_port *uap)
985 {
986 }
987 
988 static inline void pl011_dma_remove(struct uart_amba_port *uap)
989 {
990 }
991 
992 static inline void pl011_dma_startup(struct uart_amba_port *uap)
993 {
994 }
995 
996 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
997 {
998 }
999 
1000 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001 {
1002 	return false;
1003 }
1004 
1005 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006 {
1007 }
1008 
1009 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010 {
1011 	return false;
1012 }
1013 
1014 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015 {
1016 }
1017 
1018 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019 {
1020 }
1021 
1022 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023 {
1024 	return -EIO;
1025 }
1026 
1027 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028 {
1029 	return false;
1030 }
1031 
1032 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033 {
1034 	return false;
1035 }
1036 
1037 #define pl011_dma_flush_buffer	NULL
1038 #endif
1039 
1040 static void pl011_stop_tx(struct uart_port *port)
1041 {
1042 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1043 
1044 	uap->im &= ~UART011_TXIM;
1045 	writew(uap->im, uap->port.membase + UART011_IMSC);
1046 	pl011_dma_tx_stop(uap);
1047 }
1048 
1049 static void pl011_start_tx(struct uart_port *port)
1050 {
1051 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1052 
1053 	if (!pl011_dma_tx_start(uap)) {
1054 		uap->im |= UART011_TXIM;
1055 		writew(uap->im, uap->port.membase + UART011_IMSC);
1056 	}
1057 }
1058 
1059 static void pl011_stop_rx(struct uart_port *port)
1060 {
1061 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1062 
1063 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1064 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1065 	writew(uap->im, uap->port.membase + UART011_IMSC);
1066 
1067 	pl011_dma_rx_stop(uap);
1068 }
1069 
1070 static void pl011_enable_ms(struct uart_port *port)
1071 {
1072 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1073 
1074 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1075 	writew(uap->im, uap->port.membase + UART011_IMSC);
1076 }
1077 
1078 static void pl011_rx_chars(struct uart_amba_port *uap)
1079 {
1080 	struct tty_struct *tty = uap->port.state->port.tty;
1081 
1082 	pl011_fifo_to_tty(uap);
1083 
1084 	spin_unlock(&uap->port.lock);
1085 	tty_flip_buffer_push(tty);
1086 	/*
1087 	 * If we were temporarily out of DMA mode for a while,
1088 	 * attempt to switch back to DMA mode again.
1089 	 */
1090 	if (pl011_dma_rx_available(uap)) {
1091 		if (pl011_dma_rx_trigger_dma(uap)) {
1092 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1093 				"fall back to interrupt mode again\n");
1094 			uap->im |= UART011_RXIM;
1095 		} else
1096 			uap->im &= ~UART011_RXIM;
1097 		writew(uap->im, uap->port.membase + UART011_IMSC);
1098 	}
1099 	spin_lock(&uap->port.lock);
1100 }
1101 
1102 static void pl011_tx_chars(struct uart_amba_port *uap)
1103 {
1104 	struct circ_buf *xmit = &uap->port.state->xmit;
1105 	int count;
1106 
1107 	if (uap->port.x_char) {
1108 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1109 		uap->port.icount.tx++;
1110 		uap->port.x_char = 0;
1111 		return;
1112 	}
1113 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1114 		pl011_stop_tx(&uap->port);
1115 		return;
1116 	}
1117 
1118 	/* If we are using DMA mode, try to send some characters. */
1119 	if (pl011_dma_tx_irq(uap))
1120 		return;
1121 
1122 	count = uap->fifosize >> 1;
1123 	do {
1124 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1125 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1126 		uap->port.icount.tx++;
1127 		if (uart_circ_empty(xmit))
1128 			break;
1129 	} while (--count > 0);
1130 
1131 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1132 		uart_write_wakeup(&uap->port);
1133 
1134 	if (uart_circ_empty(xmit))
1135 		pl011_stop_tx(&uap->port);
1136 }
1137 
1138 static void pl011_modem_status(struct uart_amba_port *uap)
1139 {
1140 	unsigned int status, delta;
1141 
1142 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1143 
1144 	delta = status ^ uap->old_status;
1145 	uap->old_status = status;
1146 
1147 	if (!delta)
1148 		return;
1149 
1150 	if (delta & UART01x_FR_DCD)
1151 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1152 
1153 	if (delta & UART01x_FR_DSR)
1154 		uap->port.icount.dsr++;
1155 
1156 	if (delta & UART01x_FR_CTS)
1157 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1158 
1159 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1160 }
1161 
1162 static irqreturn_t pl011_int(int irq, void *dev_id)
1163 {
1164 	struct uart_amba_port *uap = dev_id;
1165 	unsigned long flags;
1166 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1167 	int handled = 0;
1168 	unsigned int dummy_read;
1169 
1170 	spin_lock_irqsave(&uap->port.lock, flags);
1171 
1172 	status = readw(uap->port.membase + UART011_MIS);
1173 	if (status) {
1174 		do {
1175 			if (uap->vendor->cts_event_workaround) {
1176 				/* workaround to make sure that all bits are unlocked.. */
1177 				writew(0x00, uap->port.membase + UART011_ICR);
1178 
1179 				/*
1180 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1181 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1182 				 * so add 2 dummy reads
1183 				 */
1184 				dummy_read = readw(uap->port.membase + UART011_ICR);
1185 				dummy_read = readw(uap->port.membase + UART011_ICR);
1186 			}
1187 
1188 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1189 					  UART011_RXIS),
1190 			       uap->port.membase + UART011_ICR);
1191 
1192 			if (status & (UART011_RTIS|UART011_RXIS)) {
1193 				if (pl011_dma_rx_running(uap))
1194 					pl011_dma_rx_irq(uap);
1195 				else
1196 					pl011_rx_chars(uap);
1197 			}
1198 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1199 				      UART011_CTSMIS|UART011_RIMIS))
1200 				pl011_modem_status(uap);
1201 			if (status & UART011_TXIS)
1202 				pl011_tx_chars(uap);
1203 
1204 			if (pass_counter-- == 0)
1205 				break;
1206 
1207 			status = readw(uap->port.membase + UART011_MIS);
1208 		} while (status != 0);
1209 		handled = 1;
1210 	}
1211 
1212 	spin_unlock_irqrestore(&uap->port.lock, flags);
1213 
1214 	return IRQ_RETVAL(handled);
1215 }
1216 
1217 static unsigned int pl011_tx_empty(struct uart_port *port)
1218 {
1219 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1220 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1221 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1222 }
1223 
1224 static unsigned int pl011_get_mctrl(struct uart_port *port)
1225 {
1226 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1227 	unsigned int result = 0;
1228 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1229 
1230 #define TIOCMBIT(uartbit, tiocmbit)	\
1231 	if (status & uartbit)		\
1232 		result |= tiocmbit
1233 
1234 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1235 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1236 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1237 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1238 #undef TIOCMBIT
1239 	return result;
1240 }
1241 
1242 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1243 {
1244 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1245 	unsigned int cr;
1246 
1247 	cr = readw(uap->port.membase + UART011_CR);
1248 
1249 #define	TIOCMBIT(tiocmbit, uartbit)		\
1250 	if (mctrl & tiocmbit)		\
1251 		cr |= uartbit;		\
1252 	else				\
1253 		cr &= ~uartbit
1254 
1255 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1256 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1257 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1258 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1259 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1260 
1261 	if (uap->autorts) {
1262 		/* We need to disable auto-RTS if we want to turn RTS off */
1263 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1264 	}
1265 #undef TIOCMBIT
1266 
1267 	writew(cr, uap->port.membase + UART011_CR);
1268 }
1269 
1270 static void pl011_break_ctl(struct uart_port *port, int break_state)
1271 {
1272 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1273 	unsigned long flags;
1274 	unsigned int lcr_h;
1275 
1276 	spin_lock_irqsave(&uap->port.lock, flags);
1277 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1278 	if (break_state == -1)
1279 		lcr_h |= UART01x_LCRH_BRK;
1280 	else
1281 		lcr_h &= ~UART01x_LCRH_BRK;
1282 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1283 	spin_unlock_irqrestore(&uap->port.lock, flags);
1284 }
1285 
1286 #ifdef CONFIG_CONSOLE_POLL
1287 
1288 static void pl011_quiesce_irqs(struct uart_port *port)
1289 {
1290 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1291 	unsigned char __iomem *regs = uap->port.membase;
1292 
1293 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1294 	/*
1295 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1296 	 * we simply mask it. start_tx() will unmask it.
1297 	 *
1298 	 * Note we can race with start_tx(), and if the race happens, the
1299 	 * polling user might get another interrupt just after we clear it.
1300 	 * But it should be OK and can happen even w/o the race, e.g.
1301 	 * controller immediately got some new data and raised the IRQ.
1302 	 *
1303 	 * And whoever uses polling routines assumes that it manages the device
1304 	 * (including tx queue), so we're also fine with start_tx()'s caller
1305 	 * side.
1306 	 */
1307 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1308 }
1309 
1310 static int pl011_get_poll_char(struct uart_port *port)
1311 {
1312 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1313 	unsigned int status;
1314 
1315 	/*
1316 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1317 	 * debugger.
1318 	 */
1319 	pl011_quiesce_irqs(port);
1320 
1321 	status = readw(uap->port.membase + UART01x_FR);
1322 	if (status & UART01x_FR_RXFE)
1323 		return NO_POLL_CHAR;
1324 
1325 	return readw(uap->port.membase + UART01x_DR);
1326 }
1327 
1328 static void pl011_put_poll_char(struct uart_port *port,
1329 			 unsigned char ch)
1330 {
1331 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1332 
1333 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1334 		barrier();
1335 
1336 	writew(ch, uap->port.membase + UART01x_DR);
1337 }
1338 
1339 #endif /* CONFIG_CONSOLE_POLL */
1340 
1341 static int pl011_hwinit(struct uart_port *port)
1342 {
1343 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1344 	int retval;
1345 
1346 	/* Optionaly enable pins to be muxed in and configured */
1347 	if (!IS_ERR(uap->pins_default)) {
1348 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1349 		if (retval)
1350 			dev_err(port->dev,
1351 				"could not set default pins\n");
1352 	}
1353 
1354 	/*
1355 	 * Try to enable the clock producer.
1356 	 */
1357 	retval = clk_prepare_enable(uap->clk);
1358 	if (retval)
1359 		goto out;
1360 
1361 	uap->port.uartclk = clk_get_rate(uap->clk);
1362 
1363 	/* Clear pending error and receive interrupts */
1364 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1365 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1366 
1367 	/*
1368 	 * Save interrupts enable mask, and enable RX interrupts in case if
1369 	 * the interrupt is used for NMI entry.
1370 	 */
1371 	uap->im = readw(uap->port.membase + UART011_IMSC);
1372 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1373 
1374 	if (uap->port.dev->platform_data) {
1375 		struct amba_pl011_data *plat;
1376 
1377 		plat = uap->port.dev->platform_data;
1378 		if (plat->init)
1379 			plat->init();
1380 	}
1381 	return 0;
1382  out:
1383 	return retval;
1384 }
1385 
1386 static int pl011_startup(struct uart_port *port)
1387 {
1388 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1389 	unsigned int cr;
1390 	int retval;
1391 
1392 	retval = pl011_hwinit(port);
1393 	if (retval)
1394 		goto clk_dis;
1395 
1396 	writew(uap->im, uap->port.membase + UART011_IMSC);
1397 
1398 	/*
1399 	 * Allocate the IRQ
1400 	 */
1401 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1402 	if (retval)
1403 		goto clk_dis;
1404 
1405 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1406 
1407 	/*
1408 	 * Provoke TX FIFO interrupt into asserting.
1409 	 */
1410 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1411 	writew(cr, uap->port.membase + UART011_CR);
1412 	writew(0, uap->port.membase + UART011_FBRD);
1413 	writew(1, uap->port.membase + UART011_IBRD);
1414 	writew(0, uap->port.membase + uap->lcrh_rx);
1415 	if (uap->lcrh_tx != uap->lcrh_rx) {
1416 		int i;
1417 		/*
1418 		 * Wait 10 PCLKs before writing LCRH_TX register,
1419 		 * to get this delay write read only register 10 times
1420 		 */
1421 		for (i = 0; i < 10; ++i)
1422 			writew(0xff, uap->port.membase + UART011_MIS);
1423 		writew(0, uap->port.membase + uap->lcrh_tx);
1424 	}
1425 	writew(0, uap->port.membase + UART01x_DR);
1426 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1427 		barrier();
1428 
1429 	/* restore RTS and DTR */
1430 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1431 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1432 	writew(cr, uap->port.membase + UART011_CR);
1433 
1434 	/*
1435 	 * initialise the old status of the modem signals
1436 	 */
1437 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1438 
1439 	/* Startup DMA */
1440 	pl011_dma_startup(uap);
1441 
1442 	/*
1443 	 * Finally, enable interrupts, only timeouts when using DMA
1444 	 * if initial RX DMA job failed, start in interrupt mode
1445 	 * as well.
1446 	 */
1447 	spin_lock_irq(&uap->port.lock);
1448 	/* Clear out any spuriously appearing RX interrupts */
1449 	 writew(UART011_RTIS | UART011_RXIS,
1450 		uap->port.membase + UART011_ICR);
1451 	uap->im = UART011_RTIM;
1452 	if (!pl011_dma_rx_running(uap))
1453 		uap->im |= UART011_RXIM;
1454 	writew(uap->im, uap->port.membase + UART011_IMSC);
1455 	spin_unlock_irq(&uap->port.lock);
1456 
1457 	return 0;
1458 
1459  clk_dis:
1460 	clk_disable_unprepare(uap->clk);
1461 	return retval;
1462 }
1463 
1464 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1465 					unsigned int lcrh)
1466 {
1467       unsigned long val;
1468 
1469       val = readw(uap->port.membase + lcrh);
1470       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1471       writew(val, uap->port.membase + lcrh);
1472 }
1473 
1474 static void pl011_shutdown(struct uart_port *port)
1475 {
1476 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1477 	unsigned int cr;
1478 	int retval;
1479 
1480 	/*
1481 	 * disable all interrupts
1482 	 */
1483 	spin_lock_irq(&uap->port.lock);
1484 	uap->im = 0;
1485 	writew(uap->im, uap->port.membase + UART011_IMSC);
1486 	writew(0xffff, uap->port.membase + UART011_ICR);
1487 	spin_unlock_irq(&uap->port.lock);
1488 
1489 	pl011_dma_shutdown(uap);
1490 
1491 	/*
1492 	 * Free the interrupt
1493 	 */
1494 	free_irq(uap->port.irq, uap);
1495 
1496 	/*
1497 	 * disable the port
1498 	 * disable the port. It should not disable RTS and DTR.
1499 	 * Also RTS and DTR state should be preserved to restore
1500 	 * it during startup().
1501 	 */
1502 	uap->autorts = false;
1503 	cr = readw(uap->port.membase + UART011_CR);
1504 	uap->old_cr = cr;
1505 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1506 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1507 	writew(cr, uap->port.membase + UART011_CR);
1508 
1509 	/*
1510 	 * disable break condition and fifos
1511 	 */
1512 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1513 	if (uap->lcrh_rx != uap->lcrh_tx)
1514 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1515 
1516 	/*
1517 	 * Shut down the clock producer
1518 	 */
1519 	clk_disable_unprepare(uap->clk);
1520 	/* Optionally let pins go into sleep states */
1521 	if (!IS_ERR(uap->pins_sleep)) {
1522 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1523 		if (retval)
1524 			dev_err(port->dev,
1525 				"could not set pins to sleep state\n");
1526 	}
1527 
1528 
1529 	if (uap->port.dev->platform_data) {
1530 		struct amba_pl011_data *plat;
1531 
1532 		plat = uap->port.dev->platform_data;
1533 		if (plat->exit)
1534 			plat->exit();
1535 	}
1536 
1537 }
1538 
1539 static void
1540 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1541 		     struct ktermios *old)
1542 {
1543 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1544 	unsigned int lcr_h, old_cr;
1545 	unsigned long flags;
1546 	unsigned int baud, quot, clkdiv;
1547 
1548 	if (uap->vendor->oversampling)
1549 		clkdiv = 8;
1550 	else
1551 		clkdiv = 16;
1552 
1553 	/*
1554 	 * Ask the core to calculate the divisor for us.
1555 	 */
1556 	baud = uart_get_baud_rate(port, termios, old, 0,
1557 				  port->uartclk / clkdiv);
1558 
1559 	if (baud > port->uartclk/16)
1560 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1561 	else
1562 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1563 
1564 	switch (termios->c_cflag & CSIZE) {
1565 	case CS5:
1566 		lcr_h = UART01x_LCRH_WLEN_5;
1567 		break;
1568 	case CS6:
1569 		lcr_h = UART01x_LCRH_WLEN_6;
1570 		break;
1571 	case CS7:
1572 		lcr_h = UART01x_LCRH_WLEN_7;
1573 		break;
1574 	default: // CS8
1575 		lcr_h = UART01x_LCRH_WLEN_8;
1576 		break;
1577 	}
1578 	if (termios->c_cflag & CSTOPB)
1579 		lcr_h |= UART01x_LCRH_STP2;
1580 	if (termios->c_cflag & PARENB) {
1581 		lcr_h |= UART01x_LCRH_PEN;
1582 		if (!(termios->c_cflag & PARODD))
1583 			lcr_h |= UART01x_LCRH_EPS;
1584 	}
1585 	if (uap->fifosize > 1)
1586 		lcr_h |= UART01x_LCRH_FEN;
1587 
1588 	spin_lock_irqsave(&port->lock, flags);
1589 
1590 	/*
1591 	 * Update the per-port timeout.
1592 	 */
1593 	uart_update_timeout(port, termios->c_cflag, baud);
1594 
1595 	port->read_status_mask = UART011_DR_OE | 255;
1596 	if (termios->c_iflag & INPCK)
1597 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1598 	if (termios->c_iflag & (BRKINT | PARMRK))
1599 		port->read_status_mask |= UART011_DR_BE;
1600 
1601 	/*
1602 	 * Characters to ignore
1603 	 */
1604 	port->ignore_status_mask = 0;
1605 	if (termios->c_iflag & IGNPAR)
1606 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1607 	if (termios->c_iflag & IGNBRK) {
1608 		port->ignore_status_mask |= UART011_DR_BE;
1609 		/*
1610 		 * If we're ignoring parity and break indicators,
1611 		 * ignore overruns too (for real raw support).
1612 		 */
1613 		if (termios->c_iflag & IGNPAR)
1614 			port->ignore_status_mask |= UART011_DR_OE;
1615 	}
1616 
1617 	/*
1618 	 * Ignore all characters if CREAD is not set.
1619 	 */
1620 	if ((termios->c_cflag & CREAD) == 0)
1621 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1622 
1623 	if (UART_ENABLE_MS(port, termios->c_cflag))
1624 		pl011_enable_ms(port);
1625 
1626 	/* first, disable everything */
1627 	old_cr = readw(port->membase + UART011_CR);
1628 	writew(0, port->membase + UART011_CR);
1629 
1630 	if (termios->c_cflag & CRTSCTS) {
1631 		if (old_cr & UART011_CR_RTS)
1632 			old_cr |= UART011_CR_RTSEN;
1633 
1634 		old_cr |= UART011_CR_CTSEN;
1635 		uap->autorts = true;
1636 	} else {
1637 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1638 		uap->autorts = false;
1639 	}
1640 
1641 	if (uap->vendor->oversampling) {
1642 		if (baud > port->uartclk / 16)
1643 			old_cr |= ST_UART011_CR_OVSFACT;
1644 		else
1645 			old_cr &= ~ST_UART011_CR_OVSFACT;
1646 	}
1647 
1648 	/*
1649 	 * Workaround for the ST Micro oversampling variants to
1650 	 * increase the bitrate slightly, by lowering the divisor,
1651 	 * to avoid delayed sampling of start bit at high speeds,
1652 	 * else we see data corruption.
1653 	 */
1654 	if (uap->vendor->oversampling) {
1655 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1656 			quot -= 1;
1657 		else if ((baud > 3250000) && (quot > 2))
1658 			quot -= 2;
1659 	}
1660 	/* Set baud rate */
1661 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1662 	writew(quot >> 6, port->membase + UART011_IBRD);
1663 
1664 	/*
1665 	 * ----------v----------v----------v----------v-----
1666 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1667 	 * UART011_FBRD & UART011_IBRD.
1668 	 * ----------^----------^----------^----------^-----
1669 	 */
1670 	writew(lcr_h, port->membase + uap->lcrh_rx);
1671 	if (uap->lcrh_rx != uap->lcrh_tx) {
1672 		int i;
1673 		/*
1674 		 * Wait 10 PCLKs before writing LCRH_TX register,
1675 		 * to get this delay write read only register 10 times
1676 		 */
1677 		for (i = 0; i < 10; ++i)
1678 			writew(0xff, uap->port.membase + UART011_MIS);
1679 		writew(lcr_h, port->membase + uap->lcrh_tx);
1680 	}
1681 	writew(old_cr, port->membase + UART011_CR);
1682 
1683 	spin_unlock_irqrestore(&port->lock, flags);
1684 }
1685 
1686 static const char *pl011_type(struct uart_port *port)
1687 {
1688 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1689 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1690 }
1691 
1692 /*
1693  * Release the memory region(s) being used by 'port'
1694  */
1695 static void pl011_release_port(struct uart_port *port)
1696 {
1697 	release_mem_region(port->mapbase, SZ_4K);
1698 }
1699 
1700 /*
1701  * Request the memory region(s) being used by 'port'
1702  */
1703 static int pl011_request_port(struct uart_port *port)
1704 {
1705 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1706 			!= NULL ? 0 : -EBUSY;
1707 }
1708 
1709 /*
1710  * Configure/autoconfigure the port.
1711  */
1712 static void pl011_config_port(struct uart_port *port, int flags)
1713 {
1714 	if (flags & UART_CONFIG_TYPE) {
1715 		port->type = PORT_AMBA;
1716 		pl011_request_port(port);
1717 	}
1718 }
1719 
1720 /*
1721  * verify the new serial_struct (for TIOCSSERIAL).
1722  */
1723 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1724 {
1725 	int ret = 0;
1726 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1727 		ret = -EINVAL;
1728 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1729 		ret = -EINVAL;
1730 	if (ser->baud_base < 9600)
1731 		ret = -EINVAL;
1732 	return ret;
1733 }
1734 
1735 static struct uart_ops amba_pl011_pops = {
1736 	.tx_empty	= pl011_tx_empty,
1737 	.set_mctrl	= pl011_set_mctrl,
1738 	.get_mctrl	= pl011_get_mctrl,
1739 	.stop_tx	= pl011_stop_tx,
1740 	.start_tx	= pl011_start_tx,
1741 	.stop_rx	= pl011_stop_rx,
1742 	.enable_ms	= pl011_enable_ms,
1743 	.break_ctl	= pl011_break_ctl,
1744 	.startup	= pl011_startup,
1745 	.shutdown	= pl011_shutdown,
1746 	.flush_buffer	= pl011_dma_flush_buffer,
1747 	.set_termios	= pl011_set_termios,
1748 	.type		= pl011_type,
1749 	.release_port	= pl011_release_port,
1750 	.request_port	= pl011_request_port,
1751 	.config_port	= pl011_config_port,
1752 	.verify_port	= pl011_verify_port,
1753 #ifdef CONFIG_CONSOLE_POLL
1754 	.poll_init     = pl011_hwinit,
1755 	.poll_get_char = pl011_get_poll_char,
1756 	.poll_put_char = pl011_put_poll_char,
1757 #endif
1758 };
1759 
1760 static struct uart_amba_port *amba_ports[UART_NR];
1761 
1762 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1763 
1764 static void pl011_console_putchar(struct uart_port *port, int ch)
1765 {
1766 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1767 
1768 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1769 		barrier();
1770 	writew(ch, uap->port.membase + UART01x_DR);
1771 }
1772 
1773 static void
1774 pl011_console_write(struct console *co, const char *s, unsigned int count)
1775 {
1776 	struct uart_amba_port *uap = amba_ports[co->index];
1777 	unsigned int status, old_cr, new_cr;
1778 	unsigned long flags;
1779 	int locked = 1;
1780 
1781 	clk_enable(uap->clk);
1782 
1783 	local_irq_save(flags);
1784 	if (uap->port.sysrq)
1785 		locked = 0;
1786 	else if (oops_in_progress)
1787 		locked = spin_trylock(&uap->port.lock);
1788 	else
1789 		spin_lock(&uap->port.lock);
1790 
1791 	/*
1792 	 *	First save the CR then disable the interrupts
1793 	 */
1794 	old_cr = readw(uap->port.membase + UART011_CR);
1795 	new_cr = old_cr & ~UART011_CR_CTSEN;
1796 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1797 	writew(new_cr, uap->port.membase + UART011_CR);
1798 
1799 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1800 
1801 	/*
1802 	 *	Finally, wait for transmitter to become empty
1803 	 *	and restore the TCR
1804 	 */
1805 	do {
1806 		status = readw(uap->port.membase + UART01x_FR);
1807 	} while (status & UART01x_FR_BUSY);
1808 	writew(old_cr, uap->port.membase + UART011_CR);
1809 
1810 	if (locked)
1811 		spin_unlock(&uap->port.lock);
1812 	local_irq_restore(flags);
1813 
1814 	clk_disable(uap->clk);
1815 }
1816 
1817 static void __init
1818 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1819 			     int *parity, int *bits)
1820 {
1821 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1822 		unsigned int lcr_h, ibrd, fbrd;
1823 
1824 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1825 
1826 		*parity = 'n';
1827 		if (lcr_h & UART01x_LCRH_PEN) {
1828 			if (lcr_h & UART01x_LCRH_EPS)
1829 				*parity = 'e';
1830 			else
1831 				*parity = 'o';
1832 		}
1833 
1834 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1835 			*bits = 7;
1836 		else
1837 			*bits = 8;
1838 
1839 		ibrd = readw(uap->port.membase + UART011_IBRD);
1840 		fbrd = readw(uap->port.membase + UART011_FBRD);
1841 
1842 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1843 
1844 		if (uap->vendor->oversampling) {
1845 			if (readw(uap->port.membase + UART011_CR)
1846 				  & ST_UART011_CR_OVSFACT)
1847 				*baud *= 2;
1848 		}
1849 	}
1850 }
1851 
1852 static int __init pl011_console_setup(struct console *co, char *options)
1853 {
1854 	struct uart_amba_port *uap;
1855 	int baud = 38400;
1856 	int bits = 8;
1857 	int parity = 'n';
1858 	int flow = 'n';
1859 	int ret;
1860 
1861 	/*
1862 	 * Check whether an invalid uart number has been specified, and
1863 	 * if so, search for the first available port that does have
1864 	 * console support.
1865 	 */
1866 	if (co->index >= UART_NR)
1867 		co->index = 0;
1868 	uap = amba_ports[co->index];
1869 	if (!uap)
1870 		return -ENODEV;
1871 
1872 	/* Allow pins to be muxed in and configured */
1873 	if (!IS_ERR(uap->pins_default)) {
1874 		ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1875 		if (ret)
1876 			dev_err(uap->port.dev,
1877 				"could not set default pins\n");
1878 	}
1879 
1880 	ret = clk_prepare(uap->clk);
1881 	if (ret)
1882 		return ret;
1883 
1884 	if (uap->port.dev->platform_data) {
1885 		struct amba_pl011_data *plat;
1886 
1887 		plat = uap->port.dev->platform_data;
1888 		if (plat->init)
1889 			plat->init();
1890 	}
1891 
1892 	uap->port.uartclk = clk_get_rate(uap->clk);
1893 
1894 	if (options)
1895 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1896 	else
1897 		pl011_console_get_options(uap, &baud, &parity, &bits);
1898 
1899 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1900 }
1901 
1902 static struct uart_driver amba_reg;
1903 static struct console amba_console = {
1904 	.name		= "ttyAMA",
1905 	.write		= pl011_console_write,
1906 	.device		= uart_console_device,
1907 	.setup		= pl011_console_setup,
1908 	.flags		= CON_PRINTBUFFER,
1909 	.index		= -1,
1910 	.data		= &amba_reg,
1911 };
1912 
1913 #define AMBA_CONSOLE	(&amba_console)
1914 #else
1915 #define AMBA_CONSOLE	NULL
1916 #endif
1917 
1918 static struct uart_driver amba_reg = {
1919 	.owner			= THIS_MODULE,
1920 	.driver_name		= "ttyAMA",
1921 	.dev_name		= "ttyAMA",
1922 	.major			= SERIAL_AMBA_MAJOR,
1923 	.minor			= SERIAL_AMBA_MINOR,
1924 	.nr			= UART_NR,
1925 	.cons			= AMBA_CONSOLE,
1926 };
1927 
1928 static int pl011_probe_dt_alias(int index, struct device *dev)
1929 {
1930 	struct device_node *np;
1931 	static bool seen_dev_with_alias = false;
1932 	static bool seen_dev_without_alias = false;
1933 	int ret = index;
1934 
1935 	if (!IS_ENABLED(CONFIG_OF))
1936 		return ret;
1937 
1938 	np = dev->of_node;
1939 	if (!np)
1940 		return ret;
1941 
1942 	ret = of_alias_get_id(np, "serial");
1943 	if (IS_ERR_VALUE(ret)) {
1944 		seen_dev_without_alias = true;
1945 		ret = index;
1946 	} else {
1947 		seen_dev_with_alias = true;
1948 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
1949 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
1950 			ret = index;
1951 		}
1952 	}
1953 
1954 	if (seen_dev_with_alias && seen_dev_without_alias)
1955 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
1956 
1957 	return ret;
1958 }
1959 
1960 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1961 {
1962 	struct uart_amba_port *uap;
1963 	struct vendor_data *vendor = id->data;
1964 	void __iomem *base;
1965 	int i, ret;
1966 
1967 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1968 		if (amba_ports[i] == NULL)
1969 			break;
1970 
1971 	if (i == ARRAY_SIZE(amba_ports)) {
1972 		ret = -EBUSY;
1973 		goto out;
1974 	}
1975 
1976 	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1977 	if (uap == NULL) {
1978 		ret = -ENOMEM;
1979 		goto out;
1980 	}
1981 
1982 	i = pl011_probe_dt_alias(i, &dev->dev);
1983 
1984 	base = ioremap(dev->res.start, resource_size(&dev->res));
1985 	if (!base) {
1986 		ret = -ENOMEM;
1987 		goto free;
1988 	}
1989 
1990 	uap->pinctrl = devm_pinctrl_get(&dev->dev);
1991 	if (IS_ERR(uap->pinctrl)) {
1992 		ret = PTR_ERR(uap->pinctrl);
1993 		goto unmap;
1994 	}
1995 	uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
1996 						 PINCTRL_STATE_DEFAULT);
1997 	if (IS_ERR(uap->pins_default))
1998 		dev_err(&dev->dev, "could not get default pinstate\n");
1999 
2000 	uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
2001 					       PINCTRL_STATE_SLEEP);
2002 	if (IS_ERR(uap->pins_sleep))
2003 		dev_dbg(&dev->dev, "could not get sleep pinstate\n");
2004 
2005 	uap->clk = clk_get(&dev->dev, NULL);
2006 	if (IS_ERR(uap->clk)) {
2007 		ret = PTR_ERR(uap->clk);
2008 		goto unmap;
2009 	}
2010 
2011 	uap->vendor = vendor;
2012 	uap->lcrh_rx = vendor->lcrh_rx;
2013 	uap->lcrh_tx = vendor->lcrh_tx;
2014 	uap->old_cr = 0;
2015 	uap->fifosize = vendor->fifosize;
2016 	uap->port.dev = &dev->dev;
2017 	uap->port.mapbase = dev->res.start;
2018 	uap->port.membase = base;
2019 	uap->port.iotype = UPIO_MEM;
2020 	uap->port.irq = dev->irq[0];
2021 	uap->port.fifosize = uap->fifosize;
2022 	uap->port.ops = &amba_pl011_pops;
2023 	uap->port.flags = UPF_BOOT_AUTOCONF;
2024 	uap->port.line = i;
2025 	pl011_dma_probe(uap);
2026 
2027 	/* Ensure interrupts from this UART are masked and cleared */
2028 	writew(0, uap->port.membase + UART011_IMSC);
2029 	writew(0xffff, uap->port.membase + UART011_ICR);
2030 
2031 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2032 
2033 	amba_ports[i] = uap;
2034 
2035 	amba_set_drvdata(dev, uap);
2036 	ret = uart_add_one_port(&amba_reg, &uap->port);
2037 	if (ret) {
2038 		amba_set_drvdata(dev, NULL);
2039 		amba_ports[i] = NULL;
2040 		pl011_dma_remove(uap);
2041 		clk_put(uap->clk);
2042  unmap:
2043 		iounmap(base);
2044  free:
2045 		kfree(uap);
2046 	}
2047  out:
2048 	return ret;
2049 }
2050 
2051 static int pl011_remove(struct amba_device *dev)
2052 {
2053 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2054 	int i;
2055 
2056 	amba_set_drvdata(dev, NULL);
2057 
2058 	uart_remove_one_port(&amba_reg, &uap->port);
2059 
2060 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2061 		if (amba_ports[i] == uap)
2062 			amba_ports[i] = NULL;
2063 
2064 	pl011_dma_remove(uap);
2065 	iounmap(uap->port.membase);
2066 	clk_put(uap->clk);
2067 	kfree(uap);
2068 	return 0;
2069 }
2070 
2071 #ifdef CONFIG_PM
2072 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2073 {
2074 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2075 
2076 	if (!uap)
2077 		return -EINVAL;
2078 
2079 	return uart_suspend_port(&amba_reg, &uap->port);
2080 }
2081 
2082 static int pl011_resume(struct amba_device *dev)
2083 {
2084 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2085 
2086 	if (!uap)
2087 		return -EINVAL;
2088 
2089 	return uart_resume_port(&amba_reg, &uap->port);
2090 }
2091 #endif
2092 
2093 static struct amba_id pl011_ids[] = {
2094 	{
2095 		.id	= 0x00041011,
2096 		.mask	= 0x000fffff,
2097 		.data	= &vendor_arm,
2098 	},
2099 	{
2100 		.id	= 0x00380802,
2101 		.mask	= 0x00ffffff,
2102 		.data	= &vendor_st,
2103 	},
2104 	{ 0, 0 },
2105 };
2106 
2107 MODULE_DEVICE_TABLE(amba, pl011_ids);
2108 
2109 static struct amba_driver pl011_driver = {
2110 	.drv = {
2111 		.name	= "uart-pl011",
2112 	},
2113 	.id_table	= pl011_ids,
2114 	.probe		= pl011_probe,
2115 	.remove		= pl011_remove,
2116 #ifdef CONFIG_PM
2117 	.suspend	= pl011_suspend,
2118 	.resume		= pl011_resume,
2119 #endif
2120 };
2121 
2122 static int __init pl011_init(void)
2123 {
2124 	int ret;
2125 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2126 
2127 	ret = uart_register_driver(&amba_reg);
2128 	if (ret == 0) {
2129 		ret = amba_driver_register(&pl011_driver);
2130 		if (ret)
2131 			uart_unregister_driver(&amba_reg);
2132 	}
2133 	return ret;
2134 }
2135 
2136 static void __exit pl011_exit(void)
2137 {
2138 	amba_driver_unregister(&pl011_driver);
2139 	uart_unregister_driver(&amba_reg);
2140 }
2141 
2142 /*
2143  * While this can be a module, if builtin it's most likely the console
2144  * So let's leave module_exit but move module_init to an earlier place
2145  */
2146 arch_initcall(pl011_init);
2147 module_exit(pl011_exit);
2148 
2149 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2150 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2151 MODULE_LICENSE("GPL");
2152