1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44
45 #define UART_NR 14
46
47 #define SERIAL_AMBA_MAJOR 204
48 #define SERIAL_AMBA_MINOR 64
49 #define SERIAL_AMBA_NR UART_NR
50
51 #define AMBA_ISR_PASS_LIMIT 256
52
53 #define UART_DR_ERROR (UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54 #define UART_DUMMY_DR_RX BIT(16)
55
56 enum {
57 REG_DR,
58 REG_ST_DMAWM,
59 REG_ST_TIMEOUT,
60 REG_FR,
61 REG_LCRH_RX,
62 REG_LCRH_TX,
63 REG_IBRD,
64 REG_FBRD,
65 REG_CR,
66 REG_IFLS,
67 REG_IMSC,
68 REG_RIS,
69 REG_MIS,
70 REG_ICR,
71 REG_DMACR,
72 REG_ST_XFCR,
73 REG_ST_XON1,
74 REG_ST_XON2,
75 REG_ST_XOFF1,
76 REG_ST_XOFF2,
77 REG_ST_ITCR,
78 REG_ST_ITIP,
79 REG_ST_ABCR,
80 REG_ST_ABIMSC,
81
82 /* The size of the array - must be last */
83 REG_ARRAY_SIZE,
84 };
85
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 [REG_DR] = UART01x_DR,
88 [REG_FR] = UART01x_FR,
89 [REG_LCRH_RX] = UART011_LCRH,
90 [REG_LCRH_TX] = UART011_LCRH,
91 [REG_IBRD] = UART011_IBRD,
92 [REG_FBRD] = UART011_FBRD,
93 [REG_CR] = UART011_CR,
94 [REG_IFLS] = UART011_IFLS,
95 [REG_IMSC] = UART011_IMSC,
96 [REG_RIS] = UART011_RIS,
97 [REG_MIS] = UART011_MIS,
98 [REG_ICR] = UART011_ICR,
99 [REG_DMACR] = UART011_DMACR,
100 };
101
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 const u16 *reg_offset;
105 unsigned int ifls;
106 unsigned int fr_busy;
107 unsigned int fr_dsr;
108 unsigned int fr_cts;
109 unsigned int fr_ri;
110 unsigned int inv_fr;
111 bool access_32b;
112 bool oversampling;
113 bool dma_threshold;
114 bool cts_event_workaround;
115 bool always_enabled;
116 bool fixed_options;
117
118 unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120
get_fifosize_arm(struct amba_device * dev)121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 return amba_rev(dev) < 3 ? 16 : 32;
124 }
125
126 static struct vendor_data vendor_arm = {
127 .reg_offset = pl011_std_offsets,
128 .ifls = UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
129 .fr_busy = UART01x_FR_BUSY,
130 .fr_dsr = UART01x_FR_DSR,
131 .fr_cts = UART01x_FR_CTS,
132 .fr_ri = UART011_FR_RI,
133 .oversampling = false,
134 .dma_threshold = false,
135 .cts_event_workaround = false,
136 .always_enabled = false,
137 .fixed_options = false,
138 .get_fifosize = get_fifosize_arm,
139 };
140
141 static const struct vendor_data vendor_sbsa = {
142 .reg_offset = pl011_std_offsets,
143 .fr_busy = UART01x_FR_BUSY,
144 .fr_dsr = UART01x_FR_DSR,
145 .fr_cts = UART01x_FR_CTS,
146 .fr_ri = UART011_FR_RI,
147 .access_32b = true,
148 .oversampling = false,
149 .dma_threshold = false,
150 .cts_event_workaround = false,
151 .always_enabled = true,
152 .fixed_options = true,
153 };
154
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 .reg_offset = pl011_std_offsets,
158 .fr_busy = UART011_FR_TXFE,
159 .fr_dsr = UART01x_FR_DSR,
160 .fr_cts = UART01x_FR_CTS,
161 .fr_ri = UART011_FR_RI,
162 .inv_fr = UART011_FR_TXFE,
163 .access_32b = true,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
169 };
170 #endif
171
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 [REG_DR] = UART01x_DR,
174 [REG_ST_DMAWM] = ST_UART011_DMAWM,
175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 [REG_FR] = UART01x_FR,
177 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_CR] = UART011_CR,
182 [REG_IFLS] = UART011_IFLS,
183 [REG_IMSC] = UART011_IMSC,
184 [REG_RIS] = UART011_RIS,
185 [REG_MIS] = UART011_MIS,
186 [REG_ICR] = UART011_ICR,
187 [REG_DMACR] = UART011_DMACR,
188 [REG_ST_XFCR] = ST_UART011_XFCR,
189 [REG_ST_XON1] = ST_UART011_XON1,
190 [REG_ST_XON2] = ST_UART011_XON2,
191 [REG_ST_XOFF1] = ST_UART011_XOFF1,
192 [REG_ST_XOFF2] = ST_UART011_XOFF2,
193 [REG_ST_ITCR] = ST_UART011_ITCR,
194 [REG_ST_ITIP] = ST_UART011_ITIP,
195 [REG_ST_ABCR] = ST_UART011_ABCR,
196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198
get_fifosize_st(struct amba_device * dev)199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 return 64;
202 }
203
204 static struct vendor_data vendor_st = {
205 .reg_offset = pl011_st_offsets,
206 .ifls = UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
207 .fr_busy = UART01x_FR_BUSY,
208 .fr_dsr = UART01x_FR_DSR,
209 .fr_cts = UART01x_FR_CTS,
210 .fr_ri = UART011_FR_RI,
211 .oversampling = true,
212 .dma_threshold = true,
213 .cts_event_workaround = true,
214 .always_enabled = false,
215 .fixed_options = false,
216 .get_fifosize = get_fifosize_st,
217 };
218
219 /* Deals with DMA transactions */
220
221 struct pl011_dmabuf {
222 dma_addr_t dma;
223 size_t len;
224 char *buf;
225 };
226
227 struct pl011_dmarx_data {
228 struct dma_chan *chan;
229 struct completion complete;
230 bool use_buf_b;
231 struct pl011_dmabuf dbuf_a;
232 struct pl011_dmabuf dbuf_b;
233 dma_cookie_t cookie;
234 bool running;
235 struct timer_list timer;
236 unsigned int last_residue;
237 unsigned long last_jiffies;
238 bool auto_poll_rate;
239 unsigned int poll_rate;
240 unsigned int poll_timeout;
241 };
242
243 struct pl011_dmatx_data {
244 struct dma_chan *chan;
245 dma_addr_t dma;
246 size_t len;
247 char *buf;
248 bool queued;
249 };
250
251 /*
252 * We wrap our port structure around the generic uart_port.
253 */
254 struct uart_amba_port {
255 struct uart_port port;
256 const u16 *reg_offset;
257 struct clk *clk;
258 const struct vendor_data *vendor;
259 unsigned int im; /* interrupt mask */
260 unsigned int old_status;
261 unsigned int fifosize; /* vendor-specific */
262 unsigned int fixed_baud; /* vendor-set fixed baud rate */
263 char type[12];
264 bool rs485_tx_started;
265 unsigned int rs485_tx_drain_interval; /* usecs */
266 #ifdef CONFIG_DMA_ENGINE
267 /* DMA stuff */
268 unsigned int dmacr; /* dma control reg */
269 bool using_tx_dma;
270 bool using_rx_dma;
271 struct pl011_dmarx_data dmarx;
272 struct pl011_dmatx_data dmatx;
273 bool dma_probed;
274 #endif
275 };
276
277 static unsigned int pl011_tx_empty(struct uart_port *port);
278
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 unsigned int reg)
281 {
282 return uap->reg_offset[reg];
283 }
284
pl011_read(const struct uart_amba_port * uap,unsigned int reg)285 static unsigned int pl011_read(const struct uart_amba_port *uap,
286 unsigned int reg)
287 {
288 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289
290 return (uap->port.iotype == UPIO_MEM32) ?
291 readl_relaxed(addr) : readw_relaxed(addr);
292 }
293
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)294 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 unsigned int reg)
296 {
297 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298
299 if (uap->port.iotype == UPIO_MEM32)
300 writel_relaxed(val, addr);
301 else
302 writew_relaxed(val, addr);
303 }
304
305 /*
306 * Reads up to 256 characters from the FIFO or until it's empty and
307 * inserts them into the TTY layer. Returns the number of characters
308 * read from the FIFO.
309 */
pl011_fifo_to_tty(struct uart_amba_port * uap)310 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311 {
312 unsigned int ch, fifotaken;
313 int sysrq;
314 u16 status;
315 u8 flag;
316
317 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 status = pl011_read(uap, REG_FR);
319 if (status & UART01x_FR_RXFE)
320 break;
321
322 /* Take chars from the FIFO and update status */
323 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324 flag = TTY_NORMAL;
325 uap->port.icount.rx++;
326
327 if (unlikely(ch & UART_DR_ERROR)) {
328 if (ch & UART011_DR_BE) {
329 ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 uap->port.icount.brk++;
331 if (uart_handle_break(&uap->port))
332 continue;
333 } else if (ch & UART011_DR_PE) {
334 uap->port.icount.parity++;
335 } else if (ch & UART011_DR_FE) {
336 uap->port.icount.frame++;
337 }
338 if (ch & UART011_DR_OE)
339 uap->port.icount.overrun++;
340
341 ch &= uap->port.read_status_mask;
342
343 if (ch & UART011_DR_BE)
344 flag = TTY_BREAK;
345 else if (ch & UART011_DR_PE)
346 flag = TTY_PARITY;
347 else if (ch & UART011_DR_FE)
348 flag = TTY_FRAME;
349 }
350
351 sysrq = uart_prepare_sysrq_char(&uap->port, ch & 255);
352 if (!sysrq)
353 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 }
355
356 return fifotaken;
357 }
358
359 /*
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
363 */
364 #ifdef CONFIG_DMA_ENGINE
365
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
367
pl011_dmabuf_init(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)368 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
369 enum dma_data_direction dir)
370 {
371 db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
372 &db->dma, GFP_KERNEL);
373 if (!db->buf)
374 return -ENOMEM;
375 db->len = PL011_DMA_BUFFER_SIZE;
376
377 return 0;
378 }
379
pl011_dmabuf_free(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)380 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
381 enum dma_data_direction dir)
382 {
383 if (db->buf) {
384 dma_free_coherent(chan->device->dev,
385 PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
386 }
387 }
388
pl011_dma_probe(struct uart_amba_port * uap)389 static void pl011_dma_probe(struct uart_amba_port *uap)
390 {
391 /* DMA is the sole user of the platform data right now */
392 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
393 struct device *dev = uap->port.dev;
394 struct dma_slave_config tx_conf = {
395 .dst_addr = uap->port.mapbase +
396 pl011_reg_to_offset(uap, REG_DR),
397 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
398 .direction = DMA_MEM_TO_DEV,
399 .dst_maxburst = uap->fifosize >> 1,
400 .device_fc = false,
401 };
402 struct dma_chan *chan;
403 dma_cap_mask_t mask;
404
405 uap->dma_probed = true;
406 chan = dma_request_chan(dev, "tx");
407 if (IS_ERR(chan)) {
408 if (PTR_ERR(chan) == -EPROBE_DEFER) {
409 uap->dma_probed = false;
410 return;
411 }
412
413 /* We need platform data */
414 if (!plat || !plat->dma_filter) {
415 dev_dbg(uap->port.dev, "no DMA platform data\n");
416 return;
417 }
418
419 /* Try to acquire a generic DMA engine slave TX channel */
420 dma_cap_zero(mask);
421 dma_cap_set(DMA_SLAVE, mask);
422
423 chan = dma_request_channel(mask, plat->dma_filter,
424 plat->dma_tx_param);
425 if (!chan) {
426 dev_err(uap->port.dev, "no TX DMA channel!\n");
427 return;
428 }
429 }
430
431 dmaengine_slave_config(chan, &tx_conf);
432 uap->dmatx.chan = chan;
433
434 dev_info(uap->port.dev, "DMA channel TX %s\n",
435 dma_chan_name(uap->dmatx.chan));
436
437 /* Optionally make use of an RX channel as well */
438 chan = dma_request_chan(dev, "rx");
439
440 if (IS_ERR(chan) && plat && plat->dma_rx_param) {
441 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
442
443 if (!chan) {
444 dev_err(uap->port.dev, "no RX DMA channel!\n");
445 return;
446 }
447 }
448
449 if (!IS_ERR(chan)) {
450 struct dma_slave_config rx_conf = {
451 .src_addr = uap->port.mapbase +
452 pl011_reg_to_offset(uap, REG_DR),
453 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
454 .direction = DMA_DEV_TO_MEM,
455 .src_maxburst = uap->fifosize >> 2,
456 .device_fc = false,
457 };
458 struct dma_slave_caps caps;
459
460 /*
461 * Some DMA controllers provide information on their capabilities.
462 * If the controller does, check for suitable residue processing
463 * otherwise assime all is well.
464 */
465 if (dma_get_slave_caps(chan, &caps) == 0) {
466 if (caps.residue_granularity ==
467 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
468 dma_release_channel(chan);
469 dev_info(uap->port.dev,
470 "RX DMA disabled - no residue processing\n");
471 return;
472 }
473 }
474 dmaengine_slave_config(chan, &rx_conf);
475 uap->dmarx.chan = chan;
476
477 uap->dmarx.auto_poll_rate = false;
478 if (plat && plat->dma_rx_poll_enable) {
479 /* Set poll rate if specified. */
480 if (plat->dma_rx_poll_rate) {
481 uap->dmarx.auto_poll_rate = false;
482 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
483 } else {
484 /*
485 * 100 ms defaults to poll rate if not
486 * specified. This will be adjusted with
487 * the baud rate at set_termios.
488 */
489 uap->dmarx.auto_poll_rate = true;
490 uap->dmarx.poll_rate = 100;
491 }
492 /* 3 secs defaults poll_timeout if not specified. */
493 if (plat->dma_rx_poll_timeout)
494 uap->dmarx.poll_timeout =
495 plat->dma_rx_poll_timeout;
496 else
497 uap->dmarx.poll_timeout = 3000;
498 } else if (!plat && dev->of_node) {
499 uap->dmarx.auto_poll_rate =
500 of_property_read_bool(dev->of_node, "auto-poll");
501 if (uap->dmarx.auto_poll_rate) {
502 u32 x;
503
504 if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
505 uap->dmarx.poll_rate = x;
506 else
507 uap->dmarx.poll_rate = 100;
508 if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
509 uap->dmarx.poll_timeout = x;
510 else
511 uap->dmarx.poll_timeout = 3000;
512 }
513 }
514 dev_info(uap->port.dev, "DMA channel RX %s\n",
515 dma_chan_name(uap->dmarx.chan));
516 }
517 }
518
pl011_dma_remove(struct uart_amba_port * uap)519 static void pl011_dma_remove(struct uart_amba_port *uap)
520 {
521 if (uap->dmatx.chan)
522 dma_release_channel(uap->dmatx.chan);
523 if (uap->dmarx.chan)
524 dma_release_channel(uap->dmarx.chan);
525 }
526
527 /* Forward declare these for the refill routine */
528 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
529 static void pl011_start_tx_pio(struct uart_amba_port *uap);
530
531 /*
532 * The current DMA TX buffer has been sent.
533 * Try to queue up another DMA buffer.
534 */
pl011_dma_tx_callback(void * data)535 static void pl011_dma_tx_callback(void *data)
536 {
537 struct uart_amba_port *uap = data;
538 struct tty_port *tport = &uap->port.state->port;
539 struct pl011_dmatx_data *dmatx = &uap->dmatx;
540 unsigned long flags;
541 u16 dmacr;
542
543 uart_port_lock_irqsave(&uap->port, &flags);
544 if (uap->dmatx.queued)
545 dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
546 dmatx->len, DMA_TO_DEVICE);
547
548 dmacr = uap->dmacr;
549 uap->dmacr = dmacr & ~UART011_TXDMAE;
550 pl011_write(uap->dmacr, uap, REG_DMACR);
551
552 /*
553 * If TX DMA was disabled, it means that we've stopped the DMA for
554 * some reason (eg, XOFF received, or we want to send an X-char.)
555 *
556 * Note: we need to be careful here of a potential race between DMA
557 * and the rest of the driver - if the driver disables TX DMA while
558 * a TX buffer completing, we must update the tx queued status to
559 * get further refills (hence we check dmacr).
560 */
561 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
562 kfifo_is_empty(&tport->xmit_fifo)) {
563 uap->dmatx.queued = false;
564 uart_port_unlock_irqrestore(&uap->port, flags);
565 return;
566 }
567
568 if (pl011_dma_tx_refill(uap) <= 0)
569 /*
570 * We didn't queue a DMA buffer for some reason, but we
571 * have data pending to be sent. Re-enable the TX IRQ.
572 */
573 pl011_start_tx_pio(uap);
574
575 uart_port_unlock_irqrestore(&uap->port, flags);
576 }
577
578 /*
579 * Try to refill the TX DMA buffer.
580 * Locking: called with port lock held and IRQs disabled.
581 * Returns:
582 * 1 if we queued up a TX DMA buffer.
583 * 0 if we didn't want to handle this by DMA
584 * <0 on error
585 */
pl011_dma_tx_refill(struct uart_amba_port * uap)586 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
587 {
588 struct pl011_dmatx_data *dmatx = &uap->dmatx;
589 struct dma_chan *chan = dmatx->chan;
590 struct dma_device *dma_dev = chan->device;
591 struct dma_async_tx_descriptor *desc;
592 struct tty_port *tport = &uap->port.state->port;
593 unsigned int count;
594
595 /*
596 * Try to avoid the overhead involved in using DMA if the
597 * transaction fits in the first half of the FIFO, by using
598 * the standard interrupt handling. This ensures that we
599 * issue a uart_write_wakeup() at the appropriate time.
600 */
601 count = kfifo_len(&tport->xmit_fifo);
602 if (count < (uap->fifosize >> 1)) {
603 uap->dmatx.queued = false;
604 return 0;
605 }
606
607 /*
608 * Bodge: don't send the last character by DMA, as this
609 * will prevent XON from notifying us to restart DMA.
610 */
611 count -= 1;
612
613 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
614 if (count > PL011_DMA_BUFFER_SIZE)
615 count = PL011_DMA_BUFFER_SIZE;
616
617 count = kfifo_out_peek(&tport->xmit_fifo, dmatx->buf, count);
618 dmatx->len = count;
619 dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
620 DMA_TO_DEVICE);
621 if (dmatx->dma == DMA_MAPPING_ERROR) {
622 uap->dmatx.queued = false;
623 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
624 return -EBUSY;
625 }
626
627 desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
628 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
629 if (!desc) {
630 dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
631 uap->dmatx.queued = false;
632 /*
633 * If DMA cannot be used right now, we complete this
634 * transaction via IRQ and let the TTY layer retry.
635 */
636 dev_dbg(uap->port.dev, "TX DMA busy\n");
637 return -EBUSY;
638 }
639
640 /* Some data to go along to the callback */
641 desc->callback = pl011_dma_tx_callback;
642 desc->callback_param = uap;
643
644 /* All errors should happen at prepare time */
645 dmaengine_submit(desc);
646
647 /* Fire the DMA transaction */
648 dma_dev->device_issue_pending(chan);
649
650 uap->dmacr |= UART011_TXDMAE;
651 pl011_write(uap->dmacr, uap, REG_DMACR);
652 uap->dmatx.queued = true;
653
654 /*
655 * Now we know that DMA will fire, so advance the ring buffer
656 * with the stuff we just dispatched.
657 */
658 uart_xmit_advance(&uap->port, count);
659
660 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
661 uart_write_wakeup(&uap->port);
662
663 return 1;
664 }
665
666 /*
667 * We received a transmit interrupt without a pending X-char but with
668 * pending characters.
669 * Locking: called with port lock held and IRQs disabled.
670 * Returns:
671 * false if we want to use PIO to transmit
672 * true if we queued a DMA buffer
673 */
pl011_dma_tx_irq(struct uart_amba_port * uap)674 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
675 {
676 if (!uap->using_tx_dma)
677 return false;
678
679 /*
680 * If we already have a TX buffer queued, but received a
681 * TX interrupt, it will be because we've just sent an X-char.
682 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
683 */
684 if (uap->dmatx.queued) {
685 uap->dmacr |= UART011_TXDMAE;
686 pl011_write(uap->dmacr, uap, REG_DMACR);
687 uap->im &= ~UART011_TXIM;
688 pl011_write(uap->im, uap, REG_IMSC);
689 return true;
690 }
691
692 /*
693 * We don't have a TX buffer queued, so try to queue one.
694 * If we successfully queued a buffer, mask the TX IRQ.
695 */
696 if (pl011_dma_tx_refill(uap) > 0) {
697 uap->im &= ~UART011_TXIM;
698 pl011_write(uap->im, uap, REG_IMSC);
699 return true;
700 }
701 return false;
702 }
703
704 /*
705 * Stop the DMA transmit (eg, due to received XOFF).
706 * Locking: called with port lock held and IRQs disabled.
707 */
pl011_dma_tx_stop(struct uart_amba_port * uap)708 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
709 {
710 if (uap->dmatx.queued) {
711 uap->dmacr &= ~UART011_TXDMAE;
712 pl011_write(uap->dmacr, uap, REG_DMACR);
713 }
714 }
715
716 /*
717 * Try to start a DMA transmit, or in the case of an XON/OFF
718 * character queued for send, try to get that character out ASAP.
719 * Locking: called with port lock held and IRQs disabled.
720 * Returns:
721 * false if we want the TX IRQ to be enabled
722 * true if we have a buffer queued
723 */
pl011_dma_tx_start(struct uart_amba_port * uap)724 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
725 {
726 u16 dmacr;
727
728 if (!uap->using_tx_dma)
729 return false;
730
731 if (!uap->port.x_char) {
732 /* no X-char, try to push chars out in DMA mode */
733 bool ret = true;
734
735 if (!uap->dmatx.queued) {
736 if (pl011_dma_tx_refill(uap) > 0) {
737 uap->im &= ~UART011_TXIM;
738 pl011_write(uap->im, uap, REG_IMSC);
739 } else {
740 ret = false;
741 }
742 } else if (!(uap->dmacr & UART011_TXDMAE)) {
743 uap->dmacr |= UART011_TXDMAE;
744 pl011_write(uap->dmacr, uap, REG_DMACR);
745 }
746 return ret;
747 }
748
749 /*
750 * We have an X-char to send. Disable DMA to prevent it loading
751 * the TX fifo, and then see if we can stuff it into the FIFO.
752 */
753 dmacr = uap->dmacr;
754 uap->dmacr &= ~UART011_TXDMAE;
755 pl011_write(uap->dmacr, uap, REG_DMACR);
756
757 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
758 /*
759 * No space in the FIFO, so enable the transmit interrupt
760 * so we know when there is space. Note that once we've
761 * loaded the character, we should just re-enable DMA.
762 */
763 return false;
764 }
765
766 pl011_write(uap->port.x_char, uap, REG_DR);
767 uap->port.icount.tx++;
768 uap->port.x_char = 0;
769
770 /* Success - restore the DMA state */
771 uap->dmacr = dmacr;
772 pl011_write(dmacr, uap, REG_DMACR);
773
774 return true;
775 }
776
777 /*
778 * Flush the transmit buffer.
779 * Locking: called with port lock held and IRQs disabled.
780 */
pl011_dma_flush_buffer(struct uart_port * port)781 static void pl011_dma_flush_buffer(struct uart_port *port)
782 __releases(&uap->port.lock)
783 __acquires(&uap->port.lock)
784 {
785 struct uart_amba_port *uap =
786 container_of(port, struct uart_amba_port, port);
787
788 if (!uap->using_tx_dma)
789 return;
790
791 dmaengine_terminate_async(uap->dmatx.chan);
792
793 if (uap->dmatx.queued) {
794 dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
795 uap->dmatx.len, DMA_TO_DEVICE);
796 uap->dmatx.queued = false;
797 uap->dmacr &= ~UART011_TXDMAE;
798 pl011_write(uap->dmacr, uap, REG_DMACR);
799 }
800 }
801
802 static void pl011_dma_rx_callback(void *data);
803
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)804 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
805 {
806 struct dma_chan *rxchan = uap->dmarx.chan;
807 struct pl011_dmarx_data *dmarx = &uap->dmarx;
808 struct dma_async_tx_descriptor *desc;
809 struct pl011_dmabuf *dbuf;
810
811 if (!rxchan)
812 return -EIO;
813
814 /* Start the RX DMA job */
815 dbuf = uap->dmarx.use_buf_b ?
816 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
817 desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
818 DMA_DEV_TO_MEM,
819 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
820 /*
821 * If the DMA engine is busy and cannot prepare a
822 * channel, no big deal, the driver will fall back
823 * to interrupt mode as a result of this error code.
824 */
825 if (!desc) {
826 uap->dmarx.running = false;
827 dmaengine_terminate_all(rxchan);
828 return -EBUSY;
829 }
830
831 /* Some data to go along to the callback */
832 desc->callback = pl011_dma_rx_callback;
833 desc->callback_param = uap;
834 dmarx->cookie = dmaengine_submit(desc);
835 dma_async_issue_pending(rxchan);
836
837 uap->dmacr |= UART011_RXDMAE;
838 pl011_write(uap->dmacr, uap, REG_DMACR);
839 uap->dmarx.running = true;
840
841 uap->im &= ~UART011_RXIM;
842 pl011_write(uap->im, uap, REG_IMSC);
843
844 return 0;
845 }
846
847 /*
848 * This is called when either the DMA job is complete, or
849 * the FIFO timeout interrupt occurred. This must be called
850 * with the port spinlock uap->port.lock held.
851 */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)852 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
853 u32 pending, bool use_buf_b,
854 bool readfifo)
855 {
856 struct tty_port *port = &uap->port.state->port;
857 struct pl011_dmabuf *dbuf = use_buf_b ?
858 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
859 int dma_count = 0;
860 u32 fifotaken = 0; /* only used for vdbg() */
861
862 struct pl011_dmarx_data *dmarx = &uap->dmarx;
863 int dmataken = 0;
864
865 if (uap->dmarx.poll_rate) {
866 /* The data can be taken by polling */
867 dmataken = dbuf->len - dmarx->last_residue;
868 /* Recalculate the pending size */
869 if (pending >= dmataken)
870 pending -= dmataken;
871 }
872
873 /* Pick the remain data from the DMA */
874 if (pending) {
875 /*
876 * First take all chars in the DMA pipe, then look in the FIFO.
877 * Note that tty_insert_flip_buf() tries to take as many chars
878 * as it can.
879 */
880 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
881
882 uap->port.icount.rx += dma_count;
883 if (dma_count < pending)
884 dev_warn(uap->port.dev,
885 "couldn't insert all characters (TTY is full?)\n");
886 }
887
888 /* Reset the last_residue for Rx DMA poll */
889 if (uap->dmarx.poll_rate)
890 dmarx->last_residue = dbuf->len;
891
892 /*
893 * Only continue with trying to read the FIFO if all DMA chars have
894 * been taken first.
895 */
896 if (dma_count == pending && readfifo) {
897 /* Clear any error flags */
898 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
899 UART011_FEIS, uap, REG_ICR);
900
901 /*
902 * If we read all the DMA'd characters, and we had an
903 * incomplete buffer, that could be due to an rx error, or
904 * maybe we just timed out. Read any pending chars and check
905 * the error status.
906 *
907 * Error conditions will only occur in the FIFO, these will
908 * trigger an immediate interrupt and stop the DMA job, so we
909 * will always find the error in the FIFO, never in the DMA
910 * buffer.
911 */
912 fifotaken = pl011_fifo_to_tty(uap);
913 }
914
915 dev_vdbg(uap->port.dev,
916 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
917 dma_count, fifotaken);
918 tty_flip_buffer_push(port);
919 }
920
pl011_dma_rx_irq(struct uart_amba_port * uap)921 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
922 {
923 struct pl011_dmarx_data *dmarx = &uap->dmarx;
924 struct dma_chan *rxchan = dmarx->chan;
925 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
926 &dmarx->dbuf_b : &dmarx->dbuf_a;
927 size_t pending;
928 struct dma_tx_state state;
929 enum dma_status dmastat;
930
931 /*
932 * Pause the transfer so we can trust the current counter,
933 * do this before we pause the PL011 block, else we may
934 * overflow the FIFO.
935 */
936 if (dmaengine_pause(rxchan))
937 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
938 dmastat = rxchan->device->device_tx_status(rxchan,
939 dmarx->cookie, &state);
940 if (dmastat != DMA_PAUSED)
941 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
942
943 /* Disable RX DMA - incoming data will wait in the FIFO */
944 uap->dmacr &= ~UART011_RXDMAE;
945 pl011_write(uap->dmacr, uap, REG_DMACR);
946 uap->dmarx.running = false;
947
948 pending = dbuf->len - state.residue;
949 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
950 /* Then we terminate the transfer - we now know our residue */
951 dmaengine_terminate_all(rxchan);
952
953 /*
954 * This will take the chars we have so far and insert
955 * into the framework.
956 */
957 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
958
959 /* Switch buffer & re-trigger DMA job */
960 dmarx->use_buf_b = !dmarx->use_buf_b;
961 if (pl011_dma_rx_trigger_dma(uap)) {
962 dev_dbg(uap->port.dev,
963 "could not retrigger RX DMA job fall back to interrupt mode\n");
964 uap->im |= UART011_RXIM;
965 pl011_write(uap->im, uap, REG_IMSC);
966 }
967 }
968
pl011_dma_rx_callback(void * data)969 static void pl011_dma_rx_callback(void *data)
970 {
971 struct uart_amba_port *uap = data;
972 struct pl011_dmarx_data *dmarx = &uap->dmarx;
973 struct dma_chan *rxchan = dmarx->chan;
974 bool lastbuf = dmarx->use_buf_b;
975 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
976 &dmarx->dbuf_b : &dmarx->dbuf_a;
977 size_t pending;
978 struct dma_tx_state state;
979 int ret;
980
981 /*
982 * This completion interrupt occurs typically when the
983 * RX buffer is totally stuffed but no timeout has yet
984 * occurred. When that happens, we just want the RX
985 * routine to flush out the secondary DMA buffer while
986 * we immediately trigger the next DMA job.
987 */
988 uart_port_lock_irq(&uap->port);
989 /*
990 * Rx data can be taken by the UART interrupts during
991 * the DMA irq handler. So we check the residue here.
992 */
993 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
994 pending = dbuf->len - state.residue;
995 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
996 /* Then we terminate the transfer - we now know our residue */
997 dmaengine_terminate_all(rxchan);
998
999 uap->dmarx.running = false;
1000 dmarx->use_buf_b = !lastbuf;
1001 ret = pl011_dma_rx_trigger_dma(uap);
1002
1003 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1004 uart_unlock_and_check_sysrq(&uap->port);
1005 /*
1006 * Do this check after we picked the DMA chars so we don't
1007 * get some IRQ immediately from RX.
1008 */
1009 if (ret) {
1010 dev_dbg(uap->port.dev,
1011 "could not retrigger RX DMA job fall back to interrupt mode\n");
1012 uap->im |= UART011_RXIM;
1013 pl011_write(uap->im, uap, REG_IMSC);
1014 }
1015 }
1016
1017 /*
1018 * Stop accepting received characters, when we're shutting down or
1019 * suspending this port.
1020 * Locking: called with port lock held and IRQs disabled.
1021 */
pl011_dma_rx_stop(struct uart_amba_port * uap)1022 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1023 {
1024 if (!uap->using_rx_dma)
1025 return;
1026
1027 /* FIXME. Just disable the DMA enable */
1028 uap->dmacr &= ~UART011_RXDMAE;
1029 pl011_write(uap->dmacr, uap, REG_DMACR);
1030 }
1031
1032 /*
1033 * Timer handler for Rx DMA polling.
1034 * Every polling, It checks the residue in the dma buffer and transfer
1035 * data to the tty. Also, last_residue is updated for the next polling.
1036 */
pl011_dma_rx_poll(struct timer_list * t)1037 static void pl011_dma_rx_poll(struct timer_list *t)
1038 {
1039 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1040 struct tty_port *port = &uap->port.state->port;
1041 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1042 struct dma_chan *rxchan = uap->dmarx.chan;
1043 unsigned long flags;
1044 unsigned int dmataken = 0;
1045 unsigned int size = 0;
1046 struct pl011_dmabuf *dbuf;
1047 int dma_count;
1048 struct dma_tx_state state;
1049
1050 dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1051 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1052 if (likely(state.residue < dmarx->last_residue)) {
1053 dmataken = dbuf->len - dmarx->last_residue;
1054 size = dmarx->last_residue - state.residue;
1055 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1056 size);
1057 if (dma_count == size)
1058 dmarx->last_residue = state.residue;
1059 dmarx->last_jiffies = jiffies;
1060 }
1061 tty_flip_buffer_push(port);
1062
1063 /*
1064 * If no data is received in poll_timeout, the driver will fall back
1065 * to interrupt mode. We will retrigger DMA at the first interrupt.
1066 */
1067 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1068 > uap->dmarx.poll_timeout) {
1069 uart_port_lock_irqsave(&uap->port, &flags);
1070 pl011_dma_rx_stop(uap);
1071 uap->im |= UART011_RXIM;
1072 pl011_write(uap->im, uap, REG_IMSC);
1073 uart_port_unlock_irqrestore(&uap->port, flags);
1074
1075 uap->dmarx.running = false;
1076 dmaengine_terminate_all(rxchan);
1077 del_timer(&uap->dmarx.timer);
1078 } else {
1079 mod_timer(&uap->dmarx.timer,
1080 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1081 }
1082 }
1083
pl011_dma_startup(struct uart_amba_port * uap)1084 static void pl011_dma_startup(struct uart_amba_port *uap)
1085 {
1086 int ret;
1087
1088 if (!uap->dma_probed)
1089 pl011_dma_probe(uap);
1090
1091 if (!uap->dmatx.chan)
1092 return;
1093
1094 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1095 if (!uap->dmatx.buf) {
1096 uap->port.fifosize = uap->fifosize;
1097 return;
1098 }
1099
1100 uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1101
1102 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1103 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1104 uap->using_tx_dma = true;
1105
1106 if (!uap->dmarx.chan)
1107 goto skip_rx;
1108
1109 /* Allocate and map DMA RX buffers */
1110 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1111 DMA_FROM_DEVICE);
1112 if (ret) {
1113 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1114 "RX buffer A", ret);
1115 goto skip_rx;
1116 }
1117
1118 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1119 DMA_FROM_DEVICE);
1120 if (ret) {
1121 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1122 "RX buffer B", ret);
1123 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1124 DMA_FROM_DEVICE);
1125 goto skip_rx;
1126 }
1127
1128 uap->using_rx_dma = true;
1129
1130 skip_rx:
1131 /* Turn on DMA error (RX/TX will be enabled on demand) */
1132 uap->dmacr |= UART011_DMAONERR;
1133 pl011_write(uap->dmacr, uap, REG_DMACR);
1134
1135 /*
1136 * ST Micro variants has some specific dma burst threshold
1137 * compensation. Set this to 16 bytes, so burst will only
1138 * be issued above/below 16 bytes.
1139 */
1140 if (uap->vendor->dma_threshold)
1141 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1142 uap, REG_ST_DMAWM);
1143
1144 if (uap->using_rx_dma) {
1145 if (pl011_dma_rx_trigger_dma(uap))
1146 dev_dbg(uap->port.dev,
1147 "could not trigger initial RX DMA job, fall back to interrupt mode\n");
1148 if (uap->dmarx.poll_rate) {
1149 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1150 mod_timer(&uap->dmarx.timer,
1151 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1152 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1153 uap->dmarx.last_jiffies = jiffies;
1154 }
1155 }
1156 }
1157
pl011_dma_shutdown(struct uart_amba_port * uap)1158 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1159 {
1160 if (!(uap->using_tx_dma || uap->using_rx_dma))
1161 return;
1162
1163 /* Disable RX and TX DMA */
1164 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1165 cpu_relax();
1166
1167 uart_port_lock_irq(&uap->port);
1168 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1169 pl011_write(uap->dmacr, uap, REG_DMACR);
1170 uart_port_unlock_irq(&uap->port);
1171
1172 if (uap->using_tx_dma) {
1173 /* In theory, this should already be done by pl011_dma_flush_buffer */
1174 dmaengine_terminate_all(uap->dmatx.chan);
1175 if (uap->dmatx.queued) {
1176 dma_unmap_single(uap->dmatx.chan->device->dev,
1177 uap->dmatx.dma, uap->dmatx.len,
1178 DMA_TO_DEVICE);
1179 uap->dmatx.queued = false;
1180 }
1181
1182 kfree(uap->dmatx.buf);
1183 uap->using_tx_dma = false;
1184 }
1185
1186 if (uap->using_rx_dma) {
1187 dmaengine_terminate_all(uap->dmarx.chan);
1188 /* Clean up the RX DMA */
1189 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1190 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1191 if (uap->dmarx.poll_rate)
1192 del_timer_sync(&uap->dmarx.timer);
1193 uap->using_rx_dma = false;
1194 }
1195 }
1196
pl011_dma_rx_available(struct uart_amba_port * uap)1197 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1198 {
1199 return uap->using_rx_dma;
1200 }
1201
pl011_dma_rx_running(struct uart_amba_port * uap)1202 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1203 {
1204 return uap->using_rx_dma && uap->dmarx.running;
1205 }
1206
1207 #else
1208 /* Blank functions if the DMA engine is not available */
pl011_dma_remove(struct uart_amba_port * uap)1209 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1210 {
1211 }
1212
pl011_dma_startup(struct uart_amba_port * uap)1213 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1214 {
1215 }
1216
pl011_dma_shutdown(struct uart_amba_port * uap)1217 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1218 {
1219 }
1220
pl011_dma_tx_irq(struct uart_amba_port * uap)1221 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1222 {
1223 return false;
1224 }
1225
pl011_dma_tx_stop(struct uart_amba_port * uap)1226 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1227 {
1228 }
1229
pl011_dma_tx_start(struct uart_amba_port * uap)1230 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1231 {
1232 return false;
1233 }
1234
pl011_dma_rx_irq(struct uart_amba_port * uap)1235 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1236 {
1237 }
1238
pl011_dma_rx_stop(struct uart_amba_port * uap)1239 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1240 {
1241 }
1242
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1243 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1244 {
1245 return -EIO;
1246 }
1247
pl011_dma_rx_available(struct uart_amba_port * uap)1248 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1249 {
1250 return false;
1251 }
1252
pl011_dma_rx_running(struct uart_amba_port * uap)1253 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1254 {
1255 return false;
1256 }
1257
1258 #define pl011_dma_flush_buffer NULL
1259 #endif
1260
pl011_rs485_tx_stop(struct uart_amba_port * uap)1261 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1262 {
1263 /*
1264 * To be on the safe side only time out after twice as many iterations
1265 * as fifo size.
1266 */
1267 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1268 struct uart_port *port = &uap->port;
1269 int i = 0;
1270 u32 cr;
1271
1272 /* Wait until hardware tx queue is empty */
1273 while (!pl011_tx_empty(port)) {
1274 if (i > MAX_TX_DRAIN_ITERS) {
1275 dev_warn(port->dev,
1276 "timeout while draining hardware tx queue\n");
1277 break;
1278 }
1279
1280 udelay(uap->rs485_tx_drain_interval);
1281 i++;
1282 }
1283
1284 if (port->rs485.delay_rts_after_send)
1285 mdelay(port->rs485.delay_rts_after_send);
1286
1287 cr = pl011_read(uap, REG_CR);
1288
1289 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1290 cr &= ~UART011_CR_RTS;
1291 else
1292 cr |= UART011_CR_RTS;
1293
1294 /* Disable the transmitter and reenable the transceiver */
1295 cr &= ~UART011_CR_TXE;
1296 cr |= UART011_CR_RXE;
1297 pl011_write(cr, uap, REG_CR);
1298
1299 uap->rs485_tx_started = false;
1300 }
1301
pl011_stop_tx(struct uart_port * port)1302 static void pl011_stop_tx(struct uart_port *port)
1303 {
1304 struct uart_amba_port *uap =
1305 container_of(port, struct uart_amba_port, port);
1306
1307 uap->im &= ~UART011_TXIM;
1308 pl011_write(uap->im, uap, REG_IMSC);
1309 pl011_dma_tx_stop(uap);
1310
1311 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1312 pl011_rs485_tx_stop(uap);
1313 }
1314
1315 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1316
1317 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1318 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1319 {
1320 if (pl011_tx_chars(uap, false)) {
1321 uap->im |= UART011_TXIM;
1322 pl011_write(uap->im, uap, REG_IMSC);
1323 }
1324 }
1325
pl011_rs485_tx_start(struct uart_amba_port * uap)1326 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1327 {
1328 struct uart_port *port = &uap->port;
1329 u32 cr;
1330
1331 /* Enable transmitter */
1332 cr = pl011_read(uap, REG_CR);
1333 cr |= UART011_CR_TXE;
1334
1335 /* Disable receiver if half-duplex */
1336 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1337 cr &= ~UART011_CR_RXE;
1338
1339 if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1340 cr &= ~UART011_CR_RTS;
1341 else
1342 cr |= UART011_CR_RTS;
1343
1344 pl011_write(cr, uap, REG_CR);
1345
1346 if (port->rs485.delay_rts_before_send)
1347 mdelay(port->rs485.delay_rts_before_send);
1348
1349 uap->rs485_tx_started = true;
1350 }
1351
pl011_start_tx(struct uart_port * port)1352 static void pl011_start_tx(struct uart_port *port)
1353 {
1354 struct uart_amba_port *uap =
1355 container_of(port, struct uart_amba_port, port);
1356
1357 if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1358 !uap->rs485_tx_started)
1359 pl011_rs485_tx_start(uap);
1360
1361 if (!pl011_dma_tx_start(uap))
1362 pl011_start_tx_pio(uap);
1363 }
1364
pl011_stop_rx(struct uart_port * port)1365 static void pl011_stop_rx(struct uart_port *port)
1366 {
1367 struct uart_amba_port *uap =
1368 container_of(port, struct uart_amba_port, port);
1369
1370 uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1371 UART011_PEIM | UART011_BEIM | UART011_OEIM);
1372 pl011_write(uap->im, uap, REG_IMSC);
1373
1374 pl011_dma_rx_stop(uap);
1375 }
1376
pl011_throttle_rx(struct uart_port * port)1377 static void pl011_throttle_rx(struct uart_port *port)
1378 {
1379 unsigned long flags;
1380
1381 uart_port_lock_irqsave(port, &flags);
1382 pl011_stop_rx(port);
1383 uart_port_unlock_irqrestore(port, flags);
1384 }
1385
pl011_enable_ms(struct uart_port * port)1386 static void pl011_enable_ms(struct uart_port *port)
1387 {
1388 struct uart_amba_port *uap =
1389 container_of(port, struct uart_amba_port, port);
1390
1391 uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1392 pl011_write(uap->im, uap, REG_IMSC);
1393 }
1394
pl011_rx_chars(struct uart_amba_port * uap)1395 static void pl011_rx_chars(struct uart_amba_port *uap)
1396 __releases(&uap->port.lock)
1397 __acquires(&uap->port.lock)
1398 {
1399 pl011_fifo_to_tty(uap);
1400
1401 uart_port_unlock(&uap->port);
1402 tty_flip_buffer_push(&uap->port.state->port);
1403 /*
1404 * If we were temporarily out of DMA mode for a while,
1405 * attempt to switch back to DMA mode again.
1406 */
1407 if (pl011_dma_rx_available(uap)) {
1408 if (pl011_dma_rx_trigger_dma(uap)) {
1409 dev_dbg(uap->port.dev,
1410 "could not trigger RX DMA job fall back to interrupt mode again\n");
1411 uap->im |= UART011_RXIM;
1412 pl011_write(uap->im, uap, REG_IMSC);
1413 } else {
1414 #ifdef CONFIG_DMA_ENGINE
1415 /* Start Rx DMA poll */
1416 if (uap->dmarx.poll_rate) {
1417 uap->dmarx.last_jiffies = jiffies;
1418 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1419 mod_timer(&uap->dmarx.timer,
1420 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1421 }
1422 #endif
1423 }
1424 }
1425 uart_port_lock(&uap->port);
1426 }
1427
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1428 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1429 bool from_irq)
1430 {
1431 if (unlikely(!from_irq) &&
1432 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1433 return false; /* unable to transmit character */
1434
1435 pl011_write(c, uap, REG_DR);
1436 uap->port.icount.tx++;
1437
1438 return true;
1439 }
1440
1441 /* Returns true if tx interrupts have to be (kept) enabled */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1442 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1443 {
1444 struct tty_port *tport = &uap->port.state->port;
1445 int count = uap->fifosize >> 1;
1446
1447 if (uap->port.x_char) {
1448 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1449 return true;
1450 uap->port.x_char = 0;
1451 --count;
1452 }
1453 if (kfifo_is_empty(&tport->xmit_fifo) || uart_tx_stopped(&uap->port)) {
1454 pl011_stop_tx(&uap->port);
1455 return false;
1456 }
1457
1458 /* If we are using DMA mode, try to send some characters. */
1459 if (pl011_dma_tx_irq(uap))
1460 return true;
1461
1462 while (1) {
1463 unsigned char c;
1464
1465 if (likely(from_irq) && count-- == 0)
1466 break;
1467
1468 if (!kfifo_peek(&tport->xmit_fifo, &c))
1469 break;
1470
1471 if (!pl011_tx_char(uap, c, from_irq))
1472 break;
1473
1474 kfifo_skip(&tport->xmit_fifo);
1475 }
1476
1477 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1478 uart_write_wakeup(&uap->port);
1479
1480 if (kfifo_is_empty(&tport->xmit_fifo)) {
1481 pl011_stop_tx(&uap->port);
1482 return false;
1483 }
1484 return true;
1485 }
1486
pl011_modem_status(struct uart_amba_port * uap)1487 static void pl011_modem_status(struct uart_amba_port *uap)
1488 {
1489 unsigned int status, delta;
1490
1491 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1492
1493 delta = status ^ uap->old_status;
1494 uap->old_status = status;
1495
1496 if (!delta)
1497 return;
1498
1499 if (delta & UART01x_FR_DCD)
1500 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1501
1502 if (delta & uap->vendor->fr_dsr)
1503 uap->port.icount.dsr++;
1504
1505 if (delta & uap->vendor->fr_cts)
1506 uart_handle_cts_change(&uap->port,
1507 status & uap->vendor->fr_cts);
1508
1509 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1510 }
1511
check_apply_cts_event_workaround(struct uart_amba_port * uap)1512 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1513 {
1514 if (!uap->vendor->cts_event_workaround)
1515 return;
1516
1517 /* workaround to make sure that all bits are unlocked.. */
1518 pl011_write(0x00, uap, REG_ICR);
1519
1520 /*
1521 * WA: introduce 26ns(1 uart clk) delay before W1C;
1522 * single apb access will incur 2 pclk(133.12Mhz) delay,
1523 * so add 2 dummy reads
1524 */
1525 pl011_read(uap, REG_ICR);
1526 pl011_read(uap, REG_ICR);
1527 }
1528
pl011_int(int irq,void * dev_id)1529 static irqreturn_t pl011_int(int irq, void *dev_id)
1530 {
1531 struct uart_amba_port *uap = dev_id;
1532 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1533 int handled = 0;
1534
1535 uart_port_lock(&uap->port);
1536 status = pl011_read(uap, REG_RIS) & uap->im;
1537 if (status) {
1538 do {
1539 check_apply_cts_event_workaround(uap);
1540
1541 pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1542 uap, REG_ICR);
1543
1544 if (status & (UART011_RTIS | UART011_RXIS)) {
1545 if (pl011_dma_rx_running(uap))
1546 pl011_dma_rx_irq(uap);
1547 else
1548 pl011_rx_chars(uap);
1549 }
1550 if (status & (UART011_DSRMIS | UART011_DCDMIS |
1551 UART011_CTSMIS | UART011_RIMIS))
1552 pl011_modem_status(uap);
1553 if (status & UART011_TXIS)
1554 pl011_tx_chars(uap, true);
1555
1556 if (pass_counter-- == 0)
1557 break;
1558
1559 status = pl011_read(uap, REG_RIS) & uap->im;
1560 } while (status != 0);
1561 handled = 1;
1562 }
1563
1564 uart_unlock_and_check_sysrq(&uap->port);
1565
1566 return IRQ_RETVAL(handled);
1567 }
1568
pl011_tx_empty(struct uart_port * port)1569 static unsigned int pl011_tx_empty(struct uart_port *port)
1570 {
1571 struct uart_amba_port *uap =
1572 container_of(port, struct uart_amba_port, port);
1573
1574 /* Allow feature register bits to be inverted to work around errata */
1575 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1576
1577 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1578 0 : TIOCSER_TEMT;
1579 }
1580
pl011_maybe_set_bit(bool cond,unsigned int * ptr,unsigned int mask)1581 static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1582 {
1583 if (cond)
1584 *ptr |= mask;
1585 }
1586
pl011_get_mctrl(struct uart_port * port)1587 static unsigned int pl011_get_mctrl(struct uart_port *port)
1588 {
1589 struct uart_amba_port *uap =
1590 container_of(port, struct uart_amba_port, port);
1591 unsigned int result = 0;
1592 unsigned int status = pl011_read(uap, REG_FR);
1593
1594 pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1595 pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1596 pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1597 pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1598
1599 return result;
1600 }
1601
pl011_assign_bit(bool cond,unsigned int * ptr,unsigned int mask)1602 static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1603 {
1604 if (cond)
1605 *ptr |= mask;
1606 else
1607 *ptr &= ~mask;
1608 }
1609
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1610 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1611 {
1612 struct uart_amba_port *uap =
1613 container_of(port, struct uart_amba_port, port);
1614 unsigned int cr;
1615
1616 cr = pl011_read(uap, REG_CR);
1617
1618 pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1619 pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1620 pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1621 pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1622 pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1623
1624 if (port->status & UPSTAT_AUTORTS) {
1625 /* We need to disable auto-RTS if we want to turn RTS off */
1626 pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1627 }
1628
1629 pl011_write(cr, uap, REG_CR);
1630 }
1631
pl011_break_ctl(struct uart_port * port,int break_state)1632 static void pl011_break_ctl(struct uart_port *port, int break_state)
1633 {
1634 struct uart_amba_port *uap =
1635 container_of(port, struct uart_amba_port, port);
1636 unsigned long flags;
1637 unsigned int lcr_h;
1638
1639 uart_port_lock_irqsave(&uap->port, &flags);
1640 lcr_h = pl011_read(uap, REG_LCRH_TX);
1641 if (break_state == -1)
1642 lcr_h |= UART01x_LCRH_BRK;
1643 else
1644 lcr_h &= ~UART01x_LCRH_BRK;
1645 pl011_write(lcr_h, uap, REG_LCRH_TX);
1646 uart_port_unlock_irqrestore(&uap->port, flags);
1647 }
1648
1649 #ifdef CONFIG_CONSOLE_POLL
1650
pl011_quiesce_irqs(struct uart_port * port)1651 static void pl011_quiesce_irqs(struct uart_port *port)
1652 {
1653 struct uart_amba_port *uap =
1654 container_of(port, struct uart_amba_port, port);
1655
1656 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1657 /*
1658 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1659 * we simply mask it. start_tx() will unmask it.
1660 *
1661 * Note we can race with start_tx(), and if the race happens, the
1662 * polling user might get another interrupt just after we clear it.
1663 * But it should be OK and can happen even w/o the race, e.g.
1664 * controller immediately got some new data and raised the IRQ.
1665 *
1666 * And whoever uses polling routines assumes that it manages the device
1667 * (including tx queue), so we're also fine with start_tx()'s caller
1668 * side.
1669 */
1670 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1671 REG_IMSC);
1672 }
1673
pl011_get_poll_char(struct uart_port * port)1674 static int pl011_get_poll_char(struct uart_port *port)
1675 {
1676 struct uart_amba_port *uap =
1677 container_of(port, struct uart_amba_port, port);
1678 unsigned int status;
1679
1680 /*
1681 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1682 * debugger.
1683 */
1684 pl011_quiesce_irqs(port);
1685
1686 status = pl011_read(uap, REG_FR);
1687 if (status & UART01x_FR_RXFE)
1688 return NO_POLL_CHAR;
1689
1690 return pl011_read(uap, REG_DR);
1691 }
1692
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1693 static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1694 {
1695 struct uart_amba_port *uap =
1696 container_of(port, struct uart_amba_port, port);
1697
1698 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1699 cpu_relax();
1700
1701 pl011_write(ch, uap, REG_DR);
1702 }
1703
1704 #endif /* CONFIG_CONSOLE_POLL */
1705
pl011_hwinit(struct uart_port * port)1706 static int pl011_hwinit(struct uart_port *port)
1707 {
1708 struct uart_amba_port *uap =
1709 container_of(port, struct uart_amba_port, port);
1710 int retval;
1711
1712 /* Optionaly enable pins to be muxed in and configured */
1713 pinctrl_pm_select_default_state(port->dev);
1714
1715 /*
1716 * Try to enable the clock producer.
1717 */
1718 retval = clk_prepare_enable(uap->clk);
1719 if (retval)
1720 return retval;
1721
1722 uap->port.uartclk = clk_get_rate(uap->clk);
1723
1724 /* Clear pending error and receive interrupts */
1725 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1726 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1727 uap, REG_ICR);
1728
1729 /*
1730 * Save interrupts enable mask, and enable RX interrupts in case if
1731 * the interrupt is used for NMI entry.
1732 */
1733 uap->im = pl011_read(uap, REG_IMSC);
1734 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1735
1736 if (dev_get_platdata(uap->port.dev)) {
1737 struct amba_pl011_data *plat;
1738
1739 plat = dev_get_platdata(uap->port.dev);
1740 if (plat->init)
1741 plat->init();
1742 }
1743 return 0;
1744 }
1745
pl011_split_lcrh(const struct uart_amba_port * uap)1746 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1747 {
1748 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1749 pl011_reg_to_offset(uap, REG_LCRH_TX);
1750 }
1751
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1752 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1753 {
1754 pl011_write(lcr_h, uap, REG_LCRH_RX);
1755 if (pl011_split_lcrh(uap)) {
1756 int i;
1757 /*
1758 * Wait 10 PCLKs before writing LCRH_TX register,
1759 * to get this delay write read only register 10 times
1760 */
1761 for (i = 0; i < 10; ++i)
1762 pl011_write(0xff, uap, REG_MIS);
1763 pl011_write(lcr_h, uap, REG_LCRH_TX);
1764 }
1765 }
1766
pl011_allocate_irq(struct uart_amba_port * uap)1767 static int pl011_allocate_irq(struct uart_amba_port *uap)
1768 {
1769 pl011_write(uap->im, uap, REG_IMSC);
1770
1771 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1772 }
1773
1774 /*
1775 * Enable interrupts, only timeouts when using DMA
1776 * if initial RX DMA job failed, start in interrupt mode
1777 * as well.
1778 */
pl011_enable_interrupts(struct uart_amba_port * uap)1779 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1780 {
1781 unsigned long flags;
1782 unsigned int i;
1783
1784 uart_port_lock_irqsave(&uap->port, &flags);
1785
1786 /* Clear out any spuriously appearing RX interrupts */
1787 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1788
1789 /*
1790 * RXIS is asserted only when the RX FIFO transitions from below
1791 * to above the trigger threshold. If the RX FIFO is already
1792 * full to the threshold this can't happen and RXIS will now be
1793 * stuck off. Drain the RX FIFO explicitly to fix this:
1794 */
1795 for (i = 0; i < uap->fifosize * 2; ++i) {
1796 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1797 break;
1798
1799 pl011_read(uap, REG_DR);
1800 }
1801
1802 uap->im = UART011_RTIM;
1803 if (!pl011_dma_rx_running(uap))
1804 uap->im |= UART011_RXIM;
1805 pl011_write(uap->im, uap, REG_IMSC);
1806 uart_port_unlock_irqrestore(&uap->port, flags);
1807 }
1808
pl011_unthrottle_rx(struct uart_port * port)1809 static void pl011_unthrottle_rx(struct uart_port *port)
1810 {
1811 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1812 unsigned long flags;
1813
1814 uart_port_lock_irqsave(&uap->port, &flags);
1815
1816 uap->im = UART011_RTIM;
1817 if (!pl011_dma_rx_running(uap))
1818 uap->im |= UART011_RXIM;
1819
1820 pl011_write(uap->im, uap, REG_IMSC);
1821
1822 #ifdef CONFIG_DMA_ENGINE
1823 if (uap->using_rx_dma) {
1824 uap->dmacr |= UART011_RXDMAE;
1825 pl011_write(uap->dmacr, uap, REG_DMACR);
1826 }
1827 #endif
1828
1829 uart_port_unlock_irqrestore(&uap->port, flags);
1830 }
1831
pl011_startup(struct uart_port * port)1832 static int pl011_startup(struct uart_port *port)
1833 {
1834 struct uart_amba_port *uap =
1835 container_of(port, struct uart_amba_port, port);
1836 unsigned int cr;
1837 int retval;
1838
1839 retval = pl011_hwinit(port);
1840 if (retval)
1841 goto clk_dis;
1842
1843 retval = pl011_allocate_irq(uap);
1844 if (retval)
1845 goto clk_dis;
1846
1847 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1848
1849 uart_port_lock_irq(&uap->port);
1850
1851 cr = pl011_read(uap, REG_CR);
1852 cr &= UART011_CR_RTS | UART011_CR_DTR;
1853 cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1854
1855 if (!(port->rs485.flags & SER_RS485_ENABLED))
1856 cr |= UART011_CR_TXE;
1857
1858 pl011_write(cr, uap, REG_CR);
1859
1860 uart_port_unlock_irq(&uap->port);
1861
1862 /*
1863 * initialise the old status of the modem signals
1864 */
1865 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1866
1867 /* Startup DMA */
1868 pl011_dma_startup(uap);
1869
1870 pl011_enable_interrupts(uap);
1871
1872 return 0;
1873
1874 clk_dis:
1875 clk_disable_unprepare(uap->clk);
1876 return retval;
1877 }
1878
sbsa_uart_startup(struct uart_port * port)1879 static int sbsa_uart_startup(struct uart_port *port)
1880 {
1881 struct uart_amba_port *uap =
1882 container_of(port, struct uart_amba_port, port);
1883 int retval;
1884
1885 retval = pl011_hwinit(port);
1886 if (retval)
1887 return retval;
1888
1889 retval = pl011_allocate_irq(uap);
1890 if (retval)
1891 return retval;
1892
1893 /* The SBSA UART does not support any modem status lines. */
1894 uap->old_status = 0;
1895
1896 pl011_enable_interrupts(uap);
1897
1898 return 0;
1899 }
1900
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1901 static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1902 {
1903 unsigned long val;
1904
1905 val = pl011_read(uap, lcrh);
1906 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1907 pl011_write(val, uap, lcrh);
1908 }
1909
1910 /*
1911 * disable the port. It should not disable RTS and DTR.
1912 * Also RTS and DTR state should be preserved to restore
1913 * it during startup().
1914 */
pl011_disable_uart(struct uart_amba_port * uap)1915 static void pl011_disable_uart(struct uart_amba_port *uap)
1916 {
1917 unsigned int cr;
1918
1919 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1920 uart_port_lock_irq(&uap->port);
1921 cr = pl011_read(uap, REG_CR);
1922 cr &= UART011_CR_RTS | UART011_CR_DTR;
1923 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1924 pl011_write(cr, uap, REG_CR);
1925 uart_port_unlock_irq(&uap->port);
1926
1927 /*
1928 * disable break condition and fifos
1929 */
1930 pl011_shutdown_channel(uap, REG_LCRH_RX);
1931 if (pl011_split_lcrh(uap))
1932 pl011_shutdown_channel(uap, REG_LCRH_TX);
1933 }
1934
pl011_disable_interrupts(struct uart_amba_port * uap)1935 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1936 {
1937 uart_port_lock_irq(&uap->port);
1938
1939 /* mask all interrupts and clear all pending ones */
1940 uap->im = 0;
1941 pl011_write(uap->im, uap, REG_IMSC);
1942 pl011_write(0xffff, uap, REG_ICR);
1943
1944 uart_port_unlock_irq(&uap->port);
1945 }
1946
pl011_shutdown(struct uart_port * port)1947 static void pl011_shutdown(struct uart_port *port)
1948 {
1949 struct uart_amba_port *uap =
1950 container_of(port, struct uart_amba_port, port);
1951
1952 pl011_disable_interrupts(uap);
1953
1954 pl011_dma_shutdown(uap);
1955
1956 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1957 pl011_rs485_tx_stop(uap);
1958
1959 free_irq(uap->port.irq, uap);
1960
1961 pl011_disable_uart(uap);
1962
1963 /*
1964 * Shut down the clock producer
1965 */
1966 clk_disable_unprepare(uap->clk);
1967 /* Optionally let pins go into sleep states */
1968 pinctrl_pm_select_sleep_state(port->dev);
1969
1970 if (dev_get_platdata(uap->port.dev)) {
1971 struct amba_pl011_data *plat;
1972
1973 plat = dev_get_platdata(uap->port.dev);
1974 if (plat->exit)
1975 plat->exit();
1976 }
1977
1978 if (uap->port.ops->flush_buffer)
1979 uap->port.ops->flush_buffer(port);
1980 }
1981
sbsa_uart_shutdown(struct uart_port * port)1982 static void sbsa_uart_shutdown(struct uart_port *port)
1983 {
1984 struct uart_amba_port *uap =
1985 container_of(port, struct uart_amba_port, port);
1986
1987 pl011_disable_interrupts(uap);
1988
1989 free_irq(uap->port.irq, uap);
1990
1991 if (uap->port.ops->flush_buffer)
1992 uap->port.ops->flush_buffer(port);
1993 }
1994
1995 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)1996 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1997 {
1998 port->read_status_mask = UART011_DR_OE | 255;
1999 if (termios->c_iflag & INPCK)
2000 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2001 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2002 port->read_status_mask |= UART011_DR_BE;
2003
2004 /*
2005 * Characters to ignore
2006 */
2007 port->ignore_status_mask = 0;
2008 if (termios->c_iflag & IGNPAR)
2009 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2010 if (termios->c_iflag & IGNBRK) {
2011 port->ignore_status_mask |= UART011_DR_BE;
2012 /*
2013 * If we're ignoring parity and break indicators,
2014 * ignore overruns too (for real raw support).
2015 */
2016 if (termios->c_iflag & IGNPAR)
2017 port->ignore_status_mask |= UART011_DR_OE;
2018 }
2019
2020 /*
2021 * Ignore all characters if CREAD is not set.
2022 */
2023 if ((termios->c_cflag & CREAD) == 0)
2024 port->ignore_status_mask |= UART_DUMMY_DR_RX;
2025 }
2026
2027 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2028 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2029 const struct ktermios *old)
2030 {
2031 struct uart_amba_port *uap =
2032 container_of(port, struct uart_amba_port, port);
2033 unsigned int lcr_h, old_cr;
2034 unsigned long flags;
2035 unsigned int baud, quot, clkdiv;
2036 unsigned int bits;
2037
2038 if (uap->vendor->oversampling)
2039 clkdiv = 8;
2040 else
2041 clkdiv = 16;
2042
2043 /*
2044 * Ask the core to calculate the divisor for us.
2045 */
2046 baud = uart_get_baud_rate(port, termios, old, 0,
2047 port->uartclk / clkdiv);
2048 #ifdef CONFIG_DMA_ENGINE
2049 /*
2050 * Adjust RX DMA polling rate with baud rate if not specified.
2051 */
2052 if (uap->dmarx.auto_poll_rate)
2053 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2054 #endif
2055
2056 if (baud > port->uartclk / 16)
2057 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2058 else
2059 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2060
2061 switch (termios->c_cflag & CSIZE) {
2062 case CS5:
2063 lcr_h = UART01x_LCRH_WLEN_5;
2064 break;
2065 case CS6:
2066 lcr_h = UART01x_LCRH_WLEN_6;
2067 break;
2068 case CS7:
2069 lcr_h = UART01x_LCRH_WLEN_7;
2070 break;
2071 default: // CS8
2072 lcr_h = UART01x_LCRH_WLEN_8;
2073 break;
2074 }
2075 if (termios->c_cflag & CSTOPB)
2076 lcr_h |= UART01x_LCRH_STP2;
2077 if (termios->c_cflag & PARENB) {
2078 lcr_h |= UART01x_LCRH_PEN;
2079 if (!(termios->c_cflag & PARODD))
2080 lcr_h |= UART01x_LCRH_EPS;
2081 if (termios->c_cflag & CMSPAR)
2082 lcr_h |= UART011_LCRH_SPS;
2083 }
2084 if (uap->fifosize > 1)
2085 lcr_h |= UART01x_LCRH_FEN;
2086
2087 bits = tty_get_frame_size(termios->c_cflag);
2088
2089 uart_port_lock_irqsave(port, &flags);
2090
2091 /*
2092 * Update the per-port timeout.
2093 */
2094 uart_update_timeout(port, termios->c_cflag, baud);
2095
2096 /*
2097 * Calculate the approximated time it takes to transmit one character
2098 * with the given baud rate. We use this as the poll interval when we
2099 * wait for the tx queue to empty.
2100 */
2101 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2102
2103 pl011_setup_status_masks(port, termios);
2104
2105 if (UART_ENABLE_MS(port, termios->c_cflag))
2106 pl011_enable_ms(port);
2107
2108 if (port->rs485.flags & SER_RS485_ENABLED)
2109 termios->c_cflag &= ~CRTSCTS;
2110
2111 old_cr = pl011_read(uap, REG_CR);
2112
2113 if (termios->c_cflag & CRTSCTS) {
2114 if (old_cr & UART011_CR_RTS)
2115 old_cr |= UART011_CR_RTSEN;
2116
2117 old_cr |= UART011_CR_CTSEN;
2118 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2119 } else {
2120 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2121 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2122 }
2123
2124 if (uap->vendor->oversampling) {
2125 if (baud > port->uartclk / 16)
2126 old_cr |= ST_UART011_CR_OVSFACT;
2127 else
2128 old_cr &= ~ST_UART011_CR_OVSFACT;
2129 }
2130
2131 /*
2132 * Workaround for the ST Micro oversampling variants to
2133 * increase the bitrate slightly, by lowering the divisor,
2134 * to avoid delayed sampling of start bit at high speeds,
2135 * else we see data corruption.
2136 */
2137 if (uap->vendor->oversampling) {
2138 if (baud >= 3000000 && baud < 3250000 && quot > 1)
2139 quot -= 1;
2140 else if (baud > 3250000 && quot > 2)
2141 quot -= 2;
2142 }
2143 /* Set baud rate */
2144 pl011_write(quot & 0x3f, uap, REG_FBRD);
2145 pl011_write(quot >> 6, uap, REG_IBRD);
2146
2147 /*
2148 * ----------v----------v----------v----------v-----
2149 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2150 * REG_FBRD & REG_IBRD.
2151 * ----------^----------^----------^----------^-----
2152 */
2153 pl011_write_lcr_h(uap, lcr_h);
2154
2155 /*
2156 * Receive was disabled by pl011_disable_uart during shutdown.
2157 * Need to reenable receive if you need to use a tty_driver
2158 * returns from tty_find_polling_driver() after a port shutdown.
2159 */
2160 old_cr |= UART011_CR_RXE;
2161 pl011_write(old_cr, uap, REG_CR);
2162
2163 uart_port_unlock_irqrestore(port, flags);
2164 }
2165
2166 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2167 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2168 const struct ktermios *old)
2169 {
2170 struct uart_amba_port *uap =
2171 container_of(port, struct uart_amba_port, port);
2172 unsigned long flags;
2173
2174 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2175
2176 /* The SBSA UART only supports 8n1 without hardware flow control. */
2177 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2178 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2179 termios->c_cflag |= CS8 | CLOCAL;
2180
2181 uart_port_lock_irqsave(port, &flags);
2182 uart_update_timeout(port, CS8, uap->fixed_baud);
2183 pl011_setup_status_masks(port, termios);
2184 uart_port_unlock_irqrestore(port, flags);
2185 }
2186
pl011_type(struct uart_port * port)2187 static const char *pl011_type(struct uart_port *port)
2188 {
2189 struct uart_amba_port *uap =
2190 container_of(port, struct uart_amba_port, port);
2191 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2192 }
2193
2194 /*
2195 * Configure/autoconfigure the port.
2196 */
pl011_config_port(struct uart_port * port,int flags)2197 static void pl011_config_port(struct uart_port *port, int flags)
2198 {
2199 if (flags & UART_CONFIG_TYPE)
2200 port->type = PORT_AMBA;
2201 }
2202
2203 /*
2204 * verify the new serial_struct (for TIOCSSERIAL).
2205 */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2206 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2207 {
2208 int ret = 0;
2209
2210 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2211 ret = -EINVAL;
2212 if (ser->irq < 0 || ser->irq >= irq_get_nr_irqs())
2213 ret = -EINVAL;
2214 if (ser->baud_base < 9600)
2215 ret = -EINVAL;
2216 if (port->mapbase != (unsigned long)ser->iomem_base)
2217 ret = -EINVAL;
2218 return ret;
2219 }
2220
pl011_rs485_config(struct uart_port * port,struct ktermios * termios,struct serial_rs485 * rs485)2221 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2222 struct serial_rs485 *rs485)
2223 {
2224 struct uart_amba_port *uap =
2225 container_of(port, struct uart_amba_port, port);
2226
2227 if (port->rs485.flags & SER_RS485_ENABLED)
2228 pl011_rs485_tx_stop(uap);
2229
2230 /* Make sure auto RTS is disabled */
2231 if (rs485->flags & SER_RS485_ENABLED) {
2232 u32 cr = pl011_read(uap, REG_CR);
2233
2234 cr &= ~UART011_CR_RTSEN;
2235 pl011_write(cr, uap, REG_CR);
2236 port->status &= ~UPSTAT_AUTORTS;
2237 }
2238
2239 return 0;
2240 }
2241
2242 static const struct uart_ops amba_pl011_pops = {
2243 .tx_empty = pl011_tx_empty,
2244 .set_mctrl = pl011_set_mctrl,
2245 .get_mctrl = pl011_get_mctrl,
2246 .stop_tx = pl011_stop_tx,
2247 .start_tx = pl011_start_tx,
2248 .stop_rx = pl011_stop_rx,
2249 .throttle = pl011_throttle_rx,
2250 .unthrottle = pl011_unthrottle_rx,
2251 .enable_ms = pl011_enable_ms,
2252 .break_ctl = pl011_break_ctl,
2253 .startup = pl011_startup,
2254 .shutdown = pl011_shutdown,
2255 .flush_buffer = pl011_dma_flush_buffer,
2256 .set_termios = pl011_set_termios,
2257 .type = pl011_type,
2258 .config_port = pl011_config_port,
2259 .verify_port = pl011_verify_port,
2260 #ifdef CONFIG_CONSOLE_POLL
2261 .poll_init = pl011_hwinit,
2262 .poll_get_char = pl011_get_poll_char,
2263 .poll_put_char = pl011_put_poll_char,
2264 #endif
2265 };
2266
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2267 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2268 {
2269 }
2270
sbsa_uart_get_mctrl(struct uart_port * port)2271 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2272 {
2273 return 0;
2274 }
2275
2276 static const struct uart_ops sbsa_uart_pops = {
2277 .tx_empty = pl011_tx_empty,
2278 .set_mctrl = sbsa_uart_set_mctrl,
2279 .get_mctrl = sbsa_uart_get_mctrl,
2280 .stop_tx = pl011_stop_tx,
2281 .start_tx = pl011_start_tx,
2282 .stop_rx = pl011_stop_rx,
2283 .startup = sbsa_uart_startup,
2284 .shutdown = sbsa_uart_shutdown,
2285 .set_termios = sbsa_uart_set_termios,
2286 .type = pl011_type,
2287 .config_port = pl011_config_port,
2288 .verify_port = pl011_verify_port,
2289 #ifdef CONFIG_CONSOLE_POLL
2290 .poll_init = pl011_hwinit,
2291 .poll_get_char = pl011_get_poll_char,
2292 .poll_put_char = pl011_put_poll_char,
2293 #endif
2294 };
2295
2296 static struct uart_amba_port *amba_ports[UART_NR];
2297
2298 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2299
pl011_console_putchar(struct uart_port * port,unsigned char ch)2300 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2301 {
2302 struct uart_amba_port *uap =
2303 container_of(port, struct uart_amba_port, port);
2304
2305 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2306 cpu_relax();
2307 pl011_write(ch, uap, REG_DR);
2308 }
2309
2310 static void
pl011_console_write(struct console * co,const char * s,unsigned int count)2311 pl011_console_write(struct console *co, const char *s, unsigned int count)
2312 {
2313 struct uart_amba_port *uap = amba_ports[co->index];
2314 unsigned int old_cr = 0, new_cr;
2315 unsigned long flags;
2316 int locked = 1;
2317
2318 clk_enable(uap->clk);
2319
2320 if (oops_in_progress)
2321 locked = uart_port_trylock_irqsave(&uap->port, &flags);
2322 else
2323 uart_port_lock_irqsave(&uap->port, &flags);
2324
2325 /*
2326 * First save the CR then disable the interrupts
2327 */
2328 if (!uap->vendor->always_enabled) {
2329 old_cr = pl011_read(uap, REG_CR);
2330 new_cr = old_cr & ~UART011_CR_CTSEN;
2331 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2332 pl011_write(new_cr, uap, REG_CR);
2333 }
2334
2335 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2336
2337 /*
2338 * Finally, wait for transmitter to become empty and restore the
2339 * TCR. Allow feature register bits to be inverted to work around
2340 * errata.
2341 */
2342 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2343 & uap->vendor->fr_busy)
2344 cpu_relax();
2345 if (!uap->vendor->always_enabled)
2346 pl011_write(old_cr, uap, REG_CR);
2347
2348 if (locked)
2349 uart_port_unlock_irqrestore(&uap->port, flags);
2350
2351 clk_disable(uap->clk);
2352 }
2353
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2354 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2355 int *parity, int *bits)
2356 {
2357 unsigned int lcr_h, ibrd, fbrd;
2358
2359 if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2360 return;
2361
2362 lcr_h = pl011_read(uap, REG_LCRH_TX);
2363
2364 *parity = 'n';
2365 if (lcr_h & UART01x_LCRH_PEN) {
2366 if (lcr_h & UART01x_LCRH_EPS)
2367 *parity = 'e';
2368 else
2369 *parity = 'o';
2370 }
2371
2372 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2373 *bits = 7;
2374 else
2375 *bits = 8;
2376
2377 ibrd = pl011_read(uap, REG_IBRD);
2378 fbrd = pl011_read(uap, REG_FBRD);
2379
2380 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2381
2382 if (uap->vendor->oversampling &&
2383 (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2384 *baud *= 2;
2385 }
2386
pl011_console_setup(struct console * co,char * options)2387 static int pl011_console_setup(struct console *co, char *options)
2388 {
2389 struct uart_amba_port *uap;
2390 int baud = 38400;
2391 int bits = 8;
2392 int parity = 'n';
2393 int flow = 'n';
2394 int ret;
2395
2396 /*
2397 * Check whether an invalid uart number has been specified, and
2398 * if so, search for the first available port that does have
2399 * console support.
2400 */
2401 if (co->index >= UART_NR)
2402 co->index = 0;
2403 uap = amba_ports[co->index];
2404 if (!uap)
2405 return -ENODEV;
2406
2407 /* Allow pins to be muxed in and configured */
2408 pinctrl_pm_select_default_state(uap->port.dev);
2409
2410 ret = clk_prepare(uap->clk);
2411 if (ret)
2412 return ret;
2413
2414 if (dev_get_platdata(uap->port.dev)) {
2415 struct amba_pl011_data *plat;
2416
2417 plat = dev_get_platdata(uap->port.dev);
2418 if (plat->init)
2419 plat->init();
2420 }
2421
2422 uap->port.uartclk = clk_get_rate(uap->clk);
2423
2424 if (uap->vendor->fixed_options) {
2425 baud = uap->fixed_baud;
2426 } else {
2427 if (options)
2428 uart_parse_options(options,
2429 &baud, &parity, &bits, &flow);
2430 else
2431 pl011_console_get_options(uap, &baud, &parity, &bits);
2432 }
2433
2434 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2435 }
2436
2437 /**
2438 * pl011_console_match - non-standard console matching
2439 * @co: registering console
2440 * @name: name from console command line
2441 * @idx: index from console command line
2442 * @options: ptr to option string from console command line
2443 *
2444 * Only attempts to match console command lines of the form:
2445 * console=pl011,mmio|mmio32,<addr>[,<options>]
2446 * console=pl011,0x<addr>[,<options>]
2447 * This form is used to register an initial earlycon boot console and
2448 * replace it with the amba_console at pl011 driver init.
2449 *
2450 * Performs console setup for a match (as required by interface)
2451 * If no <options> are specified, then assume the h/w is already setup.
2452 *
2453 * Returns 0 if console matches; otherwise non-zero to use default matching
2454 */
pl011_console_match(struct console * co,char * name,int idx,char * options)2455 static int pl011_console_match(struct console *co, char *name, int idx,
2456 char *options)
2457 {
2458 unsigned char iotype;
2459 resource_size_t addr;
2460 int i;
2461
2462 /*
2463 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2464 * have a distinct console name, so make sure we check for that.
2465 * The actual implementation of the erratum occurs in the probe
2466 * function.
2467 */
2468 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2469 return -ENODEV;
2470
2471 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2472 return -ENODEV;
2473
2474 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2475 return -ENODEV;
2476
2477 /* try to match the port specified on the command line */
2478 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2479 struct uart_port *port;
2480
2481 if (!amba_ports[i])
2482 continue;
2483
2484 port = &amba_ports[i]->port;
2485
2486 if (port->mapbase != addr)
2487 continue;
2488
2489 co->index = i;
2490 uart_port_set_cons(port, co);
2491 return pl011_console_setup(co, options);
2492 }
2493
2494 return -ENODEV;
2495 }
2496
2497 static struct uart_driver amba_reg;
2498 static struct console amba_console = {
2499 .name = "ttyAMA",
2500 .write = pl011_console_write,
2501 .device = uart_console_device,
2502 .setup = pl011_console_setup,
2503 .match = pl011_console_match,
2504 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2505 .index = -1,
2506 .data = &amba_reg,
2507 };
2508
2509 #define AMBA_CONSOLE (&amba_console)
2510
qdf2400_e44_putc(struct uart_port * port,unsigned char c)2511 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2512 {
2513 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2514 cpu_relax();
2515 writel(c, port->membase + UART01x_DR);
2516 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2517 cpu_relax();
2518 }
2519
qdf2400_e44_early_write(struct console * con,const char * s,unsigned int n)2520 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2521 {
2522 struct earlycon_device *dev = con->data;
2523
2524 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2525 }
2526
pl011_putc(struct uart_port * port,unsigned char c)2527 static void pl011_putc(struct uart_port *port, unsigned char c)
2528 {
2529 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2530 cpu_relax();
2531 if (port->iotype == UPIO_MEM32)
2532 writel(c, port->membase + UART01x_DR);
2533 else
2534 writeb(c, port->membase + UART01x_DR);
2535 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2536 cpu_relax();
2537 }
2538
pl011_early_write(struct console * con,const char * s,unsigned int n)2539 static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2540 {
2541 struct earlycon_device *dev = con->data;
2542
2543 uart_console_write(&dev->port, s, n, pl011_putc);
2544 }
2545
2546 #ifdef CONFIG_CONSOLE_POLL
pl011_getc(struct uart_port * port)2547 static int pl011_getc(struct uart_port *port)
2548 {
2549 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2550 return NO_POLL_CHAR;
2551
2552 if (port->iotype == UPIO_MEM32)
2553 return readl(port->membase + UART01x_DR);
2554 else
2555 return readb(port->membase + UART01x_DR);
2556 }
2557
pl011_early_read(struct console * con,char * s,unsigned int n)2558 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2559 {
2560 struct earlycon_device *dev = con->data;
2561 int ch, num_read = 0;
2562
2563 while (num_read < n) {
2564 ch = pl011_getc(&dev->port);
2565 if (ch == NO_POLL_CHAR)
2566 break;
2567
2568 s[num_read++] = ch;
2569 }
2570
2571 return num_read;
2572 }
2573 #else
2574 #define pl011_early_read NULL
2575 #endif
2576
2577 /*
2578 * On non-ACPI systems, earlycon is enabled by specifying
2579 * "earlycon=pl011,<address>" on the kernel command line.
2580 *
2581 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2582 * by specifying only "earlycon" on the command line. Because it requires
2583 * SPCR, the console starts after ACPI is parsed, which is later than a
2584 * traditional early console.
2585 *
2586 * To get the traditional early console that starts before ACPI is parsed,
2587 * specify the full "earlycon=pl011,<address>" option.
2588 */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2589 static int __init pl011_early_console_setup(struct earlycon_device *device,
2590 const char *opt)
2591 {
2592 if (!device->port.membase)
2593 return -ENODEV;
2594
2595 device->con->write = pl011_early_write;
2596 device->con->read = pl011_early_read;
2597
2598 return 0;
2599 }
2600
2601 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2602
2603 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2604
2605 /*
2606 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2607 * Erratum 44, traditional earlycon can be enabled by specifying
2608 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2609 *
2610 * Alternatively, you can just specify "earlycon", and the early console
2611 * will be enabled with the information from the SPCR table. In this
2612 * case, the SPCR code will detect the need for the E44 work-around,
2613 * and set the console name to "qdf2400_e44".
2614 */
2615 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2616 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2617 const char *opt)
2618 {
2619 if (!device->port.membase)
2620 return -ENODEV;
2621
2622 device->con->write = qdf2400_e44_early_write;
2623 return 0;
2624 }
2625
2626 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2627
2628 #else
2629 #define AMBA_CONSOLE NULL
2630 #endif
2631
2632 static struct uart_driver amba_reg = {
2633 .owner = THIS_MODULE,
2634 .driver_name = "ttyAMA",
2635 .dev_name = "ttyAMA",
2636 .major = SERIAL_AMBA_MAJOR,
2637 .minor = SERIAL_AMBA_MINOR,
2638 .nr = UART_NR,
2639 .cons = AMBA_CONSOLE,
2640 };
2641
pl011_probe_dt_alias(int index,struct device * dev)2642 static int pl011_probe_dt_alias(int index, struct device *dev)
2643 {
2644 struct device_node *np;
2645 static bool seen_dev_with_alias;
2646 static bool seen_dev_without_alias;
2647 int ret = index;
2648
2649 if (!IS_ENABLED(CONFIG_OF))
2650 return ret;
2651
2652 np = dev->of_node;
2653 if (!np)
2654 return ret;
2655
2656 ret = of_alias_get_id(np, "serial");
2657 if (ret < 0) {
2658 seen_dev_without_alias = true;
2659 ret = index;
2660 } else {
2661 seen_dev_with_alias = true;
2662 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2663 dev_warn(dev, "requested serial port %d not available.\n", ret);
2664 ret = index;
2665 }
2666 }
2667
2668 if (seen_dev_with_alias && seen_dev_without_alias)
2669 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2670
2671 return ret;
2672 }
2673
2674 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2675 static void pl011_unregister_port(struct uart_amba_port *uap)
2676 {
2677 int i;
2678 bool busy = false;
2679
2680 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2681 if (amba_ports[i] == uap)
2682 amba_ports[i] = NULL;
2683 else if (amba_ports[i])
2684 busy = true;
2685 }
2686 pl011_dma_remove(uap);
2687 if (!busy)
2688 uart_unregister_driver(&amba_reg);
2689 }
2690
pl011_find_free_port(void)2691 static int pl011_find_free_port(void)
2692 {
2693 int i;
2694
2695 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2696 if (!amba_ports[i])
2697 return i;
2698
2699 return -EBUSY;
2700 }
2701
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2702 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2703 struct resource *mmiobase, int index)
2704 {
2705 void __iomem *base;
2706 int ret;
2707
2708 base = devm_ioremap_resource(dev, mmiobase);
2709 if (IS_ERR(base))
2710 return PTR_ERR(base);
2711
2712 index = pl011_probe_dt_alias(index, dev);
2713
2714 uap->port.dev = dev;
2715 uap->port.mapbase = mmiobase->start;
2716 uap->port.membase = base;
2717 uap->port.fifosize = uap->fifosize;
2718 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2719 uap->port.flags = UPF_BOOT_AUTOCONF;
2720 uap->port.line = index;
2721
2722 ret = uart_get_rs485_mode(&uap->port);
2723 if (ret)
2724 return ret;
2725
2726 amba_ports[index] = uap;
2727
2728 return 0;
2729 }
2730
pl011_register_port(struct uart_amba_port * uap)2731 static int pl011_register_port(struct uart_amba_port *uap)
2732 {
2733 int ret, i;
2734
2735 /* Ensure interrupts from this UART are masked and cleared */
2736 pl011_write(0, uap, REG_IMSC);
2737 pl011_write(0xffff, uap, REG_ICR);
2738
2739 if (!amba_reg.state) {
2740 ret = uart_register_driver(&amba_reg);
2741 if (ret < 0) {
2742 dev_err(uap->port.dev,
2743 "Failed to register AMBA-PL011 driver\n");
2744 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2745 if (amba_ports[i] == uap)
2746 amba_ports[i] = NULL;
2747 return ret;
2748 }
2749 }
2750
2751 ret = uart_add_one_port(&amba_reg, &uap->port);
2752 if (ret)
2753 pl011_unregister_port(uap);
2754
2755 return ret;
2756 }
2757
2758 static const struct serial_rs485 pl011_rs485_supported = {
2759 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2760 SER_RS485_RX_DURING_TX,
2761 .delay_rts_before_send = 1,
2762 .delay_rts_after_send = 1,
2763 };
2764
pl011_probe(struct amba_device * dev,const struct amba_id * id)2765 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2766 {
2767 struct uart_amba_port *uap;
2768 struct vendor_data *vendor = id->data;
2769 int portnr, ret;
2770 u32 val;
2771
2772 portnr = pl011_find_free_port();
2773 if (portnr < 0)
2774 return portnr;
2775
2776 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2777 GFP_KERNEL);
2778 if (!uap)
2779 return -ENOMEM;
2780
2781 uap->clk = devm_clk_get(&dev->dev, NULL);
2782 if (IS_ERR(uap->clk))
2783 return PTR_ERR(uap->clk);
2784
2785 uap->reg_offset = vendor->reg_offset;
2786 uap->vendor = vendor;
2787 uap->fifosize = vendor->get_fifosize(dev);
2788 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2789 uap->port.irq = dev->irq[0];
2790 uap->port.ops = &amba_pl011_pops;
2791 uap->port.rs485_config = pl011_rs485_config;
2792 uap->port.rs485_supported = pl011_rs485_supported;
2793 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2794
2795 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2796 switch (val) {
2797 case 1:
2798 uap->port.iotype = UPIO_MEM;
2799 break;
2800 case 4:
2801 uap->port.iotype = UPIO_MEM32;
2802 break;
2803 default:
2804 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2805 val);
2806 return -EINVAL;
2807 }
2808 }
2809
2810 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2811 if (ret)
2812 return ret;
2813
2814 amba_set_drvdata(dev, uap);
2815
2816 return pl011_register_port(uap);
2817 }
2818
pl011_remove(struct amba_device * dev)2819 static void pl011_remove(struct amba_device *dev)
2820 {
2821 struct uart_amba_port *uap = amba_get_drvdata(dev);
2822
2823 uart_remove_one_port(&amba_reg, &uap->port);
2824 pl011_unregister_port(uap);
2825 }
2826
2827 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2828 static int pl011_suspend(struct device *dev)
2829 {
2830 struct uart_amba_port *uap = dev_get_drvdata(dev);
2831
2832 if (!uap)
2833 return -EINVAL;
2834
2835 return uart_suspend_port(&amba_reg, &uap->port);
2836 }
2837
pl011_resume(struct device * dev)2838 static int pl011_resume(struct device *dev)
2839 {
2840 struct uart_amba_port *uap = dev_get_drvdata(dev);
2841
2842 if (!uap)
2843 return -EINVAL;
2844
2845 return uart_resume_port(&amba_reg, &uap->port);
2846 }
2847 #endif
2848
2849 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2850
2851 #ifdef CONFIG_ACPI_SPCR_TABLE
qpdf2400_erratum44_workaround(struct device * dev,struct uart_amba_port * uap)2852 static void qpdf2400_erratum44_workaround(struct device *dev,
2853 struct uart_amba_port *uap)
2854 {
2855 if (!qdf2400_e44_present)
2856 return;
2857
2858 dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2859 uap->vendor = &vendor_qdt_qdf2400_e44;
2860 }
2861 #else
qpdf2400_erratum44_workaround(struct device * dev,struct uart_amba_port * uap)2862 static void qpdf2400_erratum44_workaround(struct device *dev,
2863 struct uart_amba_port *uap)
2864 { /* empty */ }
2865 #endif
2866
sbsa_uart_probe(struct platform_device * pdev)2867 static int sbsa_uart_probe(struct platform_device *pdev)
2868 {
2869 struct uart_amba_port *uap;
2870 struct resource *r;
2871 int portnr, ret;
2872 int baudrate;
2873
2874 /*
2875 * Check the mandatory baud rate parameter in the DT node early
2876 * so that we can easily exit with the error.
2877 */
2878 if (pdev->dev.of_node) {
2879 struct device_node *np = pdev->dev.of_node;
2880
2881 ret = of_property_read_u32(np, "current-speed", &baudrate);
2882 if (ret)
2883 return ret;
2884 } else {
2885 baudrate = 115200;
2886 }
2887
2888 portnr = pl011_find_free_port();
2889 if (portnr < 0)
2890 return portnr;
2891
2892 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2893 GFP_KERNEL);
2894 if (!uap)
2895 return -ENOMEM;
2896
2897 ret = platform_get_irq(pdev, 0);
2898 if (ret < 0)
2899 return ret;
2900 uap->port.irq = ret;
2901
2902 uap->vendor = &vendor_sbsa;
2903 qpdf2400_erratum44_workaround(&pdev->dev, uap);
2904
2905 uap->reg_offset = uap->vendor->reg_offset;
2906 uap->fifosize = 32;
2907 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2908 uap->port.ops = &sbsa_uart_pops;
2909 uap->fixed_baud = baudrate;
2910
2911 snprintf(uap->type, sizeof(uap->type), "SBSA");
2912
2913 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2914
2915 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2916 if (ret)
2917 return ret;
2918
2919 platform_set_drvdata(pdev, uap);
2920
2921 return pl011_register_port(uap);
2922 }
2923
sbsa_uart_remove(struct platform_device * pdev)2924 static void sbsa_uart_remove(struct platform_device *pdev)
2925 {
2926 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2927
2928 uart_remove_one_port(&amba_reg, &uap->port);
2929 pl011_unregister_port(uap);
2930 }
2931
2932 static const struct of_device_id sbsa_uart_of_match[] = {
2933 { .compatible = "arm,sbsa-uart", },
2934 {},
2935 };
2936 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2937
2938 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2939 { "ARMH0011", 0 },
2940 { "ARMHB000", 0 },
2941 {},
2942 };
2943 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2944
2945 static struct platform_driver arm_sbsa_uart_platform_driver = {
2946 .probe = sbsa_uart_probe,
2947 .remove = sbsa_uart_remove,
2948 .driver = {
2949 .name = "sbsa-uart",
2950 .pm = &pl011_dev_pm_ops,
2951 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2952 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2953 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2954 },
2955 };
2956
2957 static const struct amba_id pl011_ids[] = {
2958 {
2959 .id = 0x00041011,
2960 .mask = 0x000fffff,
2961 .data = &vendor_arm,
2962 },
2963 {
2964 .id = 0x00380802,
2965 .mask = 0x00ffffff,
2966 .data = &vendor_st,
2967 },
2968 { 0, 0 },
2969 };
2970
2971 MODULE_DEVICE_TABLE(amba, pl011_ids);
2972
2973 static struct amba_driver pl011_driver = {
2974 .drv = {
2975 .name = "uart-pl011",
2976 .pm = &pl011_dev_pm_ops,
2977 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2978 },
2979 .id_table = pl011_ids,
2980 .probe = pl011_probe,
2981 .remove = pl011_remove,
2982 };
2983
pl011_init(void)2984 static int __init pl011_init(void)
2985 {
2986 pr_info("Serial: AMBA PL011 UART driver\n");
2987
2988 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2989 pr_warn("could not register SBSA UART platform driver\n");
2990 return amba_driver_register(&pl011_driver);
2991 }
2992
pl011_exit(void)2993 static void __exit pl011_exit(void)
2994 {
2995 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2996 amba_driver_unregister(&pl011_driver);
2997 }
2998
2999 /*
3000 * While this can be a module, if builtin it's most likely the console
3001 * So let's leave module_exit but move module_init to an earlier place
3002 */
3003 arch_initcall(pl011_init);
3004 module_exit(pl011_exit);
3005
3006 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3007 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3008 MODULE_LICENSE("GPL");
3009