xref: /linux/drivers/tty/serial/8250/8250_port.c (revision 8a7c601e14576a22c2bbf7f67455ccf3f3d2737f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Base port operations for 8250/16550-type serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *  Split from 8250_core.c, Copyright (C) 2001 Russell King.
7  *
8  * A note about mapbase / membase
9  *
10  *  mapbase is the physical address of the IO port.
11  *  membase is an 'ioremapped' cookie.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/ioport.h>
17 #include <linux/init.h>
18 #include <linux/irq.h>
19 #include <linux/console.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/sysrq.h>
22 #include <linux/delay.h>
23 #include <linux/platform_device.h>
24 #include <linux/tty.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial.h>
28 #include <linux/serial_8250.h>
29 #include <linux/nmi.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/ktime.h>
35 
36 #include <asm/io.h>
37 #include <asm/irq.h>
38 
39 #include "8250.h"
40 
41 /*
42  * Here we define the default xmit fifo size used for each type of UART.
43  */
44 static const struct serial8250_config uart_config[] = {
45 	[PORT_UNKNOWN] = {
46 		.name		= "unknown",
47 		.fifo_size	= 1,
48 		.tx_loadsz	= 1,
49 	},
50 	[PORT_8250] = {
51 		.name		= "8250",
52 		.fifo_size	= 1,
53 		.tx_loadsz	= 1,
54 	},
55 	[PORT_16450] = {
56 		.name		= "16450",
57 		.fifo_size	= 1,
58 		.tx_loadsz	= 1,
59 	},
60 	[PORT_16550] = {
61 		.name		= "16550",
62 		.fifo_size	= 1,
63 		.tx_loadsz	= 1,
64 	},
65 	[PORT_16550A] = {
66 		.name		= "16550A",
67 		.fifo_size	= 16,
68 		.tx_loadsz	= 16,
69 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
70 		.rxtrig_bytes	= {1, 4, 8, 14},
71 		.flags		= UART_CAP_FIFO,
72 	},
73 	[PORT_CIRRUS] = {
74 		.name		= "Cirrus",
75 		.fifo_size	= 1,
76 		.tx_loadsz	= 1,
77 	},
78 	[PORT_16650] = {
79 		.name		= "ST16650",
80 		.fifo_size	= 1,
81 		.tx_loadsz	= 1,
82 		.flags		= UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP,
83 	},
84 	[PORT_16650V2] = {
85 		.name		= "ST16650V2",
86 		.fifo_size	= 32,
87 		.tx_loadsz	= 16,
88 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 |
89 				  UART_FCR_T_TRIG_00,
90 		.rxtrig_bytes	= {8, 16, 24, 28},
91 		.flags		= UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP,
92 	},
93 	[PORT_16750] = {
94 		.name		= "TI16750",
95 		.fifo_size	= 64,
96 		.tx_loadsz	= 64,
97 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 |
98 				  UART_FCR7_64BYTE,
99 		.rxtrig_bytes	= {1, 16, 32, 56},
100 		.flags		= UART_CAP_FIFO | UART_CAP_SLEEP | UART_CAP_AFE,
101 	},
102 	[PORT_STARTECH] = {
103 		.name		= "Startech",
104 		.fifo_size	= 1,
105 		.tx_loadsz	= 1,
106 	},
107 	[PORT_16C950] = {
108 		.name		= "16C950/954",
109 		.fifo_size	= 128,
110 		.tx_loadsz	= 128,
111 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01,
112 		.rxtrig_bytes	= {16, 32, 112, 120},
113 		/* UART_CAP_EFR breaks billionon CF bluetooth card. */
114 		.flags		= UART_CAP_FIFO | UART_CAP_SLEEP,
115 	},
116 	[PORT_16654] = {
117 		.name		= "ST16654",
118 		.fifo_size	= 64,
119 		.tx_loadsz	= 32,
120 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 |
121 				  UART_FCR_T_TRIG_10,
122 		.rxtrig_bytes	= {8, 16, 56, 60},
123 		.flags		= UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP,
124 	},
125 	[PORT_16850] = {
126 		.name		= "XR16850",
127 		.fifo_size	= 128,
128 		.tx_loadsz	= 128,
129 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
130 		.flags		= UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP,
131 	},
132 	[PORT_RSA] = {
133 		.name		= "RSA",
134 		.fifo_size	= 2048,
135 		.tx_loadsz	= 2048,
136 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_11,
137 		.flags		= UART_CAP_FIFO,
138 	},
139 	[PORT_NS16550A] = {
140 		.name		= "NS16550A",
141 		.fifo_size	= 16,
142 		.tx_loadsz	= 16,
143 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
144 		.flags		= UART_CAP_FIFO | UART_NATSEMI,
145 	},
146 	[PORT_XSCALE] = {
147 		.name		= "XScale",
148 		.fifo_size	= 32,
149 		.tx_loadsz	= 32,
150 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
151 		.flags		= UART_CAP_FIFO | UART_CAP_UUE | UART_CAP_RTOIE,
152 	},
153 	[PORT_OCTEON] = {
154 		.name		= "OCTEON",
155 		.fifo_size	= 64,
156 		.tx_loadsz	= 64,
157 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
158 		.flags		= UART_CAP_FIFO,
159 	},
160 	[PORT_U6_16550A] = {
161 		.name		= "U6_16550A",
162 		.fifo_size	= 64,
163 		.tx_loadsz	= 64,
164 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
165 		.flags		= UART_CAP_FIFO | UART_CAP_AFE,
166 	},
167 	[PORT_TEGRA] = {
168 		.name		= "Tegra",
169 		.fifo_size	= 32,
170 		.tx_loadsz	= 8,
171 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 |
172 				  UART_FCR_T_TRIG_01,
173 		.rxtrig_bytes	= {1, 4, 8, 14},
174 		.flags		= UART_CAP_FIFO | UART_CAP_RTOIE,
175 	},
176 	[PORT_XR17D15X] = {
177 		.name		= "XR17D15X",
178 		.fifo_size	= 64,
179 		.tx_loadsz	= 64,
180 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
181 		.flags		= UART_CAP_FIFO | UART_CAP_AFE | UART_CAP_EFR |
182 				  UART_CAP_SLEEP,
183 	},
184 	[PORT_XR17V35X] = {
185 		.name		= "XR17V35X",
186 		.fifo_size	= 256,
187 		.tx_loadsz	= 256,
188 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_11 |
189 				  UART_FCR_T_TRIG_11,
190 		.flags		= UART_CAP_FIFO | UART_CAP_AFE | UART_CAP_EFR |
191 				  UART_CAP_SLEEP,
192 	},
193 	[PORT_LPC3220] = {
194 		.name		= "LPC3220",
195 		.fifo_size	= 64,
196 		.tx_loadsz	= 32,
197 		.fcr		= UART_FCR_DMA_SELECT | UART_FCR_ENABLE_FIFO |
198 				  UART_FCR_R_TRIG_00 | UART_FCR_T_TRIG_00,
199 		.flags		= UART_CAP_FIFO,
200 	},
201 	[PORT_BRCM_TRUMANAGE] = {
202 		.name		= "TruManage",
203 		.fifo_size	= 1,
204 		.tx_loadsz	= 1024,
205 		.flags		= UART_CAP_HFIFO,
206 	},
207 	[PORT_8250_CIR] = {
208 		.name		= "CIR port"
209 	},
210 	[PORT_ALTR_16550_F32] = {
211 		.name		= "Altera 16550 FIFO32",
212 		.fifo_size	= 32,
213 		.tx_loadsz	= 32,
214 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
215 		.rxtrig_bytes	= {1, 8, 16, 30},
216 		.flags		= UART_CAP_FIFO | UART_CAP_AFE,
217 	},
218 	[PORT_ALTR_16550_F64] = {
219 		.name		= "Altera 16550 FIFO64",
220 		.fifo_size	= 64,
221 		.tx_loadsz	= 64,
222 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
223 		.rxtrig_bytes	= {1, 16, 32, 62},
224 		.flags		= UART_CAP_FIFO | UART_CAP_AFE,
225 	},
226 	[PORT_ALTR_16550_F128] = {
227 		.name		= "Altera 16550 FIFO128",
228 		.fifo_size	= 128,
229 		.tx_loadsz	= 128,
230 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
231 		.rxtrig_bytes	= {1, 32, 64, 126},
232 		.flags		= UART_CAP_FIFO | UART_CAP_AFE,
233 	},
234 	/*
235 	 * tx_loadsz is set to 63-bytes instead of 64-bytes to implement
236 	 * workaround of errata A-008006 which states that tx_loadsz should
237 	 * be configured less than Maximum supported fifo bytes.
238 	 */
239 	[PORT_16550A_FSL64] = {
240 		.name		= "16550A_FSL64",
241 		.fifo_size	= 64,
242 		.tx_loadsz	= 63,
243 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 |
244 				  UART_FCR7_64BYTE,
245 		.flags		= UART_CAP_FIFO | UART_CAP_NOTEMT,
246 	},
247 	[PORT_RT2880] = {
248 		.name		= "Palmchip BK-3103",
249 		.fifo_size	= 16,
250 		.tx_loadsz	= 16,
251 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
252 		.rxtrig_bytes	= {1, 4, 8, 14},
253 		.flags		= UART_CAP_FIFO,
254 	},
255 	[PORT_DA830] = {
256 		.name		= "TI DA8xx/66AK2x",
257 		.fifo_size	= 16,
258 		.tx_loadsz	= 16,
259 		.fcr		= UART_FCR_DMA_SELECT | UART_FCR_ENABLE_FIFO |
260 				  UART_FCR_R_TRIG_10,
261 		.rxtrig_bytes	= {1, 4, 8, 14},
262 		.flags		= UART_CAP_FIFO | UART_CAP_AFE,
263 	},
264 	[PORT_MTK_BTIF] = {
265 		.name		= "MediaTek BTIF",
266 		.fifo_size	= 16,
267 		.tx_loadsz	= 16,
268 		.fcr		= UART_FCR_ENABLE_FIFO |
269 				  UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT,
270 		.flags		= UART_CAP_FIFO,
271 	},
272 	[PORT_NPCM] = {
273 		.name		= "Nuvoton 16550",
274 		.fifo_size	= 16,
275 		.tx_loadsz	= 16,
276 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 |
277 				  UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT,
278 		.rxtrig_bytes	= {1, 4, 8, 14},
279 		.flags		= UART_CAP_FIFO,
280 	},
281 	[PORT_SUNIX] = {
282 		.name		= "Sunix",
283 		.fifo_size	= 128,
284 		.tx_loadsz	= 128,
285 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
286 		.rxtrig_bytes	= {1, 32, 64, 112},
287 		.flags		= UART_CAP_FIFO | UART_CAP_SLEEP,
288 	},
289 	[PORT_ASPEED_VUART] = {
290 		.name		= "ASPEED VUART",
291 		.fifo_size	= 16,
292 		.tx_loadsz	= 16,
293 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_00,
294 		.rxtrig_bytes	= {1, 4, 8, 14},
295 		.flags		= UART_CAP_FIFO,
296 	},
297 	[PORT_MCHP16550A] = {
298 		.name           = "MCHP16550A",
299 		.fifo_size      = 256,
300 		.tx_loadsz      = 256,
301 		.fcr            = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01,
302 		.rxtrig_bytes   = {2, 66, 130, 194},
303 		.flags          = UART_CAP_FIFO,
304 	},
305 	[PORT_BCM7271] = {
306 		.name		= "Broadcom BCM7271 UART",
307 		.fifo_size	= 32,
308 		.tx_loadsz	= 32,
309 		.fcr		= UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01,
310 		.rxtrig_bytes	= {1, 8, 16, 30},
311 		.flags		= UART_CAP_FIFO | UART_CAP_AFE,
312 	},
313 };
314 
315 /* Uart divisor latch read */
316 static u32 default_serial_dl_read(struct uart_8250_port *up)
317 {
318 	/* Assign these in pieces to truncate any bits above 7.  */
319 	unsigned char dll = serial_in(up, UART_DLL);
320 	unsigned char dlm = serial_in(up, UART_DLM);
321 
322 	return dll | dlm << 8;
323 }
324 
325 /* Uart divisor latch write */
326 static void default_serial_dl_write(struct uart_8250_port *up, u32 value)
327 {
328 	serial_out(up, UART_DLL, value & 0xff);
329 	serial_out(up, UART_DLM, value >> 8 & 0xff);
330 }
331 
332 #ifdef CONFIG_HAS_IOPORT
333 static u32 hub6_serial_in(struct uart_port *p, unsigned int offset)
334 {
335 	offset = offset << p->regshift;
336 	outb(p->hub6 - 1 + offset, p->iobase);
337 	return inb(p->iobase + 1);
338 }
339 
340 static void hub6_serial_out(struct uart_port *p, unsigned int offset, u32 value)
341 {
342 	offset = offset << p->regshift;
343 	outb(p->hub6 - 1 + offset, p->iobase);
344 	outb(value, p->iobase + 1);
345 }
346 #endif /* CONFIG_HAS_IOPORT */
347 
348 static u32 mem_serial_in(struct uart_port *p, unsigned int offset)
349 {
350 	offset = offset << p->regshift;
351 	return readb(p->membase + offset);
352 }
353 
354 static void mem_serial_out(struct uart_port *p, unsigned int offset, u32 value)
355 {
356 	offset = offset << p->regshift;
357 	writeb(value, p->membase + offset);
358 }
359 
360 static void mem16_serial_out(struct uart_port *p, unsigned int offset, u32 value)
361 {
362 	offset = offset << p->regshift;
363 	writew(value, p->membase + offset);
364 }
365 
366 static u32 mem16_serial_in(struct uart_port *p, unsigned int offset)
367 {
368 	offset = offset << p->regshift;
369 	return readw(p->membase + offset);
370 }
371 
372 static void mem32_serial_out(struct uart_port *p, unsigned int offset, u32 value)
373 {
374 	offset = offset << p->regshift;
375 	writel(value, p->membase + offset);
376 }
377 
378 static u32 mem32_serial_in(struct uart_port *p, unsigned int offset)
379 {
380 	offset = offset << p->regshift;
381 	return readl(p->membase + offset);
382 }
383 
384 static void mem32be_serial_out(struct uart_port *p, unsigned int offset, u32 value)
385 {
386 	offset = offset << p->regshift;
387 	iowrite32be(value, p->membase + offset);
388 }
389 
390 static u32 mem32be_serial_in(struct uart_port *p, unsigned int offset)
391 {
392 	offset = offset << p->regshift;
393 	return ioread32be(p->membase + offset);
394 }
395 
396 #ifdef CONFIG_HAS_IOPORT
397 static u32 io_serial_in(struct uart_port *p, unsigned int offset)
398 {
399 	offset = offset << p->regshift;
400 	return inb(p->iobase + offset);
401 }
402 
403 static void io_serial_out(struct uart_port *p, unsigned int offset, u32 value)
404 {
405 	offset = offset << p->regshift;
406 	outb(value, p->iobase + offset);
407 }
408 #endif
409 static u32 no_serial_in(struct uart_port *p, unsigned int offset)
410 {
411 	return ~0U;
412 }
413 
414 static void no_serial_out(struct uart_port *p, unsigned int offset, u32 value)
415 {
416 }
417 
418 static int serial8250_default_handle_irq(struct uart_port *port);
419 
420 static void set_io_from_upio(struct uart_port *p)
421 {
422 	struct uart_8250_port *up = up_to_u8250p(p);
423 
424 	up->dl_read = default_serial_dl_read;
425 	up->dl_write = default_serial_dl_write;
426 
427 	switch (p->iotype) {
428 #ifdef CONFIG_HAS_IOPORT
429 	case UPIO_HUB6:
430 		p->serial_in = hub6_serial_in;
431 		p->serial_out = hub6_serial_out;
432 		break;
433 #endif
434 
435 	case UPIO_MEM:
436 		p->serial_in = mem_serial_in;
437 		p->serial_out = mem_serial_out;
438 		break;
439 
440 	case UPIO_MEM16:
441 		p->serial_in = mem16_serial_in;
442 		p->serial_out = mem16_serial_out;
443 		break;
444 
445 	case UPIO_MEM32:
446 		p->serial_in = mem32_serial_in;
447 		p->serial_out = mem32_serial_out;
448 		break;
449 
450 	case UPIO_MEM32BE:
451 		p->serial_in = mem32be_serial_in;
452 		p->serial_out = mem32be_serial_out;
453 		break;
454 #ifdef CONFIG_HAS_IOPORT
455 	case UPIO_PORT:
456 		p->serial_in = io_serial_in;
457 		p->serial_out = io_serial_out;
458 		break;
459 #endif
460 	default:
461 		WARN(p->iotype != UPIO_PORT || p->iobase,
462 		     "Unsupported UART type %x\n", p->iotype);
463 		p->serial_in = no_serial_in;
464 		p->serial_out = no_serial_out;
465 	}
466 	/* Remember loaded iotype */
467 	up->cur_iotype = p->iotype;
468 	p->handle_irq = serial8250_default_handle_irq;
469 }
470 
471 static void
472 serial_port_out_sync(struct uart_port *p, int offset, int value)
473 {
474 	switch (p->iotype) {
475 	case UPIO_MEM:
476 	case UPIO_MEM16:
477 	case UPIO_MEM32:
478 	case UPIO_MEM32BE:
479 	case UPIO_AU:
480 		p->serial_out(p, offset, value);
481 		p->serial_in(p, UART_LCR);	/* safe, no side-effects */
482 		break;
483 	default:
484 		p->serial_out(p, offset, value);
485 	}
486 }
487 
488 /*
489  * FIFO support.
490  */
491 static void serial8250_clear_fifos(struct uart_8250_port *p)
492 {
493 	if (p->capabilities & UART_CAP_FIFO) {
494 		serial_out(p, UART_FCR, UART_FCR_ENABLE_FIFO);
495 		serial_out(p, UART_FCR, UART_FCR_ENABLE_FIFO |
496 			       UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
497 		serial_out(p, UART_FCR, 0);
498 	}
499 }
500 
501 static enum hrtimer_restart serial8250_em485_handle_start_tx(struct hrtimer *t);
502 static enum hrtimer_restart serial8250_em485_handle_stop_tx(struct hrtimer *t);
503 
504 void serial8250_clear_and_reinit_fifos(struct uart_8250_port *p)
505 {
506 	serial8250_clear_fifos(p);
507 	serial_out(p, UART_FCR, p->fcr);
508 }
509 EXPORT_SYMBOL_GPL(serial8250_clear_and_reinit_fifos);
510 
511 void serial8250_rpm_get(struct uart_8250_port *p)
512 {
513 	if (!(p->capabilities & UART_CAP_RPM))
514 		return;
515 	pm_runtime_get_sync(p->port.dev);
516 }
517 EXPORT_SYMBOL_GPL(serial8250_rpm_get);
518 
519 void serial8250_rpm_put(struct uart_8250_port *p)
520 {
521 	if (!(p->capabilities & UART_CAP_RPM))
522 		return;
523 	pm_runtime_mark_last_busy(p->port.dev);
524 	pm_runtime_put_autosuspend(p->port.dev);
525 }
526 EXPORT_SYMBOL_GPL(serial8250_rpm_put);
527 
528 /**
529  *	serial8250_em485_init() - put uart_8250_port into rs485 emulating
530  *	@p:	uart_8250_port port instance
531  *
532  *	The function is used to start rs485 software emulating on the
533  *	&struct uart_8250_port* @p. Namely, RTS is switched before/after
534  *	transmission. The function is idempotent, so it is safe to call it
535  *	multiple times.
536  *
537  *	The caller MUST enable interrupt on empty shift register before
538  *	calling serial8250_em485_init(). This interrupt is not a part of
539  *	8250 standard, but implementation defined.
540  *
541  *	The function is supposed to be called from .rs485_config callback
542  *	or from any other callback protected with p->port.lock spinlock.
543  *
544  *	See also serial8250_em485_destroy()
545  *
546  *	Return 0 - success, -errno - otherwise
547  */
548 static int serial8250_em485_init(struct uart_8250_port *p)
549 {
550 	/* Port locked to synchronize UART_IER access against the console. */
551 	lockdep_assert_held_once(&p->port.lock);
552 
553 	if (p->em485)
554 		goto deassert_rts;
555 
556 	p->em485 = kmalloc(sizeof(struct uart_8250_em485), GFP_ATOMIC);
557 	if (!p->em485)
558 		return -ENOMEM;
559 
560 	hrtimer_setup(&p->em485->stop_tx_timer, &serial8250_em485_handle_stop_tx, CLOCK_MONOTONIC,
561 		      HRTIMER_MODE_REL);
562 	hrtimer_setup(&p->em485->start_tx_timer, &serial8250_em485_handle_start_tx, CLOCK_MONOTONIC,
563 		      HRTIMER_MODE_REL);
564 	p->em485->port = p;
565 	p->em485->active_timer = NULL;
566 	p->em485->tx_stopped = true;
567 
568 deassert_rts:
569 	if (p->em485->tx_stopped)
570 		p->rs485_stop_tx(p, true);
571 
572 	return 0;
573 }
574 
575 /**
576  *	serial8250_em485_destroy() - put uart_8250_port into normal state
577  *	@p:	uart_8250_port port instance
578  *
579  *	The function is used to stop rs485 software emulating on the
580  *	&struct uart_8250_port* @p. The function is idempotent, so it is safe to
581  *	call it multiple times.
582  *
583  *	The function is supposed to be called from .rs485_config callback
584  *	or from any other callback protected with p->port.lock spinlock.
585  *
586  *	See also serial8250_em485_init()
587  */
588 void serial8250_em485_destroy(struct uart_8250_port *p)
589 {
590 	if (!p->em485)
591 		return;
592 
593 	hrtimer_cancel(&p->em485->start_tx_timer);
594 	hrtimer_cancel(&p->em485->stop_tx_timer);
595 
596 	kfree(p->em485);
597 	p->em485 = NULL;
598 }
599 EXPORT_SYMBOL_GPL(serial8250_em485_destroy);
600 
601 struct serial_rs485 serial8250_em485_supported = {
602 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
603 		 SER_RS485_TERMINATE_BUS | SER_RS485_RX_DURING_TX,
604 	.delay_rts_before_send = 1,
605 	.delay_rts_after_send = 1,
606 };
607 EXPORT_SYMBOL_GPL(serial8250_em485_supported);
608 
609 /**
610  * serial8250_em485_config() - generic ->rs485_config() callback
611  * @port: uart port
612  * @termios: termios structure
613  * @rs485: rs485 settings
614  *
615  * Generic callback usable by 8250 uart drivers to activate rs485 settings
616  * if the uart is incapable of driving RTS as a Transmit Enable signal in
617  * hardware, relying on software emulation instead.
618  */
619 int serial8250_em485_config(struct uart_port *port, struct ktermios *termios,
620 			    struct serial_rs485 *rs485)
621 {
622 	struct uart_8250_port *up = up_to_u8250p(port);
623 
624 	/*
625 	 * Both serial8250_em485_init() and serial8250_em485_destroy()
626 	 * are idempotent.
627 	 */
628 	if (rs485->flags & SER_RS485_ENABLED)
629 		return serial8250_em485_init(up);
630 
631 	serial8250_em485_destroy(up);
632 	return 0;
633 }
634 EXPORT_SYMBOL_GPL(serial8250_em485_config);
635 
636 /*
637  * These two wrappers ensure that enable_runtime_pm_tx() can be called more than
638  * once and disable_runtime_pm_tx() will still disable RPM because the fifo is
639  * empty and the HW can idle again.
640  */
641 static void serial8250_rpm_get_tx(struct uart_8250_port *p)
642 {
643 	unsigned char rpm_active;
644 
645 	if (!(p->capabilities & UART_CAP_RPM))
646 		return;
647 
648 	rpm_active = xchg(&p->rpm_tx_active, 1);
649 	if (rpm_active)
650 		return;
651 	pm_runtime_get_sync(p->port.dev);
652 }
653 
654 static void serial8250_rpm_put_tx(struct uart_8250_port *p)
655 {
656 	unsigned char rpm_active;
657 
658 	if (!(p->capabilities & UART_CAP_RPM))
659 		return;
660 
661 	rpm_active = xchg(&p->rpm_tx_active, 0);
662 	if (!rpm_active)
663 		return;
664 	pm_runtime_mark_last_busy(p->port.dev);
665 	pm_runtime_put_autosuspend(p->port.dev);
666 }
667 
668 /*
669  * IER sleep support.  UARTs which have EFRs need the "extended
670  * capability" bit enabled.  Note that on XR16C850s, we need to
671  * reset LCR to write to IER.
672  */
673 static void serial8250_set_sleep(struct uart_8250_port *p, int sleep)
674 {
675 	unsigned char lcr = 0, efr = 0;
676 
677 	guard(serial8250_rpm)(p);
678 
679 	if (!(p->capabilities & UART_CAP_SLEEP))
680 		return;
681 
682 	/* Synchronize UART_IER access against the console. */
683 	guard(uart_port_lock_irq)(&p->port);
684 
685 	if (p->capabilities & UART_CAP_EFR) {
686 		lcr = serial_in(p, UART_LCR);
687 		efr = serial_in(p, UART_EFR);
688 		serial_out(p, UART_LCR, UART_LCR_CONF_MODE_B);
689 		serial_out(p, UART_EFR, UART_EFR_ECB);
690 		serial_out(p, UART_LCR, 0);
691 	}
692 	serial_out(p, UART_IER, sleep ? UART_IERX_SLEEP : 0);
693 	if (p->capabilities & UART_CAP_EFR) {
694 		serial_out(p, UART_LCR, UART_LCR_CONF_MODE_B);
695 		serial_out(p, UART_EFR, efr);
696 		serial_out(p, UART_LCR, lcr);
697 	}
698 }
699 
700 /* Clear the interrupt registers. */
701 static void serial8250_clear_interrupts(struct uart_port *port)
702 {
703 	serial_port_in(port, UART_LSR);
704 	serial_port_in(port, UART_RX);
705 	serial_port_in(port, UART_IIR);
706 	serial_port_in(port, UART_MSR);
707 }
708 
709 static void serial8250_clear_IER(struct uart_8250_port *up)
710 {
711 	if (up->capabilities & UART_CAP_UUE)
712 		serial_out(up, UART_IER, UART_IER_UUE);
713 	else
714 		serial_out(up, UART_IER, 0);
715 }
716 
717 /*
718  * This is a quickie test to see how big the FIFO is.
719  * It doesn't work at all the time, more's the pity.
720  */
721 static int size_fifo(struct uart_8250_port *up)
722 {
723 	unsigned char old_fcr, old_mcr, old_lcr;
724 	u32 old_dl;
725 	int count;
726 
727 	old_lcr = serial_in(up, UART_LCR);
728 	serial_out(up, UART_LCR, 0);
729 	old_fcr = serial_in(up, UART_FCR);
730 	old_mcr = serial8250_in_MCR(up);
731 	serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO |
732 		    UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
733 	serial8250_out_MCR(up, UART_MCR_LOOP);
734 	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
735 	old_dl = serial_dl_read(up);
736 	serial_dl_write(up, 0x0001);
737 	serial_out(up, UART_LCR, UART_LCR_WLEN8);
738 	for (count = 0; count < 256; count++)
739 		serial_out(up, UART_TX, count);
740 	mdelay(20);/* FIXME - schedule_timeout */
741 	for (count = 0; (serial_in(up, UART_LSR) & UART_LSR_DR) &&
742 	     (count < 256); count++)
743 		serial_in(up, UART_RX);
744 	serial_out(up, UART_FCR, old_fcr);
745 	serial8250_out_MCR(up, old_mcr);
746 	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
747 	serial_dl_write(up, old_dl);
748 	serial_out(up, UART_LCR, old_lcr);
749 
750 	return count;
751 }
752 
753 /*
754  * Read UART ID using the divisor method - set DLL and DLM to zero
755  * and the revision will be in DLL and device type in DLM.  We
756  * preserve the device state across this.
757  */
758 static unsigned int autoconfig_read_divisor_id(struct uart_8250_port *p)
759 {
760 	unsigned char old_lcr;
761 	unsigned int id, old_dl;
762 
763 	old_lcr = serial_in(p, UART_LCR);
764 	serial_out(p, UART_LCR, UART_LCR_CONF_MODE_A);
765 	old_dl = serial_dl_read(p);
766 	serial_dl_write(p, 0);
767 	id = serial_dl_read(p);
768 	serial_dl_write(p, old_dl);
769 
770 	serial_out(p, UART_LCR, old_lcr);
771 
772 	return id;
773 }
774 
775 /*
776  * This is a helper routine to autodetect StarTech/Exar/Oxsemi UART's.
777  * When this function is called we know it is at least a StarTech
778  * 16650 V2, but it might be one of several StarTech UARTs, or one of
779  * its clones.  (We treat the broken original StarTech 16650 V1 as a
780  * 16550, and why not?  Startech doesn't seem to even acknowledge its
781  * existence.)
782  *
783  * What evil have men's minds wrought...
784  */
785 static void autoconfig_has_efr(struct uart_8250_port *up)
786 {
787 	unsigned int id1, id2, id3, rev;
788 
789 	/*
790 	 * Everything with an EFR has SLEEP
791 	 */
792 	up->capabilities |= UART_CAP_EFR | UART_CAP_SLEEP;
793 
794 	/*
795 	 * First we check to see if it's an Oxford Semiconductor UART.
796 	 *
797 	 * If we have to do this here because some non-National
798 	 * Semiconductor clone chips lock up if you try writing to the
799 	 * LSR register (which serial_icr_read does)
800 	 */
801 
802 	/*
803 	 * Check for Oxford Semiconductor 16C950.
804 	 *
805 	 * EFR [4] must be set else this test fails.
806 	 *
807 	 * This shouldn't be necessary, but Mike Hudson (Exoray@isys.ca)
808 	 * claims that it's needed for 952 dual UART's (which are not
809 	 * recommended for new designs).
810 	 */
811 	up->acr = 0;
812 	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
813 	serial_out(up, UART_EFR, UART_EFR_ECB);
814 	serial_out(up, UART_LCR, 0x00);
815 	id1 = serial_icr_read(up, UART_ID1);
816 	id2 = serial_icr_read(up, UART_ID2);
817 	id3 = serial_icr_read(up, UART_ID3);
818 	rev = serial_icr_read(up, UART_REV);
819 
820 	if (id1 == 0x16 && id2 == 0xC9 &&
821 	    (id3 == 0x50 || id3 == 0x52 || id3 == 0x54)) {
822 		up->port.type = PORT_16C950;
823 
824 		/*
825 		 * Enable work around for the Oxford Semiconductor 952 rev B
826 		 * chip which causes it to seriously miscalculate baud rates
827 		 * when DLL is 0.
828 		 */
829 		if (id3 == 0x52 && rev == 0x01)
830 			up->bugs |= UART_BUG_QUOT;
831 		return;
832 	}
833 
834 	/*
835 	 * We check for a XR16C850 by setting DLL and DLM to 0, and then
836 	 * reading back DLL and DLM.  The chip type depends on the DLM
837 	 * value read back:
838 	 *  0x10 - XR16C850 and the DLL contains the chip revision.
839 	 *  0x12 - XR16C2850.
840 	 *  0x14 - XR16C854.
841 	 */
842 	id1 = autoconfig_read_divisor_id(up);
843 
844 	id2 = id1 >> 8;
845 	if (id2 == 0x10 || id2 == 0x12 || id2 == 0x14) {
846 		up->port.type = PORT_16850;
847 		return;
848 	}
849 
850 	/*
851 	 * It wasn't an XR16C850.
852 	 *
853 	 * We distinguish between the '654 and the '650 by counting
854 	 * how many bytes are in the FIFO.  I'm using this for now,
855 	 * since that's the technique that was sent to me in the
856 	 * serial driver update, but I'm not convinced this works.
857 	 * I've had problems doing this in the past.  -TYT
858 	 */
859 	if (size_fifo(up) == 64)
860 		up->port.type = PORT_16654;
861 	else
862 		up->port.type = PORT_16650V2;
863 }
864 
865 /*
866  * We detected a chip without a FIFO.  Only two fall into
867  * this category - the original 8250 and the 16450.  The
868  * 16450 has a scratch register (accessible with LCR=0)
869  */
870 static void autoconfig_8250(struct uart_8250_port *up)
871 {
872 	unsigned char scratch, status1, status2;
873 
874 	up->port.type = PORT_8250;
875 
876 	scratch = serial_in(up, UART_SCR);
877 	serial_out(up, UART_SCR, 0xa5);
878 	status1 = serial_in(up, UART_SCR);
879 	serial_out(up, UART_SCR, 0x5a);
880 	status2 = serial_in(up, UART_SCR);
881 	serial_out(up, UART_SCR, scratch);
882 
883 	if (status1 == 0xa5 && status2 == 0x5a)
884 		up->port.type = PORT_16450;
885 }
886 
887 static int broken_efr(struct uart_8250_port *up)
888 {
889 	/*
890 	 * Exar ST16C2550 "A2" devices incorrectly detect as
891 	 * having an EFR, and report an ID of 0x0201.  See
892 	 * http://linux.derkeiler.com/Mailing-Lists/Kernel/2004-11/4812.html
893 	 */
894 	if (autoconfig_read_divisor_id(up) == 0x0201 && size_fifo(up) == 16)
895 		return 1;
896 
897 	return 0;
898 }
899 
900 /*
901  * We know that the chip has FIFOs.  Does it have an EFR?  The
902  * EFR is located in the same register position as the IIR and
903  * we know the top two bits of the IIR are currently set.  The
904  * EFR should contain zero.  Try to read the EFR.
905  */
906 static void autoconfig_16550a(struct uart_8250_port *up)
907 {
908 	unsigned char status1, status2;
909 	unsigned int iersave;
910 
911 	/* Port locked to synchronize UART_IER access against the console. */
912 	lockdep_assert_held_once(&up->port.lock);
913 
914 	up->port.type = PORT_16550A;
915 	up->capabilities |= UART_CAP_FIFO;
916 
917 	if (!IS_ENABLED(CONFIG_SERIAL_8250_16550A_VARIANTS) &&
918 	    !(up->port.flags & UPF_FULL_PROBE))
919 		return;
920 
921 	/*
922 	 * Check for presence of the EFR when DLAB is set.
923 	 * Only ST16C650V1 UARTs pass this test.
924 	 */
925 	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
926 	if (serial_in(up, UART_EFR) == 0) {
927 		serial_out(up, UART_EFR, 0xA8);
928 		if (serial_in(up, UART_EFR) != 0) {
929 			up->port.type = PORT_16650;
930 			up->capabilities |= UART_CAP_EFR | UART_CAP_SLEEP;
931 		} else {
932 			serial_out(up, UART_LCR, 0);
933 			serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO |
934 				   UART_FCR7_64BYTE);
935 			status1 = serial_in(up, UART_IIR) & UART_IIR_FIFO_ENABLED_16750;
936 			serial_out(up, UART_FCR, 0);
937 			serial_out(up, UART_LCR, 0);
938 
939 			if (status1 == UART_IIR_FIFO_ENABLED_16750)
940 				up->port.type = PORT_16550A_FSL64;
941 		}
942 		serial_out(up, UART_EFR, 0);
943 		return;
944 	}
945 
946 	/*
947 	 * Maybe it requires 0xbf to be written to the LCR.
948 	 * (other ST16C650V2 UARTs, TI16C752A, etc)
949 	 */
950 	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
951 	if (serial_in(up, UART_EFR) == 0 && !broken_efr(up)) {
952 		autoconfig_has_efr(up);
953 		return;
954 	}
955 
956 	/*
957 	 * Check for a National Semiconductor SuperIO chip.
958 	 * Attempt to switch to bank 2, read the value of the LOOP bit
959 	 * from EXCR1. Switch back to bank 0, change it in MCR. Then
960 	 * switch back to bank 2, read it from EXCR1 again and check
961 	 * it's changed. If so, set baud_base in EXCR2 to 921600. -- dwmw2
962 	 */
963 	serial_out(up, UART_LCR, 0);
964 	status1 = serial8250_in_MCR(up);
965 	serial_out(up, UART_LCR, 0xE0);
966 	status2 = serial_in(up, 0x02); /* EXCR1 */
967 
968 	if (!((status2 ^ status1) & UART_MCR_LOOP)) {
969 		serial_out(up, UART_LCR, 0);
970 		serial8250_out_MCR(up, status1 ^ UART_MCR_LOOP);
971 		serial_out(up, UART_LCR, 0xE0);
972 		status2 = serial_in(up, 0x02); /* EXCR1 */
973 		serial_out(up, UART_LCR, 0);
974 		serial8250_out_MCR(up, status1);
975 
976 		if ((status2 ^ status1) & UART_MCR_LOOP) {
977 			unsigned short quot;
978 
979 			serial_out(up, UART_LCR, 0xE0);
980 
981 			quot = serial_dl_read(up);
982 			quot <<= 3;
983 
984 			if (ns16550a_goto_highspeed(up))
985 				serial_dl_write(up, quot);
986 
987 			serial_out(up, UART_LCR, 0);
988 
989 			up->port.uartclk = 921600*16;
990 			up->port.type = PORT_NS16550A;
991 			up->capabilities |= UART_NATSEMI;
992 			return;
993 		}
994 	}
995 
996 	/*
997 	 * No EFR.  Try to detect a TI16750, which only sets bit 5 of
998 	 * the IIR when 64 byte FIFO mode is enabled when DLAB is set.
999 	 * Try setting it with and without DLAB set.  Cheap clones
1000 	 * set bit 5 without DLAB set.
1001 	 */
1002 	serial_out(up, UART_LCR, 0);
1003 	serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE);
1004 	status1 = serial_in(up, UART_IIR) & UART_IIR_FIFO_ENABLED_16750;
1005 	serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO);
1006 
1007 	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
1008 	serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE);
1009 	status2 = serial_in(up, UART_IIR) & UART_IIR_FIFO_ENABLED_16750;
1010 	serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO);
1011 
1012 	serial_out(up, UART_LCR, 0);
1013 
1014 	if (status1 == UART_IIR_FIFO_ENABLED_16550A &&
1015 	    status2 == UART_IIR_FIFO_ENABLED_16750) {
1016 		up->port.type = PORT_16750;
1017 		up->capabilities |= UART_CAP_AFE | UART_CAP_SLEEP;
1018 		return;
1019 	}
1020 
1021 	/*
1022 	 * Try writing and reading the UART_IER_UUE bit (b6).
1023 	 * If it works, this is probably one of the Xscale platform's
1024 	 * internal UARTs.
1025 	 * We're going to explicitly set the UUE bit to 0 before
1026 	 * trying to write and read a 1 just to make sure it's not
1027 	 * already a 1 and maybe locked there before we even start.
1028 	 */
1029 	iersave = serial_in(up, UART_IER);
1030 	serial_out(up, UART_IER, iersave & ~UART_IER_UUE);
1031 	if (!(serial_in(up, UART_IER) & UART_IER_UUE)) {
1032 		/*
1033 		 * OK it's in a known zero state, try writing and reading
1034 		 * without disturbing the current state of the other bits.
1035 		 */
1036 		serial_out(up, UART_IER, iersave | UART_IER_UUE);
1037 		if (serial_in(up, UART_IER) & UART_IER_UUE) {
1038 			/*
1039 			 * It's an Xscale.
1040 			 * We'll leave the UART_IER_UUE bit set to 1 (enabled).
1041 			 */
1042 			up->port.type = PORT_XSCALE;
1043 			up->capabilities |= UART_CAP_UUE | UART_CAP_RTOIE;
1044 			return;
1045 		}
1046 	}
1047 	serial_out(up, UART_IER, iersave);
1048 
1049 	/*
1050 	 * We distinguish between 16550A and U6 16550A by counting
1051 	 * how many bytes are in the FIFO.
1052 	 */
1053 	if (up->port.type == PORT_16550A && size_fifo(up) == 64) {
1054 		up->port.type = PORT_U6_16550A;
1055 		up->capabilities |= UART_CAP_AFE;
1056 	}
1057 }
1058 
1059 /*
1060  * This routine is called by rs_init() to initialize a specific serial
1061  * port.  It determines what type of UART chip this serial port is
1062  * using: 8250, 16450, 16550, 16550A.  The important question is
1063  * whether or not this UART is a 16550A or not, since this will
1064  * determine whether or not we can use its FIFO features or not.
1065  */
1066 static void autoconfig(struct uart_8250_port *up)
1067 {
1068 	unsigned char status1, scratch, scratch2, scratch3;
1069 	unsigned char save_lcr, save_mcr;
1070 	struct uart_port *port = &up->port;
1071 	unsigned long flags;
1072 	unsigned int old_capabilities;
1073 
1074 	if (!port->iobase && !port->mapbase && !port->membase)
1075 		return;
1076 
1077 	/*
1078 	 * We really do need global IRQs disabled here - we're going to
1079 	 * be frobbing the chips IRQ enable register to see if it exists.
1080 	 *
1081 	 * Synchronize UART_IER access against the console.
1082 	 */
1083 	uart_port_lock_irqsave(port, &flags);
1084 
1085 	up->capabilities = 0;
1086 	up->bugs = 0;
1087 
1088 	if (!(port->flags & UPF_BUGGY_UART)) {
1089 		/*
1090 		 * Do a simple existence test first; if we fail this,
1091 		 * there's no point trying anything else.
1092 		 *
1093 		 * 0x80 is used as a nonsense port to prevent against
1094 		 * false positives due to ISA bus float.  The
1095 		 * assumption is that 0x80 is a non-existent port;
1096 		 * which should be safe since include/asm/io.h also
1097 		 * makes this assumption.
1098 		 *
1099 		 * Note: this is safe as long as MCR bit 4 is clear
1100 		 * and the device is in "PC" mode.
1101 		 */
1102 		scratch = serial_in(up, UART_IER);
1103 		serial_out(up, UART_IER, 0);
1104 #if defined(__i386__) && defined(CONFIG_HAS_IOPORT)
1105 		outb(0xff, 0x080);
1106 #endif
1107 		/*
1108 		 * Mask out IER[7:4] bits for test as some UARTs (e.g. TL
1109 		 * 16C754B) allow only to modify them if an EFR bit is set.
1110 		 */
1111 		scratch2 = serial_in(up, UART_IER) & UART_IER_ALL_INTR;
1112 		serial_out(up, UART_IER, UART_IER_ALL_INTR);
1113 #if defined(__i386__) && defined(CONFIG_HAS_IOPORT)
1114 		outb(0, 0x080);
1115 #endif
1116 		scratch3 = serial_in(up, UART_IER) & UART_IER_ALL_INTR;
1117 		serial_out(up, UART_IER, scratch);
1118 		if (scratch2 != 0 || scratch3 != UART_IER_ALL_INTR) {
1119 			/*
1120 			 * We failed; there's nothing here
1121 			 */
1122 			uart_port_unlock_irqrestore(port, flags);
1123 			return;
1124 		}
1125 	}
1126 
1127 	save_mcr = serial8250_in_MCR(up);
1128 	save_lcr = serial_in(up, UART_LCR);
1129 
1130 	/*
1131 	 * Check to see if a UART is really there.  Certain broken
1132 	 * internal modems based on the Rockwell chipset fail this
1133 	 * test, because they apparently don't implement the loopback
1134 	 * test mode.  So this test is skipped on the COM 1 through
1135 	 * COM 4 ports.  This *should* be safe, since no board
1136 	 * manufacturer would be stupid enough to design a board
1137 	 * that conflicts with COM 1-4 --- we hope!
1138 	 */
1139 	if (!(port->flags & UPF_SKIP_TEST)) {
1140 		serial8250_out_MCR(up, UART_MCR_LOOP | UART_MCR_OUT2 | UART_MCR_RTS);
1141 		status1 = serial_in(up, UART_MSR) & UART_MSR_STATUS_BITS;
1142 		serial8250_out_MCR(up, save_mcr);
1143 		if (status1 != (UART_MSR_DCD | UART_MSR_CTS)) {
1144 			uart_port_unlock_irqrestore(port, flags);
1145 			return;
1146 		}
1147 	}
1148 
1149 	/*
1150 	 * We're pretty sure there's a port here.  Lets find out what
1151 	 * type of port it is.  The IIR top two bits allows us to find
1152 	 * out if it's 8250 or 16450, 16550, 16550A or later.  This
1153 	 * determines what we test for next.
1154 	 *
1155 	 * We also initialise the EFR (if any) to zero for later.  The
1156 	 * EFR occupies the same register location as the FCR and IIR.
1157 	 */
1158 	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
1159 	serial_out(up, UART_EFR, 0);
1160 	serial_out(up, UART_LCR, 0);
1161 
1162 	serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO);
1163 
1164 	switch (serial_in(up, UART_IIR) & UART_IIR_FIFO_ENABLED) {
1165 	case UART_IIR_FIFO_ENABLED_8250:
1166 		autoconfig_8250(up);
1167 		break;
1168 	case UART_IIR_FIFO_ENABLED_16550:
1169 		port->type = PORT_16550;
1170 		break;
1171 	case UART_IIR_FIFO_ENABLED_16550A:
1172 		autoconfig_16550a(up);
1173 		break;
1174 	default:
1175 		port->type = PORT_UNKNOWN;
1176 		break;
1177 	}
1178 
1179 	rsa_autoconfig(up);
1180 
1181 	serial_out(up, UART_LCR, save_lcr);
1182 
1183 	port->fifosize = uart_config[up->port.type].fifo_size;
1184 	old_capabilities = up->capabilities;
1185 	up->capabilities = uart_config[port->type].flags;
1186 	up->tx_loadsz = uart_config[port->type].tx_loadsz;
1187 
1188 	if (port->type != PORT_UNKNOWN) {
1189 		/*
1190 		 * Reset the UART.
1191 		 */
1192 		rsa_reset(up);
1193 		serial8250_out_MCR(up, save_mcr);
1194 		serial8250_clear_fifos(up);
1195 		serial_in(up, UART_RX);
1196 		serial8250_clear_IER(up);
1197 	}
1198 
1199 	uart_port_unlock_irqrestore(port, flags);
1200 
1201 	/*
1202 	 * Check if the device is a Fintek F81216A
1203 	 */
1204 	if (port->type == PORT_16550A && port->iotype == UPIO_PORT)
1205 		fintek_8250_probe(up);
1206 
1207 	if (up->capabilities != old_capabilities) {
1208 		dev_warn(port->dev, "detected caps %08x should be %08x\n",
1209 			 old_capabilities, up->capabilities);
1210 	}
1211 }
1212 
1213 static void autoconfig_irq(struct uart_8250_port *up)
1214 {
1215 	struct uart_port *port = &up->port;
1216 	unsigned char save_mcr, save_ier;
1217 	unsigned char save_ICP = 0;
1218 	unsigned int ICP = 0;
1219 	unsigned long irqs;
1220 	int irq;
1221 
1222 	if (port->flags & UPF_FOURPORT) {
1223 		ICP = (port->iobase & 0xfe0) | 0x1f;
1224 		save_ICP = inb_p(ICP);
1225 		outb_p(0x80, ICP);
1226 		inb_p(ICP);
1227 	}
1228 
1229 	/* forget possible initially masked and pending IRQ */
1230 	probe_irq_off(probe_irq_on());
1231 	save_mcr = serial8250_in_MCR(up);
1232 	/* Synchronize UART_IER access against the console. */
1233 	scoped_guard(uart_port_lock_irq, port)
1234 		save_ier = serial_in(up, UART_IER);
1235 	serial8250_out_MCR(up, UART_MCR_OUT1 | UART_MCR_OUT2);
1236 
1237 	irqs = probe_irq_on();
1238 	serial8250_out_MCR(up, 0);
1239 	udelay(10);
1240 	if (port->flags & UPF_FOURPORT) {
1241 		serial8250_out_MCR(up, UART_MCR_DTR | UART_MCR_RTS);
1242 	} else {
1243 		serial8250_out_MCR(up,
1244 			UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2);
1245 	}
1246 	/* Synchronize UART_IER access against the console. */
1247 	scoped_guard(uart_port_lock_irq, port)
1248 		serial_out(up, UART_IER, UART_IER_ALL_INTR);
1249 	serial8250_clear_interrupts(port);
1250 	serial_out(up, UART_TX, 0xFF);
1251 	udelay(20);
1252 	irq = probe_irq_off(irqs);
1253 
1254 	serial8250_out_MCR(up, save_mcr);
1255 	/* Synchronize UART_IER access against the console. */
1256 	scoped_guard(uart_port_lock_irq, port)
1257 		serial_out(up, UART_IER, save_ier);
1258 
1259 	if (port->flags & UPF_FOURPORT)
1260 		outb_p(save_ICP, ICP);
1261 
1262 	port->irq = (irq > 0) ? irq : 0;
1263 }
1264 
1265 static void serial8250_stop_rx(struct uart_port *port)
1266 {
1267 	struct uart_8250_port *up = up_to_u8250p(port);
1268 
1269 	/* Port locked to synchronize UART_IER access against the console. */
1270 	lockdep_assert_held_once(&port->lock);
1271 
1272 	guard(serial8250_rpm)(up);
1273 
1274 	up->ier &= ~(UART_IER_RLSI | UART_IER_RDI);
1275 	serial_port_out(port, UART_IER, up->ier);
1276 }
1277 
1278 /**
1279  * serial8250_em485_stop_tx() - generic ->rs485_stop_tx() callback
1280  * @p: uart 8250 port
1281  * @toggle_ier: true to allow enabling receive interrupts
1282  *
1283  * Generic callback usable by 8250 uart drivers to stop rs485 transmission.
1284  */
1285 void serial8250_em485_stop_tx(struct uart_8250_port *p, bool toggle_ier)
1286 {
1287 	unsigned char mcr = serial8250_in_MCR(p);
1288 
1289 	/* Port locked to synchronize UART_IER access against the console. */
1290 	lockdep_assert_held_once(&p->port.lock);
1291 
1292 	if (p->port.rs485.flags & SER_RS485_RTS_AFTER_SEND)
1293 		mcr |= UART_MCR_RTS;
1294 	else
1295 		mcr &= ~UART_MCR_RTS;
1296 	serial8250_out_MCR(p, mcr);
1297 
1298 	/*
1299 	 * Empty the RX FIFO, we are not interested in anything
1300 	 * received during the half-duplex transmission.
1301 	 * Enable previously disabled RX interrupts.
1302 	 */
1303 	if (!(p->port.rs485.flags & SER_RS485_RX_DURING_TX)) {
1304 		serial8250_clear_and_reinit_fifos(p);
1305 
1306 		if (toggle_ier) {
1307 			p->ier |= UART_IER_RLSI | UART_IER_RDI;
1308 			serial_port_out(&p->port, UART_IER, p->ier);
1309 		}
1310 	}
1311 }
1312 EXPORT_SYMBOL_GPL(serial8250_em485_stop_tx);
1313 
1314 static enum hrtimer_restart serial8250_em485_handle_stop_tx(struct hrtimer *t)
1315 {
1316 	struct uart_8250_em485 *em485 = container_of(t, struct uart_8250_em485,
1317 			stop_tx_timer);
1318 	struct uart_8250_port *p = em485->port;
1319 
1320 	guard(serial8250_rpm)(p);
1321 	guard(uart_port_lock_irqsave)(&p->port);
1322 
1323 	if (em485->active_timer == &em485->stop_tx_timer) {
1324 		p->rs485_stop_tx(p, true);
1325 		em485->active_timer = NULL;
1326 		em485->tx_stopped = true;
1327 	}
1328 
1329 	return HRTIMER_NORESTART;
1330 }
1331 
1332 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
1333 {
1334 	hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
1335 }
1336 
1337 static void __stop_tx_rs485(struct uart_8250_port *p, u64 stop_delay)
1338 {
1339 	struct uart_8250_em485 *em485 = p->em485;
1340 
1341 	/* Port locked to synchronize UART_IER access against the console. */
1342 	lockdep_assert_held_once(&p->port.lock);
1343 
1344 	stop_delay += (u64)p->port.rs485.delay_rts_after_send * NSEC_PER_MSEC;
1345 
1346 	/*
1347 	 * rs485_stop_tx() is going to set RTS according to config
1348 	 * AND flush RX FIFO if required.
1349 	 */
1350 	if (stop_delay > 0) {
1351 		em485->active_timer = &em485->stop_tx_timer;
1352 		hrtimer_start(&em485->stop_tx_timer, ns_to_ktime(stop_delay), HRTIMER_MODE_REL);
1353 	} else {
1354 		p->rs485_stop_tx(p, true);
1355 		em485->active_timer = NULL;
1356 		em485->tx_stopped = true;
1357 	}
1358 }
1359 
1360 static inline void __stop_tx(struct uart_8250_port *p)
1361 {
1362 	struct uart_8250_em485 *em485 = p->em485;
1363 
1364 	if (em485) {
1365 		u16 lsr = serial_lsr_in(p);
1366 		u64 stop_delay = 0;
1367 
1368 		if (!(lsr & UART_LSR_THRE))
1369 			return;
1370 		/*
1371 		 * To provide required timing and allow FIFO transfer,
1372 		 * __stop_tx_rs485() must be called only when both FIFO and
1373 		 * shift register are empty. The device driver should either
1374 		 * enable interrupt on TEMT or set UART_CAP_NOTEMT that will
1375 		 * enlarge stop_tx_timer by the tx time of one frame to cover
1376 		 * for emptying of the shift register.
1377 		 */
1378 		if (!(lsr & UART_LSR_TEMT)) {
1379 			if (!(p->capabilities & UART_CAP_NOTEMT))
1380 				return;
1381 			/*
1382 			 * RTS might get deasserted too early with the normal
1383 			 * frame timing formula. It seems to suggest THRE might
1384 			 * get asserted already during tx of the stop bit
1385 			 * rather than after it is fully sent.
1386 			 * Roughly estimate 1 extra bit here with / 7.
1387 			 */
1388 			stop_delay = p->port.frame_time + DIV_ROUND_UP(p->port.frame_time, 7);
1389 		}
1390 
1391 		__stop_tx_rs485(p, stop_delay);
1392 	}
1393 
1394 	if (serial8250_clear_THRI(p))
1395 		serial8250_rpm_put_tx(p);
1396 }
1397 
1398 static void serial8250_stop_tx(struct uart_port *port)
1399 {
1400 	struct uart_8250_port *up = up_to_u8250p(port);
1401 
1402 	guard(serial8250_rpm)(up);
1403 	__stop_tx(up);
1404 
1405 	/*
1406 	 * We really want to stop the transmitter from sending.
1407 	 */
1408 	if (port->type == PORT_16C950) {
1409 		up->acr |= UART_ACR_TXDIS;
1410 		serial_icr_write(up, UART_ACR, up->acr);
1411 	}
1412 }
1413 
1414 static inline void __start_tx(struct uart_port *port)
1415 {
1416 	struct uart_8250_port *up = up_to_u8250p(port);
1417 
1418 	if (up->dma && !up->dma->tx_dma(up))
1419 		return;
1420 
1421 	if (serial8250_set_THRI(up)) {
1422 		if (up->bugs & UART_BUG_TXEN) {
1423 			u16 lsr = serial_lsr_in(up);
1424 
1425 			if (lsr & UART_LSR_THRE)
1426 				serial8250_tx_chars(up);
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Re-enable the transmitter if we disabled it.
1432 	 */
1433 	if (port->type == PORT_16C950 && up->acr & UART_ACR_TXDIS) {
1434 		up->acr &= ~UART_ACR_TXDIS;
1435 		serial_icr_write(up, UART_ACR, up->acr);
1436 	}
1437 }
1438 
1439 /**
1440  * serial8250_em485_start_tx() - generic ->rs485_start_tx() callback
1441  * @up: uart 8250 port
1442  * @toggle_ier: true to allow disabling receive interrupts
1443  *
1444  * Generic callback usable by 8250 uart drivers to start rs485 transmission.
1445  * Assumes that setting the RTS bit in the MCR register means RTS is high.
1446  * (Some chips use inverse semantics.)  Further assumes that reception is
1447  * stoppable by disabling the UART_IER_RDI interrupt.  (Some chips set the
1448  * UART_LSR_DR bit even when UART_IER_RDI is disabled, foiling this approach.)
1449  */
1450 void serial8250_em485_start_tx(struct uart_8250_port *up, bool toggle_ier)
1451 {
1452 	unsigned char mcr = serial8250_in_MCR(up);
1453 
1454 	if (!(up->port.rs485.flags & SER_RS485_RX_DURING_TX) && toggle_ier)
1455 		serial8250_stop_rx(&up->port);
1456 
1457 	if (up->port.rs485.flags & SER_RS485_RTS_ON_SEND)
1458 		mcr |= UART_MCR_RTS;
1459 	else
1460 		mcr &= ~UART_MCR_RTS;
1461 	serial8250_out_MCR(up, mcr);
1462 }
1463 EXPORT_SYMBOL_GPL(serial8250_em485_start_tx);
1464 
1465 /* Returns false, if start_tx_timer was setup to defer TX start */
1466 static bool start_tx_rs485(struct uart_port *port)
1467 {
1468 	struct uart_8250_port *up = up_to_u8250p(port);
1469 	struct uart_8250_em485 *em485 = up->em485;
1470 
1471 	/*
1472 	 * While serial8250_em485_handle_stop_tx() is a noop if
1473 	 * em485->active_timer != &em485->stop_tx_timer, it might happen that
1474 	 * the timer is still armed and triggers only after the current bunch of
1475 	 * chars is send and em485->active_timer == &em485->stop_tx_timer again.
1476 	 * So cancel the timer. There is still a theoretical race condition if
1477 	 * the timer is already running and only comes around to check for
1478 	 * em485->active_timer when &em485->stop_tx_timer is armed again.
1479 	 */
1480 	if (em485->active_timer == &em485->stop_tx_timer)
1481 		hrtimer_try_to_cancel(&em485->stop_tx_timer);
1482 
1483 	em485->active_timer = NULL;
1484 
1485 	if (em485->tx_stopped) {
1486 		em485->tx_stopped = false;
1487 
1488 		up->rs485_start_tx(up, true);
1489 
1490 		if (up->port.rs485.delay_rts_before_send > 0) {
1491 			em485->active_timer = &em485->start_tx_timer;
1492 			start_hrtimer_ms(&em485->start_tx_timer,
1493 					 up->port.rs485.delay_rts_before_send);
1494 			return false;
1495 		}
1496 	}
1497 
1498 	return true;
1499 }
1500 
1501 static enum hrtimer_restart serial8250_em485_handle_start_tx(struct hrtimer *t)
1502 {
1503 	struct uart_8250_em485 *em485 = container_of(t, struct uart_8250_em485,
1504 			start_tx_timer);
1505 	struct uart_8250_port *p = em485->port;
1506 
1507 	guard(uart_port_lock_irqsave)(&p->port);
1508 
1509 	if (em485->active_timer == &em485->start_tx_timer) {
1510 		__start_tx(&p->port);
1511 		em485->active_timer = NULL;
1512 	}
1513 
1514 	return HRTIMER_NORESTART;
1515 }
1516 
1517 static void serial8250_start_tx(struct uart_port *port)
1518 {
1519 	struct uart_8250_port *up = up_to_u8250p(port);
1520 	struct uart_8250_em485 *em485 = up->em485;
1521 
1522 	/* Port locked to synchronize UART_IER access against the console. */
1523 	lockdep_assert_held_once(&port->lock);
1524 
1525 	if (!port->x_char && kfifo_is_empty(&port->state->port.xmit_fifo))
1526 		return;
1527 
1528 	serial8250_rpm_get_tx(up);
1529 
1530 	if (em485) {
1531 		if ((em485->active_timer == &em485->start_tx_timer) ||
1532 		    !start_tx_rs485(port))
1533 			return;
1534 	}
1535 	__start_tx(port);
1536 }
1537 
1538 static void serial8250_throttle(struct uart_port *port)
1539 {
1540 	port->throttle(port);
1541 }
1542 
1543 static void serial8250_unthrottle(struct uart_port *port)
1544 {
1545 	port->unthrottle(port);
1546 }
1547 
1548 static void serial8250_disable_ms(struct uart_port *port)
1549 {
1550 	struct uart_8250_port *up = up_to_u8250p(port);
1551 
1552 	/* Port locked to synchronize UART_IER access against the console. */
1553 	lockdep_assert_held_once(&port->lock);
1554 
1555 	/* no MSR capabilities */
1556 	if (up->bugs & UART_BUG_NOMSR)
1557 		return;
1558 
1559 	mctrl_gpio_disable_ms_no_sync(up->gpios);
1560 
1561 	up->ier &= ~UART_IER_MSI;
1562 	serial_port_out(port, UART_IER, up->ier);
1563 }
1564 
1565 static void serial8250_enable_ms(struct uart_port *port)
1566 {
1567 	struct uart_8250_port *up = up_to_u8250p(port);
1568 
1569 	/* Port locked to synchronize UART_IER access against the console. */
1570 	lockdep_assert_held_once(&port->lock);
1571 
1572 	/* no MSR capabilities */
1573 	if (up->bugs & UART_BUG_NOMSR)
1574 		return;
1575 
1576 	mctrl_gpio_enable_ms(up->gpios);
1577 
1578 	up->ier |= UART_IER_MSI;
1579 
1580 	guard(serial8250_rpm)(up);
1581 	serial_port_out(port, UART_IER, up->ier);
1582 }
1583 
1584 void serial8250_read_char(struct uart_8250_port *up, u16 lsr)
1585 {
1586 	struct uart_port *port = &up->port;
1587 	u8 ch, flag = TTY_NORMAL;
1588 
1589 	if (likely(lsr & UART_LSR_DR))
1590 		ch = serial_in(up, UART_RX);
1591 	else
1592 		/*
1593 		 * Intel 82571 has a Serial Over Lan device that will
1594 		 * set UART_LSR_BI without setting UART_LSR_DR when
1595 		 * it receives a break. To avoid reading from the
1596 		 * receive buffer without UART_LSR_DR bit set, we
1597 		 * just force the read character to be 0
1598 		 */
1599 		ch = 0;
1600 
1601 	port->icount.rx++;
1602 
1603 	lsr |= up->lsr_saved_flags;
1604 	up->lsr_saved_flags = 0;
1605 
1606 	if (unlikely(lsr & UART_LSR_BRK_ERROR_BITS)) {
1607 		if (lsr & UART_LSR_BI) {
1608 			lsr &= ~(UART_LSR_FE | UART_LSR_PE);
1609 			port->icount.brk++;
1610 			/*
1611 			 * We do the SysRQ and SAK checking
1612 			 * here because otherwise the break
1613 			 * may get masked by ignore_status_mask
1614 			 * or read_status_mask.
1615 			 */
1616 			if (uart_handle_break(port))
1617 				return;
1618 		} else if (lsr & UART_LSR_PE)
1619 			port->icount.parity++;
1620 		else if (lsr & UART_LSR_FE)
1621 			port->icount.frame++;
1622 		if (lsr & UART_LSR_OE)
1623 			port->icount.overrun++;
1624 
1625 		/*
1626 		 * Mask off conditions which should be ignored.
1627 		 */
1628 		lsr &= port->read_status_mask;
1629 
1630 		if (lsr & UART_LSR_BI) {
1631 			dev_dbg(port->dev, "handling break\n");
1632 			flag = TTY_BREAK;
1633 		} else if (lsr & UART_LSR_PE)
1634 			flag = TTY_PARITY;
1635 		else if (lsr & UART_LSR_FE)
1636 			flag = TTY_FRAME;
1637 	}
1638 	if (uart_prepare_sysrq_char(port, ch))
1639 		return;
1640 
1641 	uart_insert_char(port, lsr, UART_LSR_OE, ch, flag);
1642 }
1643 EXPORT_SYMBOL_GPL(serial8250_read_char);
1644 
1645 /*
1646  * serial8250_rx_chars - Read characters. The first LSR value must be passed in.
1647  *
1648  * Returns LSR bits. The caller should rely only on non-Rx related LSR bits
1649  * (such as THRE) because the LSR value might come from an already consumed
1650  * character.
1651  */
1652 u16 serial8250_rx_chars(struct uart_8250_port *up, u16 lsr)
1653 {
1654 	struct uart_port *port = &up->port;
1655 	int max_count = 256;
1656 
1657 	do {
1658 		serial8250_read_char(up, lsr);
1659 		if (--max_count == 0)
1660 			break;
1661 		lsr = serial_in(up, UART_LSR);
1662 	} while (lsr & (UART_LSR_DR | UART_LSR_BI));
1663 
1664 	tty_flip_buffer_push(&port->state->port);
1665 	return lsr;
1666 }
1667 EXPORT_SYMBOL_GPL(serial8250_rx_chars);
1668 
1669 void serial8250_tx_chars(struct uart_8250_port *up)
1670 {
1671 	struct uart_port *port = &up->port;
1672 	struct tty_port *tport = &port->state->port;
1673 	int count;
1674 
1675 	if (port->x_char) {
1676 		uart_xchar_out(port, UART_TX);
1677 		return;
1678 	}
1679 	if (uart_tx_stopped(port)) {
1680 		serial8250_stop_tx(port);
1681 		return;
1682 	}
1683 	if (kfifo_is_empty(&tport->xmit_fifo)) {
1684 		__stop_tx(up);
1685 		return;
1686 	}
1687 
1688 	count = up->tx_loadsz;
1689 	do {
1690 		unsigned char c;
1691 
1692 		if (!uart_fifo_get(port, &c))
1693 			break;
1694 
1695 		serial_out(up, UART_TX, c);
1696 		if (up->bugs & UART_BUG_TXRACE) {
1697 			/*
1698 			 * The Aspeed BMC virtual UARTs have a bug where data
1699 			 * may get stuck in the BMC's Tx FIFO from bursts of
1700 			 * writes on the APB interface.
1701 			 *
1702 			 * Delay back-to-back writes by a read cycle to avoid
1703 			 * stalling the VUART. Read a register that won't have
1704 			 * side-effects and discard the result.
1705 			 */
1706 			serial_in(up, UART_SCR);
1707 		}
1708 
1709 		if ((up->capabilities & UART_CAP_HFIFO) &&
1710 		    !uart_lsr_tx_empty(serial_in(up, UART_LSR)))
1711 			break;
1712 		/* The BCM2835 MINI UART THRE bit is really a not-full bit. */
1713 		if ((up->capabilities & UART_CAP_MINI) &&
1714 		    !(serial_in(up, UART_LSR) & UART_LSR_THRE))
1715 			break;
1716 	} while (--count > 0);
1717 
1718 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1719 		uart_write_wakeup(port);
1720 
1721 	/*
1722 	 * With RPM enabled, we have to wait until the FIFO is empty before the
1723 	 * HW can go idle. So we get here once again with empty FIFO and disable
1724 	 * the interrupt and RPM in __stop_tx()
1725 	 */
1726 	if (kfifo_is_empty(&tport->xmit_fifo) &&
1727 	    !(up->capabilities & UART_CAP_RPM))
1728 		__stop_tx(up);
1729 }
1730 EXPORT_SYMBOL_GPL(serial8250_tx_chars);
1731 
1732 /* Caller holds uart port lock */
1733 unsigned int serial8250_modem_status(struct uart_8250_port *up)
1734 {
1735 	struct uart_port *port = &up->port;
1736 	unsigned int status = serial_in(up, UART_MSR);
1737 
1738 	status |= up->msr_saved_flags;
1739 	up->msr_saved_flags = 0;
1740 	if (status & UART_MSR_ANY_DELTA && up->ier & UART_IER_MSI &&
1741 	    port->state != NULL) {
1742 		if (status & UART_MSR_TERI)
1743 			port->icount.rng++;
1744 		if (status & UART_MSR_DDSR)
1745 			port->icount.dsr++;
1746 		if (status & UART_MSR_DDCD)
1747 			uart_handle_dcd_change(port, status & UART_MSR_DCD);
1748 		if (status & UART_MSR_DCTS)
1749 			uart_handle_cts_change(port, status & UART_MSR_CTS);
1750 
1751 		wake_up_interruptible(&port->state->port.delta_msr_wait);
1752 	}
1753 
1754 	return status;
1755 }
1756 EXPORT_SYMBOL_GPL(serial8250_modem_status);
1757 
1758 static bool handle_rx_dma(struct uart_8250_port *up, unsigned int iir)
1759 {
1760 	switch (iir & 0x3f) {
1761 	case UART_IIR_THRI:
1762 		/*
1763 		 * Postpone DMA or not decision to IIR_RDI or IIR_RX_TIMEOUT
1764 		 * because it's impossible to do an informed decision about
1765 		 * that with IIR_THRI.
1766 		 *
1767 		 * This also fixes one known DMA Rx corruption issue where
1768 		 * DR is asserted but DMA Rx only gets a corrupted zero byte
1769 		 * (too early DR?).
1770 		 */
1771 		return false;
1772 	case UART_IIR_RDI:
1773 		if (!up->dma->rx_running)
1774 			break;
1775 		fallthrough;
1776 	case UART_IIR_RLSI:
1777 	case UART_IIR_RX_TIMEOUT:
1778 		serial8250_rx_dma_flush(up);
1779 		return true;
1780 	}
1781 	return up->dma->rx_dma(up);
1782 }
1783 
1784 /*
1785  * This handles the interrupt from one port.
1786  */
1787 int serial8250_handle_irq(struct uart_port *port, unsigned int iir)
1788 {
1789 	struct uart_8250_port *up = up_to_u8250p(port);
1790 	struct tty_port *tport = &port->state->port;
1791 	bool skip_rx = false;
1792 	unsigned long flags;
1793 	u16 status;
1794 
1795 	if (iir & UART_IIR_NO_INT)
1796 		return 0;
1797 
1798 	uart_port_lock_irqsave(port, &flags);
1799 
1800 	status = serial_lsr_in(up);
1801 
1802 	/*
1803 	 * If port is stopped and there are no error conditions in the
1804 	 * FIFO, then don't drain the FIFO, as this may lead to TTY buffer
1805 	 * overflow. Not servicing, RX FIFO would trigger auto HW flow
1806 	 * control when FIFO occupancy reaches preset threshold, thus
1807 	 * halting RX. This only works when auto HW flow control is
1808 	 * available.
1809 	 */
1810 	if (!(status & (UART_LSR_FIFOE | UART_LSR_BRK_ERROR_BITS)) &&
1811 	    (port->status & (UPSTAT_AUTOCTS | UPSTAT_AUTORTS)) &&
1812 	    !(up->ier & (UART_IER_RLSI | UART_IER_RDI)))
1813 		skip_rx = true;
1814 
1815 	if (status & (UART_LSR_DR | UART_LSR_BI) && !skip_rx) {
1816 		struct irq_data *d;
1817 
1818 		d = irq_get_irq_data(port->irq);
1819 		if (d && irqd_is_wakeup_set(d))
1820 			pm_wakeup_event(tport->tty->dev, 0);
1821 		if (!up->dma || handle_rx_dma(up, iir))
1822 			status = serial8250_rx_chars(up, status);
1823 	}
1824 	serial8250_modem_status(up);
1825 	if ((status & UART_LSR_THRE) && (up->ier & UART_IER_THRI)) {
1826 		if (!up->dma || up->dma->tx_err)
1827 			serial8250_tx_chars(up);
1828 		else if (!up->dma->tx_running)
1829 			__stop_tx(up);
1830 	}
1831 
1832 	uart_unlock_and_check_sysrq_irqrestore(port, flags);
1833 
1834 	return 1;
1835 }
1836 EXPORT_SYMBOL_GPL(serial8250_handle_irq);
1837 
1838 static int serial8250_default_handle_irq(struct uart_port *port)
1839 {
1840 	struct uart_8250_port *up = up_to_u8250p(port);
1841 	unsigned int iir;
1842 
1843 	guard(serial8250_rpm)(up);
1844 
1845 	iir = serial_port_in(port, UART_IIR);
1846 	return serial8250_handle_irq(port, iir);
1847 }
1848 
1849 /*
1850  * Newer 16550 compatible parts such as the SC16C650 & Altera 16550 Soft IP
1851  * have a programmable TX threshold that triggers the THRE interrupt in
1852  * the IIR register. In this case, the THRE interrupt indicates the FIFO
1853  * has space available. Load it up with tx_loadsz bytes.
1854  */
1855 static int serial8250_tx_threshold_handle_irq(struct uart_port *port)
1856 {
1857 	unsigned int iir = serial_port_in(port, UART_IIR);
1858 
1859 	/* TX Threshold IRQ triggered so load up FIFO */
1860 	if ((iir & UART_IIR_ID) == UART_IIR_THRI) {
1861 		struct uart_8250_port *up = up_to_u8250p(port);
1862 
1863 		guard(uart_port_lock_irqsave)(port);
1864 		serial8250_tx_chars(up);
1865 	}
1866 
1867 	iir = serial_port_in(port, UART_IIR);
1868 	return serial8250_handle_irq(port, iir);
1869 }
1870 
1871 static unsigned int serial8250_tx_empty(struct uart_port *port)
1872 {
1873 	struct uart_8250_port *up = up_to_u8250p(port);
1874 
1875 	guard(serial8250_rpm)(up);
1876 	guard(uart_port_lock_irqsave)(port);
1877 
1878 	if (!serial8250_tx_dma_running(up) && uart_lsr_tx_empty(serial_lsr_in(up)))
1879 		return TIOCSER_TEMT;
1880 
1881 	return 0;
1882 }
1883 
1884 unsigned int serial8250_do_get_mctrl(struct uart_port *port)
1885 {
1886 	struct uart_8250_port *up = up_to_u8250p(port);
1887 	unsigned int status;
1888 	unsigned int val;
1889 
1890 	scoped_guard(serial8250_rpm, up)
1891 		status = serial8250_modem_status(up);
1892 
1893 	val = serial8250_MSR_to_TIOCM(status);
1894 	if (up->gpios)
1895 		return mctrl_gpio_get(up->gpios, &val);
1896 
1897 	return val;
1898 }
1899 EXPORT_SYMBOL_GPL(serial8250_do_get_mctrl);
1900 
1901 static unsigned int serial8250_get_mctrl(struct uart_port *port)
1902 {
1903 	if (port->get_mctrl)
1904 		return port->get_mctrl(port);
1905 	return serial8250_do_get_mctrl(port);
1906 }
1907 
1908 void serial8250_do_set_mctrl(struct uart_port *port, unsigned int mctrl)
1909 {
1910 	struct uart_8250_port *up = up_to_u8250p(port);
1911 	unsigned char mcr;
1912 
1913 	mcr = serial8250_TIOCM_to_MCR(mctrl);
1914 
1915 	mcr |= up->mcr;
1916 
1917 	serial8250_out_MCR(up, mcr);
1918 }
1919 EXPORT_SYMBOL_GPL(serial8250_do_set_mctrl);
1920 
1921 static void serial8250_set_mctrl(struct uart_port *port, unsigned int mctrl)
1922 {
1923 	if (port->rs485.flags & SER_RS485_ENABLED)
1924 		return;
1925 
1926 	if (port->set_mctrl)
1927 		port->set_mctrl(port, mctrl);
1928 	else
1929 		serial8250_do_set_mctrl(port, mctrl);
1930 }
1931 
1932 static void serial8250_break_ctl(struct uart_port *port, int break_state)
1933 {
1934 	struct uart_8250_port *up = up_to_u8250p(port);
1935 
1936 	guard(serial8250_rpm)(up);
1937 	guard(uart_port_lock_irqsave)(port);
1938 
1939 	if (break_state == -1)
1940 		up->lcr |= UART_LCR_SBC;
1941 	else
1942 		up->lcr &= ~UART_LCR_SBC;
1943 	serial_port_out(port, UART_LCR, up->lcr);
1944 }
1945 
1946 /* Returns true if @bits were set, false on timeout */
1947 static bool wait_for_lsr(struct uart_8250_port *up, int bits)
1948 {
1949 	unsigned int status, tmout;
1950 
1951 	/*
1952 	 * Wait for a character to be sent. Fallback to a safe default
1953 	 * timeout value if @frame_time is not available.
1954 	 */
1955 	if (up->port.frame_time)
1956 		tmout = up->port.frame_time * 2 / NSEC_PER_USEC;
1957 	else
1958 		tmout = 10000;
1959 
1960 	for (;;) {
1961 		status = serial_lsr_in(up);
1962 
1963 		if ((status & bits) == bits)
1964 			break;
1965 		if (--tmout == 0)
1966 			break;
1967 		udelay(1);
1968 		touch_nmi_watchdog();
1969 	}
1970 
1971 	return (tmout != 0);
1972 }
1973 
1974 /* Wait for transmitter and holding register to empty with timeout */
1975 static void wait_for_xmitr(struct uart_8250_port *up, int bits)
1976 {
1977 	unsigned int tmout;
1978 
1979 	wait_for_lsr(up, bits);
1980 
1981 	/* Wait up to 1s for flow control if necessary */
1982 	if (up->port.flags & UPF_CONS_FLOW) {
1983 		for (tmout = 1000000; tmout; tmout--) {
1984 			unsigned int msr = serial_in(up, UART_MSR);
1985 			up->msr_saved_flags |= msr & MSR_SAVE_FLAGS;
1986 			if (msr & UART_MSR_CTS)
1987 				break;
1988 			udelay(1);
1989 			touch_nmi_watchdog();
1990 		}
1991 	}
1992 }
1993 
1994 #ifdef CONFIG_CONSOLE_POLL
1995 /*
1996  * Console polling routines for writing and reading from the uart while
1997  * in an interrupt or debug context.
1998  */
1999 
2000 static int serial8250_get_poll_char(struct uart_port *port)
2001 {
2002 	struct uart_8250_port *up = up_to_u8250p(port);
2003 	u16 lsr;
2004 
2005 	guard(serial8250_rpm)(up);
2006 
2007 	lsr = serial_port_in(port, UART_LSR);
2008 	if (!(lsr & UART_LSR_DR))
2009 		return NO_POLL_CHAR;
2010 
2011 	return serial_port_in(port, UART_RX);
2012 }
2013 
2014 
2015 static void serial8250_put_poll_char(struct uart_port *port,
2016 			 unsigned char c)
2017 {
2018 	unsigned int ier;
2019 	struct uart_8250_port *up = up_to_u8250p(port);
2020 
2021 	/*
2022 	 * Normally the port is locked to synchronize UART_IER access
2023 	 * against the console. However, this function is only used by
2024 	 * KDB/KGDB, where it may not be possible to acquire the port
2025 	 * lock because all other CPUs are quiesced. The quiescence
2026 	 * should allow safe lockless usage here.
2027 	 */
2028 
2029 	guard(serial8250_rpm)(up);
2030 	/*
2031 	 *	First save the IER then disable the interrupts
2032 	 */
2033 	ier = serial_port_in(port, UART_IER);
2034 	serial8250_clear_IER(up);
2035 
2036 	wait_for_xmitr(up, UART_LSR_BOTH_EMPTY);
2037 	/*
2038 	 *	Send the character out.
2039 	 */
2040 	serial_port_out(port, UART_TX, c);
2041 
2042 	/*
2043 	 *	Finally, wait for transmitter to become empty
2044 	 *	and restore the IER
2045 	 */
2046 	wait_for_xmitr(up, UART_LSR_BOTH_EMPTY);
2047 	serial_port_out(port, UART_IER, ier);
2048 }
2049 
2050 #endif /* CONFIG_CONSOLE_POLL */
2051 
2052 static void serial8250_startup_special(struct uart_port *port)
2053 {
2054 	struct uart_8250_port *up = up_to_u8250p(port);
2055 
2056 	switch (port->type) {
2057 	case PORT_16C950: {
2058 		/*
2059 		 * Wake up and initialize UART
2060 		 *
2061 		 * Synchronize UART_IER access against the console.
2062 		 */
2063 		guard(uart_port_lock_irqsave)(port);
2064 		up->acr = 0;
2065 		serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B);
2066 		serial_port_out(port, UART_EFR, UART_EFR_ECB);
2067 		serial_port_out(port, UART_IER, 0);
2068 		serial_port_out(port, UART_LCR, 0);
2069 		serial_icr_write(up, UART_CSR, 0); /* Reset the UART */
2070 		serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B);
2071 		serial_port_out(port, UART_EFR, UART_EFR_ECB);
2072 		serial_port_out(port, UART_LCR, 0);
2073 		break;
2074 	}
2075 	case PORT_DA830:
2076 		/*
2077 		 * Reset the port
2078 		 *
2079 		 * Synchronize UART_IER access against the console.
2080 		 */
2081 		scoped_guard(uart_port_lock_irqsave, port) {
2082 			serial_port_out(port, UART_IER, 0);
2083 			serial_port_out(port, UART_DA830_PWREMU_MGMT, 0);
2084 		}
2085 		mdelay(10);
2086 
2087 		/* Enable Tx, Rx and free run mode */
2088 		serial_port_out(port, UART_DA830_PWREMU_MGMT,
2089 				UART_DA830_PWREMU_MGMT_UTRST |
2090 				UART_DA830_PWREMU_MGMT_URRST |
2091 				UART_DA830_PWREMU_MGMT_FREE);
2092 		break;
2093 	case PORT_RSA:
2094 		rsa_enable(up);
2095 		break;
2096 	}
2097 }
2098 
2099 static void serial8250_set_TRG_levels(struct uart_port *port)
2100 {
2101 	struct uart_8250_port *up = up_to_u8250p(port);
2102 
2103 	switch (port->type) {
2104 	/* For a XR16C850, we need to set the trigger levels */
2105 	case PORT_16850: {
2106 		u8 fctr;
2107 
2108 		serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
2109 
2110 		fctr = serial_in(up, UART_FCTR) & ~(UART_FCTR_RX|UART_FCTR_TX);
2111 		fctr |= UART_FCTR_TRGD;
2112 		serial_port_out(port, UART_FCTR, fctr | UART_FCTR_RX);
2113 		serial_port_out(port, UART_TRG, UART_TRG_96);
2114 		serial_port_out(port, UART_FCTR, fctr | UART_FCTR_TX);
2115 		serial_port_out(port, UART_TRG, UART_TRG_96);
2116 
2117 		serial_port_out(port, UART_LCR, 0);
2118 		break;
2119 	}
2120 	/* For the Altera 16550 variants, set TX threshold trigger level. */
2121 	case PORT_ALTR_16550_F32:
2122 	case PORT_ALTR_16550_F64:
2123 	case PORT_ALTR_16550_F128:
2124 		if (port->fifosize <= 1)
2125 			return;
2126 
2127 		/* Bounds checking of TX threshold (valid 0 to fifosize-2) */
2128 		if (up->tx_loadsz < 2 || up->tx_loadsz > port->fifosize) {
2129 			dev_err(port->dev, "TX FIFO Threshold errors, skipping\n");
2130 			return;
2131 		}
2132 		serial_port_out(port, UART_ALTR_AFR, UART_ALTR_EN_TXFIFO_LW);
2133 		serial_port_out(port, UART_ALTR_TX_LOW, port->fifosize - up->tx_loadsz);
2134 		port->handle_irq = serial8250_tx_threshold_handle_irq;
2135 		break;
2136 	}
2137 }
2138 
2139 static void serial8250_THRE_test(struct uart_port *port)
2140 {
2141 	struct uart_8250_port *up = up_to_u8250p(port);
2142 	bool iir_noint1, iir_noint2;
2143 
2144 	if (!port->irq)
2145 		return;
2146 
2147 	if (up->port.flags & UPF_NO_THRE_TEST)
2148 		return;
2149 
2150 	if (port->irqflags & IRQF_SHARED)
2151 		disable_irq_nosync(port->irq);
2152 
2153 	/*
2154 	 * Test for UARTs that do not reassert THRE when the transmitter is idle and the interrupt
2155 	 * has already been cleared.  Real 16550s should always reassert this interrupt whenever the
2156 	 * transmitter is idle and the interrupt is enabled.  Delays are necessary to allow register
2157 	 * changes to become visible.
2158 	 *
2159 	 * Synchronize UART_IER access against the console.
2160 	 */
2161 	scoped_guard(uart_port_lock_irqsave, port) {
2162 		wait_for_xmitr(up, UART_LSR_THRE);
2163 		serial_port_out_sync(port, UART_IER, UART_IER_THRI);
2164 		udelay(1); /* allow THRE to set */
2165 		iir_noint1 = serial_port_in(port, UART_IIR) & UART_IIR_NO_INT;
2166 		serial_port_out(port, UART_IER, 0);
2167 		serial_port_out_sync(port, UART_IER, UART_IER_THRI);
2168 		udelay(1); /* allow a working UART time to re-assert THRE */
2169 		iir_noint2 = serial_port_in(port, UART_IIR) & UART_IIR_NO_INT;
2170 		serial_port_out(port, UART_IER, 0);
2171 	}
2172 
2173 	if (port->irqflags & IRQF_SHARED)
2174 		enable_irq(port->irq);
2175 
2176 	/*
2177 	 * If the interrupt is not reasserted, or we otherwise don't trust the iir, setup a timer to
2178 	 * kick the UART on a regular basis.
2179 	 */
2180 	if ((!iir_noint1 && iir_noint2) || up->port.flags & UPF_BUG_THRE)
2181 		up->bugs |= UART_BUG_THRE;
2182 }
2183 
2184 static void serial8250_init_mctrl(struct uart_port *port)
2185 {
2186 	if (port->flags & UPF_FOURPORT) {
2187 		if (!port->irq)
2188 			port->mctrl |= TIOCM_OUT1;
2189 	} else {
2190 		/* Most PC uarts need OUT2 raised to enable interrupts. */
2191 		if (port->irq)
2192 			port->mctrl |= TIOCM_OUT2;
2193 	}
2194 
2195 	serial8250_set_mctrl(port, port->mctrl);
2196 }
2197 
2198 static void serial8250_iir_txen_test(struct uart_port *port)
2199 {
2200 	struct uart_8250_port *up = up_to_u8250p(port);
2201 	bool lsr_temt, iir_noint;
2202 
2203 	if (port->quirks & UPQ_NO_TXEN_TEST)
2204 		return;
2205 
2206 	/* Do a quick test to see if we receive an interrupt when we enable the TX irq. */
2207 	serial_port_out(port, UART_IER, UART_IER_THRI);
2208 	lsr_temt = serial_port_in(port, UART_LSR) & UART_LSR_TEMT;
2209 	iir_noint = serial_port_in(port, UART_IIR) & UART_IIR_NO_INT;
2210 	serial_port_out(port, UART_IER, 0);
2211 
2212 	/*
2213 	 * Serial over Lan (SoL) hack:
2214 	 * Intel 8257x Gigabit ethernet chips have a 16550 emulation, to be used for Serial Over
2215 	 * Lan.  Those chips take a longer time than a normal serial device to signalize that a
2216 	 * transmission data was queued. Due to that, the above test generally fails. One solution
2217 	 * would be to delay the reading of iir. However, this is not reliable, since the timeout is
2218 	 * variable. So, in case of UPQ_NO_TXEN_TEST, let's just don't test if we receive TX irq.
2219 	 * This way, we'll never enable UART_BUG_TXEN.
2220 	 */
2221 	if (lsr_temt && iir_noint) {
2222 		if (!(up->bugs & UART_BUG_TXEN)) {
2223 			up->bugs |= UART_BUG_TXEN;
2224 			dev_dbg(port->dev, "enabling bad tx status workarounds\n");
2225 		}
2226 		return;
2227 	}
2228 
2229 	/* FIXME: why is this needed? */
2230 	up->bugs &= ~UART_BUG_TXEN;
2231 }
2232 
2233 static void serial8250_initialize(struct uart_port *port)
2234 {
2235 	guard(uart_port_lock_irqsave)(port);
2236 	serial_port_out(port, UART_LCR, UART_LCR_WLEN8);
2237 
2238 	serial8250_init_mctrl(port);
2239 	serial8250_iir_txen_test(port);
2240 }
2241 
2242 int serial8250_do_startup(struct uart_port *port)
2243 {
2244 	struct uart_8250_port *up = up_to_u8250p(port);
2245 	int retval;
2246 
2247 	if (!port->fifosize)
2248 		port->fifosize = uart_config[port->type].fifo_size;
2249 	if (!up->tx_loadsz)
2250 		up->tx_loadsz = uart_config[port->type].tx_loadsz;
2251 	if (!up->capabilities)
2252 		up->capabilities = uart_config[port->type].flags;
2253 	up->mcr = 0;
2254 
2255 	if (port->iotype != up->cur_iotype)
2256 		set_io_from_upio(port);
2257 
2258 	guard(serial8250_rpm)(up);
2259 
2260 	serial8250_startup_special(port);
2261 
2262 	/*
2263 	 * Clear the FIFO buffers and disable them.
2264 	 * (they will be reenabled in set_termios())
2265 	 */
2266 	serial8250_clear_fifos(up);
2267 
2268 	serial8250_clear_interrupts(port);
2269 
2270 	/*
2271 	 * At this point, there's no way the LSR could still be 0xff;
2272 	 * if it is, then bail out, because there's likely no UART
2273 	 * here.
2274 	 */
2275 	if (!(port->flags & UPF_BUGGY_UART) &&
2276 	    (serial_port_in(port, UART_LSR) == 0xff)) {
2277 		dev_info_ratelimited(port->dev, "LSR safety check engaged!\n");
2278 		return -ENODEV;
2279 	}
2280 
2281 	serial8250_set_TRG_levels(port);
2282 
2283 	/* Check if we need to have shared IRQs */
2284 	if (port->irq && (up->port.flags & UPF_SHARE_IRQ))
2285 		up->port.irqflags |= IRQF_SHARED;
2286 
2287 	retval = up->ops->setup_irq(up);
2288 	if (retval)
2289 		return retval;
2290 
2291 	serial8250_THRE_test(port);
2292 
2293 	up->ops->setup_timer(up);
2294 
2295 	serial8250_initialize(port);
2296 
2297 	/*
2298 	 * Clear the interrupt registers again for luck, and clear the
2299 	 * saved flags to avoid getting false values from polling
2300 	 * routines or the previous session.
2301 	 */
2302 	serial8250_clear_interrupts(port);
2303 	up->lsr_saved_flags = 0;
2304 	up->msr_saved_flags = 0;
2305 
2306 	/*
2307 	 * Request DMA channels for both RX and TX.
2308 	 */
2309 	if (up->dma) {
2310 		const char *msg = NULL;
2311 
2312 		if (uart_console(port))
2313 			msg = "forbid DMA for kernel console";
2314 		else if (serial8250_request_dma(up))
2315 			msg = "failed to request DMA";
2316 		if (msg) {
2317 			dev_warn_ratelimited(port->dev, "%s\n", msg);
2318 			up->dma = NULL;
2319 		}
2320 	}
2321 
2322 	/*
2323 	 * Set the IER shadow for rx interrupts but defer actual interrupt
2324 	 * enable until after the FIFOs are enabled; otherwise, an already-
2325 	 * active sender can swamp the interrupt handler with "too much work".
2326 	 */
2327 	up->ier = UART_IER_RLSI | UART_IER_RDI;
2328 
2329 	if (port->flags & UPF_FOURPORT) {
2330 		unsigned int icp;
2331 		/*
2332 		 * Enable interrupts on the AST Fourport board
2333 		 */
2334 		icp = (port->iobase & 0xfe0) | 0x01f;
2335 		outb_p(0x80, icp);
2336 		inb_p(icp);
2337 	}
2338 
2339 	return 0;
2340 }
2341 EXPORT_SYMBOL_GPL(serial8250_do_startup);
2342 
2343 static int serial8250_startup(struct uart_port *port)
2344 {
2345 	if (port->startup)
2346 		return port->startup(port);
2347 	return serial8250_do_startup(port);
2348 }
2349 
2350 void serial8250_do_shutdown(struct uart_port *port)
2351 {
2352 	struct uart_8250_port *up = up_to_u8250p(port);
2353 
2354 	serial8250_rpm_get(up);
2355 	/*
2356 	 * Disable interrupts from this port
2357 	 *
2358 	 * Synchronize UART_IER access against the console.
2359 	 */
2360 	scoped_guard(uart_port_lock_irqsave, port) {
2361 		up->ier = 0;
2362 		serial_port_out(port, UART_IER, 0);
2363 	}
2364 
2365 	synchronize_irq(port->irq);
2366 
2367 	if (up->dma)
2368 		serial8250_release_dma(up);
2369 
2370 	scoped_guard(uart_port_lock_irqsave, port) {
2371 		if (port->flags & UPF_FOURPORT) {
2372 			/* reset interrupts on the AST Fourport board */
2373 			inb((port->iobase & 0xfe0) | 0x1f);
2374 			port->mctrl |= TIOCM_OUT1;
2375 		} else
2376 			port->mctrl &= ~TIOCM_OUT2;
2377 
2378 		serial8250_set_mctrl(port, port->mctrl);
2379 	}
2380 
2381 	/*
2382 	 * Disable break condition and FIFOs
2383 	 */
2384 	serial_port_out(port, UART_LCR,
2385 			serial_port_in(port, UART_LCR) & ~UART_LCR_SBC);
2386 	serial8250_clear_fifos(up);
2387 
2388 	rsa_disable(up);
2389 
2390 	/*
2391 	 * Read data port to reset things, and then unlink from
2392 	 * the IRQ chain.
2393 	 */
2394 	serial_port_in(port, UART_RX);
2395 	serial8250_rpm_put(up);
2396 
2397 	up->ops->release_irq(up);
2398 }
2399 EXPORT_SYMBOL_GPL(serial8250_do_shutdown);
2400 
2401 static void serial8250_shutdown(struct uart_port *port)
2402 {
2403 	if (port->shutdown)
2404 		port->shutdown(port);
2405 	else
2406 		serial8250_do_shutdown(port);
2407 }
2408 
2409 static void serial8250_flush_buffer(struct uart_port *port)
2410 {
2411 	struct uart_8250_port *up = up_to_u8250p(port);
2412 
2413 	if (up->dma)
2414 		serial8250_tx_dma_flush(up);
2415 }
2416 
2417 static unsigned int serial8250_do_get_divisor(struct uart_port *port, unsigned int baud)
2418 {
2419 	upf_t magic_multiplier = port->flags & UPF_MAGIC_MULTIPLIER;
2420 	struct uart_8250_port *up = up_to_u8250p(port);
2421 	unsigned int quot;
2422 
2423 	/*
2424 	 * Handle magic divisors for baud rates above baud_base on SMSC
2425 	 * Super I/O chips.  We clamp custom rates from clk/6 and clk/12
2426 	 * up to clk/4 (0x8001) and clk/8 (0x8002) respectively.  These
2427 	 * magic divisors actually reprogram the baud rate generator's
2428 	 * reference clock derived from chips's 14.318MHz clock input.
2429 	 *
2430 	 * Documentation claims that with these magic divisors the base
2431 	 * frequencies of 7.3728MHz and 3.6864MHz are used respectively
2432 	 * for the extra baud rates of 460800bps and 230400bps rather
2433 	 * than the usual base frequency of 1.8462MHz.  However empirical
2434 	 * evidence contradicts that.
2435 	 *
2436 	 * Instead bit 7 of the DLM register (bit 15 of the divisor) is
2437 	 * effectively used as a clock prescaler selection bit for the
2438 	 * base frequency of 7.3728MHz, always used.  If set to 0, then
2439 	 * the base frequency is divided by 4 for use by the Baud Rate
2440 	 * Generator, for the usual arrangement where the value of 1 of
2441 	 * the divisor produces the baud rate of 115200bps.  Conversely,
2442 	 * if set to 1 and high-speed operation has been enabled with the
2443 	 * Serial Port Mode Register in the Device Configuration Space,
2444 	 * then the base frequency is supplied directly to the Baud Rate
2445 	 * Generator, so for the divisor values of 0x8001, 0x8002, 0x8003,
2446 	 * 0x8004, etc. the respective baud rates produced are 460800bps,
2447 	 * 230400bps, 153600bps, 115200bps, etc.
2448 	 *
2449 	 * In all cases only low 15 bits of the divisor are used to divide
2450 	 * the baud base and therefore 32767 is the maximum divisor value
2451 	 * possible, even though documentation says that the programmable
2452 	 * Baud Rate Generator is capable of dividing the internal PLL
2453 	 * clock by any divisor from 1 to 65535.
2454 	 */
2455 	if (magic_multiplier && baud >= port->uartclk / 6)
2456 		quot = 0x8001;
2457 	else if (magic_multiplier && baud >= port->uartclk / 12)
2458 		quot = 0x8002;
2459 	else
2460 		quot = uart_get_divisor(port, baud);
2461 
2462 	/*
2463 	 * Oxford Semi 952 rev B workaround
2464 	 */
2465 	if (up->bugs & UART_BUG_QUOT && (quot & 0xff) == 0)
2466 		quot++;
2467 
2468 	return quot;
2469 }
2470 
2471 static unsigned int serial8250_get_divisor(struct uart_port *port,
2472 					   unsigned int baud,
2473 					   unsigned int *frac)
2474 {
2475 	if (port->get_divisor)
2476 		return port->get_divisor(port, baud, frac);
2477 
2478 	return serial8250_do_get_divisor(port, baud);
2479 }
2480 
2481 static unsigned char serial8250_compute_lcr(struct uart_8250_port *up, tcflag_t c_cflag)
2482 {
2483 	u8 lcr = UART_LCR_WLEN(tty_get_char_size(c_cflag));
2484 
2485 	if (c_cflag & CSTOPB)
2486 		lcr |= UART_LCR_STOP;
2487 	if (c_cflag & PARENB)
2488 		lcr |= UART_LCR_PARITY;
2489 	if (!(c_cflag & PARODD))
2490 		lcr |= UART_LCR_EPAR;
2491 	if (c_cflag & CMSPAR)
2492 		lcr |= UART_LCR_SPAR;
2493 
2494 	return lcr;
2495 }
2496 
2497 void serial8250_do_set_divisor(struct uart_port *port, unsigned int baud,
2498 			       unsigned int quot)
2499 {
2500 	struct uart_8250_port *up = up_to_u8250p(port);
2501 
2502 	/* Workaround to enable 115200 baud on OMAP1510 internal ports */
2503 	if (is_omap1510_8250(up)) {
2504 		if (baud == 115200) {
2505 			quot = 1;
2506 			serial_port_out(port, UART_OMAP_OSC_12M_SEL, 1);
2507 		} else
2508 			serial_port_out(port, UART_OMAP_OSC_12M_SEL, 0);
2509 	}
2510 
2511 	/*
2512 	 * For NatSemi, switch to bank 2 not bank 1, to avoid resetting EXCR2,
2513 	 * otherwise just set DLAB
2514 	 */
2515 	if (up->capabilities & UART_NATSEMI)
2516 		serial_port_out(port, UART_LCR, 0xe0);
2517 	else
2518 		serial_port_out(port, UART_LCR, up->lcr | UART_LCR_DLAB);
2519 
2520 	serial_dl_write(up, quot);
2521 }
2522 EXPORT_SYMBOL_GPL(serial8250_do_set_divisor);
2523 
2524 static void serial8250_set_divisor(struct uart_port *port, unsigned int baud,
2525 				   unsigned int quot, unsigned int quot_frac)
2526 {
2527 	if (port->set_divisor)
2528 		port->set_divisor(port, baud, quot, quot_frac);
2529 	else
2530 		serial8250_do_set_divisor(port, baud, quot);
2531 }
2532 
2533 static unsigned int serial8250_get_baud_rate(struct uart_port *port,
2534 					     struct ktermios *termios,
2535 					     const struct ktermios *old)
2536 {
2537 	unsigned int tolerance = port->uartclk / 100;
2538 	unsigned int min;
2539 	unsigned int max;
2540 
2541 	/*
2542 	 * Handle magic divisors for baud rates above baud_base on SMSC
2543 	 * Super I/O chips.  Enable custom rates of clk/4 and clk/8, but
2544 	 * disable divisor values beyond 32767, which are unavailable.
2545 	 */
2546 	if (port->flags & UPF_MAGIC_MULTIPLIER) {
2547 		min = port->uartclk / 16 / UART_DIV_MAX >> 1;
2548 		max = (port->uartclk + tolerance) / 4;
2549 	} else {
2550 		min = port->uartclk / 16 / UART_DIV_MAX;
2551 		max = (port->uartclk + tolerance) / 16;
2552 	}
2553 
2554 	/*
2555 	 * Ask the core to calculate the divisor for us.
2556 	 * Allow 1% tolerance at the upper limit so uart clks marginally
2557 	 * slower than nominal still match standard baud rates without
2558 	 * causing transmission errors.
2559 	 */
2560 	return uart_get_baud_rate(port, termios, old, min, max);
2561 }
2562 
2563 /*
2564  * Note in order to avoid the tty port mutex deadlock don't use the next method
2565  * within the uart port callbacks. Primarily it's supposed to be utilized to
2566  * handle a sudden reference clock rate change.
2567  */
2568 void serial8250_update_uartclk(struct uart_port *port, unsigned int uartclk)
2569 {
2570 	struct tty_port *tport = &port->state->port;
2571 
2572 	scoped_guard(tty_port_tty, tport) {
2573 		struct tty_struct *tty = scoped_tty();
2574 
2575 		guard(rwsem_write)(&tty->termios_rwsem);
2576 		guard(mutex)(&tport->mutex);
2577 
2578 		if (port->uartclk == uartclk)
2579 			return;
2580 
2581 		port->uartclk = uartclk;
2582 
2583 		if (!tty_port_initialized(tport))
2584 			return;
2585 
2586 		serial8250_do_set_termios(port, &tty->termios, NULL);
2587 
2588 		return;
2589 	}
2590 	guard(mutex)(&tport->mutex);
2591 	port->uartclk = uartclk;
2592 }
2593 EXPORT_SYMBOL_GPL(serial8250_update_uartclk);
2594 
2595 static void serial8250_set_mini(struct uart_port *port, struct ktermios *termios)
2596 {
2597 	struct uart_8250_port *up = up_to_u8250p(port);
2598 
2599 	if (!(up->capabilities & UART_CAP_MINI))
2600 		return;
2601 
2602 	termios->c_cflag &= ~(CSTOPB | PARENB | PARODD | CMSPAR);
2603 
2604 	tcflag_t csize = termios->c_cflag & CSIZE;
2605 	if (csize == CS5 || csize == CS6) {
2606 		termios->c_cflag &= ~CSIZE;
2607 		termios->c_cflag |= CS7;
2608 	}
2609 }
2610 
2611 static void serial8250_set_trigger_for_slow_speed(struct uart_port *port, struct ktermios *termios,
2612 						  unsigned int baud)
2613 {
2614 	struct uart_8250_port *up = up_to_u8250p(port);
2615 
2616 	if (!(up->capabilities & UART_CAP_FIFO))
2617 		return;
2618 	if (port->fifosize <= 1)
2619 		return;
2620 	if (baud >= 2400)
2621 		return;
2622 	if (up->dma)
2623 		return;
2624 
2625 	up->fcr &= ~UART_FCR_TRIGGER_MASK;
2626 	up->fcr |= UART_FCR_TRIGGER_1;
2627 }
2628 
2629 /*
2630  * MCR-based auto flow control. When AFE is enabled, RTS will be deasserted when the receive FIFO
2631  * contains more characters than the trigger, or the MCR RTS bit is cleared.
2632  */
2633 static void serial8250_set_afe(struct uart_port *port, struct ktermios *termios)
2634 {
2635 	struct uart_8250_port *up = up_to_u8250p(port);
2636 
2637 	if (!(up->capabilities & UART_CAP_AFE))
2638 		return;
2639 
2640 	up->mcr &= ~UART_MCR_AFE;
2641 	if (termios->c_cflag & CRTSCTS)
2642 		up->mcr |= UART_MCR_AFE;
2643 }
2644 
2645 static void serial8250_set_errors_and_ignores(struct uart_port *port, struct ktermios *termios)
2646 {
2647 	/*
2648 	 * Specify which conditions may be considered for error handling and the ignoring of
2649 	 * characters. The actual ignoring of characters only occurs if the bit is set in
2650 	 * @ignore_status_mask as well.
2651 	 */
2652 	port->read_status_mask = UART_LSR_OE | UART_LSR_DR;
2653 	if (termios->c_iflag & INPCK)
2654 		port->read_status_mask |= UART_LSR_FE | UART_LSR_PE;
2655 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2656 		port->read_status_mask |= UART_LSR_BI;
2657 
2658 	/* Characters to ignore */
2659 	port->ignore_status_mask = 0;
2660 	if (termios->c_iflag & IGNPAR)
2661 		port->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
2662 	if (termios->c_iflag & IGNBRK) {
2663 		port->ignore_status_mask |= UART_LSR_BI;
2664 		/*
2665 		 * If we're ignoring parity and break indicators, ignore overruns too (for real raw
2666 		 * support).
2667 		 */
2668 		if (termios->c_iflag & IGNPAR)
2669 			port->ignore_status_mask |= UART_LSR_OE;
2670 	}
2671 
2672 	/* ignore all characters if CREAD is not set */
2673 	if ((termios->c_cflag & CREAD) == 0)
2674 		port->ignore_status_mask |= UART_LSR_DR;
2675 }
2676 
2677 static void serial8250_set_ier(struct uart_port *port, struct ktermios *termios)
2678 {
2679 	struct uart_8250_port *up = up_to_u8250p(port);
2680 
2681 	/* CTS flow control flag and modem status interrupts */
2682 	up->ier &= ~UART_IER_MSI;
2683 	if (!(up->bugs & UART_BUG_NOMSR) && UART_ENABLE_MS(&up->port, termios->c_cflag))
2684 		up->ier |= UART_IER_MSI;
2685 	if (up->capabilities & UART_CAP_UUE)
2686 		up->ier |= UART_IER_UUE;
2687 	if (up->capabilities & UART_CAP_RTOIE)
2688 		up->ier |= UART_IER_RTOIE;
2689 
2690 	serial_port_out(port, UART_IER, up->ier);
2691 }
2692 
2693 static void serial8250_set_efr(struct uart_port *port, struct ktermios *termios)
2694 {
2695 	struct uart_8250_port *up = up_to_u8250p(port);
2696 	u8 efr_reg = UART_EFR;
2697 	u8 efr = 0;
2698 
2699 	if (!(up->capabilities & UART_CAP_EFR))
2700 		return;
2701 
2702 	/*
2703 	 * TI16C752/Startech hardware flow control.  FIXME:
2704 	 * - TI16C752 requires control thresholds to be set.
2705 	 * - UART_MCR_RTS is ineffective if auto-RTS mode is enabled.
2706 	 */
2707 	if (termios->c_cflag & CRTSCTS)
2708 		efr |= UART_EFR_CTS;
2709 
2710 	if (port->flags & UPF_EXAR_EFR)
2711 		efr_reg = UART_XR_EFR;
2712 
2713 	serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B);
2714 	serial_port_out(port, efr_reg, efr);
2715 }
2716 
2717 static void serial8250_set_fcr(struct uart_port *port, struct ktermios *termios)
2718 {
2719 	struct uart_8250_port *up = up_to_u8250p(port);
2720 	bool is_16750 = port->type == PORT_16750;
2721 
2722 	if (is_16750)
2723 		serial_port_out(port, UART_FCR, up->fcr);
2724 
2725 	/*
2726 	 * LCR DLAB must be reset to enable 64-byte FIFO mode. If the FCR is written without DLAB
2727 	 * set, this mode will be disabled.
2728 	 */
2729 	serial_port_out(port, UART_LCR, up->lcr);
2730 
2731 	if (is_16750)
2732 		return;
2733 
2734 	/* emulated UARTs (Lucent Venus 167x) need two steps */
2735 	if (up->fcr & UART_FCR_ENABLE_FIFO)
2736 		serial_port_out(port, UART_FCR, UART_FCR_ENABLE_FIFO);
2737 
2738 	serial_port_out(port, UART_FCR, up->fcr);
2739 }
2740 
2741 void
2742 serial8250_do_set_termios(struct uart_port *port, struct ktermios *termios,
2743 		          const struct ktermios *old)
2744 {
2745 	struct uart_8250_port *up = up_to_u8250p(port);
2746 	unsigned int baud, quot, frac = 0;
2747 	u8 lcr;
2748 
2749 	serial8250_set_mini(port, termios);
2750 	lcr = serial8250_compute_lcr(up, termios->c_cflag);
2751 	baud = serial8250_get_baud_rate(port, termios, old);
2752 	quot = serial8250_get_divisor(port, baud, &frac);
2753 
2754 	/*
2755 	 * Ok, we're now changing the port state. Do it with interrupts disabled.
2756 	 *
2757 	 * Synchronize UART_IER access against the console.
2758 	 */
2759 	scoped_guard(serial8250_rpm, up) {
2760 		guard(uart_port_lock_irqsave)(port);
2761 
2762 		up->lcr = lcr;
2763 		serial8250_set_trigger_for_slow_speed(port, termios, baud);
2764 		serial8250_set_afe(port, termios);
2765 		uart_update_timeout(port, termios->c_cflag, baud);
2766 		serial8250_set_errors_and_ignores(port, termios);
2767 		serial8250_set_ier(port, termios);
2768 		serial8250_set_efr(port, termios);
2769 		serial8250_set_divisor(port, baud, quot, frac);
2770 		serial8250_set_fcr(port, termios);
2771 		serial8250_set_mctrl(port, port->mctrl);
2772 	}
2773 
2774 	/* Don't rewrite B0 */
2775 	if (tty_termios_baud_rate(termios))
2776 		tty_termios_encode_baud_rate(termios, baud, baud);
2777 }
2778 EXPORT_SYMBOL(serial8250_do_set_termios);
2779 
2780 static void
2781 serial8250_set_termios(struct uart_port *port, struct ktermios *termios,
2782 		       const struct ktermios *old)
2783 {
2784 	if (port->set_termios)
2785 		port->set_termios(port, termios, old);
2786 	else
2787 		serial8250_do_set_termios(port, termios, old);
2788 }
2789 
2790 void serial8250_do_set_ldisc(struct uart_port *port, struct ktermios *termios)
2791 {
2792 	if (termios->c_line == N_PPS) {
2793 		port->flags |= UPF_HARDPPS_CD;
2794 		guard(uart_port_lock_irq)(port);
2795 		serial8250_enable_ms(port);
2796 	} else {
2797 		port->flags &= ~UPF_HARDPPS_CD;
2798 		if (!UART_ENABLE_MS(port, termios->c_cflag)) {
2799 			guard(uart_port_lock_irq)(port);
2800 			serial8250_disable_ms(port);
2801 		}
2802 	}
2803 }
2804 EXPORT_SYMBOL_GPL(serial8250_do_set_ldisc);
2805 
2806 static void
2807 serial8250_set_ldisc(struct uart_port *port, struct ktermios *termios)
2808 {
2809 	if (port->set_ldisc)
2810 		port->set_ldisc(port, termios);
2811 	else
2812 		serial8250_do_set_ldisc(port, termios);
2813 }
2814 
2815 void serial8250_do_pm(struct uart_port *port, unsigned int state,
2816 		      unsigned int oldstate)
2817 {
2818 	struct uart_8250_port *p = up_to_u8250p(port);
2819 
2820 	serial8250_set_sleep(p, state != 0);
2821 }
2822 EXPORT_SYMBOL(serial8250_do_pm);
2823 
2824 static void
2825 serial8250_pm(struct uart_port *port, unsigned int state,
2826 	      unsigned int oldstate)
2827 {
2828 	if (port->pm)
2829 		port->pm(port, state, oldstate);
2830 	else
2831 		serial8250_do_pm(port, state, oldstate);
2832 }
2833 
2834 static unsigned int serial8250_port_size(struct uart_8250_port *pt)
2835 {
2836 	if (pt->port.mapsize)
2837 		return pt->port.mapsize;
2838 	if (is_omap1_8250(pt))
2839 		return 0x16 << pt->port.regshift;
2840 
2841 	return 8 << pt->port.regshift;
2842 }
2843 
2844 /*
2845  * Resource handling.
2846  */
2847 static int serial8250_request_std_resource(struct uart_8250_port *up)
2848 {
2849 	unsigned int size = serial8250_port_size(up);
2850 	struct uart_port *port = &up->port;
2851 
2852 	switch (port->iotype) {
2853 	case UPIO_AU:
2854 	case UPIO_TSI:
2855 	case UPIO_MEM32:
2856 	case UPIO_MEM32BE:
2857 	case UPIO_MEM16:
2858 	case UPIO_MEM:
2859 		if (!port->mapbase)
2860 			return -EINVAL;
2861 
2862 		if (!request_mem_region(port->mapbase, size, "serial"))
2863 			return -EBUSY;
2864 
2865 		if (port->flags & UPF_IOREMAP) {
2866 			port->membase = ioremap(port->mapbase, size);
2867 			if (!port->membase) {
2868 				release_mem_region(port->mapbase, size);
2869 				return -ENOMEM;
2870 			}
2871 		}
2872 		return 0;
2873 	case UPIO_HUB6:
2874 	case UPIO_PORT:
2875 		if (!request_region(port->iobase, size, "serial"))
2876 			return -EBUSY;
2877 		return 0;
2878 	case UPIO_UNKNOWN:
2879 		break;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static void serial8250_release_std_resource(struct uart_8250_port *up)
2886 {
2887 	unsigned int size = serial8250_port_size(up);
2888 	struct uart_port *port = &up->port;
2889 
2890 	switch (port->iotype) {
2891 	case UPIO_AU:
2892 	case UPIO_TSI:
2893 	case UPIO_MEM32:
2894 	case UPIO_MEM32BE:
2895 	case UPIO_MEM16:
2896 	case UPIO_MEM:
2897 		if (!port->mapbase)
2898 			break;
2899 
2900 		if (port->flags & UPF_IOREMAP) {
2901 			iounmap(port->membase);
2902 			port->membase = NULL;
2903 		}
2904 
2905 		release_mem_region(port->mapbase, size);
2906 		break;
2907 
2908 	case UPIO_HUB6:
2909 	case UPIO_PORT:
2910 		release_region(port->iobase, size);
2911 		break;
2912 	case UPIO_UNKNOWN:
2913 		break;
2914 	}
2915 }
2916 
2917 static void serial8250_release_port(struct uart_port *port)
2918 {
2919 	struct uart_8250_port *up = up_to_u8250p(port);
2920 
2921 	serial8250_release_std_resource(up);
2922 }
2923 
2924 static int serial8250_request_port(struct uart_port *port)
2925 {
2926 	struct uart_8250_port *up = up_to_u8250p(port);
2927 
2928 	return serial8250_request_std_resource(up);
2929 }
2930 
2931 static int fcr_get_rxtrig_bytes(struct uart_8250_port *up)
2932 {
2933 	const struct serial8250_config *conf_type = &uart_config[up->port.type];
2934 	unsigned char bytes;
2935 
2936 	bytes = conf_type->rxtrig_bytes[UART_FCR_R_TRIG_BITS(up->fcr)];
2937 
2938 	return bytes ? bytes : -EOPNOTSUPP;
2939 }
2940 
2941 static int bytes_to_fcr_rxtrig(struct uart_8250_port *up, unsigned char bytes)
2942 {
2943 	const struct serial8250_config *conf_type = &uart_config[up->port.type];
2944 	int i;
2945 
2946 	if (!conf_type->rxtrig_bytes[UART_FCR_R_TRIG_BITS(UART_FCR_R_TRIG_00)])
2947 		return -EOPNOTSUPP;
2948 
2949 	for (i = 1; i < UART_FCR_R_TRIG_MAX_STATE; i++) {
2950 		if (bytes < conf_type->rxtrig_bytes[i])
2951 			/* Use the nearest lower value */
2952 			return (--i) << UART_FCR_R_TRIG_SHIFT;
2953 	}
2954 
2955 	return UART_FCR_R_TRIG_11;
2956 }
2957 
2958 static int do_get_rxtrig(struct tty_port *port)
2959 {
2960 	struct uart_state *state = container_of(port, struct uart_state, port);
2961 	struct uart_port *uport = state->uart_port;
2962 	struct uart_8250_port *up = up_to_u8250p(uport);
2963 
2964 	if (!(up->capabilities & UART_CAP_FIFO) || uport->fifosize <= 1)
2965 		return -EINVAL;
2966 
2967 	return fcr_get_rxtrig_bytes(up);
2968 }
2969 
2970 static int do_serial8250_get_rxtrig(struct tty_port *port)
2971 {
2972 	int rxtrig_bytes;
2973 
2974 	mutex_lock(&port->mutex);
2975 	rxtrig_bytes = do_get_rxtrig(port);
2976 	mutex_unlock(&port->mutex);
2977 
2978 	return rxtrig_bytes;
2979 }
2980 
2981 static ssize_t rx_trig_bytes_show(struct device *dev,
2982 	struct device_attribute *attr, char *buf)
2983 {
2984 	struct tty_port *port = dev_get_drvdata(dev);
2985 	int rxtrig_bytes;
2986 
2987 	rxtrig_bytes = do_serial8250_get_rxtrig(port);
2988 	if (rxtrig_bytes < 0)
2989 		return rxtrig_bytes;
2990 
2991 	return sysfs_emit(buf, "%d\n", rxtrig_bytes);
2992 }
2993 
2994 static int do_set_rxtrig(struct tty_port *port, unsigned char bytes)
2995 {
2996 	struct uart_state *state = container_of(port, struct uart_state, port);
2997 	struct uart_port *uport = state->uart_port;
2998 	struct uart_8250_port *up = up_to_u8250p(uport);
2999 	int rxtrig;
3000 
3001 	if (!(up->capabilities & UART_CAP_FIFO) || uport->fifosize <= 1)
3002 		return -EINVAL;
3003 
3004 	rxtrig = bytes_to_fcr_rxtrig(up, bytes);
3005 	if (rxtrig < 0)
3006 		return rxtrig;
3007 
3008 	serial8250_clear_fifos(up);
3009 	up->fcr &= ~UART_FCR_TRIGGER_MASK;
3010 	up->fcr |= (unsigned char)rxtrig;
3011 	serial_out(up, UART_FCR, up->fcr);
3012 	return 0;
3013 }
3014 
3015 static int do_serial8250_set_rxtrig(struct tty_port *port, unsigned char bytes)
3016 {
3017 	int ret;
3018 
3019 	mutex_lock(&port->mutex);
3020 	ret = do_set_rxtrig(port, bytes);
3021 	mutex_unlock(&port->mutex);
3022 
3023 	return ret;
3024 }
3025 
3026 static ssize_t rx_trig_bytes_store(struct device *dev,
3027 	struct device_attribute *attr, const char *buf, size_t count)
3028 {
3029 	struct tty_port *port = dev_get_drvdata(dev);
3030 	unsigned char bytes;
3031 	int ret;
3032 
3033 	if (!count)
3034 		return -EINVAL;
3035 
3036 	ret = kstrtou8(buf, 10, &bytes);
3037 	if (ret < 0)
3038 		return ret;
3039 
3040 	ret = do_serial8250_set_rxtrig(port, bytes);
3041 	if (ret < 0)
3042 		return ret;
3043 
3044 	return count;
3045 }
3046 
3047 static DEVICE_ATTR_RW(rx_trig_bytes);
3048 
3049 static struct attribute *serial8250_dev_attrs[] = {
3050 	&dev_attr_rx_trig_bytes.attr,
3051 	NULL
3052 };
3053 
3054 static struct attribute_group serial8250_dev_attr_group = {
3055 	.attrs = serial8250_dev_attrs,
3056 };
3057 
3058 static void register_dev_spec_attr_grp(struct uart_8250_port *up)
3059 {
3060 	const struct serial8250_config *conf_type = &uart_config[up->port.type];
3061 
3062 	if (conf_type->rxtrig_bytes[0])
3063 		up->port.attr_group = &serial8250_dev_attr_group;
3064 }
3065 
3066 static void serial8250_config_port(struct uart_port *port, int flags)
3067 {
3068 	struct uart_8250_port *up = up_to_u8250p(port);
3069 	int ret;
3070 
3071 	/*
3072 	 * Find the region that we can probe for.  This in turn
3073 	 * tells us whether we can probe for the type of port.
3074 	 */
3075 	ret = serial8250_request_std_resource(up);
3076 	if (ret < 0)
3077 		return;
3078 
3079 	if (port->iotype != up->cur_iotype)
3080 		set_io_from_upio(port);
3081 
3082 	if (flags & UART_CONFIG_TYPE)
3083 		autoconfig(up);
3084 
3085 	/* HW bugs may trigger IRQ while IIR == NO_INT */
3086 	if (port->type == PORT_TEGRA)
3087 		up->bugs |= UART_BUG_NOMSR;
3088 
3089 	if (port->type != PORT_UNKNOWN && flags & UART_CONFIG_IRQ)
3090 		autoconfig_irq(up);
3091 
3092 	if (port->type == PORT_UNKNOWN)
3093 		serial8250_release_std_resource(up);
3094 
3095 	register_dev_spec_attr_grp(up);
3096 	up->fcr = uart_config[up->port.type].fcr;
3097 }
3098 
3099 static int
3100 serial8250_verify_port(struct uart_port *port, struct serial_struct *ser)
3101 {
3102 	if (ser->irq >= irq_get_nr_irqs() || ser->irq < 0 ||
3103 	    ser->baud_base < 9600 || ser->type < PORT_UNKNOWN ||
3104 	    ser->type >= ARRAY_SIZE(uart_config) || ser->type == PORT_CIRRUS ||
3105 	    ser->type == PORT_STARTECH)
3106 		return -EINVAL;
3107 	return 0;
3108 }
3109 
3110 static const char *serial8250_type(struct uart_port *port)
3111 {
3112 	int type = port->type;
3113 
3114 	if (type >= ARRAY_SIZE(uart_config))
3115 		type = 0;
3116 	return uart_config[type].name;
3117 }
3118 
3119 static const struct uart_ops serial8250_pops = {
3120 	.tx_empty	= serial8250_tx_empty,
3121 	.set_mctrl	= serial8250_set_mctrl,
3122 	.get_mctrl	= serial8250_get_mctrl,
3123 	.stop_tx	= serial8250_stop_tx,
3124 	.start_tx	= serial8250_start_tx,
3125 	.throttle	= serial8250_throttle,
3126 	.unthrottle	= serial8250_unthrottle,
3127 	.stop_rx	= serial8250_stop_rx,
3128 	.enable_ms	= serial8250_enable_ms,
3129 	.break_ctl	= serial8250_break_ctl,
3130 	.startup	= serial8250_startup,
3131 	.shutdown	= serial8250_shutdown,
3132 	.flush_buffer	= serial8250_flush_buffer,
3133 	.set_termios	= serial8250_set_termios,
3134 	.set_ldisc	= serial8250_set_ldisc,
3135 	.pm		= serial8250_pm,
3136 	.type		= serial8250_type,
3137 	.release_port	= serial8250_release_port,
3138 	.request_port	= serial8250_request_port,
3139 	.config_port	= serial8250_config_port,
3140 	.verify_port	= serial8250_verify_port,
3141 #ifdef CONFIG_CONSOLE_POLL
3142 	.poll_get_char = serial8250_get_poll_char,
3143 	.poll_put_char = serial8250_put_poll_char,
3144 #endif
3145 };
3146 
3147 void serial8250_init_port(struct uart_8250_port *up)
3148 {
3149 	struct uart_port *port = &up->port;
3150 
3151 	spin_lock_init(&port->lock);
3152 	port->ctrl_id = 0;
3153 	port->pm = NULL;
3154 	port->ops = &serial8250_pops;
3155 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_8250_CONSOLE);
3156 
3157 	up->cur_iotype = UPIO_UNKNOWN;
3158 }
3159 EXPORT_SYMBOL_GPL(serial8250_init_port);
3160 
3161 void serial8250_set_defaults(struct uart_8250_port *up)
3162 {
3163 	struct uart_port *port = &up->port;
3164 
3165 	if (up->port.flags & UPF_FIXED_TYPE) {
3166 		unsigned int type = up->port.type;
3167 
3168 		if (!up->port.fifosize)
3169 			up->port.fifosize = uart_config[type].fifo_size;
3170 		if (!up->tx_loadsz)
3171 			up->tx_loadsz = uart_config[type].tx_loadsz;
3172 		if (!up->capabilities)
3173 			up->capabilities = uart_config[type].flags;
3174 	}
3175 
3176 	set_io_from_upio(port);
3177 
3178 	/* default dma handlers */
3179 	if (up->dma) {
3180 		if (!up->dma->tx_dma)
3181 			up->dma->tx_dma = serial8250_tx_dma;
3182 		if (!up->dma->rx_dma)
3183 			up->dma->rx_dma = serial8250_rx_dma;
3184 	}
3185 }
3186 EXPORT_SYMBOL_GPL(serial8250_set_defaults);
3187 
3188 #ifdef CONFIG_SERIAL_8250_CONSOLE
3189 
3190 static void serial8250_console_putchar(struct uart_port *port, unsigned char ch)
3191 {
3192 	serial_port_out(port, UART_TX, ch);
3193 }
3194 
3195 static void serial8250_console_wait_putchar(struct uart_port *port, unsigned char ch)
3196 {
3197 	struct uart_8250_port *up = up_to_u8250p(port);
3198 
3199 	wait_for_xmitr(up, UART_LSR_THRE);
3200 	serial8250_console_putchar(port, ch);
3201 }
3202 
3203 /*
3204  *	Restore serial console when h/w power-off detected
3205  */
3206 static void serial8250_console_restore(struct uart_8250_port *up)
3207 {
3208 	struct uart_port *port = &up->port;
3209 	struct ktermios termios;
3210 	unsigned int baud, quot, frac = 0;
3211 
3212 	termios.c_cflag = port->cons->cflag;
3213 	termios.c_ispeed = port->cons->ispeed;
3214 	termios.c_ospeed = port->cons->ospeed;
3215 	if (port->state->port.tty && termios.c_cflag == 0) {
3216 		termios.c_cflag = port->state->port.tty->termios.c_cflag;
3217 		termios.c_ispeed = port->state->port.tty->termios.c_ispeed;
3218 		termios.c_ospeed = port->state->port.tty->termios.c_ospeed;
3219 	}
3220 
3221 	baud = serial8250_get_baud_rate(port, &termios, NULL);
3222 	quot = serial8250_get_divisor(port, baud, &frac);
3223 
3224 	serial8250_set_divisor(port, baud, quot, frac);
3225 	serial_port_out(port, UART_LCR, up->lcr);
3226 	serial8250_out_MCR(up, up->mcr | UART_MCR_DTR | UART_MCR_RTS);
3227 }
3228 
3229 static void fifo_wait_for_lsr(struct uart_8250_port *up, unsigned int count)
3230 {
3231 	unsigned int i;
3232 
3233 	for (i = 0; i < count; i++) {
3234 		if (wait_for_lsr(up, UART_LSR_THRE))
3235 			return;
3236 	}
3237 }
3238 
3239 /*
3240  * Print a string to the serial port using the device FIFO
3241  *
3242  * It sends fifosize bytes and then waits for the fifo
3243  * to get empty.
3244  */
3245 static void serial8250_console_fifo_write(struct uart_8250_port *up,
3246 					  const char *s, unsigned int count)
3247 {
3248 	const char *end = s + count;
3249 	unsigned int fifosize = up->tx_loadsz;
3250 	struct uart_port *port = &up->port;
3251 	unsigned int tx_count = 0;
3252 	bool cr_sent = false;
3253 	unsigned int i;
3254 
3255 	while (s != end) {
3256 		/* Allow timeout for each byte of a possibly full FIFO */
3257 		fifo_wait_for_lsr(up, fifosize);
3258 
3259 		for (i = 0; i < fifosize && s != end; ++i) {
3260 			if (*s == '\n' && !cr_sent) {
3261 				serial8250_console_putchar(port, '\r');
3262 				cr_sent = true;
3263 			} else {
3264 				serial8250_console_putchar(port, *s++);
3265 				cr_sent = false;
3266 			}
3267 		}
3268 		tx_count = i;
3269 	}
3270 
3271 	/*
3272 	 * Allow timeout for each byte written since the caller will only wait
3273 	 * for UART_LSR_BOTH_EMPTY using the timeout of a single character
3274 	 */
3275 	fifo_wait_for_lsr(up, tx_count);
3276 }
3277 
3278 /*
3279  *	Print a string to the serial port trying not to disturb
3280  *	any possible real use of the port...
3281  *
3282  *	The console_lock must be held when we get here.
3283  *
3284  *	Doing runtime PM is really a bad idea for the kernel console.
3285  *	Thus, we assume the function is called when device is powered up.
3286  */
3287 void serial8250_console_write(struct uart_8250_port *up, const char *s,
3288 			      unsigned int count)
3289 {
3290 	struct uart_8250_em485 *em485 = up->em485;
3291 	struct uart_port *port = &up->port;
3292 	unsigned long flags;
3293 	unsigned int ier, use_fifo;
3294 	int locked = 1;
3295 
3296 	touch_nmi_watchdog();
3297 
3298 	if (oops_in_progress)
3299 		locked = uart_port_trylock_irqsave(port, &flags);
3300 	else
3301 		uart_port_lock_irqsave(port, &flags);
3302 
3303 	/*
3304 	 *	First save the IER then disable the interrupts
3305 	 */
3306 	ier = serial_port_in(port, UART_IER);
3307 	serial8250_clear_IER(up);
3308 
3309 	/* check scratch reg to see if port powered off during system sleep */
3310 	if (up->canary && (up->canary != serial_port_in(port, UART_SCR))) {
3311 		serial8250_console_restore(up);
3312 		up->canary = 0;
3313 	}
3314 
3315 	if (em485) {
3316 		if (em485->tx_stopped)
3317 			up->rs485_start_tx(up, false);
3318 		mdelay(port->rs485.delay_rts_before_send);
3319 	}
3320 
3321 	use_fifo = (up->capabilities & UART_CAP_FIFO) &&
3322 		/*
3323 		 * BCM283x requires to check the fifo
3324 		 * after each byte.
3325 		 */
3326 		!(up->capabilities & UART_CAP_MINI) &&
3327 		/*
3328 		 * tx_loadsz contains the transmit fifo size
3329 		 */
3330 		up->tx_loadsz > 1 &&
3331 		(up->fcr & UART_FCR_ENABLE_FIFO) &&
3332 		port->state &&
3333 		test_bit(TTY_PORT_INITIALIZED, &port->state->port.iflags) &&
3334 		/*
3335 		 * After we put a data in the fifo, the controller will send
3336 		 * it regardless of the CTS state. Therefore, only use fifo
3337 		 * if we don't use control flow.
3338 		 */
3339 		!(up->port.flags & UPF_CONS_FLOW);
3340 
3341 	if (likely(use_fifo))
3342 		serial8250_console_fifo_write(up, s, count);
3343 	else
3344 		uart_console_write(port, s, count, serial8250_console_wait_putchar);
3345 
3346 	/*
3347 	 *	Finally, wait for transmitter to become empty
3348 	 *	and restore the IER
3349 	 */
3350 	wait_for_xmitr(up, UART_LSR_BOTH_EMPTY);
3351 
3352 	if (em485) {
3353 		mdelay(port->rs485.delay_rts_after_send);
3354 		if (em485->tx_stopped)
3355 			up->rs485_stop_tx(up, false);
3356 	}
3357 
3358 	serial_port_out(port, UART_IER, ier);
3359 
3360 	/*
3361 	 *	The receive handling will happen properly because the
3362 	 *	receive ready bit will still be set; it is not cleared
3363 	 *	on read.  However, modem control will not, we must
3364 	 *	call it if we have saved something in the saved flags
3365 	 *	while processing with interrupts off.
3366 	 */
3367 	if (up->msr_saved_flags)
3368 		serial8250_modem_status(up);
3369 
3370 	if (locked)
3371 		uart_port_unlock_irqrestore(port, flags);
3372 }
3373 
3374 static unsigned int probe_baud(struct uart_port *port)
3375 {
3376 	unsigned char lcr, dll, dlm;
3377 	unsigned int quot;
3378 
3379 	lcr = serial_port_in(port, UART_LCR);
3380 	serial_port_out(port, UART_LCR, lcr | UART_LCR_DLAB);
3381 	dll = serial_port_in(port, UART_DLL);
3382 	dlm = serial_port_in(port, UART_DLM);
3383 	serial_port_out(port, UART_LCR, lcr);
3384 
3385 	quot = (dlm << 8) | dll;
3386 	return (port->uartclk / 16) / quot;
3387 }
3388 
3389 int serial8250_console_setup(struct uart_port *port, char *options, bool probe)
3390 {
3391 	int baud = 9600;
3392 	int bits = 8;
3393 	int parity = 'n';
3394 	int flow = 'n';
3395 	int ret;
3396 
3397 	if (!port->iobase && !port->membase)
3398 		return -ENODEV;
3399 
3400 	if (options)
3401 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3402 	else if (probe)
3403 		baud = probe_baud(port);
3404 
3405 	ret = uart_set_options(port, port->cons, baud, parity, bits, flow);
3406 	if (ret)
3407 		return ret;
3408 
3409 	if (port->dev)
3410 		pm_runtime_get_sync(port->dev);
3411 
3412 	return 0;
3413 }
3414 
3415 int serial8250_console_exit(struct uart_port *port)
3416 {
3417 	if (port->dev)
3418 		pm_runtime_put_sync(port->dev);
3419 
3420 	return 0;
3421 }
3422 
3423 #endif /* CONFIG_SERIAL_8250_CONSOLE */
3424 
3425 MODULE_DESCRIPTION("Base port operations for 8250/16550-type serial ports");
3426 MODULE_LICENSE("GPL");
3427