1 // SPDX-License-Identifier: GPL-2.0 2 /* ePAPR hypervisor byte channel device driver 3 * 4 * Copyright 2009-2011 Freescale Semiconductor, Inc. 5 * 6 * Author: Timur Tabi <timur@freescale.com> 7 * 8 * This driver support three distinct interfaces, all of which are related to 9 * ePAPR hypervisor byte channels. 10 * 11 * 1) An early-console (udbg) driver. This provides early console output 12 * through a byte channel. The byte channel handle must be specified in a 13 * Kconfig option. 14 * 15 * 2) A normal console driver. Output is sent to the byte channel designated 16 * for stdout in the device tree. The console driver is for handling kernel 17 * printk calls. 18 * 19 * 3) A tty driver, which is used to handle user-space input and output. The 20 * byte channel used for the console is designated as the default tty. 21 */ 22 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/err.h> 26 #include <linux/interrupt.h> 27 #include <linux/fs.h> 28 #include <linux/poll.h> 29 #include <asm/epapr_hcalls.h> 30 #include <linux/of.h> 31 #include <linux/of_irq.h> 32 #include <linux/platform_device.h> 33 #include <linux/cdev.h> 34 #include <linux/console.h> 35 #include <linux/tty.h> 36 #include <linux/tty_flip.h> 37 #include <linux/circ_buf.h> 38 #include <asm/udbg.h> 39 40 /* The size of the transmit circular buffer. This must be a power of two. */ 41 #define BUF_SIZE 2048 42 43 /* Per-byte channel private data */ 44 struct ehv_bc_data { 45 struct device *dev; 46 struct tty_port port; 47 uint32_t handle; 48 unsigned int rx_irq; 49 unsigned int tx_irq; 50 51 spinlock_t lock; /* lock for transmit buffer */ 52 u8 buf[BUF_SIZE]; /* transmit circular buffer */ 53 unsigned int head; /* circular buffer head */ 54 unsigned int tail; /* circular buffer tail */ 55 56 int tx_irq_enabled; /* true == TX interrupt is enabled */ 57 }; 58 59 /* Array of byte channel objects */ 60 static struct ehv_bc_data *bcs; 61 62 /* Byte channel handle for stdout (and stdin), taken from device tree */ 63 static unsigned int stdout_bc; 64 65 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 66 static unsigned int stdout_irq; 67 68 /**************************** SUPPORT FUNCTIONS ****************************/ 69 70 /* 71 * Enable the transmit interrupt 72 * 73 * Unlike a serial device, byte channels have no mechanism for disabling their 74 * own receive or transmit interrupts. To emulate that feature, we toggle 75 * the IRQ in the kernel. 76 * 77 * We cannot just blindly call enable_irq() or disable_irq(), because these 78 * calls are reference counted. This means that we cannot call enable_irq() 79 * if interrupts are already enabled. This can happen in two situations: 80 * 81 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 82 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 83 * 84 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 85 */ 86 static void enable_tx_interrupt(struct ehv_bc_data *bc) 87 { 88 if (!bc->tx_irq_enabled) { 89 enable_irq(bc->tx_irq); 90 bc->tx_irq_enabled = 1; 91 } 92 } 93 94 static void disable_tx_interrupt(struct ehv_bc_data *bc) 95 { 96 if (bc->tx_irq_enabled) { 97 disable_irq_nosync(bc->tx_irq); 98 bc->tx_irq_enabled = 0; 99 } 100 } 101 102 /* 103 * find the byte channel handle to use for the console 104 * 105 * The byte channel to be used for the console is specified via a "stdout" 106 * property in the /chosen node. 107 */ 108 static int find_console_handle(void) 109 { 110 struct device_node *np = of_stdout; 111 const uint32_t *iprop; 112 113 /* We don't care what the aliased node is actually called. We only 114 * care if it's compatible with "epapr,hv-byte-channel", because that 115 * indicates that it's a byte channel node. 116 */ 117 if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel")) 118 return 0; 119 120 stdout_irq = irq_of_parse_and_map(np, 0); 121 if (!stdout_irq) { 122 pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np); 123 return 0; 124 } 125 126 /* 127 * The 'hv-handle' property contains the handle for this byte channel. 128 */ 129 iprop = of_get_property(np, "hv-handle", NULL); 130 if (!iprop) { 131 pr_err("ehv-bc: no 'hv-handle' property in %pOFn node\n", 132 np); 133 return 0; 134 } 135 stdout_bc = be32_to_cpu(*iprop); 136 return 1; 137 } 138 139 static unsigned int local_ev_byte_channel_send(unsigned int handle, 140 unsigned int *count, 141 const u8 *p) 142 { 143 u8 buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 144 unsigned int c = *count; 145 146 /* 147 * ev_byte_channel_send() expects at least EV_BYTE_CHANNEL_MAX_BYTES 148 * (16 B) in the buffer. Fake it using a local buffer if needed. 149 */ 150 if (c < sizeof(buffer)) { 151 memcpy_and_pad(buffer, sizeof(buffer), p, c, 0); 152 p = buffer; 153 } 154 return ev_byte_channel_send(handle, count, p); 155 } 156 157 /*************************** EARLY CONSOLE DRIVER ***************************/ 158 159 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 160 161 /* 162 * send a byte to a byte channel, wait if necessary 163 * 164 * This function sends a byte to a byte channel, and it waits and 165 * retries if the byte channel is full. It returns if the character 166 * has been sent, or if some error has occurred. 167 * 168 */ 169 static void byte_channel_spin_send(const u8 data) 170 { 171 int ret, count; 172 173 do { 174 count = 1; 175 ret = local_ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 176 &count, &data); 177 } while (ret == EV_EAGAIN); 178 } 179 180 /* 181 * The udbg subsystem calls this function to display a single character. 182 * We convert CR to a CR/LF. 183 */ 184 static void ehv_bc_udbg_putc(char c) 185 { 186 if (c == '\n') 187 byte_channel_spin_send('\r'); 188 189 byte_channel_spin_send(c); 190 } 191 192 /* 193 * early console initialization 194 * 195 * PowerPC kernels support an early printk console, also known as udbg. 196 * This function must be called via the ppc_md.init_early function pointer. 197 * At this point, the device tree has been unflattened, so we can obtain the 198 * byte channel handle for stdout. 199 * 200 * We only support displaying of characters (putc). We do not support 201 * keyboard input. 202 */ 203 void __init udbg_init_ehv_bc(void) 204 { 205 unsigned int rx_count, tx_count; 206 unsigned int ret; 207 208 /* Verify the byte channel handle */ 209 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 210 &rx_count, &tx_count); 211 if (ret) 212 return; 213 214 udbg_putc = ehv_bc_udbg_putc; 215 register_early_udbg_console(); 216 217 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 218 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 219 } 220 221 #endif 222 223 /****************************** CONSOLE DRIVER ******************************/ 224 225 static struct tty_driver *ehv_bc_driver; 226 227 /* 228 * Byte channel console sending worker function. 229 * 230 * For consoles, if the output buffer is full, we should just spin until it 231 * clears. 232 */ 233 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 234 unsigned int count) 235 { 236 unsigned int len; 237 int ret = 0; 238 239 while (count) { 240 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 241 do { 242 ret = local_ev_byte_channel_send(handle, &len, s); 243 } while (ret == EV_EAGAIN); 244 count -= len; 245 s += len; 246 } 247 248 return ret; 249 } 250 251 /* 252 * write a string to the console 253 * 254 * This function gets called to write a string from the kernel, typically from 255 * a printk(). This function spins until all data is written. 256 * 257 * We copy the data to a temporary buffer because we need to insert a \r in 258 * front of every \n. It's more efficient to copy the data to the buffer than 259 * it is to make multiple hcalls for each character or each newline. 260 */ 261 static void ehv_bc_console_write(struct console *co, const char *s, 262 unsigned int count) 263 { 264 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 265 unsigned int i, j = 0; 266 char c; 267 268 for (i = 0; i < count; i++) { 269 c = *s++; 270 271 if (c == '\n') 272 s2[j++] = '\r'; 273 274 s2[j++] = c; 275 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 276 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 277 return; 278 j = 0; 279 } 280 } 281 282 if (j) 283 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 284 } 285 286 /* 287 * When /dev/console is opened, the kernel iterates the console list looking 288 * for one with ->device and then calls that method. On success, it expects 289 * the passed-in int* to contain the minor number to use. 290 */ 291 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 292 { 293 *index = co->index; 294 295 return ehv_bc_driver; 296 } 297 298 static struct console ehv_bc_console = { 299 .name = "ttyEHV", 300 .write = ehv_bc_console_write, 301 .device = ehv_bc_console_device, 302 .flags = CON_PRINTBUFFER | CON_ENABLED, 303 }; 304 305 /* 306 * Console initialization 307 * 308 * This is the first function that is called after the device tree is 309 * available, so here is where we determine the byte channel handle and IRQ for 310 * stdout/stdin, even though that information is used by the tty and character 311 * drivers. 312 */ 313 static int __init ehv_bc_console_init(void) 314 { 315 if (!find_console_handle()) { 316 pr_debug("ehv-bc: stdout is not a byte channel\n"); 317 return -ENODEV; 318 } 319 320 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 321 /* Print a friendly warning if the user chose the wrong byte channel 322 * handle for udbg. 323 */ 324 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 325 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n", 326 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 327 #endif 328 329 /* add_preferred_console() must be called before register_console(), 330 otherwise it won't work. However, we don't want to enumerate all the 331 byte channels here, either, since we only care about one. */ 332 333 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 334 register_console(&ehv_bc_console); 335 336 pr_info("ehv-bc: registered console driver for byte channel %u\n", 337 stdout_bc); 338 339 return 0; 340 } 341 console_initcall(ehv_bc_console_init); 342 343 /******************************** TTY DRIVER ********************************/ 344 345 /* 346 * byte channel receive interrupt handler 347 * 348 * This ISR is called whenever data is available on a byte channel. 349 */ 350 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 351 { 352 struct ehv_bc_data *bc = data; 353 unsigned int rx_count, tx_count, len; 354 int count; 355 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 356 int ret; 357 358 /* Find out how much data needs to be read, and then ask the TTY layer 359 * if it can handle that much. We want to ensure that every byte we 360 * read from the byte channel will be accepted by the TTY layer. 361 */ 362 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 363 count = tty_buffer_request_room(&bc->port, rx_count); 364 365 /* 'count' is the maximum amount of data the TTY layer can accept at 366 * this time. However, during testing, I was never able to get 'count' 367 * to be less than 'rx_count'. I'm not sure whether I'm calling it 368 * correctly. 369 */ 370 371 while (count > 0) { 372 len = min_t(unsigned int, count, sizeof(buffer)); 373 374 /* Read some data from the byte channel. This function will 375 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 376 */ 377 ev_byte_channel_receive(bc->handle, &len, buffer); 378 379 /* 'len' is now the amount of data that's been received. 'len' 380 * can't be zero, and most likely it's equal to one. 381 */ 382 383 /* Pass the received data to the tty layer. */ 384 ret = tty_insert_flip_string(&bc->port, buffer, len); 385 386 /* 'ret' is the number of bytes that the TTY layer accepted. 387 * If it's not equal to 'len', then it means the buffer is 388 * full, which should never happen. If it does happen, we can 389 * exit gracefully, but we drop the last 'len - ret' characters 390 * that we read from the byte channel. 391 */ 392 if (ret != len) 393 break; 394 395 count -= len; 396 } 397 398 /* Tell the tty layer that we're done. */ 399 tty_flip_buffer_push(&bc->port); 400 401 return IRQ_HANDLED; 402 } 403 404 /* 405 * dequeue the transmit buffer to the hypervisor 406 * 407 * This function, which can be called in interrupt context, dequeues as much 408 * data as possible from the transmit buffer to the byte channel. 409 */ 410 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 411 { 412 unsigned int count; 413 unsigned int len, ret; 414 unsigned long flags; 415 416 do { 417 spin_lock_irqsave(&bc->lock, flags); 418 len = min_t(unsigned int, 419 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 420 EV_BYTE_CHANNEL_MAX_BYTES); 421 422 ret = local_ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 423 424 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 425 if (!ret || (ret == EV_EAGAIN)) 426 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 427 428 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 429 spin_unlock_irqrestore(&bc->lock, flags); 430 } while (count && !ret); 431 432 spin_lock_irqsave(&bc->lock, flags); 433 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 434 /* 435 * If we haven't emptied the buffer, then enable the TX IRQ. 436 * We'll get an interrupt when there's more room in the 437 * hypervisor's output buffer. 438 */ 439 enable_tx_interrupt(bc); 440 else 441 disable_tx_interrupt(bc); 442 spin_unlock_irqrestore(&bc->lock, flags); 443 } 444 445 /* 446 * byte channel transmit interrupt handler 447 * 448 * This ISR is called whenever space becomes available for transmitting 449 * characters on a byte channel. 450 */ 451 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 452 { 453 struct ehv_bc_data *bc = data; 454 455 ehv_bc_tx_dequeue(bc); 456 tty_port_tty_wakeup(&bc->port); 457 458 return IRQ_HANDLED; 459 } 460 461 /* 462 * This function is called when the tty layer has data for us send. We store 463 * the data first in a circular buffer, and then dequeue as much of that data 464 * as possible. 465 * 466 * We don't need to worry about whether there is enough room in the buffer for 467 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 468 * layer how much data it can safely send to us. We guarantee that 469 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 470 * too much data. 471 */ 472 static ssize_t ehv_bc_tty_write(struct tty_struct *ttys, const u8 *s, 473 size_t count) 474 { 475 struct ehv_bc_data *bc = ttys->driver_data; 476 unsigned long flags; 477 size_t len, written = 0; 478 479 while (1) { 480 spin_lock_irqsave(&bc->lock, flags); 481 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 482 if (count < len) 483 len = count; 484 if (len) { 485 memcpy(bc->buf + bc->head, s, len); 486 bc->head = (bc->head + len) & (BUF_SIZE - 1); 487 } 488 spin_unlock_irqrestore(&bc->lock, flags); 489 if (!len) 490 break; 491 492 s += len; 493 count -= len; 494 written += len; 495 } 496 497 ehv_bc_tx_dequeue(bc); 498 499 return written; 500 } 501 502 /* 503 * This function can be called multiple times for a given tty_struct, which is 504 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 505 * 506 * The tty layer will still call this function even if the device was not 507 * registered (i.e. tty_register_device() was not called). This happens 508 * because tty_register_device() is optional and some legacy drivers don't 509 * use it. So we need to check for that. 510 */ 511 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 512 { 513 struct ehv_bc_data *bc = &bcs[ttys->index]; 514 515 if (!bc->dev) 516 return -ENODEV; 517 518 return tty_port_open(&bc->port, ttys, filp); 519 } 520 521 /* 522 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 523 * still call this function to close the tty device. So we can't assume that 524 * the tty port has been initialized. 525 */ 526 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 527 { 528 struct ehv_bc_data *bc = &bcs[ttys->index]; 529 530 if (bc->dev) 531 tty_port_close(&bc->port, ttys, filp); 532 } 533 534 /* 535 * Return the amount of space in the output buffer 536 * 537 * This is actually a contract between the driver and the tty layer outlining 538 * how much write room the driver can guarantee will be sent OR BUFFERED. This 539 * driver MUST honor the return value. 540 */ 541 static unsigned int ehv_bc_tty_write_room(struct tty_struct *ttys) 542 { 543 struct ehv_bc_data *bc = ttys->driver_data; 544 unsigned long flags; 545 unsigned int count; 546 547 spin_lock_irqsave(&bc->lock, flags); 548 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 549 spin_unlock_irqrestore(&bc->lock, flags); 550 551 return count; 552 } 553 554 /* 555 * Stop sending data to the tty layer 556 * 557 * This function is called when the tty layer's input buffers are getting full, 558 * so the driver should stop sending it data. The easiest way to do this is to 559 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 560 * called. 561 * 562 * The hypervisor will continue to queue up any incoming data. If there is any 563 * data in the queue when the RX interrupt is enabled, we'll immediately get an 564 * RX interrupt. 565 */ 566 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 567 { 568 struct ehv_bc_data *bc = ttys->driver_data; 569 570 disable_irq(bc->rx_irq); 571 } 572 573 /* 574 * Resume sending data to the tty layer 575 * 576 * This function is called after previously calling ehv_bc_tty_throttle(). The 577 * tty layer's input buffers now have more room, so the driver can resume 578 * sending it data. 579 */ 580 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 581 { 582 struct ehv_bc_data *bc = ttys->driver_data; 583 584 /* If there is any data in the queue when the RX interrupt is enabled, 585 * we'll immediately get an RX interrupt. 586 */ 587 enable_irq(bc->rx_irq); 588 } 589 590 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 591 { 592 struct ehv_bc_data *bc = ttys->driver_data; 593 594 ehv_bc_tx_dequeue(bc); 595 tty_port_hangup(&bc->port); 596 } 597 598 /* 599 * TTY driver operations 600 * 601 * If we could ask the hypervisor how much data is still in the TX buffer, or 602 * at least how big the TX buffers are, then we could implement the 603 * .wait_until_sent and .chars_in_buffer functions. 604 */ 605 static const struct tty_operations ehv_bc_ops = { 606 .open = ehv_bc_tty_open, 607 .close = ehv_bc_tty_close, 608 .write = ehv_bc_tty_write, 609 .write_room = ehv_bc_tty_write_room, 610 .throttle = ehv_bc_tty_throttle, 611 .unthrottle = ehv_bc_tty_unthrottle, 612 .hangup = ehv_bc_tty_hangup, 613 }; 614 615 /* 616 * initialize the TTY port 617 * 618 * This function will only be called once, no matter how many times 619 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 620 * why we initialize tty_struct-related variables here. 621 */ 622 static int ehv_bc_tty_port_activate(struct tty_port *port, 623 struct tty_struct *ttys) 624 { 625 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 626 int ret; 627 628 ttys->driver_data = bc; 629 630 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 631 if (ret < 0) { 632 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 633 bc->rx_irq, ret); 634 return ret; 635 } 636 637 /* request_irq also enables the IRQ */ 638 bc->tx_irq_enabled = 1; 639 640 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 641 if (ret < 0) { 642 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 643 bc->tx_irq, ret); 644 free_irq(bc->rx_irq, bc); 645 return ret; 646 } 647 648 /* The TX IRQ is enabled only when we can't write all the data to the 649 * byte channel at once, so by default it's disabled. 650 */ 651 disable_tx_interrupt(bc); 652 653 return 0; 654 } 655 656 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 657 { 658 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 659 660 free_irq(bc->tx_irq, bc); 661 free_irq(bc->rx_irq, bc); 662 } 663 664 static const struct tty_port_operations ehv_bc_tty_port_ops = { 665 .activate = ehv_bc_tty_port_activate, 666 .shutdown = ehv_bc_tty_port_shutdown, 667 }; 668 669 static int ehv_bc_tty_probe(struct platform_device *pdev) 670 { 671 struct device_node *np = pdev->dev.of_node; 672 struct ehv_bc_data *bc; 673 const uint32_t *iprop; 674 unsigned int handle; 675 int ret; 676 static unsigned int index = 1; 677 unsigned int i; 678 679 iprop = of_get_property(np, "hv-handle", NULL); 680 if (!iprop) { 681 dev_err(&pdev->dev, "no 'hv-handle' property in %pOFn node\n", 682 np); 683 return -ENODEV; 684 } 685 686 /* We already told the console layer that the index for the console 687 * device is zero, so we need to make sure that we use that index when 688 * we probe the console byte channel node. 689 */ 690 handle = be32_to_cpu(*iprop); 691 i = (handle == stdout_bc) ? 0 : index++; 692 bc = &bcs[i]; 693 694 bc->handle = handle; 695 bc->head = 0; 696 bc->tail = 0; 697 spin_lock_init(&bc->lock); 698 699 bc->rx_irq = irq_of_parse_and_map(np, 0); 700 bc->tx_irq = irq_of_parse_and_map(np, 1); 701 if (!bc->rx_irq || !bc->tx_irq) { 702 dev_err(&pdev->dev, "no 'interrupts' property in %pOFn node\n", 703 np); 704 ret = -ENODEV; 705 goto error; 706 } 707 708 tty_port_init(&bc->port); 709 bc->port.ops = &ehv_bc_tty_port_ops; 710 711 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i, 712 &pdev->dev); 713 if (IS_ERR(bc->dev)) { 714 ret = PTR_ERR(bc->dev); 715 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 716 goto error; 717 } 718 719 dev_set_drvdata(&pdev->dev, bc); 720 721 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 722 ehv_bc_driver->name, i, bc->handle); 723 724 return 0; 725 726 error: 727 tty_port_destroy(&bc->port); 728 irq_dispose_mapping(bc->tx_irq); 729 irq_dispose_mapping(bc->rx_irq); 730 731 memset(bc, 0, sizeof(struct ehv_bc_data)); 732 return ret; 733 } 734 735 static const struct of_device_id ehv_bc_tty_of_ids[] = { 736 { .compatible = "epapr,hv-byte-channel" }, 737 {} 738 }; 739 740 static struct platform_driver ehv_bc_tty_driver = { 741 .driver = { 742 .name = "ehv-bc", 743 .of_match_table = ehv_bc_tty_of_ids, 744 .suppress_bind_attrs = true, 745 }, 746 .probe = ehv_bc_tty_probe, 747 }; 748 749 /** 750 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 751 * 752 * This function is called when this driver is loaded. 753 */ 754 static int __init ehv_bc_init(void) 755 { 756 struct tty_driver *driver; 757 struct device_node *np; 758 unsigned int count = 0; /* Number of elements in bcs[] */ 759 int ret; 760 761 pr_info("ePAPR hypervisor byte channel driver\n"); 762 763 /* Count the number of byte channels */ 764 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 765 count++; 766 767 if (!count) 768 return -ENODEV; 769 770 /* The array index of an element in bcs[] is the same as the tty index 771 * for that element. If you know the address of an element in the 772 * array, then you can use pointer math (e.g. "bc - bcs") to get its 773 * tty index. 774 */ 775 bcs = kcalloc(count, sizeof(struct ehv_bc_data), GFP_KERNEL); 776 if (!bcs) 777 return -ENOMEM; 778 779 driver = tty_alloc_driver(count, TTY_DRIVER_REAL_RAW | 780 TTY_DRIVER_DYNAMIC_DEV); 781 if (IS_ERR(driver)) { 782 ret = PTR_ERR(driver); 783 goto err_free_bcs; 784 } 785 786 driver->driver_name = "ehv-bc"; 787 driver->name = ehv_bc_console.name; 788 driver->type = TTY_DRIVER_TYPE_CONSOLE; 789 driver->subtype = SYSTEM_TYPE_CONSOLE; 790 driver->init_termios = tty_std_termios; 791 tty_set_operations(driver, &ehv_bc_ops); 792 793 ret = tty_register_driver(driver); 794 if (ret) { 795 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 796 goto err_tty_driver_kref_put; 797 } 798 799 ehv_bc_driver = driver; 800 801 ret = platform_driver_register(&ehv_bc_tty_driver); 802 if (ret) { 803 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 804 ret); 805 goto err_deregister_tty_driver; 806 } 807 808 return 0; 809 810 err_deregister_tty_driver: 811 ehv_bc_driver = NULL; 812 tty_unregister_driver(driver); 813 err_tty_driver_kref_put: 814 tty_driver_kref_put(driver); 815 err_free_bcs: 816 kfree(bcs); 817 818 return ret; 819 } 820 device_initcall(ehv_bc_init); 821