1 /* ePAPR hypervisor byte channel device driver 2 * 3 * Copyright 2009-2011 Freescale Semiconductor, Inc. 4 * 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * This driver support three distinct interfaces, all of which are related to 12 * ePAPR hypervisor byte channels. 13 * 14 * 1) An early-console (udbg) driver. This provides early console output 15 * through a byte channel. The byte channel handle must be specified in a 16 * Kconfig option. 17 * 18 * 2) A normal console driver. Output is sent to the byte channel designated 19 * for stdout in the device tree. The console driver is for handling kernel 20 * printk calls. 21 * 22 * 3) A tty driver, which is used to handle user-space input and output. The 23 * byte channel used for the console is designated as the default tty. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/slab.h> 29 #include <linux/err.h> 30 #include <linux/interrupt.h> 31 #include <linux/fs.h> 32 #include <linux/poll.h> 33 #include <asm/epapr_hcalls.h> 34 #include <linux/of.h> 35 #include <linux/of_irq.h> 36 #include <linux/platform_device.h> 37 #include <linux/cdev.h> 38 #include <linux/console.h> 39 #include <linux/tty.h> 40 #include <linux/tty_flip.h> 41 #include <linux/circ_buf.h> 42 #include <asm/udbg.h> 43 44 /* The size of the transmit circular buffer. This must be a power of two. */ 45 #define BUF_SIZE 2048 46 47 /* Per-byte channel private data */ 48 struct ehv_bc_data { 49 struct device *dev; 50 struct tty_port port; 51 uint32_t handle; 52 unsigned int rx_irq; 53 unsigned int tx_irq; 54 55 spinlock_t lock; /* lock for transmit buffer */ 56 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ 57 unsigned int head; /* circular buffer head */ 58 unsigned int tail; /* circular buffer tail */ 59 60 int tx_irq_enabled; /* true == TX interrupt is enabled */ 61 }; 62 63 /* Array of byte channel objects */ 64 static struct ehv_bc_data *bcs; 65 66 /* Byte channel handle for stdout (and stdin), taken from device tree */ 67 static unsigned int stdout_bc; 68 69 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 70 static unsigned int stdout_irq; 71 72 /**************************** SUPPORT FUNCTIONS ****************************/ 73 74 /* 75 * Enable the transmit interrupt 76 * 77 * Unlike a serial device, byte channels have no mechanism for disabling their 78 * own receive or transmit interrupts. To emulate that feature, we toggle 79 * the IRQ in the kernel. 80 * 81 * We cannot just blindly call enable_irq() or disable_irq(), because these 82 * calls are reference counted. This means that we cannot call enable_irq() 83 * if interrupts are already enabled. This can happen in two situations: 84 * 85 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 86 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 87 * 88 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 89 */ 90 static void enable_tx_interrupt(struct ehv_bc_data *bc) 91 { 92 if (!bc->tx_irq_enabled) { 93 enable_irq(bc->tx_irq); 94 bc->tx_irq_enabled = 1; 95 } 96 } 97 98 static void disable_tx_interrupt(struct ehv_bc_data *bc) 99 { 100 if (bc->tx_irq_enabled) { 101 disable_irq_nosync(bc->tx_irq); 102 bc->tx_irq_enabled = 0; 103 } 104 } 105 106 /* 107 * find the byte channel handle to use for the console 108 * 109 * The byte channel to be used for the console is specified via a "stdout" 110 * property in the /chosen node. 111 */ 112 static int find_console_handle(void) 113 { 114 struct device_node *np = of_stdout; 115 const uint32_t *iprop; 116 117 /* We don't care what the aliased node is actually called. We only 118 * care if it's compatible with "epapr,hv-byte-channel", because that 119 * indicates that it's a byte channel node. 120 */ 121 if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel")) 122 return 0; 123 124 stdout_irq = irq_of_parse_and_map(np, 0); 125 if (stdout_irq == NO_IRQ) { 126 pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name); 127 return 0; 128 } 129 130 /* 131 * The 'hv-handle' property contains the handle for this byte channel. 132 */ 133 iprop = of_get_property(np, "hv-handle", NULL); 134 if (!iprop) { 135 pr_err("ehv-bc: no 'hv-handle' property in %s node\n", 136 np->name); 137 return 0; 138 } 139 stdout_bc = be32_to_cpu(*iprop); 140 return 1; 141 } 142 143 /*************************** EARLY CONSOLE DRIVER ***************************/ 144 145 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 146 147 /* 148 * send a byte to a byte channel, wait if necessary 149 * 150 * This function sends a byte to a byte channel, and it waits and 151 * retries if the byte channel is full. It returns if the character 152 * has been sent, or if some error has occurred. 153 * 154 */ 155 static void byte_channel_spin_send(const char data) 156 { 157 int ret, count; 158 159 do { 160 count = 1; 161 ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 162 &count, &data); 163 } while (ret == EV_EAGAIN); 164 } 165 166 /* 167 * The udbg subsystem calls this function to display a single character. 168 * We convert CR to a CR/LF. 169 */ 170 static void ehv_bc_udbg_putc(char c) 171 { 172 if (c == '\n') 173 byte_channel_spin_send('\r'); 174 175 byte_channel_spin_send(c); 176 } 177 178 /* 179 * early console initialization 180 * 181 * PowerPC kernels support an early printk console, also known as udbg. 182 * This function must be called via the ppc_md.init_early function pointer. 183 * At this point, the device tree has been unflattened, so we can obtain the 184 * byte channel handle for stdout. 185 * 186 * We only support displaying of characters (putc). We do not support 187 * keyboard input. 188 */ 189 void __init udbg_init_ehv_bc(void) 190 { 191 unsigned int rx_count, tx_count; 192 unsigned int ret; 193 194 /* Verify the byte channel handle */ 195 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 196 &rx_count, &tx_count); 197 if (ret) 198 return; 199 200 udbg_putc = ehv_bc_udbg_putc; 201 register_early_udbg_console(); 202 203 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 204 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 205 } 206 207 #endif 208 209 /****************************** CONSOLE DRIVER ******************************/ 210 211 static struct tty_driver *ehv_bc_driver; 212 213 /* 214 * Byte channel console sending worker function. 215 * 216 * For consoles, if the output buffer is full, we should just spin until it 217 * clears. 218 */ 219 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 220 unsigned int count) 221 { 222 unsigned int len; 223 int ret = 0; 224 225 while (count) { 226 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 227 do { 228 ret = ev_byte_channel_send(handle, &len, s); 229 } while (ret == EV_EAGAIN); 230 count -= len; 231 s += len; 232 } 233 234 return ret; 235 } 236 237 /* 238 * write a string to the console 239 * 240 * This function gets called to write a string from the kernel, typically from 241 * a printk(). This function spins until all data is written. 242 * 243 * We copy the data to a temporary buffer because we need to insert a \r in 244 * front of every \n. It's more efficient to copy the data to the buffer than 245 * it is to make multiple hcalls for each character or each newline. 246 */ 247 static void ehv_bc_console_write(struct console *co, const char *s, 248 unsigned int count) 249 { 250 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 251 unsigned int i, j = 0; 252 char c; 253 254 for (i = 0; i < count; i++) { 255 c = *s++; 256 257 if (c == '\n') 258 s2[j++] = '\r'; 259 260 s2[j++] = c; 261 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 262 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 263 return; 264 j = 0; 265 } 266 } 267 268 if (j) 269 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 270 } 271 272 /* 273 * When /dev/console is opened, the kernel iterates the console list looking 274 * for one with ->device and then calls that method. On success, it expects 275 * the passed-in int* to contain the minor number to use. 276 */ 277 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 278 { 279 *index = co->index; 280 281 return ehv_bc_driver; 282 } 283 284 static struct console ehv_bc_console = { 285 .name = "ttyEHV", 286 .write = ehv_bc_console_write, 287 .device = ehv_bc_console_device, 288 .flags = CON_PRINTBUFFER | CON_ENABLED, 289 }; 290 291 /* 292 * Console initialization 293 * 294 * This is the first function that is called after the device tree is 295 * available, so here is where we determine the byte channel handle and IRQ for 296 * stdout/stdin, even though that information is used by the tty and character 297 * drivers. 298 */ 299 static int __init ehv_bc_console_init(void) 300 { 301 if (!find_console_handle()) { 302 pr_debug("ehv-bc: stdout is not a byte channel\n"); 303 return -ENODEV; 304 } 305 306 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 307 /* Print a friendly warning if the user chose the wrong byte channel 308 * handle for udbg. 309 */ 310 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 311 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n", 312 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 313 #endif 314 315 /* add_preferred_console() must be called before register_console(), 316 otherwise it won't work. However, we don't want to enumerate all the 317 byte channels here, either, since we only care about one. */ 318 319 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 320 register_console(&ehv_bc_console); 321 322 pr_info("ehv-bc: registered console driver for byte channel %u\n", 323 stdout_bc); 324 325 return 0; 326 } 327 console_initcall(ehv_bc_console_init); 328 329 /******************************** TTY DRIVER ********************************/ 330 331 /* 332 * byte channel receive interupt handler 333 * 334 * This ISR is called whenever data is available on a byte channel. 335 */ 336 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 337 { 338 struct ehv_bc_data *bc = data; 339 unsigned int rx_count, tx_count, len; 340 int count; 341 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 342 int ret; 343 344 /* Find out how much data needs to be read, and then ask the TTY layer 345 * if it can handle that much. We want to ensure that every byte we 346 * read from the byte channel will be accepted by the TTY layer. 347 */ 348 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 349 count = tty_buffer_request_room(&bc->port, rx_count); 350 351 /* 'count' is the maximum amount of data the TTY layer can accept at 352 * this time. However, during testing, I was never able to get 'count' 353 * to be less than 'rx_count'. I'm not sure whether I'm calling it 354 * correctly. 355 */ 356 357 while (count > 0) { 358 len = min_t(unsigned int, count, sizeof(buffer)); 359 360 /* Read some data from the byte channel. This function will 361 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 362 */ 363 ev_byte_channel_receive(bc->handle, &len, buffer); 364 365 /* 'len' is now the amount of data that's been received. 'len' 366 * can't be zero, and most likely it's equal to one. 367 */ 368 369 /* Pass the received data to the tty layer. */ 370 ret = tty_insert_flip_string(&bc->port, buffer, len); 371 372 /* 'ret' is the number of bytes that the TTY layer accepted. 373 * If it's not equal to 'len', then it means the buffer is 374 * full, which should never happen. If it does happen, we can 375 * exit gracefully, but we drop the last 'len - ret' characters 376 * that we read from the byte channel. 377 */ 378 if (ret != len) 379 break; 380 381 count -= len; 382 } 383 384 /* Tell the tty layer that we're done. */ 385 tty_flip_buffer_push(&bc->port); 386 387 return IRQ_HANDLED; 388 } 389 390 /* 391 * dequeue the transmit buffer to the hypervisor 392 * 393 * This function, which can be called in interrupt context, dequeues as much 394 * data as possible from the transmit buffer to the byte channel. 395 */ 396 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 397 { 398 unsigned int count; 399 unsigned int len, ret; 400 unsigned long flags; 401 402 do { 403 spin_lock_irqsave(&bc->lock, flags); 404 len = min_t(unsigned int, 405 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 406 EV_BYTE_CHANNEL_MAX_BYTES); 407 408 ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 409 410 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 411 if (!ret || (ret == EV_EAGAIN)) 412 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 413 414 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 415 spin_unlock_irqrestore(&bc->lock, flags); 416 } while (count && !ret); 417 418 spin_lock_irqsave(&bc->lock, flags); 419 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 420 /* 421 * If we haven't emptied the buffer, then enable the TX IRQ. 422 * We'll get an interrupt when there's more room in the 423 * hypervisor's output buffer. 424 */ 425 enable_tx_interrupt(bc); 426 else 427 disable_tx_interrupt(bc); 428 spin_unlock_irqrestore(&bc->lock, flags); 429 } 430 431 /* 432 * byte channel transmit interupt handler 433 * 434 * This ISR is called whenever space becomes available for transmitting 435 * characters on a byte channel. 436 */ 437 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 438 { 439 struct ehv_bc_data *bc = data; 440 441 ehv_bc_tx_dequeue(bc); 442 tty_port_tty_wakeup(&bc->port); 443 444 return IRQ_HANDLED; 445 } 446 447 /* 448 * This function is called when the tty layer has data for us send. We store 449 * the data first in a circular buffer, and then dequeue as much of that data 450 * as possible. 451 * 452 * We don't need to worry about whether there is enough room in the buffer for 453 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 454 * layer how much data it can safely send to us. We guarantee that 455 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 456 * too much data. 457 */ 458 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, 459 int count) 460 { 461 struct ehv_bc_data *bc = ttys->driver_data; 462 unsigned long flags; 463 unsigned int len; 464 unsigned int written = 0; 465 466 while (1) { 467 spin_lock_irqsave(&bc->lock, flags); 468 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 469 if (count < len) 470 len = count; 471 if (len) { 472 memcpy(bc->buf + bc->head, s, len); 473 bc->head = (bc->head + len) & (BUF_SIZE - 1); 474 } 475 spin_unlock_irqrestore(&bc->lock, flags); 476 if (!len) 477 break; 478 479 s += len; 480 count -= len; 481 written += len; 482 } 483 484 ehv_bc_tx_dequeue(bc); 485 486 return written; 487 } 488 489 /* 490 * This function can be called multiple times for a given tty_struct, which is 491 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 492 * 493 * The tty layer will still call this function even if the device was not 494 * registered (i.e. tty_register_device() was not called). This happens 495 * because tty_register_device() is optional and some legacy drivers don't 496 * use it. So we need to check for that. 497 */ 498 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 499 { 500 struct ehv_bc_data *bc = &bcs[ttys->index]; 501 502 if (!bc->dev) 503 return -ENODEV; 504 505 return tty_port_open(&bc->port, ttys, filp); 506 } 507 508 /* 509 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 510 * still call this function to close the tty device. So we can't assume that 511 * the tty port has been initialized. 512 */ 513 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 514 { 515 struct ehv_bc_data *bc = &bcs[ttys->index]; 516 517 if (bc->dev) 518 tty_port_close(&bc->port, ttys, filp); 519 } 520 521 /* 522 * Return the amount of space in the output buffer 523 * 524 * This is actually a contract between the driver and the tty layer outlining 525 * how much write room the driver can guarantee will be sent OR BUFFERED. This 526 * driver MUST honor the return value. 527 */ 528 static int ehv_bc_tty_write_room(struct tty_struct *ttys) 529 { 530 struct ehv_bc_data *bc = ttys->driver_data; 531 unsigned long flags; 532 int count; 533 534 spin_lock_irqsave(&bc->lock, flags); 535 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 536 spin_unlock_irqrestore(&bc->lock, flags); 537 538 return count; 539 } 540 541 /* 542 * Stop sending data to the tty layer 543 * 544 * This function is called when the tty layer's input buffers are getting full, 545 * so the driver should stop sending it data. The easiest way to do this is to 546 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 547 * called. 548 * 549 * The hypervisor will continue to queue up any incoming data. If there is any 550 * data in the queue when the RX interrupt is enabled, we'll immediately get an 551 * RX interrupt. 552 */ 553 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 554 { 555 struct ehv_bc_data *bc = ttys->driver_data; 556 557 disable_irq(bc->rx_irq); 558 } 559 560 /* 561 * Resume sending data to the tty layer 562 * 563 * This function is called after previously calling ehv_bc_tty_throttle(). The 564 * tty layer's input buffers now have more room, so the driver can resume 565 * sending it data. 566 */ 567 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 568 { 569 struct ehv_bc_data *bc = ttys->driver_data; 570 571 /* If there is any data in the queue when the RX interrupt is enabled, 572 * we'll immediately get an RX interrupt. 573 */ 574 enable_irq(bc->rx_irq); 575 } 576 577 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 578 { 579 struct ehv_bc_data *bc = ttys->driver_data; 580 581 ehv_bc_tx_dequeue(bc); 582 tty_port_hangup(&bc->port); 583 } 584 585 /* 586 * TTY driver operations 587 * 588 * If we could ask the hypervisor how much data is still in the TX buffer, or 589 * at least how big the TX buffers are, then we could implement the 590 * .wait_until_sent and .chars_in_buffer functions. 591 */ 592 static const struct tty_operations ehv_bc_ops = { 593 .open = ehv_bc_tty_open, 594 .close = ehv_bc_tty_close, 595 .write = ehv_bc_tty_write, 596 .write_room = ehv_bc_tty_write_room, 597 .throttle = ehv_bc_tty_throttle, 598 .unthrottle = ehv_bc_tty_unthrottle, 599 .hangup = ehv_bc_tty_hangup, 600 }; 601 602 /* 603 * initialize the TTY port 604 * 605 * This function will only be called once, no matter how many times 606 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 607 * why we initialize tty_struct-related variables here. 608 */ 609 static int ehv_bc_tty_port_activate(struct tty_port *port, 610 struct tty_struct *ttys) 611 { 612 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 613 int ret; 614 615 ttys->driver_data = bc; 616 617 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 618 if (ret < 0) { 619 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 620 bc->rx_irq, ret); 621 return ret; 622 } 623 624 /* request_irq also enables the IRQ */ 625 bc->tx_irq_enabled = 1; 626 627 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 628 if (ret < 0) { 629 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 630 bc->tx_irq, ret); 631 free_irq(bc->rx_irq, bc); 632 return ret; 633 } 634 635 /* The TX IRQ is enabled only when we can't write all the data to the 636 * byte channel at once, so by default it's disabled. 637 */ 638 disable_tx_interrupt(bc); 639 640 return 0; 641 } 642 643 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 644 { 645 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 646 647 free_irq(bc->tx_irq, bc); 648 free_irq(bc->rx_irq, bc); 649 } 650 651 static const struct tty_port_operations ehv_bc_tty_port_ops = { 652 .activate = ehv_bc_tty_port_activate, 653 .shutdown = ehv_bc_tty_port_shutdown, 654 }; 655 656 static int ehv_bc_tty_probe(struct platform_device *pdev) 657 { 658 struct device_node *np = pdev->dev.of_node; 659 struct ehv_bc_data *bc; 660 const uint32_t *iprop; 661 unsigned int handle; 662 int ret; 663 static unsigned int index = 1; 664 unsigned int i; 665 666 iprop = of_get_property(np, "hv-handle", NULL); 667 if (!iprop) { 668 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", 669 np->name); 670 return -ENODEV; 671 } 672 673 /* We already told the console layer that the index for the console 674 * device is zero, so we need to make sure that we use that index when 675 * we probe the console byte channel node. 676 */ 677 handle = be32_to_cpu(*iprop); 678 i = (handle == stdout_bc) ? 0 : index++; 679 bc = &bcs[i]; 680 681 bc->handle = handle; 682 bc->head = 0; 683 bc->tail = 0; 684 spin_lock_init(&bc->lock); 685 686 bc->rx_irq = irq_of_parse_and_map(np, 0); 687 bc->tx_irq = irq_of_parse_and_map(np, 1); 688 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { 689 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", 690 np->name); 691 ret = -ENODEV; 692 goto error; 693 } 694 695 tty_port_init(&bc->port); 696 bc->port.ops = &ehv_bc_tty_port_ops; 697 698 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i, 699 &pdev->dev); 700 if (IS_ERR(bc->dev)) { 701 ret = PTR_ERR(bc->dev); 702 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 703 goto error; 704 } 705 706 dev_set_drvdata(&pdev->dev, bc); 707 708 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 709 ehv_bc_driver->name, i, bc->handle); 710 711 return 0; 712 713 error: 714 tty_port_destroy(&bc->port); 715 irq_dispose_mapping(bc->tx_irq); 716 irq_dispose_mapping(bc->rx_irq); 717 718 memset(bc, 0, sizeof(struct ehv_bc_data)); 719 return ret; 720 } 721 722 static int ehv_bc_tty_remove(struct platform_device *pdev) 723 { 724 struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev); 725 726 tty_unregister_device(ehv_bc_driver, bc - bcs); 727 728 tty_port_destroy(&bc->port); 729 irq_dispose_mapping(bc->tx_irq); 730 irq_dispose_mapping(bc->rx_irq); 731 732 return 0; 733 } 734 735 static const struct of_device_id ehv_bc_tty_of_ids[] = { 736 { .compatible = "epapr,hv-byte-channel" }, 737 {} 738 }; 739 740 static struct platform_driver ehv_bc_tty_driver = { 741 .driver = { 742 .name = "ehv-bc", 743 .of_match_table = ehv_bc_tty_of_ids, 744 }, 745 .probe = ehv_bc_tty_probe, 746 .remove = ehv_bc_tty_remove, 747 }; 748 749 /** 750 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 751 * 752 * This function is called when this module is loaded. 753 */ 754 static int __init ehv_bc_init(void) 755 { 756 struct device_node *np; 757 unsigned int count = 0; /* Number of elements in bcs[] */ 758 int ret; 759 760 pr_info("ePAPR hypervisor byte channel driver\n"); 761 762 /* Count the number of byte channels */ 763 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 764 count++; 765 766 if (!count) 767 return -ENODEV; 768 769 /* The array index of an element in bcs[] is the same as the tty index 770 * for that element. If you know the address of an element in the 771 * array, then you can use pointer math (e.g. "bc - bcs") to get its 772 * tty index. 773 */ 774 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); 775 if (!bcs) 776 return -ENOMEM; 777 778 ehv_bc_driver = alloc_tty_driver(count); 779 if (!ehv_bc_driver) { 780 ret = -ENOMEM; 781 goto error; 782 } 783 784 ehv_bc_driver->driver_name = "ehv-bc"; 785 ehv_bc_driver->name = ehv_bc_console.name; 786 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; 787 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; 788 ehv_bc_driver->init_termios = tty_std_termios; 789 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 790 tty_set_operations(ehv_bc_driver, &ehv_bc_ops); 791 792 ret = tty_register_driver(ehv_bc_driver); 793 if (ret) { 794 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 795 goto error; 796 } 797 798 ret = platform_driver_register(&ehv_bc_tty_driver); 799 if (ret) { 800 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 801 ret); 802 goto error; 803 } 804 805 return 0; 806 807 error: 808 if (ehv_bc_driver) { 809 tty_unregister_driver(ehv_bc_driver); 810 put_tty_driver(ehv_bc_driver); 811 } 812 813 kfree(bcs); 814 815 return ret; 816 } 817 818 819 /** 820 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination 821 * 822 * This function is called when this driver is unloaded. 823 */ 824 static void __exit ehv_bc_exit(void) 825 { 826 platform_driver_unregister(&ehv_bc_tty_driver); 827 tty_unregister_driver(ehv_bc_driver); 828 put_tty_driver(ehv_bc_driver); 829 kfree(bcs); 830 } 831 832 module_init(ehv_bc_init); 833 module_exit(ehv_bc_exit); 834 835 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 836 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver"); 837 MODULE_LICENSE("GPL v2"); 838