xref: /linux/drivers/tty/ehv_bytechan.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* ePAPR hypervisor byte channel device driver
3  *
4  * Copyright 2009-2011 Freescale Semiconductor, Inc.
5  *
6  * Author: Timur Tabi <timur@freescale.com>
7  *
8  * This driver support three distinct interfaces, all of which are related to
9  * ePAPR hypervisor byte channels.
10  *
11  * 1) An early-console (udbg) driver.  This provides early console output
12  * through a byte channel.  The byte channel handle must be specified in a
13  * Kconfig option.
14  *
15  * 2) A normal console driver.  Output is sent to the byte channel designated
16  * for stdout in the device tree.  The console driver is for handling kernel
17  * printk calls.
18  *
19  * 3) A tty driver, which is used to handle user-space input and output.  The
20  * byte channel used for the console is designated as the default tty.
21  */
22 
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/fs.h>
28 #include <linux/poll.h>
29 #include <asm/epapr_hcalls.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/cdev.h>
34 #include <linux/console.h>
35 #include <linux/tty.h>
36 #include <linux/tty_flip.h>
37 #include <linux/circ_buf.h>
38 #include <asm/udbg.h>
39 
40 /* The size of the transmit circular buffer.  This must be a power of two. */
41 #define BUF_SIZE	2048
42 
43 /* Per-byte channel private data */
44 struct ehv_bc_data {
45 	struct device *dev;
46 	struct tty_port port;
47 	uint32_t handle;
48 	unsigned int rx_irq;
49 	unsigned int tx_irq;
50 
51 	spinlock_t lock;	/* lock for transmit buffer */
52 	u8 buf[BUF_SIZE];	/* transmit circular buffer */
53 	unsigned int head;	/* circular buffer head */
54 	unsigned int tail;	/* circular buffer tail */
55 
56 	int tx_irq_enabled;	/* true == TX interrupt is enabled */
57 };
58 
59 /* Array of byte channel objects */
60 static struct ehv_bc_data *bcs;
61 
62 /* Byte channel handle for stdout (and stdin), taken from device tree */
63 static unsigned int stdout_bc;
64 
65 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
66 static unsigned int stdout_irq;
67 
68 /**************************** SUPPORT FUNCTIONS ****************************/
69 
70 /*
71  * Enable the transmit interrupt
72  *
73  * Unlike a serial device, byte channels have no mechanism for disabling their
74  * own receive or transmit interrupts.  To emulate that feature, we toggle
75  * the IRQ in the kernel.
76  *
77  * We cannot just blindly call enable_irq() or disable_irq(), because these
78  * calls are reference counted.  This means that we cannot call enable_irq()
79  * if interrupts are already enabled.  This can happen in two situations:
80  *
81  * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
82  * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
83  *
84  * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
85  */
86 static void enable_tx_interrupt(struct ehv_bc_data *bc)
87 {
88 	if (!bc->tx_irq_enabled) {
89 		enable_irq(bc->tx_irq);
90 		bc->tx_irq_enabled = 1;
91 	}
92 }
93 
94 static void disable_tx_interrupt(struct ehv_bc_data *bc)
95 {
96 	if (bc->tx_irq_enabled) {
97 		disable_irq_nosync(bc->tx_irq);
98 		bc->tx_irq_enabled = 0;
99 	}
100 }
101 
102 /*
103  * find the byte channel handle to use for the console
104  *
105  * The byte channel to be used for the console is specified via a "stdout"
106  * property in the /chosen node.
107  */
108 static int find_console_handle(void)
109 {
110 	struct device_node *np = of_stdout;
111 	const uint32_t *iprop;
112 
113 	/* We don't care what the aliased node is actually called.  We only
114 	 * care if it's compatible with "epapr,hv-byte-channel", because that
115 	 * indicates that it's a byte channel node.
116 	 */
117 	if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
118 		return 0;
119 
120 	stdout_irq = irq_of_parse_and_map(np, 0);
121 	if (!stdout_irq) {
122 		pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np);
123 		return 0;
124 	}
125 
126 	/*
127 	 * The 'hv-handle' property contains the handle for this byte channel.
128 	 */
129 	iprop = of_get_property(np, "hv-handle", NULL);
130 	if (!iprop) {
131 		pr_err("ehv-bc: no 'hv-handle' property in %pOFn node\n",
132 		       np);
133 		return 0;
134 	}
135 	stdout_bc = be32_to_cpu(*iprop);
136 	return 1;
137 }
138 
139 static unsigned int local_ev_byte_channel_send(unsigned int handle,
140 					       unsigned int *count,
141 					       const u8 *p)
142 {
143 	u8 buffer[EV_BYTE_CHANNEL_MAX_BYTES];
144 	unsigned int c = *count;
145 
146 	/*
147 	 * ev_byte_channel_send() expects at least EV_BYTE_CHANNEL_MAX_BYTES
148 	 * (16 B) in the buffer. Fake it using a local buffer if needed.
149 	 */
150 	if (c < sizeof(buffer)) {
151 		memcpy_and_pad(buffer, sizeof(buffer), p, c, 0);
152 		p = buffer;
153 	}
154 	return ev_byte_channel_send(handle, count, p);
155 }
156 
157 /*************************** EARLY CONSOLE DRIVER ***************************/
158 
159 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
160 
161 /*
162  * send a byte to a byte channel, wait if necessary
163  *
164  * This function sends a byte to a byte channel, and it waits and
165  * retries if the byte channel is full.  It returns if the character
166  * has been sent, or if some error has occurred.
167  *
168  */
169 static void byte_channel_spin_send(const u8 data)
170 {
171 	int ret, count;
172 
173 	do {
174 		count = 1;
175 		ret = local_ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
176 					   &count, &data);
177 	} while (ret == EV_EAGAIN);
178 }
179 
180 /*
181  * The udbg subsystem calls this function to display a single character.
182  * We convert CR to a CR/LF.
183  */
184 static void ehv_bc_udbg_putc(char c)
185 {
186 	if (c == '\n')
187 		byte_channel_spin_send('\r');
188 
189 	byte_channel_spin_send(c);
190 }
191 
192 /*
193  * early console initialization
194  *
195  * PowerPC kernels support an early printk console, also known as udbg.
196  * This function must be called via the ppc_md.init_early function pointer.
197  * At this point, the device tree has been unflattened, so we can obtain the
198  * byte channel handle for stdout.
199  *
200  * We only support displaying of characters (putc).  We do not support
201  * keyboard input.
202  */
203 void __init udbg_init_ehv_bc(void)
204 {
205 	unsigned int rx_count, tx_count;
206 	unsigned int ret;
207 
208 	/* Verify the byte channel handle */
209 	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
210 				   &rx_count, &tx_count);
211 	if (ret)
212 		return;
213 
214 	udbg_putc = ehv_bc_udbg_putc;
215 	register_early_udbg_console();
216 
217 	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
218 		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
219 }
220 
221 #endif
222 
223 /****************************** CONSOLE DRIVER ******************************/
224 
225 static struct tty_driver *ehv_bc_driver;
226 
227 /*
228  * Byte channel console sending worker function.
229  *
230  * For consoles, if the output buffer is full, we should just spin until it
231  * clears.
232  */
233 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
234 			     unsigned int count)
235 {
236 	unsigned int len;
237 	int ret = 0;
238 
239 	while (count) {
240 		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
241 		do {
242 			ret = local_ev_byte_channel_send(handle, &len, s);
243 		} while (ret == EV_EAGAIN);
244 		count -= len;
245 		s += len;
246 	}
247 
248 	return ret;
249 }
250 
251 /*
252  * write a string to the console
253  *
254  * This function gets called to write a string from the kernel, typically from
255  * a printk().  This function spins until all data is written.
256  *
257  * We copy the data to a temporary buffer because we need to insert a \r in
258  * front of every \n.  It's more efficient to copy the data to the buffer than
259  * it is to make multiple hcalls for each character or each newline.
260  */
261 static void ehv_bc_console_write(struct console *co, const char *s,
262 				 unsigned int count)
263 {
264 	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
265 	unsigned int i, j = 0;
266 	char c;
267 
268 	for (i = 0; i < count; i++) {
269 		c = *s++;
270 
271 		if (c == '\n')
272 			s2[j++] = '\r';
273 
274 		s2[j++] = c;
275 		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
276 			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
277 				return;
278 			j = 0;
279 		}
280 	}
281 
282 	if (j)
283 		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
284 }
285 
286 /*
287  * When /dev/console is opened, the kernel iterates the console list looking
288  * for one with ->device and then calls that method. On success, it expects
289  * the passed-in int* to contain the minor number to use.
290  */
291 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
292 {
293 	*index = co->index;
294 
295 	return ehv_bc_driver;
296 }
297 
298 static struct console ehv_bc_console = {
299 	.name		= "ttyEHV",
300 	.write		= ehv_bc_console_write,
301 	.device		= ehv_bc_console_device,
302 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
303 };
304 
305 /*
306  * Console initialization
307  *
308  * This is the first function that is called after the device tree is
309  * available, so here is where we determine the byte channel handle and IRQ for
310  * stdout/stdin, even though that information is used by the tty and character
311  * drivers.
312  */
313 static int __init ehv_bc_console_init(void)
314 {
315 	if (!find_console_handle()) {
316 		pr_debug("ehv-bc: stdout is not a byte channel\n");
317 		return -ENODEV;
318 	}
319 
320 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
321 	/* Print a friendly warning if the user chose the wrong byte channel
322 	 * handle for udbg.
323 	 */
324 	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
325 		pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
326 			CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
327 #endif
328 
329 	/* add_preferred_console() must be called before register_console(),
330 	   otherwise it won't work.  However, we don't want to enumerate all the
331 	   byte channels here, either, since we only care about one. */
332 
333 	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
334 	register_console(&ehv_bc_console);
335 
336 	pr_info("ehv-bc: registered console driver for byte channel %u\n",
337 		stdout_bc);
338 
339 	return 0;
340 }
341 console_initcall(ehv_bc_console_init);
342 
343 /******************************** TTY DRIVER ********************************/
344 
345 /*
346  * byte channel receive interrupt handler
347  *
348  * This ISR is called whenever data is available on a byte channel.
349  */
350 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
351 {
352 	struct ehv_bc_data *bc = data;
353 	unsigned int rx_count, tx_count, len;
354 	int count;
355 	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
356 	int ret;
357 
358 	/* Find out how much data needs to be read, and then ask the TTY layer
359 	 * if it can handle that much.  We want to ensure that every byte we
360 	 * read from the byte channel will be accepted by the TTY layer.
361 	 */
362 	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
363 	count = tty_buffer_request_room(&bc->port, rx_count);
364 
365 	/* 'count' is the maximum amount of data the TTY layer can accept at
366 	 * this time.  However, during testing, I was never able to get 'count'
367 	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
368 	 * correctly.
369 	 */
370 
371 	while (count > 0) {
372 		len = min_t(unsigned int, count, sizeof(buffer));
373 
374 		/* Read some data from the byte channel.  This function will
375 		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
376 		 */
377 		ev_byte_channel_receive(bc->handle, &len, buffer);
378 
379 		/* 'len' is now the amount of data that's been received. 'len'
380 		 * can't be zero, and most likely it's equal to one.
381 		 */
382 
383 		/* Pass the received data to the tty layer. */
384 		ret = tty_insert_flip_string(&bc->port, buffer, len);
385 
386 		/* 'ret' is the number of bytes that the TTY layer accepted.
387 		 * If it's not equal to 'len', then it means the buffer is
388 		 * full, which should never happen.  If it does happen, we can
389 		 * exit gracefully, but we drop the last 'len - ret' characters
390 		 * that we read from the byte channel.
391 		 */
392 		if (ret != len)
393 			break;
394 
395 		count -= len;
396 	}
397 
398 	/* Tell the tty layer that we're done. */
399 	tty_flip_buffer_push(&bc->port);
400 
401 	return IRQ_HANDLED;
402 }
403 
404 /*
405  * dequeue the transmit buffer to the hypervisor
406  *
407  * This function, which can be called in interrupt context, dequeues as much
408  * data as possible from the transmit buffer to the byte channel.
409  */
410 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
411 {
412 	unsigned int count;
413 	unsigned int len, ret;
414 	unsigned long flags;
415 
416 	do {
417 		spin_lock_irqsave(&bc->lock, flags);
418 		len = min_t(unsigned int,
419 			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
420 			    EV_BYTE_CHANNEL_MAX_BYTES);
421 
422 		ret = local_ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
423 
424 		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
425 		if (!ret || (ret == EV_EAGAIN))
426 			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
427 
428 		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
429 		spin_unlock_irqrestore(&bc->lock, flags);
430 	} while (count && !ret);
431 
432 	spin_lock_irqsave(&bc->lock, flags);
433 	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
434 		/*
435 		 * If we haven't emptied the buffer, then enable the TX IRQ.
436 		 * We'll get an interrupt when there's more room in the
437 		 * hypervisor's output buffer.
438 		 */
439 		enable_tx_interrupt(bc);
440 	else
441 		disable_tx_interrupt(bc);
442 	spin_unlock_irqrestore(&bc->lock, flags);
443 }
444 
445 /*
446  * byte channel transmit interrupt handler
447  *
448  * This ISR is called whenever space becomes available for transmitting
449  * characters on a byte channel.
450  */
451 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
452 {
453 	struct ehv_bc_data *bc = data;
454 
455 	ehv_bc_tx_dequeue(bc);
456 	tty_port_tty_wakeup(&bc->port);
457 
458 	return IRQ_HANDLED;
459 }
460 
461 /*
462  * This function is called when the tty layer has data for us send.  We store
463  * the data first in a circular buffer, and then dequeue as much of that data
464  * as possible.
465  *
466  * We don't need to worry about whether there is enough room in the buffer for
467  * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
468  * layer how much data it can safely send to us.  We guarantee that
469  * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
470  * too much data.
471  */
472 static ssize_t ehv_bc_tty_write(struct tty_struct *ttys, const u8 *s,
473 				size_t count)
474 {
475 	struct ehv_bc_data *bc = ttys->driver_data;
476 	unsigned long flags;
477 	size_t len, written = 0;
478 
479 	while (1) {
480 		spin_lock_irqsave(&bc->lock, flags);
481 		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
482 		if (count < len)
483 			len = count;
484 		if (len) {
485 			memcpy(bc->buf + bc->head, s, len);
486 			bc->head = (bc->head + len) & (BUF_SIZE - 1);
487 		}
488 		spin_unlock_irqrestore(&bc->lock, flags);
489 		if (!len)
490 			break;
491 
492 		s += len;
493 		count -= len;
494 		written += len;
495 	}
496 
497 	ehv_bc_tx_dequeue(bc);
498 
499 	return written;
500 }
501 
502 /*
503  * This function can be called multiple times for a given tty_struct, which is
504  * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
505  *
506  * The tty layer will still call this function even if the device was not
507  * registered (i.e. tty_register_device() was not called).  This happens
508  * because tty_register_device() is optional and some legacy drivers don't
509  * use it.  So we need to check for that.
510  */
511 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
512 {
513 	struct ehv_bc_data *bc = &bcs[ttys->index];
514 
515 	if (!bc->dev)
516 		return -ENODEV;
517 
518 	return tty_port_open(&bc->port, ttys, filp);
519 }
520 
521 /*
522  * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
523  * still call this function to close the tty device.  So we can't assume that
524  * the tty port has been initialized.
525  */
526 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
527 {
528 	struct ehv_bc_data *bc = &bcs[ttys->index];
529 
530 	if (bc->dev)
531 		tty_port_close(&bc->port, ttys, filp);
532 }
533 
534 /*
535  * Return the amount of space in the output buffer
536  *
537  * This is actually a contract between the driver and the tty layer outlining
538  * how much write room the driver can guarantee will be sent OR BUFFERED.  This
539  * driver MUST honor the return value.
540  */
541 static unsigned int ehv_bc_tty_write_room(struct tty_struct *ttys)
542 {
543 	struct ehv_bc_data *bc = ttys->driver_data;
544 	unsigned long flags;
545 	unsigned int count;
546 
547 	spin_lock_irqsave(&bc->lock, flags);
548 	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
549 	spin_unlock_irqrestore(&bc->lock, flags);
550 
551 	return count;
552 }
553 
554 /*
555  * Stop sending data to the tty layer
556  *
557  * This function is called when the tty layer's input buffers are getting full,
558  * so the driver should stop sending it data.  The easiest way to do this is to
559  * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
560  * called.
561  *
562  * The hypervisor will continue to queue up any incoming data.  If there is any
563  * data in the queue when the RX interrupt is enabled, we'll immediately get an
564  * RX interrupt.
565  */
566 static void ehv_bc_tty_throttle(struct tty_struct *ttys)
567 {
568 	struct ehv_bc_data *bc = ttys->driver_data;
569 
570 	disable_irq(bc->rx_irq);
571 }
572 
573 /*
574  * Resume sending data to the tty layer
575  *
576  * This function is called after previously calling ehv_bc_tty_throttle().  The
577  * tty layer's input buffers now have more room, so the driver can resume
578  * sending it data.
579  */
580 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
581 {
582 	struct ehv_bc_data *bc = ttys->driver_data;
583 
584 	/* If there is any data in the queue when the RX interrupt is enabled,
585 	 * we'll immediately get an RX interrupt.
586 	 */
587 	enable_irq(bc->rx_irq);
588 }
589 
590 static void ehv_bc_tty_hangup(struct tty_struct *ttys)
591 {
592 	struct ehv_bc_data *bc = ttys->driver_data;
593 
594 	ehv_bc_tx_dequeue(bc);
595 	tty_port_hangup(&bc->port);
596 }
597 
598 /*
599  * TTY driver operations
600  *
601  * If we could ask the hypervisor how much data is still in the TX buffer, or
602  * at least how big the TX buffers are, then we could implement the
603  * .wait_until_sent and .chars_in_buffer functions.
604  */
605 static const struct tty_operations ehv_bc_ops = {
606 	.open		= ehv_bc_tty_open,
607 	.close		= ehv_bc_tty_close,
608 	.write		= ehv_bc_tty_write,
609 	.write_room	= ehv_bc_tty_write_room,
610 	.throttle	= ehv_bc_tty_throttle,
611 	.unthrottle	= ehv_bc_tty_unthrottle,
612 	.hangup		= ehv_bc_tty_hangup,
613 };
614 
615 /*
616  * initialize the TTY port
617  *
618  * This function will only be called once, no matter how many times
619  * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
620  * why we initialize tty_struct-related variables here.
621  */
622 static int ehv_bc_tty_port_activate(struct tty_port *port,
623 				    struct tty_struct *ttys)
624 {
625 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
626 	int ret;
627 
628 	ttys->driver_data = bc;
629 
630 	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
631 	if (ret < 0) {
632 		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
633 		       bc->rx_irq, ret);
634 		return ret;
635 	}
636 
637 	/* request_irq also enables the IRQ */
638 	bc->tx_irq_enabled = 1;
639 
640 	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
641 	if (ret < 0) {
642 		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
643 		       bc->tx_irq, ret);
644 		free_irq(bc->rx_irq, bc);
645 		return ret;
646 	}
647 
648 	/* The TX IRQ is enabled only when we can't write all the data to the
649 	 * byte channel at once, so by default it's disabled.
650 	 */
651 	disable_tx_interrupt(bc);
652 
653 	return 0;
654 }
655 
656 static void ehv_bc_tty_port_shutdown(struct tty_port *port)
657 {
658 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
659 
660 	free_irq(bc->tx_irq, bc);
661 	free_irq(bc->rx_irq, bc);
662 }
663 
664 static const struct tty_port_operations ehv_bc_tty_port_ops = {
665 	.activate = ehv_bc_tty_port_activate,
666 	.shutdown = ehv_bc_tty_port_shutdown,
667 };
668 
669 static int ehv_bc_tty_probe(struct platform_device *pdev)
670 {
671 	struct device_node *np = pdev->dev.of_node;
672 	struct ehv_bc_data *bc;
673 	const uint32_t *iprop;
674 	unsigned int handle;
675 	int ret;
676 	static unsigned int index = 1;
677 	unsigned int i;
678 
679 	iprop = of_get_property(np, "hv-handle", NULL);
680 	if (!iprop) {
681 		dev_err(&pdev->dev, "no 'hv-handle' property in %pOFn node\n",
682 			np);
683 		return -ENODEV;
684 	}
685 
686 	/* We already told the console layer that the index for the console
687 	 * device is zero, so we need to make sure that we use that index when
688 	 * we probe the console byte channel node.
689 	 */
690 	handle = be32_to_cpu(*iprop);
691 	i = (handle == stdout_bc) ? 0 : index++;
692 	bc = &bcs[i];
693 
694 	bc->handle = handle;
695 	bc->head = 0;
696 	bc->tail = 0;
697 	spin_lock_init(&bc->lock);
698 
699 	bc->rx_irq = irq_of_parse_and_map(np, 0);
700 	bc->tx_irq = irq_of_parse_and_map(np, 1);
701 	if (!bc->rx_irq || !bc->tx_irq) {
702 		dev_err(&pdev->dev, "no 'interrupts' property in %pOFn node\n",
703 			np);
704 		ret = -ENODEV;
705 		goto error;
706 	}
707 
708 	tty_port_init(&bc->port);
709 	bc->port.ops = &ehv_bc_tty_port_ops;
710 
711 	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
712 			&pdev->dev);
713 	if (IS_ERR(bc->dev)) {
714 		ret = PTR_ERR(bc->dev);
715 		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
716 		goto error;
717 	}
718 
719 	dev_set_drvdata(&pdev->dev, bc);
720 
721 	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
722 		ehv_bc_driver->name, i, bc->handle);
723 
724 	return 0;
725 
726 error:
727 	tty_port_destroy(&bc->port);
728 	irq_dispose_mapping(bc->tx_irq);
729 	irq_dispose_mapping(bc->rx_irq);
730 
731 	memset(bc, 0, sizeof(struct ehv_bc_data));
732 	return ret;
733 }
734 
735 static const struct of_device_id ehv_bc_tty_of_ids[] = {
736 	{ .compatible = "epapr,hv-byte-channel" },
737 	{}
738 };
739 
740 static struct platform_driver ehv_bc_tty_driver = {
741 	.driver = {
742 		.name = "ehv-bc",
743 		.of_match_table = ehv_bc_tty_of_ids,
744 		.suppress_bind_attrs = true,
745 	},
746 	.probe		= ehv_bc_tty_probe,
747 };
748 
749 /**
750  * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
751  *
752  * This function is called when this driver is loaded.
753  */
754 static int __init ehv_bc_init(void)
755 {
756 	struct tty_driver *driver;
757 	struct device_node *np;
758 	unsigned int count = 0; /* Number of elements in bcs[] */
759 	int ret;
760 
761 	pr_info("ePAPR hypervisor byte channel driver\n");
762 
763 	/* Count the number of byte channels */
764 	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
765 		count++;
766 
767 	if (!count)
768 		return -ENODEV;
769 
770 	/* The array index of an element in bcs[] is the same as the tty index
771 	 * for that element.  If you know the address of an element in the
772 	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
773 	 * tty index.
774 	 */
775 	bcs = kcalloc(count, sizeof(struct ehv_bc_data), GFP_KERNEL);
776 	if (!bcs)
777 		return -ENOMEM;
778 
779 	driver = tty_alloc_driver(count, TTY_DRIVER_REAL_RAW |
780 			TTY_DRIVER_DYNAMIC_DEV);
781 	if (IS_ERR(driver)) {
782 		ret = PTR_ERR(driver);
783 		goto err_free_bcs;
784 	}
785 
786 	driver->driver_name = "ehv-bc";
787 	driver->name = ehv_bc_console.name;
788 	driver->type = TTY_DRIVER_TYPE_CONSOLE;
789 	driver->subtype = SYSTEM_TYPE_CONSOLE;
790 	driver->init_termios = tty_std_termios;
791 	tty_set_operations(driver, &ehv_bc_ops);
792 
793 	ret = tty_register_driver(driver);
794 	if (ret) {
795 		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
796 		goto err_tty_driver_kref_put;
797 	}
798 
799 	ehv_bc_driver = driver;
800 
801 	ret = platform_driver_register(&ehv_bc_tty_driver);
802 	if (ret) {
803 		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
804 		       ret);
805 		goto err_deregister_tty_driver;
806 	}
807 
808 	return 0;
809 
810 err_deregister_tty_driver:
811 	ehv_bc_driver = NULL;
812 	tty_unregister_driver(driver);
813 err_tty_driver_kref_put:
814 	tty_driver_kref_put(driver);
815 err_free_bcs:
816 	kfree(bcs);
817 
818 	return ret;
819 }
820 device_initcall(ehv_bc_init);
821