1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * USB4 specific functionality 4 * 5 * Copyright (C) 2019, Intel Corporation 6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> 7 * Rajmohan Mani <rajmohan.mani@intel.com> 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/ktime.h> 12 #include <linux/units.h> 13 14 #include "sb_regs.h" 15 #include "tb.h" 16 17 #define USB4_DATA_RETRIES 3 18 #define USB4_DATA_DWORDS 16 19 20 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2) 21 #define USB4_NVM_READ_OFFSET_SHIFT 2 22 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24) 23 #define USB4_NVM_READ_LENGTH_SHIFT 24 24 25 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK 26 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT 27 28 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2) 29 #define USB4_DROM_ADDRESS_SHIFT 2 30 #define USB4_DROM_SIZE_MASK GENMASK(19, 15) 31 #define USB4_DROM_SIZE_SHIFT 15 32 33 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0) 34 35 #define USB4_BA_LENGTH_MASK GENMASK(7, 0) 36 #define USB4_BA_INDEX_MASK GENMASK(15, 0) 37 38 enum usb4_ba_index { 39 USB4_BA_MAX_USB3 = 0x1, 40 USB4_BA_MIN_DP_AUX = 0x2, 41 USB4_BA_MIN_DP_MAIN = 0x3, 42 USB4_BA_MAX_PCIE = 0x4, 43 USB4_BA_MAX_HI = 0x5, 44 }; 45 46 #define USB4_BA_VALUE_MASK GENMASK(31, 16) 47 #define USB4_BA_VALUE_SHIFT 16 48 49 /* Delays in us used with usb4_port_wait_for_bit() */ 50 #define USB4_PORT_DELAY 50 51 #define USB4_PORT_SB_DELAY 1000 52 53 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode, 54 u32 *metadata, u8 *status, 55 const void *tx_data, size_t tx_dwords, 56 void *rx_data, size_t rx_dwords) 57 { 58 u32 val; 59 int ret; 60 61 if (metadata) { 62 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); 63 if (ret) 64 return ret; 65 } 66 if (tx_dwords) { 67 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9, 68 tx_dwords); 69 if (ret) 70 return ret; 71 } 72 73 val = opcode | ROUTER_CS_26_OV; 74 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); 75 if (ret) 76 return ret; 77 78 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500); 79 if (ret) 80 return ret; 81 82 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); 83 if (ret) 84 return ret; 85 86 if (val & ROUTER_CS_26_ONS) 87 return -EOPNOTSUPP; 88 89 if (status) 90 *status = (val & ROUTER_CS_26_STATUS_MASK) >> 91 ROUTER_CS_26_STATUS_SHIFT; 92 93 if (metadata) { 94 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); 95 if (ret) 96 return ret; 97 } 98 if (rx_dwords) { 99 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9, 100 rx_dwords); 101 if (ret) 102 return ret; 103 } 104 105 return 0; 106 } 107 108 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata, 109 u8 *status, const void *tx_data, size_t tx_dwords, 110 void *rx_data, size_t rx_dwords) 111 { 112 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 113 114 if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS) 115 return -EINVAL; 116 117 /* 118 * If the connection manager implementation provides USB4 router 119 * operation proxy callback, call it here instead of running the 120 * operation natively. 121 */ 122 if (cm_ops->usb4_switch_op) { 123 int ret; 124 125 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status, 126 tx_data, tx_dwords, rx_data, 127 rx_dwords); 128 if (ret != -EOPNOTSUPP) 129 return ret; 130 131 /* 132 * If the proxy was not supported then run the native 133 * router operation instead. 134 */ 135 } 136 137 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data, 138 tx_dwords, rx_data, rx_dwords); 139 } 140 141 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode, 142 u32 *metadata, u8 *status) 143 { 144 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0); 145 } 146 147 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode, 148 u32 *metadata, u8 *status, 149 const void *tx_data, size_t tx_dwords, 150 void *rx_data, size_t rx_dwords) 151 { 152 return __usb4_switch_op(sw, opcode, metadata, status, tx_data, 153 tx_dwords, rx_data, rx_dwords); 154 } 155 156 /** 157 * usb4_switch_check_wakes() - Check for wakes and notify PM core about them 158 * @sw: Router whose wakes to check 159 * 160 * Checks wakes occurred during suspend and notify the PM core about them. 161 */ 162 void usb4_switch_check_wakes(struct tb_switch *sw) 163 { 164 bool wakeup_usb4 = false; 165 struct usb4_port *usb4; 166 struct tb_port *port; 167 bool wakeup = false; 168 u32 val; 169 170 if (tb_route(sw)) { 171 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1)) 172 return; 173 174 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n", 175 (val & ROUTER_CS_6_WOPS) ? "yes" : "no", 176 (val & ROUTER_CS_6_WOUS) ? "yes" : "no"); 177 178 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS); 179 } 180 181 /* 182 * Check for any downstream ports for USB4 wake, 183 * connection wake and disconnection wake. 184 */ 185 tb_switch_for_each_port(sw, port) { 186 if (!port->cap_usb4) 187 continue; 188 189 if (tb_port_read(port, &val, TB_CFG_PORT, 190 port->cap_usb4 + PORT_CS_18, 1)) 191 break; 192 193 tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n", 194 (val & PORT_CS_18_WOU4S) ? "yes" : "no", 195 (val & PORT_CS_18_WOCS) ? "yes" : "no", 196 (val & PORT_CS_18_WODS) ? "yes" : "no"); 197 198 wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS | 199 PORT_CS_18_WODS); 200 201 usb4 = port->usb4; 202 if (device_may_wakeup(&usb4->dev) && wakeup_usb4) 203 pm_wakeup_event(&usb4->dev, 0); 204 205 wakeup |= wakeup_usb4; 206 } 207 208 if (wakeup) 209 pm_wakeup_event(&sw->dev, 0); 210 } 211 212 static bool link_is_usb4(struct tb_port *port) 213 { 214 u32 val; 215 216 if (!port->cap_usb4) 217 return false; 218 219 if (tb_port_read(port, &val, TB_CFG_PORT, 220 port->cap_usb4 + PORT_CS_18, 1)) 221 return false; 222 223 return !(val & PORT_CS_18_TCM); 224 } 225 226 /** 227 * usb4_switch_setup() - Additional setup for USB4 device 228 * @sw: USB4 router to setup 229 * 230 * USB4 routers need additional settings in order to enable all the 231 * tunneling. This function enables USB and PCIe tunneling if it can be 232 * enabled (e.g the parent switch also supports them). If USB tunneling 233 * is not available for some reason (like that there is Thunderbolt 3 234 * switch upstream) then the internal xHCI controller is enabled 235 * instead. 236 * 237 * This does not set the configuration valid bit of the router. To do 238 * that call usb4_switch_configuration_valid(). 239 */ 240 int usb4_switch_setup(struct tb_switch *sw) 241 { 242 struct tb_switch *parent = tb_switch_parent(sw); 243 struct tb_port *down; 244 bool tbt3, xhci; 245 u32 val = 0; 246 int ret; 247 248 if (!tb_route(sw)) 249 return 0; 250 251 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1); 252 if (ret) 253 return ret; 254 255 down = tb_switch_downstream_port(sw); 256 sw->link_usb4 = link_is_usb4(down); 257 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT"); 258 259 xhci = val & ROUTER_CS_6_HCI; 260 tbt3 = !(val & ROUTER_CS_6_TNS); 261 262 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n", 263 tbt3 ? "yes" : "no", xhci ? "yes" : "no"); 264 265 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 266 if (ret) 267 return ret; 268 269 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 && 270 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) { 271 val |= ROUTER_CS_5_UTO; 272 xhci = false; 273 } 274 275 /* 276 * Only enable PCIe tunneling if the parent router supports it 277 * and it is not disabled. 278 */ 279 if (tb_acpi_may_tunnel_pcie() && 280 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) { 281 val |= ROUTER_CS_5_PTO; 282 /* 283 * xHCI can be enabled if PCIe tunneling is supported 284 * and the parent does not have any USB3 dowstream 285 * adapters (so we cannot do USB 3.x tunneling). 286 */ 287 if (xhci) 288 val |= ROUTER_CS_5_HCO; 289 } 290 291 /* TBT3 supported by the CM */ 292 val &= ~ROUTER_CS_5_CNS; 293 294 return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 295 } 296 297 /** 298 * usb4_switch_configuration_valid() - Set tunneling configuration to be valid 299 * @sw: USB4 router 300 * 301 * Sets configuration valid bit for the router. Must be called before 302 * any tunnels can be set through the router and after 303 * usb4_switch_setup() has been called. Can be called to host and device 304 * routers (does nothing for the latter). 305 * 306 * Returns %0 in success and negative errno otherwise. 307 */ 308 int usb4_switch_configuration_valid(struct tb_switch *sw) 309 { 310 u32 val; 311 int ret; 312 313 if (!tb_route(sw)) 314 return 0; 315 316 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 317 if (ret) 318 return ret; 319 320 val |= ROUTER_CS_5_CV; 321 322 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 323 if (ret) 324 return ret; 325 326 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR, 327 ROUTER_CS_6_CR, 50); 328 } 329 330 /** 331 * usb4_switch_read_uid() - Read UID from USB4 router 332 * @sw: USB4 router 333 * @uid: UID is stored here 334 * 335 * Reads 64-bit UID from USB4 router config space. 336 */ 337 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid) 338 { 339 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2); 340 } 341 342 static int usb4_switch_drom_read_block(void *data, 343 unsigned int dwaddress, void *buf, 344 size_t dwords) 345 { 346 struct tb_switch *sw = data; 347 u8 status = 0; 348 u32 metadata; 349 int ret; 350 351 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK; 352 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) & 353 USB4_DROM_ADDRESS_MASK; 354 355 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata, 356 &status, NULL, 0, buf, dwords); 357 if (ret) 358 return ret; 359 360 return status ? -EIO : 0; 361 } 362 363 /** 364 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM 365 * @sw: USB4 router 366 * @address: Byte address inside DROM to start reading 367 * @buf: Buffer where the DROM content is stored 368 * @size: Number of bytes to read from DROM 369 * 370 * Uses USB4 router operations to read router DROM. For devices this 371 * should always work but for hosts it may return %-EOPNOTSUPP in which 372 * case the host router does not have DROM. 373 */ 374 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, 375 size_t size) 376 { 377 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, 378 usb4_switch_drom_read_block, sw); 379 } 380 381 /** 382 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding 383 * @sw: USB4 router 384 * 385 * Checks whether conditions are met so that lane bonding can be 386 * established with the upstream router. Call only for device routers. 387 */ 388 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw) 389 { 390 struct tb_port *up; 391 int ret; 392 u32 val; 393 394 up = tb_upstream_port(sw); 395 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1); 396 if (ret) 397 return false; 398 399 return !!(val & PORT_CS_18_BE); 400 } 401 402 /** 403 * usb4_switch_set_wake() - Enabled/disable wake 404 * @sw: USB4 router 405 * @flags: Wakeup flags (%0 to disable) 406 * 407 * Enables/disables router to wake up from sleep. 408 */ 409 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags) 410 { 411 struct usb4_port *usb4; 412 struct tb_port *port; 413 u64 route = tb_route(sw); 414 u32 val; 415 int ret; 416 417 /* 418 * Enable wakes coming from all USB4 downstream ports (from 419 * child routers). For device routers do this also for the 420 * upstream USB4 port. 421 */ 422 tb_switch_for_each_port(sw, port) { 423 if (!tb_port_is_null(port)) 424 continue; 425 if (!route && tb_is_upstream_port(port)) 426 continue; 427 if (!port->cap_usb4) 428 continue; 429 430 ret = tb_port_read(port, &val, TB_CFG_PORT, 431 port->cap_usb4 + PORT_CS_19, 1); 432 if (ret) 433 return ret; 434 435 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4); 436 437 if (tb_is_upstream_port(port)) { 438 val |= PORT_CS_19_WOU4; 439 } else { 440 bool configured = val & PORT_CS_19_PC; 441 usb4 = port->usb4; 442 443 if (((flags & TB_WAKE_ON_CONNECT) | 444 device_may_wakeup(&usb4->dev)) && !configured) 445 val |= PORT_CS_19_WOC; 446 if (((flags & TB_WAKE_ON_DISCONNECT) | 447 device_may_wakeup(&usb4->dev)) && configured) 448 val |= PORT_CS_19_WOD; 449 if ((flags & TB_WAKE_ON_USB4) && configured) 450 val |= PORT_CS_19_WOU4; 451 } 452 453 ret = tb_port_write(port, &val, TB_CFG_PORT, 454 port->cap_usb4 + PORT_CS_19, 1); 455 if (ret) 456 return ret; 457 } 458 459 /* 460 * Enable wakes from PCIe, USB 3.x and DP on this router. Only 461 * needed for device routers. 462 */ 463 if (route) { 464 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 465 if (ret) 466 return ret; 467 468 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD); 469 if (flags & TB_WAKE_ON_USB3) 470 val |= ROUTER_CS_5_WOU; 471 if (flags & TB_WAKE_ON_PCIE) 472 val |= ROUTER_CS_5_WOP; 473 if (flags & TB_WAKE_ON_DP) 474 val |= ROUTER_CS_5_WOD; 475 476 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 477 if (ret) 478 return ret; 479 } 480 481 return 0; 482 } 483 484 /** 485 * usb4_switch_set_sleep() - Prepare the router to enter sleep 486 * @sw: USB4 router 487 * 488 * Sets sleep bit for the router. Returns when the router sleep ready 489 * bit has been asserted. 490 */ 491 int usb4_switch_set_sleep(struct tb_switch *sw) 492 { 493 int ret; 494 u32 val; 495 496 /* Set sleep bit and wait for sleep ready to be asserted */ 497 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 498 if (ret) 499 return ret; 500 501 val |= ROUTER_CS_5_SLP; 502 503 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 504 if (ret) 505 return ret; 506 507 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR, 508 ROUTER_CS_6_SLPR, 500); 509 } 510 511 /** 512 * usb4_switch_nvm_sector_size() - Return router NVM sector size 513 * @sw: USB4 router 514 * 515 * If the router supports NVM operations this function returns the NVM 516 * sector size in bytes. If NVM operations are not supported returns 517 * %-EOPNOTSUPP. 518 */ 519 int usb4_switch_nvm_sector_size(struct tb_switch *sw) 520 { 521 u32 metadata; 522 u8 status; 523 int ret; 524 525 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata, 526 &status); 527 if (ret) 528 return ret; 529 530 if (status) 531 return status == 0x2 ? -EOPNOTSUPP : -EIO; 532 533 return metadata & USB4_NVM_SECTOR_SIZE_MASK; 534 } 535 536 static int usb4_switch_nvm_read_block(void *data, 537 unsigned int dwaddress, void *buf, size_t dwords) 538 { 539 struct tb_switch *sw = data; 540 u8 status = 0; 541 u32 metadata; 542 int ret; 543 544 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) & 545 USB4_NVM_READ_LENGTH_MASK; 546 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) & 547 USB4_NVM_READ_OFFSET_MASK; 548 549 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata, 550 &status, NULL, 0, buf, dwords); 551 if (ret) 552 return ret; 553 554 return status ? -EIO : 0; 555 } 556 557 /** 558 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM 559 * @sw: USB4 router 560 * @address: Starting address in bytes 561 * @buf: Read data is placed here 562 * @size: How many bytes to read 563 * 564 * Reads NVM contents of the router. If NVM is not supported returns 565 * %-EOPNOTSUPP. 566 */ 567 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, 568 size_t size) 569 { 570 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, 571 usb4_switch_nvm_read_block, sw); 572 } 573 574 /** 575 * usb4_switch_nvm_set_offset() - Set NVM write offset 576 * @sw: USB4 router 577 * @address: Start offset 578 * 579 * Explicitly sets NVM write offset. Normally when writing to NVM this 580 * is done automatically by usb4_switch_nvm_write(). 581 * 582 * Returns %0 in success and negative errno if there was a failure. 583 */ 584 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address) 585 { 586 u32 metadata, dwaddress; 587 u8 status = 0; 588 int ret; 589 590 dwaddress = address / 4; 591 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & 592 USB4_NVM_SET_OFFSET_MASK; 593 594 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata, 595 &status); 596 if (ret) 597 return ret; 598 599 return status ? -EIO : 0; 600 } 601 602 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress, 603 const void *buf, size_t dwords) 604 { 605 struct tb_switch *sw = data; 606 u8 status; 607 int ret; 608 609 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status, 610 buf, dwords, NULL, 0); 611 if (ret) 612 return ret; 613 614 return status ? -EIO : 0; 615 } 616 617 /** 618 * usb4_switch_nvm_write() - Write to the router NVM 619 * @sw: USB4 router 620 * @address: Start address where to write in bytes 621 * @buf: Pointer to the data to write 622 * @size: Size of @buf in bytes 623 * 624 * Writes @buf to the router NVM using USB4 router operations. If NVM 625 * write is not supported returns %-EOPNOTSUPP. 626 */ 627 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, 628 const void *buf, size_t size) 629 { 630 int ret; 631 632 ret = usb4_switch_nvm_set_offset(sw, address); 633 if (ret) 634 return ret; 635 636 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES, 637 usb4_switch_nvm_write_next_block, sw); 638 } 639 640 /** 641 * usb4_switch_nvm_authenticate() - Authenticate new NVM 642 * @sw: USB4 router 643 * 644 * After the new NVM has been written via usb4_switch_nvm_write(), this 645 * function triggers NVM authentication process. The router gets power 646 * cycled and if the authentication is successful the new NVM starts 647 * running. In case of failure returns negative errno. 648 * 649 * The caller should call usb4_switch_nvm_authenticate_status() to read 650 * the status of the authentication after power cycle. It should be the 651 * first router operation to avoid the status being lost. 652 */ 653 int usb4_switch_nvm_authenticate(struct tb_switch *sw) 654 { 655 int ret; 656 657 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL); 658 switch (ret) { 659 /* 660 * The router is power cycled once NVM_AUTH is started so it is 661 * expected to get any of the following errors back. 662 */ 663 case -EACCES: 664 case -ENOTCONN: 665 case -ETIMEDOUT: 666 return 0; 667 668 default: 669 return ret; 670 } 671 } 672 673 /** 674 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate 675 * @sw: USB4 router 676 * @status: Status code of the operation 677 * 678 * The function checks if there is status available from the last NVM 679 * authenticate router operation. If there is status then %0 is returned 680 * and the status code is placed in @status. Returns negative errno in case 681 * of failure. 682 * 683 * Must be called before any other router operation. 684 */ 685 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status) 686 { 687 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 688 u16 opcode; 689 u32 val; 690 int ret; 691 692 if (cm_ops->usb4_switch_nvm_authenticate_status) { 693 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status); 694 if (ret != -EOPNOTSUPP) 695 return ret; 696 } 697 698 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); 699 if (ret) 700 return ret; 701 702 /* Check that the opcode is correct */ 703 opcode = val & ROUTER_CS_26_OPCODE_MASK; 704 if (opcode == USB4_SWITCH_OP_NVM_AUTH) { 705 if (val & ROUTER_CS_26_OV) 706 return -EBUSY; 707 if (val & ROUTER_CS_26_ONS) 708 return -EOPNOTSUPP; 709 710 *status = (val & ROUTER_CS_26_STATUS_MASK) >> 711 ROUTER_CS_26_STATUS_SHIFT; 712 } else { 713 *status = 0; 714 } 715 716 return 0; 717 } 718 719 /** 720 * usb4_switch_credits_init() - Read buffer allocation parameters 721 * @sw: USB4 router 722 * 723 * Reads @sw buffer allocation parameters and initializes @sw buffer 724 * allocation fields accordingly. Specifically @sw->credits_allocation 725 * is set to %true if these parameters can be used in tunneling. 726 * 727 * Returns %0 on success and negative errno otherwise. 728 */ 729 int usb4_switch_credits_init(struct tb_switch *sw) 730 { 731 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma; 732 int ret, length, i, nports; 733 const struct tb_port *port; 734 u32 data[USB4_DATA_DWORDS]; 735 u32 metadata = 0; 736 u8 status = 0; 737 738 memset(data, 0, sizeof(data)); 739 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata, 740 &status, NULL, 0, data, ARRAY_SIZE(data)); 741 if (ret) 742 return ret; 743 if (status) 744 return -EIO; 745 746 length = metadata & USB4_BA_LENGTH_MASK; 747 if (WARN_ON(length > ARRAY_SIZE(data))) 748 return -EMSGSIZE; 749 750 max_usb3 = -1; 751 min_dp_aux = -1; 752 min_dp_main = -1; 753 max_pcie = -1; 754 max_dma = -1; 755 756 tb_sw_dbg(sw, "credit allocation parameters:\n"); 757 758 for (i = 0; i < length; i++) { 759 u16 index, value; 760 761 index = data[i] & USB4_BA_INDEX_MASK; 762 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT; 763 764 switch (index) { 765 case USB4_BA_MAX_USB3: 766 tb_sw_dbg(sw, " USB3: %u\n", value); 767 max_usb3 = value; 768 break; 769 case USB4_BA_MIN_DP_AUX: 770 tb_sw_dbg(sw, " DP AUX: %u\n", value); 771 min_dp_aux = value; 772 break; 773 case USB4_BA_MIN_DP_MAIN: 774 tb_sw_dbg(sw, " DP main: %u\n", value); 775 min_dp_main = value; 776 break; 777 case USB4_BA_MAX_PCIE: 778 tb_sw_dbg(sw, " PCIe: %u\n", value); 779 max_pcie = value; 780 break; 781 case USB4_BA_MAX_HI: 782 tb_sw_dbg(sw, " DMA: %u\n", value); 783 max_dma = value; 784 break; 785 default: 786 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n", 787 index); 788 break; 789 } 790 } 791 792 /* 793 * Validate the buffer allocation preferences. If we find 794 * issues, log a warning and fall back using the hard-coded 795 * values. 796 */ 797 798 /* Host router must report baMaxHI */ 799 if (!tb_route(sw) && max_dma < 0) { 800 tb_sw_warn(sw, "host router is missing baMaxHI\n"); 801 goto err_invalid; 802 } 803 804 nports = 0; 805 tb_switch_for_each_port(sw, port) { 806 if (tb_port_is_null(port)) 807 nports++; 808 } 809 810 /* Must have DP buffer allocation (multiple USB4 ports) */ 811 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) { 812 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n"); 813 goto err_invalid; 814 } 815 816 tb_switch_for_each_port(sw, port) { 817 if (tb_port_is_dpout(port) && min_dp_main < 0) { 818 tb_sw_warn(sw, "missing baMinDPmain"); 819 goto err_invalid; 820 } 821 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) && 822 min_dp_aux < 0) { 823 tb_sw_warn(sw, "missing baMinDPaux"); 824 goto err_invalid; 825 } 826 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) && 827 max_usb3 < 0) { 828 tb_sw_warn(sw, "missing baMaxUSB3"); 829 goto err_invalid; 830 } 831 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) && 832 max_pcie < 0) { 833 tb_sw_warn(sw, "missing baMaxPCIe"); 834 goto err_invalid; 835 } 836 } 837 838 /* 839 * Buffer allocation passed the validation so we can use it in 840 * path creation. 841 */ 842 sw->credit_allocation = true; 843 if (max_usb3 > 0) 844 sw->max_usb3_credits = max_usb3; 845 if (min_dp_aux > 0) 846 sw->min_dp_aux_credits = min_dp_aux; 847 if (min_dp_main > 0) 848 sw->min_dp_main_credits = min_dp_main; 849 if (max_pcie > 0) 850 sw->max_pcie_credits = max_pcie; 851 if (max_dma > 0) 852 sw->max_dma_credits = max_dma; 853 854 return 0; 855 856 err_invalid: 857 return -EINVAL; 858 } 859 860 /** 861 * usb4_switch_query_dp_resource() - Query availability of DP IN resource 862 * @sw: USB4 router 863 * @in: DP IN adapter 864 * 865 * For DP tunneling this function can be used to query availability of 866 * DP IN resource. Returns true if the resource is available for DP 867 * tunneling, false otherwise. 868 */ 869 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 870 { 871 u32 metadata = in->port; 872 u8 status; 873 int ret; 874 875 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata, 876 &status); 877 /* 878 * If DP resource allocation is not supported assume it is 879 * always available. 880 */ 881 if (ret == -EOPNOTSUPP) 882 return true; 883 if (ret) 884 return false; 885 886 return !status; 887 } 888 889 /** 890 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource 891 * @sw: USB4 router 892 * @in: DP IN adapter 893 * 894 * Allocates DP IN resource for DP tunneling using USB4 router 895 * operations. If the resource was allocated returns %0. Otherwise 896 * returns negative errno, in particular %-EBUSY if the resource is 897 * already allocated. 898 */ 899 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 900 { 901 u32 metadata = in->port; 902 u8 status; 903 int ret; 904 905 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata, 906 &status); 907 if (ret == -EOPNOTSUPP) 908 return 0; 909 if (ret) 910 return ret; 911 912 return status ? -EBUSY : 0; 913 } 914 915 /** 916 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource 917 * @sw: USB4 router 918 * @in: DP IN adapter 919 * 920 * Releases the previously allocated DP IN resource. 921 */ 922 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 923 { 924 u32 metadata = in->port; 925 u8 status; 926 int ret; 927 928 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata, 929 &status); 930 if (ret == -EOPNOTSUPP) 931 return 0; 932 if (ret) 933 return ret; 934 935 return status ? -EIO : 0; 936 } 937 938 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port) 939 { 940 struct tb_port *p; 941 int usb4_idx = 0; 942 943 /* Assume port is primary */ 944 tb_switch_for_each_port(sw, p) { 945 if (!tb_port_is_null(p)) 946 continue; 947 if (tb_is_upstream_port(p)) 948 continue; 949 if (!p->link_nr) { 950 if (p == port) 951 break; 952 usb4_idx++; 953 } 954 } 955 956 return usb4_idx; 957 } 958 959 /** 960 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter 961 * @sw: USB4 router 962 * @port: USB4 port 963 * 964 * USB4 routers have direct mapping between USB4 ports and PCIe 965 * downstream adapters where the PCIe topology is extended. This 966 * function returns the corresponding downstream PCIe adapter or %NULL 967 * if no such mapping was possible. 968 */ 969 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, 970 const struct tb_port *port) 971 { 972 int usb4_idx = usb4_port_idx(sw, port); 973 struct tb_port *p; 974 int pcie_idx = 0; 975 976 /* Find PCIe down port matching usb4_port */ 977 tb_switch_for_each_port(sw, p) { 978 if (!tb_port_is_pcie_down(p)) 979 continue; 980 981 if (pcie_idx == usb4_idx) 982 return p; 983 984 pcie_idx++; 985 } 986 987 return NULL; 988 } 989 990 /** 991 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter 992 * @sw: USB4 router 993 * @port: USB4 port 994 * 995 * USB4 routers have direct mapping between USB4 ports and USB 3.x 996 * downstream adapters where the USB 3.x topology is extended. This 997 * function returns the corresponding downstream USB 3.x adapter or 998 * %NULL if no such mapping was possible. 999 */ 1000 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, 1001 const struct tb_port *port) 1002 { 1003 int usb4_idx = usb4_port_idx(sw, port); 1004 struct tb_port *p; 1005 int usb_idx = 0; 1006 1007 /* Find USB3 down port matching usb4_port */ 1008 tb_switch_for_each_port(sw, p) { 1009 if (!tb_port_is_usb3_down(p)) 1010 continue; 1011 1012 if (usb_idx == usb4_idx) 1013 return p; 1014 1015 usb_idx++; 1016 } 1017 1018 return NULL; 1019 } 1020 1021 /** 1022 * usb4_switch_add_ports() - Add USB4 ports for this router 1023 * @sw: USB4 router 1024 * 1025 * For USB4 router finds all USB4 ports and registers devices for each. 1026 * Can be called to any router. 1027 * 1028 * Return %0 in case of success and negative errno in case of failure. 1029 */ 1030 int usb4_switch_add_ports(struct tb_switch *sw) 1031 { 1032 struct tb_port *port; 1033 1034 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw)) 1035 return 0; 1036 1037 tb_switch_for_each_port(sw, port) { 1038 struct usb4_port *usb4; 1039 1040 if (!tb_port_is_null(port)) 1041 continue; 1042 if (!port->cap_usb4) 1043 continue; 1044 1045 usb4 = usb4_port_device_add(port); 1046 if (IS_ERR(usb4)) { 1047 usb4_switch_remove_ports(sw); 1048 return PTR_ERR(usb4); 1049 } 1050 1051 port->usb4 = usb4; 1052 } 1053 1054 return 0; 1055 } 1056 1057 /** 1058 * usb4_switch_remove_ports() - Removes USB4 ports from this router 1059 * @sw: USB4 router 1060 * 1061 * Unregisters previously registered USB4 ports. 1062 */ 1063 void usb4_switch_remove_ports(struct tb_switch *sw) 1064 { 1065 struct tb_port *port; 1066 1067 tb_switch_for_each_port(sw, port) { 1068 if (port->usb4) { 1069 usb4_port_device_remove(port->usb4); 1070 port->usb4 = NULL; 1071 } 1072 } 1073 } 1074 1075 /** 1076 * usb4_port_unlock() - Unlock USB4 downstream port 1077 * @port: USB4 port to unlock 1078 * 1079 * Unlocks USB4 downstream port so that the connection manager can 1080 * access the router below this port. 1081 */ 1082 int usb4_port_unlock(struct tb_port *port) 1083 { 1084 int ret; 1085 u32 val; 1086 1087 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1); 1088 if (ret) 1089 return ret; 1090 1091 val &= ~ADP_CS_4_LCK; 1092 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1); 1093 } 1094 1095 /** 1096 * usb4_port_hotplug_enable() - Enables hotplug for a port 1097 * @port: USB4 port to operate on 1098 * 1099 * Enables hot plug events on a given port. This is only intended 1100 * to be used on lane, DP-IN, and DP-OUT adapters. 1101 */ 1102 int usb4_port_hotplug_enable(struct tb_port *port) 1103 { 1104 int ret; 1105 u32 val; 1106 1107 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1); 1108 if (ret) 1109 return ret; 1110 1111 val &= ~ADP_CS_5_DHP; 1112 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1); 1113 } 1114 1115 /** 1116 * usb4_port_reset() - Issue downstream port reset 1117 * @port: USB4 port to reset 1118 * 1119 * Issues downstream port reset to @port. 1120 */ 1121 int usb4_port_reset(struct tb_port *port) 1122 { 1123 int ret; 1124 u32 val; 1125 1126 if (!port->cap_usb4) 1127 return -EINVAL; 1128 1129 ret = tb_port_read(port, &val, TB_CFG_PORT, 1130 port->cap_usb4 + PORT_CS_19, 1); 1131 if (ret) 1132 return ret; 1133 1134 val |= PORT_CS_19_DPR; 1135 1136 ret = tb_port_write(port, &val, TB_CFG_PORT, 1137 port->cap_usb4 + PORT_CS_19, 1); 1138 if (ret) 1139 return ret; 1140 1141 fsleep(10000); 1142 1143 ret = tb_port_read(port, &val, TB_CFG_PORT, 1144 port->cap_usb4 + PORT_CS_19, 1); 1145 if (ret) 1146 return ret; 1147 1148 val &= ~PORT_CS_19_DPR; 1149 1150 return tb_port_write(port, &val, TB_CFG_PORT, 1151 port->cap_usb4 + PORT_CS_19, 1); 1152 } 1153 1154 static int usb4_port_set_configured(struct tb_port *port, bool configured) 1155 { 1156 int ret; 1157 u32 val; 1158 1159 if (!port->cap_usb4) 1160 return -EINVAL; 1161 1162 ret = tb_port_read(port, &val, TB_CFG_PORT, 1163 port->cap_usb4 + PORT_CS_19, 1); 1164 if (ret) 1165 return ret; 1166 1167 if (configured) 1168 val |= PORT_CS_19_PC; 1169 else 1170 val &= ~PORT_CS_19_PC; 1171 1172 return tb_port_write(port, &val, TB_CFG_PORT, 1173 port->cap_usb4 + PORT_CS_19, 1); 1174 } 1175 1176 /** 1177 * usb4_port_configure() - Set USB4 port configured 1178 * @port: USB4 router 1179 * 1180 * Sets the USB4 link to be configured for power management purposes. 1181 */ 1182 int usb4_port_configure(struct tb_port *port) 1183 { 1184 return usb4_port_set_configured(port, true); 1185 } 1186 1187 /** 1188 * usb4_port_unconfigure() - Set USB4 port unconfigured 1189 * @port: USB4 router 1190 * 1191 * Sets the USB4 link to be unconfigured for power management purposes. 1192 */ 1193 void usb4_port_unconfigure(struct tb_port *port) 1194 { 1195 usb4_port_set_configured(port, false); 1196 } 1197 1198 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured) 1199 { 1200 int ret; 1201 u32 val; 1202 1203 if (!port->cap_usb4) 1204 return -EINVAL; 1205 1206 ret = tb_port_read(port, &val, TB_CFG_PORT, 1207 port->cap_usb4 + PORT_CS_19, 1); 1208 if (ret) 1209 return ret; 1210 1211 if (configured) 1212 val |= PORT_CS_19_PID; 1213 else 1214 val &= ~PORT_CS_19_PID; 1215 1216 return tb_port_write(port, &val, TB_CFG_PORT, 1217 port->cap_usb4 + PORT_CS_19, 1); 1218 } 1219 1220 /** 1221 * usb4_port_configure_xdomain() - Configure port for XDomain 1222 * @port: USB4 port connected to another host 1223 * @xd: XDomain that is connected to the port 1224 * 1225 * Marks the USB4 port as being connected to another host and updates 1226 * the link type. Returns %0 in success and negative errno in failure. 1227 */ 1228 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) 1229 { 1230 xd->link_usb4 = link_is_usb4(port); 1231 return usb4_set_xdomain_configured(port, true); 1232 } 1233 1234 /** 1235 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain 1236 * @port: USB4 port that was connected to another host 1237 * 1238 * Clears USB4 port from being marked as XDomain. 1239 */ 1240 void usb4_port_unconfigure_xdomain(struct tb_port *port) 1241 { 1242 usb4_set_xdomain_configured(port, false); 1243 } 1244 1245 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit, 1246 u32 value, int timeout_msec, unsigned long delay_usec) 1247 { 1248 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1249 1250 do { 1251 u32 val; 1252 int ret; 1253 1254 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1); 1255 if (ret) 1256 return ret; 1257 1258 if ((val & bit) == value) 1259 return 0; 1260 1261 fsleep(delay_usec); 1262 } while (ktime_before(ktime_get(), timeout)); 1263 1264 return -ETIMEDOUT; 1265 } 1266 1267 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords) 1268 { 1269 if (dwords > USB4_DATA_DWORDS) 1270 return -EINVAL; 1271 1272 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, 1273 dwords); 1274 } 1275 1276 static int usb4_port_write_data(struct tb_port *port, const void *data, 1277 size_t dwords) 1278 { 1279 if (dwords > USB4_DATA_DWORDS) 1280 return -EINVAL; 1281 1282 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, 1283 dwords); 1284 } 1285 1286 /** 1287 * usb4_port_sb_read() - Read from sideband register 1288 * @port: USB4 port to read 1289 * @target: Sideband target 1290 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER 1291 * @reg: Sideband register index 1292 * @buf: Buffer where the sideband data is copied 1293 * @size: Size of @buf 1294 * 1295 * Reads data from sideband register @reg and copies it into @buf. 1296 * Returns %0 in case of success and negative errno in case of failure. 1297 */ 1298 int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, u8 index, 1299 u8 reg, void *buf, u8 size) 1300 { 1301 size_t dwords = DIV_ROUND_UP(size, 4); 1302 int ret; 1303 u32 val; 1304 1305 if (!port->cap_usb4) 1306 return -EINVAL; 1307 1308 val = reg; 1309 val |= size << PORT_CS_1_LENGTH_SHIFT; 1310 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; 1311 if (target == USB4_SB_TARGET_RETIMER) 1312 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); 1313 val |= PORT_CS_1_PND; 1314 1315 ret = tb_port_write(port, &val, TB_CFG_PORT, 1316 port->cap_usb4 + PORT_CS_1, 1); 1317 if (ret) 1318 return ret; 1319 1320 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, 1321 PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY); 1322 if (ret) 1323 return ret; 1324 1325 ret = tb_port_read(port, &val, TB_CFG_PORT, 1326 port->cap_usb4 + PORT_CS_1, 1); 1327 if (ret) 1328 return ret; 1329 1330 if (val & PORT_CS_1_NR) 1331 return -ENODEV; 1332 if (val & PORT_CS_1_RC) 1333 return -EIO; 1334 1335 return buf ? usb4_port_read_data(port, buf, dwords) : 0; 1336 } 1337 1338 /** 1339 * usb4_port_sb_write() - Write to sideband register 1340 * @port: USB4 port to write 1341 * @target: Sideband target 1342 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER 1343 * @reg: Sideband register index 1344 * @buf: Data to write 1345 * @size: Size of @buf 1346 * 1347 * Writes @buf to sideband register @reg. Returns %0 in case of success 1348 * and negative errno in case of failure. 1349 */ 1350 int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target, 1351 u8 index, u8 reg, const void *buf, u8 size) 1352 { 1353 size_t dwords = DIV_ROUND_UP(size, 4); 1354 int ret; 1355 u32 val; 1356 1357 if (!port->cap_usb4) 1358 return -EINVAL; 1359 1360 if (buf) { 1361 ret = usb4_port_write_data(port, buf, dwords); 1362 if (ret) 1363 return ret; 1364 } 1365 1366 val = reg; 1367 val |= size << PORT_CS_1_LENGTH_SHIFT; 1368 val |= PORT_CS_1_WNR_WRITE; 1369 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; 1370 if (target == USB4_SB_TARGET_RETIMER) 1371 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); 1372 val |= PORT_CS_1_PND; 1373 1374 ret = tb_port_write(port, &val, TB_CFG_PORT, 1375 port->cap_usb4 + PORT_CS_1, 1); 1376 if (ret) 1377 return ret; 1378 1379 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, 1380 PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY); 1381 if (ret) 1382 return ret; 1383 1384 ret = tb_port_read(port, &val, TB_CFG_PORT, 1385 port->cap_usb4 + PORT_CS_1, 1); 1386 if (ret) 1387 return ret; 1388 1389 if (val & PORT_CS_1_NR) 1390 return -ENODEV; 1391 if (val & PORT_CS_1_RC) 1392 return -EIO; 1393 1394 return 0; 1395 } 1396 1397 static int usb4_port_sb_opcode_err_to_errno(u32 val) 1398 { 1399 switch (val) { 1400 case 0: 1401 return 0; 1402 case USB4_SB_OPCODE_ERR: 1403 return -EAGAIN; 1404 case USB4_SB_OPCODE_ONS: 1405 return -EOPNOTSUPP; 1406 default: 1407 return -EIO; 1408 } 1409 } 1410 1411 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target, 1412 u8 index, enum usb4_sb_opcode opcode, int timeout_msec) 1413 { 1414 ktime_t timeout; 1415 u32 val; 1416 int ret; 1417 1418 val = opcode; 1419 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val, 1420 sizeof(val)); 1421 if (ret) 1422 return ret; 1423 1424 timeout = ktime_add_ms(ktime_get(), timeout_msec); 1425 1426 do { 1427 /* Check results */ 1428 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE, 1429 &val, sizeof(val)); 1430 if (ret) 1431 return ret; 1432 1433 if (val != opcode) 1434 return usb4_port_sb_opcode_err_to_errno(val); 1435 1436 fsleep(USB4_PORT_SB_DELAY); 1437 } while (ktime_before(ktime_get(), timeout)); 1438 1439 return -ETIMEDOUT; 1440 } 1441 1442 static int usb4_port_set_router_offline(struct tb_port *port, bool offline) 1443 { 1444 u32 val = !offline; 1445 int ret; 1446 1447 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, 1448 USB4_SB_METADATA, &val, sizeof(val)); 1449 if (ret) 1450 return ret; 1451 1452 val = USB4_SB_OPCODE_ROUTER_OFFLINE; 1453 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, 1454 USB4_SB_OPCODE, &val, sizeof(val)); 1455 } 1456 1457 /** 1458 * usb4_port_router_offline() - Put the USB4 port to offline mode 1459 * @port: USB4 port 1460 * 1461 * This function puts the USB4 port into offline mode. In this mode the 1462 * port does not react on hotplug events anymore. This needs to be 1463 * called before retimer access is done when the USB4 links is not up. 1464 * 1465 * Returns %0 in case of success and negative errno if there was an 1466 * error. 1467 */ 1468 int usb4_port_router_offline(struct tb_port *port) 1469 { 1470 return usb4_port_set_router_offline(port, true); 1471 } 1472 1473 /** 1474 * usb4_port_router_online() - Put the USB4 port back to online 1475 * @port: USB4 port 1476 * 1477 * Makes the USB4 port functional again. 1478 */ 1479 int usb4_port_router_online(struct tb_port *port) 1480 { 1481 return usb4_port_set_router_offline(port, false); 1482 } 1483 1484 /** 1485 * usb4_port_enumerate_retimers() - Send RT broadcast transaction 1486 * @port: USB4 port 1487 * 1488 * This forces the USB4 port to send broadcast RT transaction which 1489 * makes the retimers on the link to assign index to themselves. Returns 1490 * %0 in case of success and negative errno if there was an error. 1491 */ 1492 int usb4_port_enumerate_retimers(struct tb_port *port) 1493 { 1494 u32 val; 1495 1496 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS; 1497 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, 1498 USB4_SB_OPCODE, &val, sizeof(val)); 1499 } 1500 1501 /** 1502 * usb4_port_clx_supported() - Check if CLx is supported by the link 1503 * @port: Port to check for CLx support for 1504 * 1505 * PORT_CS_18_CPS bit reflects if the link supports CLx including 1506 * active cables (if connected on the link). 1507 */ 1508 bool usb4_port_clx_supported(struct tb_port *port) 1509 { 1510 int ret; 1511 u32 val; 1512 1513 ret = tb_port_read(port, &val, TB_CFG_PORT, 1514 port->cap_usb4 + PORT_CS_18, 1); 1515 if (ret) 1516 return false; 1517 1518 return !!(val & PORT_CS_18_CPS); 1519 } 1520 1521 /** 1522 * usb4_port_asym_supported() - If the port supports asymmetric link 1523 * @port: USB4 port 1524 * 1525 * Checks if the port and the cable supports asymmetric link and returns 1526 * %true in that case. 1527 */ 1528 bool usb4_port_asym_supported(struct tb_port *port) 1529 { 1530 u32 val; 1531 1532 if (!port->cap_usb4) 1533 return false; 1534 1535 if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1)) 1536 return false; 1537 1538 return !!(val & PORT_CS_18_CSA); 1539 } 1540 1541 /** 1542 * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric 1543 * @port: USB4 port 1544 * @width: Asymmetric width to configure 1545 * 1546 * Sets USB4 port link width to @width. Can be called for widths where 1547 * usb4_port_asym_width_supported() returned @true. 1548 */ 1549 int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width) 1550 { 1551 u32 val; 1552 int ret; 1553 1554 if (!port->cap_phy) 1555 return -EINVAL; 1556 1557 ret = tb_port_read(port, &val, TB_CFG_PORT, 1558 port->cap_phy + LANE_ADP_CS_1, 1); 1559 if (ret) 1560 return ret; 1561 1562 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK; 1563 switch (width) { 1564 case TB_LINK_WIDTH_DUAL: 1565 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK, 1566 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL); 1567 break; 1568 case TB_LINK_WIDTH_ASYM_TX: 1569 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK, 1570 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX); 1571 break; 1572 case TB_LINK_WIDTH_ASYM_RX: 1573 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK, 1574 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX); 1575 break; 1576 default: 1577 return -EINVAL; 1578 } 1579 1580 return tb_port_write(port, &val, TB_CFG_PORT, 1581 port->cap_phy + LANE_ADP_CS_1, 1); 1582 } 1583 1584 /** 1585 * usb4_port_asym_start() - Start symmetry change and wait for completion 1586 * @port: USB4 port 1587 * 1588 * Start symmetry change of the link to asymmetric or symmetric 1589 * (according to what was previously set in tb_port_set_link_width(). 1590 * Wait for completion of the change. 1591 * 1592 * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or 1593 * a negative errno in case of a failure. 1594 */ 1595 int usb4_port_asym_start(struct tb_port *port) 1596 { 1597 int ret; 1598 u32 val; 1599 1600 ret = tb_port_read(port, &val, TB_CFG_PORT, 1601 port->cap_usb4 + PORT_CS_19, 1); 1602 if (ret) 1603 return ret; 1604 1605 val &= ~PORT_CS_19_START_ASYM; 1606 val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1); 1607 1608 ret = tb_port_write(port, &val, TB_CFG_PORT, 1609 port->cap_usb4 + PORT_CS_19, 1); 1610 if (ret) 1611 return ret; 1612 1613 /* 1614 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4 1615 * port started the symmetry transition. 1616 */ 1617 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19, 1618 PORT_CS_19_START_ASYM, 0, 1000, 1619 USB4_PORT_DELAY); 1620 if (ret) 1621 return ret; 1622 1623 /* Then wait for the transtion to be completed */ 1624 return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18, 1625 PORT_CS_18_TIP, 0, 5000, USB4_PORT_DELAY); 1626 } 1627 1628 /** 1629 * usb4_port_margining_caps() - Read USB4 port marginig capabilities 1630 * @port: USB4 port 1631 * @target: Sideband target 1632 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER 1633 * @caps: Array with at least two elements to hold the results 1634 * 1635 * Reads the USB4 port lane margining capabilities into @caps. 1636 */ 1637 int usb4_port_margining_caps(struct tb_port *port, enum usb4_sb_target target, 1638 u8 index, u32 *caps) 1639 { 1640 int ret; 1641 1642 ret = usb4_port_sb_op(port, target, index, 1643 USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500); 1644 if (ret) 1645 return ret; 1646 1647 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, caps, 1648 sizeof(*caps) * 2); 1649 } 1650 1651 /** 1652 * usb4_port_hw_margin() - Run hardware lane margining on port 1653 * @port: USB4 port 1654 * @target: Sideband target 1655 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER 1656 * @params: Parameters for USB4 hardware margining 1657 * @results: Array with at least two elements to hold the results 1658 * 1659 * Runs hardware lane margining on USB4 port and returns the result in 1660 * @results. 1661 */ 1662 int usb4_port_hw_margin(struct tb_port *port, enum usb4_sb_target target, 1663 u8 index, const struct usb4_port_margining_params *params, 1664 u32 *results) 1665 { 1666 u32 val; 1667 int ret; 1668 1669 if (WARN_ON_ONCE(!params)) 1670 return -EINVAL; 1671 1672 val = params->lanes; 1673 if (params->time) 1674 val |= USB4_MARGIN_HW_TIME; 1675 if (params->right_high) 1676 val |= USB4_MARGIN_HW_RH; 1677 if (params->ber_level) 1678 val |= FIELD_PREP(USB4_MARGIN_HW_BER_MASK, params->ber_level); 1679 if (params->optional_voltage_offset_range) 1680 val |= USB4_MARGIN_HW_OPT_VOLTAGE; 1681 1682 ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, &val, 1683 sizeof(val)); 1684 if (ret) 1685 return ret; 1686 1687 ret = usb4_port_sb_op(port, target, index, 1688 USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500); 1689 if (ret) 1690 return ret; 1691 1692 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, results, 1693 sizeof(*results) * 2); 1694 } 1695 1696 /** 1697 * usb4_port_sw_margin() - Run software lane margining on port 1698 * @port: USB4 port 1699 * @target: Sideband target 1700 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER 1701 * @params: Parameters for USB4 software margining 1702 * @results: Data word for the operation completion data 1703 * 1704 * Runs software lane margining on USB4 port. Read back the error 1705 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in 1706 * success and negative errno otherwise. 1707 */ 1708 int usb4_port_sw_margin(struct tb_port *port, enum usb4_sb_target target, 1709 u8 index, const struct usb4_port_margining_params *params, 1710 u32 *results) 1711 { 1712 u32 val; 1713 int ret; 1714 1715 if (WARN_ON_ONCE(!params)) 1716 return -EINVAL; 1717 1718 val = params->lanes; 1719 if (params->time) 1720 val |= USB4_MARGIN_SW_TIME; 1721 if (params->optional_voltage_offset_range) 1722 val |= USB4_MARGIN_SW_OPT_VOLTAGE; 1723 if (params->right_high) 1724 val |= USB4_MARGIN_SW_RH; 1725 val |= FIELD_PREP(USB4_MARGIN_SW_COUNTER_MASK, params->error_counter); 1726 val |= FIELD_PREP(USB4_MARGIN_SW_VT_MASK, params->voltage_time_offset); 1727 1728 ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, &val, 1729 sizeof(val)); 1730 if (ret) 1731 return ret; 1732 1733 ret = usb4_port_sb_op(port, target, index, 1734 USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500); 1735 if (ret) 1736 return ret; 1737 1738 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, results, 1739 sizeof(*results)); 1740 1741 } 1742 1743 /** 1744 * usb4_port_sw_margin_errors() - Read the software margining error counters 1745 * @port: USB4 port 1746 * @target: Sideband target 1747 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER 1748 * @errors: Error metadata is copied here. 1749 * 1750 * This reads back the software margining error counters from the port. 1751 * Returns %0 in success and negative errno otherwise. 1752 */ 1753 int usb4_port_sw_margin_errors(struct tb_port *port, enum usb4_sb_target target, 1754 u8 index, u32 *errors) 1755 { 1756 int ret; 1757 1758 ret = usb4_port_sb_op(port, target, index, 1759 USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150); 1760 if (ret) 1761 return ret; 1762 1763 return usb4_port_sb_read(port, target, index, USB4_SB_METADATA, errors, 1764 sizeof(*errors)); 1765 } 1766 1767 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index, 1768 enum usb4_sb_opcode opcode, 1769 int timeout_msec) 1770 { 1771 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode, 1772 timeout_msec); 1773 } 1774 1775 /** 1776 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions 1777 * @port: USB4 port 1778 * @index: Retimer index 1779 * 1780 * Enables sideband channel transations on SBTX. Can be used when USB4 1781 * link does not go up, for example if there is no device connected. 1782 */ 1783 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index) 1784 { 1785 int ret; 1786 1787 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX, 1788 500); 1789 1790 if (ret != -ENODEV) 1791 return ret; 1792 1793 /* 1794 * Per the USB4 retimer spec, the retimer is not required to 1795 * send an RT (Retimer Transaction) response for the first 1796 * SET_INBOUND_SBTX command 1797 */ 1798 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX, 1799 500); 1800 } 1801 1802 /** 1803 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions 1804 * @port: USB4 port 1805 * @index: Retimer index 1806 * 1807 * Disables sideband channel transations on SBTX. The reverse of 1808 * usb4_port_retimer_set_inbound_sbtx(). 1809 */ 1810 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index) 1811 { 1812 return usb4_port_retimer_op(port, index, 1813 USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500); 1814 } 1815 1816 /** 1817 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer 1818 * @port: USB4 port 1819 * @index: Retimer index 1820 * 1821 * If the retimer at @index is last one (connected directly to the 1822 * Type-C port) this function returns %1. If it is not returns %0. If 1823 * the retimer is not present returns %-ENODEV. Otherwise returns 1824 * negative errno. 1825 */ 1826 int usb4_port_retimer_is_last(struct tb_port *port, u8 index) 1827 { 1828 u32 metadata; 1829 int ret; 1830 1831 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER, 1832 500); 1833 if (ret) 1834 return ret; 1835 1836 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, 1837 USB4_SB_METADATA, &metadata, sizeof(metadata)); 1838 return ret ? ret : metadata & 1; 1839 } 1840 1841 /** 1842 * usb4_port_retimer_is_cable() - Is the retimer cable retimer 1843 * @port: USB4 port 1844 * @index: Retimer index 1845 * 1846 * If the retimer at @index is last cable retimer this function returns 1847 * %1 and %0 if it is on-board retimer. In case a retimer is not present 1848 * at @index returns %-ENODEV. Otherwise returns negative errno. 1849 */ 1850 int usb4_port_retimer_is_cable(struct tb_port *port, u8 index) 1851 { 1852 u32 metadata; 1853 int ret; 1854 1855 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_CABLE_RETIMER, 1856 500); 1857 if (ret) 1858 return ret; 1859 1860 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, 1861 USB4_SB_METADATA, &metadata, sizeof(metadata)); 1862 return ret ? ret : metadata & 1; 1863 } 1864 1865 /** 1866 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size 1867 * @port: USB4 port 1868 * @index: Retimer index 1869 * 1870 * Reads NVM sector size (in bytes) of a retimer at @index. This 1871 * operation can be used to determine whether the retimer supports NVM 1872 * upgrade for example. Returns sector size in bytes or negative errno 1873 * in case of error. Specifically returns %-ENODEV if there is no 1874 * retimer at @index. 1875 */ 1876 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index) 1877 { 1878 u32 metadata; 1879 int ret; 1880 1881 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE, 1882 500); 1883 if (ret) 1884 return ret; 1885 1886 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, 1887 USB4_SB_METADATA, &metadata, sizeof(metadata)); 1888 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK; 1889 } 1890 1891 /** 1892 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset 1893 * @port: USB4 port 1894 * @index: Retimer index 1895 * @address: Start offset 1896 * 1897 * Exlicitly sets NVM write offset. Normally when writing to NVM this is 1898 * done automatically by usb4_port_retimer_nvm_write(). 1899 * 1900 * Returns %0 in success and negative errno if there was a failure. 1901 */ 1902 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index, 1903 unsigned int address) 1904 { 1905 u32 metadata, dwaddress; 1906 int ret; 1907 1908 dwaddress = address / 4; 1909 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & 1910 USB4_NVM_SET_OFFSET_MASK; 1911 1912 ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, 1913 USB4_SB_METADATA, &metadata, sizeof(metadata)); 1914 if (ret) 1915 return ret; 1916 1917 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET, 1918 500); 1919 } 1920 1921 struct retimer_info { 1922 struct tb_port *port; 1923 u8 index; 1924 }; 1925 1926 static int usb4_port_retimer_nvm_write_next_block(void *data, 1927 unsigned int dwaddress, const void *buf, size_t dwords) 1928 1929 { 1930 const struct retimer_info *info = data; 1931 struct tb_port *port = info->port; 1932 u8 index = info->index; 1933 int ret; 1934 1935 ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, 1936 USB4_SB_DATA, buf, dwords * 4); 1937 if (ret) 1938 return ret; 1939 1940 return usb4_port_retimer_op(port, index, 1941 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000); 1942 } 1943 1944 /** 1945 * usb4_port_retimer_nvm_write() - Write to retimer NVM 1946 * @port: USB4 port 1947 * @index: Retimer index 1948 * @address: Byte address where to start the write 1949 * @buf: Data to write 1950 * @size: Size in bytes how much to write 1951 * 1952 * Writes @size bytes from @buf to the retimer NVM. Used for NVM 1953 * upgrade. Returns %0 if the data was written successfully and negative 1954 * errno in case of failure. Specifically returns %-ENODEV if there is 1955 * no retimer at @index. 1956 */ 1957 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address, 1958 const void *buf, size_t size) 1959 { 1960 struct retimer_info info = { .port = port, .index = index }; 1961 int ret; 1962 1963 ret = usb4_port_retimer_nvm_set_offset(port, index, address); 1964 if (ret) 1965 return ret; 1966 1967 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES, 1968 usb4_port_retimer_nvm_write_next_block, &info); 1969 } 1970 1971 /** 1972 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade 1973 * @port: USB4 port 1974 * @index: Retimer index 1975 * 1976 * After the new NVM image has been written via usb4_port_retimer_nvm_write() 1977 * this function can be used to trigger the NVM upgrade process. If 1978 * successful the retimer restarts with the new NVM and may not have the 1979 * index set so one needs to call usb4_port_enumerate_retimers() to 1980 * force index to be assigned. 1981 */ 1982 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index) 1983 { 1984 u32 val; 1985 1986 /* 1987 * We need to use the raw operation here because once the 1988 * authentication completes the retimer index is not set anymore 1989 * so we do not get back the status now. 1990 */ 1991 val = USB4_SB_OPCODE_NVM_AUTH_WRITE; 1992 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, 1993 USB4_SB_OPCODE, &val, sizeof(val)); 1994 } 1995 1996 /** 1997 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade 1998 * @port: USB4 port 1999 * @index: Retimer index 2000 * @status: Raw status code read from metadata 2001 * 2002 * This can be called after usb4_port_retimer_nvm_authenticate() and 2003 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade. 2004 * 2005 * Returns %0 if the authentication status was successfully read. The 2006 * completion metadata (the result) is then stored into @status. If 2007 * reading the status fails, returns negative errno. 2008 */ 2009 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index, 2010 u32 *status) 2011 { 2012 u32 metadata, val; 2013 int ret; 2014 2015 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, 2016 USB4_SB_OPCODE, &val, sizeof(val)); 2017 if (ret) 2018 return ret; 2019 2020 ret = usb4_port_sb_opcode_err_to_errno(val); 2021 switch (ret) { 2022 case 0: 2023 *status = 0; 2024 return 0; 2025 2026 case -EAGAIN: 2027 ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, 2028 USB4_SB_METADATA, &metadata, 2029 sizeof(metadata)); 2030 if (ret) 2031 return ret; 2032 2033 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK; 2034 return 0; 2035 2036 default: 2037 return ret; 2038 } 2039 } 2040 2041 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress, 2042 void *buf, size_t dwords) 2043 { 2044 const struct retimer_info *info = data; 2045 struct tb_port *port = info->port; 2046 u8 index = info->index; 2047 u32 metadata; 2048 int ret; 2049 2050 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT; 2051 if (dwords < USB4_DATA_DWORDS) 2052 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT; 2053 2054 ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, 2055 USB4_SB_METADATA, &metadata, sizeof(metadata)); 2056 if (ret) 2057 return ret; 2058 2059 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500); 2060 if (ret) 2061 return ret; 2062 2063 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, 2064 USB4_SB_DATA, buf, dwords * 4); 2065 } 2066 2067 /** 2068 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM 2069 * @port: USB4 port 2070 * @index: Retimer index 2071 * @address: NVM address (in bytes) to start reading 2072 * @buf: Data read from NVM is stored here 2073 * @size: Number of bytes to read 2074 * 2075 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the 2076 * read was successful and negative errno in case of failure. 2077 * Specifically returns %-ENODEV if there is no retimer at @index. 2078 */ 2079 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index, 2080 unsigned int address, void *buf, size_t size) 2081 { 2082 struct retimer_info info = { .port = port, .index = index }; 2083 2084 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, 2085 usb4_port_retimer_nvm_read_block, &info); 2086 } 2087 2088 static inline unsigned int 2089 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw) 2090 { 2091 /* Take the possible bandwidth limitation into account */ 2092 if (port->max_bw) 2093 return min(bw, port->max_bw); 2094 return bw; 2095 } 2096 2097 /** 2098 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate 2099 * @port: USB3 adapter port 2100 * 2101 * Return maximum supported link rate of a USB3 adapter in Mb/s. 2102 * Negative errno in case of error. 2103 */ 2104 int usb4_usb3_port_max_link_rate(struct tb_port *port) 2105 { 2106 int ret, lr; 2107 u32 val; 2108 2109 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) 2110 return -EINVAL; 2111 2112 ret = tb_port_read(port, &val, TB_CFG_PORT, 2113 port->cap_adap + ADP_USB3_CS_4, 1); 2114 if (ret) 2115 return ret; 2116 2117 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT; 2118 ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000; 2119 2120 return usb4_usb3_port_max_bandwidth(port, ret); 2121 } 2122 2123 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request) 2124 { 2125 int ret; 2126 u32 val; 2127 2128 if (!tb_port_is_usb3_down(port)) 2129 return -EINVAL; 2130 if (tb_route(port->sw)) 2131 return -EINVAL; 2132 2133 ret = tb_port_read(port, &val, TB_CFG_PORT, 2134 port->cap_adap + ADP_USB3_CS_2, 1); 2135 if (ret) 2136 return ret; 2137 2138 if (request) 2139 val |= ADP_USB3_CS_2_CMR; 2140 else 2141 val &= ~ADP_USB3_CS_2_CMR; 2142 2143 ret = tb_port_write(port, &val, TB_CFG_PORT, 2144 port->cap_adap + ADP_USB3_CS_2, 1); 2145 if (ret) 2146 return ret; 2147 2148 /* 2149 * We can use val here directly as the CMR bit is in the same place 2150 * as HCA. Just mask out others. 2151 */ 2152 val &= ADP_USB3_CS_2_CMR; 2153 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1, 2154 ADP_USB3_CS_1_HCA, val, 1500, 2155 USB4_PORT_DELAY); 2156 } 2157 2158 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port) 2159 { 2160 return usb4_usb3_port_cm_request(port, true); 2161 } 2162 2163 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port) 2164 { 2165 return usb4_usb3_port_cm_request(port, false); 2166 } 2167 2168 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale) 2169 { 2170 unsigned long uframes; 2171 2172 uframes = bw * 512UL << scale; 2173 return DIV_ROUND_CLOSEST(uframes * 8000, MEGA); 2174 } 2175 2176 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale) 2177 { 2178 unsigned long uframes; 2179 2180 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */ 2181 uframes = ((unsigned long)mbps * MEGA) / 8000; 2182 return DIV_ROUND_UP(uframes, 512UL << scale); 2183 } 2184 2185 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port, 2186 int *upstream_bw, 2187 int *downstream_bw) 2188 { 2189 u32 val, bw, scale; 2190 int ret; 2191 2192 ret = tb_port_read(port, &val, TB_CFG_PORT, 2193 port->cap_adap + ADP_USB3_CS_2, 1); 2194 if (ret) 2195 return ret; 2196 2197 ret = tb_port_read(port, &scale, TB_CFG_PORT, 2198 port->cap_adap + ADP_USB3_CS_3, 1); 2199 if (ret) 2200 return ret; 2201 2202 scale &= ADP_USB3_CS_3_SCALE_MASK; 2203 2204 bw = val & ADP_USB3_CS_2_AUBW_MASK; 2205 *upstream_bw = usb3_bw_to_mbps(bw, scale); 2206 2207 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT; 2208 *downstream_bw = usb3_bw_to_mbps(bw, scale); 2209 2210 return 0; 2211 } 2212 2213 /** 2214 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3 2215 * @port: USB3 adapter port 2216 * @upstream_bw: Allocated upstream bandwidth is stored here 2217 * @downstream_bw: Allocated downstream bandwidth is stored here 2218 * 2219 * Stores currently allocated USB3 bandwidth into @upstream_bw and 2220 * @downstream_bw in Mb/s. Returns %0 in case of success and negative 2221 * errno in failure. 2222 */ 2223 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw, 2224 int *downstream_bw) 2225 { 2226 int ret; 2227 2228 ret = usb4_usb3_port_set_cm_request(port); 2229 if (ret) 2230 return ret; 2231 2232 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw, 2233 downstream_bw); 2234 usb4_usb3_port_clear_cm_request(port); 2235 2236 return ret; 2237 } 2238 2239 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port, 2240 int *upstream_bw, 2241 int *downstream_bw) 2242 { 2243 u32 val, bw, scale; 2244 int ret; 2245 2246 ret = tb_port_read(port, &val, TB_CFG_PORT, 2247 port->cap_adap + ADP_USB3_CS_1, 1); 2248 if (ret) 2249 return ret; 2250 2251 ret = tb_port_read(port, &scale, TB_CFG_PORT, 2252 port->cap_adap + ADP_USB3_CS_3, 1); 2253 if (ret) 2254 return ret; 2255 2256 scale &= ADP_USB3_CS_3_SCALE_MASK; 2257 2258 bw = val & ADP_USB3_CS_1_CUBW_MASK; 2259 *upstream_bw = usb3_bw_to_mbps(bw, scale); 2260 2261 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT; 2262 *downstream_bw = usb3_bw_to_mbps(bw, scale); 2263 2264 return 0; 2265 } 2266 2267 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port, 2268 int upstream_bw, 2269 int downstream_bw) 2270 { 2271 u32 val, ubw, dbw, scale; 2272 int ret, max_bw; 2273 2274 /* Figure out suitable scale */ 2275 scale = 0; 2276 max_bw = max(upstream_bw, downstream_bw); 2277 while (scale < 64) { 2278 if (mbps_to_usb3_bw(max_bw, scale) < 4096) 2279 break; 2280 scale++; 2281 } 2282 2283 if (WARN_ON(scale >= 64)) 2284 return -EINVAL; 2285 2286 ret = tb_port_write(port, &scale, TB_CFG_PORT, 2287 port->cap_adap + ADP_USB3_CS_3, 1); 2288 if (ret) 2289 return ret; 2290 2291 ubw = mbps_to_usb3_bw(upstream_bw, scale); 2292 dbw = mbps_to_usb3_bw(downstream_bw, scale); 2293 2294 tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale); 2295 2296 ret = tb_port_read(port, &val, TB_CFG_PORT, 2297 port->cap_adap + ADP_USB3_CS_2, 1); 2298 if (ret) 2299 return ret; 2300 2301 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK); 2302 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT; 2303 val |= ubw; 2304 2305 return tb_port_write(port, &val, TB_CFG_PORT, 2306 port->cap_adap + ADP_USB3_CS_2, 1); 2307 } 2308 2309 /** 2310 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3 2311 * @port: USB3 adapter port 2312 * @upstream_bw: New upstream bandwidth 2313 * @downstream_bw: New downstream bandwidth 2314 * 2315 * This can be used to set how much bandwidth is allocated for the USB3 2316 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the 2317 * new values programmed to the USB3 adapter allocation registers. If 2318 * the values are lower than what is currently consumed the allocation 2319 * is set to what is currently consumed instead (consumed bandwidth 2320 * cannot be taken away by CM). The actual new values are returned in 2321 * @upstream_bw and @downstream_bw. 2322 * 2323 * Returns %0 in case of success and negative errno if there was a 2324 * failure. 2325 */ 2326 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw, 2327 int *downstream_bw) 2328 { 2329 int ret, consumed_up, consumed_down, allocate_up, allocate_down; 2330 2331 ret = usb4_usb3_port_set_cm_request(port); 2332 if (ret) 2333 return ret; 2334 2335 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, 2336 &consumed_down); 2337 if (ret) 2338 goto err_request; 2339 2340 /* Don't allow it go lower than what is consumed */ 2341 allocate_up = max(*upstream_bw, consumed_up); 2342 allocate_down = max(*downstream_bw, consumed_down); 2343 2344 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up, 2345 allocate_down); 2346 if (ret) 2347 goto err_request; 2348 2349 *upstream_bw = allocate_up; 2350 *downstream_bw = allocate_down; 2351 2352 err_request: 2353 usb4_usb3_port_clear_cm_request(port); 2354 return ret; 2355 } 2356 2357 /** 2358 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth 2359 * @port: USB3 adapter port 2360 * @upstream_bw: New allocated upstream bandwidth 2361 * @downstream_bw: New allocated downstream bandwidth 2362 * 2363 * Releases USB3 allocated bandwidth down to what is actually consumed. 2364 * The new bandwidth is returned in @upstream_bw and @downstream_bw. 2365 * 2366 * Returns 0% in success and negative errno in case of failure. 2367 */ 2368 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw, 2369 int *downstream_bw) 2370 { 2371 int ret, consumed_up, consumed_down; 2372 2373 ret = usb4_usb3_port_set_cm_request(port); 2374 if (ret) 2375 return ret; 2376 2377 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, 2378 &consumed_down); 2379 if (ret) 2380 goto err_request; 2381 2382 /* 2383 * Always keep 900 Mb/s to make sure xHCI has at least some 2384 * bandwidth available for isochronous traffic. 2385 */ 2386 if (consumed_up < 900) 2387 consumed_up = 900; 2388 if (consumed_down < 900) 2389 consumed_down = 900; 2390 2391 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up, 2392 consumed_down); 2393 if (ret) 2394 goto err_request; 2395 2396 *upstream_bw = consumed_up; 2397 *downstream_bw = consumed_down; 2398 2399 err_request: 2400 usb4_usb3_port_clear_cm_request(port); 2401 return ret; 2402 } 2403 2404 static bool is_usb4_dpin(const struct tb_port *port) 2405 { 2406 if (!tb_port_is_dpin(port)) 2407 return false; 2408 if (!tb_switch_is_usb4(port->sw)) 2409 return false; 2410 return true; 2411 } 2412 2413 /** 2414 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter 2415 * @port: DP IN adapter 2416 * @cm_id: CM ID to assign 2417 * 2418 * Sets CM ID for the @port. Returns %0 on success and negative errno 2419 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not 2420 * support this. 2421 */ 2422 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id) 2423 { 2424 u32 val; 2425 int ret; 2426 2427 if (!is_usb4_dpin(port)) 2428 return -EOPNOTSUPP; 2429 2430 ret = tb_port_read(port, &val, TB_CFG_PORT, 2431 port->cap_adap + ADP_DP_CS_2, 1); 2432 if (ret) 2433 return ret; 2434 2435 val &= ~ADP_DP_CS_2_CM_ID_MASK; 2436 val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT; 2437 2438 return tb_port_write(port, &val, TB_CFG_PORT, 2439 port->cap_adap + ADP_DP_CS_2, 1); 2440 } 2441 2442 /** 2443 * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode 2444 * supported 2445 * @port: DP IN adapter to check 2446 * 2447 * Can be called to any DP IN adapter. Returns true if the adapter 2448 * supports USB4 bandwidth allocation mode, false otherwise. 2449 */ 2450 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port) 2451 { 2452 int ret; 2453 u32 val; 2454 2455 if (!is_usb4_dpin(port)) 2456 return false; 2457 2458 ret = tb_port_read(port, &val, TB_CFG_PORT, 2459 port->cap_adap + DP_LOCAL_CAP, 1); 2460 if (ret) 2461 return false; 2462 2463 return !!(val & DP_COMMON_CAP_BW_MODE); 2464 } 2465 2466 /** 2467 * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode 2468 * enabled 2469 * @port: DP IN adapter to check 2470 * 2471 * Can be called to any DP IN adapter. Returns true if the bandwidth 2472 * allocation mode has been enabled, false otherwise. 2473 */ 2474 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port) 2475 { 2476 int ret; 2477 u32 val; 2478 2479 if (!is_usb4_dpin(port)) 2480 return false; 2481 2482 ret = tb_port_read(port, &val, TB_CFG_PORT, 2483 port->cap_adap + ADP_DP_CS_8, 1); 2484 if (ret) 2485 return false; 2486 2487 return !!(val & ADP_DP_CS_8_DPME); 2488 } 2489 2490 /** 2491 * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for 2492 * bandwidth allocation mode 2493 * @port: DP IN adapter 2494 * @supported: Does the CM support bandwidth allocation mode 2495 * 2496 * Can be called to any DP IN adapter. Sets or clears the CM support bit 2497 * of the DP IN adapter. Returns %0 in success and negative errno 2498 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter 2499 * does not support this. 2500 */ 2501 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port, 2502 bool supported) 2503 { 2504 u32 val; 2505 int ret; 2506 2507 if (!is_usb4_dpin(port)) 2508 return -EOPNOTSUPP; 2509 2510 ret = tb_port_read(port, &val, TB_CFG_PORT, 2511 port->cap_adap + ADP_DP_CS_2, 1); 2512 if (ret) 2513 return ret; 2514 2515 if (supported) 2516 val |= ADP_DP_CS_2_CMMS; 2517 else 2518 val &= ~ADP_DP_CS_2_CMMS; 2519 2520 return tb_port_write(port, &val, TB_CFG_PORT, 2521 port->cap_adap + ADP_DP_CS_2, 1); 2522 } 2523 2524 /** 2525 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter 2526 * @port: DP IN adapter 2527 * 2528 * Reads bandwidth allocation Group ID from the DP IN adapter and 2529 * returns it. If the adapter does not support setting Group_ID 2530 * %-EOPNOTSUPP is returned. 2531 */ 2532 int usb4_dp_port_group_id(struct tb_port *port) 2533 { 2534 u32 val; 2535 int ret; 2536 2537 if (!is_usb4_dpin(port)) 2538 return -EOPNOTSUPP; 2539 2540 ret = tb_port_read(port, &val, TB_CFG_PORT, 2541 port->cap_adap + ADP_DP_CS_2, 1); 2542 if (ret) 2543 return ret; 2544 2545 return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT; 2546 } 2547 2548 /** 2549 * usb4_dp_port_set_group_id() - Set adapter Group ID 2550 * @port: DP IN adapter 2551 * @group_id: Group ID for the adapter 2552 * 2553 * Sets bandwidth allocation mode Group ID for the DP IN adapter. 2554 * Returns %0 in case of success and negative errno otherwise. 2555 * Specifically returns %-EOPNOTSUPP if the adapter does not support 2556 * this. 2557 */ 2558 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id) 2559 { 2560 u32 val; 2561 int ret; 2562 2563 if (!is_usb4_dpin(port)) 2564 return -EOPNOTSUPP; 2565 2566 ret = tb_port_read(port, &val, TB_CFG_PORT, 2567 port->cap_adap + ADP_DP_CS_2, 1); 2568 if (ret) 2569 return ret; 2570 2571 val &= ~ADP_DP_CS_2_GROUP_ID_MASK; 2572 val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT; 2573 2574 return tb_port_write(port, &val, TB_CFG_PORT, 2575 port->cap_adap + ADP_DP_CS_2, 1); 2576 } 2577 2578 /** 2579 * usb4_dp_port_nrd() - Read non-reduced rate and lanes 2580 * @port: DP IN adapter 2581 * @rate: Non-reduced rate in Mb/s is placed here 2582 * @lanes: Non-reduced lanes are placed here 2583 * 2584 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns 2585 * %0 in success and negative errno otherwise. Specifically returns 2586 * %-EOPNOTSUPP if the adapter does not support this. 2587 */ 2588 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes) 2589 { 2590 u32 val, tmp; 2591 int ret; 2592 2593 if (!is_usb4_dpin(port)) 2594 return -EOPNOTSUPP; 2595 2596 ret = tb_port_read(port, &val, TB_CFG_PORT, 2597 port->cap_adap + ADP_DP_CS_2, 1); 2598 if (ret) 2599 return ret; 2600 2601 tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT; 2602 switch (tmp) { 2603 case DP_COMMON_CAP_RATE_RBR: 2604 *rate = 1620; 2605 break; 2606 case DP_COMMON_CAP_RATE_HBR: 2607 *rate = 2700; 2608 break; 2609 case DP_COMMON_CAP_RATE_HBR2: 2610 *rate = 5400; 2611 break; 2612 case DP_COMMON_CAP_RATE_HBR3: 2613 *rate = 8100; 2614 break; 2615 } 2616 2617 tmp = val & ADP_DP_CS_2_NRD_MLC_MASK; 2618 switch (tmp) { 2619 case DP_COMMON_CAP_1_LANE: 2620 *lanes = 1; 2621 break; 2622 case DP_COMMON_CAP_2_LANES: 2623 *lanes = 2; 2624 break; 2625 case DP_COMMON_CAP_4_LANES: 2626 *lanes = 4; 2627 break; 2628 } 2629 2630 return 0; 2631 } 2632 2633 /** 2634 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes 2635 * @port: DP IN adapter 2636 * @rate: Non-reduced rate in Mb/s 2637 * @lanes: Non-reduced lanes 2638 * 2639 * Before the capabilities reduction this function can be used to set 2640 * the non-reduced values for the DP IN adapter. Returns %0 in success 2641 * and negative errno otherwise. If the adapter does not support this 2642 * %-EOPNOTSUPP is returned. 2643 */ 2644 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes) 2645 { 2646 u32 val; 2647 int ret; 2648 2649 if (!is_usb4_dpin(port)) 2650 return -EOPNOTSUPP; 2651 2652 ret = tb_port_read(port, &val, TB_CFG_PORT, 2653 port->cap_adap + ADP_DP_CS_2, 1); 2654 if (ret) 2655 return ret; 2656 2657 val &= ~ADP_DP_CS_2_NRD_MLR_MASK; 2658 2659 switch (rate) { 2660 case 1620: 2661 break; 2662 case 2700: 2663 val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT) 2664 & ADP_DP_CS_2_NRD_MLR_MASK; 2665 break; 2666 case 5400: 2667 val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT) 2668 & ADP_DP_CS_2_NRD_MLR_MASK; 2669 break; 2670 case 8100: 2671 val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT) 2672 & ADP_DP_CS_2_NRD_MLR_MASK; 2673 break; 2674 default: 2675 return -EINVAL; 2676 } 2677 2678 val &= ~ADP_DP_CS_2_NRD_MLC_MASK; 2679 2680 switch (lanes) { 2681 case 1: 2682 break; 2683 case 2: 2684 val |= DP_COMMON_CAP_2_LANES; 2685 break; 2686 case 4: 2687 val |= DP_COMMON_CAP_4_LANES; 2688 break; 2689 default: 2690 return -EINVAL; 2691 } 2692 2693 return tb_port_write(port, &val, TB_CFG_PORT, 2694 port->cap_adap + ADP_DP_CS_2, 1); 2695 } 2696 2697 /** 2698 * usb4_dp_port_granularity() - Return granularity for the bandwidth values 2699 * @port: DP IN adapter 2700 * 2701 * Reads the programmed granularity from @port. If the DP IN adapter does 2702 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative 2703 * errno in other error cases. 2704 */ 2705 int usb4_dp_port_granularity(struct tb_port *port) 2706 { 2707 u32 val; 2708 int ret; 2709 2710 if (!is_usb4_dpin(port)) 2711 return -EOPNOTSUPP; 2712 2713 ret = tb_port_read(port, &val, TB_CFG_PORT, 2714 port->cap_adap + ADP_DP_CS_2, 1); 2715 if (ret) 2716 return ret; 2717 2718 val &= ADP_DP_CS_2_GR_MASK; 2719 val >>= ADP_DP_CS_2_GR_SHIFT; 2720 2721 switch (val) { 2722 case ADP_DP_CS_2_GR_0_25G: 2723 return 250; 2724 case ADP_DP_CS_2_GR_0_5G: 2725 return 500; 2726 case ADP_DP_CS_2_GR_1G: 2727 return 1000; 2728 } 2729 2730 return -EINVAL; 2731 } 2732 2733 /** 2734 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values 2735 * @port: DP IN adapter 2736 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250. 2737 * 2738 * Sets the granularity used with the estimated, allocated and requested 2739 * bandwidth. Returns %0 in success and negative errno otherwise. If the 2740 * adapter does not support this %-EOPNOTSUPP is returned. 2741 */ 2742 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity) 2743 { 2744 u32 val; 2745 int ret; 2746 2747 if (!is_usb4_dpin(port)) 2748 return -EOPNOTSUPP; 2749 2750 ret = tb_port_read(port, &val, TB_CFG_PORT, 2751 port->cap_adap + ADP_DP_CS_2, 1); 2752 if (ret) 2753 return ret; 2754 2755 val &= ~ADP_DP_CS_2_GR_MASK; 2756 2757 switch (granularity) { 2758 case 250: 2759 val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT; 2760 break; 2761 case 500: 2762 val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT; 2763 break; 2764 case 1000: 2765 val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT; 2766 break; 2767 default: 2768 return -EINVAL; 2769 } 2770 2771 return tb_port_write(port, &val, TB_CFG_PORT, 2772 port->cap_adap + ADP_DP_CS_2, 1); 2773 } 2774 2775 /** 2776 * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth 2777 * @port: DP IN adapter 2778 * @bw: Estimated bandwidth in Mb/s. 2779 * 2780 * Sets the estimated bandwidth to @bw. Set the granularity by calling 2781 * usb4_dp_port_set_granularity() before calling this. The @bw is round 2782 * down to the closest granularity multiplier. Returns %0 in success 2783 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if 2784 * the adapter does not support this. 2785 */ 2786 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw) 2787 { 2788 u32 val, granularity; 2789 int ret; 2790 2791 if (!is_usb4_dpin(port)) 2792 return -EOPNOTSUPP; 2793 2794 ret = usb4_dp_port_granularity(port); 2795 if (ret < 0) 2796 return ret; 2797 granularity = ret; 2798 2799 ret = tb_port_read(port, &val, TB_CFG_PORT, 2800 port->cap_adap + ADP_DP_CS_2, 1); 2801 if (ret) 2802 return ret; 2803 2804 val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK; 2805 val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT; 2806 2807 return tb_port_write(port, &val, TB_CFG_PORT, 2808 port->cap_adap + ADP_DP_CS_2, 1); 2809 } 2810 2811 /** 2812 * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth 2813 * @port: DP IN adapter 2814 * 2815 * Reads and returns allocated bandwidth for @port in Mb/s (taking into 2816 * account the programmed granularity). Returns negative errno in case 2817 * of error. 2818 */ 2819 int usb4_dp_port_allocated_bandwidth(struct tb_port *port) 2820 { 2821 u32 val, granularity; 2822 int ret; 2823 2824 if (!is_usb4_dpin(port)) 2825 return -EOPNOTSUPP; 2826 2827 ret = usb4_dp_port_granularity(port); 2828 if (ret < 0) 2829 return ret; 2830 granularity = ret; 2831 2832 ret = tb_port_read(port, &val, TB_CFG_PORT, 2833 port->cap_adap + DP_STATUS, 1); 2834 if (ret) 2835 return ret; 2836 2837 val &= DP_STATUS_ALLOCATED_BW_MASK; 2838 val >>= DP_STATUS_ALLOCATED_BW_SHIFT; 2839 2840 return val * granularity; 2841 } 2842 2843 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack) 2844 { 2845 u32 val; 2846 int ret; 2847 2848 ret = tb_port_read(port, &val, TB_CFG_PORT, 2849 port->cap_adap + ADP_DP_CS_2, 1); 2850 if (ret) 2851 return ret; 2852 2853 if (ack) 2854 val |= ADP_DP_CS_2_CA; 2855 else 2856 val &= ~ADP_DP_CS_2_CA; 2857 2858 return tb_port_write(port, &val, TB_CFG_PORT, 2859 port->cap_adap + ADP_DP_CS_2, 1); 2860 } 2861 2862 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port) 2863 { 2864 return __usb4_dp_port_set_cm_ack(port, true); 2865 } 2866 2867 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port, 2868 int timeout_msec) 2869 { 2870 ktime_t end; 2871 u32 val; 2872 int ret; 2873 2874 ret = __usb4_dp_port_set_cm_ack(port, false); 2875 if (ret) 2876 return ret; 2877 2878 end = ktime_add_ms(ktime_get(), timeout_msec); 2879 do { 2880 ret = tb_port_read(port, &val, TB_CFG_PORT, 2881 port->cap_adap + ADP_DP_CS_8, 1); 2882 if (ret) 2883 return ret; 2884 2885 if (!(val & ADP_DP_CS_8_DR)) 2886 break; 2887 2888 usleep_range(50, 100); 2889 } while (ktime_before(ktime_get(), end)); 2890 2891 if (val & ADP_DP_CS_8_DR) { 2892 tb_port_warn(port, "timeout waiting for DPTX request to clear\n"); 2893 return -ETIMEDOUT; 2894 } 2895 2896 ret = tb_port_read(port, &val, TB_CFG_PORT, 2897 port->cap_adap + ADP_DP_CS_2, 1); 2898 if (ret) 2899 return ret; 2900 2901 val &= ~ADP_DP_CS_2_CA; 2902 return tb_port_write(port, &val, TB_CFG_PORT, 2903 port->cap_adap + ADP_DP_CS_2, 1); 2904 } 2905 2906 /** 2907 * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth 2908 * @port: DP IN adapter 2909 * @bw: New allocated bandwidth in Mb/s 2910 * 2911 * Communicates the new allocated bandwidth with the DPCD (graphics 2912 * driver). Takes into account the programmed granularity. Returns %0 in 2913 * success and negative errno in case of error. 2914 */ 2915 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw) 2916 { 2917 u32 val, granularity; 2918 int ret; 2919 2920 if (!is_usb4_dpin(port)) 2921 return -EOPNOTSUPP; 2922 2923 ret = usb4_dp_port_granularity(port); 2924 if (ret < 0) 2925 return ret; 2926 granularity = ret; 2927 2928 ret = tb_port_read(port, &val, TB_CFG_PORT, 2929 port->cap_adap + DP_STATUS, 1); 2930 if (ret) 2931 return ret; 2932 2933 val &= ~DP_STATUS_ALLOCATED_BW_MASK; 2934 val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT; 2935 2936 ret = tb_port_write(port, &val, TB_CFG_PORT, 2937 port->cap_adap + DP_STATUS, 1); 2938 if (ret) 2939 return ret; 2940 2941 ret = usb4_dp_port_set_cm_ack(port); 2942 if (ret) 2943 return ret; 2944 2945 return usb4_dp_port_wait_and_clear_cm_ack(port, 500); 2946 } 2947 2948 /** 2949 * usb4_dp_port_requested_bandwidth() - Read requested bandwidth 2950 * @port: DP IN adapter 2951 * 2952 * Reads the DPCD (graphics driver) requested bandwidth and returns it 2953 * in Mb/s. Takes the programmed granularity into account. In case of 2954 * error returns negative errno. Specifically returns %-EOPNOTSUPP if 2955 * the adapter does not support bandwidth allocation mode, and %ENODATA 2956 * if there is no active bandwidth request from the graphics driver. 2957 */ 2958 int usb4_dp_port_requested_bandwidth(struct tb_port *port) 2959 { 2960 u32 val, granularity; 2961 int ret; 2962 2963 if (!is_usb4_dpin(port)) 2964 return -EOPNOTSUPP; 2965 2966 ret = usb4_dp_port_granularity(port); 2967 if (ret < 0) 2968 return ret; 2969 granularity = ret; 2970 2971 ret = tb_port_read(port, &val, TB_CFG_PORT, 2972 port->cap_adap + ADP_DP_CS_8, 1); 2973 if (ret) 2974 return ret; 2975 2976 if (!(val & ADP_DP_CS_8_DR)) 2977 return -ENODATA; 2978 2979 return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity; 2980 } 2981 2982 /** 2983 * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation 2984 * @port: PCIe adapter 2985 * @enable: Enable/disable extended encapsulation 2986 * 2987 * Enables or disables extended encapsulation used in PCIe tunneling. Caller 2988 * needs to make sure both adapters support this before enabling. Returns %0 on 2989 * success and negative errno otherwise. 2990 */ 2991 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable) 2992 { 2993 u32 val; 2994 int ret; 2995 2996 if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port)) 2997 return -EINVAL; 2998 2999 ret = tb_port_read(port, &val, TB_CFG_PORT, 3000 port->cap_adap + ADP_PCIE_CS_1, 1); 3001 if (ret) 3002 return ret; 3003 3004 if (enable) 3005 val |= ADP_PCIE_CS_1_EE; 3006 else 3007 val &= ~ADP_PCIE_CS_1_EE; 3008 3009 return tb_port_write(port, &val, TB_CFG_PORT, 3010 port->cap_adap + ADP_PCIE_CS_1, 1); 3011 } 3012