xref: /linux/drivers/thunderbolt/usb4.c (revision 9f7861c56b51b84d30114e7fea9d744a9d5ba9b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/units.h>
13 
14 #include "sb_regs.h"
15 #include "tb.h"
16 
17 #define USB4_DATA_RETRIES		3
18 #define USB4_DATA_DWORDS		16
19 
20 enum usb4_sb_target {
21 	USB4_SB_TARGET_ROUTER,
22 	USB4_SB_TARGET_PARTNER,
23 	USB4_SB_TARGET_RETIMER,
24 };
25 
26 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
27 #define USB4_NVM_READ_OFFSET_SHIFT	2
28 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
29 #define USB4_NVM_READ_LENGTH_SHIFT	24
30 
31 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
32 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
33 
34 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
35 #define USB4_DROM_ADDRESS_SHIFT		2
36 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
37 #define USB4_DROM_SIZE_SHIFT		15
38 
39 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
40 
41 #define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
42 #define USB4_BA_INDEX_MASK		GENMASK(15, 0)
43 
44 enum usb4_ba_index {
45 	USB4_BA_MAX_USB3 = 0x1,
46 	USB4_BA_MIN_DP_AUX = 0x2,
47 	USB4_BA_MIN_DP_MAIN = 0x3,
48 	USB4_BA_MAX_PCIE = 0x4,
49 	USB4_BA_MAX_HI = 0x5,
50 };
51 
52 #define USB4_BA_VALUE_MASK		GENMASK(31, 16)
53 #define USB4_BA_VALUE_SHIFT		16
54 
55 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
56 				 u32 *metadata, u8 *status,
57 				 const void *tx_data, size_t tx_dwords,
58 				 void *rx_data, size_t rx_dwords)
59 {
60 	u32 val;
61 	int ret;
62 
63 	if (metadata) {
64 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
65 		if (ret)
66 			return ret;
67 	}
68 	if (tx_dwords) {
69 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
70 				  tx_dwords);
71 		if (ret)
72 			return ret;
73 	}
74 
75 	val = opcode | ROUTER_CS_26_OV;
76 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
77 	if (ret)
78 		return ret;
79 
80 	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
81 	if (ret)
82 		return ret;
83 
84 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
85 	if (ret)
86 		return ret;
87 
88 	if (val & ROUTER_CS_26_ONS)
89 		return -EOPNOTSUPP;
90 
91 	if (status)
92 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
93 			ROUTER_CS_26_STATUS_SHIFT;
94 
95 	if (metadata) {
96 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
97 		if (ret)
98 			return ret;
99 	}
100 	if (rx_dwords) {
101 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
102 				 rx_dwords);
103 		if (ret)
104 			return ret;
105 	}
106 
107 	return 0;
108 }
109 
110 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
111 			    u8 *status, const void *tx_data, size_t tx_dwords,
112 			    void *rx_data, size_t rx_dwords)
113 {
114 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
115 
116 	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
117 		return -EINVAL;
118 
119 	/*
120 	 * If the connection manager implementation provides USB4 router
121 	 * operation proxy callback, call it here instead of running the
122 	 * operation natively.
123 	 */
124 	if (cm_ops->usb4_switch_op) {
125 		int ret;
126 
127 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
128 					     tx_data, tx_dwords, rx_data,
129 					     rx_dwords);
130 		if (ret != -EOPNOTSUPP)
131 			return ret;
132 
133 		/*
134 		 * If the proxy was not supported then run the native
135 		 * router operation instead.
136 		 */
137 	}
138 
139 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
140 				     tx_dwords, rx_data, rx_dwords);
141 }
142 
143 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
144 				 u32 *metadata, u8 *status)
145 {
146 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
147 }
148 
149 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
150 				      u32 *metadata, u8 *status,
151 				      const void *tx_data, size_t tx_dwords,
152 				      void *rx_data, size_t rx_dwords)
153 {
154 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
155 				tx_dwords, rx_data, rx_dwords);
156 }
157 
158 static void usb4_switch_check_wakes(struct tb_switch *sw)
159 {
160 	bool wakeup_usb4 = false;
161 	struct usb4_port *usb4;
162 	struct tb_port *port;
163 	bool wakeup = false;
164 	u32 val;
165 
166 	if (!device_may_wakeup(&sw->dev))
167 		return;
168 
169 	if (tb_route(sw)) {
170 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
171 			return;
172 
173 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
174 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
175 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
176 
177 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
178 	}
179 
180 	/*
181 	 * Check for any downstream ports for USB4 wake,
182 	 * connection wake and disconnection wake.
183 	 */
184 	tb_switch_for_each_port(sw, port) {
185 		if (!port->cap_usb4)
186 			continue;
187 
188 		if (tb_port_read(port, &val, TB_CFG_PORT,
189 				 port->cap_usb4 + PORT_CS_18, 1))
190 			break;
191 
192 		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
193 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
194 			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
195 			    (val & PORT_CS_18_WODS) ? "yes" : "no");
196 
197 		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
198 				     PORT_CS_18_WODS);
199 
200 		usb4 = port->usb4;
201 		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
202 			pm_wakeup_event(&usb4->dev, 0);
203 
204 		wakeup |= wakeup_usb4;
205 	}
206 
207 	if (wakeup)
208 		pm_wakeup_event(&sw->dev, 0);
209 }
210 
211 static bool link_is_usb4(struct tb_port *port)
212 {
213 	u32 val;
214 
215 	if (!port->cap_usb4)
216 		return false;
217 
218 	if (tb_port_read(port, &val, TB_CFG_PORT,
219 			 port->cap_usb4 + PORT_CS_18, 1))
220 		return false;
221 
222 	return !(val & PORT_CS_18_TCM);
223 }
224 
225 /**
226  * usb4_switch_setup() - Additional setup for USB4 device
227  * @sw: USB4 router to setup
228  *
229  * USB4 routers need additional settings in order to enable all the
230  * tunneling. This function enables USB and PCIe tunneling if it can be
231  * enabled (e.g the parent switch also supports them). If USB tunneling
232  * is not available for some reason (like that there is Thunderbolt 3
233  * switch upstream) then the internal xHCI controller is enabled
234  * instead.
235  *
236  * This does not set the configuration valid bit of the router. To do
237  * that call usb4_switch_configuration_valid().
238  */
239 int usb4_switch_setup(struct tb_switch *sw)
240 {
241 	struct tb_switch *parent = tb_switch_parent(sw);
242 	struct tb_port *down;
243 	bool tbt3, xhci;
244 	u32 val = 0;
245 	int ret;
246 
247 	usb4_switch_check_wakes(sw);
248 
249 	if (!tb_route(sw))
250 		return 0;
251 
252 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
253 	if (ret)
254 		return ret;
255 
256 	down = tb_switch_downstream_port(sw);
257 	sw->link_usb4 = link_is_usb4(down);
258 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
259 
260 	xhci = val & ROUTER_CS_6_HCI;
261 	tbt3 = !(val & ROUTER_CS_6_TNS);
262 
263 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
264 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
265 
266 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
267 	if (ret)
268 		return ret;
269 
270 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
271 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
272 		val |= ROUTER_CS_5_UTO;
273 		xhci = false;
274 	}
275 
276 	/*
277 	 * Only enable PCIe tunneling if the parent router supports it
278 	 * and it is not disabled.
279 	 */
280 	if (tb_acpi_may_tunnel_pcie() &&
281 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
282 		val |= ROUTER_CS_5_PTO;
283 		/*
284 		 * xHCI can be enabled if PCIe tunneling is supported
285 		 * and the parent does not have any USB3 dowstream
286 		 * adapters (so we cannot do USB 3.x tunneling).
287 		 */
288 		if (xhci)
289 			val |= ROUTER_CS_5_HCO;
290 	}
291 
292 	/* TBT3 supported by the CM */
293 	val |= ROUTER_CS_5_C3S;
294 
295 	return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
296 }
297 
298 /**
299  * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
300  * @sw: USB4 router
301  *
302  * Sets configuration valid bit for the router. Must be called before
303  * any tunnels can be set through the router and after
304  * usb4_switch_setup() has been called. Can be called to host and device
305  * routers (does nothing for the latter).
306  *
307  * Returns %0 in success and negative errno otherwise.
308  */
309 int usb4_switch_configuration_valid(struct tb_switch *sw)
310 {
311 	u32 val;
312 	int ret;
313 
314 	if (!tb_route(sw))
315 		return 0;
316 
317 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
318 	if (ret)
319 		return ret;
320 
321 	val |= ROUTER_CS_5_CV;
322 
323 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
324 	if (ret)
325 		return ret;
326 
327 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
328 				      ROUTER_CS_6_CR, 50);
329 }
330 
331 /**
332  * usb4_switch_read_uid() - Read UID from USB4 router
333  * @sw: USB4 router
334  * @uid: UID is stored here
335  *
336  * Reads 64-bit UID from USB4 router config space.
337  */
338 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
339 {
340 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
341 }
342 
343 static int usb4_switch_drom_read_block(void *data,
344 				       unsigned int dwaddress, void *buf,
345 				       size_t dwords)
346 {
347 	struct tb_switch *sw = data;
348 	u8 status = 0;
349 	u32 metadata;
350 	int ret;
351 
352 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
353 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
354 		USB4_DROM_ADDRESS_MASK;
355 
356 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
357 				  &status, NULL, 0, buf, dwords);
358 	if (ret)
359 		return ret;
360 
361 	return status ? -EIO : 0;
362 }
363 
364 /**
365  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
366  * @sw: USB4 router
367  * @address: Byte address inside DROM to start reading
368  * @buf: Buffer where the DROM content is stored
369  * @size: Number of bytes to read from DROM
370  *
371  * Uses USB4 router operations to read router DROM. For devices this
372  * should always work but for hosts it may return %-EOPNOTSUPP in which
373  * case the host router does not have DROM.
374  */
375 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
376 			  size_t size)
377 {
378 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
379 				usb4_switch_drom_read_block, sw);
380 }
381 
382 /**
383  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
384  * @sw: USB4 router
385  *
386  * Checks whether conditions are met so that lane bonding can be
387  * established with the upstream router. Call only for device routers.
388  */
389 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
390 {
391 	struct tb_port *up;
392 	int ret;
393 	u32 val;
394 
395 	up = tb_upstream_port(sw);
396 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
397 	if (ret)
398 		return false;
399 
400 	return !!(val & PORT_CS_18_BE);
401 }
402 
403 /**
404  * usb4_switch_set_wake() - Enabled/disable wake
405  * @sw: USB4 router
406  * @flags: Wakeup flags (%0 to disable)
407  *
408  * Enables/disables router to wake up from sleep.
409  */
410 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
411 {
412 	struct usb4_port *usb4;
413 	struct tb_port *port;
414 	u64 route = tb_route(sw);
415 	u32 val;
416 	int ret;
417 
418 	/*
419 	 * Enable wakes coming from all USB4 downstream ports (from
420 	 * child routers). For device routers do this also for the
421 	 * upstream USB4 port.
422 	 */
423 	tb_switch_for_each_port(sw, port) {
424 		if (!tb_port_is_null(port))
425 			continue;
426 		if (!route && tb_is_upstream_port(port))
427 			continue;
428 		if (!port->cap_usb4)
429 			continue;
430 
431 		ret = tb_port_read(port, &val, TB_CFG_PORT,
432 				   port->cap_usb4 + PORT_CS_19, 1);
433 		if (ret)
434 			return ret;
435 
436 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
437 
438 		if (tb_is_upstream_port(port)) {
439 			val |= PORT_CS_19_WOU4;
440 		} else {
441 			bool configured = val & PORT_CS_19_PC;
442 			usb4 = port->usb4;
443 
444 			if (((flags & TB_WAKE_ON_CONNECT) |
445 			      device_may_wakeup(&usb4->dev)) && !configured)
446 				val |= PORT_CS_19_WOC;
447 			if (((flags & TB_WAKE_ON_DISCONNECT) |
448 			      device_may_wakeup(&usb4->dev)) && configured)
449 				val |= PORT_CS_19_WOD;
450 			if ((flags & TB_WAKE_ON_USB4) && configured)
451 				val |= PORT_CS_19_WOU4;
452 		}
453 
454 		ret = tb_port_write(port, &val, TB_CFG_PORT,
455 				    port->cap_usb4 + PORT_CS_19, 1);
456 		if (ret)
457 			return ret;
458 	}
459 
460 	/*
461 	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
462 	 * needed for device routers.
463 	 */
464 	if (route) {
465 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
466 		if (ret)
467 			return ret;
468 
469 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
470 		if (flags & TB_WAKE_ON_USB3)
471 			val |= ROUTER_CS_5_WOU;
472 		if (flags & TB_WAKE_ON_PCIE)
473 			val |= ROUTER_CS_5_WOP;
474 		if (flags & TB_WAKE_ON_DP)
475 			val |= ROUTER_CS_5_WOD;
476 
477 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
478 		if (ret)
479 			return ret;
480 	}
481 
482 	return 0;
483 }
484 
485 /**
486  * usb4_switch_set_sleep() - Prepare the router to enter sleep
487  * @sw: USB4 router
488  *
489  * Sets sleep bit for the router. Returns when the router sleep ready
490  * bit has been asserted.
491  */
492 int usb4_switch_set_sleep(struct tb_switch *sw)
493 {
494 	int ret;
495 	u32 val;
496 
497 	/* Set sleep bit and wait for sleep ready to be asserted */
498 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
499 	if (ret)
500 		return ret;
501 
502 	val |= ROUTER_CS_5_SLP;
503 
504 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
505 	if (ret)
506 		return ret;
507 
508 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
509 				      ROUTER_CS_6_SLPR, 500);
510 }
511 
512 /**
513  * usb4_switch_nvm_sector_size() - Return router NVM sector size
514  * @sw: USB4 router
515  *
516  * If the router supports NVM operations this function returns the NVM
517  * sector size in bytes. If NVM operations are not supported returns
518  * %-EOPNOTSUPP.
519  */
520 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
521 {
522 	u32 metadata;
523 	u8 status;
524 	int ret;
525 
526 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
527 			     &status);
528 	if (ret)
529 		return ret;
530 
531 	if (status)
532 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
533 
534 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
535 }
536 
537 static int usb4_switch_nvm_read_block(void *data,
538 	unsigned int dwaddress, void *buf, size_t dwords)
539 {
540 	struct tb_switch *sw = data;
541 	u8 status = 0;
542 	u32 metadata;
543 	int ret;
544 
545 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
546 		   USB4_NVM_READ_LENGTH_MASK;
547 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
548 		   USB4_NVM_READ_OFFSET_MASK;
549 
550 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
551 				  &status, NULL, 0, buf, dwords);
552 	if (ret)
553 		return ret;
554 
555 	return status ? -EIO : 0;
556 }
557 
558 /**
559  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
560  * @sw: USB4 router
561  * @address: Starting address in bytes
562  * @buf: Read data is placed here
563  * @size: How many bytes to read
564  *
565  * Reads NVM contents of the router. If NVM is not supported returns
566  * %-EOPNOTSUPP.
567  */
568 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
569 			 size_t size)
570 {
571 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
572 				usb4_switch_nvm_read_block, sw);
573 }
574 
575 /**
576  * usb4_switch_nvm_set_offset() - Set NVM write offset
577  * @sw: USB4 router
578  * @address: Start offset
579  *
580  * Explicitly sets NVM write offset. Normally when writing to NVM this
581  * is done automatically by usb4_switch_nvm_write().
582  *
583  * Returns %0 in success and negative errno if there was a failure.
584  */
585 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
586 {
587 	u32 metadata, dwaddress;
588 	u8 status = 0;
589 	int ret;
590 
591 	dwaddress = address / 4;
592 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
593 		   USB4_NVM_SET_OFFSET_MASK;
594 
595 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
596 			     &status);
597 	if (ret)
598 		return ret;
599 
600 	return status ? -EIO : 0;
601 }
602 
603 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
604 					    const void *buf, size_t dwords)
605 {
606 	struct tb_switch *sw = data;
607 	u8 status;
608 	int ret;
609 
610 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
611 				  buf, dwords, NULL, 0);
612 	if (ret)
613 		return ret;
614 
615 	return status ? -EIO : 0;
616 }
617 
618 /**
619  * usb4_switch_nvm_write() - Write to the router NVM
620  * @sw: USB4 router
621  * @address: Start address where to write in bytes
622  * @buf: Pointer to the data to write
623  * @size: Size of @buf in bytes
624  *
625  * Writes @buf to the router NVM using USB4 router operations. If NVM
626  * write is not supported returns %-EOPNOTSUPP.
627  */
628 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
629 			  const void *buf, size_t size)
630 {
631 	int ret;
632 
633 	ret = usb4_switch_nvm_set_offset(sw, address);
634 	if (ret)
635 		return ret;
636 
637 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
638 				 usb4_switch_nvm_write_next_block, sw);
639 }
640 
641 /**
642  * usb4_switch_nvm_authenticate() - Authenticate new NVM
643  * @sw: USB4 router
644  *
645  * After the new NVM has been written via usb4_switch_nvm_write(), this
646  * function triggers NVM authentication process. The router gets power
647  * cycled and if the authentication is successful the new NVM starts
648  * running. In case of failure returns negative errno.
649  *
650  * The caller should call usb4_switch_nvm_authenticate_status() to read
651  * the status of the authentication after power cycle. It should be the
652  * first router operation to avoid the status being lost.
653  */
654 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
655 {
656 	int ret;
657 
658 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
659 	switch (ret) {
660 	/*
661 	 * The router is power cycled once NVM_AUTH is started so it is
662 	 * expected to get any of the following errors back.
663 	 */
664 	case -EACCES:
665 	case -ENOTCONN:
666 	case -ETIMEDOUT:
667 		return 0;
668 
669 	default:
670 		return ret;
671 	}
672 }
673 
674 /**
675  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
676  * @sw: USB4 router
677  * @status: Status code of the operation
678  *
679  * The function checks if there is status available from the last NVM
680  * authenticate router operation. If there is status then %0 is returned
681  * and the status code is placed in @status. Returns negative errno in case
682  * of failure.
683  *
684  * Must be called before any other router operation.
685  */
686 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
687 {
688 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
689 	u16 opcode;
690 	u32 val;
691 	int ret;
692 
693 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
694 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
695 		if (ret != -EOPNOTSUPP)
696 			return ret;
697 	}
698 
699 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
700 	if (ret)
701 		return ret;
702 
703 	/* Check that the opcode is correct */
704 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
705 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
706 		if (val & ROUTER_CS_26_OV)
707 			return -EBUSY;
708 		if (val & ROUTER_CS_26_ONS)
709 			return -EOPNOTSUPP;
710 
711 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
712 			ROUTER_CS_26_STATUS_SHIFT;
713 	} else {
714 		*status = 0;
715 	}
716 
717 	return 0;
718 }
719 
720 /**
721  * usb4_switch_credits_init() - Read buffer allocation parameters
722  * @sw: USB4 router
723  *
724  * Reads @sw buffer allocation parameters and initializes @sw buffer
725  * allocation fields accordingly. Specifically @sw->credits_allocation
726  * is set to %true if these parameters can be used in tunneling.
727  *
728  * Returns %0 on success and negative errno otherwise.
729  */
730 int usb4_switch_credits_init(struct tb_switch *sw)
731 {
732 	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
733 	int ret, length, i, nports;
734 	const struct tb_port *port;
735 	u32 data[USB4_DATA_DWORDS];
736 	u32 metadata = 0;
737 	u8 status = 0;
738 
739 	memset(data, 0, sizeof(data));
740 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
741 				  &status, NULL, 0, data, ARRAY_SIZE(data));
742 	if (ret)
743 		return ret;
744 	if (status)
745 		return -EIO;
746 
747 	length = metadata & USB4_BA_LENGTH_MASK;
748 	if (WARN_ON(length > ARRAY_SIZE(data)))
749 		return -EMSGSIZE;
750 
751 	max_usb3 = -1;
752 	min_dp_aux = -1;
753 	min_dp_main = -1;
754 	max_pcie = -1;
755 	max_dma = -1;
756 
757 	tb_sw_dbg(sw, "credit allocation parameters:\n");
758 
759 	for (i = 0; i < length; i++) {
760 		u16 index, value;
761 
762 		index = data[i] & USB4_BA_INDEX_MASK;
763 		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
764 
765 		switch (index) {
766 		case USB4_BA_MAX_USB3:
767 			tb_sw_dbg(sw, " USB3: %u\n", value);
768 			max_usb3 = value;
769 			break;
770 		case USB4_BA_MIN_DP_AUX:
771 			tb_sw_dbg(sw, " DP AUX: %u\n", value);
772 			min_dp_aux = value;
773 			break;
774 		case USB4_BA_MIN_DP_MAIN:
775 			tb_sw_dbg(sw, " DP main: %u\n", value);
776 			min_dp_main = value;
777 			break;
778 		case USB4_BA_MAX_PCIE:
779 			tb_sw_dbg(sw, " PCIe: %u\n", value);
780 			max_pcie = value;
781 			break;
782 		case USB4_BA_MAX_HI:
783 			tb_sw_dbg(sw, " DMA: %u\n", value);
784 			max_dma = value;
785 			break;
786 		default:
787 			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
788 				  index);
789 			break;
790 		}
791 	}
792 
793 	/*
794 	 * Validate the buffer allocation preferences. If we find
795 	 * issues, log a warning and fall back using the hard-coded
796 	 * values.
797 	 */
798 
799 	/* Host router must report baMaxHI */
800 	if (!tb_route(sw) && max_dma < 0) {
801 		tb_sw_warn(sw, "host router is missing baMaxHI\n");
802 		goto err_invalid;
803 	}
804 
805 	nports = 0;
806 	tb_switch_for_each_port(sw, port) {
807 		if (tb_port_is_null(port))
808 			nports++;
809 	}
810 
811 	/* Must have DP buffer allocation (multiple USB4 ports) */
812 	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
813 		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
814 		goto err_invalid;
815 	}
816 
817 	tb_switch_for_each_port(sw, port) {
818 		if (tb_port_is_dpout(port) && min_dp_main < 0) {
819 			tb_sw_warn(sw, "missing baMinDPmain");
820 			goto err_invalid;
821 		}
822 		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
823 		    min_dp_aux < 0) {
824 			tb_sw_warn(sw, "missing baMinDPaux");
825 			goto err_invalid;
826 		}
827 		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
828 		    max_usb3 < 0) {
829 			tb_sw_warn(sw, "missing baMaxUSB3");
830 			goto err_invalid;
831 		}
832 		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
833 		    max_pcie < 0) {
834 			tb_sw_warn(sw, "missing baMaxPCIe");
835 			goto err_invalid;
836 		}
837 	}
838 
839 	/*
840 	 * Buffer allocation passed the validation so we can use it in
841 	 * path creation.
842 	 */
843 	sw->credit_allocation = true;
844 	if (max_usb3 > 0)
845 		sw->max_usb3_credits = max_usb3;
846 	if (min_dp_aux > 0)
847 		sw->min_dp_aux_credits = min_dp_aux;
848 	if (min_dp_main > 0)
849 		sw->min_dp_main_credits = min_dp_main;
850 	if (max_pcie > 0)
851 		sw->max_pcie_credits = max_pcie;
852 	if (max_dma > 0)
853 		sw->max_dma_credits = max_dma;
854 
855 	return 0;
856 
857 err_invalid:
858 	return -EINVAL;
859 }
860 
861 /**
862  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
863  * @sw: USB4 router
864  * @in: DP IN adapter
865  *
866  * For DP tunneling this function can be used to query availability of
867  * DP IN resource. Returns true if the resource is available for DP
868  * tunneling, false otherwise.
869  */
870 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
871 {
872 	u32 metadata = in->port;
873 	u8 status;
874 	int ret;
875 
876 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
877 			     &status);
878 	/*
879 	 * If DP resource allocation is not supported assume it is
880 	 * always available.
881 	 */
882 	if (ret == -EOPNOTSUPP)
883 		return true;
884 	if (ret)
885 		return false;
886 
887 	return !status;
888 }
889 
890 /**
891  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
892  * @sw: USB4 router
893  * @in: DP IN adapter
894  *
895  * Allocates DP IN resource for DP tunneling using USB4 router
896  * operations. If the resource was allocated returns %0. Otherwise
897  * returns negative errno, in particular %-EBUSY if the resource is
898  * already allocated.
899  */
900 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
901 {
902 	u32 metadata = in->port;
903 	u8 status;
904 	int ret;
905 
906 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
907 			     &status);
908 	if (ret == -EOPNOTSUPP)
909 		return 0;
910 	if (ret)
911 		return ret;
912 
913 	return status ? -EBUSY : 0;
914 }
915 
916 /**
917  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
918  * @sw: USB4 router
919  * @in: DP IN adapter
920  *
921  * Releases the previously allocated DP IN resource.
922  */
923 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
924 {
925 	u32 metadata = in->port;
926 	u8 status;
927 	int ret;
928 
929 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
930 			     &status);
931 	if (ret == -EOPNOTSUPP)
932 		return 0;
933 	if (ret)
934 		return ret;
935 
936 	return status ? -EIO : 0;
937 }
938 
939 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
940 {
941 	struct tb_port *p;
942 	int usb4_idx = 0;
943 
944 	/* Assume port is primary */
945 	tb_switch_for_each_port(sw, p) {
946 		if (!tb_port_is_null(p))
947 			continue;
948 		if (tb_is_upstream_port(p))
949 			continue;
950 		if (!p->link_nr) {
951 			if (p == port)
952 				break;
953 			usb4_idx++;
954 		}
955 	}
956 
957 	return usb4_idx;
958 }
959 
960 /**
961  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
962  * @sw: USB4 router
963  * @port: USB4 port
964  *
965  * USB4 routers have direct mapping between USB4 ports and PCIe
966  * downstream adapters where the PCIe topology is extended. This
967  * function returns the corresponding downstream PCIe adapter or %NULL
968  * if no such mapping was possible.
969  */
970 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
971 					  const struct tb_port *port)
972 {
973 	int usb4_idx = usb4_port_idx(sw, port);
974 	struct tb_port *p;
975 	int pcie_idx = 0;
976 
977 	/* Find PCIe down port matching usb4_port */
978 	tb_switch_for_each_port(sw, p) {
979 		if (!tb_port_is_pcie_down(p))
980 			continue;
981 
982 		if (pcie_idx == usb4_idx)
983 			return p;
984 
985 		pcie_idx++;
986 	}
987 
988 	return NULL;
989 }
990 
991 /**
992  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
993  * @sw: USB4 router
994  * @port: USB4 port
995  *
996  * USB4 routers have direct mapping between USB4 ports and USB 3.x
997  * downstream adapters where the USB 3.x topology is extended. This
998  * function returns the corresponding downstream USB 3.x adapter or
999  * %NULL if no such mapping was possible.
1000  */
1001 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1002 					  const struct tb_port *port)
1003 {
1004 	int usb4_idx = usb4_port_idx(sw, port);
1005 	struct tb_port *p;
1006 	int usb_idx = 0;
1007 
1008 	/* Find USB3 down port matching usb4_port */
1009 	tb_switch_for_each_port(sw, p) {
1010 		if (!tb_port_is_usb3_down(p))
1011 			continue;
1012 
1013 		if (usb_idx == usb4_idx)
1014 			return p;
1015 
1016 		usb_idx++;
1017 	}
1018 
1019 	return NULL;
1020 }
1021 
1022 /**
1023  * usb4_switch_add_ports() - Add USB4 ports for this router
1024  * @sw: USB4 router
1025  *
1026  * For USB4 router finds all USB4 ports and registers devices for each.
1027  * Can be called to any router.
1028  *
1029  * Return %0 in case of success and negative errno in case of failure.
1030  */
1031 int usb4_switch_add_ports(struct tb_switch *sw)
1032 {
1033 	struct tb_port *port;
1034 
1035 	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1036 		return 0;
1037 
1038 	tb_switch_for_each_port(sw, port) {
1039 		struct usb4_port *usb4;
1040 
1041 		if (!tb_port_is_null(port))
1042 			continue;
1043 		if (!port->cap_usb4)
1044 			continue;
1045 
1046 		usb4 = usb4_port_device_add(port);
1047 		if (IS_ERR(usb4)) {
1048 			usb4_switch_remove_ports(sw);
1049 			return PTR_ERR(usb4);
1050 		}
1051 
1052 		port->usb4 = usb4;
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * usb4_switch_remove_ports() - Removes USB4 ports from this router
1060  * @sw: USB4 router
1061  *
1062  * Unregisters previously registered USB4 ports.
1063  */
1064 void usb4_switch_remove_ports(struct tb_switch *sw)
1065 {
1066 	struct tb_port *port;
1067 
1068 	tb_switch_for_each_port(sw, port) {
1069 		if (port->usb4) {
1070 			usb4_port_device_remove(port->usb4);
1071 			port->usb4 = NULL;
1072 		}
1073 	}
1074 }
1075 
1076 /**
1077  * usb4_port_unlock() - Unlock USB4 downstream port
1078  * @port: USB4 port to unlock
1079  *
1080  * Unlocks USB4 downstream port so that the connection manager can
1081  * access the router below this port.
1082  */
1083 int usb4_port_unlock(struct tb_port *port)
1084 {
1085 	int ret;
1086 	u32 val;
1087 
1088 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1089 	if (ret)
1090 		return ret;
1091 
1092 	val &= ~ADP_CS_4_LCK;
1093 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1094 }
1095 
1096 /**
1097  * usb4_port_hotplug_enable() - Enables hotplug for a port
1098  * @port: USB4 port to operate on
1099  *
1100  * Enables hot plug events on a given port. This is only intended
1101  * to be used on lane, DP-IN, and DP-OUT adapters.
1102  */
1103 int usb4_port_hotplug_enable(struct tb_port *port)
1104 {
1105 	int ret;
1106 	u32 val;
1107 
1108 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1109 	if (ret)
1110 		return ret;
1111 
1112 	val &= ~ADP_CS_5_DHP;
1113 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1114 }
1115 
1116 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1117 {
1118 	int ret;
1119 	u32 val;
1120 
1121 	if (!port->cap_usb4)
1122 		return -EINVAL;
1123 
1124 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1125 			   port->cap_usb4 + PORT_CS_19, 1);
1126 	if (ret)
1127 		return ret;
1128 
1129 	if (configured)
1130 		val |= PORT_CS_19_PC;
1131 	else
1132 		val &= ~PORT_CS_19_PC;
1133 
1134 	return tb_port_write(port, &val, TB_CFG_PORT,
1135 			     port->cap_usb4 + PORT_CS_19, 1);
1136 }
1137 
1138 /**
1139  * usb4_port_configure() - Set USB4 port configured
1140  * @port: USB4 router
1141  *
1142  * Sets the USB4 link to be configured for power management purposes.
1143  */
1144 int usb4_port_configure(struct tb_port *port)
1145 {
1146 	return usb4_port_set_configured(port, true);
1147 }
1148 
1149 /**
1150  * usb4_port_unconfigure() - Set USB4 port unconfigured
1151  * @port: USB4 router
1152  *
1153  * Sets the USB4 link to be unconfigured for power management purposes.
1154  */
1155 void usb4_port_unconfigure(struct tb_port *port)
1156 {
1157 	usb4_port_set_configured(port, false);
1158 }
1159 
1160 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1161 {
1162 	int ret;
1163 	u32 val;
1164 
1165 	if (!port->cap_usb4)
1166 		return -EINVAL;
1167 
1168 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1169 			   port->cap_usb4 + PORT_CS_19, 1);
1170 	if (ret)
1171 		return ret;
1172 
1173 	if (configured)
1174 		val |= PORT_CS_19_PID;
1175 	else
1176 		val &= ~PORT_CS_19_PID;
1177 
1178 	return tb_port_write(port, &val, TB_CFG_PORT,
1179 			     port->cap_usb4 + PORT_CS_19, 1);
1180 }
1181 
1182 /**
1183  * usb4_port_configure_xdomain() - Configure port for XDomain
1184  * @port: USB4 port connected to another host
1185  * @xd: XDomain that is connected to the port
1186  *
1187  * Marks the USB4 port as being connected to another host and updates
1188  * the link type. Returns %0 in success and negative errno in failure.
1189  */
1190 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1191 {
1192 	xd->link_usb4 = link_is_usb4(port);
1193 	return usb4_set_xdomain_configured(port, true);
1194 }
1195 
1196 /**
1197  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1198  * @port: USB4 port that was connected to another host
1199  *
1200  * Clears USB4 port from being marked as XDomain.
1201  */
1202 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1203 {
1204 	usb4_set_xdomain_configured(port, false);
1205 }
1206 
1207 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1208 				  u32 value, int timeout_msec)
1209 {
1210 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1211 
1212 	do {
1213 		u32 val;
1214 		int ret;
1215 
1216 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1217 		if (ret)
1218 			return ret;
1219 
1220 		if ((val & bit) == value)
1221 			return 0;
1222 
1223 		usleep_range(50, 100);
1224 	} while (ktime_before(ktime_get(), timeout));
1225 
1226 	return -ETIMEDOUT;
1227 }
1228 
1229 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1230 {
1231 	if (dwords > USB4_DATA_DWORDS)
1232 		return -EINVAL;
1233 
1234 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1235 			    dwords);
1236 }
1237 
1238 static int usb4_port_write_data(struct tb_port *port, const void *data,
1239 				size_t dwords)
1240 {
1241 	if (dwords > USB4_DATA_DWORDS)
1242 		return -EINVAL;
1243 
1244 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1245 			     dwords);
1246 }
1247 
1248 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1249 			     u8 index, u8 reg, void *buf, u8 size)
1250 {
1251 	size_t dwords = DIV_ROUND_UP(size, 4);
1252 	int ret;
1253 	u32 val;
1254 
1255 	if (!port->cap_usb4)
1256 		return -EINVAL;
1257 
1258 	val = reg;
1259 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1260 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261 	if (target == USB4_SB_TARGET_RETIMER)
1262 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263 	val |= PORT_CS_1_PND;
1264 
1265 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1266 			    port->cap_usb4 + PORT_CS_1, 1);
1267 	if (ret)
1268 		return ret;
1269 
1270 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271 				     PORT_CS_1_PND, 0, 500);
1272 	if (ret)
1273 		return ret;
1274 
1275 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1276 			    port->cap_usb4 + PORT_CS_1, 1);
1277 	if (ret)
1278 		return ret;
1279 
1280 	if (val & PORT_CS_1_NR)
1281 		return -ENODEV;
1282 	if (val & PORT_CS_1_RC)
1283 		return -EIO;
1284 
1285 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1286 }
1287 
1288 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1289 			      u8 index, u8 reg, const void *buf, u8 size)
1290 {
1291 	size_t dwords = DIV_ROUND_UP(size, 4);
1292 	int ret;
1293 	u32 val;
1294 
1295 	if (!port->cap_usb4)
1296 		return -EINVAL;
1297 
1298 	if (buf) {
1299 		ret = usb4_port_write_data(port, buf, dwords);
1300 		if (ret)
1301 			return ret;
1302 	}
1303 
1304 	val = reg;
1305 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1306 	val |= PORT_CS_1_WNR_WRITE;
1307 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1308 	if (target == USB4_SB_TARGET_RETIMER)
1309 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1310 	val |= PORT_CS_1_PND;
1311 
1312 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1313 			    port->cap_usb4 + PORT_CS_1, 1);
1314 	if (ret)
1315 		return ret;
1316 
1317 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1318 				     PORT_CS_1_PND, 0, 500);
1319 	if (ret)
1320 		return ret;
1321 
1322 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1323 			    port->cap_usb4 + PORT_CS_1, 1);
1324 	if (ret)
1325 		return ret;
1326 
1327 	if (val & PORT_CS_1_NR)
1328 		return -ENODEV;
1329 	if (val & PORT_CS_1_RC)
1330 		return -EIO;
1331 
1332 	return 0;
1333 }
1334 
1335 static int usb4_port_sb_opcode_err_to_errno(u32 val)
1336 {
1337 	switch (val) {
1338 	case 0:
1339 		return 0;
1340 	case USB4_SB_OPCODE_ERR:
1341 		return -EAGAIN;
1342 	case USB4_SB_OPCODE_ONS:
1343 		return -EOPNOTSUPP;
1344 	default:
1345 		return -EIO;
1346 	}
1347 }
1348 
1349 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1350 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1351 {
1352 	ktime_t timeout;
1353 	u32 val;
1354 	int ret;
1355 
1356 	val = opcode;
1357 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1358 				 sizeof(val));
1359 	if (ret)
1360 		return ret;
1361 
1362 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1363 
1364 	do {
1365 		/* Check results */
1366 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1367 					&val, sizeof(val));
1368 		if (ret)
1369 			return ret;
1370 
1371 		if (val != opcode)
1372 			return usb4_port_sb_opcode_err_to_errno(val);
1373 	} while (ktime_before(ktime_get(), timeout));
1374 
1375 	return -ETIMEDOUT;
1376 }
1377 
1378 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1379 {
1380 	u32 val = !offline;
1381 	int ret;
1382 
1383 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1384 				  USB4_SB_METADATA, &val, sizeof(val));
1385 	if (ret)
1386 		return ret;
1387 
1388 	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1389 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1390 				  USB4_SB_OPCODE, &val, sizeof(val));
1391 }
1392 
1393 /**
1394  * usb4_port_router_offline() - Put the USB4 port to offline mode
1395  * @port: USB4 port
1396  *
1397  * This function puts the USB4 port into offline mode. In this mode the
1398  * port does not react on hotplug events anymore. This needs to be
1399  * called before retimer access is done when the USB4 links is not up.
1400  *
1401  * Returns %0 in case of success and negative errno if there was an
1402  * error.
1403  */
1404 int usb4_port_router_offline(struct tb_port *port)
1405 {
1406 	return usb4_port_set_router_offline(port, true);
1407 }
1408 
1409 /**
1410  * usb4_port_router_online() - Put the USB4 port back to online
1411  * @port: USB4 port
1412  *
1413  * Makes the USB4 port functional again.
1414  */
1415 int usb4_port_router_online(struct tb_port *port)
1416 {
1417 	return usb4_port_set_router_offline(port, false);
1418 }
1419 
1420 /**
1421  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1422  * @port: USB4 port
1423  *
1424  * This forces the USB4 port to send broadcast RT transaction which
1425  * makes the retimers on the link to assign index to themselves. Returns
1426  * %0 in case of success and negative errno if there was an error.
1427  */
1428 int usb4_port_enumerate_retimers(struct tb_port *port)
1429 {
1430 	u32 val;
1431 
1432 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1433 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1434 				  USB4_SB_OPCODE, &val, sizeof(val));
1435 }
1436 
1437 /**
1438  * usb4_port_clx_supported() - Check if CLx is supported by the link
1439  * @port: Port to check for CLx support for
1440  *
1441  * PORT_CS_18_CPS bit reflects if the link supports CLx including
1442  * active cables (if connected on the link).
1443  */
1444 bool usb4_port_clx_supported(struct tb_port *port)
1445 {
1446 	int ret;
1447 	u32 val;
1448 
1449 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1450 			   port->cap_usb4 + PORT_CS_18, 1);
1451 	if (ret)
1452 		return false;
1453 
1454 	return !!(val & PORT_CS_18_CPS);
1455 }
1456 
1457 /**
1458  * usb4_port_asym_supported() - If the port supports asymmetric link
1459  * @port: USB4 port
1460  *
1461  * Checks if the port and the cable supports asymmetric link and returns
1462  * %true in that case.
1463  */
1464 bool usb4_port_asym_supported(struct tb_port *port)
1465 {
1466 	u32 val;
1467 
1468 	if (!port->cap_usb4)
1469 		return false;
1470 
1471 	if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
1472 		return false;
1473 
1474 	return !!(val & PORT_CS_18_CSA);
1475 }
1476 
1477 /**
1478  * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1479  * @port: USB4 port
1480  * @width: Asymmetric width to configure
1481  *
1482  * Sets USB4 port link width to @width. Can be called for widths where
1483  * usb4_port_asym_width_supported() returned @true.
1484  */
1485 int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1486 {
1487 	u32 val;
1488 	int ret;
1489 
1490 	if (!port->cap_phy)
1491 		return -EINVAL;
1492 
1493 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1494 			   port->cap_phy + LANE_ADP_CS_1, 1);
1495 	if (ret)
1496 		return ret;
1497 
1498 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1499 	switch (width) {
1500 	case TB_LINK_WIDTH_DUAL:
1501 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1502 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1503 		break;
1504 	case TB_LINK_WIDTH_ASYM_TX:
1505 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1506 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1507 		break;
1508 	case TB_LINK_WIDTH_ASYM_RX:
1509 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1510 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1511 		break;
1512 	default:
1513 		return -EINVAL;
1514 	}
1515 
1516 	return tb_port_write(port, &val, TB_CFG_PORT,
1517 			     port->cap_phy + LANE_ADP_CS_1, 1);
1518 }
1519 
1520 /**
1521  * usb4_port_asym_start() - Start symmetry change and wait for completion
1522  * @port: USB4 port
1523  *
1524  * Start symmetry change of the link to asymmetric or symmetric
1525  * (according to what was previously set in tb_port_set_link_width().
1526  * Wait for completion of the change.
1527  *
1528  * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1529  * a negative errno in case of a failure.
1530  */
1531 int usb4_port_asym_start(struct tb_port *port)
1532 {
1533 	int ret;
1534 	u32 val;
1535 
1536 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1537 			   port->cap_usb4 + PORT_CS_19, 1);
1538 	if (ret)
1539 		return ret;
1540 
1541 	val &= ~PORT_CS_19_START_ASYM;
1542 	val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1543 
1544 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1545 			    port->cap_usb4 + PORT_CS_19, 1);
1546 	if (ret)
1547 		return ret;
1548 
1549 	/*
1550 	 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1551 	 * port started the symmetry transition.
1552 	 */
1553 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
1554 				     PORT_CS_19_START_ASYM, 0, 1000);
1555 	if (ret)
1556 		return ret;
1557 
1558 	/* Then wait for the transtion to be completed */
1559 	return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
1560 				      PORT_CS_18_TIP, 0, 5000);
1561 }
1562 
1563 /**
1564  * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1565  * @port: USB4 port
1566  * @caps: Array with at least two elements to hold the results
1567  *
1568  * Reads the USB4 port lane margining capabilities into @caps.
1569  */
1570 int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1571 {
1572 	int ret;
1573 
1574 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1575 			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1576 	if (ret)
1577 		return ret;
1578 
1579 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1580 				 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1581 }
1582 
1583 /**
1584  * usb4_port_hw_margin() - Run hardware lane margining on port
1585  * @port: USB4 port
1586  * @lanes: Which lanes to run (must match the port capabilities). Can be
1587  *	   %0, %1 or %7.
1588  * @ber_level: BER level contour value
1589  * @timing: Perform timing margining instead of voltage
1590  * @right_high: Use Right/high margin instead of left/low
1591  * @results: Array with at least two elements to hold the results
1592  *
1593  * Runs hardware lane margining on USB4 port and returns the result in
1594  * @results.
1595  */
1596 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1597 			unsigned int ber_level, bool timing, bool right_high,
1598 			u32 *results)
1599 {
1600 	u32 val;
1601 	int ret;
1602 
1603 	val = lanes;
1604 	if (timing)
1605 		val |= USB4_MARGIN_HW_TIME;
1606 	if (right_high)
1607 		val |= USB4_MARGIN_HW_RH;
1608 	if (ber_level)
1609 		val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1610 			USB4_MARGIN_HW_BER_MASK;
1611 
1612 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1613 				 USB4_SB_METADATA, &val, sizeof(val));
1614 	if (ret)
1615 		return ret;
1616 
1617 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1618 			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1619 	if (ret)
1620 		return ret;
1621 
1622 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1623 				 USB4_SB_DATA, results, sizeof(*results) * 2);
1624 }
1625 
1626 /**
1627  * usb4_port_sw_margin() - Run software lane margining on port
1628  * @port: USB4 port
1629  * @lanes: Which lanes to run (must match the port capabilities). Can be
1630  *	   %0, %1 or %7.
1631  * @timing: Perform timing margining instead of voltage
1632  * @right_high: Use Right/high margin instead of left/low
1633  * @counter: What to do with the error counter
1634  *
1635  * Runs software lane margining on USB4 port. Read back the error
1636  * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1637  * success and negative errno otherwise.
1638  */
1639 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1640 			bool right_high, u32 counter)
1641 {
1642 	u32 val;
1643 	int ret;
1644 
1645 	val = lanes;
1646 	if (timing)
1647 		val |= USB4_MARGIN_SW_TIME;
1648 	if (right_high)
1649 		val |= USB4_MARGIN_SW_RH;
1650 	val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1651 		USB4_MARGIN_SW_COUNTER_MASK;
1652 
1653 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1654 				 USB4_SB_METADATA, &val, sizeof(val));
1655 	if (ret)
1656 		return ret;
1657 
1658 	return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1659 			       USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1660 }
1661 
1662 /**
1663  * usb4_port_sw_margin_errors() - Read the software margining error counters
1664  * @port: USB4 port
1665  * @errors: Error metadata is copied here.
1666  *
1667  * This reads back the software margining error counters from the port.
1668  * Returns %0 in success and negative errno otherwise.
1669  */
1670 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1671 {
1672 	int ret;
1673 
1674 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1675 			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1676 	if (ret)
1677 		return ret;
1678 
1679 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1680 				 USB4_SB_METADATA, errors, sizeof(*errors));
1681 }
1682 
1683 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1684 				       enum usb4_sb_opcode opcode,
1685 				       int timeout_msec)
1686 {
1687 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1688 			       timeout_msec);
1689 }
1690 
1691 /**
1692  * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1693  * @port: USB4 port
1694  * @index: Retimer index
1695  *
1696  * Enables sideband channel transations on SBTX. Can be used when USB4
1697  * link does not go up, for example if there is no device connected.
1698  */
1699 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1700 {
1701 	int ret;
1702 
1703 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1704 				   500);
1705 
1706 	if (ret != -ENODEV)
1707 		return ret;
1708 
1709 	/*
1710 	 * Per the USB4 retimer spec, the retimer is not required to
1711 	 * send an RT (Retimer Transaction) response for the first
1712 	 * SET_INBOUND_SBTX command
1713 	 */
1714 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1715 				    500);
1716 }
1717 
1718 /**
1719  * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1720  * @port: USB4 port
1721  * @index: Retimer index
1722  *
1723  * Disables sideband channel transations on SBTX. The reverse of
1724  * usb4_port_retimer_set_inbound_sbtx().
1725  */
1726 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1727 {
1728 	return usb4_port_retimer_op(port, index,
1729 				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1730 }
1731 
1732 /**
1733  * usb4_port_retimer_read() - Read from retimer sideband registers
1734  * @port: USB4 port
1735  * @index: Retimer index
1736  * @reg: Sideband register to read
1737  * @buf: Data from @reg is stored here
1738  * @size: Number of bytes to read
1739  *
1740  * Function reads retimer sideband registers starting from @reg. The
1741  * retimer is connected to @port at @index. Returns %0 in case of
1742  * success, and read data is copied to @buf. If there is no retimer
1743  * present at given @index returns %-ENODEV. In any other failure
1744  * returns negative errno.
1745  */
1746 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1747 			   u8 size)
1748 {
1749 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1750 				 size);
1751 }
1752 
1753 /**
1754  * usb4_port_retimer_write() - Write to retimer sideband registers
1755  * @port: USB4 port
1756  * @index: Retimer index
1757  * @reg: Sideband register to write
1758  * @buf: Data that is written starting from @reg
1759  * @size: Number of bytes to write
1760  *
1761  * Writes retimer sideband registers starting from @reg. The retimer is
1762  * connected to @port at @index. Returns %0 in case of success. If there
1763  * is no retimer present at given @index returns %-ENODEV. In any other
1764  * failure returns negative errno.
1765  */
1766 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1767 			    const void *buf, u8 size)
1768 {
1769 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1770 				  size);
1771 }
1772 
1773 /**
1774  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1775  * @port: USB4 port
1776  * @index: Retimer index
1777  *
1778  * If the retimer at @index is last one (connected directly to the
1779  * Type-C port) this function returns %1. If it is not returns %0. If
1780  * the retimer is not present returns %-ENODEV. Otherwise returns
1781  * negative errno.
1782  */
1783 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1784 {
1785 	u32 metadata;
1786 	int ret;
1787 
1788 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1789 				   500);
1790 	if (ret)
1791 		return ret;
1792 
1793 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1794 				     sizeof(metadata));
1795 	return ret ? ret : metadata & 1;
1796 }
1797 
1798 /**
1799  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1800  * @port: USB4 port
1801  * @index: Retimer index
1802  *
1803  * Reads NVM sector size (in bytes) of a retimer at @index. This
1804  * operation can be used to determine whether the retimer supports NVM
1805  * upgrade for example. Returns sector size in bytes or negative errno
1806  * in case of error. Specifically returns %-ENODEV if there is no
1807  * retimer at @index.
1808  */
1809 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1810 {
1811 	u32 metadata;
1812 	int ret;
1813 
1814 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1815 				   500);
1816 	if (ret)
1817 		return ret;
1818 
1819 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1820 				     sizeof(metadata));
1821 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1822 }
1823 
1824 /**
1825  * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1826  * @port: USB4 port
1827  * @index: Retimer index
1828  * @address: Start offset
1829  *
1830  * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1831  * done automatically by usb4_port_retimer_nvm_write().
1832  *
1833  * Returns %0 in success and negative errno if there was a failure.
1834  */
1835 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1836 				     unsigned int address)
1837 {
1838 	u32 metadata, dwaddress;
1839 	int ret;
1840 
1841 	dwaddress = address / 4;
1842 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1843 		  USB4_NVM_SET_OFFSET_MASK;
1844 
1845 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1846 				      sizeof(metadata));
1847 	if (ret)
1848 		return ret;
1849 
1850 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1851 				    500);
1852 }
1853 
1854 struct retimer_info {
1855 	struct tb_port *port;
1856 	u8 index;
1857 };
1858 
1859 static int usb4_port_retimer_nvm_write_next_block(void *data,
1860 	unsigned int dwaddress, const void *buf, size_t dwords)
1861 
1862 {
1863 	const struct retimer_info *info = data;
1864 	struct tb_port *port = info->port;
1865 	u8 index = info->index;
1866 	int ret;
1867 
1868 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1869 				      buf, dwords * 4);
1870 	if (ret)
1871 		return ret;
1872 
1873 	return usb4_port_retimer_op(port, index,
1874 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1875 }
1876 
1877 /**
1878  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1879  * @port: USB4 port
1880  * @index: Retimer index
1881  * @address: Byte address where to start the write
1882  * @buf: Data to write
1883  * @size: Size in bytes how much to write
1884  *
1885  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1886  * upgrade. Returns %0 if the data was written successfully and negative
1887  * errno in case of failure. Specifically returns %-ENODEV if there is
1888  * no retimer at @index.
1889  */
1890 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1891 				const void *buf, size_t size)
1892 {
1893 	struct retimer_info info = { .port = port, .index = index };
1894 	int ret;
1895 
1896 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1897 	if (ret)
1898 		return ret;
1899 
1900 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1901 				 usb4_port_retimer_nvm_write_next_block, &info);
1902 }
1903 
1904 /**
1905  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1906  * @port: USB4 port
1907  * @index: Retimer index
1908  *
1909  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1910  * this function can be used to trigger the NVM upgrade process. If
1911  * successful the retimer restarts with the new NVM and may not have the
1912  * index set so one needs to call usb4_port_enumerate_retimers() to
1913  * force index to be assigned.
1914  */
1915 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1916 {
1917 	u32 val;
1918 
1919 	/*
1920 	 * We need to use the raw operation here because once the
1921 	 * authentication completes the retimer index is not set anymore
1922 	 * so we do not get back the status now.
1923 	 */
1924 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1925 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1926 				  USB4_SB_OPCODE, &val, sizeof(val));
1927 }
1928 
1929 /**
1930  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1931  * @port: USB4 port
1932  * @index: Retimer index
1933  * @status: Raw status code read from metadata
1934  *
1935  * This can be called after usb4_port_retimer_nvm_authenticate() and
1936  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1937  *
1938  * Returns %0 if the authentication status was successfully read. The
1939  * completion metadata (the result) is then stored into @status. If
1940  * reading the status fails, returns negative errno.
1941  */
1942 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1943 					      u32 *status)
1944 {
1945 	u32 metadata, val;
1946 	int ret;
1947 
1948 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1949 				     sizeof(val));
1950 	if (ret)
1951 		return ret;
1952 
1953 	ret = usb4_port_sb_opcode_err_to_errno(val);
1954 	switch (ret) {
1955 	case 0:
1956 		*status = 0;
1957 		return 0;
1958 
1959 	case -EAGAIN:
1960 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1961 					     &metadata, sizeof(metadata));
1962 		if (ret)
1963 			return ret;
1964 
1965 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1966 		return 0;
1967 
1968 	default:
1969 		return ret;
1970 	}
1971 }
1972 
1973 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1974 					    void *buf, size_t dwords)
1975 {
1976 	const struct retimer_info *info = data;
1977 	struct tb_port *port = info->port;
1978 	u8 index = info->index;
1979 	u32 metadata;
1980 	int ret;
1981 
1982 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1983 	if (dwords < USB4_DATA_DWORDS)
1984 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1985 
1986 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1987 				      sizeof(metadata));
1988 	if (ret)
1989 		return ret;
1990 
1991 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1992 	if (ret)
1993 		return ret;
1994 
1995 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1996 				      dwords * 4);
1997 }
1998 
1999 /**
2000  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2001  * @port: USB4 port
2002  * @index: Retimer index
2003  * @address: NVM address (in bytes) to start reading
2004  * @buf: Data read from NVM is stored here
2005  * @size: Number of bytes to read
2006  *
2007  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2008  * read was successful and negative errno in case of failure.
2009  * Specifically returns %-ENODEV if there is no retimer at @index.
2010  */
2011 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2012 			       unsigned int address, void *buf, size_t size)
2013 {
2014 	struct retimer_info info = { .port = port, .index = index };
2015 
2016 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2017 				usb4_port_retimer_nvm_read_block, &info);
2018 }
2019 
2020 static inline unsigned int
2021 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2022 {
2023 	/* Take the possible bandwidth limitation into account */
2024 	if (port->max_bw)
2025 		return min(bw, port->max_bw);
2026 	return bw;
2027 }
2028 
2029 /**
2030  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2031  * @port: USB3 adapter port
2032  *
2033  * Return maximum supported link rate of a USB3 adapter in Mb/s.
2034  * Negative errno in case of error.
2035  */
2036 int usb4_usb3_port_max_link_rate(struct tb_port *port)
2037 {
2038 	int ret, lr;
2039 	u32 val;
2040 
2041 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2042 		return -EINVAL;
2043 
2044 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2045 			   port->cap_adap + ADP_USB3_CS_4, 1);
2046 	if (ret)
2047 		return ret;
2048 
2049 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2050 	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2051 
2052 	return usb4_usb3_port_max_bandwidth(port, ret);
2053 }
2054 
2055 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2056 {
2057 	int ret;
2058 	u32 val;
2059 
2060 	if (!tb_port_is_usb3_down(port))
2061 		return -EINVAL;
2062 	if (tb_route(port->sw))
2063 		return -EINVAL;
2064 
2065 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2066 			   port->cap_adap + ADP_USB3_CS_2, 1);
2067 	if (ret)
2068 		return ret;
2069 
2070 	if (request)
2071 		val |= ADP_USB3_CS_2_CMR;
2072 	else
2073 		val &= ~ADP_USB3_CS_2_CMR;
2074 
2075 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2076 			    port->cap_adap + ADP_USB3_CS_2, 1);
2077 	if (ret)
2078 		return ret;
2079 
2080 	/*
2081 	 * We can use val here directly as the CMR bit is in the same place
2082 	 * as HCA. Just mask out others.
2083 	 */
2084 	val &= ADP_USB3_CS_2_CMR;
2085 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2086 				      ADP_USB3_CS_1_HCA, val, 1500);
2087 }
2088 
2089 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2090 {
2091 	return usb4_usb3_port_cm_request(port, true);
2092 }
2093 
2094 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2095 {
2096 	return usb4_usb3_port_cm_request(port, false);
2097 }
2098 
2099 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2100 {
2101 	unsigned long uframes;
2102 
2103 	uframes = bw * 512UL << scale;
2104 	return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2105 }
2106 
2107 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2108 {
2109 	unsigned long uframes;
2110 
2111 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2112 	uframes = ((unsigned long)mbps * MEGA) / 8000;
2113 	return DIV_ROUND_UP(uframes, 512UL << scale);
2114 }
2115 
2116 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2117 						   int *upstream_bw,
2118 						   int *downstream_bw)
2119 {
2120 	u32 val, bw, scale;
2121 	int ret;
2122 
2123 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2124 			   port->cap_adap + ADP_USB3_CS_2, 1);
2125 	if (ret)
2126 		return ret;
2127 
2128 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2129 			   port->cap_adap + ADP_USB3_CS_3, 1);
2130 	if (ret)
2131 		return ret;
2132 
2133 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2134 
2135 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2136 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2137 
2138 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2139 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2140 
2141 	return 0;
2142 }
2143 
2144 /**
2145  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2146  * @port: USB3 adapter port
2147  * @upstream_bw: Allocated upstream bandwidth is stored here
2148  * @downstream_bw: Allocated downstream bandwidth is stored here
2149  *
2150  * Stores currently allocated USB3 bandwidth into @upstream_bw and
2151  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2152  * errno in failure.
2153  */
2154 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2155 				       int *downstream_bw)
2156 {
2157 	int ret;
2158 
2159 	ret = usb4_usb3_port_set_cm_request(port);
2160 	if (ret)
2161 		return ret;
2162 
2163 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2164 						      downstream_bw);
2165 	usb4_usb3_port_clear_cm_request(port);
2166 
2167 	return ret;
2168 }
2169 
2170 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2171 						  int *upstream_bw,
2172 						  int *downstream_bw)
2173 {
2174 	u32 val, bw, scale;
2175 	int ret;
2176 
2177 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2178 			   port->cap_adap + ADP_USB3_CS_1, 1);
2179 	if (ret)
2180 		return ret;
2181 
2182 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2183 			   port->cap_adap + ADP_USB3_CS_3, 1);
2184 	if (ret)
2185 		return ret;
2186 
2187 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2188 
2189 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2190 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2191 
2192 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2193 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2194 
2195 	return 0;
2196 }
2197 
2198 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2199 						    int upstream_bw,
2200 						    int downstream_bw)
2201 {
2202 	u32 val, ubw, dbw, scale;
2203 	int ret, max_bw;
2204 
2205 	/* Figure out suitable scale */
2206 	scale = 0;
2207 	max_bw = max(upstream_bw, downstream_bw);
2208 	while (scale < 64) {
2209 		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2210 			break;
2211 		scale++;
2212 	}
2213 
2214 	if (WARN_ON(scale >= 64))
2215 		return -EINVAL;
2216 
2217 	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2218 			    port->cap_adap + ADP_USB3_CS_3, 1);
2219 	if (ret)
2220 		return ret;
2221 
2222 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2223 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2224 
2225 	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2226 
2227 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2228 			   port->cap_adap + ADP_USB3_CS_2, 1);
2229 	if (ret)
2230 		return ret;
2231 
2232 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2233 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2234 	val |= ubw;
2235 
2236 	return tb_port_write(port, &val, TB_CFG_PORT,
2237 			     port->cap_adap + ADP_USB3_CS_2, 1);
2238 }
2239 
2240 /**
2241  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2242  * @port: USB3 adapter port
2243  * @upstream_bw: New upstream bandwidth
2244  * @downstream_bw: New downstream bandwidth
2245  *
2246  * This can be used to set how much bandwidth is allocated for the USB3
2247  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2248  * new values programmed to the USB3 adapter allocation registers. If
2249  * the values are lower than what is currently consumed the allocation
2250  * is set to what is currently consumed instead (consumed bandwidth
2251  * cannot be taken away by CM). The actual new values are returned in
2252  * @upstream_bw and @downstream_bw.
2253  *
2254  * Returns %0 in case of success and negative errno if there was a
2255  * failure.
2256  */
2257 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2258 				      int *downstream_bw)
2259 {
2260 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2261 
2262 	ret = usb4_usb3_port_set_cm_request(port);
2263 	if (ret)
2264 		return ret;
2265 
2266 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2267 						     &consumed_down);
2268 	if (ret)
2269 		goto err_request;
2270 
2271 	/* Don't allow it go lower than what is consumed */
2272 	allocate_up = max(*upstream_bw, consumed_up);
2273 	allocate_down = max(*downstream_bw, consumed_down);
2274 
2275 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2276 						       allocate_down);
2277 	if (ret)
2278 		goto err_request;
2279 
2280 	*upstream_bw = allocate_up;
2281 	*downstream_bw = allocate_down;
2282 
2283 err_request:
2284 	usb4_usb3_port_clear_cm_request(port);
2285 	return ret;
2286 }
2287 
2288 /**
2289  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2290  * @port: USB3 adapter port
2291  * @upstream_bw: New allocated upstream bandwidth
2292  * @downstream_bw: New allocated downstream bandwidth
2293  *
2294  * Releases USB3 allocated bandwidth down to what is actually consumed.
2295  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2296  *
2297  * Returns 0% in success and negative errno in case of failure.
2298  */
2299 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2300 				     int *downstream_bw)
2301 {
2302 	int ret, consumed_up, consumed_down;
2303 
2304 	ret = usb4_usb3_port_set_cm_request(port);
2305 	if (ret)
2306 		return ret;
2307 
2308 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2309 						     &consumed_down);
2310 	if (ret)
2311 		goto err_request;
2312 
2313 	/*
2314 	 * Always keep 900 Mb/s to make sure xHCI has at least some
2315 	 * bandwidth available for isochronous traffic.
2316 	 */
2317 	if (consumed_up < 900)
2318 		consumed_up = 900;
2319 	if (consumed_down < 900)
2320 		consumed_down = 900;
2321 
2322 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2323 						       consumed_down);
2324 	if (ret)
2325 		goto err_request;
2326 
2327 	*upstream_bw = consumed_up;
2328 	*downstream_bw = consumed_down;
2329 
2330 err_request:
2331 	usb4_usb3_port_clear_cm_request(port);
2332 	return ret;
2333 }
2334 
2335 static bool is_usb4_dpin(const struct tb_port *port)
2336 {
2337 	if (!tb_port_is_dpin(port))
2338 		return false;
2339 	if (!tb_switch_is_usb4(port->sw))
2340 		return false;
2341 	return true;
2342 }
2343 
2344 /**
2345  * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2346  * @port: DP IN adapter
2347  * @cm_id: CM ID to assign
2348  *
2349  * Sets CM ID for the @port. Returns %0 on success and negative errno
2350  * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2351  * support this.
2352  */
2353 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2354 {
2355 	u32 val;
2356 	int ret;
2357 
2358 	if (!is_usb4_dpin(port))
2359 		return -EOPNOTSUPP;
2360 
2361 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2362 			   port->cap_adap + ADP_DP_CS_2, 1);
2363 	if (ret)
2364 		return ret;
2365 
2366 	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2367 	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2368 
2369 	return tb_port_write(port, &val, TB_CFG_PORT,
2370 			     port->cap_adap + ADP_DP_CS_2, 1);
2371 }
2372 
2373 /**
2374  * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2375  *					     supported
2376  * @port: DP IN adapter to check
2377  *
2378  * Can be called to any DP IN adapter. Returns true if the adapter
2379  * supports USB4 bandwidth allocation mode, false otherwise.
2380  */
2381 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2382 {
2383 	int ret;
2384 	u32 val;
2385 
2386 	if (!is_usb4_dpin(port))
2387 		return false;
2388 
2389 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2390 			   port->cap_adap + DP_LOCAL_CAP, 1);
2391 	if (ret)
2392 		return false;
2393 
2394 	return !!(val & DP_COMMON_CAP_BW_MODE);
2395 }
2396 
2397 /**
2398  * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2399  *					   enabled
2400  * @port: DP IN adapter to check
2401  *
2402  * Can be called to any DP IN adapter. Returns true if the bandwidth
2403  * allocation mode has been enabled, false otherwise.
2404  */
2405 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2406 {
2407 	int ret;
2408 	u32 val;
2409 
2410 	if (!is_usb4_dpin(port))
2411 		return false;
2412 
2413 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2414 			   port->cap_adap + ADP_DP_CS_8, 1);
2415 	if (ret)
2416 		return false;
2417 
2418 	return !!(val & ADP_DP_CS_8_DPME);
2419 }
2420 
2421 /**
2422  * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2423  *						    bandwidth allocation mode
2424  * @port: DP IN adapter
2425  * @supported: Does the CM support bandwidth allocation mode
2426  *
2427  * Can be called to any DP IN adapter. Sets or clears the CM support bit
2428  * of the DP IN adapter. Returns %0 in success and negative errno
2429  * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2430  * does not support this.
2431  */
2432 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2433 						 bool supported)
2434 {
2435 	u32 val;
2436 	int ret;
2437 
2438 	if (!is_usb4_dpin(port))
2439 		return -EOPNOTSUPP;
2440 
2441 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2442 			   port->cap_adap + ADP_DP_CS_2, 1);
2443 	if (ret)
2444 		return ret;
2445 
2446 	if (supported)
2447 		val |= ADP_DP_CS_2_CMMS;
2448 	else
2449 		val &= ~ADP_DP_CS_2_CMMS;
2450 
2451 	return tb_port_write(port, &val, TB_CFG_PORT,
2452 			     port->cap_adap + ADP_DP_CS_2, 1);
2453 }
2454 
2455 /**
2456  * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2457  * @port: DP IN adapter
2458  *
2459  * Reads bandwidth allocation Group ID from the DP IN adapter and
2460  * returns it. If the adapter does not support setting Group_ID
2461  * %-EOPNOTSUPP is returned.
2462  */
2463 int usb4_dp_port_group_id(struct tb_port *port)
2464 {
2465 	u32 val;
2466 	int ret;
2467 
2468 	if (!is_usb4_dpin(port))
2469 		return -EOPNOTSUPP;
2470 
2471 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2472 			   port->cap_adap + ADP_DP_CS_2, 1);
2473 	if (ret)
2474 		return ret;
2475 
2476 	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2477 }
2478 
2479 /**
2480  * usb4_dp_port_set_group_id() - Set adapter Group ID
2481  * @port: DP IN adapter
2482  * @group_id: Group ID for the adapter
2483  *
2484  * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2485  * Returns %0 in case of success and negative errno otherwise.
2486  * Specifically returns %-EOPNOTSUPP if the adapter does not support
2487  * this.
2488  */
2489 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2490 {
2491 	u32 val;
2492 	int ret;
2493 
2494 	if (!is_usb4_dpin(port))
2495 		return -EOPNOTSUPP;
2496 
2497 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2498 			   port->cap_adap + ADP_DP_CS_2, 1);
2499 	if (ret)
2500 		return ret;
2501 
2502 	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2503 	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2504 
2505 	return tb_port_write(port, &val, TB_CFG_PORT,
2506 			     port->cap_adap + ADP_DP_CS_2, 1);
2507 }
2508 
2509 /**
2510  * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2511  * @port: DP IN adapter
2512  * @rate: Non-reduced rate in Mb/s is placed here
2513  * @lanes: Non-reduced lanes are placed here
2514  *
2515  * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2516  * %0 in success and negative errno otherwise. Specifically returns
2517  * %-EOPNOTSUPP if the adapter does not support this.
2518  */
2519 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2520 {
2521 	u32 val, tmp;
2522 	int ret;
2523 
2524 	if (!is_usb4_dpin(port))
2525 		return -EOPNOTSUPP;
2526 
2527 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2528 			   port->cap_adap + ADP_DP_CS_2, 1);
2529 	if (ret)
2530 		return ret;
2531 
2532 	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2533 	switch (tmp) {
2534 	case DP_COMMON_CAP_RATE_RBR:
2535 		*rate = 1620;
2536 		break;
2537 	case DP_COMMON_CAP_RATE_HBR:
2538 		*rate = 2700;
2539 		break;
2540 	case DP_COMMON_CAP_RATE_HBR2:
2541 		*rate = 5400;
2542 		break;
2543 	case DP_COMMON_CAP_RATE_HBR3:
2544 		*rate = 8100;
2545 		break;
2546 	}
2547 
2548 	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2549 	switch (tmp) {
2550 	case DP_COMMON_CAP_1_LANE:
2551 		*lanes = 1;
2552 		break;
2553 	case DP_COMMON_CAP_2_LANES:
2554 		*lanes = 2;
2555 		break;
2556 	case DP_COMMON_CAP_4_LANES:
2557 		*lanes = 4;
2558 		break;
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 /**
2565  * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2566  * @port: DP IN adapter
2567  * @rate: Non-reduced rate in Mb/s
2568  * @lanes: Non-reduced lanes
2569  *
2570  * Before the capabilities reduction this function can be used to set
2571  * the non-reduced values for the DP IN adapter. Returns %0 in success
2572  * and negative errno otherwise. If the adapter does not support this
2573  * %-EOPNOTSUPP is returned.
2574  */
2575 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2576 {
2577 	u32 val;
2578 	int ret;
2579 
2580 	if (!is_usb4_dpin(port))
2581 		return -EOPNOTSUPP;
2582 
2583 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2584 			   port->cap_adap + ADP_DP_CS_2, 1);
2585 	if (ret)
2586 		return ret;
2587 
2588 	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2589 
2590 	switch (rate) {
2591 	case 1620:
2592 		break;
2593 	case 2700:
2594 		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2595 			& ADP_DP_CS_2_NRD_MLR_MASK;
2596 		break;
2597 	case 5400:
2598 		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2599 			& ADP_DP_CS_2_NRD_MLR_MASK;
2600 		break;
2601 	case 8100:
2602 		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2603 			& ADP_DP_CS_2_NRD_MLR_MASK;
2604 		break;
2605 	default:
2606 		return -EINVAL;
2607 	}
2608 
2609 	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2610 
2611 	switch (lanes) {
2612 	case 1:
2613 		break;
2614 	case 2:
2615 		val |= DP_COMMON_CAP_2_LANES;
2616 		break;
2617 	case 4:
2618 		val |= DP_COMMON_CAP_4_LANES;
2619 		break;
2620 	default:
2621 		return -EINVAL;
2622 	}
2623 
2624 	return tb_port_write(port, &val, TB_CFG_PORT,
2625 			     port->cap_adap + ADP_DP_CS_2, 1);
2626 }
2627 
2628 /**
2629  * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2630  * @port: DP IN adapter
2631  *
2632  * Reads the programmed granularity from @port. If the DP IN adapter does
2633  * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2634  * errno in other error cases.
2635  */
2636 int usb4_dp_port_granularity(struct tb_port *port)
2637 {
2638 	u32 val;
2639 	int ret;
2640 
2641 	if (!is_usb4_dpin(port))
2642 		return -EOPNOTSUPP;
2643 
2644 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2645 			   port->cap_adap + ADP_DP_CS_2, 1);
2646 	if (ret)
2647 		return ret;
2648 
2649 	val &= ADP_DP_CS_2_GR_MASK;
2650 	val >>= ADP_DP_CS_2_GR_SHIFT;
2651 
2652 	switch (val) {
2653 	case ADP_DP_CS_2_GR_0_25G:
2654 		return 250;
2655 	case ADP_DP_CS_2_GR_0_5G:
2656 		return 500;
2657 	case ADP_DP_CS_2_GR_1G:
2658 		return 1000;
2659 	}
2660 
2661 	return -EINVAL;
2662 }
2663 
2664 /**
2665  * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2666  * @port: DP IN adapter
2667  * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2668  *
2669  * Sets the granularity used with the estimated, allocated and requested
2670  * bandwidth. Returns %0 in success and negative errno otherwise. If the
2671  * adapter does not support this %-EOPNOTSUPP is returned.
2672  */
2673 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2674 {
2675 	u32 val;
2676 	int ret;
2677 
2678 	if (!is_usb4_dpin(port))
2679 		return -EOPNOTSUPP;
2680 
2681 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2682 			   port->cap_adap + ADP_DP_CS_2, 1);
2683 	if (ret)
2684 		return ret;
2685 
2686 	val &= ~ADP_DP_CS_2_GR_MASK;
2687 
2688 	switch (granularity) {
2689 	case 250:
2690 		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2691 		break;
2692 	case 500:
2693 		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2694 		break;
2695 	case 1000:
2696 		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2697 		break;
2698 	default:
2699 		return -EINVAL;
2700 	}
2701 
2702 	return tb_port_write(port, &val, TB_CFG_PORT,
2703 			     port->cap_adap + ADP_DP_CS_2, 1);
2704 }
2705 
2706 /**
2707  * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2708  * @port: DP IN adapter
2709  * @bw: Estimated bandwidth in Mb/s.
2710  *
2711  * Sets the estimated bandwidth to @bw. Set the granularity by calling
2712  * usb4_dp_port_set_granularity() before calling this. The @bw is round
2713  * down to the closest granularity multiplier. Returns %0 in success
2714  * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2715  * the adapter does not support this.
2716  */
2717 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2718 {
2719 	u32 val, granularity;
2720 	int ret;
2721 
2722 	if (!is_usb4_dpin(port))
2723 		return -EOPNOTSUPP;
2724 
2725 	ret = usb4_dp_port_granularity(port);
2726 	if (ret < 0)
2727 		return ret;
2728 	granularity = ret;
2729 
2730 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2731 			   port->cap_adap + ADP_DP_CS_2, 1);
2732 	if (ret)
2733 		return ret;
2734 
2735 	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2736 	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2737 
2738 	return tb_port_write(port, &val, TB_CFG_PORT,
2739 			     port->cap_adap + ADP_DP_CS_2, 1);
2740 }
2741 
2742 /**
2743  * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2744  * @port: DP IN adapter
2745  *
2746  * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2747  * account the programmed granularity). Returns negative errno in case
2748  * of error.
2749  */
2750 int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2751 {
2752 	u32 val, granularity;
2753 	int ret;
2754 
2755 	if (!is_usb4_dpin(port))
2756 		return -EOPNOTSUPP;
2757 
2758 	ret = usb4_dp_port_granularity(port);
2759 	if (ret < 0)
2760 		return ret;
2761 	granularity = ret;
2762 
2763 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2764 			   port->cap_adap + DP_STATUS, 1);
2765 	if (ret)
2766 		return ret;
2767 
2768 	val &= DP_STATUS_ALLOCATED_BW_MASK;
2769 	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2770 
2771 	return val * granularity;
2772 }
2773 
2774 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2775 {
2776 	u32 val;
2777 	int ret;
2778 
2779 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2780 			   port->cap_adap + ADP_DP_CS_2, 1);
2781 	if (ret)
2782 		return ret;
2783 
2784 	if (ack)
2785 		val |= ADP_DP_CS_2_CA;
2786 	else
2787 		val &= ~ADP_DP_CS_2_CA;
2788 
2789 	return tb_port_write(port, &val, TB_CFG_PORT,
2790 			     port->cap_adap + ADP_DP_CS_2, 1);
2791 }
2792 
2793 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2794 {
2795 	return __usb4_dp_port_set_cm_ack(port, true);
2796 }
2797 
2798 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2799 					      int timeout_msec)
2800 {
2801 	ktime_t end;
2802 	u32 val;
2803 	int ret;
2804 
2805 	ret = __usb4_dp_port_set_cm_ack(port, false);
2806 	if (ret)
2807 		return ret;
2808 
2809 	end = ktime_add_ms(ktime_get(), timeout_msec);
2810 	do {
2811 		ret = tb_port_read(port, &val, TB_CFG_PORT,
2812 				   port->cap_adap + ADP_DP_CS_8, 1);
2813 		if (ret)
2814 			return ret;
2815 
2816 		if (!(val & ADP_DP_CS_8_DR))
2817 			break;
2818 
2819 		usleep_range(50, 100);
2820 	} while (ktime_before(ktime_get(), end));
2821 
2822 	if (val & ADP_DP_CS_8_DR)
2823 		return -ETIMEDOUT;
2824 
2825 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2826 			   port->cap_adap + ADP_DP_CS_2, 1);
2827 	if (ret)
2828 		return ret;
2829 
2830 	val &= ~ADP_DP_CS_2_CA;
2831 	return tb_port_write(port, &val, TB_CFG_PORT,
2832 			     port->cap_adap + ADP_DP_CS_2, 1);
2833 }
2834 
2835 /**
2836  * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2837  * @port: DP IN adapter
2838  * @bw: New allocated bandwidth in Mb/s
2839  *
2840  * Communicates the new allocated bandwidth with the DPCD (graphics
2841  * driver). Takes into account the programmed granularity. Returns %0 in
2842  * success and negative errno in case of error.
2843  */
2844 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2845 {
2846 	u32 val, granularity;
2847 	int ret;
2848 
2849 	if (!is_usb4_dpin(port))
2850 		return -EOPNOTSUPP;
2851 
2852 	ret = usb4_dp_port_granularity(port);
2853 	if (ret < 0)
2854 		return ret;
2855 	granularity = ret;
2856 
2857 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2858 			   port->cap_adap + DP_STATUS, 1);
2859 	if (ret)
2860 		return ret;
2861 
2862 	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2863 	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2864 
2865 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2866 			    port->cap_adap + DP_STATUS, 1);
2867 	if (ret)
2868 		return ret;
2869 
2870 	ret = usb4_dp_port_set_cm_ack(port);
2871 	if (ret)
2872 		return ret;
2873 
2874 	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2875 }
2876 
2877 /**
2878  * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2879  * @port: DP IN adapter
2880  *
2881  * Reads the DPCD (graphics driver) requested bandwidth and returns it
2882  * in Mb/s. Takes the programmed granularity into account. In case of
2883  * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2884  * the adapter does not support bandwidth allocation mode, and %ENODATA
2885  * if there is no active bandwidth request from the graphics driver.
2886  */
2887 int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2888 {
2889 	u32 val, granularity;
2890 	int ret;
2891 
2892 	if (!is_usb4_dpin(port))
2893 		return -EOPNOTSUPP;
2894 
2895 	ret = usb4_dp_port_granularity(port);
2896 	if (ret < 0)
2897 		return ret;
2898 	granularity = ret;
2899 
2900 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2901 			   port->cap_adap + ADP_DP_CS_8, 1);
2902 	if (ret)
2903 		return ret;
2904 
2905 	if (!(val & ADP_DP_CS_8_DR))
2906 		return -ENODATA;
2907 
2908 	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2909 }
2910 
2911 /**
2912  * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2913  * @port: PCIe adapter
2914  * @enable: Enable/disable extended encapsulation
2915  *
2916  * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2917  * needs to make sure both adapters support this before enabling. Returns %0 on
2918  * success and negative errno otherwise.
2919  */
2920 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2921 {
2922 	u32 val;
2923 	int ret;
2924 
2925 	if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2926 		return -EINVAL;
2927 
2928 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2929 			   port->cap_adap + ADP_PCIE_CS_1, 1);
2930 	if (ret)
2931 		return ret;
2932 
2933 	if (enable)
2934 		val |= ADP_PCIE_CS_1_EE;
2935 	else
2936 		val &= ~ADP_PCIE_CS_1_EE;
2937 
2938 	return tb_port_write(port, &val, TB_CFG_PORT,
2939 			     port->cap_adap + ADP_PCIE_CS_1, 1);
2940 }
2941