xref: /linux/drivers/thunderbolt/usb4.c (revision 9a95c5bfbf02a0a7f5983280fe284a0ff0836c34)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/units.h>
13 
14 #include "sb_regs.h"
15 #include "tb.h"
16 
17 #define USB4_DATA_RETRIES		3
18 #define USB4_DATA_DWORDS		16
19 
20 enum usb4_sb_target {
21 	USB4_SB_TARGET_ROUTER,
22 	USB4_SB_TARGET_PARTNER,
23 	USB4_SB_TARGET_RETIMER,
24 };
25 
26 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
27 #define USB4_NVM_READ_OFFSET_SHIFT	2
28 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
29 #define USB4_NVM_READ_LENGTH_SHIFT	24
30 
31 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
32 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
33 
34 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
35 #define USB4_DROM_ADDRESS_SHIFT		2
36 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
37 #define USB4_DROM_SIZE_SHIFT		15
38 
39 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
40 
41 #define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
42 #define USB4_BA_INDEX_MASK		GENMASK(15, 0)
43 
44 enum usb4_ba_index {
45 	USB4_BA_MAX_USB3 = 0x1,
46 	USB4_BA_MIN_DP_AUX = 0x2,
47 	USB4_BA_MIN_DP_MAIN = 0x3,
48 	USB4_BA_MAX_PCIE = 0x4,
49 	USB4_BA_MAX_HI = 0x5,
50 };
51 
52 #define USB4_BA_VALUE_MASK		GENMASK(31, 16)
53 #define USB4_BA_VALUE_SHIFT		16
54 
55 /* Delays in us used with usb4_port_wait_for_bit() */
56 #define USB4_PORT_DELAY			50
57 #define USB4_PORT_SB_DELAY		5000
58 
59 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
60 				 u32 *metadata, u8 *status,
61 				 const void *tx_data, size_t tx_dwords,
62 				 void *rx_data, size_t rx_dwords)
63 {
64 	u32 val;
65 	int ret;
66 
67 	if (metadata) {
68 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
69 		if (ret)
70 			return ret;
71 	}
72 	if (tx_dwords) {
73 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
74 				  tx_dwords);
75 		if (ret)
76 			return ret;
77 	}
78 
79 	val = opcode | ROUTER_CS_26_OV;
80 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
81 	if (ret)
82 		return ret;
83 
84 	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
85 	if (ret)
86 		return ret;
87 
88 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
89 	if (ret)
90 		return ret;
91 
92 	if (val & ROUTER_CS_26_ONS)
93 		return -EOPNOTSUPP;
94 
95 	if (status)
96 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
97 			ROUTER_CS_26_STATUS_SHIFT;
98 
99 	if (metadata) {
100 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
101 		if (ret)
102 			return ret;
103 	}
104 	if (rx_dwords) {
105 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
106 				 rx_dwords);
107 		if (ret)
108 			return ret;
109 	}
110 
111 	return 0;
112 }
113 
114 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
115 			    u8 *status, const void *tx_data, size_t tx_dwords,
116 			    void *rx_data, size_t rx_dwords)
117 {
118 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
119 
120 	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
121 		return -EINVAL;
122 
123 	/*
124 	 * If the connection manager implementation provides USB4 router
125 	 * operation proxy callback, call it here instead of running the
126 	 * operation natively.
127 	 */
128 	if (cm_ops->usb4_switch_op) {
129 		int ret;
130 
131 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
132 					     tx_data, tx_dwords, rx_data,
133 					     rx_dwords);
134 		if (ret != -EOPNOTSUPP)
135 			return ret;
136 
137 		/*
138 		 * If the proxy was not supported then run the native
139 		 * router operation instead.
140 		 */
141 	}
142 
143 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
144 				     tx_dwords, rx_data, rx_dwords);
145 }
146 
147 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
148 				 u32 *metadata, u8 *status)
149 {
150 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
151 }
152 
153 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
154 				      u32 *metadata, u8 *status,
155 				      const void *tx_data, size_t tx_dwords,
156 				      void *rx_data, size_t rx_dwords)
157 {
158 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
159 				tx_dwords, rx_data, rx_dwords);
160 }
161 
162 /**
163  * usb4_switch_check_wakes() - Check for wakes and notify PM core about them
164  * @sw: Router whose wakes to check
165  *
166  * Checks wakes occurred during suspend and notify the PM core about them.
167  */
168 void usb4_switch_check_wakes(struct tb_switch *sw)
169 {
170 	bool wakeup_usb4 = false;
171 	struct usb4_port *usb4;
172 	struct tb_port *port;
173 	bool wakeup = false;
174 	u32 val;
175 
176 	if (tb_route(sw)) {
177 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
178 			return;
179 
180 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
181 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
182 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
183 
184 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
185 	}
186 
187 	/*
188 	 * Check for any downstream ports for USB4 wake,
189 	 * connection wake and disconnection wake.
190 	 */
191 	tb_switch_for_each_port(sw, port) {
192 		if (!port->cap_usb4)
193 			continue;
194 
195 		if (tb_port_read(port, &val, TB_CFG_PORT,
196 				 port->cap_usb4 + PORT_CS_18, 1))
197 			break;
198 
199 		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
200 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
201 			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
202 			    (val & PORT_CS_18_WODS) ? "yes" : "no");
203 
204 		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
205 				     PORT_CS_18_WODS);
206 
207 		usb4 = port->usb4;
208 		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
209 			pm_wakeup_event(&usb4->dev, 0);
210 
211 		wakeup |= wakeup_usb4;
212 	}
213 
214 	if (wakeup)
215 		pm_wakeup_event(&sw->dev, 0);
216 }
217 
218 static bool link_is_usb4(struct tb_port *port)
219 {
220 	u32 val;
221 
222 	if (!port->cap_usb4)
223 		return false;
224 
225 	if (tb_port_read(port, &val, TB_CFG_PORT,
226 			 port->cap_usb4 + PORT_CS_18, 1))
227 		return false;
228 
229 	return !(val & PORT_CS_18_TCM);
230 }
231 
232 /**
233  * usb4_switch_setup() - Additional setup for USB4 device
234  * @sw: USB4 router to setup
235  *
236  * USB4 routers need additional settings in order to enable all the
237  * tunneling. This function enables USB and PCIe tunneling if it can be
238  * enabled (e.g the parent switch also supports them). If USB tunneling
239  * is not available for some reason (like that there is Thunderbolt 3
240  * switch upstream) then the internal xHCI controller is enabled
241  * instead.
242  *
243  * This does not set the configuration valid bit of the router. To do
244  * that call usb4_switch_configuration_valid().
245  */
246 int usb4_switch_setup(struct tb_switch *sw)
247 {
248 	struct tb_switch *parent = tb_switch_parent(sw);
249 	struct tb_port *down;
250 	bool tbt3, xhci;
251 	u32 val = 0;
252 	int ret;
253 
254 	if (!tb_route(sw))
255 		return 0;
256 
257 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
258 	if (ret)
259 		return ret;
260 
261 	down = tb_switch_downstream_port(sw);
262 	sw->link_usb4 = link_is_usb4(down);
263 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
264 
265 	xhci = val & ROUTER_CS_6_HCI;
266 	tbt3 = !(val & ROUTER_CS_6_TNS);
267 
268 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
269 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
270 
271 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
272 	if (ret)
273 		return ret;
274 
275 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
276 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
277 		val |= ROUTER_CS_5_UTO;
278 		xhci = false;
279 	}
280 
281 	/*
282 	 * Only enable PCIe tunneling if the parent router supports it
283 	 * and it is not disabled.
284 	 */
285 	if (tb_acpi_may_tunnel_pcie() &&
286 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
287 		val |= ROUTER_CS_5_PTO;
288 		/*
289 		 * xHCI can be enabled if PCIe tunneling is supported
290 		 * and the parent does not have any USB3 dowstream
291 		 * adapters (so we cannot do USB 3.x tunneling).
292 		 */
293 		if (xhci)
294 			val |= ROUTER_CS_5_HCO;
295 	}
296 
297 	/* TBT3 supported by the CM */
298 	val &= ~ROUTER_CS_5_CNS;
299 
300 	return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
301 }
302 
303 /**
304  * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
305  * @sw: USB4 router
306  *
307  * Sets configuration valid bit for the router. Must be called before
308  * any tunnels can be set through the router and after
309  * usb4_switch_setup() has been called. Can be called to host and device
310  * routers (does nothing for the latter).
311  *
312  * Returns %0 in success and negative errno otherwise.
313  */
314 int usb4_switch_configuration_valid(struct tb_switch *sw)
315 {
316 	u32 val;
317 	int ret;
318 
319 	if (!tb_route(sw))
320 		return 0;
321 
322 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
323 	if (ret)
324 		return ret;
325 
326 	val |= ROUTER_CS_5_CV;
327 
328 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
329 	if (ret)
330 		return ret;
331 
332 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
333 				      ROUTER_CS_6_CR, 50);
334 }
335 
336 /**
337  * usb4_switch_read_uid() - Read UID from USB4 router
338  * @sw: USB4 router
339  * @uid: UID is stored here
340  *
341  * Reads 64-bit UID from USB4 router config space.
342  */
343 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
344 {
345 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
346 }
347 
348 static int usb4_switch_drom_read_block(void *data,
349 				       unsigned int dwaddress, void *buf,
350 				       size_t dwords)
351 {
352 	struct tb_switch *sw = data;
353 	u8 status = 0;
354 	u32 metadata;
355 	int ret;
356 
357 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
358 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
359 		USB4_DROM_ADDRESS_MASK;
360 
361 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
362 				  &status, NULL, 0, buf, dwords);
363 	if (ret)
364 		return ret;
365 
366 	return status ? -EIO : 0;
367 }
368 
369 /**
370  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
371  * @sw: USB4 router
372  * @address: Byte address inside DROM to start reading
373  * @buf: Buffer where the DROM content is stored
374  * @size: Number of bytes to read from DROM
375  *
376  * Uses USB4 router operations to read router DROM. For devices this
377  * should always work but for hosts it may return %-EOPNOTSUPP in which
378  * case the host router does not have DROM.
379  */
380 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
381 			  size_t size)
382 {
383 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
384 				usb4_switch_drom_read_block, sw);
385 }
386 
387 /**
388  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
389  * @sw: USB4 router
390  *
391  * Checks whether conditions are met so that lane bonding can be
392  * established with the upstream router. Call only for device routers.
393  */
394 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
395 {
396 	struct tb_port *up;
397 	int ret;
398 	u32 val;
399 
400 	up = tb_upstream_port(sw);
401 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
402 	if (ret)
403 		return false;
404 
405 	return !!(val & PORT_CS_18_BE);
406 }
407 
408 /**
409  * usb4_switch_set_wake() - Enabled/disable wake
410  * @sw: USB4 router
411  * @flags: Wakeup flags (%0 to disable)
412  *
413  * Enables/disables router to wake up from sleep.
414  */
415 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
416 {
417 	struct usb4_port *usb4;
418 	struct tb_port *port;
419 	u64 route = tb_route(sw);
420 	u32 val;
421 	int ret;
422 
423 	/*
424 	 * Enable wakes coming from all USB4 downstream ports (from
425 	 * child routers). For device routers do this also for the
426 	 * upstream USB4 port.
427 	 */
428 	tb_switch_for_each_port(sw, port) {
429 		if (!tb_port_is_null(port))
430 			continue;
431 		if (!route && tb_is_upstream_port(port))
432 			continue;
433 		if (!port->cap_usb4)
434 			continue;
435 
436 		ret = tb_port_read(port, &val, TB_CFG_PORT,
437 				   port->cap_usb4 + PORT_CS_19, 1);
438 		if (ret)
439 			return ret;
440 
441 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
442 
443 		if (tb_is_upstream_port(port)) {
444 			val |= PORT_CS_19_WOU4;
445 		} else {
446 			bool configured = val & PORT_CS_19_PC;
447 			usb4 = port->usb4;
448 
449 			if (((flags & TB_WAKE_ON_CONNECT) |
450 			      device_may_wakeup(&usb4->dev)) && !configured)
451 				val |= PORT_CS_19_WOC;
452 			if (((flags & TB_WAKE_ON_DISCONNECT) |
453 			      device_may_wakeup(&usb4->dev)) && configured)
454 				val |= PORT_CS_19_WOD;
455 			if ((flags & TB_WAKE_ON_USB4) && configured)
456 				val |= PORT_CS_19_WOU4;
457 		}
458 
459 		ret = tb_port_write(port, &val, TB_CFG_PORT,
460 				    port->cap_usb4 + PORT_CS_19, 1);
461 		if (ret)
462 			return ret;
463 	}
464 
465 	/*
466 	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
467 	 * needed for device routers.
468 	 */
469 	if (route) {
470 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
471 		if (ret)
472 			return ret;
473 
474 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
475 		if (flags & TB_WAKE_ON_USB3)
476 			val |= ROUTER_CS_5_WOU;
477 		if (flags & TB_WAKE_ON_PCIE)
478 			val |= ROUTER_CS_5_WOP;
479 		if (flags & TB_WAKE_ON_DP)
480 			val |= ROUTER_CS_5_WOD;
481 
482 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
483 		if (ret)
484 			return ret;
485 	}
486 
487 	return 0;
488 }
489 
490 /**
491  * usb4_switch_set_sleep() - Prepare the router to enter sleep
492  * @sw: USB4 router
493  *
494  * Sets sleep bit for the router. Returns when the router sleep ready
495  * bit has been asserted.
496  */
497 int usb4_switch_set_sleep(struct tb_switch *sw)
498 {
499 	int ret;
500 	u32 val;
501 
502 	/* Set sleep bit and wait for sleep ready to be asserted */
503 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
504 	if (ret)
505 		return ret;
506 
507 	val |= ROUTER_CS_5_SLP;
508 
509 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
510 	if (ret)
511 		return ret;
512 
513 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
514 				      ROUTER_CS_6_SLPR, 500);
515 }
516 
517 /**
518  * usb4_switch_nvm_sector_size() - Return router NVM sector size
519  * @sw: USB4 router
520  *
521  * If the router supports NVM operations this function returns the NVM
522  * sector size in bytes. If NVM operations are not supported returns
523  * %-EOPNOTSUPP.
524  */
525 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
526 {
527 	u32 metadata;
528 	u8 status;
529 	int ret;
530 
531 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
532 			     &status);
533 	if (ret)
534 		return ret;
535 
536 	if (status)
537 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
538 
539 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
540 }
541 
542 static int usb4_switch_nvm_read_block(void *data,
543 	unsigned int dwaddress, void *buf, size_t dwords)
544 {
545 	struct tb_switch *sw = data;
546 	u8 status = 0;
547 	u32 metadata;
548 	int ret;
549 
550 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
551 		   USB4_NVM_READ_LENGTH_MASK;
552 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
553 		   USB4_NVM_READ_OFFSET_MASK;
554 
555 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
556 				  &status, NULL, 0, buf, dwords);
557 	if (ret)
558 		return ret;
559 
560 	return status ? -EIO : 0;
561 }
562 
563 /**
564  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
565  * @sw: USB4 router
566  * @address: Starting address in bytes
567  * @buf: Read data is placed here
568  * @size: How many bytes to read
569  *
570  * Reads NVM contents of the router. If NVM is not supported returns
571  * %-EOPNOTSUPP.
572  */
573 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
574 			 size_t size)
575 {
576 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
577 				usb4_switch_nvm_read_block, sw);
578 }
579 
580 /**
581  * usb4_switch_nvm_set_offset() - Set NVM write offset
582  * @sw: USB4 router
583  * @address: Start offset
584  *
585  * Explicitly sets NVM write offset. Normally when writing to NVM this
586  * is done automatically by usb4_switch_nvm_write().
587  *
588  * Returns %0 in success and negative errno if there was a failure.
589  */
590 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
591 {
592 	u32 metadata, dwaddress;
593 	u8 status = 0;
594 	int ret;
595 
596 	dwaddress = address / 4;
597 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
598 		   USB4_NVM_SET_OFFSET_MASK;
599 
600 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
601 			     &status);
602 	if (ret)
603 		return ret;
604 
605 	return status ? -EIO : 0;
606 }
607 
608 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
609 					    const void *buf, size_t dwords)
610 {
611 	struct tb_switch *sw = data;
612 	u8 status;
613 	int ret;
614 
615 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
616 				  buf, dwords, NULL, 0);
617 	if (ret)
618 		return ret;
619 
620 	return status ? -EIO : 0;
621 }
622 
623 /**
624  * usb4_switch_nvm_write() - Write to the router NVM
625  * @sw: USB4 router
626  * @address: Start address where to write in bytes
627  * @buf: Pointer to the data to write
628  * @size: Size of @buf in bytes
629  *
630  * Writes @buf to the router NVM using USB4 router operations. If NVM
631  * write is not supported returns %-EOPNOTSUPP.
632  */
633 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
634 			  const void *buf, size_t size)
635 {
636 	int ret;
637 
638 	ret = usb4_switch_nvm_set_offset(sw, address);
639 	if (ret)
640 		return ret;
641 
642 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
643 				 usb4_switch_nvm_write_next_block, sw);
644 }
645 
646 /**
647  * usb4_switch_nvm_authenticate() - Authenticate new NVM
648  * @sw: USB4 router
649  *
650  * After the new NVM has been written via usb4_switch_nvm_write(), this
651  * function triggers NVM authentication process. The router gets power
652  * cycled and if the authentication is successful the new NVM starts
653  * running. In case of failure returns negative errno.
654  *
655  * The caller should call usb4_switch_nvm_authenticate_status() to read
656  * the status of the authentication after power cycle. It should be the
657  * first router operation to avoid the status being lost.
658  */
659 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
660 {
661 	int ret;
662 
663 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
664 	switch (ret) {
665 	/*
666 	 * The router is power cycled once NVM_AUTH is started so it is
667 	 * expected to get any of the following errors back.
668 	 */
669 	case -EACCES:
670 	case -ENOTCONN:
671 	case -ETIMEDOUT:
672 		return 0;
673 
674 	default:
675 		return ret;
676 	}
677 }
678 
679 /**
680  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
681  * @sw: USB4 router
682  * @status: Status code of the operation
683  *
684  * The function checks if there is status available from the last NVM
685  * authenticate router operation. If there is status then %0 is returned
686  * and the status code is placed in @status. Returns negative errno in case
687  * of failure.
688  *
689  * Must be called before any other router operation.
690  */
691 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
692 {
693 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
694 	u16 opcode;
695 	u32 val;
696 	int ret;
697 
698 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
699 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
700 		if (ret != -EOPNOTSUPP)
701 			return ret;
702 	}
703 
704 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
705 	if (ret)
706 		return ret;
707 
708 	/* Check that the opcode is correct */
709 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
710 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
711 		if (val & ROUTER_CS_26_OV)
712 			return -EBUSY;
713 		if (val & ROUTER_CS_26_ONS)
714 			return -EOPNOTSUPP;
715 
716 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
717 			ROUTER_CS_26_STATUS_SHIFT;
718 	} else {
719 		*status = 0;
720 	}
721 
722 	return 0;
723 }
724 
725 /**
726  * usb4_switch_credits_init() - Read buffer allocation parameters
727  * @sw: USB4 router
728  *
729  * Reads @sw buffer allocation parameters and initializes @sw buffer
730  * allocation fields accordingly. Specifically @sw->credits_allocation
731  * is set to %true if these parameters can be used in tunneling.
732  *
733  * Returns %0 on success and negative errno otherwise.
734  */
735 int usb4_switch_credits_init(struct tb_switch *sw)
736 {
737 	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
738 	int ret, length, i, nports;
739 	const struct tb_port *port;
740 	u32 data[USB4_DATA_DWORDS];
741 	u32 metadata = 0;
742 	u8 status = 0;
743 
744 	memset(data, 0, sizeof(data));
745 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
746 				  &status, NULL, 0, data, ARRAY_SIZE(data));
747 	if (ret)
748 		return ret;
749 	if (status)
750 		return -EIO;
751 
752 	length = metadata & USB4_BA_LENGTH_MASK;
753 	if (WARN_ON(length > ARRAY_SIZE(data)))
754 		return -EMSGSIZE;
755 
756 	max_usb3 = -1;
757 	min_dp_aux = -1;
758 	min_dp_main = -1;
759 	max_pcie = -1;
760 	max_dma = -1;
761 
762 	tb_sw_dbg(sw, "credit allocation parameters:\n");
763 
764 	for (i = 0; i < length; i++) {
765 		u16 index, value;
766 
767 		index = data[i] & USB4_BA_INDEX_MASK;
768 		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
769 
770 		switch (index) {
771 		case USB4_BA_MAX_USB3:
772 			tb_sw_dbg(sw, " USB3: %u\n", value);
773 			max_usb3 = value;
774 			break;
775 		case USB4_BA_MIN_DP_AUX:
776 			tb_sw_dbg(sw, " DP AUX: %u\n", value);
777 			min_dp_aux = value;
778 			break;
779 		case USB4_BA_MIN_DP_MAIN:
780 			tb_sw_dbg(sw, " DP main: %u\n", value);
781 			min_dp_main = value;
782 			break;
783 		case USB4_BA_MAX_PCIE:
784 			tb_sw_dbg(sw, " PCIe: %u\n", value);
785 			max_pcie = value;
786 			break;
787 		case USB4_BA_MAX_HI:
788 			tb_sw_dbg(sw, " DMA: %u\n", value);
789 			max_dma = value;
790 			break;
791 		default:
792 			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
793 				  index);
794 			break;
795 		}
796 	}
797 
798 	/*
799 	 * Validate the buffer allocation preferences. If we find
800 	 * issues, log a warning and fall back using the hard-coded
801 	 * values.
802 	 */
803 
804 	/* Host router must report baMaxHI */
805 	if (!tb_route(sw) && max_dma < 0) {
806 		tb_sw_warn(sw, "host router is missing baMaxHI\n");
807 		goto err_invalid;
808 	}
809 
810 	nports = 0;
811 	tb_switch_for_each_port(sw, port) {
812 		if (tb_port_is_null(port))
813 			nports++;
814 	}
815 
816 	/* Must have DP buffer allocation (multiple USB4 ports) */
817 	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
818 		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
819 		goto err_invalid;
820 	}
821 
822 	tb_switch_for_each_port(sw, port) {
823 		if (tb_port_is_dpout(port) && min_dp_main < 0) {
824 			tb_sw_warn(sw, "missing baMinDPmain");
825 			goto err_invalid;
826 		}
827 		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
828 		    min_dp_aux < 0) {
829 			tb_sw_warn(sw, "missing baMinDPaux");
830 			goto err_invalid;
831 		}
832 		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
833 		    max_usb3 < 0) {
834 			tb_sw_warn(sw, "missing baMaxUSB3");
835 			goto err_invalid;
836 		}
837 		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
838 		    max_pcie < 0) {
839 			tb_sw_warn(sw, "missing baMaxPCIe");
840 			goto err_invalid;
841 		}
842 	}
843 
844 	/*
845 	 * Buffer allocation passed the validation so we can use it in
846 	 * path creation.
847 	 */
848 	sw->credit_allocation = true;
849 	if (max_usb3 > 0)
850 		sw->max_usb3_credits = max_usb3;
851 	if (min_dp_aux > 0)
852 		sw->min_dp_aux_credits = min_dp_aux;
853 	if (min_dp_main > 0)
854 		sw->min_dp_main_credits = min_dp_main;
855 	if (max_pcie > 0)
856 		sw->max_pcie_credits = max_pcie;
857 	if (max_dma > 0)
858 		sw->max_dma_credits = max_dma;
859 
860 	return 0;
861 
862 err_invalid:
863 	return -EINVAL;
864 }
865 
866 /**
867  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
868  * @sw: USB4 router
869  * @in: DP IN adapter
870  *
871  * For DP tunneling this function can be used to query availability of
872  * DP IN resource. Returns true if the resource is available for DP
873  * tunneling, false otherwise.
874  */
875 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
876 {
877 	u32 metadata = in->port;
878 	u8 status;
879 	int ret;
880 
881 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
882 			     &status);
883 	/*
884 	 * If DP resource allocation is not supported assume it is
885 	 * always available.
886 	 */
887 	if (ret == -EOPNOTSUPP)
888 		return true;
889 	if (ret)
890 		return false;
891 
892 	return !status;
893 }
894 
895 /**
896  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
897  * @sw: USB4 router
898  * @in: DP IN adapter
899  *
900  * Allocates DP IN resource for DP tunneling using USB4 router
901  * operations. If the resource was allocated returns %0. Otherwise
902  * returns negative errno, in particular %-EBUSY if the resource is
903  * already allocated.
904  */
905 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
906 {
907 	u32 metadata = in->port;
908 	u8 status;
909 	int ret;
910 
911 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
912 			     &status);
913 	if (ret == -EOPNOTSUPP)
914 		return 0;
915 	if (ret)
916 		return ret;
917 
918 	return status ? -EBUSY : 0;
919 }
920 
921 /**
922  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
923  * @sw: USB4 router
924  * @in: DP IN adapter
925  *
926  * Releases the previously allocated DP IN resource.
927  */
928 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
929 {
930 	u32 metadata = in->port;
931 	u8 status;
932 	int ret;
933 
934 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
935 			     &status);
936 	if (ret == -EOPNOTSUPP)
937 		return 0;
938 	if (ret)
939 		return ret;
940 
941 	return status ? -EIO : 0;
942 }
943 
944 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
945 {
946 	struct tb_port *p;
947 	int usb4_idx = 0;
948 
949 	/* Assume port is primary */
950 	tb_switch_for_each_port(sw, p) {
951 		if (!tb_port_is_null(p))
952 			continue;
953 		if (tb_is_upstream_port(p))
954 			continue;
955 		if (!p->link_nr) {
956 			if (p == port)
957 				break;
958 			usb4_idx++;
959 		}
960 	}
961 
962 	return usb4_idx;
963 }
964 
965 /**
966  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
967  * @sw: USB4 router
968  * @port: USB4 port
969  *
970  * USB4 routers have direct mapping between USB4 ports and PCIe
971  * downstream adapters where the PCIe topology is extended. This
972  * function returns the corresponding downstream PCIe adapter or %NULL
973  * if no such mapping was possible.
974  */
975 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
976 					  const struct tb_port *port)
977 {
978 	int usb4_idx = usb4_port_idx(sw, port);
979 	struct tb_port *p;
980 	int pcie_idx = 0;
981 
982 	/* Find PCIe down port matching usb4_port */
983 	tb_switch_for_each_port(sw, p) {
984 		if (!tb_port_is_pcie_down(p))
985 			continue;
986 
987 		if (pcie_idx == usb4_idx)
988 			return p;
989 
990 		pcie_idx++;
991 	}
992 
993 	return NULL;
994 }
995 
996 /**
997  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
998  * @sw: USB4 router
999  * @port: USB4 port
1000  *
1001  * USB4 routers have direct mapping between USB4 ports and USB 3.x
1002  * downstream adapters where the USB 3.x topology is extended. This
1003  * function returns the corresponding downstream USB 3.x adapter or
1004  * %NULL if no such mapping was possible.
1005  */
1006 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1007 					  const struct tb_port *port)
1008 {
1009 	int usb4_idx = usb4_port_idx(sw, port);
1010 	struct tb_port *p;
1011 	int usb_idx = 0;
1012 
1013 	/* Find USB3 down port matching usb4_port */
1014 	tb_switch_for_each_port(sw, p) {
1015 		if (!tb_port_is_usb3_down(p))
1016 			continue;
1017 
1018 		if (usb_idx == usb4_idx)
1019 			return p;
1020 
1021 		usb_idx++;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
1027 /**
1028  * usb4_switch_add_ports() - Add USB4 ports for this router
1029  * @sw: USB4 router
1030  *
1031  * For USB4 router finds all USB4 ports and registers devices for each.
1032  * Can be called to any router.
1033  *
1034  * Return %0 in case of success and negative errno in case of failure.
1035  */
1036 int usb4_switch_add_ports(struct tb_switch *sw)
1037 {
1038 	struct tb_port *port;
1039 
1040 	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1041 		return 0;
1042 
1043 	tb_switch_for_each_port(sw, port) {
1044 		struct usb4_port *usb4;
1045 
1046 		if (!tb_port_is_null(port))
1047 			continue;
1048 		if (!port->cap_usb4)
1049 			continue;
1050 
1051 		usb4 = usb4_port_device_add(port);
1052 		if (IS_ERR(usb4)) {
1053 			usb4_switch_remove_ports(sw);
1054 			return PTR_ERR(usb4);
1055 		}
1056 
1057 		port->usb4 = usb4;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /**
1064  * usb4_switch_remove_ports() - Removes USB4 ports from this router
1065  * @sw: USB4 router
1066  *
1067  * Unregisters previously registered USB4 ports.
1068  */
1069 void usb4_switch_remove_ports(struct tb_switch *sw)
1070 {
1071 	struct tb_port *port;
1072 
1073 	tb_switch_for_each_port(sw, port) {
1074 		if (port->usb4) {
1075 			usb4_port_device_remove(port->usb4);
1076 			port->usb4 = NULL;
1077 		}
1078 	}
1079 }
1080 
1081 /**
1082  * usb4_port_unlock() - Unlock USB4 downstream port
1083  * @port: USB4 port to unlock
1084  *
1085  * Unlocks USB4 downstream port so that the connection manager can
1086  * access the router below this port.
1087  */
1088 int usb4_port_unlock(struct tb_port *port)
1089 {
1090 	int ret;
1091 	u32 val;
1092 
1093 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1094 	if (ret)
1095 		return ret;
1096 
1097 	val &= ~ADP_CS_4_LCK;
1098 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1099 }
1100 
1101 /**
1102  * usb4_port_hotplug_enable() - Enables hotplug for a port
1103  * @port: USB4 port to operate on
1104  *
1105  * Enables hot plug events on a given port. This is only intended
1106  * to be used on lane, DP-IN, and DP-OUT adapters.
1107  */
1108 int usb4_port_hotplug_enable(struct tb_port *port)
1109 {
1110 	int ret;
1111 	u32 val;
1112 
1113 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1114 	if (ret)
1115 		return ret;
1116 
1117 	val &= ~ADP_CS_5_DHP;
1118 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1119 }
1120 
1121 /**
1122  * usb4_port_reset() - Issue downstream port reset
1123  * @port: USB4 port to reset
1124  *
1125  * Issues downstream port reset to @port.
1126  */
1127 int usb4_port_reset(struct tb_port *port)
1128 {
1129 	int ret;
1130 	u32 val;
1131 
1132 	if (!port->cap_usb4)
1133 		return -EINVAL;
1134 
1135 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1136 			   port->cap_usb4 + PORT_CS_19, 1);
1137 	if (ret)
1138 		return ret;
1139 
1140 	val |= PORT_CS_19_DPR;
1141 
1142 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1143 			    port->cap_usb4 + PORT_CS_19, 1);
1144 	if (ret)
1145 		return ret;
1146 
1147 	fsleep(10000);
1148 
1149 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1150 			   port->cap_usb4 + PORT_CS_19, 1);
1151 	if (ret)
1152 		return ret;
1153 
1154 	val &= ~PORT_CS_19_DPR;
1155 
1156 	return tb_port_write(port, &val, TB_CFG_PORT,
1157 			     port->cap_usb4 + PORT_CS_19, 1);
1158 }
1159 
1160 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1161 {
1162 	int ret;
1163 	u32 val;
1164 
1165 	if (!port->cap_usb4)
1166 		return -EINVAL;
1167 
1168 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1169 			   port->cap_usb4 + PORT_CS_19, 1);
1170 	if (ret)
1171 		return ret;
1172 
1173 	if (configured)
1174 		val |= PORT_CS_19_PC;
1175 	else
1176 		val &= ~PORT_CS_19_PC;
1177 
1178 	return tb_port_write(port, &val, TB_CFG_PORT,
1179 			     port->cap_usb4 + PORT_CS_19, 1);
1180 }
1181 
1182 /**
1183  * usb4_port_configure() - Set USB4 port configured
1184  * @port: USB4 router
1185  *
1186  * Sets the USB4 link to be configured for power management purposes.
1187  */
1188 int usb4_port_configure(struct tb_port *port)
1189 {
1190 	return usb4_port_set_configured(port, true);
1191 }
1192 
1193 /**
1194  * usb4_port_unconfigure() - Set USB4 port unconfigured
1195  * @port: USB4 router
1196  *
1197  * Sets the USB4 link to be unconfigured for power management purposes.
1198  */
1199 void usb4_port_unconfigure(struct tb_port *port)
1200 {
1201 	usb4_port_set_configured(port, false);
1202 }
1203 
1204 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1205 {
1206 	int ret;
1207 	u32 val;
1208 
1209 	if (!port->cap_usb4)
1210 		return -EINVAL;
1211 
1212 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1213 			   port->cap_usb4 + PORT_CS_19, 1);
1214 	if (ret)
1215 		return ret;
1216 
1217 	if (configured)
1218 		val |= PORT_CS_19_PID;
1219 	else
1220 		val &= ~PORT_CS_19_PID;
1221 
1222 	return tb_port_write(port, &val, TB_CFG_PORT,
1223 			     port->cap_usb4 + PORT_CS_19, 1);
1224 }
1225 
1226 /**
1227  * usb4_port_configure_xdomain() - Configure port for XDomain
1228  * @port: USB4 port connected to another host
1229  * @xd: XDomain that is connected to the port
1230  *
1231  * Marks the USB4 port as being connected to another host and updates
1232  * the link type. Returns %0 in success and negative errno in failure.
1233  */
1234 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1235 {
1236 	xd->link_usb4 = link_is_usb4(port);
1237 	return usb4_set_xdomain_configured(port, true);
1238 }
1239 
1240 /**
1241  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1242  * @port: USB4 port that was connected to another host
1243  *
1244  * Clears USB4 port from being marked as XDomain.
1245  */
1246 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1247 {
1248 	usb4_set_xdomain_configured(port, false);
1249 }
1250 
1251 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1252 			  u32 value, int timeout_msec, unsigned long delay_usec)
1253 {
1254 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1255 
1256 	do {
1257 		u32 val;
1258 		int ret;
1259 
1260 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1261 		if (ret)
1262 			return ret;
1263 
1264 		if ((val & bit) == value)
1265 			return 0;
1266 
1267 		fsleep(delay_usec);
1268 	} while (ktime_before(ktime_get(), timeout));
1269 
1270 	return -ETIMEDOUT;
1271 }
1272 
1273 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1274 {
1275 	if (dwords > USB4_DATA_DWORDS)
1276 		return -EINVAL;
1277 
1278 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1279 			    dwords);
1280 }
1281 
1282 static int usb4_port_write_data(struct tb_port *port, const void *data,
1283 				size_t dwords)
1284 {
1285 	if (dwords > USB4_DATA_DWORDS)
1286 		return -EINVAL;
1287 
1288 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1289 			     dwords);
1290 }
1291 
1292 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1293 			     u8 index, u8 reg, void *buf, u8 size)
1294 {
1295 	size_t dwords = DIV_ROUND_UP(size, 4);
1296 	int ret;
1297 	u32 val;
1298 
1299 	if (!port->cap_usb4)
1300 		return -EINVAL;
1301 
1302 	val = reg;
1303 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1304 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1305 	if (target == USB4_SB_TARGET_RETIMER)
1306 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1307 	val |= PORT_CS_1_PND;
1308 
1309 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1310 			    port->cap_usb4 + PORT_CS_1, 1);
1311 	if (ret)
1312 		return ret;
1313 
1314 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1315 				     PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY);
1316 	if (ret)
1317 		return ret;
1318 
1319 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1320 			    port->cap_usb4 + PORT_CS_1, 1);
1321 	if (ret)
1322 		return ret;
1323 
1324 	if (val & PORT_CS_1_NR)
1325 		return -ENODEV;
1326 	if (val & PORT_CS_1_RC)
1327 		return -EIO;
1328 
1329 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1330 }
1331 
1332 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1333 			      u8 index, u8 reg, const void *buf, u8 size)
1334 {
1335 	size_t dwords = DIV_ROUND_UP(size, 4);
1336 	int ret;
1337 	u32 val;
1338 
1339 	if (!port->cap_usb4)
1340 		return -EINVAL;
1341 
1342 	if (buf) {
1343 		ret = usb4_port_write_data(port, buf, dwords);
1344 		if (ret)
1345 			return ret;
1346 	}
1347 
1348 	val = reg;
1349 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1350 	val |= PORT_CS_1_WNR_WRITE;
1351 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1352 	if (target == USB4_SB_TARGET_RETIMER)
1353 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1354 	val |= PORT_CS_1_PND;
1355 
1356 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1357 			    port->cap_usb4 + PORT_CS_1, 1);
1358 	if (ret)
1359 		return ret;
1360 
1361 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1362 				     PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY);
1363 	if (ret)
1364 		return ret;
1365 
1366 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1367 			    port->cap_usb4 + PORT_CS_1, 1);
1368 	if (ret)
1369 		return ret;
1370 
1371 	if (val & PORT_CS_1_NR)
1372 		return -ENODEV;
1373 	if (val & PORT_CS_1_RC)
1374 		return -EIO;
1375 
1376 	return 0;
1377 }
1378 
1379 static int usb4_port_sb_opcode_err_to_errno(u32 val)
1380 {
1381 	switch (val) {
1382 	case 0:
1383 		return 0;
1384 	case USB4_SB_OPCODE_ERR:
1385 		return -EAGAIN;
1386 	case USB4_SB_OPCODE_ONS:
1387 		return -EOPNOTSUPP;
1388 	default:
1389 		return -EIO;
1390 	}
1391 }
1392 
1393 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1394 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1395 {
1396 	ktime_t timeout;
1397 	u32 val;
1398 	int ret;
1399 
1400 	val = opcode;
1401 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1402 				 sizeof(val));
1403 	if (ret)
1404 		return ret;
1405 
1406 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1407 
1408 	do {
1409 		/* Check results */
1410 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1411 					&val, sizeof(val));
1412 		if (ret)
1413 			return ret;
1414 
1415 		if (val != opcode)
1416 			return usb4_port_sb_opcode_err_to_errno(val);
1417 
1418 		fsleep(USB4_PORT_SB_DELAY);
1419 	} while (ktime_before(ktime_get(), timeout));
1420 
1421 	return -ETIMEDOUT;
1422 }
1423 
1424 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1425 {
1426 	u32 val = !offline;
1427 	int ret;
1428 
1429 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1430 				  USB4_SB_METADATA, &val, sizeof(val));
1431 	if (ret)
1432 		return ret;
1433 
1434 	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1435 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1436 				  USB4_SB_OPCODE, &val, sizeof(val));
1437 }
1438 
1439 /**
1440  * usb4_port_router_offline() - Put the USB4 port to offline mode
1441  * @port: USB4 port
1442  *
1443  * This function puts the USB4 port into offline mode. In this mode the
1444  * port does not react on hotplug events anymore. This needs to be
1445  * called before retimer access is done when the USB4 links is not up.
1446  *
1447  * Returns %0 in case of success and negative errno if there was an
1448  * error.
1449  */
1450 int usb4_port_router_offline(struct tb_port *port)
1451 {
1452 	return usb4_port_set_router_offline(port, true);
1453 }
1454 
1455 /**
1456  * usb4_port_router_online() - Put the USB4 port back to online
1457  * @port: USB4 port
1458  *
1459  * Makes the USB4 port functional again.
1460  */
1461 int usb4_port_router_online(struct tb_port *port)
1462 {
1463 	return usb4_port_set_router_offline(port, false);
1464 }
1465 
1466 /**
1467  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1468  * @port: USB4 port
1469  *
1470  * This forces the USB4 port to send broadcast RT transaction which
1471  * makes the retimers on the link to assign index to themselves. Returns
1472  * %0 in case of success and negative errno if there was an error.
1473  */
1474 int usb4_port_enumerate_retimers(struct tb_port *port)
1475 {
1476 	u32 val;
1477 
1478 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1479 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1480 				  USB4_SB_OPCODE, &val, sizeof(val));
1481 }
1482 
1483 /**
1484  * usb4_port_clx_supported() - Check if CLx is supported by the link
1485  * @port: Port to check for CLx support for
1486  *
1487  * PORT_CS_18_CPS bit reflects if the link supports CLx including
1488  * active cables (if connected on the link).
1489  */
1490 bool usb4_port_clx_supported(struct tb_port *port)
1491 {
1492 	int ret;
1493 	u32 val;
1494 
1495 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1496 			   port->cap_usb4 + PORT_CS_18, 1);
1497 	if (ret)
1498 		return false;
1499 
1500 	return !!(val & PORT_CS_18_CPS);
1501 }
1502 
1503 /**
1504  * usb4_port_asym_supported() - If the port supports asymmetric link
1505  * @port: USB4 port
1506  *
1507  * Checks if the port and the cable supports asymmetric link and returns
1508  * %true in that case.
1509  */
1510 bool usb4_port_asym_supported(struct tb_port *port)
1511 {
1512 	u32 val;
1513 
1514 	if (!port->cap_usb4)
1515 		return false;
1516 
1517 	if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
1518 		return false;
1519 
1520 	return !!(val & PORT_CS_18_CSA);
1521 }
1522 
1523 /**
1524  * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1525  * @port: USB4 port
1526  * @width: Asymmetric width to configure
1527  *
1528  * Sets USB4 port link width to @width. Can be called for widths where
1529  * usb4_port_asym_width_supported() returned @true.
1530  */
1531 int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1532 {
1533 	u32 val;
1534 	int ret;
1535 
1536 	if (!port->cap_phy)
1537 		return -EINVAL;
1538 
1539 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1540 			   port->cap_phy + LANE_ADP_CS_1, 1);
1541 	if (ret)
1542 		return ret;
1543 
1544 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1545 	switch (width) {
1546 	case TB_LINK_WIDTH_DUAL:
1547 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1548 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1549 		break;
1550 	case TB_LINK_WIDTH_ASYM_TX:
1551 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1552 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1553 		break;
1554 	case TB_LINK_WIDTH_ASYM_RX:
1555 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1556 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1557 		break;
1558 	default:
1559 		return -EINVAL;
1560 	}
1561 
1562 	return tb_port_write(port, &val, TB_CFG_PORT,
1563 			     port->cap_phy + LANE_ADP_CS_1, 1);
1564 }
1565 
1566 /**
1567  * usb4_port_asym_start() - Start symmetry change and wait for completion
1568  * @port: USB4 port
1569  *
1570  * Start symmetry change of the link to asymmetric or symmetric
1571  * (according to what was previously set in tb_port_set_link_width().
1572  * Wait for completion of the change.
1573  *
1574  * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1575  * a negative errno in case of a failure.
1576  */
1577 int usb4_port_asym_start(struct tb_port *port)
1578 {
1579 	int ret;
1580 	u32 val;
1581 
1582 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1583 			   port->cap_usb4 + PORT_CS_19, 1);
1584 	if (ret)
1585 		return ret;
1586 
1587 	val &= ~PORT_CS_19_START_ASYM;
1588 	val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1589 
1590 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1591 			    port->cap_usb4 + PORT_CS_19, 1);
1592 	if (ret)
1593 		return ret;
1594 
1595 	/*
1596 	 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1597 	 * port started the symmetry transition.
1598 	 */
1599 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
1600 				     PORT_CS_19_START_ASYM, 0, 1000,
1601 				     USB4_PORT_DELAY);
1602 	if (ret)
1603 		return ret;
1604 
1605 	/* Then wait for the transtion to be completed */
1606 	return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
1607 				      PORT_CS_18_TIP, 0, 5000, USB4_PORT_DELAY);
1608 }
1609 
1610 /**
1611  * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1612  * @port: USB4 port
1613  * @caps: Array with at least two elements to hold the results
1614  *
1615  * Reads the USB4 port lane margining capabilities into @caps.
1616  */
1617 int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1618 {
1619 	int ret;
1620 
1621 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1622 			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1623 	if (ret)
1624 		return ret;
1625 
1626 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1627 				 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1628 }
1629 
1630 /**
1631  * usb4_port_hw_margin() - Run hardware lane margining on port
1632  * @port: USB4 port
1633  * @lanes: Which lanes to run (must match the port capabilities). Can be
1634  *	   %0, %1 or %7.
1635  * @ber_level: BER level contour value
1636  * @timing: Perform timing margining instead of voltage
1637  * @right_high: Use Right/high margin instead of left/low
1638  * @results: Array with at least two elements to hold the results
1639  *
1640  * Runs hardware lane margining on USB4 port and returns the result in
1641  * @results.
1642  */
1643 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1644 			unsigned int ber_level, bool timing, bool right_high,
1645 			u32 *results)
1646 {
1647 	u32 val;
1648 	int ret;
1649 
1650 	val = lanes;
1651 	if (timing)
1652 		val |= USB4_MARGIN_HW_TIME;
1653 	if (right_high)
1654 		val |= USB4_MARGIN_HW_RH;
1655 	if (ber_level)
1656 		val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1657 			USB4_MARGIN_HW_BER_MASK;
1658 
1659 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1660 				 USB4_SB_METADATA, &val, sizeof(val));
1661 	if (ret)
1662 		return ret;
1663 
1664 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1665 			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1666 	if (ret)
1667 		return ret;
1668 
1669 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1670 				 USB4_SB_DATA, results, sizeof(*results) * 2);
1671 }
1672 
1673 /**
1674  * usb4_port_sw_margin() - Run software lane margining on port
1675  * @port: USB4 port
1676  * @lanes: Which lanes to run (must match the port capabilities). Can be
1677  *	   %0, %1 or %7.
1678  * @timing: Perform timing margining instead of voltage
1679  * @right_high: Use Right/high margin instead of left/low
1680  * @counter: What to do with the error counter
1681  *
1682  * Runs software lane margining on USB4 port. Read back the error
1683  * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1684  * success and negative errno otherwise.
1685  */
1686 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1687 			bool right_high, u32 counter)
1688 {
1689 	u32 val;
1690 	int ret;
1691 
1692 	val = lanes;
1693 	if (timing)
1694 		val |= USB4_MARGIN_SW_TIME;
1695 	if (right_high)
1696 		val |= USB4_MARGIN_SW_RH;
1697 	val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1698 		USB4_MARGIN_SW_COUNTER_MASK;
1699 
1700 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1701 				 USB4_SB_METADATA, &val, sizeof(val));
1702 	if (ret)
1703 		return ret;
1704 
1705 	return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1706 			       USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1707 }
1708 
1709 /**
1710  * usb4_port_sw_margin_errors() - Read the software margining error counters
1711  * @port: USB4 port
1712  * @errors: Error metadata is copied here.
1713  *
1714  * This reads back the software margining error counters from the port.
1715  * Returns %0 in success and negative errno otherwise.
1716  */
1717 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1718 {
1719 	int ret;
1720 
1721 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1722 			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1723 	if (ret)
1724 		return ret;
1725 
1726 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1727 				 USB4_SB_METADATA, errors, sizeof(*errors));
1728 }
1729 
1730 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1731 				       enum usb4_sb_opcode opcode,
1732 				       int timeout_msec)
1733 {
1734 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1735 			       timeout_msec);
1736 }
1737 
1738 /**
1739  * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1740  * @port: USB4 port
1741  * @index: Retimer index
1742  *
1743  * Enables sideband channel transations on SBTX. Can be used when USB4
1744  * link does not go up, for example if there is no device connected.
1745  */
1746 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1747 {
1748 	int ret;
1749 
1750 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1751 				   500);
1752 
1753 	if (ret != -ENODEV)
1754 		return ret;
1755 
1756 	/*
1757 	 * Per the USB4 retimer spec, the retimer is not required to
1758 	 * send an RT (Retimer Transaction) response for the first
1759 	 * SET_INBOUND_SBTX command
1760 	 */
1761 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1762 				    500);
1763 }
1764 
1765 /**
1766  * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1767  * @port: USB4 port
1768  * @index: Retimer index
1769  *
1770  * Disables sideband channel transations on SBTX. The reverse of
1771  * usb4_port_retimer_set_inbound_sbtx().
1772  */
1773 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1774 {
1775 	return usb4_port_retimer_op(port, index,
1776 				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1777 }
1778 
1779 /**
1780  * usb4_port_retimer_read() - Read from retimer sideband registers
1781  * @port: USB4 port
1782  * @index: Retimer index
1783  * @reg: Sideband register to read
1784  * @buf: Data from @reg is stored here
1785  * @size: Number of bytes to read
1786  *
1787  * Function reads retimer sideband registers starting from @reg. The
1788  * retimer is connected to @port at @index. Returns %0 in case of
1789  * success, and read data is copied to @buf. If there is no retimer
1790  * present at given @index returns %-ENODEV. In any other failure
1791  * returns negative errno.
1792  */
1793 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1794 			   u8 size)
1795 {
1796 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1797 				 size);
1798 }
1799 
1800 /**
1801  * usb4_port_retimer_write() - Write to retimer sideband registers
1802  * @port: USB4 port
1803  * @index: Retimer index
1804  * @reg: Sideband register to write
1805  * @buf: Data that is written starting from @reg
1806  * @size: Number of bytes to write
1807  *
1808  * Writes retimer sideband registers starting from @reg. The retimer is
1809  * connected to @port at @index. Returns %0 in case of success. If there
1810  * is no retimer present at given @index returns %-ENODEV. In any other
1811  * failure returns negative errno.
1812  */
1813 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1814 			    const void *buf, u8 size)
1815 {
1816 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1817 				  size);
1818 }
1819 
1820 /**
1821  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1822  * @port: USB4 port
1823  * @index: Retimer index
1824  *
1825  * If the retimer at @index is last one (connected directly to the
1826  * Type-C port) this function returns %1. If it is not returns %0. If
1827  * the retimer is not present returns %-ENODEV. Otherwise returns
1828  * negative errno.
1829  */
1830 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1831 {
1832 	u32 metadata;
1833 	int ret;
1834 
1835 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1836 				   500);
1837 	if (ret)
1838 		return ret;
1839 
1840 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1841 				     sizeof(metadata));
1842 	return ret ? ret : metadata & 1;
1843 }
1844 
1845 /**
1846  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1847  * @port: USB4 port
1848  * @index: Retimer index
1849  *
1850  * Reads NVM sector size (in bytes) of a retimer at @index. This
1851  * operation can be used to determine whether the retimer supports NVM
1852  * upgrade for example. Returns sector size in bytes or negative errno
1853  * in case of error. Specifically returns %-ENODEV if there is no
1854  * retimer at @index.
1855  */
1856 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1857 {
1858 	u32 metadata;
1859 	int ret;
1860 
1861 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1862 				   500);
1863 	if (ret)
1864 		return ret;
1865 
1866 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1867 				     sizeof(metadata));
1868 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1869 }
1870 
1871 /**
1872  * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1873  * @port: USB4 port
1874  * @index: Retimer index
1875  * @address: Start offset
1876  *
1877  * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1878  * done automatically by usb4_port_retimer_nvm_write().
1879  *
1880  * Returns %0 in success and negative errno if there was a failure.
1881  */
1882 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1883 				     unsigned int address)
1884 {
1885 	u32 metadata, dwaddress;
1886 	int ret;
1887 
1888 	dwaddress = address / 4;
1889 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1890 		  USB4_NVM_SET_OFFSET_MASK;
1891 
1892 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1893 				      sizeof(metadata));
1894 	if (ret)
1895 		return ret;
1896 
1897 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1898 				    500);
1899 }
1900 
1901 struct retimer_info {
1902 	struct tb_port *port;
1903 	u8 index;
1904 };
1905 
1906 static int usb4_port_retimer_nvm_write_next_block(void *data,
1907 	unsigned int dwaddress, const void *buf, size_t dwords)
1908 
1909 {
1910 	const struct retimer_info *info = data;
1911 	struct tb_port *port = info->port;
1912 	u8 index = info->index;
1913 	int ret;
1914 
1915 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1916 				      buf, dwords * 4);
1917 	if (ret)
1918 		return ret;
1919 
1920 	return usb4_port_retimer_op(port, index,
1921 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1922 }
1923 
1924 /**
1925  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1926  * @port: USB4 port
1927  * @index: Retimer index
1928  * @address: Byte address where to start the write
1929  * @buf: Data to write
1930  * @size: Size in bytes how much to write
1931  *
1932  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1933  * upgrade. Returns %0 if the data was written successfully and negative
1934  * errno in case of failure. Specifically returns %-ENODEV if there is
1935  * no retimer at @index.
1936  */
1937 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1938 				const void *buf, size_t size)
1939 {
1940 	struct retimer_info info = { .port = port, .index = index };
1941 	int ret;
1942 
1943 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1944 	if (ret)
1945 		return ret;
1946 
1947 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1948 				 usb4_port_retimer_nvm_write_next_block, &info);
1949 }
1950 
1951 /**
1952  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1953  * @port: USB4 port
1954  * @index: Retimer index
1955  *
1956  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1957  * this function can be used to trigger the NVM upgrade process. If
1958  * successful the retimer restarts with the new NVM and may not have the
1959  * index set so one needs to call usb4_port_enumerate_retimers() to
1960  * force index to be assigned.
1961  */
1962 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1963 {
1964 	u32 val;
1965 
1966 	/*
1967 	 * We need to use the raw operation here because once the
1968 	 * authentication completes the retimer index is not set anymore
1969 	 * so we do not get back the status now.
1970 	 */
1971 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1972 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1973 				  USB4_SB_OPCODE, &val, sizeof(val));
1974 }
1975 
1976 /**
1977  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1978  * @port: USB4 port
1979  * @index: Retimer index
1980  * @status: Raw status code read from metadata
1981  *
1982  * This can be called after usb4_port_retimer_nvm_authenticate() and
1983  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1984  *
1985  * Returns %0 if the authentication status was successfully read. The
1986  * completion metadata (the result) is then stored into @status. If
1987  * reading the status fails, returns negative errno.
1988  */
1989 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1990 					      u32 *status)
1991 {
1992 	u32 metadata, val;
1993 	int ret;
1994 
1995 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1996 				     sizeof(val));
1997 	if (ret)
1998 		return ret;
1999 
2000 	ret = usb4_port_sb_opcode_err_to_errno(val);
2001 	switch (ret) {
2002 	case 0:
2003 		*status = 0;
2004 		return 0;
2005 
2006 	case -EAGAIN:
2007 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
2008 					     &metadata, sizeof(metadata));
2009 		if (ret)
2010 			return ret;
2011 
2012 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
2013 		return 0;
2014 
2015 	default:
2016 		return ret;
2017 	}
2018 }
2019 
2020 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
2021 					    void *buf, size_t dwords)
2022 {
2023 	const struct retimer_info *info = data;
2024 	struct tb_port *port = info->port;
2025 	u8 index = info->index;
2026 	u32 metadata;
2027 	int ret;
2028 
2029 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
2030 	if (dwords < USB4_DATA_DWORDS)
2031 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
2032 
2033 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
2034 				      sizeof(metadata));
2035 	if (ret)
2036 		return ret;
2037 
2038 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
2039 	if (ret)
2040 		return ret;
2041 
2042 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
2043 				      dwords * 4);
2044 }
2045 
2046 /**
2047  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2048  * @port: USB4 port
2049  * @index: Retimer index
2050  * @address: NVM address (in bytes) to start reading
2051  * @buf: Data read from NVM is stored here
2052  * @size: Number of bytes to read
2053  *
2054  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2055  * read was successful and negative errno in case of failure.
2056  * Specifically returns %-ENODEV if there is no retimer at @index.
2057  */
2058 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2059 			       unsigned int address, void *buf, size_t size)
2060 {
2061 	struct retimer_info info = { .port = port, .index = index };
2062 
2063 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2064 				usb4_port_retimer_nvm_read_block, &info);
2065 }
2066 
2067 static inline unsigned int
2068 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2069 {
2070 	/* Take the possible bandwidth limitation into account */
2071 	if (port->max_bw)
2072 		return min(bw, port->max_bw);
2073 	return bw;
2074 }
2075 
2076 /**
2077  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2078  * @port: USB3 adapter port
2079  *
2080  * Return maximum supported link rate of a USB3 adapter in Mb/s.
2081  * Negative errno in case of error.
2082  */
2083 int usb4_usb3_port_max_link_rate(struct tb_port *port)
2084 {
2085 	int ret, lr;
2086 	u32 val;
2087 
2088 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2089 		return -EINVAL;
2090 
2091 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2092 			   port->cap_adap + ADP_USB3_CS_4, 1);
2093 	if (ret)
2094 		return ret;
2095 
2096 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2097 	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2098 
2099 	return usb4_usb3_port_max_bandwidth(port, ret);
2100 }
2101 
2102 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2103 {
2104 	int ret;
2105 	u32 val;
2106 
2107 	if (!tb_port_is_usb3_down(port))
2108 		return -EINVAL;
2109 	if (tb_route(port->sw))
2110 		return -EINVAL;
2111 
2112 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2113 			   port->cap_adap + ADP_USB3_CS_2, 1);
2114 	if (ret)
2115 		return ret;
2116 
2117 	if (request)
2118 		val |= ADP_USB3_CS_2_CMR;
2119 	else
2120 		val &= ~ADP_USB3_CS_2_CMR;
2121 
2122 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2123 			    port->cap_adap + ADP_USB3_CS_2, 1);
2124 	if (ret)
2125 		return ret;
2126 
2127 	/*
2128 	 * We can use val here directly as the CMR bit is in the same place
2129 	 * as HCA. Just mask out others.
2130 	 */
2131 	val &= ADP_USB3_CS_2_CMR;
2132 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2133 				      ADP_USB3_CS_1_HCA, val, 1500,
2134 				      USB4_PORT_DELAY);
2135 }
2136 
2137 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2138 {
2139 	return usb4_usb3_port_cm_request(port, true);
2140 }
2141 
2142 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2143 {
2144 	return usb4_usb3_port_cm_request(port, false);
2145 }
2146 
2147 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2148 {
2149 	unsigned long uframes;
2150 
2151 	uframes = bw * 512UL << scale;
2152 	return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2153 }
2154 
2155 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2156 {
2157 	unsigned long uframes;
2158 
2159 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2160 	uframes = ((unsigned long)mbps * MEGA) / 8000;
2161 	return DIV_ROUND_UP(uframes, 512UL << scale);
2162 }
2163 
2164 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2165 						   int *upstream_bw,
2166 						   int *downstream_bw)
2167 {
2168 	u32 val, bw, scale;
2169 	int ret;
2170 
2171 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2172 			   port->cap_adap + ADP_USB3_CS_2, 1);
2173 	if (ret)
2174 		return ret;
2175 
2176 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2177 			   port->cap_adap + ADP_USB3_CS_3, 1);
2178 	if (ret)
2179 		return ret;
2180 
2181 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2182 
2183 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2184 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2185 
2186 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2187 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2188 
2189 	return 0;
2190 }
2191 
2192 /**
2193  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2194  * @port: USB3 adapter port
2195  * @upstream_bw: Allocated upstream bandwidth is stored here
2196  * @downstream_bw: Allocated downstream bandwidth is stored here
2197  *
2198  * Stores currently allocated USB3 bandwidth into @upstream_bw and
2199  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2200  * errno in failure.
2201  */
2202 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2203 				       int *downstream_bw)
2204 {
2205 	int ret;
2206 
2207 	ret = usb4_usb3_port_set_cm_request(port);
2208 	if (ret)
2209 		return ret;
2210 
2211 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2212 						      downstream_bw);
2213 	usb4_usb3_port_clear_cm_request(port);
2214 
2215 	return ret;
2216 }
2217 
2218 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2219 						  int *upstream_bw,
2220 						  int *downstream_bw)
2221 {
2222 	u32 val, bw, scale;
2223 	int ret;
2224 
2225 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2226 			   port->cap_adap + ADP_USB3_CS_1, 1);
2227 	if (ret)
2228 		return ret;
2229 
2230 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2231 			   port->cap_adap + ADP_USB3_CS_3, 1);
2232 	if (ret)
2233 		return ret;
2234 
2235 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2236 
2237 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2238 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2239 
2240 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2241 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2242 
2243 	return 0;
2244 }
2245 
2246 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2247 						    int upstream_bw,
2248 						    int downstream_bw)
2249 {
2250 	u32 val, ubw, dbw, scale;
2251 	int ret, max_bw;
2252 
2253 	/* Figure out suitable scale */
2254 	scale = 0;
2255 	max_bw = max(upstream_bw, downstream_bw);
2256 	while (scale < 64) {
2257 		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2258 			break;
2259 		scale++;
2260 	}
2261 
2262 	if (WARN_ON(scale >= 64))
2263 		return -EINVAL;
2264 
2265 	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2266 			    port->cap_adap + ADP_USB3_CS_3, 1);
2267 	if (ret)
2268 		return ret;
2269 
2270 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2271 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2272 
2273 	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2274 
2275 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2276 			   port->cap_adap + ADP_USB3_CS_2, 1);
2277 	if (ret)
2278 		return ret;
2279 
2280 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2281 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2282 	val |= ubw;
2283 
2284 	return tb_port_write(port, &val, TB_CFG_PORT,
2285 			     port->cap_adap + ADP_USB3_CS_2, 1);
2286 }
2287 
2288 /**
2289  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2290  * @port: USB3 adapter port
2291  * @upstream_bw: New upstream bandwidth
2292  * @downstream_bw: New downstream bandwidth
2293  *
2294  * This can be used to set how much bandwidth is allocated for the USB3
2295  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2296  * new values programmed to the USB3 adapter allocation registers. If
2297  * the values are lower than what is currently consumed the allocation
2298  * is set to what is currently consumed instead (consumed bandwidth
2299  * cannot be taken away by CM). The actual new values are returned in
2300  * @upstream_bw and @downstream_bw.
2301  *
2302  * Returns %0 in case of success and negative errno if there was a
2303  * failure.
2304  */
2305 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2306 				      int *downstream_bw)
2307 {
2308 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2309 
2310 	ret = usb4_usb3_port_set_cm_request(port);
2311 	if (ret)
2312 		return ret;
2313 
2314 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2315 						     &consumed_down);
2316 	if (ret)
2317 		goto err_request;
2318 
2319 	/* Don't allow it go lower than what is consumed */
2320 	allocate_up = max(*upstream_bw, consumed_up);
2321 	allocate_down = max(*downstream_bw, consumed_down);
2322 
2323 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2324 						       allocate_down);
2325 	if (ret)
2326 		goto err_request;
2327 
2328 	*upstream_bw = allocate_up;
2329 	*downstream_bw = allocate_down;
2330 
2331 err_request:
2332 	usb4_usb3_port_clear_cm_request(port);
2333 	return ret;
2334 }
2335 
2336 /**
2337  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2338  * @port: USB3 adapter port
2339  * @upstream_bw: New allocated upstream bandwidth
2340  * @downstream_bw: New allocated downstream bandwidth
2341  *
2342  * Releases USB3 allocated bandwidth down to what is actually consumed.
2343  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2344  *
2345  * Returns 0% in success and negative errno in case of failure.
2346  */
2347 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2348 				     int *downstream_bw)
2349 {
2350 	int ret, consumed_up, consumed_down;
2351 
2352 	ret = usb4_usb3_port_set_cm_request(port);
2353 	if (ret)
2354 		return ret;
2355 
2356 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2357 						     &consumed_down);
2358 	if (ret)
2359 		goto err_request;
2360 
2361 	/*
2362 	 * Always keep 900 Mb/s to make sure xHCI has at least some
2363 	 * bandwidth available for isochronous traffic.
2364 	 */
2365 	if (consumed_up < 900)
2366 		consumed_up = 900;
2367 	if (consumed_down < 900)
2368 		consumed_down = 900;
2369 
2370 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2371 						       consumed_down);
2372 	if (ret)
2373 		goto err_request;
2374 
2375 	*upstream_bw = consumed_up;
2376 	*downstream_bw = consumed_down;
2377 
2378 err_request:
2379 	usb4_usb3_port_clear_cm_request(port);
2380 	return ret;
2381 }
2382 
2383 static bool is_usb4_dpin(const struct tb_port *port)
2384 {
2385 	if (!tb_port_is_dpin(port))
2386 		return false;
2387 	if (!tb_switch_is_usb4(port->sw))
2388 		return false;
2389 	return true;
2390 }
2391 
2392 /**
2393  * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2394  * @port: DP IN adapter
2395  * @cm_id: CM ID to assign
2396  *
2397  * Sets CM ID for the @port. Returns %0 on success and negative errno
2398  * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2399  * support this.
2400  */
2401 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2402 {
2403 	u32 val;
2404 	int ret;
2405 
2406 	if (!is_usb4_dpin(port))
2407 		return -EOPNOTSUPP;
2408 
2409 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2410 			   port->cap_adap + ADP_DP_CS_2, 1);
2411 	if (ret)
2412 		return ret;
2413 
2414 	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2415 	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2416 
2417 	return tb_port_write(port, &val, TB_CFG_PORT,
2418 			     port->cap_adap + ADP_DP_CS_2, 1);
2419 }
2420 
2421 /**
2422  * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2423  *					     supported
2424  * @port: DP IN adapter to check
2425  *
2426  * Can be called to any DP IN adapter. Returns true if the adapter
2427  * supports USB4 bandwidth allocation mode, false otherwise.
2428  */
2429 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2430 {
2431 	int ret;
2432 	u32 val;
2433 
2434 	if (!is_usb4_dpin(port))
2435 		return false;
2436 
2437 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2438 			   port->cap_adap + DP_LOCAL_CAP, 1);
2439 	if (ret)
2440 		return false;
2441 
2442 	return !!(val & DP_COMMON_CAP_BW_MODE);
2443 }
2444 
2445 /**
2446  * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2447  *					   enabled
2448  * @port: DP IN adapter to check
2449  *
2450  * Can be called to any DP IN adapter. Returns true if the bandwidth
2451  * allocation mode has been enabled, false otherwise.
2452  */
2453 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2454 {
2455 	int ret;
2456 	u32 val;
2457 
2458 	if (!is_usb4_dpin(port))
2459 		return false;
2460 
2461 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2462 			   port->cap_adap + ADP_DP_CS_8, 1);
2463 	if (ret)
2464 		return false;
2465 
2466 	return !!(val & ADP_DP_CS_8_DPME);
2467 }
2468 
2469 /**
2470  * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2471  *						    bandwidth allocation mode
2472  * @port: DP IN adapter
2473  * @supported: Does the CM support bandwidth allocation mode
2474  *
2475  * Can be called to any DP IN adapter. Sets or clears the CM support bit
2476  * of the DP IN adapter. Returns %0 in success and negative errno
2477  * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2478  * does not support this.
2479  */
2480 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2481 						 bool supported)
2482 {
2483 	u32 val;
2484 	int ret;
2485 
2486 	if (!is_usb4_dpin(port))
2487 		return -EOPNOTSUPP;
2488 
2489 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2490 			   port->cap_adap + ADP_DP_CS_2, 1);
2491 	if (ret)
2492 		return ret;
2493 
2494 	if (supported)
2495 		val |= ADP_DP_CS_2_CMMS;
2496 	else
2497 		val &= ~ADP_DP_CS_2_CMMS;
2498 
2499 	return tb_port_write(port, &val, TB_CFG_PORT,
2500 			     port->cap_adap + ADP_DP_CS_2, 1);
2501 }
2502 
2503 /**
2504  * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2505  * @port: DP IN adapter
2506  *
2507  * Reads bandwidth allocation Group ID from the DP IN adapter and
2508  * returns it. If the adapter does not support setting Group_ID
2509  * %-EOPNOTSUPP is returned.
2510  */
2511 int usb4_dp_port_group_id(struct tb_port *port)
2512 {
2513 	u32 val;
2514 	int ret;
2515 
2516 	if (!is_usb4_dpin(port))
2517 		return -EOPNOTSUPP;
2518 
2519 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2520 			   port->cap_adap + ADP_DP_CS_2, 1);
2521 	if (ret)
2522 		return ret;
2523 
2524 	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2525 }
2526 
2527 /**
2528  * usb4_dp_port_set_group_id() - Set adapter Group ID
2529  * @port: DP IN adapter
2530  * @group_id: Group ID for the adapter
2531  *
2532  * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2533  * Returns %0 in case of success and negative errno otherwise.
2534  * Specifically returns %-EOPNOTSUPP if the adapter does not support
2535  * this.
2536  */
2537 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2538 {
2539 	u32 val;
2540 	int ret;
2541 
2542 	if (!is_usb4_dpin(port))
2543 		return -EOPNOTSUPP;
2544 
2545 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2546 			   port->cap_adap + ADP_DP_CS_2, 1);
2547 	if (ret)
2548 		return ret;
2549 
2550 	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2551 	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2552 
2553 	return tb_port_write(port, &val, TB_CFG_PORT,
2554 			     port->cap_adap + ADP_DP_CS_2, 1);
2555 }
2556 
2557 /**
2558  * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2559  * @port: DP IN adapter
2560  * @rate: Non-reduced rate in Mb/s is placed here
2561  * @lanes: Non-reduced lanes are placed here
2562  *
2563  * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2564  * %0 in success and negative errno otherwise. Specifically returns
2565  * %-EOPNOTSUPP if the adapter does not support this.
2566  */
2567 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2568 {
2569 	u32 val, tmp;
2570 	int ret;
2571 
2572 	if (!is_usb4_dpin(port))
2573 		return -EOPNOTSUPP;
2574 
2575 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2576 			   port->cap_adap + ADP_DP_CS_2, 1);
2577 	if (ret)
2578 		return ret;
2579 
2580 	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2581 	switch (tmp) {
2582 	case DP_COMMON_CAP_RATE_RBR:
2583 		*rate = 1620;
2584 		break;
2585 	case DP_COMMON_CAP_RATE_HBR:
2586 		*rate = 2700;
2587 		break;
2588 	case DP_COMMON_CAP_RATE_HBR2:
2589 		*rate = 5400;
2590 		break;
2591 	case DP_COMMON_CAP_RATE_HBR3:
2592 		*rate = 8100;
2593 		break;
2594 	}
2595 
2596 	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2597 	switch (tmp) {
2598 	case DP_COMMON_CAP_1_LANE:
2599 		*lanes = 1;
2600 		break;
2601 	case DP_COMMON_CAP_2_LANES:
2602 		*lanes = 2;
2603 		break;
2604 	case DP_COMMON_CAP_4_LANES:
2605 		*lanes = 4;
2606 		break;
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 /**
2613  * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2614  * @port: DP IN adapter
2615  * @rate: Non-reduced rate in Mb/s
2616  * @lanes: Non-reduced lanes
2617  *
2618  * Before the capabilities reduction this function can be used to set
2619  * the non-reduced values for the DP IN adapter. Returns %0 in success
2620  * and negative errno otherwise. If the adapter does not support this
2621  * %-EOPNOTSUPP is returned.
2622  */
2623 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2624 {
2625 	u32 val;
2626 	int ret;
2627 
2628 	if (!is_usb4_dpin(port))
2629 		return -EOPNOTSUPP;
2630 
2631 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2632 			   port->cap_adap + ADP_DP_CS_2, 1);
2633 	if (ret)
2634 		return ret;
2635 
2636 	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2637 
2638 	switch (rate) {
2639 	case 1620:
2640 		break;
2641 	case 2700:
2642 		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2643 			& ADP_DP_CS_2_NRD_MLR_MASK;
2644 		break;
2645 	case 5400:
2646 		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2647 			& ADP_DP_CS_2_NRD_MLR_MASK;
2648 		break;
2649 	case 8100:
2650 		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2651 			& ADP_DP_CS_2_NRD_MLR_MASK;
2652 		break;
2653 	default:
2654 		return -EINVAL;
2655 	}
2656 
2657 	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2658 
2659 	switch (lanes) {
2660 	case 1:
2661 		break;
2662 	case 2:
2663 		val |= DP_COMMON_CAP_2_LANES;
2664 		break;
2665 	case 4:
2666 		val |= DP_COMMON_CAP_4_LANES;
2667 		break;
2668 	default:
2669 		return -EINVAL;
2670 	}
2671 
2672 	return tb_port_write(port, &val, TB_CFG_PORT,
2673 			     port->cap_adap + ADP_DP_CS_2, 1);
2674 }
2675 
2676 /**
2677  * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2678  * @port: DP IN adapter
2679  *
2680  * Reads the programmed granularity from @port. If the DP IN adapter does
2681  * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2682  * errno in other error cases.
2683  */
2684 int usb4_dp_port_granularity(struct tb_port *port)
2685 {
2686 	u32 val;
2687 	int ret;
2688 
2689 	if (!is_usb4_dpin(port))
2690 		return -EOPNOTSUPP;
2691 
2692 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2693 			   port->cap_adap + ADP_DP_CS_2, 1);
2694 	if (ret)
2695 		return ret;
2696 
2697 	val &= ADP_DP_CS_2_GR_MASK;
2698 	val >>= ADP_DP_CS_2_GR_SHIFT;
2699 
2700 	switch (val) {
2701 	case ADP_DP_CS_2_GR_0_25G:
2702 		return 250;
2703 	case ADP_DP_CS_2_GR_0_5G:
2704 		return 500;
2705 	case ADP_DP_CS_2_GR_1G:
2706 		return 1000;
2707 	}
2708 
2709 	return -EINVAL;
2710 }
2711 
2712 /**
2713  * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2714  * @port: DP IN adapter
2715  * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2716  *
2717  * Sets the granularity used with the estimated, allocated and requested
2718  * bandwidth. Returns %0 in success and negative errno otherwise. If the
2719  * adapter does not support this %-EOPNOTSUPP is returned.
2720  */
2721 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2722 {
2723 	u32 val;
2724 	int ret;
2725 
2726 	if (!is_usb4_dpin(port))
2727 		return -EOPNOTSUPP;
2728 
2729 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2730 			   port->cap_adap + ADP_DP_CS_2, 1);
2731 	if (ret)
2732 		return ret;
2733 
2734 	val &= ~ADP_DP_CS_2_GR_MASK;
2735 
2736 	switch (granularity) {
2737 	case 250:
2738 		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2739 		break;
2740 	case 500:
2741 		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2742 		break;
2743 	case 1000:
2744 		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2745 		break;
2746 	default:
2747 		return -EINVAL;
2748 	}
2749 
2750 	return tb_port_write(port, &val, TB_CFG_PORT,
2751 			     port->cap_adap + ADP_DP_CS_2, 1);
2752 }
2753 
2754 /**
2755  * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2756  * @port: DP IN adapter
2757  * @bw: Estimated bandwidth in Mb/s.
2758  *
2759  * Sets the estimated bandwidth to @bw. Set the granularity by calling
2760  * usb4_dp_port_set_granularity() before calling this. The @bw is round
2761  * down to the closest granularity multiplier. Returns %0 in success
2762  * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2763  * the adapter does not support this.
2764  */
2765 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2766 {
2767 	u32 val, granularity;
2768 	int ret;
2769 
2770 	if (!is_usb4_dpin(port))
2771 		return -EOPNOTSUPP;
2772 
2773 	ret = usb4_dp_port_granularity(port);
2774 	if (ret < 0)
2775 		return ret;
2776 	granularity = ret;
2777 
2778 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2779 			   port->cap_adap + ADP_DP_CS_2, 1);
2780 	if (ret)
2781 		return ret;
2782 
2783 	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2784 	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2785 
2786 	return tb_port_write(port, &val, TB_CFG_PORT,
2787 			     port->cap_adap + ADP_DP_CS_2, 1);
2788 }
2789 
2790 /**
2791  * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2792  * @port: DP IN adapter
2793  *
2794  * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2795  * account the programmed granularity). Returns negative errno in case
2796  * of error.
2797  */
2798 int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2799 {
2800 	u32 val, granularity;
2801 	int ret;
2802 
2803 	if (!is_usb4_dpin(port))
2804 		return -EOPNOTSUPP;
2805 
2806 	ret = usb4_dp_port_granularity(port);
2807 	if (ret < 0)
2808 		return ret;
2809 	granularity = ret;
2810 
2811 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2812 			   port->cap_adap + DP_STATUS, 1);
2813 	if (ret)
2814 		return ret;
2815 
2816 	val &= DP_STATUS_ALLOCATED_BW_MASK;
2817 	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2818 
2819 	return val * granularity;
2820 }
2821 
2822 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2823 {
2824 	u32 val;
2825 	int ret;
2826 
2827 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2828 			   port->cap_adap + ADP_DP_CS_2, 1);
2829 	if (ret)
2830 		return ret;
2831 
2832 	if (ack)
2833 		val |= ADP_DP_CS_2_CA;
2834 	else
2835 		val &= ~ADP_DP_CS_2_CA;
2836 
2837 	return tb_port_write(port, &val, TB_CFG_PORT,
2838 			     port->cap_adap + ADP_DP_CS_2, 1);
2839 }
2840 
2841 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2842 {
2843 	return __usb4_dp_port_set_cm_ack(port, true);
2844 }
2845 
2846 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2847 					      int timeout_msec)
2848 {
2849 	ktime_t end;
2850 	u32 val;
2851 	int ret;
2852 
2853 	ret = __usb4_dp_port_set_cm_ack(port, false);
2854 	if (ret)
2855 		return ret;
2856 
2857 	end = ktime_add_ms(ktime_get(), timeout_msec);
2858 	do {
2859 		ret = tb_port_read(port, &val, TB_CFG_PORT,
2860 				   port->cap_adap + ADP_DP_CS_8, 1);
2861 		if (ret)
2862 			return ret;
2863 
2864 		if (!(val & ADP_DP_CS_8_DR))
2865 			break;
2866 
2867 		usleep_range(50, 100);
2868 	} while (ktime_before(ktime_get(), end));
2869 
2870 	if (val & ADP_DP_CS_8_DR) {
2871 		tb_port_warn(port, "timeout waiting for DPTX request to clear\n");
2872 		return -ETIMEDOUT;
2873 	}
2874 
2875 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2876 			   port->cap_adap + ADP_DP_CS_2, 1);
2877 	if (ret)
2878 		return ret;
2879 
2880 	val &= ~ADP_DP_CS_2_CA;
2881 	return tb_port_write(port, &val, TB_CFG_PORT,
2882 			     port->cap_adap + ADP_DP_CS_2, 1);
2883 }
2884 
2885 /**
2886  * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2887  * @port: DP IN adapter
2888  * @bw: New allocated bandwidth in Mb/s
2889  *
2890  * Communicates the new allocated bandwidth with the DPCD (graphics
2891  * driver). Takes into account the programmed granularity. Returns %0 in
2892  * success and negative errno in case of error.
2893  */
2894 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2895 {
2896 	u32 val, granularity;
2897 	int ret;
2898 
2899 	if (!is_usb4_dpin(port))
2900 		return -EOPNOTSUPP;
2901 
2902 	ret = usb4_dp_port_granularity(port);
2903 	if (ret < 0)
2904 		return ret;
2905 	granularity = ret;
2906 
2907 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2908 			   port->cap_adap + DP_STATUS, 1);
2909 	if (ret)
2910 		return ret;
2911 
2912 	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2913 	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2914 
2915 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2916 			    port->cap_adap + DP_STATUS, 1);
2917 	if (ret)
2918 		return ret;
2919 
2920 	ret = usb4_dp_port_set_cm_ack(port);
2921 	if (ret)
2922 		return ret;
2923 
2924 	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2925 }
2926 
2927 /**
2928  * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2929  * @port: DP IN adapter
2930  *
2931  * Reads the DPCD (graphics driver) requested bandwidth and returns it
2932  * in Mb/s. Takes the programmed granularity into account. In case of
2933  * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2934  * the adapter does not support bandwidth allocation mode, and %ENODATA
2935  * if there is no active bandwidth request from the graphics driver.
2936  */
2937 int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2938 {
2939 	u32 val, granularity;
2940 	int ret;
2941 
2942 	if (!is_usb4_dpin(port))
2943 		return -EOPNOTSUPP;
2944 
2945 	ret = usb4_dp_port_granularity(port);
2946 	if (ret < 0)
2947 		return ret;
2948 	granularity = ret;
2949 
2950 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2951 			   port->cap_adap + ADP_DP_CS_8, 1);
2952 	if (ret)
2953 		return ret;
2954 
2955 	if (!(val & ADP_DP_CS_8_DR))
2956 		return -ENODATA;
2957 
2958 	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2959 }
2960 
2961 /**
2962  * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2963  * @port: PCIe adapter
2964  * @enable: Enable/disable extended encapsulation
2965  *
2966  * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2967  * needs to make sure both adapters support this before enabling. Returns %0 on
2968  * success and negative errno otherwise.
2969  */
2970 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2971 {
2972 	u32 val;
2973 	int ret;
2974 
2975 	if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2976 		return -EINVAL;
2977 
2978 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2979 			   port->cap_adap + ADP_PCIE_CS_1, 1);
2980 	if (ret)
2981 		return ret;
2982 
2983 	if (enable)
2984 		val |= ADP_PCIE_CS_1_EE;
2985 	else
2986 		val &= ~ADP_PCIE_CS_1_EE;
2987 
2988 	return tb_port_write(port, &val, TB_CFG_PORT,
2989 			     port->cap_adap + ADP_PCIE_CS_1, 1);
2990 }
2991