xref: /linux/drivers/thunderbolt/usb4.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/units.h>
13 
14 #include "sb_regs.h"
15 #include "tb.h"
16 
17 #define USB4_DATA_RETRIES		3
18 #define USB4_DATA_DWORDS		16
19 
20 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
21 #define USB4_NVM_READ_OFFSET_SHIFT	2
22 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
23 #define USB4_NVM_READ_LENGTH_SHIFT	24
24 
25 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
26 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
27 
28 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
29 #define USB4_DROM_ADDRESS_SHIFT		2
30 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
31 #define USB4_DROM_SIZE_SHIFT		15
32 
33 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
34 
35 #define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
36 #define USB4_BA_INDEX_MASK		GENMASK(15, 0)
37 
38 enum usb4_ba_index {
39 	USB4_BA_MAX_USB3 = 0x1,
40 	USB4_BA_MIN_DP_AUX = 0x2,
41 	USB4_BA_MIN_DP_MAIN = 0x3,
42 	USB4_BA_MAX_PCIE = 0x4,
43 	USB4_BA_MAX_HI = 0x5,
44 };
45 
46 #define USB4_BA_VALUE_MASK		GENMASK(31, 16)
47 #define USB4_BA_VALUE_SHIFT		16
48 
49 /* Delays in us used with usb4_port_wait_for_bit() */
50 #define USB4_PORT_DELAY			50
51 #define USB4_PORT_SB_DELAY		1000
52 
53 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 				 u32 *metadata, u8 *status,
55 				 const void *tx_data, size_t tx_dwords,
56 				 void *rx_data, size_t rx_dwords)
57 {
58 	u32 val;
59 	int ret;
60 
61 	if (metadata) {
62 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
63 		if (ret)
64 			return ret;
65 	}
66 	if (tx_dwords) {
67 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
68 				  tx_dwords);
69 		if (ret)
70 			return ret;
71 	}
72 
73 	val = opcode | ROUTER_CS_26_OV;
74 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
75 	if (ret)
76 		return ret;
77 
78 	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
79 	if (ret)
80 		return ret;
81 
82 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
83 	if (ret)
84 		return ret;
85 
86 	if (val & ROUTER_CS_26_ONS)
87 		return -EOPNOTSUPP;
88 
89 	if (status)
90 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 			ROUTER_CS_26_STATUS_SHIFT;
92 
93 	if (metadata) {
94 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
95 		if (ret)
96 			return ret;
97 	}
98 	if (rx_dwords) {
99 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
100 				 rx_dwords);
101 		if (ret)
102 			return ret;
103 	}
104 
105 	return 0;
106 }
107 
108 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 			    u8 *status, const void *tx_data, size_t tx_dwords,
110 			    void *rx_data, size_t rx_dwords)
111 {
112 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113 
114 	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
115 		return -EINVAL;
116 
117 	/*
118 	 * If the connection manager implementation provides USB4 router
119 	 * operation proxy callback, call it here instead of running the
120 	 * operation natively.
121 	 */
122 	if (cm_ops->usb4_switch_op) {
123 		int ret;
124 
125 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 					     tx_data, tx_dwords, rx_data,
127 					     rx_dwords);
128 		if (ret != -EOPNOTSUPP)
129 			return ret;
130 
131 		/*
132 		 * If the proxy was not supported then run the native
133 		 * router operation instead.
134 		 */
135 	}
136 
137 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 				     tx_dwords, rx_data, rx_dwords);
139 }
140 
141 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 				 u32 *metadata, u8 *status)
143 {
144 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
145 }
146 
147 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 				      u32 *metadata, u8 *status,
149 				      const void *tx_data, size_t tx_dwords,
150 				      void *rx_data, size_t rx_dwords)
151 {
152 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 				tx_dwords, rx_data, rx_dwords);
154 }
155 
156 /**
157  * usb4_switch_check_wakes() - Check for wakes and notify PM core about them
158  * @sw: Router whose wakes to check
159  *
160  * Checks wakes occurred during suspend and notify the PM core about them.
161  */
162 void usb4_switch_check_wakes(struct tb_switch *sw)
163 {
164 	bool wakeup_usb4 = false;
165 	struct usb4_port *usb4;
166 	struct tb_port *port;
167 	bool wakeup = false;
168 	u32 val;
169 
170 	if (tb_route(sw)) {
171 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
172 			return;
173 
174 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
175 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
176 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
177 
178 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
179 	}
180 
181 	/*
182 	 * Check for any downstream ports for USB4 wake,
183 	 * connection wake and disconnection wake.
184 	 */
185 	tb_switch_for_each_port(sw, port) {
186 		if (!port->cap_usb4)
187 			continue;
188 
189 		if (tb_port_read(port, &val, TB_CFG_PORT,
190 				 port->cap_usb4 + PORT_CS_18, 1))
191 			break;
192 
193 		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
194 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
195 			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
196 			    (val & PORT_CS_18_WODS) ? "yes" : "no");
197 
198 		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
199 				     PORT_CS_18_WODS);
200 
201 		usb4 = port->usb4;
202 		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
203 			pm_wakeup_event(&usb4->dev, 0);
204 
205 		wakeup |= wakeup_usb4;
206 	}
207 
208 	if (wakeup)
209 		pm_wakeup_event(&sw->dev, 0);
210 }
211 
212 static bool link_is_usb4(struct tb_port *port)
213 {
214 	u32 val;
215 
216 	if (!port->cap_usb4)
217 		return false;
218 
219 	if (tb_port_read(port, &val, TB_CFG_PORT,
220 			 port->cap_usb4 + PORT_CS_18, 1))
221 		return false;
222 
223 	return !(val & PORT_CS_18_TCM);
224 }
225 
226 /**
227  * usb4_switch_setup() - Additional setup for USB4 device
228  * @sw: USB4 router to setup
229  *
230  * USB4 routers need additional settings in order to enable all the
231  * tunneling. This function enables USB and PCIe tunneling if it can be
232  * enabled (e.g the parent switch also supports them). If USB tunneling
233  * is not available for some reason (like that there is Thunderbolt 3
234  * switch upstream) then the internal xHCI controller is enabled
235  * instead.
236  *
237  * This does not set the configuration valid bit of the router. To do
238  * that call usb4_switch_configuration_valid().
239  */
240 int usb4_switch_setup(struct tb_switch *sw)
241 {
242 	struct tb_switch *parent = tb_switch_parent(sw);
243 	struct tb_port *down;
244 	bool tbt3, xhci;
245 	u32 val = 0;
246 	int ret;
247 
248 	if (!tb_route(sw))
249 		return 0;
250 
251 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
252 	if (ret)
253 		return ret;
254 
255 	down = tb_switch_downstream_port(sw);
256 	sw->link_usb4 = link_is_usb4(down);
257 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
258 
259 	xhci = val & ROUTER_CS_6_HCI;
260 	tbt3 = !(val & ROUTER_CS_6_TNS);
261 
262 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
263 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
264 
265 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
266 	if (ret)
267 		return ret;
268 
269 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
270 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
271 		val |= ROUTER_CS_5_UTO;
272 		xhci = false;
273 	}
274 
275 	/*
276 	 * Only enable PCIe tunneling if the parent router supports it
277 	 * and it is not disabled.
278 	 */
279 	if (tb_acpi_may_tunnel_pcie() &&
280 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
281 		val |= ROUTER_CS_5_PTO;
282 		/*
283 		 * xHCI can be enabled if PCIe tunneling is supported
284 		 * and the parent does not have any USB3 dowstream
285 		 * adapters (so we cannot do USB 3.x tunneling).
286 		 */
287 		if (xhci)
288 			val |= ROUTER_CS_5_HCO;
289 	}
290 
291 	/* TBT3 supported by the CM */
292 	val &= ~ROUTER_CS_5_CNS;
293 
294 	return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
295 }
296 
297 /**
298  * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
299  * @sw: USB4 router
300  *
301  * Sets configuration valid bit for the router. Must be called before
302  * any tunnels can be set through the router and after
303  * usb4_switch_setup() has been called. Can be called to host and device
304  * routers (does nothing for the latter).
305  *
306  * Returns %0 in success and negative errno otherwise.
307  */
308 int usb4_switch_configuration_valid(struct tb_switch *sw)
309 {
310 	u32 val;
311 	int ret;
312 
313 	if (!tb_route(sw))
314 		return 0;
315 
316 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
317 	if (ret)
318 		return ret;
319 
320 	val |= ROUTER_CS_5_CV;
321 
322 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
323 	if (ret)
324 		return ret;
325 
326 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
327 				      ROUTER_CS_6_CR, 50);
328 }
329 
330 /**
331  * usb4_switch_read_uid() - Read UID from USB4 router
332  * @sw: USB4 router
333  * @uid: UID is stored here
334  *
335  * Reads 64-bit UID from USB4 router config space.
336  */
337 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
338 {
339 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
340 }
341 
342 static int usb4_switch_drom_read_block(void *data,
343 				       unsigned int dwaddress, void *buf,
344 				       size_t dwords)
345 {
346 	struct tb_switch *sw = data;
347 	u8 status = 0;
348 	u32 metadata;
349 	int ret;
350 
351 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
352 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
353 		USB4_DROM_ADDRESS_MASK;
354 
355 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
356 				  &status, NULL, 0, buf, dwords);
357 	if (ret)
358 		return ret;
359 
360 	return status ? -EIO : 0;
361 }
362 
363 /**
364  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
365  * @sw: USB4 router
366  * @address: Byte address inside DROM to start reading
367  * @buf: Buffer where the DROM content is stored
368  * @size: Number of bytes to read from DROM
369  *
370  * Uses USB4 router operations to read router DROM. For devices this
371  * should always work but for hosts it may return %-EOPNOTSUPP in which
372  * case the host router does not have DROM.
373  */
374 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
375 			  size_t size)
376 {
377 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
378 				usb4_switch_drom_read_block, sw);
379 }
380 
381 /**
382  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
383  * @sw: USB4 router
384  *
385  * Checks whether conditions are met so that lane bonding can be
386  * established with the upstream router. Call only for device routers.
387  */
388 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
389 {
390 	struct tb_port *up;
391 	int ret;
392 	u32 val;
393 
394 	up = tb_upstream_port(sw);
395 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
396 	if (ret)
397 		return false;
398 
399 	return !!(val & PORT_CS_18_BE);
400 }
401 
402 /**
403  * usb4_switch_set_wake() - Enabled/disable wake
404  * @sw: USB4 router
405  * @flags: Wakeup flags (%0 to disable)
406  *
407  * Enables/disables router to wake up from sleep.
408  */
409 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
410 {
411 	struct usb4_port *usb4;
412 	struct tb_port *port;
413 	u64 route = tb_route(sw);
414 	u32 val;
415 	int ret;
416 
417 	/*
418 	 * Enable wakes coming from all USB4 downstream ports (from
419 	 * child routers). For device routers do this also for the
420 	 * upstream USB4 port.
421 	 */
422 	tb_switch_for_each_port(sw, port) {
423 		if (!tb_port_is_null(port))
424 			continue;
425 		if (!route && tb_is_upstream_port(port))
426 			continue;
427 		if (!port->cap_usb4)
428 			continue;
429 
430 		ret = tb_port_read(port, &val, TB_CFG_PORT,
431 				   port->cap_usb4 + PORT_CS_19, 1);
432 		if (ret)
433 			return ret;
434 
435 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
436 
437 		if (tb_is_upstream_port(port)) {
438 			val |= PORT_CS_19_WOU4;
439 		} else {
440 			bool configured = val & PORT_CS_19_PC;
441 			usb4 = port->usb4;
442 
443 			if (((flags & TB_WAKE_ON_CONNECT) |
444 			      device_may_wakeup(&usb4->dev)) && !configured)
445 				val |= PORT_CS_19_WOC;
446 			if (((flags & TB_WAKE_ON_DISCONNECT) |
447 			      device_may_wakeup(&usb4->dev)) && configured)
448 				val |= PORT_CS_19_WOD;
449 			if ((flags & TB_WAKE_ON_USB4) && configured)
450 				val |= PORT_CS_19_WOU4;
451 		}
452 
453 		ret = tb_port_write(port, &val, TB_CFG_PORT,
454 				    port->cap_usb4 + PORT_CS_19, 1);
455 		if (ret)
456 			return ret;
457 	}
458 
459 	/*
460 	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
461 	 * needed for device routers.
462 	 */
463 	if (route) {
464 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
465 		if (ret)
466 			return ret;
467 
468 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
469 		if (flags & TB_WAKE_ON_USB3)
470 			val |= ROUTER_CS_5_WOU;
471 		if (flags & TB_WAKE_ON_PCIE)
472 			val |= ROUTER_CS_5_WOP;
473 		if (flags & TB_WAKE_ON_DP)
474 			val |= ROUTER_CS_5_WOD;
475 
476 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
477 		if (ret)
478 			return ret;
479 	}
480 
481 	return 0;
482 }
483 
484 /**
485  * usb4_switch_set_sleep() - Prepare the router to enter sleep
486  * @sw: USB4 router
487  *
488  * Sets sleep bit for the router. Returns when the router sleep ready
489  * bit has been asserted.
490  */
491 int usb4_switch_set_sleep(struct tb_switch *sw)
492 {
493 	int ret;
494 	u32 val;
495 
496 	/* Set sleep bit and wait for sleep ready to be asserted */
497 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
498 	if (ret)
499 		return ret;
500 
501 	val |= ROUTER_CS_5_SLP;
502 
503 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
504 	if (ret)
505 		return ret;
506 
507 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
508 				      ROUTER_CS_6_SLPR, 500);
509 }
510 
511 /**
512  * usb4_switch_nvm_sector_size() - Return router NVM sector size
513  * @sw: USB4 router
514  *
515  * If the router supports NVM operations this function returns the NVM
516  * sector size in bytes. If NVM operations are not supported returns
517  * %-EOPNOTSUPP.
518  */
519 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
520 {
521 	u32 metadata;
522 	u8 status;
523 	int ret;
524 
525 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
526 			     &status);
527 	if (ret)
528 		return ret;
529 
530 	if (status)
531 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
532 
533 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
534 }
535 
536 static int usb4_switch_nvm_read_block(void *data,
537 	unsigned int dwaddress, void *buf, size_t dwords)
538 {
539 	struct tb_switch *sw = data;
540 	u8 status = 0;
541 	u32 metadata;
542 	int ret;
543 
544 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
545 		   USB4_NVM_READ_LENGTH_MASK;
546 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
547 		   USB4_NVM_READ_OFFSET_MASK;
548 
549 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
550 				  &status, NULL, 0, buf, dwords);
551 	if (ret)
552 		return ret;
553 
554 	return status ? -EIO : 0;
555 }
556 
557 /**
558  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
559  * @sw: USB4 router
560  * @address: Starting address in bytes
561  * @buf: Read data is placed here
562  * @size: How many bytes to read
563  *
564  * Reads NVM contents of the router. If NVM is not supported returns
565  * %-EOPNOTSUPP.
566  */
567 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
568 			 size_t size)
569 {
570 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
571 				usb4_switch_nvm_read_block, sw);
572 }
573 
574 /**
575  * usb4_switch_nvm_set_offset() - Set NVM write offset
576  * @sw: USB4 router
577  * @address: Start offset
578  *
579  * Explicitly sets NVM write offset. Normally when writing to NVM this
580  * is done automatically by usb4_switch_nvm_write().
581  *
582  * Returns %0 in success and negative errno if there was a failure.
583  */
584 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
585 {
586 	u32 metadata, dwaddress;
587 	u8 status = 0;
588 	int ret;
589 
590 	dwaddress = address / 4;
591 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
592 		   USB4_NVM_SET_OFFSET_MASK;
593 
594 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
595 			     &status);
596 	if (ret)
597 		return ret;
598 
599 	return status ? -EIO : 0;
600 }
601 
602 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
603 					    const void *buf, size_t dwords)
604 {
605 	struct tb_switch *sw = data;
606 	u8 status;
607 	int ret;
608 
609 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
610 				  buf, dwords, NULL, 0);
611 	if (ret)
612 		return ret;
613 
614 	return status ? -EIO : 0;
615 }
616 
617 /**
618  * usb4_switch_nvm_write() - Write to the router NVM
619  * @sw: USB4 router
620  * @address: Start address where to write in bytes
621  * @buf: Pointer to the data to write
622  * @size: Size of @buf in bytes
623  *
624  * Writes @buf to the router NVM using USB4 router operations. If NVM
625  * write is not supported returns %-EOPNOTSUPP.
626  */
627 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
628 			  const void *buf, size_t size)
629 {
630 	int ret;
631 
632 	ret = usb4_switch_nvm_set_offset(sw, address);
633 	if (ret)
634 		return ret;
635 
636 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
637 				 usb4_switch_nvm_write_next_block, sw);
638 }
639 
640 /**
641  * usb4_switch_nvm_authenticate() - Authenticate new NVM
642  * @sw: USB4 router
643  *
644  * After the new NVM has been written via usb4_switch_nvm_write(), this
645  * function triggers NVM authentication process. The router gets power
646  * cycled and if the authentication is successful the new NVM starts
647  * running. In case of failure returns negative errno.
648  *
649  * The caller should call usb4_switch_nvm_authenticate_status() to read
650  * the status of the authentication after power cycle. It should be the
651  * first router operation to avoid the status being lost.
652  */
653 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
654 {
655 	int ret;
656 
657 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
658 	switch (ret) {
659 	/*
660 	 * The router is power cycled once NVM_AUTH is started so it is
661 	 * expected to get any of the following errors back.
662 	 */
663 	case -EACCES:
664 	case -ENOTCONN:
665 	case -ETIMEDOUT:
666 		return 0;
667 
668 	default:
669 		return ret;
670 	}
671 }
672 
673 /**
674  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
675  * @sw: USB4 router
676  * @status: Status code of the operation
677  *
678  * The function checks if there is status available from the last NVM
679  * authenticate router operation. If there is status then %0 is returned
680  * and the status code is placed in @status. Returns negative errno in case
681  * of failure.
682  *
683  * Must be called before any other router operation.
684  */
685 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
686 {
687 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
688 	u16 opcode;
689 	u32 val;
690 	int ret;
691 
692 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
693 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
694 		if (ret != -EOPNOTSUPP)
695 			return ret;
696 	}
697 
698 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
699 	if (ret)
700 		return ret;
701 
702 	/* Check that the opcode is correct */
703 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
704 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
705 		if (val & ROUTER_CS_26_OV)
706 			return -EBUSY;
707 		if (val & ROUTER_CS_26_ONS)
708 			return -EOPNOTSUPP;
709 
710 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
711 			ROUTER_CS_26_STATUS_SHIFT;
712 	} else {
713 		*status = 0;
714 	}
715 
716 	return 0;
717 }
718 
719 /**
720  * usb4_switch_credits_init() - Read buffer allocation parameters
721  * @sw: USB4 router
722  *
723  * Reads @sw buffer allocation parameters and initializes @sw buffer
724  * allocation fields accordingly. Specifically @sw->credits_allocation
725  * is set to %true if these parameters can be used in tunneling.
726  *
727  * Returns %0 on success and negative errno otherwise.
728  */
729 int usb4_switch_credits_init(struct tb_switch *sw)
730 {
731 	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
732 	int ret, length, i, nports;
733 	const struct tb_port *port;
734 	u32 data[USB4_DATA_DWORDS];
735 	u32 metadata = 0;
736 	u8 status = 0;
737 
738 	memset(data, 0, sizeof(data));
739 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
740 				  &status, NULL, 0, data, ARRAY_SIZE(data));
741 	if (ret)
742 		return ret;
743 	if (status)
744 		return -EIO;
745 
746 	length = metadata & USB4_BA_LENGTH_MASK;
747 	if (WARN_ON(length > ARRAY_SIZE(data)))
748 		return -EMSGSIZE;
749 
750 	max_usb3 = -1;
751 	min_dp_aux = -1;
752 	min_dp_main = -1;
753 	max_pcie = -1;
754 	max_dma = -1;
755 
756 	tb_sw_dbg(sw, "credit allocation parameters:\n");
757 
758 	for (i = 0; i < length; i++) {
759 		u16 index, value;
760 
761 		index = data[i] & USB4_BA_INDEX_MASK;
762 		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
763 
764 		switch (index) {
765 		case USB4_BA_MAX_USB3:
766 			tb_sw_dbg(sw, " USB3: %u\n", value);
767 			max_usb3 = value;
768 			break;
769 		case USB4_BA_MIN_DP_AUX:
770 			tb_sw_dbg(sw, " DP AUX: %u\n", value);
771 			min_dp_aux = value;
772 			break;
773 		case USB4_BA_MIN_DP_MAIN:
774 			tb_sw_dbg(sw, " DP main: %u\n", value);
775 			min_dp_main = value;
776 			break;
777 		case USB4_BA_MAX_PCIE:
778 			tb_sw_dbg(sw, " PCIe: %u\n", value);
779 			max_pcie = value;
780 			break;
781 		case USB4_BA_MAX_HI:
782 			tb_sw_dbg(sw, " DMA: %u\n", value);
783 			max_dma = value;
784 			break;
785 		default:
786 			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
787 				  index);
788 			break;
789 		}
790 	}
791 
792 	/*
793 	 * Validate the buffer allocation preferences. If we find
794 	 * issues, log a warning and fall back using the hard-coded
795 	 * values.
796 	 */
797 
798 	/* Host router must report baMaxHI */
799 	if (!tb_route(sw) && max_dma < 0) {
800 		tb_sw_warn(sw, "host router is missing baMaxHI\n");
801 		goto err_invalid;
802 	}
803 
804 	nports = 0;
805 	tb_switch_for_each_port(sw, port) {
806 		if (tb_port_is_null(port))
807 			nports++;
808 	}
809 
810 	/* Must have DP buffer allocation (multiple USB4 ports) */
811 	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
812 		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
813 		goto err_invalid;
814 	}
815 
816 	tb_switch_for_each_port(sw, port) {
817 		if (tb_port_is_dpout(port) && min_dp_main < 0) {
818 			tb_sw_warn(sw, "missing baMinDPmain");
819 			goto err_invalid;
820 		}
821 		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
822 		    min_dp_aux < 0) {
823 			tb_sw_warn(sw, "missing baMinDPaux");
824 			goto err_invalid;
825 		}
826 		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
827 		    max_usb3 < 0) {
828 			tb_sw_warn(sw, "missing baMaxUSB3");
829 			goto err_invalid;
830 		}
831 		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
832 		    max_pcie < 0) {
833 			tb_sw_warn(sw, "missing baMaxPCIe");
834 			goto err_invalid;
835 		}
836 	}
837 
838 	/*
839 	 * Buffer allocation passed the validation so we can use it in
840 	 * path creation.
841 	 */
842 	sw->credit_allocation = true;
843 	if (max_usb3 > 0)
844 		sw->max_usb3_credits = max_usb3;
845 	if (min_dp_aux > 0)
846 		sw->min_dp_aux_credits = min_dp_aux;
847 	if (min_dp_main > 0)
848 		sw->min_dp_main_credits = min_dp_main;
849 	if (max_pcie > 0)
850 		sw->max_pcie_credits = max_pcie;
851 	if (max_dma > 0)
852 		sw->max_dma_credits = max_dma;
853 
854 	return 0;
855 
856 err_invalid:
857 	return -EINVAL;
858 }
859 
860 /**
861  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
862  * @sw: USB4 router
863  * @in: DP IN adapter
864  *
865  * For DP tunneling this function can be used to query availability of
866  * DP IN resource. Returns true if the resource is available for DP
867  * tunneling, false otherwise.
868  */
869 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
870 {
871 	u32 metadata = in->port;
872 	u8 status;
873 	int ret;
874 
875 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
876 			     &status);
877 	/*
878 	 * If DP resource allocation is not supported assume it is
879 	 * always available.
880 	 */
881 	if (ret == -EOPNOTSUPP)
882 		return true;
883 	if (ret)
884 		return false;
885 
886 	return !status;
887 }
888 
889 /**
890  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
891  * @sw: USB4 router
892  * @in: DP IN adapter
893  *
894  * Allocates DP IN resource for DP tunneling using USB4 router
895  * operations. If the resource was allocated returns %0. Otherwise
896  * returns negative errno, in particular %-EBUSY if the resource is
897  * already allocated.
898  */
899 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
900 {
901 	u32 metadata = in->port;
902 	u8 status;
903 	int ret;
904 
905 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
906 			     &status);
907 	if (ret == -EOPNOTSUPP)
908 		return 0;
909 	if (ret)
910 		return ret;
911 
912 	return status ? -EBUSY : 0;
913 }
914 
915 /**
916  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
917  * @sw: USB4 router
918  * @in: DP IN adapter
919  *
920  * Releases the previously allocated DP IN resource.
921  */
922 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
923 {
924 	u32 metadata = in->port;
925 	u8 status;
926 	int ret;
927 
928 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
929 			     &status);
930 	if (ret == -EOPNOTSUPP)
931 		return 0;
932 	if (ret)
933 		return ret;
934 
935 	return status ? -EIO : 0;
936 }
937 
938 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
939 {
940 	struct tb_port *p;
941 	int usb4_idx = 0;
942 
943 	/* Assume port is primary */
944 	tb_switch_for_each_port(sw, p) {
945 		if (!tb_port_is_null(p))
946 			continue;
947 		if (tb_is_upstream_port(p))
948 			continue;
949 		if (!p->link_nr) {
950 			if (p == port)
951 				break;
952 			usb4_idx++;
953 		}
954 	}
955 
956 	return usb4_idx;
957 }
958 
959 /**
960  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
961  * @sw: USB4 router
962  * @port: USB4 port
963  *
964  * USB4 routers have direct mapping between USB4 ports and PCIe
965  * downstream adapters where the PCIe topology is extended. This
966  * function returns the corresponding downstream PCIe adapter or %NULL
967  * if no such mapping was possible.
968  */
969 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
970 					  const struct tb_port *port)
971 {
972 	int usb4_idx = usb4_port_idx(sw, port);
973 	struct tb_port *p;
974 	int pcie_idx = 0;
975 
976 	/* Find PCIe down port matching usb4_port */
977 	tb_switch_for_each_port(sw, p) {
978 		if (!tb_port_is_pcie_down(p))
979 			continue;
980 
981 		if (pcie_idx == usb4_idx)
982 			return p;
983 
984 		pcie_idx++;
985 	}
986 
987 	return NULL;
988 }
989 
990 /**
991  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
992  * @sw: USB4 router
993  * @port: USB4 port
994  *
995  * USB4 routers have direct mapping between USB4 ports and USB 3.x
996  * downstream adapters where the USB 3.x topology is extended. This
997  * function returns the corresponding downstream USB 3.x adapter or
998  * %NULL if no such mapping was possible.
999  */
1000 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1001 					  const struct tb_port *port)
1002 {
1003 	int usb4_idx = usb4_port_idx(sw, port);
1004 	struct tb_port *p;
1005 	int usb_idx = 0;
1006 
1007 	/* Find USB3 down port matching usb4_port */
1008 	tb_switch_for_each_port(sw, p) {
1009 		if (!tb_port_is_usb3_down(p))
1010 			continue;
1011 
1012 		if (usb_idx == usb4_idx)
1013 			return p;
1014 
1015 		usb_idx++;
1016 	}
1017 
1018 	return NULL;
1019 }
1020 
1021 /**
1022  * usb4_switch_add_ports() - Add USB4 ports for this router
1023  * @sw: USB4 router
1024  *
1025  * For USB4 router finds all USB4 ports and registers devices for each.
1026  * Can be called to any router.
1027  *
1028  * Return %0 in case of success and negative errno in case of failure.
1029  */
1030 int usb4_switch_add_ports(struct tb_switch *sw)
1031 {
1032 	struct tb_port *port;
1033 
1034 	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1035 		return 0;
1036 
1037 	tb_switch_for_each_port(sw, port) {
1038 		struct usb4_port *usb4;
1039 
1040 		if (!tb_port_is_null(port))
1041 			continue;
1042 		if (!port->cap_usb4)
1043 			continue;
1044 
1045 		usb4 = usb4_port_device_add(port);
1046 		if (IS_ERR(usb4)) {
1047 			usb4_switch_remove_ports(sw);
1048 			return PTR_ERR(usb4);
1049 		}
1050 
1051 		port->usb4 = usb4;
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 /**
1058  * usb4_switch_remove_ports() - Removes USB4 ports from this router
1059  * @sw: USB4 router
1060  *
1061  * Unregisters previously registered USB4 ports.
1062  */
1063 void usb4_switch_remove_ports(struct tb_switch *sw)
1064 {
1065 	struct tb_port *port;
1066 
1067 	tb_switch_for_each_port(sw, port) {
1068 		if (port->usb4) {
1069 			usb4_port_device_remove(port->usb4);
1070 			port->usb4 = NULL;
1071 		}
1072 	}
1073 }
1074 
1075 /**
1076  * usb4_port_unlock() - Unlock USB4 downstream port
1077  * @port: USB4 port to unlock
1078  *
1079  * Unlocks USB4 downstream port so that the connection manager can
1080  * access the router below this port.
1081  */
1082 int usb4_port_unlock(struct tb_port *port)
1083 {
1084 	int ret;
1085 	u32 val;
1086 
1087 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1088 	if (ret)
1089 		return ret;
1090 
1091 	val &= ~ADP_CS_4_LCK;
1092 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1093 }
1094 
1095 /**
1096  * usb4_port_hotplug_enable() - Enables hotplug for a port
1097  * @port: USB4 port to operate on
1098  *
1099  * Enables hot plug events on a given port. This is only intended
1100  * to be used on lane, DP-IN, and DP-OUT adapters.
1101  */
1102 int usb4_port_hotplug_enable(struct tb_port *port)
1103 {
1104 	int ret;
1105 	u32 val;
1106 
1107 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1108 	if (ret)
1109 		return ret;
1110 
1111 	val &= ~ADP_CS_5_DHP;
1112 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1113 }
1114 
1115 /**
1116  * usb4_port_reset() - Issue downstream port reset
1117  * @port: USB4 port to reset
1118  *
1119  * Issues downstream port reset to @port.
1120  */
1121 int usb4_port_reset(struct tb_port *port)
1122 {
1123 	int ret;
1124 	u32 val;
1125 
1126 	if (!port->cap_usb4)
1127 		return -EINVAL;
1128 
1129 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1130 			   port->cap_usb4 + PORT_CS_19, 1);
1131 	if (ret)
1132 		return ret;
1133 
1134 	val |= PORT_CS_19_DPR;
1135 
1136 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1137 			    port->cap_usb4 + PORT_CS_19, 1);
1138 	if (ret)
1139 		return ret;
1140 
1141 	fsleep(10000);
1142 
1143 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1144 			   port->cap_usb4 + PORT_CS_19, 1);
1145 	if (ret)
1146 		return ret;
1147 
1148 	val &= ~PORT_CS_19_DPR;
1149 
1150 	return tb_port_write(port, &val, TB_CFG_PORT,
1151 			     port->cap_usb4 + PORT_CS_19, 1);
1152 }
1153 
1154 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1155 {
1156 	int ret;
1157 	u32 val;
1158 
1159 	if (!port->cap_usb4)
1160 		return -EINVAL;
1161 
1162 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1163 			   port->cap_usb4 + PORT_CS_19, 1);
1164 	if (ret)
1165 		return ret;
1166 
1167 	if (configured)
1168 		val |= PORT_CS_19_PC;
1169 	else
1170 		val &= ~PORT_CS_19_PC;
1171 
1172 	return tb_port_write(port, &val, TB_CFG_PORT,
1173 			     port->cap_usb4 + PORT_CS_19, 1);
1174 }
1175 
1176 /**
1177  * usb4_port_configure() - Set USB4 port configured
1178  * @port: USB4 router
1179  *
1180  * Sets the USB4 link to be configured for power management purposes.
1181  */
1182 int usb4_port_configure(struct tb_port *port)
1183 {
1184 	return usb4_port_set_configured(port, true);
1185 }
1186 
1187 /**
1188  * usb4_port_unconfigure() - Set USB4 port unconfigured
1189  * @port: USB4 router
1190  *
1191  * Sets the USB4 link to be unconfigured for power management purposes.
1192  */
1193 void usb4_port_unconfigure(struct tb_port *port)
1194 {
1195 	usb4_port_set_configured(port, false);
1196 }
1197 
1198 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1199 {
1200 	int ret;
1201 	u32 val;
1202 
1203 	if (!port->cap_usb4)
1204 		return -EINVAL;
1205 
1206 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1207 			   port->cap_usb4 + PORT_CS_19, 1);
1208 	if (ret)
1209 		return ret;
1210 
1211 	if (configured)
1212 		val |= PORT_CS_19_PID;
1213 	else
1214 		val &= ~PORT_CS_19_PID;
1215 
1216 	return tb_port_write(port, &val, TB_CFG_PORT,
1217 			     port->cap_usb4 + PORT_CS_19, 1);
1218 }
1219 
1220 /**
1221  * usb4_port_configure_xdomain() - Configure port for XDomain
1222  * @port: USB4 port connected to another host
1223  * @xd: XDomain that is connected to the port
1224  *
1225  * Marks the USB4 port as being connected to another host and updates
1226  * the link type. Returns %0 in success and negative errno in failure.
1227  */
1228 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1229 {
1230 	xd->link_usb4 = link_is_usb4(port);
1231 	return usb4_set_xdomain_configured(port, true);
1232 }
1233 
1234 /**
1235  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1236  * @port: USB4 port that was connected to another host
1237  *
1238  * Clears USB4 port from being marked as XDomain.
1239  */
1240 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1241 {
1242 	usb4_set_xdomain_configured(port, false);
1243 }
1244 
1245 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1246 			  u32 value, int timeout_msec, unsigned long delay_usec)
1247 {
1248 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1249 
1250 	do {
1251 		u32 val;
1252 		int ret;
1253 
1254 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1255 		if (ret)
1256 			return ret;
1257 
1258 		if ((val & bit) == value)
1259 			return 0;
1260 
1261 		fsleep(delay_usec);
1262 	} while (ktime_before(ktime_get(), timeout));
1263 
1264 	return -ETIMEDOUT;
1265 }
1266 
1267 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1268 {
1269 	if (dwords > USB4_DATA_DWORDS)
1270 		return -EINVAL;
1271 
1272 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1273 			    dwords);
1274 }
1275 
1276 static int usb4_port_write_data(struct tb_port *port, const void *data,
1277 				size_t dwords)
1278 {
1279 	if (dwords > USB4_DATA_DWORDS)
1280 		return -EINVAL;
1281 
1282 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1283 			     dwords);
1284 }
1285 
1286 /**
1287  * usb4_port_sb_read() - Read from sideband register
1288  * @port: USB4 port to read
1289  * @target: Sideband target
1290  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1291  * @reg: Sideband register index
1292  * @buf: Buffer where the sideband data is copied
1293  * @size: Size of @buf
1294  *
1295  * Reads data from sideband register @reg and copies it into @buf.
1296  * Returns %0 in case of success and negative errno in case of failure.
1297  */
1298 int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, u8 index,
1299 		      u8 reg, void *buf, u8 size)
1300 {
1301 	size_t dwords = DIV_ROUND_UP(size, 4);
1302 	int ret;
1303 	u32 val;
1304 
1305 	if (!port->cap_usb4)
1306 		return -EINVAL;
1307 
1308 	val = reg;
1309 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1310 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1311 	if (target == USB4_SB_TARGET_RETIMER)
1312 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1313 	val |= PORT_CS_1_PND;
1314 
1315 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1316 			    port->cap_usb4 + PORT_CS_1, 1);
1317 	if (ret)
1318 		return ret;
1319 
1320 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1321 				     PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY);
1322 	if (ret)
1323 		return ret;
1324 
1325 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1326 			    port->cap_usb4 + PORT_CS_1, 1);
1327 	if (ret)
1328 		return ret;
1329 
1330 	if (val & PORT_CS_1_NR)
1331 		return -ENODEV;
1332 	if (val & PORT_CS_1_RC)
1333 		return -EIO;
1334 
1335 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1336 }
1337 
1338 /**
1339  * usb4_port_sb_write() - Write to sideband register
1340  * @port: USB4 port to write
1341  * @target: Sideband target
1342  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1343  * @reg: Sideband register index
1344  * @buf: Data to write
1345  * @size: Size of @buf
1346  *
1347  * Writes @buf to sideband register @reg. Returns %0 in case of success
1348  * and negative errno in case of failure.
1349  */
1350 int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1351 		       u8 index, u8 reg, const void *buf, u8 size)
1352 {
1353 	size_t dwords = DIV_ROUND_UP(size, 4);
1354 	int ret;
1355 	u32 val;
1356 
1357 	if (!port->cap_usb4)
1358 		return -EINVAL;
1359 
1360 	if (buf) {
1361 		ret = usb4_port_write_data(port, buf, dwords);
1362 		if (ret)
1363 			return ret;
1364 	}
1365 
1366 	val = reg;
1367 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1368 	val |= PORT_CS_1_WNR_WRITE;
1369 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1370 	if (target == USB4_SB_TARGET_RETIMER)
1371 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1372 	val |= PORT_CS_1_PND;
1373 
1374 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1375 			    port->cap_usb4 + PORT_CS_1, 1);
1376 	if (ret)
1377 		return ret;
1378 
1379 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1380 				     PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY);
1381 	if (ret)
1382 		return ret;
1383 
1384 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1385 			    port->cap_usb4 + PORT_CS_1, 1);
1386 	if (ret)
1387 		return ret;
1388 
1389 	if (val & PORT_CS_1_NR)
1390 		return -ENODEV;
1391 	if (val & PORT_CS_1_RC)
1392 		return -EIO;
1393 
1394 	return 0;
1395 }
1396 
1397 static int usb4_port_sb_opcode_err_to_errno(u32 val)
1398 {
1399 	switch (val) {
1400 	case 0:
1401 		return 0;
1402 	case USB4_SB_OPCODE_ERR:
1403 		return -EAGAIN;
1404 	case USB4_SB_OPCODE_ONS:
1405 		return -EOPNOTSUPP;
1406 	default:
1407 		return -EIO;
1408 	}
1409 }
1410 
1411 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1412 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1413 {
1414 	ktime_t timeout;
1415 	u32 val;
1416 	int ret;
1417 
1418 	val = opcode;
1419 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1420 				 sizeof(val));
1421 	if (ret)
1422 		return ret;
1423 
1424 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1425 
1426 	do {
1427 		/* Check results */
1428 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1429 					&val, sizeof(val));
1430 		if (ret)
1431 			return ret;
1432 
1433 		if (val != opcode)
1434 			return usb4_port_sb_opcode_err_to_errno(val);
1435 
1436 		fsleep(USB4_PORT_SB_DELAY);
1437 	} while (ktime_before(ktime_get(), timeout));
1438 
1439 	return -ETIMEDOUT;
1440 }
1441 
1442 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1443 {
1444 	u32 val = !offline;
1445 	int ret;
1446 
1447 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1448 				  USB4_SB_METADATA, &val, sizeof(val));
1449 	if (ret)
1450 		return ret;
1451 
1452 	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1453 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1454 				  USB4_SB_OPCODE, &val, sizeof(val));
1455 }
1456 
1457 /**
1458  * usb4_port_router_offline() - Put the USB4 port to offline mode
1459  * @port: USB4 port
1460  *
1461  * This function puts the USB4 port into offline mode. In this mode the
1462  * port does not react on hotplug events anymore. This needs to be
1463  * called before retimer access is done when the USB4 links is not up.
1464  *
1465  * Returns %0 in case of success and negative errno if there was an
1466  * error.
1467  */
1468 int usb4_port_router_offline(struct tb_port *port)
1469 {
1470 	return usb4_port_set_router_offline(port, true);
1471 }
1472 
1473 /**
1474  * usb4_port_router_online() - Put the USB4 port back to online
1475  * @port: USB4 port
1476  *
1477  * Makes the USB4 port functional again.
1478  */
1479 int usb4_port_router_online(struct tb_port *port)
1480 {
1481 	return usb4_port_set_router_offline(port, false);
1482 }
1483 
1484 /**
1485  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1486  * @port: USB4 port
1487  *
1488  * This forces the USB4 port to send broadcast RT transaction which
1489  * makes the retimers on the link to assign index to themselves. Returns
1490  * %0 in case of success and negative errno if there was an error.
1491  */
1492 int usb4_port_enumerate_retimers(struct tb_port *port)
1493 {
1494 	u32 val;
1495 
1496 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1497 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1498 				  USB4_SB_OPCODE, &val, sizeof(val));
1499 }
1500 
1501 /**
1502  * usb4_port_clx_supported() - Check if CLx is supported by the link
1503  * @port: Port to check for CLx support for
1504  *
1505  * PORT_CS_18_CPS bit reflects if the link supports CLx including
1506  * active cables (if connected on the link).
1507  */
1508 bool usb4_port_clx_supported(struct tb_port *port)
1509 {
1510 	int ret;
1511 	u32 val;
1512 
1513 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1514 			   port->cap_usb4 + PORT_CS_18, 1);
1515 	if (ret)
1516 		return false;
1517 
1518 	return !!(val & PORT_CS_18_CPS);
1519 }
1520 
1521 /**
1522  * usb4_port_asym_supported() - If the port supports asymmetric link
1523  * @port: USB4 port
1524  *
1525  * Checks if the port and the cable supports asymmetric link and returns
1526  * %true in that case.
1527  */
1528 bool usb4_port_asym_supported(struct tb_port *port)
1529 {
1530 	u32 val;
1531 
1532 	if (!port->cap_usb4)
1533 		return false;
1534 
1535 	if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
1536 		return false;
1537 
1538 	return !!(val & PORT_CS_18_CSA);
1539 }
1540 
1541 /**
1542  * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1543  * @port: USB4 port
1544  * @width: Asymmetric width to configure
1545  *
1546  * Sets USB4 port link width to @width. Can be called for widths where
1547  * usb4_port_asym_width_supported() returned @true.
1548  */
1549 int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1550 {
1551 	u32 val;
1552 	int ret;
1553 
1554 	if (!port->cap_phy)
1555 		return -EINVAL;
1556 
1557 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1558 			   port->cap_phy + LANE_ADP_CS_1, 1);
1559 	if (ret)
1560 		return ret;
1561 
1562 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1563 	switch (width) {
1564 	case TB_LINK_WIDTH_DUAL:
1565 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1566 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1567 		break;
1568 	case TB_LINK_WIDTH_ASYM_TX:
1569 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1570 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1571 		break;
1572 	case TB_LINK_WIDTH_ASYM_RX:
1573 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1574 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1575 		break;
1576 	default:
1577 		return -EINVAL;
1578 	}
1579 
1580 	return tb_port_write(port, &val, TB_CFG_PORT,
1581 			     port->cap_phy + LANE_ADP_CS_1, 1);
1582 }
1583 
1584 /**
1585  * usb4_port_asym_start() - Start symmetry change and wait for completion
1586  * @port: USB4 port
1587  *
1588  * Start symmetry change of the link to asymmetric or symmetric
1589  * (according to what was previously set in tb_port_set_link_width().
1590  * Wait for completion of the change.
1591  *
1592  * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1593  * a negative errno in case of a failure.
1594  */
1595 int usb4_port_asym_start(struct tb_port *port)
1596 {
1597 	int ret;
1598 	u32 val;
1599 
1600 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1601 			   port->cap_usb4 + PORT_CS_19, 1);
1602 	if (ret)
1603 		return ret;
1604 
1605 	val &= ~PORT_CS_19_START_ASYM;
1606 	val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1607 
1608 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1609 			    port->cap_usb4 + PORT_CS_19, 1);
1610 	if (ret)
1611 		return ret;
1612 
1613 	/*
1614 	 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1615 	 * port started the symmetry transition.
1616 	 */
1617 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
1618 				     PORT_CS_19_START_ASYM, 0, 1000,
1619 				     USB4_PORT_DELAY);
1620 	if (ret)
1621 		return ret;
1622 
1623 	/* Then wait for the transtion to be completed */
1624 	return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
1625 				      PORT_CS_18_TIP, 0, 5000, USB4_PORT_DELAY);
1626 }
1627 
1628 /**
1629  * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1630  * @port: USB4 port
1631  * @target: Sideband target
1632  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1633  * @caps: Array with at least two elements to hold the results
1634  *
1635  * Reads the USB4 port lane margining capabilities into @caps.
1636  */
1637 int usb4_port_margining_caps(struct tb_port *port, enum usb4_sb_target target,
1638 			     u8 index, u32 *caps)
1639 {
1640 	int ret;
1641 
1642 	ret = usb4_port_sb_op(port, target, index,
1643 			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1644 	if (ret)
1645 		return ret;
1646 
1647 	return usb4_port_sb_read(port, target, index, USB4_SB_DATA, caps,
1648 				 sizeof(*caps) * 2);
1649 }
1650 
1651 /**
1652  * usb4_port_hw_margin() - Run hardware lane margining on port
1653  * @port: USB4 port
1654  * @target: Sideband target
1655  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1656  * @params: Parameters for USB4 hardware margining
1657  * @results: Array with at least two elements to hold the results
1658  *
1659  * Runs hardware lane margining on USB4 port and returns the result in
1660  * @results.
1661  */
1662 int usb4_port_hw_margin(struct tb_port *port, enum usb4_sb_target target,
1663 			u8 index, const struct usb4_port_margining_params *params,
1664 			u32 *results)
1665 {
1666 	u32 val;
1667 	int ret;
1668 
1669 	if (WARN_ON_ONCE(!params))
1670 		return -EINVAL;
1671 
1672 	val = params->lanes;
1673 	if (params->time)
1674 		val |= USB4_MARGIN_HW_TIME;
1675 	if (params->right_high)
1676 		val |= USB4_MARGIN_HW_RH;
1677 	if (params->ber_level)
1678 		val |= FIELD_PREP(USB4_MARGIN_HW_BER_MASK, params->ber_level);
1679 	if (params->optional_voltage_offset_range)
1680 		val |= USB4_MARGIN_HW_OPT_VOLTAGE;
1681 
1682 	ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, &val,
1683 				 sizeof(val));
1684 	if (ret)
1685 		return ret;
1686 
1687 	ret = usb4_port_sb_op(port, target, index,
1688 			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1689 	if (ret)
1690 		return ret;
1691 
1692 	return usb4_port_sb_read(port, target, index, USB4_SB_DATA, results,
1693 				 sizeof(*results) * 2);
1694 }
1695 
1696 /**
1697  * usb4_port_sw_margin() - Run software lane margining on port
1698  * @port: USB4 port
1699  * @target: Sideband target
1700  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1701  * @params: Parameters for USB4 software margining
1702  * @results: Data word for the operation completion data
1703  *
1704  * Runs software lane margining on USB4 port. Read back the error
1705  * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1706  * success and negative errno otherwise.
1707  */
1708 int usb4_port_sw_margin(struct tb_port *port, enum usb4_sb_target target,
1709 			u8 index, const struct usb4_port_margining_params *params,
1710 			u32 *results)
1711 {
1712 	u32 val;
1713 	int ret;
1714 
1715 	if (WARN_ON_ONCE(!params))
1716 		return -EINVAL;
1717 
1718 	val = params->lanes;
1719 	if (params->time)
1720 		val |= USB4_MARGIN_SW_TIME;
1721 	if (params->optional_voltage_offset_range)
1722 		val |= USB4_MARGIN_SW_OPT_VOLTAGE;
1723 	if (params->right_high)
1724 		val |= USB4_MARGIN_SW_RH;
1725 	val |= FIELD_PREP(USB4_MARGIN_SW_COUNTER_MASK, params->error_counter);
1726 	val |= FIELD_PREP(USB4_MARGIN_SW_VT_MASK, params->voltage_time_offset);
1727 
1728 	ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, &val,
1729 				 sizeof(val));
1730 	if (ret)
1731 		return ret;
1732 
1733 	ret = usb4_port_sb_op(port, target, index,
1734 			      USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1735 	if (ret)
1736 		return ret;
1737 
1738 	return usb4_port_sb_read(port, target, index, USB4_SB_DATA, results,
1739 				 sizeof(*results));
1740 
1741 }
1742 
1743 /**
1744  * usb4_port_sw_margin_errors() - Read the software margining error counters
1745  * @port: USB4 port
1746  * @target: Sideband target
1747  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1748  * @errors: Error metadata is copied here.
1749  *
1750  * This reads back the software margining error counters from the port.
1751  * Returns %0 in success and negative errno otherwise.
1752  */
1753 int usb4_port_sw_margin_errors(struct tb_port *port, enum usb4_sb_target target,
1754 			       u8 index, u32 *errors)
1755 {
1756 	int ret;
1757 
1758 	ret = usb4_port_sb_op(port, target, index,
1759 			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1760 	if (ret)
1761 		return ret;
1762 
1763 	return usb4_port_sb_read(port, target, index, USB4_SB_METADATA, errors,
1764 				 sizeof(*errors));
1765 }
1766 
1767 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1768 				       enum usb4_sb_opcode opcode,
1769 				       int timeout_msec)
1770 {
1771 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1772 			       timeout_msec);
1773 }
1774 
1775 /**
1776  * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1777  * @port: USB4 port
1778  * @index: Retimer index
1779  *
1780  * Enables sideband channel transations on SBTX. Can be used when USB4
1781  * link does not go up, for example if there is no device connected.
1782  */
1783 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1784 {
1785 	int ret;
1786 
1787 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1788 				   500);
1789 
1790 	if (ret != -ENODEV)
1791 		return ret;
1792 
1793 	/*
1794 	 * Per the USB4 retimer spec, the retimer is not required to
1795 	 * send an RT (Retimer Transaction) response for the first
1796 	 * SET_INBOUND_SBTX command
1797 	 */
1798 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1799 				    500);
1800 }
1801 
1802 /**
1803  * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1804  * @port: USB4 port
1805  * @index: Retimer index
1806  *
1807  * Disables sideband channel transations on SBTX. The reverse of
1808  * usb4_port_retimer_set_inbound_sbtx().
1809  */
1810 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1811 {
1812 	return usb4_port_retimer_op(port, index,
1813 				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1814 }
1815 
1816 /**
1817  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1818  * @port: USB4 port
1819  * @index: Retimer index
1820  *
1821  * If the retimer at @index is last one (connected directly to the
1822  * Type-C port) this function returns %1. If it is not returns %0. If
1823  * the retimer is not present returns %-ENODEV. Otherwise returns
1824  * negative errno.
1825  */
1826 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1827 {
1828 	u32 metadata;
1829 	int ret;
1830 
1831 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1832 				   500);
1833 	if (ret)
1834 		return ret;
1835 
1836 	ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1837 				USB4_SB_METADATA, &metadata, sizeof(metadata));
1838 	return ret ? ret : metadata & 1;
1839 }
1840 
1841 /**
1842  * usb4_port_retimer_is_cable() - Is the retimer cable retimer
1843  * @port: USB4 port
1844  * @index: Retimer index
1845  *
1846  * If the retimer at @index is last cable retimer this function returns
1847  * %1 and %0 if it is on-board retimer. In case a retimer is not present
1848  * at @index returns %-ENODEV. Otherwise returns negative errno.
1849  */
1850 int usb4_port_retimer_is_cable(struct tb_port *port, u8 index)
1851 {
1852 	u32 metadata;
1853 	int ret;
1854 
1855 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_CABLE_RETIMER,
1856 				   500);
1857 	if (ret)
1858 		return ret;
1859 
1860 	ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1861 				USB4_SB_METADATA, &metadata, sizeof(metadata));
1862 	return ret ? ret : metadata & 1;
1863 }
1864 
1865 /**
1866  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1867  * @port: USB4 port
1868  * @index: Retimer index
1869  *
1870  * Reads NVM sector size (in bytes) of a retimer at @index. This
1871  * operation can be used to determine whether the retimer supports NVM
1872  * upgrade for example. Returns sector size in bytes or negative errno
1873  * in case of error. Specifically returns %-ENODEV if there is no
1874  * retimer at @index.
1875  */
1876 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1877 {
1878 	u32 metadata;
1879 	int ret;
1880 
1881 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1882 				   500);
1883 	if (ret)
1884 		return ret;
1885 
1886 	ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1887 				USB4_SB_METADATA, &metadata, sizeof(metadata));
1888 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1889 }
1890 
1891 /**
1892  * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1893  * @port: USB4 port
1894  * @index: Retimer index
1895  * @address: Start offset
1896  *
1897  * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1898  * done automatically by usb4_port_retimer_nvm_write().
1899  *
1900  * Returns %0 in success and negative errno if there was a failure.
1901  */
1902 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1903 				     unsigned int address)
1904 {
1905 	u32 metadata, dwaddress;
1906 	int ret;
1907 
1908 	dwaddress = address / 4;
1909 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1910 		  USB4_NVM_SET_OFFSET_MASK;
1911 
1912 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1913 				 USB4_SB_METADATA, &metadata, sizeof(metadata));
1914 	if (ret)
1915 		return ret;
1916 
1917 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1918 				    500);
1919 }
1920 
1921 struct retimer_info {
1922 	struct tb_port *port;
1923 	u8 index;
1924 };
1925 
1926 static int usb4_port_retimer_nvm_write_next_block(void *data,
1927 	unsigned int dwaddress, const void *buf, size_t dwords)
1928 
1929 {
1930 	const struct retimer_info *info = data;
1931 	struct tb_port *port = info->port;
1932 	u8 index = info->index;
1933 	int ret;
1934 
1935 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1936 				 USB4_SB_DATA, buf, dwords * 4);
1937 	if (ret)
1938 		return ret;
1939 
1940 	return usb4_port_retimer_op(port, index,
1941 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1942 }
1943 
1944 /**
1945  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1946  * @port: USB4 port
1947  * @index: Retimer index
1948  * @address: Byte address where to start the write
1949  * @buf: Data to write
1950  * @size: Size in bytes how much to write
1951  *
1952  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1953  * upgrade. Returns %0 if the data was written successfully and negative
1954  * errno in case of failure. Specifically returns %-ENODEV if there is
1955  * no retimer at @index.
1956  */
1957 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1958 				const void *buf, size_t size)
1959 {
1960 	struct retimer_info info = { .port = port, .index = index };
1961 	int ret;
1962 
1963 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1964 	if (ret)
1965 		return ret;
1966 
1967 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1968 				 usb4_port_retimer_nvm_write_next_block, &info);
1969 }
1970 
1971 /**
1972  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1973  * @port: USB4 port
1974  * @index: Retimer index
1975  *
1976  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1977  * this function can be used to trigger the NVM upgrade process. If
1978  * successful the retimer restarts with the new NVM and may not have the
1979  * index set so one needs to call usb4_port_enumerate_retimers() to
1980  * force index to be assigned.
1981  */
1982 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1983 {
1984 	u32 val;
1985 
1986 	/*
1987 	 * We need to use the raw operation here because once the
1988 	 * authentication completes the retimer index is not set anymore
1989 	 * so we do not get back the status now.
1990 	 */
1991 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1992 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1993 				  USB4_SB_OPCODE, &val, sizeof(val));
1994 }
1995 
1996 /**
1997  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1998  * @port: USB4 port
1999  * @index: Retimer index
2000  * @status: Raw status code read from metadata
2001  *
2002  * This can be called after usb4_port_retimer_nvm_authenticate() and
2003  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
2004  *
2005  * Returns %0 if the authentication status was successfully read. The
2006  * completion metadata (the result) is then stored into @status. If
2007  * reading the status fails, returns negative errno.
2008  */
2009 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
2010 					      u32 *status)
2011 {
2012 	u32 metadata, val;
2013 	int ret;
2014 
2015 	ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2016 				USB4_SB_OPCODE, &val, sizeof(val));
2017 	if (ret)
2018 		return ret;
2019 
2020 	ret = usb4_port_sb_opcode_err_to_errno(val);
2021 	switch (ret) {
2022 	case 0:
2023 		*status = 0;
2024 		return 0;
2025 
2026 	case -EAGAIN:
2027 		ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2028 					USB4_SB_METADATA, &metadata,
2029 					sizeof(metadata));
2030 		if (ret)
2031 			return ret;
2032 
2033 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
2034 		return 0;
2035 
2036 	default:
2037 		return ret;
2038 	}
2039 }
2040 
2041 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
2042 					    void *buf, size_t dwords)
2043 {
2044 	const struct retimer_info *info = data;
2045 	struct tb_port *port = info->port;
2046 	u8 index = info->index;
2047 	u32 metadata;
2048 	int ret;
2049 
2050 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
2051 	if (dwords < USB4_DATA_DWORDS)
2052 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
2053 
2054 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
2055 				 USB4_SB_METADATA, &metadata, sizeof(metadata));
2056 	if (ret)
2057 		return ret;
2058 
2059 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
2060 	if (ret)
2061 		return ret;
2062 
2063 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2064 				 USB4_SB_DATA, buf, dwords * 4);
2065 }
2066 
2067 /**
2068  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2069  * @port: USB4 port
2070  * @index: Retimer index
2071  * @address: NVM address (in bytes) to start reading
2072  * @buf: Data read from NVM is stored here
2073  * @size: Number of bytes to read
2074  *
2075  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2076  * read was successful and negative errno in case of failure.
2077  * Specifically returns %-ENODEV if there is no retimer at @index.
2078  */
2079 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2080 			       unsigned int address, void *buf, size_t size)
2081 {
2082 	struct retimer_info info = { .port = port, .index = index };
2083 
2084 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2085 				usb4_port_retimer_nvm_read_block, &info);
2086 }
2087 
2088 static inline unsigned int
2089 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2090 {
2091 	/* Take the possible bandwidth limitation into account */
2092 	if (port->max_bw)
2093 		return min(bw, port->max_bw);
2094 	return bw;
2095 }
2096 
2097 /**
2098  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2099  * @port: USB3 adapter port
2100  *
2101  * Return maximum supported link rate of a USB3 adapter in Mb/s.
2102  * Negative errno in case of error.
2103  */
2104 int usb4_usb3_port_max_link_rate(struct tb_port *port)
2105 {
2106 	int ret, lr;
2107 	u32 val;
2108 
2109 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2110 		return -EINVAL;
2111 
2112 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2113 			   port->cap_adap + ADP_USB3_CS_4, 1);
2114 	if (ret)
2115 		return ret;
2116 
2117 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2118 	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2119 
2120 	return usb4_usb3_port_max_bandwidth(port, ret);
2121 }
2122 
2123 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2124 {
2125 	int ret;
2126 	u32 val;
2127 
2128 	if (!tb_port_is_usb3_down(port))
2129 		return -EINVAL;
2130 	if (tb_route(port->sw))
2131 		return -EINVAL;
2132 
2133 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2134 			   port->cap_adap + ADP_USB3_CS_2, 1);
2135 	if (ret)
2136 		return ret;
2137 
2138 	if (request)
2139 		val |= ADP_USB3_CS_2_CMR;
2140 	else
2141 		val &= ~ADP_USB3_CS_2_CMR;
2142 
2143 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2144 			    port->cap_adap + ADP_USB3_CS_2, 1);
2145 	if (ret)
2146 		return ret;
2147 
2148 	/*
2149 	 * We can use val here directly as the CMR bit is in the same place
2150 	 * as HCA. Just mask out others.
2151 	 */
2152 	val &= ADP_USB3_CS_2_CMR;
2153 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2154 				      ADP_USB3_CS_1_HCA, val, 1500,
2155 				      USB4_PORT_DELAY);
2156 }
2157 
2158 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2159 {
2160 	return usb4_usb3_port_cm_request(port, true);
2161 }
2162 
2163 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2164 {
2165 	return usb4_usb3_port_cm_request(port, false);
2166 }
2167 
2168 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2169 {
2170 	unsigned long uframes;
2171 
2172 	uframes = bw * 512UL << scale;
2173 	return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2174 }
2175 
2176 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2177 {
2178 	unsigned long uframes;
2179 
2180 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2181 	uframes = ((unsigned long)mbps * MEGA) / 8000;
2182 	return DIV_ROUND_UP(uframes, 512UL << scale);
2183 }
2184 
2185 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2186 						   int *upstream_bw,
2187 						   int *downstream_bw)
2188 {
2189 	u32 val, bw, scale;
2190 	int ret;
2191 
2192 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2193 			   port->cap_adap + ADP_USB3_CS_2, 1);
2194 	if (ret)
2195 		return ret;
2196 
2197 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2198 			   port->cap_adap + ADP_USB3_CS_3, 1);
2199 	if (ret)
2200 		return ret;
2201 
2202 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2203 
2204 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2205 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2206 
2207 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2208 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2209 
2210 	return 0;
2211 }
2212 
2213 /**
2214  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2215  * @port: USB3 adapter port
2216  * @upstream_bw: Allocated upstream bandwidth is stored here
2217  * @downstream_bw: Allocated downstream bandwidth is stored here
2218  *
2219  * Stores currently allocated USB3 bandwidth into @upstream_bw and
2220  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2221  * errno in failure.
2222  */
2223 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2224 				       int *downstream_bw)
2225 {
2226 	int ret;
2227 
2228 	ret = usb4_usb3_port_set_cm_request(port);
2229 	if (ret)
2230 		return ret;
2231 
2232 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2233 						      downstream_bw);
2234 	usb4_usb3_port_clear_cm_request(port);
2235 
2236 	return ret;
2237 }
2238 
2239 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2240 						  int *upstream_bw,
2241 						  int *downstream_bw)
2242 {
2243 	u32 val, bw, scale;
2244 	int ret;
2245 
2246 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2247 			   port->cap_adap + ADP_USB3_CS_1, 1);
2248 	if (ret)
2249 		return ret;
2250 
2251 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2252 			   port->cap_adap + ADP_USB3_CS_3, 1);
2253 	if (ret)
2254 		return ret;
2255 
2256 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2257 
2258 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2259 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2260 
2261 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2262 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2263 
2264 	return 0;
2265 }
2266 
2267 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2268 						    int upstream_bw,
2269 						    int downstream_bw)
2270 {
2271 	u32 val, ubw, dbw, scale;
2272 	int ret, max_bw;
2273 
2274 	/* Figure out suitable scale */
2275 	scale = 0;
2276 	max_bw = max(upstream_bw, downstream_bw);
2277 	while (scale < 64) {
2278 		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2279 			break;
2280 		scale++;
2281 	}
2282 
2283 	if (WARN_ON(scale >= 64))
2284 		return -EINVAL;
2285 
2286 	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2287 			    port->cap_adap + ADP_USB3_CS_3, 1);
2288 	if (ret)
2289 		return ret;
2290 
2291 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2292 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2293 
2294 	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2295 
2296 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2297 			   port->cap_adap + ADP_USB3_CS_2, 1);
2298 	if (ret)
2299 		return ret;
2300 
2301 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2302 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2303 	val |= ubw;
2304 
2305 	return tb_port_write(port, &val, TB_CFG_PORT,
2306 			     port->cap_adap + ADP_USB3_CS_2, 1);
2307 }
2308 
2309 /**
2310  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2311  * @port: USB3 adapter port
2312  * @upstream_bw: New upstream bandwidth
2313  * @downstream_bw: New downstream bandwidth
2314  *
2315  * This can be used to set how much bandwidth is allocated for the USB3
2316  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2317  * new values programmed to the USB3 adapter allocation registers. If
2318  * the values are lower than what is currently consumed the allocation
2319  * is set to what is currently consumed instead (consumed bandwidth
2320  * cannot be taken away by CM). The actual new values are returned in
2321  * @upstream_bw and @downstream_bw.
2322  *
2323  * Returns %0 in case of success and negative errno if there was a
2324  * failure.
2325  */
2326 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2327 				      int *downstream_bw)
2328 {
2329 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2330 
2331 	ret = usb4_usb3_port_set_cm_request(port);
2332 	if (ret)
2333 		return ret;
2334 
2335 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2336 						     &consumed_down);
2337 	if (ret)
2338 		goto err_request;
2339 
2340 	/* Don't allow it go lower than what is consumed */
2341 	allocate_up = max(*upstream_bw, consumed_up);
2342 	allocate_down = max(*downstream_bw, consumed_down);
2343 
2344 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2345 						       allocate_down);
2346 	if (ret)
2347 		goto err_request;
2348 
2349 	*upstream_bw = allocate_up;
2350 	*downstream_bw = allocate_down;
2351 
2352 err_request:
2353 	usb4_usb3_port_clear_cm_request(port);
2354 	return ret;
2355 }
2356 
2357 /**
2358  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2359  * @port: USB3 adapter port
2360  * @upstream_bw: New allocated upstream bandwidth
2361  * @downstream_bw: New allocated downstream bandwidth
2362  *
2363  * Releases USB3 allocated bandwidth down to what is actually consumed.
2364  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2365  *
2366  * Returns 0% in success and negative errno in case of failure.
2367  */
2368 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2369 				     int *downstream_bw)
2370 {
2371 	int ret, consumed_up, consumed_down;
2372 
2373 	ret = usb4_usb3_port_set_cm_request(port);
2374 	if (ret)
2375 		return ret;
2376 
2377 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2378 						     &consumed_down);
2379 	if (ret)
2380 		goto err_request;
2381 
2382 	/*
2383 	 * Always keep 900 Mb/s to make sure xHCI has at least some
2384 	 * bandwidth available for isochronous traffic.
2385 	 */
2386 	if (consumed_up < 900)
2387 		consumed_up = 900;
2388 	if (consumed_down < 900)
2389 		consumed_down = 900;
2390 
2391 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2392 						       consumed_down);
2393 	if (ret)
2394 		goto err_request;
2395 
2396 	*upstream_bw = consumed_up;
2397 	*downstream_bw = consumed_down;
2398 
2399 err_request:
2400 	usb4_usb3_port_clear_cm_request(port);
2401 	return ret;
2402 }
2403 
2404 static bool is_usb4_dpin(const struct tb_port *port)
2405 {
2406 	if (!tb_port_is_dpin(port))
2407 		return false;
2408 	if (!tb_switch_is_usb4(port->sw))
2409 		return false;
2410 	return true;
2411 }
2412 
2413 /**
2414  * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2415  * @port: DP IN adapter
2416  * @cm_id: CM ID to assign
2417  *
2418  * Sets CM ID for the @port. Returns %0 on success and negative errno
2419  * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2420  * support this.
2421  */
2422 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2423 {
2424 	u32 val;
2425 	int ret;
2426 
2427 	if (!is_usb4_dpin(port))
2428 		return -EOPNOTSUPP;
2429 
2430 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2431 			   port->cap_adap + ADP_DP_CS_2, 1);
2432 	if (ret)
2433 		return ret;
2434 
2435 	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2436 	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2437 
2438 	return tb_port_write(port, &val, TB_CFG_PORT,
2439 			     port->cap_adap + ADP_DP_CS_2, 1);
2440 }
2441 
2442 /**
2443  * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2444  *					     supported
2445  * @port: DP IN adapter to check
2446  *
2447  * Can be called to any DP IN adapter. Returns true if the adapter
2448  * supports USB4 bandwidth allocation mode, false otherwise.
2449  */
2450 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2451 {
2452 	int ret;
2453 	u32 val;
2454 
2455 	if (!is_usb4_dpin(port))
2456 		return false;
2457 
2458 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2459 			   port->cap_adap + DP_LOCAL_CAP, 1);
2460 	if (ret)
2461 		return false;
2462 
2463 	return !!(val & DP_COMMON_CAP_BW_MODE);
2464 }
2465 
2466 /**
2467  * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2468  *					   enabled
2469  * @port: DP IN adapter to check
2470  *
2471  * Can be called to any DP IN adapter. Returns true if the bandwidth
2472  * allocation mode has been enabled, false otherwise.
2473  */
2474 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2475 {
2476 	int ret;
2477 	u32 val;
2478 
2479 	if (!is_usb4_dpin(port))
2480 		return false;
2481 
2482 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2483 			   port->cap_adap + ADP_DP_CS_8, 1);
2484 	if (ret)
2485 		return false;
2486 
2487 	return !!(val & ADP_DP_CS_8_DPME);
2488 }
2489 
2490 /**
2491  * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2492  *						    bandwidth allocation mode
2493  * @port: DP IN adapter
2494  * @supported: Does the CM support bandwidth allocation mode
2495  *
2496  * Can be called to any DP IN adapter. Sets or clears the CM support bit
2497  * of the DP IN adapter. Returns %0 in success and negative errno
2498  * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2499  * does not support this.
2500  */
2501 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2502 						 bool supported)
2503 {
2504 	u32 val;
2505 	int ret;
2506 
2507 	if (!is_usb4_dpin(port))
2508 		return -EOPNOTSUPP;
2509 
2510 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2511 			   port->cap_adap + ADP_DP_CS_2, 1);
2512 	if (ret)
2513 		return ret;
2514 
2515 	if (supported)
2516 		val |= ADP_DP_CS_2_CMMS;
2517 	else
2518 		val &= ~ADP_DP_CS_2_CMMS;
2519 
2520 	return tb_port_write(port, &val, TB_CFG_PORT,
2521 			     port->cap_adap + ADP_DP_CS_2, 1);
2522 }
2523 
2524 /**
2525  * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2526  * @port: DP IN adapter
2527  *
2528  * Reads bandwidth allocation Group ID from the DP IN adapter and
2529  * returns it. If the adapter does not support setting Group_ID
2530  * %-EOPNOTSUPP is returned.
2531  */
2532 int usb4_dp_port_group_id(struct tb_port *port)
2533 {
2534 	u32 val;
2535 	int ret;
2536 
2537 	if (!is_usb4_dpin(port))
2538 		return -EOPNOTSUPP;
2539 
2540 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2541 			   port->cap_adap + ADP_DP_CS_2, 1);
2542 	if (ret)
2543 		return ret;
2544 
2545 	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2546 }
2547 
2548 /**
2549  * usb4_dp_port_set_group_id() - Set adapter Group ID
2550  * @port: DP IN adapter
2551  * @group_id: Group ID for the adapter
2552  *
2553  * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2554  * Returns %0 in case of success and negative errno otherwise.
2555  * Specifically returns %-EOPNOTSUPP if the adapter does not support
2556  * this.
2557  */
2558 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2559 {
2560 	u32 val;
2561 	int ret;
2562 
2563 	if (!is_usb4_dpin(port))
2564 		return -EOPNOTSUPP;
2565 
2566 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2567 			   port->cap_adap + ADP_DP_CS_2, 1);
2568 	if (ret)
2569 		return ret;
2570 
2571 	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2572 	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2573 
2574 	return tb_port_write(port, &val, TB_CFG_PORT,
2575 			     port->cap_adap + ADP_DP_CS_2, 1);
2576 }
2577 
2578 /**
2579  * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2580  * @port: DP IN adapter
2581  * @rate: Non-reduced rate in Mb/s is placed here
2582  * @lanes: Non-reduced lanes are placed here
2583  *
2584  * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2585  * %0 in success and negative errno otherwise. Specifically returns
2586  * %-EOPNOTSUPP if the adapter does not support this.
2587  */
2588 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2589 {
2590 	u32 val, tmp;
2591 	int ret;
2592 
2593 	if (!is_usb4_dpin(port))
2594 		return -EOPNOTSUPP;
2595 
2596 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2597 			   port->cap_adap + ADP_DP_CS_2, 1);
2598 	if (ret)
2599 		return ret;
2600 
2601 	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2602 	switch (tmp) {
2603 	case DP_COMMON_CAP_RATE_RBR:
2604 		*rate = 1620;
2605 		break;
2606 	case DP_COMMON_CAP_RATE_HBR:
2607 		*rate = 2700;
2608 		break;
2609 	case DP_COMMON_CAP_RATE_HBR2:
2610 		*rate = 5400;
2611 		break;
2612 	case DP_COMMON_CAP_RATE_HBR3:
2613 		*rate = 8100;
2614 		break;
2615 	}
2616 
2617 	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2618 	switch (tmp) {
2619 	case DP_COMMON_CAP_1_LANE:
2620 		*lanes = 1;
2621 		break;
2622 	case DP_COMMON_CAP_2_LANES:
2623 		*lanes = 2;
2624 		break;
2625 	case DP_COMMON_CAP_4_LANES:
2626 		*lanes = 4;
2627 		break;
2628 	}
2629 
2630 	return 0;
2631 }
2632 
2633 /**
2634  * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2635  * @port: DP IN adapter
2636  * @rate: Non-reduced rate in Mb/s
2637  * @lanes: Non-reduced lanes
2638  *
2639  * Before the capabilities reduction this function can be used to set
2640  * the non-reduced values for the DP IN adapter. Returns %0 in success
2641  * and negative errno otherwise. If the adapter does not support this
2642  * %-EOPNOTSUPP is returned.
2643  */
2644 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2645 {
2646 	u32 val;
2647 	int ret;
2648 
2649 	if (!is_usb4_dpin(port))
2650 		return -EOPNOTSUPP;
2651 
2652 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2653 			   port->cap_adap + ADP_DP_CS_2, 1);
2654 	if (ret)
2655 		return ret;
2656 
2657 	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2658 
2659 	switch (rate) {
2660 	case 1620:
2661 		break;
2662 	case 2700:
2663 		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2664 			& ADP_DP_CS_2_NRD_MLR_MASK;
2665 		break;
2666 	case 5400:
2667 		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2668 			& ADP_DP_CS_2_NRD_MLR_MASK;
2669 		break;
2670 	case 8100:
2671 		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2672 			& ADP_DP_CS_2_NRD_MLR_MASK;
2673 		break;
2674 	default:
2675 		return -EINVAL;
2676 	}
2677 
2678 	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2679 
2680 	switch (lanes) {
2681 	case 1:
2682 		break;
2683 	case 2:
2684 		val |= DP_COMMON_CAP_2_LANES;
2685 		break;
2686 	case 4:
2687 		val |= DP_COMMON_CAP_4_LANES;
2688 		break;
2689 	default:
2690 		return -EINVAL;
2691 	}
2692 
2693 	return tb_port_write(port, &val, TB_CFG_PORT,
2694 			     port->cap_adap + ADP_DP_CS_2, 1);
2695 }
2696 
2697 /**
2698  * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2699  * @port: DP IN adapter
2700  *
2701  * Reads the programmed granularity from @port. If the DP IN adapter does
2702  * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2703  * errno in other error cases.
2704  */
2705 int usb4_dp_port_granularity(struct tb_port *port)
2706 {
2707 	u32 val;
2708 	int ret;
2709 
2710 	if (!is_usb4_dpin(port))
2711 		return -EOPNOTSUPP;
2712 
2713 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2714 			   port->cap_adap + ADP_DP_CS_2, 1);
2715 	if (ret)
2716 		return ret;
2717 
2718 	val &= ADP_DP_CS_2_GR_MASK;
2719 	val >>= ADP_DP_CS_2_GR_SHIFT;
2720 
2721 	switch (val) {
2722 	case ADP_DP_CS_2_GR_0_25G:
2723 		return 250;
2724 	case ADP_DP_CS_2_GR_0_5G:
2725 		return 500;
2726 	case ADP_DP_CS_2_GR_1G:
2727 		return 1000;
2728 	}
2729 
2730 	return -EINVAL;
2731 }
2732 
2733 /**
2734  * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2735  * @port: DP IN adapter
2736  * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2737  *
2738  * Sets the granularity used with the estimated, allocated and requested
2739  * bandwidth. Returns %0 in success and negative errno otherwise. If the
2740  * adapter does not support this %-EOPNOTSUPP is returned.
2741  */
2742 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2743 {
2744 	u32 val;
2745 	int ret;
2746 
2747 	if (!is_usb4_dpin(port))
2748 		return -EOPNOTSUPP;
2749 
2750 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2751 			   port->cap_adap + ADP_DP_CS_2, 1);
2752 	if (ret)
2753 		return ret;
2754 
2755 	val &= ~ADP_DP_CS_2_GR_MASK;
2756 
2757 	switch (granularity) {
2758 	case 250:
2759 		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2760 		break;
2761 	case 500:
2762 		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2763 		break;
2764 	case 1000:
2765 		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2766 		break;
2767 	default:
2768 		return -EINVAL;
2769 	}
2770 
2771 	return tb_port_write(port, &val, TB_CFG_PORT,
2772 			     port->cap_adap + ADP_DP_CS_2, 1);
2773 }
2774 
2775 /**
2776  * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2777  * @port: DP IN adapter
2778  * @bw: Estimated bandwidth in Mb/s.
2779  *
2780  * Sets the estimated bandwidth to @bw. Set the granularity by calling
2781  * usb4_dp_port_set_granularity() before calling this. The @bw is round
2782  * down to the closest granularity multiplier. Returns %0 in success
2783  * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2784  * the adapter does not support this.
2785  */
2786 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2787 {
2788 	u32 val, granularity;
2789 	int ret;
2790 
2791 	if (!is_usb4_dpin(port))
2792 		return -EOPNOTSUPP;
2793 
2794 	ret = usb4_dp_port_granularity(port);
2795 	if (ret < 0)
2796 		return ret;
2797 	granularity = ret;
2798 
2799 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2800 			   port->cap_adap + ADP_DP_CS_2, 1);
2801 	if (ret)
2802 		return ret;
2803 
2804 	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2805 	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2806 
2807 	return tb_port_write(port, &val, TB_CFG_PORT,
2808 			     port->cap_adap + ADP_DP_CS_2, 1);
2809 }
2810 
2811 /**
2812  * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2813  * @port: DP IN adapter
2814  *
2815  * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2816  * account the programmed granularity). Returns negative errno in case
2817  * of error.
2818  */
2819 int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2820 {
2821 	u32 val, granularity;
2822 	int ret;
2823 
2824 	if (!is_usb4_dpin(port))
2825 		return -EOPNOTSUPP;
2826 
2827 	ret = usb4_dp_port_granularity(port);
2828 	if (ret < 0)
2829 		return ret;
2830 	granularity = ret;
2831 
2832 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2833 			   port->cap_adap + DP_STATUS, 1);
2834 	if (ret)
2835 		return ret;
2836 
2837 	val &= DP_STATUS_ALLOCATED_BW_MASK;
2838 	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2839 
2840 	return val * granularity;
2841 }
2842 
2843 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2844 {
2845 	u32 val;
2846 	int ret;
2847 
2848 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2849 			   port->cap_adap + ADP_DP_CS_2, 1);
2850 	if (ret)
2851 		return ret;
2852 
2853 	if (ack)
2854 		val |= ADP_DP_CS_2_CA;
2855 	else
2856 		val &= ~ADP_DP_CS_2_CA;
2857 
2858 	return tb_port_write(port, &val, TB_CFG_PORT,
2859 			     port->cap_adap + ADP_DP_CS_2, 1);
2860 }
2861 
2862 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2863 {
2864 	return __usb4_dp_port_set_cm_ack(port, true);
2865 }
2866 
2867 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2868 					      int timeout_msec)
2869 {
2870 	ktime_t end;
2871 	u32 val;
2872 	int ret;
2873 
2874 	ret = __usb4_dp_port_set_cm_ack(port, false);
2875 	if (ret)
2876 		return ret;
2877 
2878 	end = ktime_add_ms(ktime_get(), timeout_msec);
2879 	do {
2880 		ret = tb_port_read(port, &val, TB_CFG_PORT,
2881 				   port->cap_adap + ADP_DP_CS_8, 1);
2882 		if (ret)
2883 			return ret;
2884 
2885 		if (!(val & ADP_DP_CS_8_DR))
2886 			break;
2887 
2888 		usleep_range(50, 100);
2889 	} while (ktime_before(ktime_get(), end));
2890 
2891 	if (val & ADP_DP_CS_8_DR) {
2892 		tb_port_warn(port, "timeout waiting for DPTX request to clear\n");
2893 		return -ETIMEDOUT;
2894 	}
2895 
2896 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2897 			   port->cap_adap + ADP_DP_CS_2, 1);
2898 	if (ret)
2899 		return ret;
2900 
2901 	val &= ~ADP_DP_CS_2_CA;
2902 	return tb_port_write(port, &val, TB_CFG_PORT,
2903 			     port->cap_adap + ADP_DP_CS_2, 1);
2904 }
2905 
2906 /**
2907  * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2908  * @port: DP IN adapter
2909  * @bw: New allocated bandwidth in Mb/s
2910  *
2911  * Communicates the new allocated bandwidth with the DPCD (graphics
2912  * driver). Takes into account the programmed granularity. Returns %0 in
2913  * success and negative errno in case of error.
2914  */
2915 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2916 {
2917 	u32 val, granularity;
2918 	int ret;
2919 
2920 	if (!is_usb4_dpin(port))
2921 		return -EOPNOTSUPP;
2922 
2923 	ret = usb4_dp_port_granularity(port);
2924 	if (ret < 0)
2925 		return ret;
2926 	granularity = ret;
2927 
2928 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2929 			   port->cap_adap + DP_STATUS, 1);
2930 	if (ret)
2931 		return ret;
2932 
2933 	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2934 	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2935 
2936 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2937 			    port->cap_adap + DP_STATUS, 1);
2938 	if (ret)
2939 		return ret;
2940 
2941 	ret = usb4_dp_port_set_cm_ack(port);
2942 	if (ret)
2943 		return ret;
2944 
2945 	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2946 }
2947 
2948 /**
2949  * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2950  * @port: DP IN adapter
2951  *
2952  * Reads the DPCD (graphics driver) requested bandwidth and returns it
2953  * in Mb/s. Takes the programmed granularity into account. In case of
2954  * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2955  * the adapter does not support bandwidth allocation mode, and %ENODATA
2956  * if there is no active bandwidth request from the graphics driver.
2957  */
2958 int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2959 {
2960 	u32 val, granularity;
2961 	int ret;
2962 
2963 	if (!is_usb4_dpin(port))
2964 		return -EOPNOTSUPP;
2965 
2966 	ret = usb4_dp_port_granularity(port);
2967 	if (ret < 0)
2968 		return ret;
2969 	granularity = ret;
2970 
2971 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2972 			   port->cap_adap + ADP_DP_CS_8, 1);
2973 	if (ret)
2974 		return ret;
2975 
2976 	if (!(val & ADP_DP_CS_8_DR))
2977 		return -ENODATA;
2978 
2979 	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2980 }
2981 
2982 /**
2983  * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2984  * @port: PCIe adapter
2985  * @enable: Enable/disable extended encapsulation
2986  *
2987  * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2988  * needs to make sure both adapters support this before enabling. Returns %0 on
2989  * success and negative errno otherwise.
2990  */
2991 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2992 {
2993 	u32 val;
2994 	int ret;
2995 
2996 	if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2997 		return -EINVAL;
2998 
2999 	ret = tb_port_read(port, &val, TB_CFG_PORT,
3000 			   port->cap_adap + ADP_PCIE_CS_1, 1);
3001 	if (ret)
3002 		return ret;
3003 
3004 	if (enable)
3005 		val |= ADP_PCIE_CS_1_EE;
3006 	else
3007 		val &= ~ADP_PCIE_CS_1_EE;
3008 
3009 	return tb_port_write(port, &val, TB_CFG_PORT,
3010 			     port->cap_adap + ADP_PCIE_CS_1, 1);
3011 }
3012