1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - Tunneling support 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/list.h> 12 #include <linux/ktime.h> 13 #include <linux/string_helpers.h> 14 15 #include "tunnel.h" 16 #include "tb.h" 17 18 /* PCIe adapters use always HopID of 8 for both directions */ 19 #define TB_PCI_HOPID 8 20 21 #define TB_PCI_PATH_DOWN 0 22 #define TB_PCI_PATH_UP 1 23 24 #define TB_PCI_PRIORITY 3 25 #define TB_PCI_WEIGHT 1 26 27 /* USB3 adapters use always HopID of 8 for both directions */ 28 #define TB_USB3_HOPID 8 29 30 #define TB_USB3_PATH_DOWN 0 31 #define TB_USB3_PATH_UP 1 32 33 #define TB_USB3_PRIORITY 3 34 #define TB_USB3_WEIGHT 2 35 36 /* DP adapters use HopID 8 for AUX and 9 for Video */ 37 #define TB_DP_AUX_TX_HOPID 8 38 #define TB_DP_AUX_RX_HOPID 8 39 #define TB_DP_VIDEO_HOPID 9 40 41 #define TB_DP_VIDEO_PATH_OUT 0 42 #define TB_DP_AUX_PATH_OUT 1 43 #define TB_DP_AUX_PATH_IN 2 44 45 #define TB_DP_VIDEO_PRIORITY 1 46 #define TB_DP_VIDEO_WEIGHT 1 47 48 #define TB_DP_AUX_PRIORITY 2 49 #define TB_DP_AUX_WEIGHT 1 50 51 /* Minimum number of credits needed for PCIe path */ 52 #define TB_MIN_PCIE_CREDITS 6U 53 /* 54 * Number of credits we try to allocate for each DMA path if not limited 55 * by the host router baMaxHI. 56 */ 57 #define TB_DMA_CREDITS 14 58 /* Minimum number of credits for DMA path */ 59 #define TB_MIN_DMA_CREDITS 1 60 61 #define TB_DMA_PRIORITY 5 62 #define TB_DMA_WEIGHT 1 63 64 /* 65 * Reserve additional bandwidth for USB 3.x and PCIe bulk traffic 66 * according to USB4 v2 Connection Manager guide. This ends up reserving 67 * 1500 Mb/s for PCIe and 3000 Mb/s for USB 3.x taking weights into 68 * account. 69 */ 70 #define USB4_V2_PCI_MIN_BANDWIDTH (1500 * TB_PCI_WEIGHT) 71 #define USB4_V2_USB3_MIN_BANDWIDTH (1500 * TB_USB3_WEIGHT) 72 73 static unsigned int dma_credits = TB_DMA_CREDITS; 74 module_param(dma_credits, uint, 0444); 75 MODULE_PARM_DESC(dma_credits, "specify custom credits for DMA tunnels (default: " 76 __MODULE_STRING(TB_DMA_CREDITS) ")"); 77 78 static bool bw_alloc_mode = true; 79 module_param(bw_alloc_mode, bool, 0444); 80 MODULE_PARM_DESC(bw_alloc_mode, 81 "enable bandwidth allocation mode if supported (default: true)"); 82 83 static const char * const tb_tunnel_names[] = { "PCI", "DP", "DMA", "USB3" }; 84 85 static inline unsigned int tb_usable_credits(const struct tb_port *port) 86 { 87 return port->total_credits - port->ctl_credits; 88 } 89 90 /** 91 * tb_available_credits() - Available credits for PCIe and DMA 92 * @port: Lane adapter to check 93 * @max_dp_streams: If non-%NULL stores maximum number of simultaneous DP 94 * streams possible through this lane adapter 95 */ 96 static unsigned int tb_available_credits(const struct tb_port *port, 97 size_t *max_dp_streams) 98 { 99 const struct tb_switch *sw = port->sw; 100 int credits, usb3, pcie, spare; 101 size_t ndp; 102 103 usb3 = tb_acpi_may_tunnel_usb3() ? sw->max_usb3_credits : 0; 104 pcie = tb_acpi_may_tunnel_pcie() ? sw->max_pcie_credits : 0; 105 106 if (tb_acpi_is_xdomain_allowed()) { 107 spare = min_not_zero(sw->max_dma_credits, dma_credits); 108 /* Add some credits for potential second DMA tunnel */ 109 spare += TB_MIN_DMA_CREDITS; 110 } else { 111 spare = 0; 112 } 113 114 credits = tb_usable_credits(port); 115 if (tb_acpi_may_tunnel_dp()) { 116 /* 117 * Maximum number of DP streams possible through the 118 * lane adapter. 119 */ 120 if (sw->min_dp_aux_credits + sw->min_dp_main_credits) 121 ndp = (credits - (usb3 + pcie + spare)) / 122 (sw->min_dp_aux_credits + sw->min_dp_main_credits); 123 else 124 ndp = 0; 125 } else { 126 ndp = 0; 127 } 128 credits -= ndp * (sw->min_dp_aux_credits + sw->min_dp_main_credits); 129 credits -= usb3; 130 131 if (max_dp_streams) 132 *max_dp_streams = ndp; 133 134 return credits > 0 ? credits : 0; 135 } 136 137 static void tb_init_pm_support(struct tb_path_hop *hop) 138 { 139 struct tb_port *out_port = hop->out_port; 140 struct tb_port *in_port = hop->in_port; 141 142 if (tb_port_is_null(in_port) && tb_port_is_null(out_port) && 143 usb4_switch_version(in_port->sw) >= 2) 144 hop->pm_support = true; 145 } 146 147 static struct tb_tunnel *tb_tunnel_alloc(struct tb *tb, size_t npaths, 148 enum tb_tunnel_type type) 149 { 150 struct tb_tunnel *tunnel; 151 152 tunnel = kzalloc(sizeof(*tunnel), GFP_KERNEL); 153 if (!tunnel) 154 return NULL; 155 156 tunnel->paths = kcalloc(npaths, sizeof(tunnel->paths[0]), GFP_KERNEL); 157 if (!tunnel->paths) { 158 tb_tunnel_free(tunnel); 159 return NULL; 160 } 161 162 INIT_LIST_HEAD(&tunnel->list); 163 tunnel->tb = tb; 164 tunnel->npaths = npaths; 165 tunnel->type = type; 166 167 return tunnel; 168 } 169 170 static int tb_pci_set_ext_encapsulation(struct tb_tunnel *tunnel, bool enable) 171 { 172 struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw); 173 int ret; 174 175 /* Only supported of both routers are at least USB4 v2 */ 176 if ((usb4_switch_version(tunnel->src_port->sw) < 2) || 177 (usb4_switch_version(tunnel->dst_port->sw) < 2)) 178 return 0; 179 180 if (enable && tb_port_get_link_generation(port) < 4) 181 return 0; 182 183 ret = usb4_pci_port_set_ext_encapsulation(tunnel->src_port, enable); 184 if (ret) 185 return ret; 186 187 /* 188 * Downstream router could be unplugged so disable of encapsulation 189 * in upstream router is still possible. 190 */ 191 ret = usb4_pci_port_set_ext_encapsulation(tunnel->dst_port, enable); 192 if (ret) { 193 if (enable) 194 return ret; 195 if (ret != -ENODEV) 196 return ret; 197 } 198 199 tb_tunnel_dbg(tunnel, "extended encapsulation %s\n", 200 str_enabled_disabled(enable)); 201 return 0; 202 } 203 204 static int tb_pci_activate(struct tb_tunnel *tunnel, bool activate) 205 { 206 int res; 207 208 if (activate) { 209 res = tb_pci_set_ext_encapsulation(tunnel, activate); 210 if (res) 211 return res; 212 } 213 214 if (activate) 215 res = tb_pci_port_enable(tunnel->dst_port, activate); 216 else 217 res = tb_pci_port_enable(tunnel->src_port, activate); 218 if (res) 219 return res; 220 221 222 if (activate) { 223 res = tb_pci_port_enable(tunnel->src_port, activate); 224 if (res) 225 return res; 226 } else { 227 /* Downstream router could be unplugged */ 228 tb_pci_port_enable(tunnel->dst_port, activate); 229 } 230 231 return activate ? 0 : tb_pci_set_ext_encapsulation(tunnel, activate); 232 } 233 234 static int tb_pci_init_credits(struct tb_path_hop *hop) 235 { 236 struct tb_port *port = hop->in_port; 237 struct tb_switch *sw = port->sw; 238 unsigned int credits; 239 240 if (tb_port_use_credit_allocation(port)) { 241 unsigned int available; 242 243 available = tb_available_credits(port, NULL); 244 credits = min(sw->max_pcie_credits, available); 245 246 if (credits < TB_MIN_PCIE_CREDITS) 247 return -ENOSPC; 248 249 credits = max(TB_MIN_PCIE_CREDITS, credits); 250 } else { 251 if (tb_port_is_null(port)) 252 credits = port->bonded ? 32 : 16; 253 else 254 credits = 7; 255 } 256 257 hop->initial_credits = credits; 258 return 0; 259 } 260 261 static int tb_pci_init_path(struct tb_path *path) 262 { 263 struct tb_path_hop *hop; 264 265 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 266 path->egress_shared_buffer = TB_PATH_NONE; 267 path->ingress_fc_enable = TB_PATH_ALL; 268 path->ingress_shared_buffer = TB_PATH_NONE; 269 path->priority = TB_PCI_PRIORITY; 270 path->weight = TB_PCI_WEIGHT; 271 path->drop_packages = 0; 272 273 tb_path_for_each_hop(path, hop) { 274 int ret; 275 276 ret = tb_pci_init_credits(hop); 277 if (ret) 278 return ret; 279 } 280 281 return 0; 282 } 283 284 /** 285 * tb_tunnel_discover_pci() - Discover existing PCIe tunnels 286 * @tb: Pointer to the domain structure 287 * @down: PCIe downstream adapter 288 * @alloc_hopid: Allocate HopIDs from visited ports 289 * 290 * If @down adapter is active, follows the tunnel to the PCIe upstream 291 * adapter and back. Returns the discovered tunnel or %NULL if there was 292 * no tunnel. 293 */ 294 struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down, 295 bool alloc_hopid) 296 { 297 struct tb_tunnel *tunnel; 298 struct tb_path *path; 299 300 if (!tb_pci_port_is_enabled(down)) 301 return NULL; 302 303 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 304 if (!tunnel) 305 return NULL; 306 307 tunnel->activate = tb_pci_activate; 308 tunnel->src_port = down; 309 310 /* 311 * Discover both paths even if they are not complete. We will 312 * clean them up by calling tb_tunnel_deactivate() below in that 313 * case. 314 */ 315 path = tb_path_discover(down, TB_PCI_HOPID, NULL, -1, 316 &tunnel->dst_port, "PCIe Up", alloc_hopid); 317 if (!path) { 318 /* Just disable the downstream port */ 319 tb_pci_port_enable(down, false); 320 goto err_free; 321 } 322 tunnel->paths[TB_PCI_PATH_UP] = path; 323 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_UP])) 324 goto err_free; 325 326 path = tb_path_discover(tunnel->dst_port, -1, down, TB_PCI_HOPID, NULL, 327 "PCIe Down", alloc_hopid); 328 if (!path) 329 goto err_deactivate; 330 tunnel->paths[TB_PCI_PATH_DOWN] = path; 331 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_DOWN])) 332 goto err_deactivate; 333 334 /* Validate that the tunnel is complete */ 335 if (!tb_port_is_pcie_up(tunnel->dst_port)) { 336 tb_port_warn(tunnel->dst_port, 337 "path does not end on a PCIe adapter, cleaning up\n"); 338 goto err_deactivate; 339 } 340 341 if (down != tunnel->src_port) { 342 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 343 goto err_deactivate; 344 } 345 346 if (!tb_pci_port_is_enabled(tunnel->dst_port)) { 347 tb_tunnel_warn(tunnel, 348 "tunnel is not fully activated, cleaning up\n"); 349 goto err_deactivate; 350 } 351 352 tb_tunnel_dbg(tunnel, "discovered\n"); 353 return tunnel; 354 355 err_deactivate: 356 tb_tunnel_deactivate(tunnel); 357 err_free: 358 tb_tunnel_free(tunnel); 359 360 return NULL; 361 } 362 363 /** 364 * tb_tunnel_alloc_pci() - allocate a pci tunnel 365 * @tb: Pointer to the domain structure 366 * @up: PCIe upstream adapter port 367 * @down: PCIe downstream adapter port 368 * 369 * Allocate a PCI tunnel. The ports must be of type TB_TYPE_PCIE_UP and 370 * TB_TYPE_PCIE_DOWN. 371 * 372 * Return: Returns a tb_tunnel on success or NULL on failure. 373 */ 374 struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up, 375 struct tb_port *down) 376 { 377 struct tb_tunnel *tunnel; 378 struct tb_path *path; 379 380 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 381 if (!tunnel) 382 return NULL; 383 384 tunnel->activate = tb_pci_activate; 385 tunnel->src_port = down; 386 tunnel->dst_port = up; 387 388 path = tb_path_alloc(tb, down, TB_PCI_HOPID, up, TB_PCI_HOPID, 0, 389 "PCIe Down"); 390 if (!path) 391 goto err_free; 392 tunnel->paths[TB_PCI_PATH_DOWN] = path; 393 if (tb_pci_init_path(path)) 394 goto err_free; 395 396 path = tb_path_alloc(tb, up, TB_PCI_HOPID, down, TB_PCI_HOPID, 0, 397 "PCIe Up"); 398 if (!path) 399 goto err_free; 400 tunnel->paths[TB_PCI_PATH_UP] = path; 401 if (tb_pci_init_path(path)) 402 goto err_free; 403 404 return tunnel; 405 406 err_free: 407 tb_tunnel_free(tunnel); 408 return NULL; 409 } 410 411 /** 412 * tb_tunnel_reserved_pci() - Amount of bandwidth to reserve for PCIe 413 * @port: Lane 0 adapter 414 * @reserved_up: Upstream bandwidth in Mb/s to reserve 415 * @reserved_down: Downstream bandwidth in Mb/s to reserve 416 * 417 * Can be called to any connected lane 0 adapter to find out how much 418 * bandwidth needs to be left in reserve for possible PCIe bulk traffic. 419 * Returns true if there is something to be reserved and writes the 420 * amount to @reserved_down/@reserved_up. Otherwise returns false and 421 * does not touch the parameters. 422 */ 423 bool tb_tunnel_reserved_pci(struct tb_port *port, int *reserved_up, 424 int *reserved_down) 425 { 426 if (WARN_ON_ONCE(!port->remote)) 427 return false; 428 429 if (!tb_acpi_may_tunnel_pcie()) 430 return false; 431 432 if (tb_port_get_link_generation(port) < 4) 433 return false; 434 435 /* Must have PCIe adapters */ 436 if (tb_is_upstream_port(port)) { 437 if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_UP)) 438 return false; 439 if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_DOWN)) 440 return false; 441 } else { 442 if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_DOWN)) 443 return false; 444 if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_UP)) 445 return false; 446 } 447 448 *reserved_up = USB4_V2_PCI_MIN_BANDWIDTH; 449 *reserved_down = USB4_V2_PCI_MIN_BANDWIDTH; 450 451 tb_port_dbg(port, "reserving %u/%u Mb/s for PCIe\n", *reserved_up, 452 *reserved_down); 453 return true; 454 } 455 456 static bool tb_dp_is_usb4(const struct tb_switch *sw) 457 { 458 /* Titan Ridge DP adapters need the same treatment as USB4 */ 459 return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw); 460 } 461 462 static int tb_dp_cm_handshake(struct tb_port *in, struct tb_port *out, 463 int timeout_msec) 464 { 465 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 466 u32 val; 467 int ret; 468 469 /* Both ends need to support this */ 470 if (!tb_dp_is_usb4(in->sw) || !tb_dp_is_usb4(out->sw)) 471 return 0; 472 473 ret = tb_port_read(out, &val, TB_CFG_PORT, 474 out->cap_adap + DP_STATUS_CTRL, 1); 475 if (ret) 476 return ret; 477 478 val |= DP_STATUS_CTRL_UF | DP_STATUS_CTRL_CMHS; 479 480 ret = tb_port_write(out, &val, TB_CFG_PORT, 481 out->cap_adap + DP_STATUS_CTRL, 1); 482 if (ret) 483 return ret; 484 485 do { 486 ret = tb_port_read(out, &val, TB_CFG_PORT, 487 out->cap_adap + DP_STATUS_CTRL, 1); 488 if (ret) 489 return ret; 490 if (!(val & DP_STATUS_CTRL_CMHS)) 491 return 0; 492 usleep_range(100, 150); 493 } while (ktime_before(ktime_get(), timeout)); 494 495 return -ETIMEDOUT; 496 } 497 498 /* 499 * Returns maximum possible rate from capability supporting only DP 2.0 500 * and below. Used when DP BW allocation mode is not enabled. 501 */ 502 static inline u32 tb_dp_cap_get_rate(u32 val) 503 { 504 u32 rate = (val & DP_COMMON_CAP_RATE_MASK) >> DP_COMMON_CAP_RATE_SHIFT; 505 506 switch (rate) { 507 case DP_COMMON_CAP_RATE_RBR: 508 return 1620; 509 case DP_COMMON_CAP_RATE_HBR: 510 return 2700; 511 case DP_COMMON_CAP_RATE_HBR2: 512 return 5400; 513 case DP_COMMON_CAP_RATE_HBR3: 514 return 8100; 515 default: 516 return 0; 517 } 518 } 519 520 /* 521 * Returns maximum possible rate from capability supporting DP 2.1 522 * UHBR20, 13.5 and 10 rates as well. Use only when DP BW allocation 523 * mode is enabled. 524 */ 525 static inline u32 tb_dp_cap_get_rate_ext(u32 val) 526 { 527 if (val & DP_COMMON_CAP_UHBR20) 528 return 20000; 529 else if (val & DP_COMMON_CAP_UHBR13_5) 530 return 13500; 531 else if (val & DP_COMMON_CAP_UHBR10) 532 return 10000; 533 534 return tb_dp_cap_get_rate(val); 535 } 536 537 static inline bool tb_dp_is_uhbr_rate(unsigned int rate) 538 { 539 return rate >= 10000; 540 } 541 542 static inline u32 tb_dp_cap_set_rate(u32 val, u32 rate) 543 { 544 val &= ~DP_COMMON_CAP_RATE_MASK; 545 switch (rate) { 546 default: 547 WARN(1, "invalid rate %u passed, defaulting to 1620 MB/s\n", rate); 548 fallthrough; 549 case 1620: 550 val |= DP_COMMON_CAP_RATE_RBR << DP_COMMON_CAP_RATE_SHIFT; 551 break; 552 case 2700: 553 val |= DP_COMMON_CAP_RATE_HBR << DP_COMMON_CAP_RATE_SHIFT; 554 break; 555 case 5400: 556 val |= DP_COMMON_CAP_RATE_HBR2 << DP_COMMON_CAP_RATE_SHIFT; 557 break; 558 case 8100: 559 val |= DP_COMMON_CAP_RATE_HBR3 << DP_COMMON_CAP_RATE_SHIFT; 560 break; 561 } 562 return val; 563 } 564 565 static inline u32 tb_dp_cap_get_lanes(u32 val) 566 { 567 u32 lanes = (val & DP_COMMON_CAP_LANES_MASK) >> DP_COMMON_CAP_LANES_SHIFT; 568 569 switch (lanes) { 570 case DP_COMMON_CAP_1_LANE: 571 return 1; 572 case DP_COMMON_CAP_2_LANES: 573 return 2; 574 case DP_COMMON_CAP_4_LANES: 575 return 4; 576 default: 577 return 0; 578 } 579 } 580 581 static inline u32 tb_dp_cap_set_lanes(u32 val, u32 lanes) 582 { 583 val &= ~DP_COMMON_CAP_LANES_MASK; 584 switch (lanes) { 585 default: 586 WARN(1, "invalid number of lanes %u passed, defaulting to 1\n", 587 lanes); 588 fallthrough; 589 case 1: 590 val |= DP_COMMON_CAP_1_LANE << DP_COMMON_CAP_LANES_SHIFT; 591 break; 592 case 2: 593 val |= DP_COMMON_CAP_2_LANES << DP_COMMON_CAP_LANES_SHIFT; 594 break; 595 case 4: 596 val |= DP_COMMON_CAP_4_LANES << DP_COMMON_CAP_LANES_SHIFT; 597 break; 598 } 599 return val; 600 } 601 602 static unsigned int tb_dp_bandwidth(unsigned int rate, unsigned int lanes) 603 { 604 /* Tunneling removes the DP 8b/10b 128/132b encoding */ 605 if (tb_dp_is_uhbr_rate(rate)) 606 return rate * lanes * 128 / 132; 607 return rate * lanes * 8 / 10; 608 } 609 610 static int tb_dp_reduce_bandwidth(int max_bw, u32 in_rate, u32 in_lanes, 611 u32 out_rate, u32 out_lanes, u32 *new_rate, 612 u32 *new_lanes) 613 { 614 static const u32 dp_bw[][2] = { 615 /* Mb/s, lanes */ 616 { 8100, 4 }, /* 25920 Mb/s */ 617 { 5400, 4 }, /* 17280 Mb/s */ 618 { 8100, 2 }, /* 12960 Mb/s */ 619 { 2700, 4 }, /* 8640 Mb/s */ 620 { 5400, 2 }, /* 8640 Mb/s */ 621 { 8100, 1 }, /* 6480 Mb/s */ 622 { 1620, 4 }, /* 5184 Mb/s */ 623 { 5400, 1 }, /* 4320 Mb/s */ 624 { 2700, 2 }, /* 4320 Mb/s */ 625 { 1620, 2 }, /* 2592 Mb/s */ 626 { 2700, 1 }, /* 2160 Mb/s */ 627 { 1620, 1 }, /* 1296 Mb/s */ 628 }; 629 unsigned int i; 630 631 /* 632 * Find a combination that can fit into max_bw and does not 633 * exceed the maximum rate and lanes supported by the DP OUT and 634 * DP IN adapters. 635 */ 636 for (i = 0; i < ARRAY_SIZE(dp_bw); i++) { 637 if (dp_bw[i][0] > out_rate || dp_bw[i][1] > out_lanes) 638 continue; 639 640 if (dp_bw[i][0] > in_rate || dp_bw[i][1] > in_lanes) 641 continue; 642 643 if (tb_dp_bandwidth(dp_bw[i][0], dp_bw[i][1]) <= max_bw) { 644 *new_rate = dp_bw[i][0]; 645 *new_lanes = dp_bw[i][1]; 646 return 0; 647 } 648 } 649 650 return -ENOSR; 651 } 652 653 static int tb_dp_xchg_caps(struct tb_tunnel *tunnel) 654 { 655 u32 out_dp_cap, out_rate, out_lanes, in_dp_cap, in_rate, in_lanes, bw; 656 struct tb_port *out = tunnel->dst_port; 657 struct tb_port *in = tunnel->src_port; 658 int ret, max_bw; 659 660 /* 661 * Copy DP_LOCAL_CAP register to DP_REMOTE_CAP register for 662 * newer generation hardware. 663 */ 664 if (in->sw->generation < 2 || out->sw->generation < 2) 665 return 0; 666 667 /* 668 * Perform connection manager handshake between IN and OUT ports 669 * before capabilities exchange can take place. 670 */ 671 ret = tb_dp_cm_handshake(in, out, 3000); 672 if (ret) 673 return ret; 674 675 /* Read both DP_LOCAL_CAP registers */ 676 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 677 in->cap_adap + DP_LOCAL_CAP, 1); 678 if (ret) 679 return ret; 680 681 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 682 out->cap_adap + DP_LOCAL_CAP, 1); 683 if (ret) 684 return ret; 685 686 /* Write IN local caps to OUT remote caps */ 687 ret = tb_port_write(out, &in_dp_cap, TB_CFG_PORT, 688 out->cap_adap + DP_REMOTE_CAP, 1); 689 if (ret) 690 return ret; 691 692 in_rate = tb_dp_cap_get_rate(in_dp_cap); 693 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 694 tb_tunnel_dbg(tunnel, 695 "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 696 in_rate, in_lanes, tb_dp_bandwidth(in_rate, in_lanes)); 697 698 /* 699 * If the tunnel bandwidth is limited (max_bw is set) then see 700 * if we need to reduce bandwidth to fit there. 701 */ 702 out_rate = tb_dp_cap_get_rate(out_dp_cap); 703 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 704 bw = tb_dp_bandwidth(out_rate, out_lanes); 705 tb_tunnel_dbg(tunnel, 706 "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 707 out_rate, out_lanes, bw); 708 709 if (tb_port_path_direction_downstream(in, out)) 710 max_bw = tunnel->max_down; 711 else 712 max_bw = tunnel->max_up; 713 714 if (max_bw && bw > max_bw) { 715 u32 new_rate, new_lanes, new_bw; 716 717 ret = tb_dp_reduce_bandwidth(max_bw, in_rate, in_lanes, 718 out_rate, out_lanes, &new_rate, 719 &new_lanes); 720 if (ret) { 721 tb_tunnel_info(tunnel, "not enough bandwidth\n"); 722 return ret; 723 } 724 725 new_bw = tb_dp_bandwidth(new_rate, new_lanes); 726 tb_tunnel_dbg(tunnel, 727 "bandwidth reduced to %u Mb/s x%u = %u Mb/s\n", 728 new_rate, new_lanes, new_bw); 729 730 /* 731 * Set new rate and number of lanes before writing it to 732 * the IN port remote caps. 733 */ 734 out_dp_cap = tb_dp_cap_set_rate(out_dp_cap, new_rate); 735 out_dp_cap = tb_dp_cap_set_lanes(out_dp_cap, new_lanes); 736 } 737 738 /* 739 * Titan Ridge does not disable AUX timers when it gets 740 * SET_CONFIG with SET_LTTPR_MODE set. This causes problems with 741 * DP tunneling. 742 */ 743 if (tb_route(out->sw) && tb_switch_is_titan_ridge(out->sw)) { 744 out_dp_cap |= DP_COMMON_CAP_LTTPR_NS; 745 tb_tunnel_dbg(tunnel, "disabling LTTPR\n"); 746 } 747 748 return tb_port_write(in, &out_dp_cap, TB_CFG_PORT, 749 in->cap_adap + DP_REMOTE_CAP, 1); 750 } 751 752 static int tb_dp_bandwidth_alloc_mode_enable(struct tb_tunnel *tunnel) 753 { 754 int ret, estimated_bw, granularity, tmp; 755 struct tb_port *out = tunnel->dst_port; 756 struct tb_port *in = tunnel->src_port; 757 u32 out_dp_cap, out_rate, out_lanes; 758 u32 in_dp_cap, in_rate, in_lanes; 759 u32 rate, lanes; 760 761 if (!bw_alloc_mode) 762 return 0; 763 764 ret = usb4_dp_port_set_cm_bandwidth_mode_supported(in, true); 765 if (ret) 766 return ret; 767 768 ret = usb4_dp_port_set_group_id(in, in->group->index); 769 if (ret) 770 return ret; 771 772 /* 773 * Get the non-reduced rate and lanes based on the lowest 774 * capability of both adapters. 775 */ 776 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 777 in->cap_adap + DP_LOCAL_CAP, 1); 778 if (ret) 779 return ret; 780 781 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 782 out->cap_adap + DP_LOCAL_CAP, 1); 783 if (ret) 784 return ret; 785 786 in_rate = tb_dp_cap_get_rate(in_dp_cap); 787 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 788 out_rate = tb_dp_cap_get_rate(out_dp_cap); 789 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 790 791 rate = min(in_rate, out_rate); 792 lanes = min(in_lanes, out_lanes); 793 tmp = tb_dp_bandwidth(rate, lanes); 794 795 tb_tunnel_dbg(tunnel, "non-reduced bandwidth %u Mb/s x%u = %u Mb/s\n", 796 rate, lanes, tmp); 797 798 ret = usb4_dp_port_set_nrd(in, rate, lanes); 799 if (ret) 800 return ret; 801 802 /* 803 * Pick up granularity that supports maximum possible bandwidth. 804 * For that we use the UHBR rates too. 805 */ 806 in_rate = tb_dp_cap_get_rate_ext(in_dp_cap); 807 out_rate = tb_dp_cap_get_rate_ext(out_dp_cap); 808 rate = min(in_rate, out_rate); 809 tmp = tb_dp_bandwidth(rate, lanes); 810 811 tb_tunnel_dbg(tunnel, 812 "maximum bandwidth through allocation mode %u Mb/s x%u = %u Mb/s\n", 813 rate, lanes, tmp); 814 815 for (granularity = 250; tmp / granularity > 255 && granularity <= 1000; 816 granularity *= 2) 817 ; 818 819 tb_tunnel_dbg(tunnel, "granularity %d Mb/s\n", granularity); 820 821 /* 822 * Returns -EINVAL if granularity above is outside of the 823 * accepted ranges. 824 */ 825 ret = usb4_dp_port_set_granularity(in, granularity); 826 if (ret) 827 return ret; 828 829 /* 830 * Bandwidth estimation is pretty much what we have in 831 * max_up/down fields. For discovery we just read what the 832 * estimation was set to. 833 */ 834 if (tb_port_path_direction_downstream(in, out)) 835 estimated_bw = tunnel->max_down; 836 else 837 estimated_bw = tunnel->max_up; 838 839 tb_tunnel_dbg(tunnel, "estimated bandwidth %d Mb/s\n", estimated_bw); 840 841 ret = usb4_dp_port_set_estimated_bandwidth(in, estimated_bw); 842 if (ret) 843 return ret; 844 845 /* Initial allocation should be 0 according the spec */ 846 ret = usb4_dp_port_allocate_bandwidth(in, 0); 847 if (ret) 848 return ret; 849 850 tb_tunnel_dbg(tunnel, "bandwidth allocation mode enabled\n"); 851 return 0; 852 } 853 854 static int tb_dp_init(struct tb_tunnel *tunnel) 855 { 856 struct tb_port *in = tunnel->src_port; 857 struct tb_switch *sw = in->sw; 858 struct tb *tb = in->sw->tb; 859 int ret; 860 861 ret = tb_dp_xchg_caps(tunnel); 862 if (ret) 863 return ret; 864 865 if (!tb_switch_is_usb4(sw)) 866 return 0; 867 868 if (!usb4_dp_port_bandwidth_mode_supported(in)) 869 return 0; 870 871 tb_tunnel_dbg(tunnel, "bandwidth allocation mode supported\n"); 872 873 ret = usb4_dp_port_set_cm_id(in, tb->index); 874 if (ret) 875 return ret; 876 877 return tb_dp_bandwidth_alloc_mode_enable(tunnel); 878 } 879 880 static void tb_dp_deinit(struct tb_tunnel *tunnel) 881 { 882 struct tb_port *in = tunnel->src_port; 883 884 if (!usb4_dp_port_bandwidth_mode_supported(in)) 885 return; 886 if (usb4_dp_port_bandwidth_mode_enabled(in)) { 887 usb4_dp_port_set_cm_bandwidth_mode_supported(in, false); 888 tb_tunnel_dbg(tunnel, "bandwidth allocation mode disabled\n"); 889 } 890 } 891 892 static int tb_dp_activate(struct tb_tunnel *tunnel, bool active) 893 { 894 int ret; 895 896 if (active) { 897 struct tb_path **paths; 898 int last; 899 900 paths = tunnel->paths; 901 last = paths[TB_DP_VIDEO_PATH_OUT]->path_length - 1; 902 903 tb_dp_port_set_hops(tunnel->src_port, 904 paths[TB_DP_VIDEO_PATH_OUT]->hops[0].in_hop_index, 905 paths[TB_DP_AUX_PATH_OUT]->hops[0].in_hop_index, 906 paths[TB_DP_AUX_PATH_IN]->hops[last].next_hop_index); 907 908 tb_dp_port_set_hops(tunnel->dst_port, 909 paths[TB_DP_VIDEO_PATH_OUT]->hops[last].next_hop_index, 910 paths[TB_DP_AUX_PATH_IN]->hops[0].in_hop_index, 911 paths[TB_DP_AUX_PATH_OUT]->hops[last].next_hop_index); 912 } else { 913 tb_dp_port_hpd_clear(tunnel->src_port); 914 tb_dp_port_set_hops(tunnel->src_port, 0, 0, 0); 915 if (tb_port_is_dpout(tunnel->dst_port)) 916 tb_dp_port_set_hops(tunnel->dst_port, 0, 0, 0); 917 } 918 919 ret = tb_dp_port_enable(tunnel->src_port, active); 920 if (ret) 921 return ret; 922 923 if (tb_port_is_dpout(tunnel->dst_port)) 924 return tb_dp_port_enable(tunnel->dst_port, active); 925 926 return 0; 927 } 928 929 /* max_bw is rounded up to next granularity */ 930 static int tb_dp_bandwidth_mode_maximum_bandwidth(struct tb_tunnel *tunnel, 931 int *max_bw) 932 { 933 struct tb_port *in = tunnel->src_port; 934 int ret, rate, lanes, nrd_bw; 935 u32 cap; 936 937 /* 938 * DP IN adapter DP_LOCAL_CAP gets updated to the lowest AUX 939 * read parameter values so this so we can use this to determine 940 * the maximum possible bandwidth over this link. 941 * 942 * See USB4 v2 spec 1.0 10.4.4.5. 943 */ 944 ret = tb_port_read(in, &cap, TB_CFG_PORT, 945 in->cap_adap + DP_LOCAL_CAP, 1); 946 if (ret) 947 return ret; 948 949 rate = tb_dp_cap_get_rate_ext(cap); 950 if (tb_dp_is_uhbr_rate(rate)) { 951 /* 952 * When UHBR is used there is no reduction in lanes so 953 * we can use this directly. 954 */ 955 lanes = tb_dp_cap_get_lanes(cap); 956 } else { 957 /* 958 * If there is no UHBR supported then check the 959 * non-reduced rate and lanes. 960 */ 961 ret = usb4_dp_port_nrd(in, &rate, &lanes); 962 if (ret) 963 return ret; 964 } 965 966 nrd_bw = tb_dp_bandwidth(rate, lanes); 967 968 if (max_bw) { 969 ret = usb4_dp_port_granularity(in); 970 if (ret < 0) 971 return ret; 972 *max_bw = roundup(nrd_bw, ret); 973 } 974 975 return nrd_bw; 976 } 977 978 static int tb_dp_bandwidth_mode_consumed_bandwidth(struct tb_tunnel *tunnel, 979 int *consumed_up, 980 int *consumed_down) 981 { 982 struct tb_port *out = tunnel->dst_port; 983 struct tb_port *in = tunnel->src_port; 984 int ret, allocated_bw, max_bw; 985 986 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 987 return -EOPNOTSUPP; 988 989 if (!tunnel->bw_mode) 990 return -EOPNOTSUPP; 991 992 /* Read what was allocated previously if any */ 993 ret = usb4_dp_port_allocated_bandwidth(in); 994 if (ret < 0) 995 return ret; 996 allocated_bw = ret; 997 998 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 999 if (ret < 0) 1000 return ret; 1001 if (allocated_bw == max_bw) 1002 allocated_bw = ret; 1003 1004 if (tb_port_path_direction_downstream(in, out)) { 1005 *consumed_up = 0; 1006 *consumed_down = allocated_bw; 1007 } else { 1008 *consumed_up = allocated_bw; 1009 *consumed_down = 0; 1010 } 1011 1012 return 0; 1013 } 1014 1015 static int tb_dp_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up, 1016 int *allocated_down) 1017 { 1018 struct tb_port *out = tunnel->dst_port; 1019 struct tb_port *in = tunnel->src_port; 1020 1021 /* 1022 * If we have already set the allocated bandwidth then use that. 1023 * Otherwise we read it from the DPRX. 1024 */ 1025 if (usb4_dp_port_bandwidth_mode_enabled(in) && tunnel->bw_mode) { 1026 int ret, allocated_bw, max_bw; 1027 1028 ret = usb4_dp_port_allocated_bandwidth(in); 1029 if (ret < 0) 1030 return ret; 1031 allocated_bw = ret; 1032 1033 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 1034 if (ret < 0) 1035 return ret; 1036 if (allocated_bw == max_bw) 1037 allocated_bw = ret; 1038 1039 if (tb_port_path_direction_downstream(in, out)) { 1040 *allocated_up = 0; 1041 *allocated_down = allocated_bw; 1042 } else { 1043 *allocated_up = allocated_bw; 1044 *allocated_down = 0; 1045 } 1046 return 0; 1047 } 1048 1049 return tunnel->consumed_bandwidth(tunnel, allocated_up, 1050 allocated_down); 1051 } 1052 1053 static int tb_dp_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up, 1054 int *alloc_down) 1055 { 1056 struct tb_port *out = tunnel->dst_port; 1057 struct tb_port *in = tunnel->src_port; 1058 int max_bw, ret, tmp; 1059 1060 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1061 return -EOPNOTSUPP; 1062 1063 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 1064 if (ret < 0) 1065 return ret; 1066 1067 if (tb_port_path_direction_downstream(in, out)) { 1068 tmp = min(*alloc_down, max_bw); 1069 ret = usb4_dp_port_allocate_bandwidth(in, tmp); 1070 if (ret) 1071 return ret; 1072 *alloc_down = tmp; 1073 *alloc_up = 0; 1074 } else { 1075 tmp = min(*alloc_up, max_bw); 1076 ret = usb4_dp_port_allocate_bandwidth(in, tmp); 1077 if (ret) 1078 return ret; 1079 *alloc_down = 0; 1080 *alloc_up = tmp; 1081 } 1082 1083 /* Now we can use BW mode registers to figure out the bandwidth */ 1084 /* TODO: need to handle discovery too */ 1085 tunnel->bw_mode = true; 1086 return 0; 1087 } 1088 1089 static int tb_dp_wait_dprx(struct tb_tunnel *tunnel, int timeout_msec) 1090 { 1091 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1092 struct tb_port *in = tunnel->src_port; 1093 1094 /* 1095 * Wait for DPRX done. Normally it should be already set for 1096 * active tunnel. 1097 */ 1098 do { 1099 u32 val; 1100 int ret; 1101 1102 ret = tb_port_read(in, &val, TB_CFG_PORT, 1103 in->cap_adap + DP_COMMON_CAP, 1); 1104 if (ret) 1105 return ret; 1106 1107 if (val & DP_COMMON_CAP_DPRX_DONE) { 1108 tb_tunnel_dbg(tunnel, "DPRX read done\n"); 1109 return 0; 1110 } 1111 usleep_range(100, 150); 1112 } while (ktime_before(ktime_get(), timeout)); 1113 1114 tb_tunnel_dbg(tunnel, "DPRX read timeout\n"); 1115 return -ETIMEDOUT; 1116 } 1117 1118 /* Read cap from tunnel DP IN */ 1119 static int tb_dp_read_cap(struct tb_tunnel *tunnel, unsigned int cap, u32 *rate, 1120 u32 *lanes) 1121 { 1122 struct tb_port *in = tunnel->src_port; 1123 u32 val; 1124 int ret; 1125 1126 switch (cap) { 1127 case DP_LOCAL_CAP: 1128 case DP_REMOTE_CAP: 1129 case DP_COMMON_CAP: 1130 break; 1131 1132 default: 1133 tb_tunnel_WARN(tunnel, "invalid capability index %#x\n", cap); 1134 return -EINVAL; 1135 } 1136 1137 /* 1138 * Read from the copied remote cap so that we take into account 1139 * if capabilities were reduced during exchange. 1140 */ 1141 ret = tb_port_read(in, &val, TB_CFG_PORT, in->cap_adap + cap, 1); 1142 if (ret) 1143 return ret; 1144 1145 *rate = tb_dp_cap_get_rate(val); 1146 *lanes = tb_dp_cap_get_lanes(val); 1147 return 0; 1148 } 1149 1150 static int tb_dp_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up, 1151 int *max_down) 1152 { 1153 struct tb_port *in = tunnel->src_port; 1154 int ret; 1155 1156 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1157 return -EOPNOTSUPP; 1158 1159 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, NULL); 1160 if (ret < 0) 1161 return ret; 1162 1163 if (tb_port_path_direction_downstream(in, tunnel->dst_port)) { 1164 *max_up = 0; 1165 *max_down = ret; 1166 } else { 1167 *max_up = ret; 1168 *max_down = 0; 1169 } 1170 1171 return 0; 1172 } 1173 1174 static int tb_dp_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 1175 int *consumed_down) 1176 { 1177 struct tb_port *in = tunnel->src_port; 1178 const struct tb_switch *sw = in->sw; 1179 u32 rate = 0, lanes = 0; 1180 int ret; 1181 1182 if (tb_dp_is_usb4(sw)) { 1183 /* 1184 * On USB4 routers check if the bandwidth allocation 1185 * mode is enabled first and then read the bandwidth 1186 * through those registers. 1187 */ 1188 ret = tb_dp_bandwidth_mode_consumed_bandwidth(tunnel, consumed_up, 1189 consumed_down); 1190 if (ret < 0) { 1191 if (ret != -EOPNOTSUPP) 1192 return ret; 1193 } else if (!ret) { 1194 return 0; 1195 } 1196 /* 1197 * Then see if the DPRX negotiation is ready and if yes 1198 * return that bandwidth (it may be smaller than the 1199 * reduced one). Otherwise return the remote (possibly 1200 * reduced) caps. 1201 */ 1202 ret = tb_dp_wait_dprx(tunnel, 150); 1203 if (ret) { 1204 if (ret == -ETIMEDOUT) 1205 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, 1206 &rate, &lanes); 1207 if (ret) 1208 return ret; 1209 } 1210 ret = tb_dp_read_cap(tunnel, DP_COMMON_CAP, &rate, &lanes); 1211 if (ret) 1212 return ret; 1213 } else if (sw->generation >= 2) { 1214 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, &rate, &lanes); 1215 if (ret) 1216 return ret; 1217 } else { 1218 /* No bandwidth management for legacy devices */ 1219 *consumed_up = 0; 1220 *consumed_down = 0; 1221 return 0; 1222 } 1223 1224 if (tb_port_path_direction_downstream(in, tunnel->dst_port)) { 1225 *consumed_up = 0; 1226 *consumed_down = tb_dp_bandwidth(rate, lanes); 1227 } else { 1228 *consumed_up = tb_dp_bandwidth(rate, lanes); 1229 *consumed_down = 0; 1230 } 1231 1232 return 0; 1233 } 1234 1235 static void tb_dp_init_aux_credits(struct tb_path_hop *hop) 1236 { 1237 struct tb_port *port = hop->in_port; 1238 struct tb_switch *sw = port->sw; 1239 1240 if (tb_port_use_credit_allocation(port)) 1241 hop->initial_credits = sw->min_dp_aux_credits; 1242 else 1243 hop->initial_credits = 1; 1244 } 1245 1246 static void tb_dp_init_aux_path(struct tb_path *path, bool pm_support) 1247 { 1248 struct tb_path_hop *hop; 1249 1250 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1251 path->egress_shared_buffer = TB_PATH_NONE; 1252 path->ingress_fc_enable = TB_PATH_ALL; 1253 path->ingress_shared_buffer = TB_PATH_NONE; 1254 path->priority = TB_DP_AUX_PRIORITY; 1255 path->weight = TB_DP_AUX_WEIGHT; 1256 1257 tb_path_for_each_hop(path, hop) { 1258 tb_dp_init_aux_credits(hop); 1259 if (pm_support) 1260 tb_init_pm_support(hop); 1261 } 1262 } 1263 1264 static int tb_dp_init_video_credits(struct tb_path_hop *hop) 1265 { 1266 struct tb_port *port = hop->in_port; 1267 struct tb_switch *sw = port->sw; 1268 1269 if (tb_port_use_credit_allocation(port)) { 1270 unsigned int nfc_credits; 1271 size_t max_dp_streams; 1272 1273 tb_available_credits(port, &max_dp_streams); 1274 /* 1275 * Read the number of currently allocated NFC credits 1276 * from the lane adapter. Since we only use them for DP 1277 * tunneling we can use that to figure out how many DP 1278 * tunnels already go through the lane adapter. 1279 */ 1280 nfc_credits = port->config.nfc_credits & 1281 ADP_CS_4_NFC_BUFFERS_MASK; 1282 if (nfc_credits / sw->min_dp_main_credits > max_dp_streams) 1283 return -ENOSPC; 1284 1285 hop->nfc_credits = sw->min_dp_main_credits; 1286 } else { 1287 hop->nfc_credits = min(port->total_credits - 2, 12U); 1288 } 1289 1290 return 0; 1291 } 1292 1293 static int tb_dp_init_video_path(struct tb_path *path, bool pm_support) 1294 { 1295 struct tb_path_hop *hop; 1296 1297 path->egress_fc_enable = TB_PATH_NONE; 1298 path->egress_shared_buffer = TB_PATH_NONE; 1299 path->ingress_fc_enable = TB_PATH_NONE; 1300 path->ingress_shared_buffer = TB_PATH_NONE; 1301 path->priority = TB_DP_VIDEO_PRIORITY; 1302 path->weight = TB_DP_VIDEO_WEIGHT; 1303 1304 tb_path_for_each_hop(path, hop) { 1305 int ret; 1306 1307 ret = tb_dp_init_video_credits(hop); 1308 if (ret) 1309 return ret; 1310 if (pm_support) 1311 tb_init_pm_support(hop); 1312 } 1313 1314 return 0; 1315 } 1316 1317 static void tb_dp_dump(struct tb_tunnel *tunnel) 1318 { 1319 struct tb_port *in, *out; 1320 u32 dp_cap, rate, lanes; 1321 1322 in = tunnel->src_port; 1323 out = tunnel->dst_port; 1324 1325 if (tb_port_read(in, &dp_cap, TB_CFG_PORT, 1326 in->cap_adap + DP_LOCAL_CAP, 1)) 1327 return; 1328 1329 rate = tb_dp_cap_get_rate(dp_cap); 1330 lanes = tb_dp_cap_get_lanes(dp_cap); 1331 1332 tb_tunnel_dbg(tunnel, 1333 "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 1334 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1335 1336 if (tb_port_read(out, &dp_cap, TB_CFG_PORT, 1337 out->cap_adap + DP_LOCAL_CAP, 1)) 1338 return; 1339 1340 rate = tb_dp_cap_get_rate(dp_cap); 1341 lanes = tb_dp_cap_get_lanes(dp_cap); 1342 1343 tb_tunnel_dbg(tunnel, 1344 "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 1345 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1346 1347 if (tb_port_read(in, &dp_cap, TB_CFG_PORT, 1348 in->cap_adap + DP_REMOTE_CAP, 1)) 1349 return; 1350 1351 rate = tb_dp_cap_get_rate(dp_cap); 1352 lanes = tb_dp_cap_get_lanes(dp_cap); 1353 1354 tb_tunnel_dbg(tunnel, "reduced bandwidth %u Mb/s x%u = %u Mb/s\n", 1355 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1356 } 1357 1358 /** 1359 * tb_tunnel_discover_dp() - Discover existing Display Port tunnels 1360 * @tb: Pointer to the domain structure 1361 * @in: DP in adapter 1362 * @alloc_hopid: Allocate HopIDs from visited ports 1363 * 1364 * If @in adapter is active, follows the tunnel to the DP out adapter 1365 * and back. Returns the discovered tunnel or %NULL if there was no 1366 * tunnel. 1367 * 1368 * Return: DP tunnel or %NULL if no tunnel found. 1369 */ 1370 struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in, 1371 bool alloc_hopid) 1372 { 1373 struct tb_tunnel *tunnel; 1374 struct tb_port *port; 1375 struct tb_path *path; 1376 1377 if (!tb_dp_port_is_enabled(in)) 1378 return NULL; 1379 1380 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 1381 if (!tunnel) 1382 return NULL; 1383 1384 tunnel->init = tb_dp_init; 1385 tunnel->deinit = tb_dp_deinit; 1386 tunnel->activate = tb_dp_activate; 1387 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth; 1388 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth; 1389 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth; 1390 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 1391 tunnel->src_port = in; 1392 1393 path = tb_path_discover(in, TB_DP_VIDEO_HOPID, NULL, -1, 1394 &tunnel->dst_port, "Video", alloc_hopid); 1395 if (!path) { 1396 /* Just disable the DP IN port */ 1397 tb_dp_port_enable(in, false); 1398 goto err_free; 1399 } 1400 tunnel->paths[TB_DP_VIDEO_PATH_OUT] = path; 1401 if (tb_dp_init_video_path(tunnel->paths[TB_DP_VIDEO_PATH_OUT], false)) 1402 goto err_free; 1403 1404 path = tb_path_discover(in, TB_DP_AUX_TX_HOPID, NULL, -1, NULL, "AUX TX", 1405 alloc_hopid); 1406 if (!path) 1407 goto err_deactivate; 1408 tunnel->paths[TB_DP_AUX_PATH_OUT] = path; 1409 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_OUT], false); 1410 1411 path = tb_path_discover(tunnel->dst_port, -1, in, TB_DP_AUX_RX_HOPID, 1412 &port, "AUX RX", alloc_hopid); 1413 if (!path) 1414 goto err_deactivate; 1415 tunnel->paths[TB_DP_AUX_PATH_IN] = path; 1416 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_IN], false); 1417 1418 /* Validate that the tunnel is complete */ 1419 if (!tb_port_is_dpout(tunnel->dst_port)) { 1420 tb_port_warn(in, "path does not end on a DP adapter, cleaning up\n"); 1421 goto err_deactivate; 1422 } 1423 1424 if (!tb_dp_port_is_enabled(tunnel->dst_port)) 1425 goto err_deactivate; 1426 1427 if (!tb_dp_port_hpd_is_active(tunnel->dst_port)) 1428 goto err_deactivate; 1429 1430 if (port != tunnel->src_port) { 1431 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 1432 goto err_deactivate; 1433 } 1434 1435 tb_dp_dump(tunnel); 1436 1437 tb_tunnel_dbg(tunnel, "discovered\n"); 1438 return tunnel; 1439 1440 err_deactivate: 1441 tb_tunnel_deactivate(tunnel); 1442 err_free: 1443 tb_tunnel_free(tunnel); 1444 1445 return NULL; 1446 } 1447 1448 /** 1449 * tb_tunnel_alloc_dp() - allocate a Display Port tunnel 1450 * @tb: Pointer to the domain structure 1451 * @in: DP in adapter port 1452 * @out: DP out adapter port 1453 * @link_nr: Preferred lane adapter when the link is not bonded 1454 * @max_up: Maximum available upstream bandwidth for the DP tunnel (%0 1455 * if not limited) 1456 * @max_down: Maximum available downstream bandwidth for the DP tunnel 1457 * (%0 if not limited) 1458 * 1459 * Allocates a tunnel between @in and @out that is capable of tunneling 1460 * Display Port traffic. 1461 * 1462 * Return: Returns a tb_tunnel on success or NULL on failure. 1463 */ 1464 struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in, 1465 struct tb_port *out, int link_nr, 1466 int max_up, int max_down) 1467 { 1468 struct tb_tunnel *tunnel; 1469 struct tb_path **paths; 1470 struct tb_path *path; 1471 bool pm_support; 1472 1473 if (WARN_ON(!in->cap_adap || !out->cap_adap)) 1474 return NULL; 1475 1476 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 1477 if (!tunnel) 1478 return NULL; 1479 1480 tunnel->init = tb_dp_init; 1481 tunnel->deinit = tb_dp_deinit; 1482 tunnel->activate = tb_dp_activate; 1483 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth; 1484 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth; 1485 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth; 1486 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 1487 tunnel->src_port = in; 1488 tunnel->dst_port = out; 1489 tunnel->max_up = max_up; 1490 tunnel->max_down = max_down; 1491 1492 paths = tunnel->paths; 1493 pm_support = usb4_switch_version(in->sw) >= 2; 1494 1495 path = tb_path_alloc(tb, in, TB_DP_VIDEO_HOPID, out, TB_DP_VIDEO_HOPID, 1496 link_nr, "Video"); 1497 if (!path) 1498 goto err_free; 1499 tb_dp_init_video_path(path, pm_support); 1500 paths[TB_DP_VIDEO_PATH_OUT] = path; 1501 1502 path = tb_path_alloc(tb, in, TB_DP_AUX_TX_HOPID, out, 1503 TB_DP_AUX_TX_HOPID, link_nr, "AUX TX"); 1504 if (!path) 1505 goto err_free; 1506 tb_dp_init_aux_path(path, pm_support); 1507 paths[TB_DP_AUX_PATH_OUT] = path; 1508 1509 path = tb_path_alloc(tb, out, TB_DP_AUX_RX_HOPID, in, 1510 TB_DP_AUX_RX_HOPID, link_nr, "AUX RX"); 1511 if (!path) 1512 goto err_free; 1513 tb_dp_init_aux_path(path, pm_support); 1514 paths[TB_DP_AUX_PATH_IN] = path; 1515 1516 return tunnel; 1517 1518 err_free: 1519 tb_tunnel_free(tunnel); 1520 return NULL; 1521 } 1522 1523 static unsigned int tb_dma_available_credits(const struct tb_port *port) 1524 { 1525 const struct tb_switch *sw = port->sw; 1526 int credits; 1527 1528 credits = tb_available_credits(port, NULL); 1529 if (tb_acpi_may_tunnel_pcie()) 1530 credits -= sw->max_pcie_credits; 1531 credits -= port->dma_credits; 1532 1533 return credits > 0 ? credits : 0; 1534 } 1535 1536 static int tb_dma_reserve_credits(struct tb_path_hop *hop, unsigned int credits) 1537 { 1538 struct tb_port *port = hop->in_port; 1539 1540 if (tb_port_use_credit_allocation(port)) { 1541 unsigned int available = tb_dma_available_credits(port); 1542 1543 /* 1544 * Need to have at least TB_MIN_DMA_CREDITS, otherwise 1545 * DMA path cannot be established. 1546 */ 1547 if (available < TB_MIN_DMA_CREDITS) 1548 return -ENOSPC; 1549 1550 while (credits > available) 1551 credits--; 1552 1553 tb_port_dbg(port, "reserving %u credits for DMA path\n", 1554 credits); 1555 1556 port->dma_credits += credits; 1557 } else { 1558 if (tb_port_is_null(port)) 1559 credits = port->bonded ? 14 : 6; 1560 else 1561 credits = min(port->total_credits, credits); 1562 } 1563 1564 hop->initial_credits = credits; 1565 return 0; 1566 } 1567 1568 /* Path from lane adapter to NHI */ 1569 static int tb_dma_init_rx_path(struct tb_path *path, unsigned int credits) 1570 { 1571 struct tb_path_hop *hop; 1572 unsigned int i, tmp; 1573 1574 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1575 path->ingress_fc_enable = TB_PATH_ALL; 1576 path->egress_shared_buffer = TB_PATH_NONE; 1577 path->ingress_shared_buffer = TB_PATH_NONE; 1578 path->priority = TB_DMA_PRIORITY; 1579 path->weight = TB_DMA_WEIGHT; 1580 path->clear_fc = true; 1581 1582 /* 1583 * First lane adapter is the one connected to the remote host. 1584 * We don't tunnel other traffic over this link so can use all 1585 * the credits (except the ones reserved for control traffic). 1586 */ 1587 hop = &path->hops[0]; 1588 tmp = min(tb_usable_credits(hop->in_port), credits); 1589 hop->initial_credits = tmp; 1590 hop->in_port->dma_credits += tmp; 1591 1592 for (i = 1; i < path->path_length; i++) { 1593 int ret; 1594 1595 ret = tb_dma_reserve_credits(&path->hops[i], credits); 1596 if (ret) 1597 return ret; 1598 } 1599 1600 return 0; 1601 } 1602 1603 /* Path from NHI to lane adapter */ 1604 static int tb_dma_init_tx_path(struct tb_path *path, unsigned int credits) 1605 { 1606 struct tb_path_hop *hop; 1607 1608 path->egress_fc_enable = TB_PATH_ALL; 1609 path->ingress_fc_enable = TB_PATH_ALL; 1610 path->egress_shared_buffer = TB_PATH_NONE; 1611 path->ingress_shared_buffer = TB_PATH_NONE; 1612 path->priority = TB_DMA_PRIORITY; 1613 path->weight = TB_DMA_WEIGHT; 1614 path->clear_fc = true; 1615 1616 tb_path_for_each_hop(path, hop) { 1617 int ret; 1618 1619 ret = tb_dma_reserve_credits(hop, credits); 1620 if (ret) 1621 return ret; 1622 } 1623 1624 return 0; 1625 } 1626 1627 static void tb_dma_release_credits(struct tb_path_hop *hop) 1628 { 1629 struct tb_port *port = hop->in_port; 1630 1631 if (tb_port_use_credit_allocation(port)) { 1632 port->dma_credits -= hop->initial_credits; 1633 1634 tb_port_dbg(port, "released %u DMA path credits\n", 1635 hop->initial_credits); 1636 } 1637 } 1638 1639 static void tb_dma_deinit_path(struct tb_path *path) 1640 { 1641 struct tb_path_hop *hop; 1642 1643 tb_path_for_each_hop(path, hop) 1644 tb_dma_release_credits(hop); 1645 } 1646 1647 static void tb_dma_deinit(struct tb_tunnel *tunnel) 1648 { 1649 int i; 1650 1651 for (i = 0; i < tunnel->npaths; i++) { 1652 if (!tunnel->paths[i]) 1653 continue; 1654 tb_dma_deinit_path(tunnel->paths[i]); 1655 } 1656 } 1657 1658 /** 1659 * tb_tunnel_alloc_dma() - allocate a DMA tunnel 1660 * @tb: Pointer to the domain structure 1661 * @nhi: Host controller port 1662 * @dst: Destination null port which the other domain is connected to 1663 * @transmit_path: HopID used for transmitting packets 1664 * @transmit_ring: NHI ring number used to send packets towards the 1665 * other domain. Set to %-1 if TX path is not needed. 1666 * @receive_path: HopID used for receiving packets 1667 * @receive_ring: NHI ring number used to receive packets from the 1668 * other domain. Set to %-1 if RX path is not needed. 1669 * 1670 * Return: Returns a tb_tunnel on success or NULL on failure. 1671 */ 1672 struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi, 1673 struct tb_port *dst, int transmit_path, 1674 int transmit_ring, int receive_path, 1675 int receive_ring) 1676 { 1677 struct tb_tunnel *tunnel; 1678 size_t npaths = 0, i = 0; 1679 struct tb_path *path; 1680 int credits; 1681 1682 /* Ring 0 is reserved for control channel */ 1683 if (WARN_ON(!receive_ring || !transmit_ring)) 1684 return NULL; 1685 1686 if (receive_ring > 0) 1687 npaths++; 1688 if (transmit_ring > 0) 1689 npaths++; 1690 1691 if (WARN_ON(!npaths)) 1692 return NULL; 1693 1694 tunnel = tb_tunnel_alloc(tb, npaths, TB_TUNNEL_DMA); 1695 if (!tunnel) 1696 return NULL; 1697 1698 tunnel->src_port = nhi; 1699 tunnel->dst_port = dst; 1700 tunnel->deinit = tb_dma_deinit; 1701 1702 credits = min_not_zero(dma_credits, nhi->sw->max_dma_credits); 1703 1704 if (receive_ring > 0) { 1705 path = tb_path_alloc(tb, dst, receive_path, nhi, receive_ring, 0, 1706 "DMA RX"); 1707 if (!path) 1708 goto err_free; 1709 tunnel->paths[i++] = path; 1710 if (tb_dma_init_rx_path(path, credits)) { 1711 tb_tunnel_dbg(tunnel, "not enough buffers for RX path\n"); 1712 goto err_free; 1713 } 1714 } 1715 1716 if (transmit_ring > 0) { 1717 path = tb_path_alloc(tb, nhi, transmit_ring, dst, transmit_path, 0, 1718 "DMA TX"); 1719 if (!path) 1720 goto err_free; 1721 tunnel->paths[i++] = path; 1722 if (tb_dma_init_tx_path(path, credits)) { 1723 tb_tunnel_dbg(tunnel, "not enough buffers for TX path\n"); 1724 goto err_free; 1725 } 1726 } 1727 1728 return tunnel; 1729 1730 err_free: 1731 tb_tunnel_free(tunnel); 1732 return NULL; 1733 } 1734 1735 /** 1736 * tb_tunnel_match_dma() - Match DMA tunnel 1737 * @tunnel: Tunnel to match 1738 * @transmit_path: HopID used for transmitting packets. Pass %-1 to ignore. 1739 * @transmit_ring: NHI ring number used to send packets towards the 1740 * other domain. Pass %-1 to ignore. 1741 * @receive_path: HopID used for receiving packets. Pass %-1 to ignore. 1742 * @receive_ring: NHI ring number used to receive packets from the 1743 * other domain. Pass %-1 to ignore. 1744 * 1745 * This function can be used to match specific DMA tunnel, if there are 1746 * multiple DMA tunnels going through the same XDomain connection. 1747 * Returns true if there is match and false otherwise. 1748 */ 1749 bool tb_tunnel_match_dma(const struct tb_tunnel *tunnel, int transmit_path, 1750 int transmit_ring, int receive_path, int receive_ring) 1751 { 1752 const struct tb_path *tx_path = NULL, *rx_path = NULL; 1753 int i; 1754 1755 if (!receive_ring || !transmit_ring) 1756 return false; 1757 1758 for (i = 0; i < tunnel->npaths; i++) { 1759 const struct tb_path *path = tunnel->paths[i]; 1760 1761 if (!path) 1762 continue; 1763 1764 if (tb_port_is_nhi(path->hops[0].in_port)) 1765 tx_path = path; 1766 else if (tb_port_is_nhi(path->hops[path->path_length - 1].out_port)) 1767 rx_path = path; 1768 } 1769 1770 if (transmit_ring > 0 || transmit_path > 0) { 1771 if (!tx_path) 1772 return false; 1773 if (transmit_ring > 0 && 1774 (tx_path->hops[0].in_hop_index != transmit_ring)) 1775 return false; 1776 if (transmit_path > 0 && 1777 (tx_path->hops[tx_path->path_length - 1].next_hop_index != transmit_path)) 1778 return false; 1779 } 1780 1781 if (receive_ring > 0 || receive_path > 0) { 1782 if (!rx_path) 1783 return false; 1784 if (receive_path > 0 && 1785 (rx_path->hops[0].in_hop_index != receive_path)) 1786 return false; 1787 if (receive_ring > 0 && 1788 (rx_path->hops[rx_path->path_length - 1].next_hop_index != receive_ring)) 1789 return false; 1790 } 1791 1792 return true; 1793 } 1794 1795 static int tb_usb3_max_link_rate(struct tb_port *up, struct tb_port *down) 1796 { 1797 int ret, up_max_rate, down_max_rate; 1798 1799 ret = usb4_usb3_port_max_link_rate(up); 1800 if (ret < 0) 1801 return ret; 1802 up_max_rate = ret; 1803 1804 ret = usb4_usb3_port_max_link_rate(down); 1805 if (ret < 0) 1806 return ret; 1807 down_max_rate = ret; 1808 1809 return min(up_max_rate, down_max_rate); 1810 } 1811 1812 static int tb_usb3_init(struct tb_tunnel *tunnel) 1813 { 1814 tb_tunnel_dbg(tunnel, "allocating initial bandwidth %d/%d Mb/s\n", 1815 tunnel->allocated_up, tunnel->allocated_down); 1816 1817 return usb4_usb3_port_allocate_bandwidth(tunnel->src_port, 1818 &tunnel->allocated_up, 1819 &tunnel->allocated_down); 1820 } 1821 1822 static int tb_usb3_activate(struct tb_tunnel *tunnel, bool activate) 1823 { 1824 int res; 1825 1826 res = tb_usb3_port_enable(tunnel->src_port, activate); 1827 if (res) 1828 return res; 1829 1830 if (tb_port_is_usb3_up(tunnel->dst_port)) 1831 return tb_usb3_port_enable(tunnel->dst_port, activate); 1832 1833 return 0; 1834 } 1835 1836 static int tb_usb3_consumed_bandwidth(struct tb_tunnel *tunnel, 1837 int *consumed_up, int *consumed_down) 1838 { 1839 struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw); 1840 int pcie_weight = tb_acpi_may_tunnel_pcie() ? TB_PCI_WEIGHT : 0; 1841 1842 /* 1843 * PCIe tunneling, if enabled, affects the USB3 bandwidth so 1844 * take that it into account here. 1845 */ 1846 *consumed_up = tunnel->allocated_up * 1847 (TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT; 1848 *consumed_down = tunnel->allocated_down * 1849 (TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT; 1850 1851 if (tb_port_get_link_generation(port) >= 4) { 1852 *consumed_up = max(*consumed_up, USB4_V2_USB3_MIN_BANDWIDTH); 1853 *consumed_down = max(*consumed_down, USB4_V2_USB3_MIN_BANDWIDTH); 1854 } 1855 1856 return 0; 1857 } 1858 1859 static int tb_usb3_release_unused_bandwidth(struct tb_tunnel *tunnel) 1860 { 1861 int ret; 1862 1863 ret = usb4_usb3_port_release_bandwidth(tunnel->src_port, 1864 &tunnel->allocated_up, 1865 &tunnel->allocated_down); 1866 if (ret) 1867 return ret; 1868 1869 tb_tunnel_dbg(tunnel, "decreased bandwidth allocation to %d/%d Mb/s\n", 1870 tunnel->allocated_up, tunnel->allocated_down); 1871 return 0; 1872 } 1873 1874 static void tb_usb3_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 1875 int *available_up, 1876 int *available_down) 1877 { 1878 int ret, max_rate, allocate_up, allocate_down; 1879 1880 ret = tb_usb3_max_link_rate(tunnel->dst_port, tunnel->src_port); 1881 if (ret < 0) { 1882 tb_tunnel_warn(tunnel, "failed to read maximum link rate\n"); 1883 return; 1884 } 1885 1886 /* 1887 * 90% of the max rate can be allocated for isochronous 1888 * transfers. 1889 */ 1890 max_rate = ret * 90 / 100; 1891 1892 /* No need to reclaim if already at maximum */ 1893 if (tunnel->allocated_up >= max_rate && 1894 tunnel->allocated_down >= max_rate) 1895 return; 1896 1897 /* Don't go lower than what is already allocated */ 1898 allocate_up = min(max_rate, *available_up); 1899 if (allocate_up < tunnel->allocated_up) 1900 allocate_up = tunnel->allocated_up; 1901 1902 allocate_down = min(max_rate, *available_down); 1903 if (allocate_down < tunnel->allocated_down) 1904 allocate_down = tunnel->allocated_down; 1905 1906 /* If no changes no need to do more */ 1907 if (allocate_up == tunnel->allocated_up && 1908 allocate_down == tunnel->allocated_down) 1909 return; 1910 1911 ret = usb4_usb3_port_allocate_bandwidth(tunnel->src_port, &allocate_up, 1912 &allocate_down); 1913 if (ret) { 1914 tb_tunnel_info(tunnel, "failed to allocate bandwidth\n"); 1915 return; 1916 } 1917 1918 tunnel->allocated_up = allocate_up; 1919 *available_up -= tunnel->allocated_up; 1920 1921 tunnel->allocated_down = allocate_down; 1922 *available_down -= tunnel->allocated_down; 1923 1924 tb_tunnel_dbg(tunnel, "increased bandwidth allocation to %d/%d Mb/s\n", 1925 tunnel->allocated_up, tunnel->allocated_down); 1926 } 1927 1928 static void tb_usb3_init_credits(struct tb_path_hop *hop) 1929 { 1930 struct tb_port *port = hop->in_port; 1931 struct tb_switch *sw = port->sw; 1932 unsigned int credits; 1933 1934 if (tb_port_use_credit_allocation(port)) { 1935 credits = sw->max_usb3_credits; 1936 } else { 1937 if (tb_port_is_null(port)) 1938 credits = port->bonded ? 32 : 16; 1939 else 1940 credits = 7; 1941 } 1942 1943 hop->initial_credits = credits; 1944 } 1945 1946 static void tb_usb3_init_path(struct tb_path *path) 1947 { 1948 struct tb_path_hop *hop; 1949 1950 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1951 path->egress_shared_buffer = TB_PATH_NONE; 1952 path->ingress_fc_enable = TB_PATH_ALL; 1953 path->ingress_shared_buffer = TB_PATH_NONE; 1954 path->priority = TB_USB3_PRIORITY; 1955 path->weight = TB_USB3_WEIGHT; 1956 path->drop_packages = 0; 1957 1958 tb_path_for_each_hop(path, hop) 1959 tb_usb3_init_credits(hop); 1960 } 1961 1962 /** 1963 * tb_tunnel_discover_usb3() - Discover existing USB3 tunnels 1964 * @tb: Pointer to the domain structure 1965 * @down: USB3 downstream adapter 1966 * @alloc_hopid: Allocate HopIDs from visited ports 1967 * 1968 * If @down adapter is active, follows the tunnel to the USB3 upstream 1969 * adapter and back. Returns the discovered tunnel or %NULL if there was 1970 * no tunnel. 1971 */ 1972 struct tb_tunnel *tb_tunnel_discover_usb3(struct tb *tb, struct tb_port *down, 1973 bool alloc_hopid) 1974 { 1975 struct tb_tunnel *tunnel; 1976 struct tb_path *path; 1977 1978 if (!tb_usb3_port_is_enabled(down)) 1979 return NULL; 1980 1981 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 1982 if (!tunnel) 1983 return NULL; 1984 1985 tunnel->activate = tb_usb3_activate; 1986 tunnel->src_port = down; 1987 1988 /* 1989 * Discover both paths even if they are not complete. We will 1990 * clean them up by calling tb_tunnel_deactivate() below in that 1991 * case. 1992 */ 1993 path = tb_path_discover(down, TB_USB3_HOPID, NULL, -1, 1994 &tunnel->dst_port, "USB3 Down", alloc_hopid); 1995 if (!path) { 1996 /* Just disable the downstream port */ 1997 tb_usb3_port_enable(down, false); 1998 goto err_free; 1999 } 2000 tunnel->paths[TB_USB3_PATH_DOWN] = path; 2001 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_DOWN]); 2002 2003 path = tb_path_discover(tunnel->dst_port, -1, down, TB_USB3_HOPID, NULL, 2004 "USB3 Up", alloc_hopid); 2005 if (!path) 2006 goto err_deactivate; 2007 tunnel->paths[TB_USB3_PATH_UP] = path; 2008 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_UP]); 2009 2010 /* Validate that the tunnel is complete */ 2011 if (!tb_port_is_usb3_up(tunnel->dst_port)) { 2012 tb_port_warn(tunnel->dst_port, 2013 "path does not end on an USB3 adapter, cleaning up\n"); 2014 goto err_deactivate; 2015 } 2016 2017 if (down != tunnel->src_port) { 2018 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 2019 goto err_deactivate; 2020 } 2021 2022 if (!tb_usb3_port_is_enabled(tunnel->dst_port)) { 2023 tb_tunnel_warn(tunnel, 2024 "tunnel is not fully activated, cleaning up\n"); 2025 goto err_deactivate; 2026 } 2027 2028 if (!tb_route(down->sw)) { 2029 int ret; 2030 2031 /* 2032 * Read the initial bandwidth allocation for the first 2033 * hop tunnel. 2034 */ 2035 ret = usb4_usb3_port_allocated_bandwidth(down, 2036 &tunnel->allocated_up, &tunnel->allocated_down); 2037 if (ret) 2038 goto err_deactivate; 2039 2040 tb_tunnel_dbg(tunnel, "currently allocated bandwidth %d/%d Mb/s\n", 2041 tunnel->allocated_up, tunnel->allocated_down); 2042 2043 tunnel->init = tb_usb3_init; 2044 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 2045 tunnel->release_unused_bandwidth = 2046 tb_usb3_release_unused_bandwidth; 2047 tunnel->reclaim_available_bandwidth = 2048 tb_usb3_reclaim_available_bandwidth; 2049 } 2050 2051 tb_tunnel_dbg(tunnel, "discovered\n"); 2052 return tunnel; 2053 2054 err_deactivate: 2055 tb_tunnel_deactivate(tunnel); 2056 err_free: 2057 tb_tunnel_free(tunnel); 2058 2059 return NULL; 2060 } 2061 2062 /** 2063 * tb_tunnel_alloc_usb3() - allocate a USB3 tunnel 2064 * @tb: Pointer to the domain structure 2065 * @up: USB3 upstream adapter port 2066 * @down: USB3 downstream adapter port 2067 * @max_up: Maximum available upstream bandwidth for the USB3 tunnel (%0 2068 * if not limited). 2069 * @max_down: Maximum available downstream bandwidth for the USB3 tunnel 2070 * (%0 if not limited). 2071 * 2072 * Allocate an USB3 tunnel. The ports must be of type @TB_TYPE_USB3_UP and 2073 * @TB_TYPE_USB3_DOWN. 2074 * 2075 * Return: Returns a tb_tunnel on success or %NULL on failure. 2076 */ 2077 struct tb_tunnel *tb_tunnel_alloc_usb3(struct tb *tb, struct tb_port *up, 2078 struct tb_port *down, int max_up, 2079 int max_down) 2080 { 2081 struct tb_tunnel *tunnel; 2082 struct tb_path *path; 2083 int max_rate = 0; 2084 2085 /* 2086 * Check that we have enough bandwidth available for the new 2087 * USB3 tunnel. 2088 */ 2089 if (max_up > 0 || max_down > 0) { 2090 max_rate = tb_usb3_max_link_rate(down, up); 2091 if (max_rate < 0) 2092 return NULL; 2093 2094 /* Only 90% can be allocated for USB3 isochronous transfers */ 2095 max_rate = max_rate * 90 / 100; 2096 tb_port_dbg(up, "required bandwidth for USB3 tunnel %d Mb/s\n", 2097 max_rate); 2098 2099 if (max_rate > max_up || max_rate > max_down) { 2100 tb_port_warn(up, "not enough bandwidth for USB3 tunnel\n"); 2101 return NULL; 2102 } 2103 } 2104 2105 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 2106 if (!tunnel) 2107 return NULL; 2108 2109 tunnel->activate = tb_usb3_activate; 2110 tunnel->src_port = down; 2111 tunnel->dst_port = up; 2112 tunnel->max_up = max_up; 2113 tunnel->max_down = max_down; 2114 2115 path = tb_path_alloc(tb, down, TB_USB3_HOPID, up, TB_USB3_HOPID, 0, 2116 "USB3 Down"); 2117 if (!path) { 2118 tb_tunnel_free(tunnel); 2119 return NULL; 2120 } 2121 tb_usb3_init_path(path); 2122 tunnel->paths[TB_USB3_PATH_DOWN] = path; 2123 2124 path = tb_path_alloc(tb, up, TB_USB3_HOPID, down, TB_USB3_HOPID, 0, 2125 "USB3 Up"); 2126 if (!path) { 2127 tb_tunnel_free(tunnel); 2128 return NULL; 2129 } 2130 tb_usb3_init_path(path); 2131 tunnel->paths[TB_USB3_PATH_UP] = path; 2132 2133 if (!tb_route(down->sw)) { 2134 tunnel->allocated_up = max_rate; 2135 tunnel->allocated_down = max_rate; 2136 2137 tunnel->init = tb_usb3_init; 2138 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 2139 tunnel->release_unused_bandwidth = 2140 tb_usb3_release_unused_bandwidth; 2141 tunnel->reclaim_available_bandwidth = 2142 tb_usb3_reclaim_available_bandwidth; 2143 } 2144 2145 return tunnel; 2146 } 2147 2148 /** 2149 * tb_tunnel_free() - free a tunnel 2150 * @tunnel: Tunnel to be freed 2151 * 2152 * Frees a tunnel. The tunnel does not need to be deactivated. 2153 */ 2154 void tb_tunnel_free(struct tb_tunnel *tunnel) 2155 { 2156 int i; 2157 2158 if (!tunnel) 2159 return; 2160 2161 if (tunnel->deinit) 2162 tunnel->deinit(tunnel); 2163 2164 for (i = 0; i < tunnel->npaths; i++) { 2165 if (tunnel->paths[i]) 2166 tb_path_free(tunnel->paths[i]); 2167 } 2168 2169 kfree(tunnel->paths); 2170 kfree(tunnel); 2171 } 2172 2173 /** 2174 * tb_tunnel_is_invalid - check whether an activated path is still valid 2175 * @tunnel: Tunnel to check 2176 */ 2177 bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel) 2178 { 2179 int i; 2180 2181 for (i = 0; i < tunnel->npaths; i++) { 2182 WARN_ON(!tunnel->paths[i]->activated); 2183 if (tb_path_is_invalid(tunnel->paths[i])) 2184 return true; 2185 } 2186 2187 return false; 2188 } 2189 2190 /** 2191 * tb_tunnel_restart() - activate a tunnel after a hardware reset 2192 * @tunnel: Tunnel to restart 2193 * 2194 * Return: 0 on success and negative errno in case if failure 2195 */ 2196 int tb_tunnel_restart(struct tb_tunnel *tunnel) 2197 { 2198 int res, i; 2199 2200 tb_tunnel_dbg(tunnel, "activating\n"); 2201 2202 /* 2203 * Make sure all paths are properly disabled before enabling 2204 * them again. 2205 */ 2206 for (i = 0; i < tunnel->npaths; i++) { 2207 if (tunnel->paths[i]->activated) { 2208 tb_path_deactivate(tunnel->paths[i]); 2209 tunnel->paths[i]->activated = false; 2210 } 2211 } 2212 2213 if (tunnel->init) { 2214 res = tunnel->init(tunnel); 2215 if (res) 2216 return res; 2217 } 2218 2219 for (i = 0; i < tunnel->npaths; i++) { 2220 res = tb_path_activate(tunnel->paths[i]); 2221 if (res) 2222 goto err; 2223 } 2224 2225 if (tunnel->activate) { 2226 res = tunnel->activate(tunnel, true); 2227 if (res) 2228 goto err; 2229 } 2230 2231 return 0; 2232 2233 err: 2234 tb_tunnel_warn(tunnel, "activation failed\n"); 2235 tb_tunnel_deactivate(tunnel); 2236 return res; 2237 } 2238 2239 /** 2240 * tb_tunnel_activate() - activate a tunnel 2241 * @tunnel: Tunnel to activate 2242 * 2243 * Return: Returns 0 on success or an error code on failure. 2244 */ 2245 int tb_tunnel_activate(struct tb_tunnel *tunnel) 2246 { 2247 int i; 2248 2249 for (i = 0; i < tunnel->npaths; i++) { 2250 if (tunnel->paths[i]->activated) { 2251 tb_tunnel_WARN(tunnel, 2252 "trying to activate an already activated tunnel\n"); 2253 return -EINVAL; 2254 } 2255 } 2256 2257 return tb_tunnel_restart(tunnel); 2258 } 2259 2260 /** 2261 * tb_tunnel_deactivate() - deactivate a tunnel 2262 * @tunnel: Tunnel to deactivate 2263 */ 2264 void tb_tunnel_deactivate(struct tb_tunnel *tunnel) 2265 { 2266 int i; 2267 2268 tb_tunnel_dbg(tunnel, "deactivating\n"); 2269 2270 if (tunnel->activate) 2271 tunnel->activate(tunnel, false); 2272 2273 for (i = 0; i < tunnel->npaths; i++) { 2274 if (tunnel->paths[i] && tunnel->paths[i]->activated) 2275 tb_path_deactivate(tunnel->paths[i]); 2276 } 2277 } 2278 2279 /** 2280 * tb_tunnel_port_on_path() - Does the tunnel go through port 2281 * @tunnel: Tunnel to check 2282 * @port: Port to check 2283 * 2284 * Returns true if @tunnel goes through @port (direction does not matter), 2285 * false otherwise. 2286 */ 2287 bool tb_tunnel_port_on_path(const struct tb_tunnel *tunnel, 2288 const struct tb_port *port) 2289 { 2290 int i; 2291 2292 for (i = 0; i < tunnel->npaths; i++) { 2293 if (!tunnel->paths[i]) 2294 continue; 2295 2296 if (tb_path_port_on_path(tunnel->paths[i], port)) 2297 return true; 2298 } 2299 2300 return false; 2301 } 2302 2303 static bool tb_tunnel_is_active(const struct tb_tunnel *tunnel) 2304 { 2305 int i; 2306 2307 for (i = 0; i < tunnel->npaths; i++) { 2308 if (!tunnel->paths[i]) 2309 return false; 2310 if (!tunnel->paths[i]->activated) 2311 return false; 2312 } 2313 2314 return true; 2315 } 2316 2317 /** 2318 * tb_tunnel_maximum_bandwidth() - Return maximum possible bandwidth 2319 * @tunnel: Tunnel to check 2320 * @max_up: Maximum upstream bandwidth in Mb/s 2321 * @max_down: Maximum downstream bandwidth in Mb/s 2322 * 2323 * Returns maximum possible bandwidth this tunnel can go if not limited 2324 * by other bandwidth clients. If the tunnel does not support this 2325 * returns %-EOPNOTSUPP. 2326 */ 2327 int tb_tunnel_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up, 2328 int *max_down) 2329 { 2330 if (!tb_tunnel_is_active(tunnel)) 2331 return -EINVAL; 2332 2333 if (tunnel->maximum_bandwidth) 2334 return tunnel->maximum_bandwidth(tunnel, max_up, max_down); 2335 return -EOPNOTSUPP; 2336 } 2337 2338 /** 2339 * tb_tunnel_allocated_bandwidth() - Return bandwidth allocated for the tunnel 2340 * @tunnel: Tunnel to check 2341 * @allocated_up: Currently allocated upstream bandwidth in Mb/s is stored here 2342 * @allocated_down: Currently allocated downstream bandwidth in Mb/s is 2343 * stored here 2344 * 2345 * Returns the bandwidth allocated for the tunnel. This may be higher 2346 * than what the tunnel actually consumes. 2347 */ 2348 int tb_tunnel_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up, 2349 int *allocated_down) 2350 { 2351 if (!tb_tunnel_is_active(tunnel)) 2352 return -EINVAL; 2353 2354 if (tunnel->allocated_bandwidth) 2355 return tunnel->allocated_bandwidth(tunnel, allocated_up, 2356 allocated_down); 2357 return -EOPNOTSUPP; 2358 } 2359 2360 /** 2361 * tb_tunnel_alloc_bandwidth() - Change tunnel bandwidth allocation 2362 * @tunnel: Tunnel whose bandwidth allocation to change 2363 * @alloc_up: New upstream bandwidth in Mb/s 2364 * @alloc_down: New downstream bandwidth in Mb/s 2365 * 2366 * Tries to change tunnel bandwidth allocation. If succeeds returns %0 2367 * and updates @alloc_up and @alloc_down to that was actually allocated 2368 * (it may not be the same as passed originally). Returns negative errno 2369 * in case of failure. 2370 */ 2371 int tb_tunnel_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up, 2372 int *alloc_down) 2373 { 2374 if (!tb_tunnel_is_active(tunnel)) 2375 return -EINVAL; 2376 2377 if (tunnel->alloc_bandwidth) 2378 return tunnel->alloc_bandwidth(tunnel, alloc_up, alloc_down); 2379 2380 return -EOPNOTSUPP; 2381 } 2382 2383 /** 2384 * tb_tunnel_consumed_bandwidth() - Return bandwidth consumed by the tunnel 2385 * @tunnel: Tunnel to check 2386 * @consumed_up: Consumed bandwidth in Mb/s from @dst_port to @src_port. 2387 * Can be %NULL. 2388 * @consumed_down: Consumed bandwidth in Mb/s from @src_port to @dst_port. 2389 * Can be %NULL. 2390 * 2391 * Stores the amount of isochronous bandwidth @tunnel consumes in 2392 * @consumed_up and @consumed_down. In case of success returns %0, 2393 * negative errno otherwise. 2394 */ 2395 int tb_tunnel_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 2396 int *consumed_down) 2397 { 2398 int up_bw = 0, down_bw = 0; 2399 2400 if (!tb_tunnel_is_active(tunnel)) 2401 goto out; 2402 2403 if (tunnel->consumed_bandwidth) { 2404 int ret; 2405 2406 ret = tunnel->consumed_bandwidth(tunnel, &up_bw, &down_bw); 2407 if (ret) 2408 return ret; 2409 2410 tb_tunnel_dbg(tunnel, "consumed bandwidth %d/%d Mb/s\n", up_bw, 2411 down_bw); 2412 } 2413 2414 out: 2415 if (consumed_up) 2416 *consumed_up = up_bw; 2417 if (consumed_down) 2418 *consumed_down = down_bw; 2419 2420 return 0; 2421 } 2422 2423 /** 2424 * tb_tunnel_release_unused_bandwidth() - Release unused bandwidth 2425 * @tunnel: Tunnel whose unused bandwidth to release 2426 * 2427 * If tunnel supports dynamic bandwidth management (USB3 tunnels at the 2428 * moment) this function makes it to release all the unused bandwidth. 2429 * 2430 * Returns %0 in case of success and negative errno otherwise. 2431 */ 2432 int tb_tunnel_release_unused_bandwidth(struct tb_tunnel *tunnel) 2433 { 2434 if (!tb_tunnel_is_active(tunnel)) 2435 return 0; 2436 2437 if (tunnel->release_unused_bandwidth) { 2438 int ret; 2439 2440 ret = tunnel->release_unused_bandwidth(tunnel); 2441 if (ret) 2442 return ret; 2443 } 2444 2445 return 0; 2446 } 2447 2448 /** 2449 * tb_tunnel_reclaim_available_bandwidth() - Reclaim available bandwidth 2450 * @tunnel: Tunnel reclaiming available bandwidth 2451 * @available_up: Available upstream bandwidth (in Mb/s) 2452 * @available_down: Available downstream bandwidth (in Mb/s) 2453 * 2454 * Reclaims bandwidth from @available_up and @available_down and updates 2455 * the variables accordingly (e.g decreases both according to what was 2456 * reclaimed by the tunnel). If nothing was reclaimed the values are 2457 * kept as is. 2458 */ 2459 void tb_tunnel_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 2460 int *available_up, 2461 int *available_down) 2462 { 2463 if (!tb_tunnel_is_active(tunnel)) 2464 return; 2465 2466 if (tunnel->reclaim_available_bandwidth) 2467 tunnel->reclaim_available_bandwidth(tunnel, available_up, 2468 available_down); 2469 } 2470 2471 const char *tb_tunnel_type_name(const struct tb_tunnel *tunnel) 2472 { 2473 return tb_tunnel_names[tunnel->type]; 2474 } 2475