xref: /linux/drivers/thunderbolt/tunnel.c (revision ebc733e54a1a79ea2dde2ba5121ae73a188e20d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - Tunneling support
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2019, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/list.h>
12 #include <linux/ktime.h>
13 #include <linux/string_helpers.h>
14 
15 #include "tunnel.h"
16 #include "tb.h"
17 
18 /* PCIe adapters use always HopID of 8 for both directions */
19 #define TB_PCI_HOPID			8
20 
21 #define TB_PCI_PATH_DOWN		0
22 #define TB_PCI_PATH_UP			1
23 
24 #define TB_PCI_PRIORITY			3
25 #define TB_PCI_WEIGHT			1
26 
27 /* USB3 adapters use always HopID of 8 for both directions */
28 #define TB_USB3_HOPID			8
29 
30 #define TB_USB3_PATH_DOWN		0
31 #define TB_USB3_PATH_UP			1
32 
33 #define TB_USB3_PRIORITY		3
34 #define TB_USB3_WEIGHT			2
35 
36 /* DP adapters use HopID 8 for AUX and 9 for Video */
37 #define TB_DP_AUX_TX_HOPID		8
38 #define TB_DP_AUX_RX_HOPID		8
39 #define TB_DP_VIDEO_HOPID		9
40 
41 #define TB_DP_VIDEO_PATH_OUT		0
42 #define TB_DP_AUX_PATH_OUT		1
43 #define TB_DP_AUX_PATH_IN		2
44 
45 #define TB_DP_VIDEO_PRIORITY		1
46 #define TB_DP_VIDEO_WEIGHT		1
47 
48 #define TB_DP_AUX_PRIORITY		2
49 #define TB_DP_AUX_WEIGHT		1
50 
51 /* Minimum number of credits needed for PCIe path */
52 #define TB_MIN_PCIE_CREDITS		6U
53 /*
54  * Number of credits we try to allocate for each DMA path if not limited
55  * by the host router baMaxHI.
56  */
57 #define TB_DMA_CREDITS			14
58 /* Minimum number of credits for DMA path */
59 #define TB_MIN_DMA_CREDITS		1
60 
61 #define TB_DMA_PRIORITY			5
62 #define TB_DMA_WEIGHT			1
63 
64 /*
65  * Reserve additional bandwidth for USB 3.x and PCIe bulk traffic
66  * according to USB4 v2 Connection Manager guide. This ends up reserving
67  * 1500 Mb/s for PCIe and 3000 Mb/s for USB 3.x taking weights into
68  * account.
69  */
70 #define USB4_V2_PCI_MIN_BANDWIDTH	(1500 * TB_PCI_WEIGHT)
71 #define USB4_V2_USB3_MIN_BANDWIDTH	(1500 * TB_USB3_WEIGHT)
72 
73 static unsigned int dma_credits = TB_DMA_CREDITS;
74 module_param(dma_credits, uint, 0444);
75 MODULE_PARM_DESC(dma_credits, "specify custom credits for DMA tunnels (default: "
76                 __MODULE_STRING(TB_DMA_CREDITS) ")");
77 
78 static bool bw_alloc_mode = true;
79 module_param(bw_alloc_mode, bool, 0444);
80 MODULE_PARM_DESC(bw_alloc_mode,
81 		 "enable bandwidth allocation mode if supported (default: true)");
82 
83 static const char * const tb_tunnel_names[] = { "PCI", "DP", "DMA", "USB3" };
84 
85 static inline unsigned int tb_usable_credits(const struct tb_port *port)
86 {
87 	return port->total_credits - port->ctl_credits;
88 }
89 
90 /**
91  * tb_available_credits() - Available credits for PCIe and DMA
92  * @port: Lane adapter to check
93  * @max_dp_streams: If non-%NULL stores maximum number of simultaneous DP
94  *		    streams possible through this lane adapter
95  */
96 static unsigned int tb_available_credits(const struct tb_port *port,
97 					 size_t *max_dp_streams)
98 {
99 	const struct tb_switch *sw = port->sw;
100 	int credits, usb3, pcie, spare;
101 	size_t ndp;
102 
103 	usb3 = tb_acpi_may_tunnel_usb3() ? sw->max_usb3_credits : 0;
104 	pcie = tb_acpi_may_tunnel_pcie() ? sw->max_pcie_credits : 0;
105 
106 	if (tb_acpi_is_xdomain_allowed()) {
107 		spare = min_not_zero(sw->max_dma_credits, dma_credits);
108 		/* Add some credits for potential second DMA tunnel */
109 		spare += TB_MIN_DMA_CREDITS;
110 	} else {
111 		spare = 0;
112 	}
113 
114 	credits = tb_usable_credits(port);
115 	if (tb_acpi_may_tunnel_dp()) {
116 		/*
117 		 * Maximum number of DP streams possible through the
118 		 * lane adapter.
119 		 */
120 		if (sw->min_dp_aux_credits + sw->min_dp_main_credits)
121 			ndp = (credits - (usb3 + pcie + spare)) /
122 			      (sw->min_dp_aux_credits + sw->min_dp_main_credits);
123 		else
124 			ndp = 0;
125 	} else {
126 		ndp = 0;
127 	}
128 	credits -= ndp * (sw->min_dp_aux_credits + sw->min_dp_main_credits);
129 	credits -= usb3;
130 
131 	if (max_dp_streams)
132 		*max_dp_streams = ndp;
133 
134 	return credits > 0 ? credits : 0;
135 }
136 
137 static void tb_init_pm_support(struct tb_path_hop *hop)
138 {
139 	struct tb_port *out_port = hop->out_port;
140 	struct tb_port *in_port = hop->in_port;
141 
142 	if (tb_port_is_null(in_port) && tb_port_is_null(out_port) &&
143 	    usb4_switch_version(in_port->sw) >= 2)
144 		hop->pm_support = true;
145 }
146 
147 static struct tb_tunnel *tb_tunnel_alloc(struct tb *tb, size_t npaths,
148 					 enum tb_tunnel_type type)
149 {
150 	struct tb_tunnel *tunnel;
151 
152 	tunnel = kzalloc(sizeof(*tunnel), GFP_KERNEL);
153 	if (!tunnel)
154 		return NULL;
155 
156 	tunnel->paths = kcalloc(npaths, sizeof(tunnel->paths[0]), GFP_KERNEL);
157 	if (!tunnel->paths) {
158 		tb_tunnel_free(tunnel);
159 		return NULL;
160 	}
161 
162 	INIT_LIST_HEAD(&tunnel->list);
163 	tunnel->tb = tb;
164 	tunnel->npaths = npaths;
165 	tunnel->type = type;
166 
167 	return tunnel;
168 }
169 
170 static int tb_pci_set_ext_encapsulation(struct tb_tunnel *tunnel, bool enable)
171 {
172 	struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw);
173 	int ret;
174 
175 	/* Only supported of both routers are at least USB4 v2 */
176 	if (tb_port_get_link_generation(port) < 4)
177 		return 0;
178 
179 	ret = usb4_pci_port_set_ext_encapsulation(tunnel->src_port, enable);
180 	if (ret)
181 		return ret;
182 
183 	ret = usb4_pci_port_set_ext_encapsulation(tunnel->dst_port, enable);
184 	if (ret)
185 		return ret;
186 
187 	tb_tunnel_dbg(tunnel, "extended encapsulation %s\n",
188 		      str_enabled_disabled(enable));
189 	return 0;
190 }
191 
192 static int tb_pci_activate(struct tb_tunnel *tunnel, bool activate)
193 {
194 	int res;
195 
196 	if (activate) {
197 		res = tb_pci_set_ext_encapsulation(tunnel, activate);
198 		if (res)
199 			return res;
200 	}
201 
202 	res = tb_pci_port_enable(tunnel->src_port, activate);
203 	if (res)
204 		return res;
205 
206 	if (tb_port_is_pcie_up(tunnel->dst_port)) {
207 		res = tb_pci_port_enable(tunnel->dst_port, activate);
208 		if (res)
209 			return res;
210 	}
211 
212 	return activate ? 0 : tb_pci_set_ext_encapsulation(tunnel, activate);
213 }
214 
215 static int tb_pci_init_credits(struct tb_path_hop *hop)
216 {
217 	struct tb_port *port = hop->in_port;
218 	struct tb_switch *sw = port->sw;
219 	unsigned int credits;
220 
221 	if (tb_port_use_credit_allocation(port)) {
222 		unsigned int available;
223 
224 		available = tb_available_credits(port, NULL);
225 		credits = min(sw->max_pcie_credits, available);
226 
227 		if (credits < TB_MIN_PCIE_CREDITS)
228 			return -ENOSPC;
229 
230 		credits = max(TB_MIN_PCIE_CREDITS, credits);
231 	} else {
232 		if (tb_port_is_null(port))
233 			credits = port->bonded ? 32 : 16;
234 		else
235 			credits = 7;
236 	}
237 
238 	hop->initial_credits = credits;
239 	return 0;
240 }
241 
242 static int tb_pci_init_path(struct tb_path *path)
243 {
244 	struct tb_path_hop *hop;
245 
246 	path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
247 	path->egress_shared_buffer = TB_PATH_NONE;
248 	path->ingress_fc_enable = TB_PATH_ALL;
249 	path->ingress_shared_buffer = TB_PATH_NONE;
250 	path->priority = TB_PCI_PRIORITY;
251 	path->weight = TB_PCI_WEIGHT;
252 	path->drop_packages = 0;
253 
254 	tb_path_for_each_hop(path, hop) {
255 		int ret;
256 
257 		ret = tb_pci_init_credits(hop);
258 		if (ret)
259 			return ret;
260 	}
261 
262 	return 0;
263 }
264 
265 /**
266  * tb_tunnel_discover_pci() - Discover existing PCIe tunnels
267  * @tb: Pointer to the domain structure
268  * @down: PCIe downstream adapter
269  * @alloc_hopid: Allocate HopIDs from visited ports
270  *
271  * If @down adapter is active, follows the tunnel to the PCIe upstream
272  * adapter and back. Returns the discovered tunnel or %NULL if there was
273  * no tunnel.
274  */
275 struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down,
276 					 bool alloc_hopid)
277 {
278 	struct tb_tunnel *tunnel;
279 	struct tb_path *path;
280 
281 	if (!tb_pci_port_is_enabled(down))
282 		return NULL;
283 
284 	tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI);
285 	if (!tunnel)
286 		return NULL;
287 
288 	tunnel->activate = tb_pci_activate;
289 	tunnel->src_port = down;
290 
291 	/*
292 	 * Discover both paths even if they are not complete. We will
293 	 * clean them up by calling tb_tunnel_deactivate() below in that
294 	 * case.
295 	 */
296 	path = tb_path_discover(down, TB_PCI_HOPID, NULL, -1,
297 				&tunnel->dst_port, "PCIe Up", alloc_hopid);
298 	if (!path) {
299 		/* Just disable the downstream port */
300 		tb_pci_port_enable(down, false);
301 		goto err_free;
302 	}
303 	tunnel->paths[TB_PCI_PATH_UP] = path;
304 	if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_UP]))
305 		goto err_free;
306 
307 	path = tb_path_discover(tunnel->dst_port, -1, down, TB_PCI_HOPID, NULL,
308 				"PCIe Down", alloc_hopid);
309 	if (!path)
310 		goto err_deactivate;
311 	tunnel->paths[TB_PCI_PATH_DOWN] = path;
312 	if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_DOWN]))
313 		goto err_deactivate;
314 
315 	/* Validate that the tunnel is complete */
316 	if (!tb_port_is_pcie_up(tunnel->dst_port)) {
317 		tb_port_warn(tunnel->dst_port,
318 			     "path does not end on a PCIe adapter, cleaning up\n");
319 		goto err_deactivate;
320 	}
321 
322 	if (down != tunnel->src_port) {
323 		tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n");
324 		goto err_deactivate;
325 	}
326 
327 	if (!tb_pci_port_is_enabled(tunnel->dst_port)) {
328 		tb_tunnel_warn(tunnel,
329 			       "tunnel is not fully activated, cleaning up\n");
330 		goto err_deactivate;
331 	}
332 
333 	tb_tunnel_dbg(tunnel, "discovered\n");
334 	return tunnel;
335 
336 err_deactivate:
337 	tb_tunnel_deactivate(tunnel);
338 err_free:
339 	tb_tunnel_free(tunnel);
340 
341 	return NULL;
342 }
343 
344 /**
345  * tb_tunnel_alloc_pci() - allocate a pci tunnel
346  * @tb: Pointer to the domain structure
347  * @up: PCIe upstream adapter port
348  * @down: PCIe downstream adapter port
349  *
350  * Allocate a PCI tunnel. The ports must be of type TB_TYPE_PCIE_UP and
351  * TB_TYPE_PCIE_DOWN.
352  *
353  * Return: Returns a tb_tunnel on success or NULL on failure.
354  */
355 struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up,
356 				      struct tb_port *down)
357 {
358 	struct tb_tunnel *tunnel;
359 	struct tb_path *path;
360 
361 	tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI);
362 	if (!tunnel)
363 		return NULL;
364 
365 	tunnel->activate = tb_pci_activate;
366 	tunnel->src_port = down;
367 	tunnel->dst_port = up;
368 
369 	path = tb_path_alloc(tb, down, TB_PCI_HOPID, up, TB_PCI_HOPID, 0,
370 			     "PCIe Down");
371 	if (!path)
372 		goto err_free;
373 	tunnel->paths[TB_PCI_PATH_DOWN] = path;
374 	if (tb_pci_init_path(path))
375 		goto err_free;
376 
377 	path = tb_path_alloc(tb, up, TB_PCI_HOPID, down, TB_PCI_HOPID, 0,
378 			     "PCIe Up");
379 	if (!path)
380 		goto err_free;
381 	tunnel->paths[TB_PCI_PATH_UP] = path;
382 	if (tb_pci_init_path(path))
383 		goto err_free;
384 
385 	return tunnel;
386 
387 err_free:
388 	tb_tunnel_free(tunnel);
389 	return NULL;
390 }
391 
392 /**
393  * tb_tunnel_reserved_pci() - Amount of bandwidth to reserve for PCIe
394  * @port: Lane 0 adapter
395  * @reserved_up: Upstream bandwidth in Mb/s to reserve
396  * @reserved_down: Downstream bandwidth in Mb/s to reserve
397  *
398  * Can be called to any connected lane 0 adapter to find out how much
399  * bandwidth needs to be left in reserve for possible PCIe bulk traffic.
400  * Returns true if there is something to be reserved and writes the
401  * amount to @reserved_down/@reserved_up. Otherwise returns false and
402  * does not touch the parameters.
403  */
404 bool tb_tunnel_reserved_pci(struct tb_port *port, int *reserved_up,
405 			    int *reserved_down)
406 {
407 	if (WARN_ON_ONCE(!port->remote))
408 		return false;
409 
410 	if (!tb_acpi_may_tunnel_pcie())
411 		return false;
412 
413 	if (tb_port_get_link_generation(port) < 4)
414 		return false;
415 
416 	/* Must have PCIe adapters */
417 	if (tb_is_upstream_port(port)) {
418 		if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_UP))
419 			return false;
420 		if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_DOWN))
421 			return false;
422 	} else {
423 		if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_DOWN))
424 			return false;
425 		if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_UP))
426 			return false;
427 	}
428 
429 	*reserved_up = USB4_V2_PCI_MIN_BANDWIDTH;
430 	*reserved_down = USB4_V2_PCI_MIN_BANDWIDTH;
431 
432 	tb_port_dbg(port, "reserving %u/%u Mb/s for PCIe\n", *reserved_up,
433 		    *reserved_down);
434 	return true;
435 }
436 
437 static bool tb_dp_is_usb4(const struct tb_switch *sw)
438 {
439 	/* Titan Ridge DP adapters need the same treatment as USB4 */
440 	return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw);
441 }
442 
443 static int tb_dp_cm_handshake(struct tb_port *in, struct tb_port *out,
444 			      int timeout_msec)
445 {
446 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
447 	u32 val;
448 	int ret;
449 
450 	/* Both ends need to support this */
451 	if (!tb_dp_is_usb4(in->sw) || !tb_dp_is_usb4(out->sw))
452 		return 0;
453 
454 	ret = tb_port_read(out, &val, TB_CFG_PORT,
455 			   out->cap_adap + DP_STATUS_CTRL, 1);
456 	if (ret)
457 		return ret;
458 
459 	val |= DP_STATUS_CTRL_UF | DP_STATUS_CTRL_CMHS;
460 
461 	ret = tb_port_write(out, &val, TB_CFG_PORT,
462 			    out->cap_adap + DP_STATUS_CTRL, 1);
463 	if (ret)
464 		return ret;
465 
466 	do {
467 		ret = tb_port_read(out, &val, TB_CFG_PORT,
468 				   out->cap_adap + DP_STATUS_CTRL, 1);
469 		if (ret)
470 			return ret;
471 		if (!(val & DP_STATUS_CTRL_CMHS))
472 			return 0;
473 		usleep_range(100, 150);
474 	} while (ktime_before(ktime_get(), timeout));
475 
476 	return -ETIMEDOUT;
477 }
478 
479 /*
480  * Returns maximum possible rate from capability supporting only DP 2.0
481  * and below. Used when DP BW allocation mode is not enabled.
482  */
483 static inline u32 tb_dp_cap_get_rate(u32 val)
484 {
485 	u32 rate = (val & DP_COMMON_CAP_RATE_MASK) >> DP_COMMON_CAP_RATE_SHIFT;
486 
487 	switch (rate) {
488 	case DP_COMMON_CAP_RATE_RBR:
489 		return 1620;
490 	case DP_COMMON_CAP_RATE_HBR:
491 		return 2700;
492 	case DP_COMMON_CAP_RATE_HBR2:
493 		return 5400;
494 	case DP_COMMON_CAP_RATE_HBR3:
495 		return 8100;
496 	default:
497 		return 0;
498 	}
499 }
500 
501 /*
502  * Returns maximum possible rate from capability supporting DP 2.1
503  * UHBR20, 13.5 and 10 rates as well. Use only when DP BW allocation
504  * mode is enabled.
505  */
506 static inline u32 tb_dp_cap_get_rate_ext(u32 val)
507 {
508 	if (val & DP_COMMON_CAP_UHBR20)
509 		return 20000;
510 	else if (val & DP_COMMON_CAP_UHBR13_5)
511 		return 13500;
512 	else if (val & DP_COMMON_CAP_UHBR10)
513 		return 10000;
514 
515 	return tb_dp_cap_get_rate(val);
516 }
517 
518 static inline bool tb_dp_is_uhbr_rate(unsigned int rate)
519 {
520 	return rate >= 10000;
521 }
522 
523 static inline u32 tb_dp_cap_set_rate(u32 val, u32 rate)
524 {
525 	val &= ~DP_COMMON_CAP_RATE_MASK;
526 	switch (rate) {
527 	default:
528 		WARN(1, "invalid rate %u passed, defaulting to 1620 MB/s\n", rate);
529 		fallthrough;
530 	case 1620:
531 		val |= DP_COMMON_CAP_RATE_RBR << DP_COMMON_CAP_RATE_SHIFT;
532 		break;
533 	case 2700:
534 		val |= DP_COMMON_CAP_RATE_HBR << DP_COMMON_CAP_RATE_SHIFT;
535 		break;
536 	case 5400:
537 		val |= DP_COMMON_CAP_RATE_HBR2 << DP_COMMON_CAP_RATE_SHIFT;
538 		break;
539 	case 8100:
540 		val |= DP_COMMON_CAP_RATE_HBR3 << DP_COMMON_CAP_RATE_SHIFT;
541 		break;
542 	}
543 	return val;
544 }
545 
546 static inline u32 tb_dp_cap_get_lanes(u32 val)
547 {
548 	u32 lanes = (val & DP_COMMON_CAP_LANES_MASK) >> DP_COMMON_CAP_LANES_SHIFT;
549 
550 	switch (lanes) {
551 	case DP_COMMON_CAP_1_LANE:
552 		return 1;
553 	case DP_COMMON_CAP_2_LANES:
554 		return 2;
555 	case DP_COMMON_CAP_4_LANES:
556 		return 4;
557 	default:
558 		return 0;
559 	}
560 }
561 
562 static inline u32 tb_dp_cap_set_lanes(u32 val, u32 lanes)
563 {
564 	val &= ~DP_COMMON_CAP_LANES_MASK;
565 	switch (lanes) {
566 	default:
567 		WARN(1, "invalid number of lanes %u passed, defaulting to 1\n",
568 		     lanes);
569 		fallthrough;
570 	case 1:
571 		val |= DP_COMMON_CAP_1_LANE << DP_COMMON_CAP_LANES_SHIFT;
572 		break;
573 	case 2:
574 		val |= DP_COMMON_CAP_2_LANES << DP_COMMON_CAP_LANES_SHIFT;
575 		break;
576 	case 4:
577 		val |= DP_COMMON_CAP_4_LANES << DP_COMMON_CAP_LANES_SHIFT;
578 		break;
579 	}
580 	return val;
581 }
582 
583 static unsigned int tb_dp_bandwidth(unsigned int rate, unsigned int lanes)
584 {
585 	/* Tunneling removes the DP 8b/10b 128/132b encoding */
586 	if (tb_dp_is_uhbr_rate(rate))
587 		return rate * lanes * 128 / 132;
588 	return rate * lanes * 8 / 10;
589 }
590 
591 static int tb_dp_reduce_bandwidth(int max_bw, u32 in_rate, u32 in_lanes,
592 				  u32 out_rate, u32 out_lanes, u32 *new_rate,
593 				  u32 *new_lanes)
594 {
595 	static const u32 dp_bw[][2] = {
596 		/* Mb/s, lanes */
597 		{ 8100, 4 }, /* 25920 Mb/s */
598 		{ 5400, 4 }, /* 17280 Mb/s */
599 		{ 8100, 2 }, /* 12960 Mb/s */
600 		{ 2700, 4 }, /* 8640 Mb/s */
601 		{ 5400, 2 }, /* 8640 Mb/s */
602 		{ 8100, 1 }, /* 6480 Mb/s */
603 		{ 1620, 4 }, /* 5184 Mb/s */
604 		{ 5400, 1 }, /* 4320 Mb/s */
605 		{ 2700, 2 }, /* 4320 Mb/s */
606 		{ 1620, 2 }, /* 2592 Mb/s */
607 		{ 2700, 1 }, /* 2160 Mb/s */
608 		{ 1620, 1 }, /* 1296 Mb/s */
609 	};
610 	unsigned int i;
611 
612 	/*
613 	 * Find a combination that can fit into max_bw and does not
614 	 * exceed the maximum rate and lanes supported by the DP OUT and
615 	 * DP IN adapters.
616 	 */
617 	for (i = 0; i < ARRAY_SIZE(dp_bw); i++) {
618 		if (dp_bw[i][0] > out_rate || dp_bw[i][1] > out_lanes)
619 			continue;
620 
621 		if (dp_bw[i][0] > in_rate || dp_bw[i][1] > in_lanes)
622 			continue;
623 
624 		if (tb_dp_bandwidth(dp_bw[i][0], dp_bw[i][1]) <= max_bw) {
625 			*new_rate = dp_bw[i][0];
626 			*new_lanes = dp_bw[i][1];
627 			return 0;
628 		}
629 	}
630 
631 	return -ENOSR;
632 }
633 
634 static int tb_dp_xchg_caps(struct tb_tunnel *tunnel)
635 {
636 	u32 out_dp_cap, out_rate, out_lanes, in_dp_cap, in_rate, in_lanes, bw;
637 	struct tb_port *out = tunnel->dst_port;
638 	struct tb_port *in = tunnel->src_port;
639 	int ret, max_bw;
640 
641 	/*
642 	 * Copy DP_LOCAL_CAP register to DP_REMOTE_CAP register for
643 	 * newer generation hardware.
644 	 */
645 	if (in->sw->generation < 2 || out->sw->generation < 2)
646 		return 0;
647 
648 	/*
649 	 * Perform connection manager handshake between IN and OUT ports
650 	 * before capabilities exchange can take place.
651 	 */
652 	ret = tb_dp_cm_handshake(in, out, 3000);
653 	if (ret)
654 		return ret;
655 
656 	/* Read both DP_LOCAL_CAP registers */
657 	ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT,
658 			   in->cap_adap + DP_LOCAL_CAP, 1);
659 	if (ret)
660 		return ret;
661 
662 	ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT,
663 			   out->cap_adap + DP_LOCAL_CAP, 1);
664 	if (ret)
665 		return ret;
666 
667 	/* Write IN local caps to OUT remote caps */
668 	ret = tb_port_write(out, &in_dp_cap, TB_CFG_PORT,
669 			    out->cap_adap + DP_REMOTE_CAP, 1);
670 	if (ret)
671 		return ret;
672 
673 	in_rate = tb_dp_cap_get_rate(in_dp_cap);
674 	in_lanes = tb_dp_cap_get_lanes(in_dp_cap);
675 	tb_tunnel_dbg(tunnel,
676 		      "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n",
677 		      in_rate, in_lanes, tb_dp_bandwidth(in_rate, in_lanes));
678 
679 	/*
680 	 * If the tunnel bandwidth is limited (max_bw is set) then see
681 	 * if we need to reduce bandwidth to fit there.
682 	 */
683 	out_rate = tb_dp_cap_get_rate(out_dp_cap);
684 	out_lanes = tb_dp_cap_get_lanes(out_dp_cap);
685 	bw = tb_dp_bandwidth(out_rate, out_lanes);
686 	tb_tunnel_dbg(tunnel,
687 		      "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n",
688 		      out_rate, out_lanes, bw);
689 
690 	if (tb_port_path_direction_downstream(in, out))
691 		max_bw = tunnel->max_down;
692 	else
693 		max_bw = tunnel->max_up;
694 
695 	if (max_bw && bw > max_bw) {
696 		u32 new_rate, new_lanes, new_bw;
697 
698 		ret = tb_dp_reduce_bandwidth(max_bw, in_rate, in_lanes,
699 					     out_rate, out_lanes, &new_rate,
700 					     &new_lanes);
701 		if (ret) {
702 			tb_tunnel_info(tunnel, "not enough bandwidth\n");
703 			return ret;
704 		}
705 
706 		new_bw = tb_dp_bandwidth(new_rate, new_lanes);
707 		tb_tunnel_dbg(tunnel,
708 			      "bandwidth reduced to %u Mb/s x%u = %u Mb/s\n",
709 			      new_rate, new_lanes, new_bw);
710 
711 		/*
712 		 * Set new rate and number of lanes before writing it to
713 		 * the IN port remote caps.
714 		 */
715 		out_dp_cap = tb_dp_cap_set_rate(out_dp_cap, new_rate);
716 		out_dp_cap = tb_dp_cap_set_lanes(out_dp_cap, new_lanes);
717 	}
718 
719 	/*
720 	 * Titan Ridge does not disable AUX timers when it gets
721 	 * SET_CONFIG with SET_LTTPR_MODE set. This causes problems with
722 	 * DP tunneling.
723 	 */
724 	if (tb_route(out->sw) && tb_switch_is_titan_ridge(out->sw)) {
725 		out_dp_cap |= DP_COMMON_CAP_LTTPR_NS;
726 		tb_tunnel_dbg(tunnel, "disabling LTTPR\n");
727 	}
728 
729 	return tb_port_write(in, &out_dp_cap, TB_CFG_PORT,
730 			     in->cap_adap + DP_REMOTE_CAP, 1);
731 }
732 
733 static int tb_dp_bandwidth_alloc_mode_enable(struct tb_tunnel *tunnel)
734 {
735 	int ret, estimated_bw, granularity, tmp;
736 	struct tb_port *out = tunnel->dst_port;
737 	struct tb_port *in = tunnel->src_port;
738 	u32 out_dp_cap, out_rate, out_lanes;
739 	u32 in_dp_cap, in_rate, in_lanes;
740 	u32 rate, lanes;
741 
742 	if (!bw_alloc_mode)
743 		return 0;
744 
745 	ret = usb4_dp_port_set_cm_bandwidth_mode_supported(in, true);
746 	if (ret)
747 		return ret;
748 
749 	ret = usb4_dp_port_set_group_id(in, in->group->index);
750 	if (ret)
751 		return ret;
752 
753 	/*
754 	 * Get the non-reduced rate and lanes based on the lowest
755 	 * capability of both adapters.
756 	 */
757 	ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT,
758 			   in->cap_adap + DP_LOCAL_CAP, 1);
759 	if (ret)
760 		return ret;
761 
762 	ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT,
763 			   out->cap_adap + DP_LOCAL_CAP, 1);
764 	if (ret)
765 		return ret;
766 
767 	in_rate = tb_dp_cap_get_rate(in_dp_cap);
768 	in_lanes = tb_dp_cap_get_lanes(in_dp_cap);
769 	out_rate = tb_dp_cap_get_rate(out_dp_cap);
770 	out_lanes = tb_dp_cap_get_lanes(out_dp_cap);
771 
772 	rate = min(in_rate, out_rate);
773 	lanes = min(in_lanes, out_lanes);
774 	tmp = tb_dp_bandwidth(rate, lanes);
775 
776 	tb_tunnel_dbg(tunnel, "non-reduced bandwidth %u Mb/s x%u = %u Mb/s\n",
777 		      rate, lanes, tmp);
778 
779 	ret = usb4_dp_port_set_nrd(in, rate, lanes);
780 	if (ret)
781 		return ret;
782 
783 	/*
784 	 * Pick up granularity that supports maximum possible bandwidth.
785 	 * For that we use the UHBR rates too.
786 	 */
787 	in_rate = tb_dp_cap_get_rate_ext(in_dp_cap);
788 	out_rate = tb_dp_cap_get_rate_ext(out_dp_cap);
789 	rate = min(in_rate, out_rate);
790 	tmp = tb_dp_bandwidth(rate, lanes);
791 
792 	tb_tunnel_dbg(tunnel,
793 		      "maximum bandwidth through allocation mode %u Mb/s x%u = %u Mb/s\n",
794 		      rate, lanes, tmp);
795 
796 	for (granularity = 250; tmp / granularity > 255 && granularity <= 1000;
797 	     granularity *= 2)
798 		;
799 
800 	tb_tunnel_dbg(tunnel, "granularity %d Mb/s\n", granularity);
801 
802 	/*
803 	 * Returns -EINVAL if granularity above is outside of the
804 	 * accepted ranges.
805 	 */
806 	ret = usb4_dp_port_set_granularity(in, granularity);
807 	if (ret)
808 		return ret;
809 
810 	/*
811 	 * Bandwidth estimation is pretty much what we have in
812 	 * max_up/down fields. For discovery we just read what the
813 	 * estimation was set to.
814 	 */
815 	if (tb_port_path_direction_downstream(in, out))
816 		estimated_bw = tunnel->max_down;
817 	else
818 		estimated_bw = tunnel->max_up;
819 
820 	tb_tunnel_dbg(tunnel, "estimated bandwidth %d Mb/s\n", estimated_bw);
821 
822 	ret = usb4_dp_port_set_estimated_bandwidth(in, estimated_bw);
823 	if (ret)
824 		return ret;
825 
826 	/* Initial allocation should be 0 according the spec */
827 	ret = usb4_dp_port_allocate_bandwidth(in, 0);
828 	if (ret)
829 		return ret;
830 
831 	tb_tunnel_dbg(tunnel, "bandwidth allocation mode enabled\n");
832 	return 0;
833 }
834 
835 static int tb_dp_init(struct tb_tunnel *tunnel)
836 {
837 	struct tb_port *in = tunnel->src_port;
838 	struct tb_switch *sw = in->sw;
839 	struct tb *tb = in->sw->tb;
840 	int ret;
841 
842 	ret = tb_dp_xchg_caps(tunnel);
843 	if (ret)
844 		return ret;
845 
846 	if (!tb_switch_is_usb4(sw))
847 		return 0;
848 
849 	if (!usb4_dp_port_bandwidth_mode_supported(in))
850 		return 0;
851 
852 	tb_tunnel_dbg(tunnel, "bandwidth allocation mode supported\n");
853 
854 	ret = usb4_dp_port_set_cm_id(in, tb->index);
855 	if (ret)
856 		return ret;
857 
858 	return tb_dp_bandwidth_alloc_mode_enable(tunnel);
859 }
860 
861 static void tb_dp_deinit(struct tb_tunnel *tunnel)
862 {
863 	struct tb_port *in = tunnel->src_port;
864 
865 	if (!usb4_dp_port_bandwidth_mode_supported(in))
866 		return;
867 	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
868 		usb4_dp_port_set_cm_bandwidth_mode_supported(in, false);
869 		tb_tunnel_dbg(tunnel, "bandwidth allocation mode disabled\n");
870 	}
871 }
872 
873 static int tb_dp_activate(struct tb_tunnel *tunnel, bool active)
874 {
875 	int ret;
876 
877 	if (active) {
878 		struct tb_path **paths;
879 		int last;
880 
881 		paths = tunnel->paths;
882 		last = paths[TB_DP_VIDEO_PATH_OUT]->path_length - 1;
883 
884 		tb_dp_port_set_hops(tunnel->src_port,
885 			paths[TB_DP_VIDEO_PATH_OUT]->hops[0].in_hop_index,
886 			paths[TB_DP_AUX_PATH_OUT]->hops[0].in_hop_index,
887 			paths[TB_DP_AUX_PATH_IN]->hops[last].next_hop_index);
888 
889 		tb_dp_port_set_hops(tunnel->dst_port,
890 			paths[TB_DP_VIDEO_PATH_OUT]->hops[last].next_hop_index,
891 			paths[TB_DP_AUX_PATH_IN]->hops[0].in_hop_index,
892 			paths[TB_DP_AUX_PATH_OUT]->hops[last].next_hop_index);
893 	} else {
894 		tb_dp_port_hpd_clear(tunnel->src_port);
895 		tb_dp_port_set_hops(tunnel->src_port, 0, 0, 0);
896 		if (tb_port_is_dpout(tunnel->dst_port))
897 			tb_dp_port_set_hops(tunnel->dst_port, 0, 0, 0);
898 	}
899 
900 	ret = tb_dp_port_enable(tunnel->src_port, active);
901 	if (ret)
902 		return ret;
903 
904 	if (tb_port_is_dpout(tunnel->dst_port))
905 		return tb_dp_port_enable(tunnel->dst_port, active);
906 
907 	return 0;
908 }
909 
910 /* max_bw is rounded up to next granularity */
911 static int tb_dp_bandwidth_mode_maximum_bandwidth(struct tb_tunnel *tunnel,
912 						  int *max_bw)
913 {
914 	struct tb_port *in = tunnel->src_port;
915 	int ret, rate, lanes, nrd_bw;
916 	u32 cap;
917 
918 	/*
919 	 * DP IN adapter DP_LOCAL_CAP gets updated to the lowest AUX
920 	 * read parameter values so this so we can use this to determine
921 	 * the maximum possible bandwidth over this link.
922 	 *
923 	 * See USB4 v2 spec 1.0 10.4.4.5.
924 	 */
925 	ret = tb_port_read(in, &cap, TB_CFG_PORT,
926 			   in->cap_adap + DP_LOCAL_CAP, 1);
927 	if (ret)
928 		return ret;
929 
930 	rate = tb_dp_cap_get_rate_ext(cap);
931 	if (tb_dp_is_uhbr_rate(rate)) {
932 		/*
933 		 * When UHBR is used there is no reduction in lanes so
934 		 * we can use this directly.
935 		 */
936 		lanes = tb_dp_cap_get_lanes(cap);
937 	} else {
938 		/*
939 		 * If there is no UHBR supported then check the
940 		 * non-reduced rate and lanes.
941 		 */
942 		ret = usb4_dp_port_nrd(in, &rate, &lanes);
943 		if (ret)
944 			return ret;
945 	}
946 
947 	nrd_bw = tb_dp_bandwidth(rate, lanes);
948 
949 	if (max_bw) {
950 		ret = usb4_dp_port_granularity(in);
951 		if (ret < 0)
952 			return ret;
953 		*max_bw = roundup(nrd_bw, ret);
954 	}
955 
956 	return nrd_bw;
957 }
958 
959 static int tb_dp_bandwidth_mode_consumed_bandwidth(struct tb_tunnel *tunnel,
960 						   int *consumed_up,
961 						   int *consumed_down)
962 {
963 	struct tb_port *out = tunnel->dst_port;
964 	struct tb_port *in = tunnel->src_port;
965 	int ret, allocated_bw, max_bw;
966 
967 	if (!usb4_dp_port_bandwidth_mode_enabled(in))
968 		return -EOPNOTSUPP;
969 
970 	if (!tunnel->bw_mode)
971 		return -EOPNOTSUPP;
972 
973 	/* Read what was allocated previously if any */
974 	ret = usb4_dp_port_allocated_bandwidth(in);
975 	if (ret < 0)
976 		return ret;
977 	allocated_bw = ret;
978 
979 	ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw);
980 	if (ret < 0)
981 		return ret;
982 	if (allocated_bw == max_bw)
983 		allocated_bw = ret;
984 
985 	if (tb_port_path_direction_downstream(in, out)) {
986 		*consumed_up = 0;
987 		*consumed_down = allocated_bw;
988 	} else {
989 		*consumed_up = allocated_bw;
990 		*consumed_down = 0;
991 	}
992 
993 	return 0;
994 }
995 
996 static int tb_dp_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up,
997 				     int *allocated_down)
998 {
999 	struct tb_port *out = tunnel->dst_port;
1000 	struct tb_port *in = tunnel->src_port;
1001 
1002 	/*
1003 	 * If we have already set the allocated bandwidth then use that.
1004 	 * Otherwise we read it from the DPRX.
1005 	 */
1006 	if (usb4_dp_port_bandwidth_mode_enabled(in) && tunnel->bw_mode) {
1007 		int ret, allocated_bw, max_bw;
1008 
1009 		ret = usb4_dp_port_allocated_bandwidth(in);
1010 		if (ret < 0)
1011 			return ret;
1012 		allocated_bw = ret;
1013 
1014 		ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw);
1015 		if (ret < 0)
1016 			return ret;
1017 		if (allocated_bw == max_bw)
1018 			allocated_bw = ret;
1019 
1020 		if (tb_port_path_direction_downstream(in, out)) {
1021 			*allocated_up = 0;
1022 			*allocated_down = allocated_bw;
1023 		} else {
1024 			*allocated_up = allocated_bw;
1025 			*allocated_down = 0;
1026 		}
1027 		return 0;
1028 	}
1029 
1030 	return tunnel->consumed_bandwidth(tunnel, allocated_up,
1031 					  allocated_down);
1032 }
1033 
1034 static int tb_dp_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up,
1035 				 int *alloc_down)
1036 {
1037 	struct tb_port *out = tunnel->dst_port;
1038 	struct tb_port *in = tunnel->src_port;
1039 	int max_bw, ret, tmp;
1040 
1041 	if (!usb4_dp_port_bandwidth_mode_enabled(in))
1042 		return -EOPNOTSUPP;
1043 
1044 	ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw);
1045 	if (ret < 0)
1046 		return ret;
1047 
1048 	if (tb_port_path_direction_downstream(in, out)) {
1049 		tmp = min(*alloc_down, max_bw);
1050 		ret = usb4_dp_port_allocate_bandwidth(in, tmp);
1051 		if (ret)
1052 			return ret;
1053 		*alloc_down = tmp;
1054 		*alloc_up = 0;
1055 	} else {
1056 		tmp = min(*alloc_up, max_bw);
1057 		ret = usb4_dp_port_allocate_bandwidth(in, tmp);
1058 		if (ret)
1059 			return ret;
1060 		*alloc_down = 0;
1061 		*alloc_up = tmp;
1062 	}
1063 
1064 	/* Now we can use BW mode registers to figure out the bandwidth */
1065 	/* TODO: need to handle discovery too */
1066 	tunnel->bw_mode = true;
1067 	return 0;
1068 }
1069 
1070 static int tb_dp_read_dprx(struct tb_tunnel *tunnel, u32 *rate, u32 *lanes,
1071 			   int timeout_msec)
1072 {
1073 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1074 	struct tb_port *in = tunnel->src_port;
1075 
1076 	/*
1077 	 * Wait for DPRX done. Normally it should be already set for
1078 	 * active tunnel.
1079 	 */
1080 	do {
1081 		u32 val;
1082 		int ret;
1083 
1084 		ret = tb_port_read(in, &val, TB_CFG_PORT,
1085 				   in->cap_adap + DP_COMMON_CAP, 1);
1086 		if (ret)
1087 			return ret;
1088 
1089 		if (val & DP_COMMON_CAP_DPRX_DONE) {
1090 			*rate = tb_dp_cap_get_rate(val);
1091 			*lanes = tb_dp_cap_get_lanes(val);
1092 
1093 			tb_tunnel_dbg(tunnel, "DPRX read done\n");
1094 			return 0;
1095 		}
1096 		usleep_range(100, 150);
1097 	} while (ktime_before(ktime_get(), timeout));
1098 
1099 	return -ETIMEDOUT;
1100 }
1101 
1102 /* Read cap from tunnel DP IN */
1103 static int tb_dp_read_cap(struct tb_tunnel *tunnel, unsigned int cap, u32 *rate,
1104 			  u32 *lanes)
1105 {
1106 	struct tb_port *in = tunnel->src_port;
1107 	u32 val;
1108 	int ret;
1109 
1110 	switch (cap) {
1111 	case DP_LOCAL_CAP:
1112 	case DP_REMOTE_CAP:
1113 		break;
1114 
1115 	default:
1116 		tb_tunnel_WARN(tunnel, "invalid capability index %#x\n", cap);
1117 		return -EINVAL;
1118 	}
1119 
1120 	/*
1121 	 * Read from the copied remote cap so that we take into account
1122 	 * if capabilities were reduced during exchange.
1123 	 */
1124 	ret = tb_port_read(in, &val, TB_CFG_PORT, in->cap_adap + cap, 1);
1125 	if (ret)
1126 		return ret;
1127 
1128 	*rate = tb_dp_cap_get_rate(val);
1129 	*lanes = tb_dp_cap_get_lanes(val);
1130 	return 0;
1131 }
1132 
1133 static int tb_dp_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up,
1134 				   int *max_down)
1135 {
1136 	struct tb_port *in = tunnel->src_port;
1137 	int ret;
1138 
1139 	if (!usb4_dp_port_bandwidth_mode_enabled(in))
1140 		return -EOPNOTSUPP;
1141 
1142 	ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, NULL);
1143 	if (ret < 0)
1144 		return ret;
1145 
1146 	if (tb_port_path_direction_downstream(in, tunnel->dst_port)) {
1147 		*max_up = 0;
1148 		*max_down = ret;
1149 	} else {
1150 		*max_up = ret;
1151 		*max_down = 0;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int tb_dp_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up,
1158 				    int *consumed_down)
1159 {
1160 	struct tb_port *in = tunnel->src_port;
1161 	const struct tb_switch *sw = in->sw;
1162 	u32 rate = 0, lanes = 0;
1163 	int ret;
1164 
1165 	if (tb_dp_is_usb4(sw)) {
1166 		/*
1167 		 * On USB4 routers check if the bandwidth allocation
1168 		 * mode is enabled first and then read the bandwidth
1169 		 * through those registers.
1170 		 */
1171 		ret = tb_dp_bandwidth_mode_consumed_bandwidth(tunnel, consumed_up,
1172 							      consumed_down);
1173 		if (ret < 0) {
1174 			if (ret != -EOPNOTSUPP)
1175 				return ret;
1176 		} else if (!ret) {
1177 			return 0;
1178 		}
1179 		/*
1180 		 * Then see if the DPRX negotiation is ready and if yes
1181 		 * return that bandwidth (it may be smaller than the
1182 		 * reduced one). Otherwise return the remote (possibly
1183 		 * reduced) caps.
1184 		 */
1185 		ret = tb_dp_read_dprx(tunnel, &rate, &lanes, 150);
1186 		if (ret) {
1187 			if (ret == -ETIMEDOUT)
1188 				ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP,
1189 						     &rate, &lanes);
1190 			if (ret)
1191 				return ret;
1192 		}
1193 	} else if (sw->generation >= 2) {
1194 		ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, &rate, &lanes);
1195 		if (ret)
1196 			return ret;
1197 	} else {
1198 		/* No bandwidth management for legacy devices  */
1199 		*consumed_up = 0;
1200 		*consumed_down = 0;
1201 		return 0;
1202 	}
1203 
1204 	if (tb_port_path_direction_downstream(in, tunnel->dst_port)) {
1205 		*consumed_up = 0;
1206 		*consumed_down = tb_dp_bandwidth(rate, lanes);
1207 	} else {
1208 		*consumed_up = tb_dp_bandwidth(rate, lanes);
1209 		*consumed_down = 0;
1210 	}
1211 
1212 	return 0;
1213 }
1214 
1215 static void tb_dp_init_aux_credits(struct tb_path_hop *hop)
1216 {
1217 	struct tb_port *port = hop->in_port;
1218 	struct tb_switch *sw = port->sw;
1219 
1220 	if (tb_port_use_credit_allocation(port))
1221 		hop->initial_credits = sw->min_dp_aux_credits;
1222 	else
1223 		hop->initial_credits = 1;
1224 }
1225 
1226 static void tb_dp_init_aux_path(struct tb_path *path, bool pm_support)
1227 {
1228 	struct tb_path_hop *hop;
1229 
1230 	path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
1231 	path->egress_shared_buffer = TB_PATH_NONE;
1232 	path->ingress_fc_enable = TB_PATH_ALL;
1233 	path->ingress_shared_buffer = TB_PATH_NONE;
1234 	path->priority = TB_DP_AUX_PRIORITY;
1235 	path->weight = TB_DP_AUX_WEIGHT;
1236 
1237 	tb_path_for_each_hop(path, hop) {
1238 		tb_dp_init_aux_credits(hop);
1239 		if (pm_support)
1240 			tb_init_pm_support(hop);
1241 	}
1242 }
1243 
1244 static int tb_dp_init_video_credits(struct tb_path_hop *hop)
1245 {
1246 	struct tb_port *port = hop->in_port;
1247 	struct tb_switch *sw = port->sw;
1248 
1249 	if (tb_port_use_credit_allocation(port)) {
1250 		unsigned int nfc_credits;
1251 		size_t max_dp_streams;
1252 
1253 		tb_available_credits(port, &max_dp_streams);
1254 		/*
1255 		 * Read the number of currently allocated NFC credits
1256 		 * from the lane adapter. Since we only use them for DP
1257 		 * tunneling we can use that to figure out how many DP
1258 		 * tunnels already go through the lane adapter.
1259 		 */
1260 		nfc_credits = port->config.nfc_credits &
1261 				ADP_CS_4_NFC_BUFFERS_MASK;
1262 		if (nfc_credits / sw->min_dp_main_credits > max_dp_streams)
1263 			return -ENOSPC;
1264 
1265 		hop->nfc_credits = sw->min_dp_main_credits;
1266 	} else {
1267 		hop->nfc_credits = min(port->total_credits - 2, 12U);
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int tb_dp_init_video_path(struct tb_path *path, bool pm_support)
1274 {
1275 	struct tb_path_hop *hop;
1276 
1277 	path->egress_fc_enable = TB_PATH_NONE;
1278 	path->egress_shared_buffer = TB_PATH_NONE;
1279 	path->ingress_fc_enable = TB_PATH_NONE;
1280 	path->ingress_shared_buffer = TB_PATH_NONE;
1281 	path->priority = TB_DP_VIDEO_PRIORITY;
1282 	path->weight = TB_DP_VIDEO_WEIGHT;
1283 
1284 	tb_path_for_each_hop(path, hop) {
1285 		int ret;
1286 
1287 		ret = tb_dp_init_video_credits(hop);
1288 		if (ret)
1289 			return ret;
1290 		if (pm_support)
1291 			tb_init_pm_support(hop);
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static void tb_dp_dump(struct tb_tunnel *tunnel)
1298 {
1299 	struct tb_port *in, *out;
1300 	u32 dp_cap, rate, lanes;
1301 
1302 	in = tunnel->src_port;
1303 	out = tunnel->dst_port;
1304 
1305 	if (tb_port_read(in, &dp_cap, TB_CFG_PORT,
1306 			 in->cap_adap + DP_LOCAL_CAP, 1))
1307 		return;
1308 
1309 	rate = tb_dp_cap_get_rate(dp_cap);
1310 	lanes = tb_dp_cap_get_lanes(dp_cap);
1311 
1312 	tb_tunnel_dbg(tunnel,
1313 		      "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n",
1314 		      rate, lanes, tb_dp_bandwidth(rate, lanes));
1315 
1316 	out = tunnel->dst_port;
1317 
1318 	if (tb_port_read(out, &dp_cap, TB_CFG_PORT,
1319 			 out->cap_adap + DP_LOCAL_CAP, 1))
1320 		return;
1321 
1322 	rate = tb_dp_cap_get_rate(dp_cap);
1323 	lanes = tb_dp_cap_get_lanes(dp_cap);
1324 
1325 	tb_tunnel_dbg(tunnel,
1326 		      "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n",
1327 		      rate, lanes, tb_dp_bandwidth(rate, lanes));
1328 
1329 	if (tb_port_read(in, &dp_cap, TB_CFG_PORT,
1330 			 in->cap_adap + DP_REMOTE_CAP, 1))
1331 		return;
1332 
1333 	rate = tb_dp_cap_get_rate(dp_cap);
1334 	lanes = tb_dp_cap_get_lanes(dp_cap);
1335 
1336 	tb_tunnel_dbg(tunnel, "reduced bandwidth %u Mb/s x%u = %u Mb/s\n",
1337 		      rate, lanes, tb_dp_bandwidth(rate, lanes));
1338 }
1339 
1340 /**
1341  * tb_tunnel_discover_dp() - Discover existing Display Port tunnels
1342  * @tb: Pointer to the domain structure
1343  * @in: DP in adapter
1344  * @alloc_hopid: Allocate HopIDs from visited ports
1345  *
1346  * If @in adapter is active, follows the tunnel to the DP out adapter
1347  * and back. Returns the discovered tunnel or %NULL if there was no
1348  * tunnel.
1349  *
1350  * Return: DP tunnel or %NULL if no tunnel found.
1351  */
1352 struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in,
1353 					bool alloc_hopid)
1354 {
1355 	struct tb_tunnel *tunnel;
1356 	struct tb_port *port;
1357 	struct tb_path *path;
1358 
1359 	if (!tb_dp_port_is_enabled(in))
1360 		return NULL;
1361 
1362 	tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP);
1363 	if (!tunnel)
1364 		return NULL;
1365 
1366 	tunnel->init = tb_dp_init;
1367 	tunnel->deinit = tb_dp_deinit;
1368 	tunnel->activate = tb_dp_activate;
1369 	tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth;
1370 	tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth;
1371 	tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth;
1372 	tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth;
1373 	tunnel->src_port = in;
1374 
1375 	path = tb_path_discover(in, TB_DP_VIDEO_HOPID, NULL, -1,
1376 				&tunnel->dst_port, "Video", alloc_hopid);
1377 	if (!path) {
1378 		/* Just disable the DP IN port */
1379 		tb_dp_port_enable(in, false);
1380 		goto err_free;
1381 	}
1382 	tunnel->paths[TB_DP_VIDEO_PATH_OUT] = path;
1383 	if (tb_dp_init_video_path(tunnel->paths[TB_DP_VIDEO_PATH_OUT], false))
1384 		goto err_free;
1385 
1386 	path = tb_path_discover(in, TB_DP_AUX_TX_HOPID, NULL, -1, NULL, "AUX TX",
1387 				alloc_hopid);
1388 	if (!path)
1389 		goto err_deactivate;
1390 	tunnel->paths[TB_DP_AUX_PATH_OUT] = path;
1391 	tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_OUT], false);
1392 
1393 	path = tb_path_discover(tunnel->dst_port, -1, in, TB_DP_AUX_RX_HOPID,
1394 				&port, "AUX RX", alloc_hopid);
1395 	if (!path)
1396 		goto err_deactivate;
1397 	tunnel->paths[TB_DP_AUX_PATH_IN] = path;
1398 	tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_IN], false);
1399 
1400 	/* Validate that the tunnel is complete */
1401 	if (!tb_port_is_dpout(tunnel->dst_port)) {
1402 		tb_port_warn(in, "path does not end on a DP adapter, cleaning up\n");
1403 		goto err_deactivate;
1404 	}
1405 
1406 	if (!tb_dp_port_is_enabled(tunnel->dst_port))
1407 		goto err_deactivate;
1408 
1409 	if (!tb_dp_port_hpd_is_active(tunnel->dst_port))
1410 		goto err_deactivate;
1411 
1412 	if (port != tunnel->src_port) {
1413 		tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n");
1414 		goto err_deactivate;
1415 	}
1416 
1417 	tb_dp_dump(tunnel);
1418 
1419 	tb_tunnel_dbg(tunnel, "discovered\n");
1420 	return tunnel;
1421 
1422 err_deactivate:
1423 	tb_tunnel_deactivate(tunnel);
1424 err_free:
1425 	tb_tunnel_free(tunnel);
1426 
1427 	return NULL;
1428 }
1429 
1430 /**
1431  * tb_tunnel_alloc_dp() - allocate a Display Port tunnel
1432  * @tb: Pointer to the domain structure
1433  * @in: DP in adapter port
1434  * @out: DP out adapter port
1435  * @link_nr: Preferred lane adapter when the link is not bonded
1436  * @max_up: Maximum available upstream bandwidth for the DP tunnel (%0
1437  *	    if not limited)
1438  * @max_down: Maximum available downstream bandwidth for the DP tunnel
1439  *	      (%0 if not limited)
1440  *
1441  * Allocates a tunnel between @in and @out that is capable of tunneling
1442  * Display Port traffic.
1443  *
1444  * Return: Returns a tb_tunnel on success or NULL on failure.
1445  */
1446 struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in,
1447 				     struct tb_port *out, int link_nr,
1448 				     int max_up, int max_down)
1449 {
1450 	struct tb_tunnel *tunnel;
1451 	struct tb_path **paths;
1452 	struct tb_path *path;
1453 	bool pm_support;
1454 
1455 	if (WARN_ON(!in->cap_adap || !out->cap_adap))
1456 		return NULL;
1457 
1458 	tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP);
1459 	if (!tunnel)
1460 		return NULL;
1461 
1462 	tunnel->init = tb_dp_init;
1463 	tunnel->deinit = tb_dp_deinit;
1464 	tunnel->activate = tb_dp_activate;
1465 	tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth;
1466 	tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth;
1467 	tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth;
1468 	tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth;
1469 	tunnel->src_port = in;
1470 	tunnel->dst_port = out;
1471 	tunnel->max_up = max_up;
1472 	tunnel->max_down = max_down;
1473 
1474 	paths = tunnel->paths;
1475 	pm_support = usb4_switch_version(in->sw) >= 2;
1476 
1477 	path = tb_path_alloc(tb, in, TB_DP_VIDEO_HOPID, out, TB_DP_VIDEO_HOPID,
1478 			     link_nr, "Video");
1479 	if (!path)
1480 		goto err_free;
1481 	tb_dp_init_video_path(path, pm_support);
1482 	paths[TB_DP_VIDEO_PATH_OUT] = path;
1483 
1484 	path = tb_path_alloc(tb, in, TB_DP_AUX_TX_HOPID, out,
1485 			     TB_DP_AUX_TX_HOPID, link_nr, "AUX TX");
1486 	if (!path)
1487 		goto err_free;
1488 	tb_dp_init_aux_path(path, pm_support);
1489 	paths[TB_DP_AUX_PATH_OUT] = path;
1490 
1491 	path = tb_path_alloc(tb, out, TB_DP_AUX_RX_HOPID, in,
1492 			     TB_DP_AUX_RX_HOPID, link_nr, "AUX RX");
1493 	if (!path)
1494 		goto err_free;
1495 	tb_dp_init_aux_path(path, pm_support);
1496 	paths[TB_DP_AUX_PATH_IN] = path;
1497 
1498 	return tunnel;
1499 
1500 err_free:
1501 	tb_tunnel_free(tunnel);
1502 	return NULL;
1503 }
1504 
1505 static unsigned int tb_dma_available_credits(const struct tb_port *port)
1506 {
1507 	const struct tb_switch *sw = port->sw;
1508 	int credits;
1509 
1510 	credits = tb_available_credits(port, NULL);
1511 	if (tb_acpi_may_tunnel_pcie())
1512 		credits -= sw->max_pcie_credits;
1513 	credits -= port->dma_credits;
1514 
1515 	return credits > 0 ? credits : 0;
1516 }
1517 
1518 static int tb_dma_reserve_credits(struct tb_path_hop *hop, unsigned int credits)
1519 {
1520 	struct tb_port *port = hop->in_port;
1521 
1522 	if (tb_port_use_credit_allocation(port)) {
1523 		unsigned int available = tb_dma_available_credits(port);
1524 
1525 		/*
1526 		 * Need to have at least TB_MIN_DMA_CREDITS, otherwise
1527 		 * DMA path cannot be established.
1528 		 */
1529 		if (available < TB_MIN_DMA_CREDITS)
1530 			return -ENOSPC;
1531 
1532 		while (credits > available)
1533 			credits--;
1534 
1535 		tb_port_dbg(port, "reserving %u credits for DMA path\n",
1536 			    credits);
1537 
1538 		port->dma_credits += credits;
1539 	} else {
1540 		if (tb_port_is_null(port))
1541 			credits = port->bonded ? 14 : 6;
1542 		else
1543 			credits = min(port->total_credits, credits);
1544 	}
1545 
1546 	hop->initial_credits = credits;
1547 	return 0;
1548 }
1549 
1550 /* Path from lane adapter to NHI */
1551 static int tb_dma_init_rx_path(struct tb_path *path, unsigned int credits)
1552 {
1553 	struct tb_path_hop *hop;
1554 	unsigned int i, tmp;
1555 
1556 	path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
1557 	path->ingress_fc_enable = TB_PATH_ALL;
1558 	path->egress_shared_buffer = TB_PATH_NONE;
1559 	path->ingress_shared_buffer = TB_PATH_NONE;
1560 	path->priority = TB_DMA_PRIORITY;
1561 	path->weight = TB_DMA_WEIGHT;
1562 	path->clear_fc = true;
1563 
1564 	/*
1565 	 * First lane adapter is the one connected to the remote host.
1566 	 * We don't tunnel other traffic over this link so can use all
1567 	 * the credits (except the ones reserved for control traffic).
1568 	 */
1569 	hop = &path->hops[0];
1570 	tmp = min(tb_usable_credits(hop->in_port), credits);
1571 	hop->initial_credits = tmp;
1572 	hop->in_port->dma_credits += tmp;
1573 
1574 	for (i = 1; i < path->path_length; i++) {
1575 		int ret;
1576 
1577 		ret = tb_dma_reserve_credits(&path->hops[i], credits);
1578 		if (ret)
1579 			return ret;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /* Path from NHI to lane adapter */
1586 static int tb_dma_init_tx_path(struct tb_path *path, unsigned int credits)
1587 {
1588 	struct tb_path_hop *hop;
1589 
1590 	path->egress_fc_enable = TB_PATH_ALL;
1591 	path->ingress_fc_enable = TB_PATH_ALL;
1592 	path->egress_shared_buffer = TB_PATH_NONE;
1593 	path->ingress_shared_buffer = TB_PATH_NONE;
1594 	path->priority = TB_DMA_PRIORITY;
1595 	path->weight = TB_DMA_WEIGHT;
1596 	path->clear_fc = true;
1597 
1598 	tb_path_for_each_hop(path, hop) {
1599 		int ret;
1600 
1601 		ret = tb_dma_reserve_credits(hop, credits);
1602 		if (ret)
1603 			return ret;
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 static void tb_dma_release_credits(struct tb_path_hop *hop)
1610 {
1611 	struct tb_port *port = hop->in_port;
1612 
1613 	if (tb_port_use_credit_allocation(port)) {
1614 		port->dma_credits -= hop->initial_credits;
1615 
1616 		tb_port_dbg(port, "released %u DMA path credits\n",
1617 			    hop->initial_credits);
1618 	}
1619 }
1620 
1621 static void tb_dma_deinit_path(struct tb_path *path)
1622 {
1623 	struct tb_path_hop *hop;
1624 
1625 	tb_path_for_each_hop(path, hop)
1626 		tb_dma_release_credits(hop);
1627 }
1628 
1629 static void tb_dma_deinit(struct tb_tunnel *tunnel)
1630 {
1631 	int i;
1632 
1633 	for (i = 0; i < tunnel->npaths; i++) {
1634 		if (!tunnel->paths[i])
1635 			continue;
1636 		tb_dma_deinit_path(tunnel->paths[i]);
1637 	}
1638 }
1639 
1640 /**
1641  * tb_tunnel_alloc_dma() - allocate a DMA tunnel
1642  * @tb: Pointer to the domain structure
1643  * @nhi: Host controller port
1644  * @dst: Destination null port which the other domain is connected to
1645  * @transmit_path: HopID used for transmitting packets
1646  * @transmit_ring: NHI ring number used to send packets towards the
1647  *		   other domain. Set to %-1 if TX path is not needed.
1648  * @receive_path: HopID used for receiving packets
1649  * @receive_ring: NHI ring number used to receive packets from the
1650  *		  other domain. Set to %-1 if RX path is not needed.
1651  *
1652  * Return: Returns a tb_tunnel on success or NULL on failure.
1653  */
1654 struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi,
1655 				      struct tb_port *dst, int transmit_path,
1656 				      int transmit_ring, int receive_path,
1657 				      int receive_ring)
1658 {
1659 	struct tb_tunnel *tunnel;
1660 	size_t npaths = 0, i = 0;
1661 	struct tb_path *path;
1662 	int credits;
1663 
1664 	/* Ring 0 is reserved for control channel */
1665 	if (WARN_ON(!receive_ring || !transmit_ring))
1666 		return NULL;
1667 
1668 	if (receive_ring > 0)
1669 		npaths++;
1670 	if (transmit_ring > 0)
1671 		npaths++;
1672 
1673 	if (WARN_ON(!npaths))
1674 		return NULL;
1675 
1676 	tunnel = tb_tunnel_alloc(tb, npaths, TB_TUNNEL_DMA);
1677 	if (!tunnel)
1678 		return NULL;
1679 
1680 	tunnel->src_port = nhi;
1681 	tunnel->dst_port = dst;
1682 	tunnel->deinit = tb_dma_deinit;
1683 
1684 	credits = min_not_zero(dma_credits, nhi->sw->max_dma_credits);
1685 
1686 	if (receive_ring > 0) {
1687 		path = tb_path_alloc(tb, dst, receive_path, nhi, receive_ring, 0,
1688 				     "DMA RX");
1689 		if (!path)
1690 			goto err_free;
1691 		tunnel->paths[i++] = path;
1692 		if (tb_dma_init_rx_path(path, credits)) {
1693 			tb_tunnel_dbg(tunnel, "not enough buffers for RX path\n");
1694 			goto err_free;
1695 		}
1696 	}
1697 
1698 	if (transmit_ring > 0) {
1699 		path = tb_path_alloc(tb, nhi, transmit_ring, dst, transmit_path, 0,
1700 				     "DMA TX");
1701 		if (!path)
1702 			goto err_free;
1703 		tunnel->paths[i++] = path;
1704 		if (tb_dma_init_tx_path(path, credits)) {
1705 			tb_tunnel_dbg(tunnel, "not enough buffers for TX path\n");
1706 			goto err_free;
1707 		}
1708 	}
1709 
1710 	return tunnel;
1711 
1712 err_free:
1713 	tb_tunnel_free(tunnel);
1714 	return NULL;
1715 }
1716 
1717 /**
1718  * tb_tunnel_match_dma() - Match DMA tunnel
1719  * @tunnel: Tunnel to match
1720  * @transmit_path: HopID used for transmitting packets. Pass %-1 to ignore.
1721  * @transmit_ring: NHI ring number used to send packets towards the
1722  *		   other domain. Pass %-1 to ignore.
1723  * @receive_path: HopID used for receiving packets. Pass %-1 to ignore.
1724  * @receive_ring: NHI ring number used to receive packets from the
1725  *		  other domain. Pass %-1 to ignore.
1726  *
1727  * This function can be used to match specific DMA tunnel, if there are
1728  * multiple DMA tunnels going through the same XDomain connection.
1729  * Returns true if there is match and false otherwise.
1730  */
1731 bool tb_tunnel_match_dma(const struct tb_tunnel *tunnel, int transmit_path,
1732 			 int transmit_ring, int receive_path, int receive_ring)
1733 {
1734 	const struct tb_path *tx_path = NULL, *rx_path = NULL;
1735 	int i;
1736 
1737 	if (!receive_ring || !transmit_ring)
1738 		return false;
1739 
1740 	for (i = 0; i < tunnel->npaths; i++) {
1741 		const struct tb_path *path = tunnel->paths[i];
1742 
1743 		if (!path)
1744 			continue;
1745 
1746 		if (tb_port_is_nhi(path->hops[0].in_port))
1747 			tx_path = path;
1748 		else if (tb_port_is_nhi(path->hops[path->path_length - 1].out_port))
1749 			rx_path = path;
1750 	}
1751 
1752 	if (transmit_ring > 0 || transmit_path > 0) {
1753 		if (!tx_path)
1754 			return false;
1755 		if (transmit_ring > 0 &&
1756 		    (tx_path->hops[0].in_hop_index != transmit_ring))
1757 			return false;
1758 		if (transmit_path > 0 &&
1759 		    (tx_path->hops[tx_path->path_length - 1].next_hop_index != transmit_path))
1760 			return false;
1761 	}
1762 
1763 	if (receive_ring > 0 || receive_path > 0) {
1764 		if (!rx_path)
1765 			return false;
1766 		if (receive_path > 0 &&
1767 		    (rx_path->hops[0].in_hop_index != receive_path))
1768 			return false;
1769 		if (receive_ring > 0 &&
1770 		    (rx_path->hops[rx_path->path_length - 1].next_hop_index != receive_ring))
1771 			return false;
1772 	}
1773 
1774 	return true;
1775 }
1776 
1777 static int tb_usb3_max_link_rate(struct tb_port *up, struct tb_port *down)
1778 {
1779 	int ret, up_max_rate, down_max_rate;
1780 
1781 	ret = usb4_usb3_port_max_link_rate(up);
1782 	if (ret < 0)
1783 		return ret;
1784 	up_max_rate = ret;
1785 
1786 	ret = usb4_usb3_port_max_link_rate(down);
1787 	if (ret < 0)
1788 		return ret;
1789 	down_max_rate = ret;
1790 
1791 	return min(up_max_rate, down_max_rate);
1792 }
1793 
1794 static int tb_usb3_init(struct tb_tunnel *tunnel)
1795 {
1796 	tb_tunnel_dbg(tunnel, "allocating initial bandwidth %d/%d Mb/s\n",
1797 		      tunnel->allocated_up, tunnel->allocated_down);
1798 
1799 	return usb4_usb3_port_allocate_bandwidth(tunnel->src_port,
1800 						 &tunnel->allocated_up,
1801 						 &tunnel->allocated_down);
1802 }
1803 
1804 static int tb_usb3_activate(struct tb_tunnel *tunnel, bool activate)
1805 {
1806 	int res;
1807 
1808 	res = tb_usb3_port_enable(tunnel->src_port, activate);
1809 	if (res)
1810 		return res;
1811 
1812 	if (tb_port_is_usb3_up(tunnel->dst_port))
1813 		return tb_usb3_port_enable(tunnel->dst_port, activate);
1814 
1815 	return 0;
1816 }
1817 
1818 static int tb_usb3_consumed_bandwidth(struct tb_tunnel *tunnel,
1819 		int *consumed_up, int *consumed_down)
1820 {
1821 	struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw);
1822 	int pcie_weight = tb_acpi_may_tunnel_pcie() ? TB_PCI_WEIGHT : 0;
1823 
1824 	/*
1825 	 * PCIe tunneling, if enabled, affects the USB3 bandwidth so
1826 	 * take that it into account here.
1827 	 */
1828 	*consumed_up = tunnel->allocated_up *
1829 		(TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT;
1830 	*consumed_down = tunnel->allocated_down *
1831 		(TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT;
1832 
1833 	if (tb_port_get_link_generation(port) >= 4) {
1834 		*consumed_up = max(*consumed_up, USB4_V2_USB3_MIN_BANDWIDTH);
1835 		*consumed_down = max(*consumed_down, USB4_V2_USB3_MIN_BANDWIDTH);
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 static int tb_usb3_release_unused_bandwidth(struct tb_tunnel *tunnel)
1842 {
1843 	int ret;
1844 
1845 	ret = usb4_usb3_port_release_bandwidth(tunnel->src_port,
1846 					       &tunnel->allocated_up,
1847 					       &tunnel->allocated_down);
1848 	if (ret)
1849 		return ret;
1850 
1851 	tb_tunnel_dbg(tunnel, "decreased bandwidth allocation to %d/%d Mb/s\n",
1852 		      tunnel->allocated_up, tunnel->allocated_down);
1853 	return 0;
1854 }
1855 
1856 static void tb_usb3_reclaim_available_bandwidth(struct tb_tunnel *tunnel,
1857 						int *available_up,
1858 						int *available_down)
1859 {
1860 	int ret, max_rate, allocate_up, allocate_down;
1861 
1862 	ret = tb_usb3_max_link_rate(tunnel->dst_port, tunnel->src_port);
1863 	if (ret < 0) {
1864 		tb_tunnel_warn(tunnel, "failed to read maximum link rate\n");
1865 		return;
1866 	}
1867 
1868 	/*
1869 	 * 90% of the max rate can be allocated for isochronous
1870 	 * transfers.
1871 	 */
1872 	max_rate = ret * 90 / 100;
1873 
1874 	/* No need to reclaim if already at maximum */
1875 	if (tunnel->allocated_up >= max_rate &&
1876 	    tunnel->allocated_down >= max_rate)
1877 		return;
1878 
1879 	/* Don't go lower than what is already allocated */
1880 	allocate_up = min(max_rate, *available_up);
1881 	if (allocate_up < tunnel->allocated_up)
1882 		allocate_up = tunnel->allocated_up;
1883 
1884 	allocate_down = min(max_rate, *available_down);
1885 	if (allocate_down < tunnel->allocated_down)
1886 		allocate_down = tunnel->allocated_down;
1887 
1888 	/* If no changes no need to do more */
1889 	if (allocate_up == tunnel->allocated_up &&
1890 	    allocate_down == tunnel->allocated_down)
1891 		return;
1892 
1893 	ret = usb4_usb3_port_allocate_bandwidth(tunnel->src_port, &allocate_up,
1894 						&allocate_down);
1895 	if (ret) {
1896 		tb_tunnel_info(tunnel, "failed to allocate bandwidth\n");
1897 		return;
1898 	}
1899 
1900 	tunnel->allocated_up = allocate_up;
1901 	*available_up -= tunnel->allocated_up;
1902 
1903 	tunnel->allocated_down = allocate_down;
1904 	*available_down -= tunnel->allocated_down;
1905 
1906 	tb_tunnel_dbg(tunnel, "increased bandwidth allocation to %d/%d Mb/s\n",
1907 		      tunnel->allocated_up, tunnel->allocated_down);
1908 }
1909 
1910 static void tb_usb3_init_credits(struct tb_path_hop *hop)
1911 {
1912 	struct tb_port *port = hop->in_port;
1913 	struct tb_switch *sw = port->sw;
1914 	unsigned int credits;
1915 
1916 	if (tb_port_use_credit_allocation(port)) {
1917 		credits = sw->max_usb3_credits;
1918 	} else {
1919 		if (tb_port_is_null(port))
1920 			credits = port->bonded ? 32 : 16;
1921 		else
1922 			credits = 7;
1923 	}
1924 
1925 	hop->initial_credits = credits;
1926 }
1927 
1928 static void tb_usb3_init_path(struct tb_path *path)
1929 {
1930 	struct tb_path_hop *hop;
1931 
1932 	path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
1933 	path->egress_shared_buffer = TB_PATH_NONE;
1934 	path->ingress_fc_enable = TB_PATH_ALL;
1935 	path->ingress_shared_buffer = TB_PATH_NONE;
1936 	path->priority = TB_USB3_PRIORITY;
1937 	path->weight = TB_USB3_WEIGHT;
1938 	path->drop_packages = 0;
1939 
1940 	tb_path_for_each_hop(path, hop)
1941 		tb_usb3_init_credits(hop);
1942 }
1943 
1944 /**
1945  * tb_tunnel_discover_usb3() - Discover existing USB3 tunnels
1946  * @tb: Pointer to the domain structure
1947  * @down: USB3 downstream adapter
1948  * @alloc_hopid: Allocate HopIDs from visited ports
1949  *
1950  * If @down adapter is active, follows the tunnel to the USB3 upstream
1951  * adapter and back. Returns the discovered tunnel or %NULL if there was
1952  * no tunnel.
1953  */
1954 struct tb_tunnel *tb_tunnel_discover_usb3(struct tb *tb, struct tb_port *down,
1955 					  bool alloc_hopid)
1956 {
1957 	struct tb_tunnel *tunnel;
1958 	struct tb_path *path;
1959 
1960 	if (!tb_usb3_port_is_enabled(down))
1961 		return NULL;
1962 
1963 	tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3);
1964 	if (!tunnel)
1965 		return NULL;
1966 
1967 	tunnel->activate = tb_usb3_activate;
1968 	tunnel->src_port = down;
1969 
1970 	/*
1971 	 * Discover both paths even if they are not complete. We will
1972 	 * clean them up by calling tb_tunnel_deactivate() below in that
1973 	 * case.
1974 	 */
1975 	path = tb_path_discover(down, TB_USB3_HOPID, NULL, -1,
1976 				&tunnel->dst_port, "USB3 Down", alloc_hopid);
1977 	if (!path) {
1978 		/* Just disable the downstream port */
1979 		tb_usb3_port_enable(down, false);
1980 		goto err_free;
1981 	}
1982 	tunnel->paths[TB_USB3_PATH_DOWN] = path;
1983 	tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_DOWN]);
1984 
1985 	path = tb_path_discover(tunnel->dst_port, -1, down, TB_USB3_HOPID, NULL,
1986 				"USB3 Up", alloc_hopid);
1987 	if (!path)
1988 		goto err_deactivate;
1989 	tunnel->paths[TB_USB3_PATH_UP] = path;
1990 	tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_UP]);
1991 
1992 	/* Validate that the tunnel is complete */
1993 	if (!tb_port_is_usb3_up(tunnel->dst_port)) {
1994 		tb_port_warn(tunnel->dst_port,
1995 			     "path does not end on an USB3 adapter, cleaning up\n");
1996 		goto err_deactivate;
1997 	}
1998 
1999 	if (down != tunnel->src_port) {
2000 		tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n");
2001 		goto err_deactivate;
2002 	}
2003 
2004 	if (!tb_usb3_port_is_enabled(tunnel->dst_port)) {
2005 		tb_tunnel_warn(tunnel,
2006 			       "tunnel is not fully activated, cleaning up\n");
2007 		goto err_deactivate;
2008 	}
2009 
2010 	if (!tb_route(down->sw)) {
2011 		int ret;
2012 
2013 		/*
2014 		 * Read the initial bandwidth allocation for the first
2015 		 * hop tunnel.
2016 		 */
2017 		ret = usb4_usb3_port_allocated_bandwidth(down,
2018 			&tunnel->allocated_up, &tunnel->allocated_down);
2019 		if (ret)
2020 			goto err_deactivate;
2021 
2022 		tb_tunnel_dbg(tunnel, "currently allocated bandwidth %d/%d Mb/s\n",
2023 			      tunnel->allocated_up, tunnel->allocated_down);
2024 
2025 		tunnel->init = tb_usb3_init;
2026 		tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth;
2027 		tunnel->release_unused_bandwidth =
2028 			tb_usb3_release_unused_bandwidth;
2029 		tunnel->reclaim_available_bandwidth =
2030 			tb_usb3_reclaim_available_bandwidth;
2031 	}
2032 
2033 	tb_tunnel_dbg(tunnel, "discovered\n");
2034 	return tunnel;
2035 
2036 err_deactivate:
2037 	tb_tunnel_deactivate(tunnel);
2038 err_free:
2039 	tb_tunnel_free(tunnel);
2040 
2041 	return NULL;
2042 }
2043 
2044 /**
2045  * tb_tunnel_alloc_usb3() - allocate a USB3 tunnel
2046  * @tb: Pointer to the domain structure
2047  * @up: USB3 upstream adapter port
2048  * @down: USB3 downstream adapter port
2049  * @max_up: Maximum available upstream bandwidth for the USB3 tunnel (%0
2050  *	    if not limited).
2051  * @max_down: Maximum available downstream bandwidth for the USB3 tunnel
2052  *	      (%0 if not limited).
2053  *
2054  * Allocate an USB3 tunnel. The ports must be of type @TB_TYPE_USB3_UP and
2055  * @TB_TYPE_USB3_DOWN.
2056  *
2057  * Return: Returns a tb_tunnel on success or %NULL on failure.
2058  */
2059 struct tb_tunnel *tb_tunnel_alloc_usb3(struct tb *tb, struct tb_port *up,
2060 				       struct tb_port *down, int max_up,
2061 				       int max_down)
2062 {
2063 	struct tb_tunnel *tunnel;
2064 	struct tb_path *path;
2065 	int max_rate = 0;
2066 
2067 	/*
2068 	 * Check that we have enough bandwidth available for the new
2069 	 * USB3 tunnel.
2070 	 */
2071 	if (max_up > 0 || max_down > 0) {
2072 		max_rate = tb_usb3_max_link_rate(down, up);
2073 		if (max_rate < 0)
2074 			return NULL;
2075 
2076 		/* Only 90% can be allocated for USB3 isochronous transfers */
2077 		max_rate = max_rate * 90 / 100;
2078 		tb_port_dbg(up, "required bandwidth for USB3 tunnel %d Mb/s\n",
2079 			    max_rate);
2080 
2081 		if (max_rate > max_up || max_rate > max_down) {
2082 			tb_port_warn(up, "not enough bandwidth for USB3 tunnel\n");
2083 			return NULL;
2084 		}
2085 	}
2086 
2087 	tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3);
2088 	if (!tunnel)
2089 		return NULL;
2090 
2091 	tunnel->activate = tb_usb3_activate;
2092 	tunnel->src_port = down;
2093 	tunnel->dst_port = up;
2094 	tunnel->max_up = max_up;
2095 	tunnel->max_down = max_down;
2096 
2097 	path = tb_path_alloc(tb, down, TB_USB3_HOPID, up, TB_USB3_HOPID, 0,
2098 			     "USB3 Down");
2099 	if (!path) {
2100 		tb_tunnel_free(tunnel);
2101 		return NULL;
2102 	}
2103 	tb_usb3_init_path(path);
2104 	tunnel->paths[TB_USB3_PATH_DOWN] = path;
2105 
2106 	path = tb_path_alloc(tb, up, TB_USB3_HOPID, down, TB_USB3_HOPID, 0,
2107 			     "USB3 Up");
2108 	if (!path) {
2109 		tb_tunnel_free(tunnel);
2110 		return NULL;
2111 	}
2112 	tb_usb3_init_path(path);
2113 	tunnel->paths[TB_USB3_PATH_UP] = path;
2114 
2115 	if (!tb_route(down->sw)) {
2116 		tunnel->allocated_up = max_rate;
2117 		tunnel->allocated_down = max_rate;
2118 
2119 		tunnel->init = tb_usb3_init;
2120 		tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth;
2121 		tunnel->release_unused_bandwidth =
2122 			tb_usb3_release_unused_bandwidth;
2123 		tunnel->reclaim_available_bandwidth =
2124 			tb_usb3_reclaim_available_bandwidth;
2125 	}
2126 
2127 	return tunnel;
2128 }
2129 
2130 /**
2131  * tb_tunnel_free() - free a tunnel
2132  * @tunnel: Tunnel to be freed
2133  *
2134  * Frees a tunnel. The tunnel does not need to be deactivated.
2135  */
2136 void tb_tunnel_free(struct tb_tunnel *tunnel)
2137 {
2138 	int i;
2139 
2140 	if (!tunnel)
2141 		return;
2142 
2143 	if (tunnel->deinit)
2144 		tunnel->deinit(tunnel);
2145 
2146 	for (i = 0; i < tunnel->npaths; i++) {
2147 		if (tunnel->paths[i])
2148 			tb_path_free(tunnel->paths[i]);
2149 	}
2150 
2151 	kfree(tunnel->paths);
2152 	kfree(tunnel);
2153 }
2154 
2155 /**
2156  * tb_tunnel_is_invalid - check whether an activated path is still valid
2157  * @tunnel: Tunnel to check
2158  */
2159 bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel)
2160 {
2161 	int i;
2162 
2163 	for (i = 0; i < tunnel->npaths; i++) {
2164 		WARN_ON(!tunnel->paths[i]->activated);
2165 		if (tb_path_is_invalid(tunnel->paths[i]))
2166 			return true;
2167 	}
2168 
2169 	return false;
2170 }
2171 
2172 /**
2173  * tb_tunnel_restart() - activate a tunnel after a hardware reset
2174  * @tunnel: Tunnel to restart
2175  *
2176  * Return: 0 on success and negative errno in case if failure
2177  */
2178 int tb_tunnel_restart(struct tb_tunnel *tunnel)
2179 {
2180 	int res, i;
2181 
2182 	tb_tunnel_dbg(tunnel, "activating\n");
2183 
2184 	/*
2185 	 * Make sure all paths are properly disabled before enabling
2186 	 * them again.
2187 	 */
2188 	for (i = 0; i < tunnel->npaths; i++) {
2189 		if (tunnel->paths[i]->activated) {
2190 			tb_path_deactivate(tunnel->paths[i]);
2191 			tunnel->paths[i]->activated = false;
2192 		}
2193 	}
2194 
2195 	if (tunnel->init) {
2196 		res = tunnel->init(tunnel);
2197 		if (res)
2198 			return res;
2199 	}
2200 
2201 	for (i = 0; i < tunnel->npaths; i++) {
2202 		res = tb_path_activate(tunnel->paths[i]);
2203 		if (res)
2204 			goto err;
2205 	}
2206 
2207 	if (tunnel->activate) {
2208 		res = tunnel->activate(tunnel, true);
2209 		if (res)
2210 			goto err;
2211 	}
2212 
2213 	return 0;
2214 
2215 err:
2216 	tb_tunnel_warn(tunnel, "activation failed\n");
2217 	tb_tunnel_deactivate(tunnel);
2218 	return res;
2219 }
2220 
2221 /**
2222  * tb_tunnel_activate() - activate a tunnel
2223  * @tunnel: Tunnel to activate
2224  *
2225  * Return: Returns 0 on success or an error code on failure.
2226  */
2227 int tb_tunnel_activate(struct tb_tunnel *tunnel)
2228 {
2229 	int i;
2230 
2231 	for (i = 0; i < tunnel->npaths; i++) {
2232 		if (tunnel->paths[i]->activated) {
2233 			tb_tunnel_WARN(tunnel,
2234 				       "trying to activate an already activated tunnel\n");
2235 			return -EINVAL;
2236 		}
2237 	}
2238 
2239 	return tb_tunnel_restart(tunnel);
2240 }
2241 
2242 /**
2243  * tb_tunnel_deactivate() - deactivate a tunnel
2244  * @tunnel: Tunnel to deactivate
2245  */
2246 void tb_tunnel_deactivate(struct tb_tunnel *tunnel)
2247 {
2248 	int i;
2249 
2250 	tb_tunnel_dbg(tunnel, "deactivating\n");
2251 
2252 	if (tunnel->activate)
2253 		tunnel->activate(tunnel, false);
2254 
2255 	for (i = 0; i < tunnel->npaths; i++) {
2256 		if (tunnel->paths[i] && tunnel->paths[i]->activated)
2257 			tb_path_deactivate(tunnel->paths[i]);
2258 	}
2259 }
2260 
2261 /**
2262  * tb_tunnel_port_on_path() - Does the tunnel go through port
2263  * @tunnel: Tunnel to check
2264  * @port: Port to check
2265  *
2266  * Returns true if @tunnel goes through @port (direction does not matter),
2267  * false otherwise.
2268  */
2269 bool tb_tunnel_port_on_path(const struct tb_tunnel *tunnel,
2270 			    const struct tb_port *port)
2271 {
2272 	int i;
2273 
2274 	for (i = 0; i < tunnel->npaths; i++) {
2275 		if (!tunnel->paths[i])
2276 			continue;
2277 
2278 		if (tb_path_port_on_path(tunnel->paths[i], port))
2279 			return true;
2280 	}
2281 
2282 	return false;
2283 }
2284 
2285 static bool tb_tunnel_is_active(const struct tb_tunnel *tunnel)
2286 {
2287 	int i;
2288 
2289 	for (i = 0; i < tunnel->npaths; i++) {
2290 		if (!tunnel->paths[i])
2291 			return false;
2292 		if (!tunnel->paths[i]->activated)
2293 			return false;
2294 	}
2295 
2296 	return true;
2297 }
2298 
2299 /**
2300  * tb_tunnel_maximum_bandwidth() - Return maximum possible bandwidth
2301  * @tunnel: Tunnel to check
2302  * @max_up: Maximum upstream bandwidth in Mb/s
2303  * @max_down: Maximum downstream bandwidth in Mb/s
2304  *
2305  * Returns maximum possible bandwidth this tunnel can go if not limited
2306  * by other bandwidth clients. If the tunnel does not support this
2307  * returns %-EOPNOTSUPP.
2308  */
2309 int tb_tunnel_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up,
2310 				int *max_down)
2311 {
2312 	if (!tb_tunnel_is_active(tunnel))
2313 		return -EINVAL;
2314 
2315 	if (tunnel->maximum_bandwidth)
2316 		return tunnel->maximum_bandwidth(tunnel, max_up, max_down);
2317 	return -EOPNOTSUPP;
2318 }
2319 
2320 /**
2321  * tb_tunnel_allocated_bandwidth() - Return bandwidth allocated for the tunnel
2322  * @tunnel: Tunnel to check
2323  * @allocated_up: Currently allocated upstream bandwidth in Mb/s is stored here
2324  * @allocated_down: Currently allocated downstream bandwidth in Mb/s is
2325  *		    stored here
2326  *
2327  * Returns the bandwidth allocated for the tunnel. This may be higher
2328  * than what the tunnel actually consumes.
2329  */
2330 int tb_tunnel_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up,
2331 				  int *allocated_down)
2332 {
2333 	if (!tb_tunnel_is_active(tunnel))
2334 		return -EINVAL;
2335 
2336 	if (tunnel->allocated_bandwidth)
2337 		return tunnel->allocated_bandwidth(tunnel, allocated_up,
2338 						   allocated_down);
2339 	return -EOPNOTSUPP;
2340 }
2341 
2342 /**
2343  * tb_tunnel_alloc_bandwidth() - Change tunnel bandwidth allocation
2344  * @tunnel: Tunnel whose bandwidth allocation to change
2345  * @alloc_up: New upstream bandwidth in Mb/s
2346  * @alloc_down: New downstream bandwidth in Mb/s
2347  *
2348  * Tries to change tunnel bandwidth allocation. If succeeds returns %0
2349  * and updates @alloc_up and @alloc_down to that was actually allocated
2350  * (it may not be the same as passed originally). Returns negative errno
2351  * in case of failure.
2352  */
2353 int tb_tunnel_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up,
2354 			      int *alloc_down)
2355 {
2356 	if (!tb_tunnel_is_active(tunnel))
2357 		return -EINVAL;
2358 
2359 	if (tunnel->alloc_bandwidth)
2360 		return tunnel->alloc_bandwidth(tunnel, alloc_up, alloc_down);
2361 
2362 	return -EOPNOTSUPP;
2363 }
2364 
2365 /**
2366  * tb_tunnel_consumed_bandwidth() - Return bandwidth consumed by the tunnel
2367  * @tunnel: Tunnel to check
2368  * @consumed_up: Consumed bandwidth in Mb/s from @dst_port to @src_port.
2369  *		 Can be %NULL.
2370  * @consumed_down: Consumed bandwidth in Mb/s from @src_port to @dst_port.
2371  *		   Can be %NULL.
2372  *
2373  * Stores the amount of isochronous bandwidth @tunnel consumes in
2374  * @consumed_up and @consumed_down. In case of success returns %0,
2375  * negative errno otherwise.
2376  */
2377 int tb_tunnel_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up,
2378 				 int *consumed_down)
2379 {
2380 	int up_bw = 0, down_bw = 0;
2381 
2382 	if (!tb_tunnel_is_active(tunnel))
2383 		goto out;
2384 
2385 	if (tunnel->consumed_bandwidth) {
2386 		int ret;
2387 
2388 		ret = tunnel->consumed_bandwidth(tunnel, &up_bw, &down_bw);
2389 		if (ret)
2390 			return ret;
2391 
2392 		tb_tunnel_dbg(tunnel, "consumed bandwidth %d/%d Mb/s\n", up_bw,
2393 			      down_bw);
2394 	}
2395 
2396 out:
2397 	if (consumed_up)
2398 		*consumed_up = up_bw;
2399 	if (consumed_down)
2400 		*consumed_down = down_bw;
2401 
2402 	return 0;
2403 }
2404 
2405 /**
2406  * tb_tunnel_release_unused_bandwidth() - Release unused bandwidth
2407  * @tunnel: Tunnel whose unused bandwidth to release
2408  *
2409  * If tunnel supports dynamic bandwidth management (USB3 tunnels at the
2410  * moment) this function makes it to release all the unused bandwidth.
2411  *
2412  * Returns %0 in case of success and negative errno otherwise.
2413  */
2414 int tb_tunnel_release_unused_bandwidth(struct tb_tunnel *tunnel)
2415 {
2416 	if (!tb_tunnel_is_active(tunnel))
2417 		return 0;
2418 
2419 	if (tunnel->release_unused_bandwidth) {
2420 		int ret;
2421 
2422 		ret = tunnel->release_unused_bandwidth(tunnel);
2423 		if (ret)
2424 			return ret;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 /**
2431  * tb_tunnel_reclaim_available_bandwidth() - Reclaim available bandwidth
2432  * @tunnel: Tunnel reclaiming available bandwidth
2433  * @available_up: Available upstream bandwidth (in Mb/s)
2434  * @available_down: Available downstream bandwidth (in Mb/s)
2435  *
2436  * Reclaims bandwidth from @available_up and @available_down and updates
2437  * the variables accordingly (e.g decreases both according to what was
2438  * reclaimed by the tunnel). If nothing was reclaimed the values are
2439  * kept as is.
2440  */
2441 void tb_tunnel_reclaim_available_bandwidth(struct tb_tunnel *tunnel,
2442 					   int *available_up,
2443 					   int *available_down)
2444 {
2445 	if (!tb_tunnel_is_active(tunnel))
2446 		return;
2447 
2448 	if (tunnel->reclaim_available_bandwidth)
2449 		tunnel->reclaim_available_bandwidth(tunnel, available_up,
2450 						    available_down);
2451 }
2452 
2453 const char *tb_tunnel_type_name(const struct tb_tunnel *tunnel)
2454 {
2455 	return tb_tunnel_names[tunnel->type];
2456 }
2457