1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - Tunneling support 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/list.h> 12 #include <linux/ktime.h> 13 #include <linux/string_helpers.h> 14 15 #include "tunnel.h" 16 #include "tb.h" 17 18 /* PCIe adapters use always HopID of 8 for both directions */ 19 #define TB_PCI_HOPID 8 20 21 #define TB_PCI_PATH_DOWN 0 22 #define TB_PCI_PATH_UP 1 23 24 #define TB_PCI_PRIORITY 3 25 #define TB_PCI_WEIGHT 1 26 27 /* USB3 adapters use always HopID of 8 for both directions */ 28 #define TB_USB3_HOPID 8 29 30 #define TB_USB3_PATH_DOWN 0 31 #define TB_USB3_PATH_UP 1 32 33 #define TB_USB3_PRIORITY 3 34 #define TB_USB3_WEIGHT 2 35 36 /* DP adapters use HopID 8 for AUX and 9 for Video */ 37 #define TB_DP_AUX_TX_HOPID 8 38 #define TB_DP_AUX_RX_HOPID 8 39 #define TB_DP_VIDEO_HOPID 9 40 41 #define TB_DP_VIDEO_PATH_OUT 0 42 #define TB_DP_AUX_PATH_OUT 1 43 #define TB_DP_AUX_PATH_IN 2 44 45 #define TB_DP_VIDEO_PRIORITY 1 46 #define TB_DP_VIDEO_WEIGHT 1 47 48 #define TB_DP_AUX_PRIORITY 2 49 #define TB_DP_AUX_WEIGHT 1 50 51 /* Minimum number of credits needed for PCIe path */ 52 #define TB_MIN_PCIE_CREDITS 6U 53 /* 54 * Number of credits we try to allocate for each DMA path if not limited 55 * by the host router baMaxHI. 56 */ 57 #define TB_DMA_CREDITS 14 58 /* Minimum number of credits for DMA path */ 59 #define TB_MIN_DMA_CREDITS 1 60 61 #define TB_DMA_PRIORITY 5 62 #define TB_DMA_WEIGHT 1 63 64 /* 65 * Reserve additional bandwidth for USB 3.x and PCIe bulk traffic 66 * according to USB4 v2 Connection Manager guide. This ends up reserving 67 * 1500 Mb/s for PCIe and 3000 Mb/s for USB 3.x taking weights into 68 * account. 69 */ 70 #define USB4_V2_PCI_MIN_BANDWIDTH (1500 * TB_PCI_WEIGHT) 71 #define USB4_V2_USB3_MIN_BANDWIDTH (1500 * TB_USB3_WEIGHT) 72 73 static unsigned int dma_credits = TB_DMA_CREDITS; 74 module_param(dma_credits, uint, 0444); 75 MODULE_PARM_DESC(dma_credits, "specify custom credits for DMA tunnels (default: " 76 __MODULE_STRING(TB_DMA_CREDITS) ")"); 77 78 static bool bw_alloc_mode = true; 79 module_param(bw_alloc_mode, bool, 0444); 80 MODULE_PARM_DESC(bw_alloc_mode, 81 "enable bandwidth allocation mode if supported (default: true)"); 82 83 static const char * const tb_tunnel_names[] = { "PCI", "DP", "DMA", "USB3" }; 84 85 static inline unsigned int tb_usable_credits(const struct tb_port *port) 86 { 87 return port->total_credits - port->ctl_credits; 88 } 89 90 /** 91 * tb_available_credits() - Available credits for PCIe and DMA 92 * @port: Lane adapter to check 93 * @max_dp_streams: If non-%NULL stores maximum number of simultaneous DP 94 * streams possible through this lane adapter 95 */ 96 static unsigned int tb_available_credits(const struct tb_port *port, 97 size_t *max_dp_streams) 98 { 99 const struct tb_switch *sw = port->sw; 100 int credits, usb3, pcie, spare; 101 size_t ndp; 102 103 usb3 = tb_acpi_may_tunnel_usb3() ? sw->max_usb3_credits : 0; 104 pcie = tb_acpi_may_tunnel_pcie() ? sw->max_pcie_credits : 0; 105 106 if (tb_acpi_is_xdomain_allowed()) { 107 spare = min_not_zero(sw->max_dma_credits, dma_credits); 108 /* Add some credits for potential second DMA tunnel */ 109 spare += TB_MIN_DMA_CREDITS; 110 } else { 111 spare = 0; 112 } 113 114 credits = tb_usable_credits(port); 115 if (tb_acpi_may_tunnel_dp()) { 116 /* 117 * Maximum number of DP streams possible through the 118 * lane adapter. 119 */ 120 if (sw->min_dp_aux_credits + sw->min_dp_main_credits) 121 ndp = (credits - (usb3 + pcie + spare)) / 122 (sw->min_dp_aux_credits + sw->min_dp_main_credits); 123 else 124 ndp = 0; 125 } else { 126 ndp = 0; 127 } 128 credits -= ndp * (sw->min_dp_aux_credits + sw->min_dp_main_credits); 129 credits -= usb3; 130 131 if (max_dp_streams) 132 *max_dp_streams = ndp; 133 134 return credits > 0 ? credits : 0; 135 } 136 137 static void tb_init_pm_support(struct tb_path_hop *hop) 138 { 139 struct tb_port *out_port = hop->out_port; 140 struct tb_port *in_port = hop->in_port; 141 142 if (tb_port_is_null(in_port) && tb_port_is_null(out_port) && 143 usb4_switch_version(in_port->sw) >= 2) 144 hop->pm_support = true; 145 } 146 147 static struct tb_tunnel *tb_tunnel_alloc(struct tb *tb, size_t npaths, 148 enum tb_tunnel_type type) 149 { 150 struct tb_tunnel *tunnel; 151 152 tunnel = kzalloc(sizeof(*tunnel), GFP_KERNEL); 153 if (!tunnel) 154 return NULL; 155 156 tunnel->paths = kcalloc(npaths, sizeof(tunnel->paths[0]), GFP_KERNEL); 157 if (!tunnel->paths) { 158 tb_tunnel_free(tunnel); 159 return NULL; 160 } 161 162 INIT_LIST_HEAD(&tunnel->list); 163 tunnel->tb = tb; 164 tunnel->npaths = npaths; 165 tunnel->type = type; 166 167 return tunnel; 168 } 169 170 static int tb_pci_set_ext_encapsulation(struct tb_tunnel *tunnel, bool enable) 171 { 172 struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw); 173 int ret; 174 175 /* Only supported of both routers are at least USB4 v2 */ 176 if (tb_port_get_link_generation(port) < 4) 177 return 0; 178 179 ret = usb4_pci_port_set_ext_encapsulation(tunnel->src_port, enable); 180 if (ret) 181 return ret; 182 183 ret = usb4_pci_port_set_ext_encapsulation(tunnel->dst_port, enable); 184 if (ret) 185 return ret; 186 187 tb_tunnel_dbg(tunnel, "extended encapsulation %s\n", 188 str_enabled_disabled(enable)); 189 return 0; 190 } 191 192 static int tb_pci_activate(struct tb_tunnel *tunnel, bool activate) 193 { 194 int res; 195 196 if (activate) { 197 res = tb_pci_set_ext_encapsulation(tunnel, activate); 198 if (res) 199 return res; 200 } 201 202 res = tb_pci_port_enable(tunnel->src_port, activate); 203 if (res) 204 return res; 205 206 if (tb_port_is_pcie_up(tunnel->dst_port)) { 207 res = tb_pci_port_enable(tunnel->dst_port, activate); 208 if (res) 209 return res; 210 } 211 212 return activate ? 0 : tb_pci_set_ext_encapsulation(tunnel, activate); 213 } 214 215 static int tb_pci_init_credits(struct tb_path_hop *hop) 216 { 217 struct tb_port *port = hop->in_port; 218 struct tb_switch *sw = port->sw; 219 unsigned int credits; 220 221 if (tb_port_use_credit_allocation(port)) { 222 unsigned int available; 223 224 available = tb_available_credits(port, NULL); 225 credits = min(sw->max_pcie_credits, available); 226 227 if (credits < TB_MIN_PCIE_CREDITS) 228 return -ENOSPC; 229 230 credits = max(TB_MIN_PCIE_CREDITS, credits); 231 } else { 232 if (tb_port_is_null(port)) 233 credits = port->bonded ? 32 : 16; 234 else 235 credits = 7; 236 } 237 238 hop->initial_credits = credits; 239 return 0; 240 } 241 242 static int tb_pci_init_path(struct tb_path *path) 243 { 244 struct tb_path_hop *hop; 245 246 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 247 path->egress_shared_buffer = TB_PATH_NONE; 248 path->ingress_fc_enable = TB_PATH_ALL; 249 path->ingress_shared_buffer = TB_PATH_NONE; 250 path->priority = TB_PCI_PRIORITY; 251 path->weight = TB_PCI_WEIGHT; 252 path->drop_packages = 0; 253 254 tb_path_for_each_hop(path, hop) { 255 int ret; 256 257 ret = tb_pci_init_credits(hop); 258 if (ret) 259 return ret; 260 } 261 262 return 0; 263 } 264 265 /** 266 * tb_tunnel_discover_pci() - Discover existing PCIe tunnels 267 * @tb: Pointer to the domain structure 268 * @down: PCIe downstream adapter 269 * @alloc_hopid: Allocate HopIDs from visited ports 270 * 271 * If @down adapter is active, follows the tunnel to the PCIe upstream 272 * adapter and back. Returns the discovered tunnel or %NULL if there was 273 * no tunnel. 274 */ 275 struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down, 276 bool alloc_hopid) 277 { 278 struct tb_tunnel *tunnel; 279 struct tb_path *path; 280 281 if (!tb_pci_port_is_enabled(down)) 282 return NULL; 283 284 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 285 if (!tunnel) 286 return NULL; 287 288 tunnel->activate = tb_pci_activate; 289 tunnel->src_port = down; 290 291 /* 292 * Discover both paths even if they are not complete. We will 293 * clean them up by calling tb_tunnel_deactivate() below in that 294 * case. 295 */ 296 path = tb_path_discover(down, TB_PCI_HOPID, NULL, -1, 297 &tunnel->dst_port, "PCIe Up", alloc_hopid); 298 if (!path) { 299 /* Just disable the downstream port */ 300 tb_pci_port_enable(down, false); 301 goto err_free; 302 } 303 tunnel->paths[TB_PCI_PATH_UP] = path; 304 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_UP])) 305 goto err_free; 306 307 path = tb_path_discover(tunnel->dst_port, -1, down, TB_PCI_HOPID, NULL, 308 "PCIe Down", alloc_hopid); 309 if (!path) 310 goto err_deactivate; 311 tunnel->paths[TB_PCI_PATH_DOWN] = path; 312 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_DOWN])) 313 goto err_deactivate; 314 315 /* Validate that the tunnel is complete */ 316 if (!tb_port_is_pcie_up(tunnel->dst_port)) { 317 tb_port_warn(tunnel->dst_port, 318 "path does not end on a PCIe adapter, cleaning up\n"); 319 goto err_deactivate; 320 } 321 322 if (down != tunnel->src_port) { 323 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 324 goto err_deactivate; 325 } 326 327 if (!tb_pci_port_is_enabled(tunnel->dst_port)) { 328 tb_tunnel_warn(tunnel, 329 "tunnel is not fully activated, cleaning up\n"); 330 goto err_deactivate; 331 } 332 333 tb_tunnel_dbg(tunnel, "discovered\n"); 334 return tunnel; 335 336 err_deactivate: 337 tb_tunnel_deactivate(tunnel); 338 err_free: 339 tb_tunnel_free(tunnel); 340 341 return NULL; 342 } 343 344 /** 345 * tb_tunnel_alloc_pci() - allocate a pci tunnel 346 * @tb: Pointer to the domain structure 347 * @up: PCIe upstream adapter port 348 * @down: PCIe downstream adapter port 349 * 350 * Allocate a PCI tunnel. The ports must be of type TB_TYPE_PCIE_UP and 351 * TB_TYPE_PCIE_DOWN. 352 * 353 * Return: Returns a tb_tunnel on success or NULL on failure. 354 */ 355 struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up, 356 struct tb_port *down) 357 { 358 struct tb_tunnel *tunnel; 359 struct tb_path *path; 360 361 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 362 if (!tunnel) 363 return NULL; 364 365 tunnel->activate = tb_pci_activate; 366 tunnel->src_port = down; 367 tunnel->dst_port = up; 368 369 path = tb_path_alloc(tb, down, TB_PCI_HOPID, up, TB_PCI_HOPID, 0, 370 "PCIe Down"); 371 if (!path) 372 goto err_free; 373 tunnel->paths[TB_PCI_PATH_DOWN] = path; 374 if (tb_pci_init_path(path)) 375 goto err_free; 376 377 path = tb_path_alloc(tb, up, TB_PCI_HOPID, down, TB_PCI_HOPID, 0, 378 "PCIe Up"); 379 if (!path) 380 goto err_free; 381 tunnel->paths[TB_PCI_PATH_UP] = path; 382 if (tb_pci_init_path(path)) 383 goto err_free; 384 385 return tunnel; 386 387 err_free: 388 tb_tunnel_free(tunnel); 389 return NULL; 390 } 391 392 /** 393 * tb_tunnel_reserved_pci() - Amount of bandwidth to reserve for PCIe 394 * @port: Lane 0 adapter 395 * @reserved_up: Upstream bandwidth in Mb/s to reserve 396 * @reserved_down: Downstream bandwidth in Mb/s to reserve 397 * 398 * Can be called to any connected lane 0 adapter to find out how much 399 * bandwidth needs to be left in reserve for possible PCIe bulk traffic. 400 * Returns true if there is something to be reserved and writes the 401 * amount to @reserved_down/@reserved_up. Otherwise returns false and 402 * does not touch the parameters. 403 */ 404 bool tb_tunnel_reserved_pci(struct tb_port *port, int *reserved_up, 405 int *reserved_down) 406 { 407 if (WARN_ON_ONCE(!port->remote)) 408 return false; 409 410 if (!tb_acpi_may_tunnel_pcie()) 411 return false; 412 413 if (tb_port_get_link_generation(port) < 4) 414 return false; 415 416 /* Must have PCIe adapters */ 417 if (tb_is_upstream_port(port)) { 418 if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_UP)) 419 return false; 420 if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_DOWN)) 421 return false; 422 } else { 423 if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_DOWN)) 424 return false; 425 if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_UP)) 426 return false; 427 } 428 429 *reserved_up = USB4_V2_PCI_MIN_BANDWIDTH; 430 *reserved_down = USB4_V2_PCI_MIN_BANDWIDTH; 431 432 tb_port_dbg(port, "reserving %u/%u Mb/s for PCIe\n", *reserved_up, 433 *reserved_down); 434 return true; 435 } 436 437 static bool tb_dp_is_usb4(const struct tb_switch *sw) 438 { 439 /* Titan Ridge DP adapters need the same treatment as USB4 */ 440 return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw); 441 } 442 443 static int tb_dp_cm_handshake(struct tb_port *in, struct tb_port *out, 444 int timeout_msec) 445 { 446 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 447 u32 val; 448 int ret; 449 450 /* Both ends need to support this */ 451 if (!tb_dp_is_usb4(in->sw) || !tb_dp_is_usb4(out->sw)) 452 return 0; 453 454 ret = tb_port_read(out, &val, TB_CFG_PORT, 455 out->cap_adap + DP_STATUS_CTRL, 1); 456 if (ret) 457 return ret; 458 459 val |= DP_STATUS_CTRL_UF | DP_STATUS_CTRL_CMHS; 460 461 ret = tb_port_write(out, &val, TB_CFG_PORT, 462 out->cap_adap + DP_STATUS_CTRL, 1); 463 if (ret) 464 return ret; 465 466 do { 467 ret = tb_port_read(out, &val, TB_CFG_PORT, 468 out->cap_adap + DP_STATUS_CTRL, 1); 469 if (ret) 470 return ret; 471 if (!(val & DP_STATUS_CTRL_CMHS)) 472 return 0; 473 usleep_range(100, 150); 474 } while (ktime_before(ktime_get(), timeout)); 475 476 return -ETIMEDOUT; 477 } 478 479 /* 480 * Returns maximum possible rate from capability supporting only DP 2.0 481 * and below. Used when DP BW allocation mode is not enabled. 482 */ 483 static inline u32 tb_dp_cap_get_rate(u32 val) 484 { 485 u32 rate = (val & DP_COMMON_CAP_RATE_MASK) >> DP_COMMON_CAP_RATE_SHIFT; 486 487 switch (rate) { 488 case DP_COMMON_CAP_RATE_RBR: 489 return 1620; 490 case DP_COMMON_CAP_RATE_HBR: 491 return 2700; 492 case DP_COMMON_CAP_RATE_HBR2: 493 return 5400; 494 case DP_COMMON_CAP_RATE_HBR3: 495 return 8100; 496 default: 497 return 0; 498 } 499 } 500 501 /* 502 * Returns maximum possible rate from capability supporting DP 2.1 503 * UHBR20, 13.5 and 10 rates as well. Use only when DP BW allocation 504 * mode is enabled. 505 */ 506 static inline u32 tb_dp_cap_get_rate_ext(u32 val) 507 { 508 if (val & DP_COMMON_CAP_UHBR20) 509 return 20000; 510 else if (val & DP_COMMON_CAP_UHBR13_5) 511 return 13500; 512 else if (val & DP_COMMON_CAP_UHBR10) 513 return 10000; 514 515 return tb_dp_cap_get_rate(val); 516 } 517 518 static inline bool tb_dp_is_uhbr_rate(unsigned int rate) 519 { 520 return rate >= 10000; 521 } 522 523 static inline u32 tb_dp_cap_set_rate(u32 val, u32 rate) 524 { 525 val &= ~DP_COMMON_CAP_RATE_MASK; 526 switch (rate) { 527 default: 528 WARN(1, "invalid rate %u passed, defaulting to 1620 MB/s\n", rate); 529 fallthrough; 530 case 1620: 531 val |= DP_COMMON_CAP_RATE_RBR << DP_COMMON_CAP_RATE_SHIFT; 532 break; 533 case 2700: 534 val |= DP_COMMON_CAP_RATE_HBR << DP_COMMON_CAP_RATE_SHIFT; 535 break; 536 case 5400: 537 val |= DP_COMMON_CAP_RATE_HBR2 << DP_COMMON_CAP_RATE_SHIFT; 538 break; 539 case 8100: 540 val |= DP_COMMON_CAP_RATE_HBR3 << DP_COMMON_CAP_RATE_SHIFT; 541 break; 542 } 543 return val; 544 } 545 546 static inline u32 tb_dp_cap_get_lanes(u32 val) 547 { 548 u32 lanes = (val & DP_COMMON_CAP_LANES_MASK) >> DP_COMMON_CAP_LANES_SHIFT; 549 550 switch (lanes) { 551 case DP_COMMON_CAP_1_LANE: 552 return 1; 553 case DP_COMMON_CAP_2_LANES: 554 return 2; 555 case DP_COMMON_CAP_4_LANES: 556 return 4; 557 default: 558 return 0; 559 } 560 } 561 562 static inline u32 tb_dp_cap_set_lanes(u32 val, u32 lanes) 563 { 564 val &= ~DP_COMMON_CAP_LANES_MASK; 565 switch (lanes) { 566 default: 567 WARN(1, "invalid number of lanes %u passed, defaulting to 1\n", 568 lanes); 569 fallthrough; 570 case 1: 571 val |= DP_COMMON_CAP_1_LANE << DP_COMMON_CAP_LANES_SHIFT; 572 break; 573 case 2: 574 val |= DP_COMMON_CAP_2_LANES << DP_COMMON_CAP_LANES_SHIFT; 575 break; 576 case 4: 577 val |= DP_COMMON_CAP_4_LANES << DP_COMMON_CAP_LANES_SHIFT; 578 break; 579 } 580 return val; 581 } 582 583 static unsigned int tb_dp_bandwidth(unsigned int rate, unsigned int lanes) 584 { 585 /* Tunneling removes the DP 8b/10b 128/132b encoding */ 586 if (tb_dp_is_uhbr_rate(rate)) 587 return rate * lanes * 128 / 132; 588 return rate * lanes * 8 / 10; 589 } 590 591 static int tb_dp_reduce_bandwidth(int max_bw, u32 in_rate, u32 in_lanes, 592 u32 out_rate, u32 out_lanes, u32 *new_rate, 593 u32 *new_lanes) 594 { 595 static const u32 dp_bw[][2] = { 596 /* Mb/s, lanes */ 597 { 8100, 4 }, /* 25920 Mb/s */ 598 { 5400, 4 }, /* 17280 Mb/s */ 599 { 8100, 2 }, /* 12960 Mb/s */ 600 { 2700, 4 }, /* 8640 Mb/s */ 601 { 5400, 2 }, /* 8640 Mb/s */ 602 { 8100, 1 }, /* 6480 Mb/s */ 603 { 1620, 4 }, /* 5184 Mb/s */ 604 { 5400, 1 }, /* 4320 Mb/s */ 605 { 2700, 2 }, /* 4320 Mb/s */ 606 { 1620, 2 }, /* 2592 Mb/s */ 607 { 2700, 1 }, /* 2160 Mb/s */ 608 { 1620, 1 }, /* 1296 Mb/s */ 609 }; 610 unsigned int i; 611 612 /* 613 * Find a combination that can fit into max_bw and does not 614 * exceed the maximum rate and lanes supported by the DP OUT and 615 * DP IN adapters. 616 */ 617 for (i = 0; i < ARRAY_SIZE(dp_bw); i++) { 618 if (dp_bw[i][0] > out_rate || dp_bw[i][1] > out_lanes) 619 continue; 620 621 if (dp_bw[i][0] > in_rate || dp_bw[i][1] > in_lanes) 622 continue; 623 624 if (tb_dp_bandwidth(dp_bw[i][0], dp_bw[i][1]) <= max_bw) { 625 *new_rate = dp_bw[i][0]; 626 *new_lanes = dp_bw[i][1]; 627 return 0; 628 } 629 } 630 631 return -ENOSR; 632 } 633 634 static int tb_dp_xchg_caps(struct tb_tunnel *tunnel) 635 { 636 u32 out_dp_cap, out_rate, out_lanes, in_dp_cap, in_rate, in_lanes, bw; 637 struct tb_port *out = tunnel->dst_port; 638 struct tb_port *in = tunnel->src_port; 639 int ret, max_bw; 640 641 /* 642 * Copy DP_LOCAL_CAP register to DP_REMOTE_CAP register for 643 * newer generation hardware. 644 */ 645 if (in->sw->generation < 2 || out->sw->generation < 2) 646 return 0; 647 648 /* 649 * Perform connection manager handshake between IN and OUT ports 650 * before capabilities exchange can take place. 651 */ 652 ret = tb_dp_cm_handshake(in, out, 3000); 653 if (ret) 654 return ret; 655 656 /* Read both DP_LOCAL_CAP registers */ 657 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 658 in->cap_adap + DP_LOCAL_CAP, 1); 659 if (ret) 660 return ret; 661 662 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 663 out->cap_adap + DP_LOCAL_CAP, 1); 664 if (ret) 665 return ret; 666 667 /* Write IN local caps to OUT remote caps */ 668 ret = tb_port_write(out, &in_dp_cap, TB_CFG_PORT, 669 out->cap_adap + DP_REMOTE_CAP, 1); 670 if (ret) 671 return ret; 672 673 in_rate = tb_dp_cap_get_rate(in_dp_cap); 674 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 675 tb_tunnel_dbg(tunnel, 676 "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 677 in_rate, in_lanes, tb_dp_bandwidth(in_rate, in_lanes)); 678 679 /* 680 * If the tunnel bandwidth is limited (max_bw is set) then see 681 * if we need to reduce bandwidth to fit there. 682 */ 683 out_rate = tb_dp_cap_get_rate(out_dp_cap); 684 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 685 bw = tb_dp_bandwidth(out_rate, out_lanes); 686 tb_tunnel_dbg(tunnel, 687 "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 688 out_rate, out_lanes, bw); 689 690 if (tb_port_path_direction_downstream(in, out)) 691 max_bw = tunnel->max_down; 692 else 693 max_bw = tunnel->max_up; 694 695 if (max_bw && bw > max_bw) { 696 u32 new_rate, new_lanes, new_bw; 697 698 ret = tb_dp_reduce_bandwidth(max_bw, in_rate, in_lanes, 699 out_rate, out_lanes, &new_rate, 700 &new_lanes); 701 if (ret) { 702 tb_tunnel_info(tunnel, "not enough bandwidth\n"); 703 return ret; 704 } 705 706 new_bw = tb_dp_bandwidth(new_rate, new_lanes); 707 tb_tunnel_dbg(tunnel, 708 "bandwidth reduced to %u Mb/s x%u = %u Mb/s\n", 709 new_rate, new_lanes, new_bw); 710 711 /* 712 * Set new rate and number of lanes before writing it to 713 * the IN port remote caps. 714 */ 715 out_dp_cap = tb_dp_cap_set_rate(out_dp_cap, new_rate); 716 out_dp_cap = tb_dp_cap_set_lanes(out_dp_cap, new_lanes); 717 } 718 719 /* 720 * Titan Ridge does not disable AUX timers when it gets 721 * SET_CONFIG with SET_LTTPR_MODE set. This causes problems with 722 * DP tunneling. 723 */ 724 if (tb_route(out->sw) && tb_switch_is_titan_ridge(out->sw)) { 725 out_dp_cap |= DP_COMMON_CAP_LTTPR_NS; 726 tb_tunnel_dbg(tunnel, "disabling LTTPR\n"); 727 } 728 729 return tb_port_write(in, &out_dp_cap, TB_CFG_PORT, 730 in->cap_adap + DP_REMOTE_CAP, 1); 731 } 732 733 static int tb_dp_bandwidth_alloc_mode_enable(struct tb_tunnel *tunnel) 734 { 735 int ret, estimated_bw, granularity, tmp; 736 struct tb_port *out = tunnel->dst_port; 737 struct tb_port *in = tunnel->src_port; 738 u32 out_dp_cap, out_rate, out_lanes; 739 u32 in_dp_cap, in_rate, in_lanes; 740 u32 rate, lanes; 741 742 if (!bw_alloc_mode) 743 return 0; 744 745 ret = usb4_dp_port_set_cm_bandwidth_mode_supported(in, true); 746 if (ret) 747 return ret; 748 749 ret = usb4_dp_port_set_group_id(in, in->group->index); 750 if (ret) 751 return ret; 752 753 /* 754 * Get the non-reduced rate and lanes based on the lowest 755 * capability of both adapters. 756 */ 757 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 758 in->cap_adap + DP_LOCAL_CAP, 1); 759 if (ret) 760 return ret; 761 762 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 763 out->cap_adap + DP_LOCAL_CAP, 1); 764 if (ret) 765 return ret; 766 767 in_rate = tb_dp_cap_get_rate(in_dp_cap); 768 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 769 out_rate = tb_dp_cap_get_rate(out_dp_cap); 770 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 771 772 rate = min(in_rate, out_rate); 773 lanes = min(in_lanes, out_lanes); 774 tmp = tb_dp_bandwidth(rate, lanes); 775 776 tb_tunnel_dbg(tunnel, "non-reduced bandwidth %u Mb/s x%u = %u Mb/s\n", 777 rate, lanes, tmp); 778 779 ret = usb4_dp_port_set_nrd(in, rate, lanes); 780 if (ret) 781 return ret; 782 783 /* 784 * Pick up granularity that supports maximum possible bandwidth. 785 * For that we use the UHBR rates too. 786 */ 787 in_rate = tb_dp_cap_get_rate_ext(in_dp_cap); 788 out_rate = tb_dp_cap_get_rate_ext(out_dp_cap); 789 rate = min(in_rate, out_rate); 790 tmp = tb_dp_bandwidth(rate, lanes); 791 792 tb_tunnel_dbg(tunnel, 793 "maximum bandwidth through allocation mode %u Mb/s x%u = %u Mb/s\n", 794 rate, lanes, tmp); 795 796 for (granularity = 250; tmp / granularity > 255 && granularity <= 1000; 797 granularity *= 2) 798 ; 799 800 tb_tunnel_dbg(tunnel, "granularity %d Mb/s\n", granularity); 801 802 /* 803 * Returns -EINVAL if granularity above is outside of the 804 * accepted ranges. 805 */ 806 ret = usb4_dp_port_set_granularity(in, granularity); 807 if (ret) 808 return ret; 809 810 /* 811 * Bandwidth estimation is pretty much what we have in 812 * max_up/down fields. For discovery we just read what the 813 * estimation was set to. 814 */ 815 if (tb_port_path_direction_downstream(in, out)) 816 estimated_bw = tunnel->max_down; 817 else 818 estimated_bw = tunnel->max_up; 819 820 tb_tunnel_dbg(tunnel, "estimated bandwidth %d Mb/s\n", estimated_bw); 821 822 ret = usb4_dp_port_set_estimated_bandwidth(in, estimated_bw); 823 if (ret) 824 return ret; 825 826 /* Initial allocation should be 0 according the spec */ 827 ret = usb4_dp_port_allocate_bandwidth(in, 0); 828 if (ret) 829 return ret; 830 831 tb_tunnel_dbg(tunnel, "bandwidth allocation mode enabled\n"); 832 return 0; 833 } 834 835 static int tb_dp_init(struct tb_tunnel *tunnel) 836 { 837 struct tb_port *in = tunnel->src_port; 838 struct tb_switch *sw = in->sw; 839 struct tb *tb = in->sw->tb; 840 int ret; 841 842 ret = tb_dp_xchg_caps(tunnel); 843 if (ret) 844 return ret; 845 846 if (!tb_switch_is_usb4(sw)) 847 return 0; 848 849 if (!usb4_dp_port_bandwidth_mode_supported(in)) 850 return 0; 851 852 tb_tunnel_dbg(tunnel, "bandwidth allocation mode supported\n"); 853 854 ret = usb4_dp_port_set_cm_id(in, tb->index); 855 if (ret) 856 return ret; 857 858 return tb_dp_bandwidth_alloc_mode_enable(tunnel); 859 } 860 861 static void tb_dp_deinit(struct tb_tunnel *tunnel) 862 { 863 struct tb_port *in = tunnel->src_port; 864 865 if (!usb4_dp_port_bandwidth_mode_supported(in)) 866 return; 867 if (usb4_dp_port_bandwidth_mode_enabled(in)) { 868 usb4_dp_port_set_cm_bandwidth_mode_supported(in, false); 869 tb_tunnel_dbg(tunnel, "bandwidth allocation mode disabled\n"); 870 } 871 } 872 873 static int tb_dp_activate(struct tb_tunnel *tunnel, bool active) 874 { 875 int ret; 876 877 if (active) { 878 struct tb_path **paths; 879 int last; 880 881 paths = tunnel->paths; 882 last = paths[TB_DP_VIDEO_PATH_OUT]->path_length - 1; 883 884 tb_dp_port_set_hops(tunnel->src_port, 885 paths[TB_DP_VIDEO_PATH_OUT]->hops[0].in_hop_index, 886 paths[TB_DP_AUX_PATH_OUT]->hops[0].in_hop_index, 887 paths[TB_DP_AUX_PATH_IN]->hops[last].next_hop_index); 888 889 tb_dp_port_set_hops(tunnel->dst_port, 890 paths[TB_DP_VIDEO_PATH_OUT]->hops[last].next_hop_index, 891 paths[TB_DP_AUX_PATH_IN]->hops[0].in_hop_index, 892 paths[TB_DP_AUX_PATH_OUT]->hops[last].next_hop_index); 893 } else { 894 tb_dp_port_hpd_clear(tunnel->src_port); 895 tb_dp_port_set_hops(tunnel->src_port, 0, 0, 0); 896 if (tb_port_is_dpout(tunnel->dst_port)) 897 tb_dp_port_set_hops(tunnel->dst_port, 0, 0, 0); 898 } 899 900 ret = tb_dp_port_enable(tunnel->src_port, active); 901 if (ret) 902 return ret; 903 904 if (tb_port_is_dpout(tunnel->dst_port)) 905 return tb_dp_port_enable(tunnel->dst_port, active); 906 907 return 0; 908 } 909 910 /* max_bw is rounded up to next granularity */ 911 static int tb_dp_bandwidth_mode_maximum_bandwidth(struct tb_tunnel *tunnel, 912 int *max_bw) 913 { 914 struct tb_port *in = tunnel->src_port; 915 int ret, rate, lanes, nrd_bw; 916 u32 cap; 917 918 /* 919 * DP IN adapter DP_LOCAL_CAP gets updated to the lowest AUX 920 * read parameter values so this so we can use this to determine 921 * the maximum possible bandwidth over this link. 922 * 923 * See USB4 v2 spec 1.0 10.4.4.5. 924 */ 925 ret = tb_port_read(in, &cap, TB_CFG_PORT, 926 in->cap_adap + DP_LOCAL_CAP, 1); 927 if (ret) 928 return ret; 929 930 rate = tb_dp_cap_get_rate_ext(cap); 931 if (tb_dp_is_uhbr_rate(rate)) { 932 /* 933 * When UHBR is used there is no reduction in lanes so 934 * we can use this directly. 935 */ 936 lanes = tb_dp_cap_get_lanes(cap); 937 } else { 938 /* 939 * If there is no UHBR supported then check the 940 * non-reduced rate and lanes. 941 */ 942 ret = usb4_dp_port_nrd(in, &rate, &lanes); 943 if (ret) 944 return ret; 945 } 946 947 nrd_bw = tb_dp_bandwidth(rate, lanes); 948 949 if (max_bw) { 950 ret = usb4_dp_port_granularity(in); 951 if (ret < 0) 952 return ret; 953 *max_bw = roundup(nrd_bw, ret); 954 } 955 956 return nrd_bw; 957 } 958 959 static int tb_dp_bandwidth_mode_consumed_bandwidth(struct tb_tunnel *tunnel, 960 int *consumed_up, 961 int *consumed_down) 962 { 963 struct tb_port *out = tunnel->dst_port; 964 struct tb_port *in = tunnel->src_port; 965 int ret, allocated_bw, max_bw; 966 967 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 968 return -EOPNOTSUPP; 969 970 if (!tunnel->bw_mode) 971 return -EOPNOTSUPP; 972 973 /* Read what was allocated previously if any */ 974 ret = usb4_dp_port_allocated_bandwidth(in); 975 if (ret < 0) 976 return ret; 977 allocated_bw = ret; 978 979 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 980 if (ret < 0) 981 return ret; 982 if (allocated_bw == max_bw) 983 allocated_bw = ret; 984 985 if (tb_port_path_direction_downstream(in, out)) { 986 *consumed_up = 0; 987 *consumed_down = allocated_bw; 988 } else { 989 *consumed_up = allocated_bw; 990 *consumed_down = 0; 991 } 992 993 return 0; 994 } 995 996 static int tb_dp_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up, 997 int *allocated_down) 998 { 999 struct tb_port *out = tunnel->dst_port; 1000 struct tb_port *in = tunnel->src_port; 1001 1002 /* 1003 * If we have already set the allocated bandwidth then use that. 1004 * Otherwise we read it from the DPRX. 1005 */ 1006 if (usb4_dp_port_bandwidth_mode_enabled(in) && tunnel->bw_mode) { 1007 int ret, allocated_bw, max_bw; 1008 1009 ret = usb4_dp_port_allocated_bandwidth(in); 1010 if (ret < 0) 1011 return ret; 1012 allocated_bw = ret; 1013 1014 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 1015 if (ret < 0) 1016 return ret; 1017 if (allocated_bw == max_bw) 1018 allocated_bw = ret; 1019 1020 if (tb_port_path_direction_downstream(in, out)) { 1021 *allocated_up = 0; 1022 *allocated_down = allocated_bw; 1023 } else { 1024 *allocated_up = allocated_bw; 1025 *allocated_down = 0; 1026 } 1027 return 0; 1028 } 1029 1030 return tunnel->consumed_bandwidth(tunnel, allocated_up, 1031 allocated_down); 1032 } 1033 1034 static int tb_dp_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up, 1035 int *alloc_down) 1036 { 1037 struct tb_port *out = tunnel->dst_port; 1038 struct tb_port *in = tunnel->src_port; 1039 int max_bw, ret, tmp; 1040 1041 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1042 return -EOPNOTSUPP; 1043 1044 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 1045 if (ret < 0) 1046 return ret; 1047 1048 if (tb_port_path_direction_downstream(in, out)) { 1049 tmp = min(*alloc_down, max_bw); 1050 ret = usb4_dp_port_allocate_bandwidth(in, tmp); 1051 if (ret) 1052 return ret; 1053 *alloc_down = tmp; 1054 *alloc_up = 0; 1055 } else { 1056 tmp = min(*alloc_up, max_bw); 1057 ret = usb4_dp_port_allocate_bandwidth(in, tmp); 1058 if (ret) 1059 return ret; 1060 *alloc_down = 0; 1061 *alloc_up = tmp; 1062 } 1063 1064 /* Now we can use BW mode registers to figure out the bandwidth */ 1065 /* TODO: need to handle discovery too */ 1066 tunnel->bw_mode = true; 1067 return 0; 1068 } 1069 1070 static int tb_dp_read_dprx(struct tb_tunnel *tunnel, u32 *rate, u32 *lanes, 1071 int timeout_msec) 1072 { 1073 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1074 struct tb_port *in = tunnel->src_port; 1075 1076 /* 1077 * Wait for DPRX done. Normally it should be already set for 1078 * active tunnel. 1079 */ 1080 do { 1081 u32 val; 1082 int ret; 1083 1084 ret = tb_port_read(in, &val, TB_CFG_PORT, 1085 in->cap_adap + DP_COMMON_CAP, 1); 1086 if (ret) 1087 return ret; 1088 1089 if (val & DP_COMMON_CAP_DPRX_DONE) { 1090 *rate = tb_dp_cap_get_rate(val); 1091 *lanes = tb_dp_cap_get_lanes(val); 1092 1093 tb_tunnel_dbg(tunnel, "DPRX read done\n"); 1094 return 0; 1095 } 1096 usleep_range(100, 150); 1097 } while (ktime_before(ktime_get(), timeout)); 1098 1099 return -ETIMEDOUT; 1100 } 1101 1102 /* Read cap from tunnel DP IN */ 1103 static int tb_dp_read_cap(struct tb_tunnel *tunnel, unsigned int cap, u32 *rate, 1104 u32 *lanes) 1105 { 1106 struct tb_port *in = tunnel->src_port; 1107 u32 val; 1108 int ret; 1109 1110 switch (cap) { 1111 case DP_LOCAL_CAP: 1112 case DP_REMOTE_CAP: 1113 break; 1114 1115 default: 1116 tb_tunnel_WARN(tunnel, "invalid capability index %#x\n", cap); 1117 return -EINVAL; 1118 } 1119 1120 /* 1121 * Read from the copied remote cap so that we take into account 1122 * if capabilities were reduced during exchange. 1123 */ 1124 ret = tb_port_read(in, &val, TB_CFG_PORT, in->cap_adap + cap, 1); 1125 if (ret) 1126 return ret; 1127 1128 *rate = tb_dp_cap_get_rate(val); 1129 *lanes = tb_dp_cap_get_lanes(val); 1130 return 0; 1131 } 1132 1133 static int tb_dp_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up, 1134 int *max_down) 1135 { 1136 struct tb_port *in = tunnel->src_port; 1137 int ret; 1138 1139 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1140 return -EOPNOTSUPP; 1141 1142 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, NULL); 1143 if (ret < 0) 1144 return ret; 1145 1146 if (tb_port_path_direction_downstream(in, tunnel->dst_port)) { 1147 *max_up = 0; 1148 *max_down = ret; 1149 } else { 1150 *max_up = ret; 1151 *max_down = 0; 1152 } 1153 1154 return 0; 1155 } 1156 1157 static int tb_dp_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 1158 int *consumed_down) 1159 { 1160 struct tb_port *in = tunnel->src_port; 1161 const struct tb_switch *sw = in->sw; 1162 u32 rate = 0, lanes = 0; 1163 int ret; 1164 1165 if (tb_dp_is_usb4(sw)) { 1166 /* 1167 * On USB4 routers check if the bandwidth allocation 1168 * mode is enabled first and then read the bandwidth 1169 * through those registers. 1170 */ 1171 ret = tb_dp_bandwidth_mode_consumed_bandwidth(tunnel, consumed_up, 1172 consumed_down); 1173 if (ret < 0) { 1174 if (ret != -EOPNOTSUPP) 1175 return ret; 1176 } else if (!ret) { 1177 return 0; 1178 } 1179 /* 1180 * Then see if the DPRX negotiation is ready and if yes 1181 * return that bandwidth (it may be smaller than the 1182 * reduced one). Otherwise return the remote (possibly 1183 * reduced) caps. 1184 */ 1185 ret = tb_dp_read_dprx(tunnel, &rate, &lanes, 150); 1186 if (ret) { 1187 if (ret == -ETIMEDOUT) 1188 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, 1189 &rate, &lanes); 1190 if (ret) 1191 return ret; 1192 } 1193 } else if (sw->generation >= 2) { 1194 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, &rate, &lanes); 1195 if (ret) 1196 return ret; 1197 } else { 1198 /* No bandwidth management for legacy devices */ 1199 *consumed_up = 0; 1200 *consumed_down = 0; 1201 return 0; 1202 } 1203 1204 if (tb_port_path_direction_downstream(in, tunnel->dst_port)) { 1205 *consumed_up = 0; 1206 *consumed_down = tb_dp_bandwidth(rate, lanes); 1207 } else { 1208 *consumed_up = tb_dp_bandwidth(rate, lanes); 1209 *consumed_down = 0; 1210 } 1211 1212 return 0; 1213 } 1214 1215 static void tb_dp_init_aux_credits(struct tb_path_hop *hop) 1216 { 1217 struct tb_port *port = hop->in_port; 1218 struct tb_switch *sw = port->sw; 1219 1220 if (tb_port_use_credit_allocation(port)) 1221 hop->initial_credits = sw->min_dp_aux_credits; 1222 else 1223 hop->initial_credits = 1; 1224 } 1225 1226 static void tb_dp_init_aux_path(struct tb_path *path, bool pm_support) 1227 { 1228 struct tb_path_hop *hop; 1229 1230 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1231 path->egress_shared_buffer = TB_PATH_NONE; 1232 path->ingress_fc_enable = TB_PATH_ALL; 1233 path->ingress_shared_buffer = TB_PATH_NONE; 1234 path->priority = TB_DP_AUX_PRIORITY; 1235 path->weight = TB_DP_AUX_WEIGHT; 1236 1237 tb_path_for_each_hop(path, hop) { 1238 tb_dp_init_aux_credits(hop); 1239 if (pm_support) 1240 tb_init_pm_support(hop); 1241 } 1242 } 1243 1244 static int tb_dp_init_video_credits(struct tb_path_hop *hop) 1245 { 1246 struct tb_port *port = hop->in_port; 1247 struct tb_switch *sw = port->sw; 1248 1249 if (tb_port_use_credit_allocation(port)) { 1250 unsigned int nfc_credits; 1251 size_t max_dp_streams; 1252 1253 tb_available_credits(port, &max_dp_streams); 1254 /* 1255 * Read the number of currently allocated NFC credits 1256 * from the lane adapter. Since we only use them for DP 1257 * tunneling we can use that to figure out how many DP 1258 * tunnels already go through the lane adapter. 1259 */ 1260 nfc_credits = port->config.nfc_credits & 1261 ADP_CS_4_NFC_BUFFERS_MASK; 1262 if (nfc_credits / sw->min_dp_main_credits > max_dp_streams) 1263 return -ENOSPC; 1264 1265 hop->nfc_credits = sw->min_dp_main_credits; 1266 } else { 1267 hop->nfc_credits = min(port->total_credits - 2, 12U); 1268 } 1269 1270 return 0; 1271 } 1272 1273 static int tb_dp_init_video_path(struct tb_path *path, bool pm_support) 1274 { 1275 struct tb_path_hop *hop; 1276 1277 path->egress_fc_enable = TB_PATH_NONE; 1278 path->egress_shared_buffer = TB_PATH_NONE; 1279 path->ingress_fc_enable = TB_PATH_NONE; 1280 path->ingress_shared_buffer = TB_PATH_NONE; 1281 path->priority = TB_DP_VIDEO_PRIORITY; 1282 path->weight = TB_DP_VIDEO_WEIGHT; 1283 1284 tb_path_for_each_hop(path, hop) { 1285 int ret; 1286 1287 ret = tb_dp_init_video_credits(hop); 1288 if (ret) 1289 return ret; 1290 if (pm_support) 1291 tb_init_pm_support(hop); 1292 } 1293 1294 return 0; 1295 } 1296 1297 static void tb_dp_dump(struct tb_tunnel *tunnel) 1298 { 1299 struct tb_port *in, *out; 1300 u32 dp_cap, rate, lanes; 1301 1302 in = tunnel->src_port; 1303 out = tunnel->dst_port; 1304 1305 if (tb_port_read(in, &dp_cap, TB_CFG_PORT, 1306 in->cap_adap + DP_LOCAL_CAP, 1)) 1307 return; 1308 1309 rate = tb_dp_cap_get_rate(dp_cap); 1310 lanes = tb_dp_cap_get_lanes(dp_cap); 1311 1312 tb_tunnel_dbg(tunnel, 1313 "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 1314 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1315 1316 out = tunnel->dst_port; 1317 1318 if (tb_port_read(out, &dp_cap, TB_CFG_PORT, 1319 out->cap_adap + DP_LOCAL_CAP, 1)) 1320 return; 1321 1322 rate = tb_dp_cap_get_rate(dp_cap); 1323 lanes = tb_dp_cap_get_lanes(dp_cap); 1324 1325 tb_tunnel_dbg(tunnel, 1326 "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 1327 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1328 1329 if (tb_port_read(in, &dp_cap, TB_CFG_PORT, 1330 in->cap_adap + DP_REMOTE_CAP, 1)) 1331 return; 1332 1333 rate = tb_dp_cap_get_rate(dp_cap); 1334 lanes = tb_dp_cap_get_lanes(dp_cap); 1335 1336 tb_tunnel_dbg(tunnel, "reduced bandwidth %u Mb/s x%u = %u Mb/s\n", 1337 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1338 } 1339 1340 /** 1341 * tb_tunnel_discover_dp() - Discover existing Display Port tunnels 1342 * @tb: Pointer to the domain structure 1343 * @in: DP in adapter 1344 * @alloc_hopid: Allocate HopIDs from visited ports 1345 * 1346 * If @in adapter is active, follows the tunnel to the DP out adapter 1347 * and back. Returns the discovered tunnel or %NULL if there was no 1348 * tunnel. 1349 * 1350 * Return: DP tunnel or %NULL if no tunnel found. 1351 */ 1352 struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in, 1353 bool alloc_hopid) 1354 { 1355 struct tb_tunnel *tunnel; 1356 struct tb_port *port; 1357 struct tb_path *path; 1358 1359 if (!tb_dp_port_is_enabled(in)) 1360 return NULL; 1361 1362 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 1363 if (!tunnel) 1364 return NULL; 1365 1366 tunnel->init = tb_dp_init; 1367 tunnel->deinit = tb_dp_deinit; 1368 tunnel->activate = tb_dp_activate; 1369 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth; 1370 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth; 1371 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth; 1372 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 1373 tunnel->src_port = in; 1374 1375 path = tb_path_discover(in, TB_DP_VIDEO_HOPID, NULL, -1, 1376 &tunnel->dst_port, "Video", alloc_hopid); 1377 if (!path) { 1378 /* Just disable the DP IN port */ 1379 tb_dp_port_enable(in, false); 1380 goto err_free; 1381 } 1382 tunnel->paths[TB_DP_VIDEO_PATH_OUT] = path; 1383 if (tb_dp_init_video_path(tunnel->paths[TB_DP_VIDEO_PATH_OUT], false)) 1384 goto err_free; 1385 1386 path = tb_path_discover(in, TB_DP_AUX_TX_HOPID, NULL, -1, NULL, "AUX TX", 1387 alloc_hopid); 1388 if (!path) 1389 goto err_deactivate; 1390 tunnel->paths[TB_DP_AUX_PATH_OUT] = path; 1391 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_OUT], false); 1392 1393 path = tb_path_discover(tunnel->dst_port, -1, in, TB_DP_AUX_RX_HOPID, 1394 &port, "AUX RX", alloc_hopid); 1395 if (!path) 1396 goto err_deactivate; 1397 tunnel->paths[TB_DP_AUX_PATH_IN] = path; 1398 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_IN], false); 1399 1400 /* Validate that the tunnel is complete */ 1401 if (!tb_port_is_dpout(tunnel->dst_port)) { 1402 tb_port_warn(in, "path does not end on a DP adapter, cleaning up\n"); 1403 goto err_deactivate; 1404 } 1405 1406 if (!tb_dp_port_is_enabled(tunnel->dst_port)) 1407 goto err_deactivate; 1408 1409 if (!tb_dp_port_hpd_is_active(tunnel->dst_port)) 1410 goto err_deactivate; 1411 1412 if (port != tunnel->src_port) { 1413 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 1414 goto err_deactivate; 1415 } 1416 1417 tb_dp_dump(tunnel); 1418 1419 tb_tunnel_dbg(tunnel, "discovered\n"); 1420 return tunnel; 1421 1422 err_deactivate: 1423 tb_tunnel_deactivate(tunnel); 1424 err_free: 1425 tb_tunnel_free(tunnel); 1426 1427 return NULL; 1428 } 1429 1430 /** 1431 * tb_tunnel_alloc_dp() - allocate a Display Port tunnel 1432 * @tb: Pointer to the domain structure 1433 * @in: DP in adapter port 1434 * @out: DP out adapter port 1435 * @link_nr: Preferred lane adapter when the link is not bonded 1436 * @max_up: Maximum available upstream bandwidth for the DP tunnel (%0 1437 * if not limited) 1438 * @max_down: Maximum available downstream bandwidth for the DP tunnel 1439 * (%0 if not limited) 1440 * 1441 * Allocates a tunnel between @in and @out that is capable of tunneling 1442 * Display Port traffic. 1443 * 1444 * Return: Returns a tb_tunnel on success or NULL on failure. 1445 */ 1446 struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in, 1447 struct tb_port *out, int link_nr, 1448 int max_up, int max_down) 1449 { 1450 struct tb_tunnel *tunnel; 1451 struct tb_path **paths; 1452 struct tb_path *path; 1453 bool pm_support; 1454 1455 if (WARN_ON(!in->cap_adap || !out->cap_adap)) 1456 return NULL; 1457 1458 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 1459 if (!tunnel) 1460 return NULL; 1461 1462 tunnel->init = tb_dp_init; 1463 tunnel->deinit = tb_dp_deinit; 1464 tunnel->activate = tb_dp_activate; 1465 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth; 1466 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth; 1467 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth; 1468 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 1469 tunnel->src_port = in; 1470 tunnel->dst_port = out; 1471 tunnel->max_up = max_up; 1472 tunnel->max_down = max_down; 1473 1474 paths = tunnel->paths; 1475 pm_support = usb4_switch_version(in->sw) >= 2; 1476 1477 path = tb_path_alloc(tb, in, TB_DP_VIDEO_HOPID, out, TB_DP_VIDEO_HOPID, 1478 link_nr, "Video"); 1479 if (!path) 1480 goto err_free; 1481 tb_dp_init_video_path(path, pm_support); 1482 paths[TB_DP_VIDEO_PATH_OUT] = path; 1483 1484 path = tb_path_alloc(tb, in, TB_DP_AUX_TX_HOPID, out, 1485 TB_DP_AUX_TX_HOPID, link_nr, "AUX TX"); 1486 if (!path) 1487 goto err_free; 1488 tb_dp_init_aux_path(path, pm_support); 1489 paths[TB_DP_AUX_PATH_OUT] = path; 1490 1491 path = tb_path_alloc(tb, out, TB_DP_AUX_RX_HOPID, in, 1492 TB_DP_AUX_RX_HOPID, link_nr, "AUX RX"); 1493 if (!path) 1494 goto err_free; 1495 tb_dp_init_aux_path(path, pm_support); 1496 paths[TB_DP_AUX_PATH_IN] = path; 1497 1498 return tunnel; 1499 1500 err_free: 1501 tb_tunnel_free(tunnel); 1502 return NULL; 1503 } 1504 1505 static unsigned int tb_dma_available_credits(const struct tb_port *port) 1506 { 1507 const struct tb_switch *sw = port->sw; 1508 int credits; 1509 1510 credits = tb_available_credits(port, NULL); 1511 if (tb_acpi_may_tunnel_pcie()) 1512 credits -= sw->max_pcie_credits; 1513 credits -= port->dma_credits; 1514 1515 return credits > 0 ? credits : 0; 1516 } 1517 1518 static int tb_dma_reserve_credits(struct tb_path_hop *hop, unsigned int credits) 1519 { 1520 struct tb_port *port = hop->in_port; 1521 1522 if (tb_port_use_credit_allocation(port)) { 1523 unsigned int available = tb_dma_available_credits(port); 1524 1525 /* 1526 * Need to have at least TB_MIN_DMA_CREDITS, otherwise 1527 * DMA path cannot be established. 1528 */ 1529 if (available < TB_MIN_DMA_CREDITS) 1530 return -ENOSPC; 1531 1532 while (credits > available) 1533 credits--; 1534 1535 tb_port_dbg(port, "reserving %u credits for DMA path\n", 1536 credits); 1537 1538 port->dma_credits += credits; 1539 } else { 1540 if (tb_port_is_null(port)) 1541 credits = port->bonded ? 14 : 6; 1542 else 1543 credits = min(port->total_credits, credits); 1544 } 1545 1546 hop->initial_credits = credits; 1547 return 0; 1548 } 1549 1550 /* Path from lane adapter to NHI */ 1551 static int tb_dma_init_rx_path(struct tb_path *path, unsigned int credits) 1552 { 1553 struct tb_path_hop *hop; 1554 unsigned int i, tmp; 1555 1556 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1557 path->ingress_fc_enable = TB_PATH_ALL; 1558 path->egress_shared_buffer = TB_PATH_NONE; 1559 path->ingress_shared_buffer = TB_PATH_NONE; 1560 path->priority = TB_DMA_PRIORITY; 1561 path->weight = TB_DMA_WEIGHT; 1562 path->clear_fc = true; 1563 1564 /* 1565 * First lane adapter is the one connected to the remote host. 1566 * We don't tunnel other traffic over this link so can use all 1567 * the credits (except the ones reserved for control traffic). 1568 */ 1569 hop = &path->hops[0]; 1570 tmp = min(tb_usable_credits(hop->in_port), credits); 1571 hop->initial_credits = tmp; 1572 hop->in_port->dma_credits += tmp; 1573 1574 for (i = 1; i < path->path_length; i++) { 1575 int ret; 1576 1577 ret = tb_dma_reserve_credits(&path->hops[i], credits); 1578 if (ret) 1579 return ret; 1580 } 1581 1582 return 0; 1583 } 1584 1585 /* Path from NHI to lane adapter */ 1586 static int tb_dma_init_tx_path(struct tb_path *path, unsigned int credits) 1587 { 1588 struct tb_path_hop *hop; 1589 1590 path->egress_fc_enable = TB_PATH_ALL; 1591 path->ingress_fc_enable = TB_PATH_ALL; 1592 path->egress_shared_buffer = TB_PATH_NONE; 1593 path->ingress_shared_buffer = TB_PATH_NONE; 1594 path->priority = TB_DMA_PRIORITY; 1595 path->weight = TB_DMA_WEIGHT; 1596 path->clear_fc = true; 1597 1598 tb_path_for_each_hop(path, hop) { 1599 int ret; 1600 1601 ret = tb_dma_reserve_credits(hop, credits); 1602 if (ret) 1603 return ret; 1604 } 1605 1606 return 0; 1607 } 1608 1609 static void tb_dma_release_credits(struct tb_path_hop *hop) 1610 { 1611 struct tb_port *port = hop->in_port; 1612 1613 if (tb_port_use_credit_allocation(port)) { 1614 port->dma_credits -= hop->initial_credits; 1615 1616 tb_port_dbg(port, "released %u DMA path credits\n", 1617 hop->initial_credits); 1618 } 1619 } 1620 1621 static void tb_dma_deinit_path(struct tb_path *path) 1622 { 1623 struct tb_path_hop *hop; 1624 1625 tb_path_for_each_hop(path, hop) 1626 tb_dma_release_credits(hop); 1627 } 1628 1629 static void tb_dma_deinit(struct tb_tunnel *tunnel) 1630 { 1631 int i; 1632 1633 for (i = 0; i < tunnel->npaths; i++) { 1634 if (!tunnel->paths[i]) 1635 continue; 1636 tb_dma_deinit_path(tunnel->paths[i]); 1637 } 1638 } 1639 1640 /** 1641 * tb_tunnel_alloc_dma() - allocate a DMA tunnel 1642 * @tb: Pointer to the domain structure 1643 * @nhi: Host controller port 1644 * @dst: Destination null port which the other domain is connected to 1645 * @transmit_path: HopID used for transmitting packets 1646 * @transmit_ring: NHI ring number used to send packets towards the 1647 * other domain. Set to %-1 if TX path is not needed. 1648 * @receive_path: HopID used for receiving packets 1649 * @receive_ring: NHI ring number used to receive packets from the 1650 * other domain. Set to %-1 if RX path is not needed. 1651 * 1652 * Return: Returns a tb_tunnel on success or NULL on failure. 1653 */ 1654 struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi, 1655 struct tb_port *dst, int transmit_path, 1656 int transmit_ring, int receive_path, 1657 int receive_ring) 1658 { 1659 struct tb_tunnel *tunnel; 1660 size_t npaths = 0, i = 0; 1661 struct tb_path *path; 1662 int credits; 1663 1664 /* Ring 0 is reserved for control channel */ 1665 if (WARN_ON(!receive_ring || !transmit_ring)) 1666 return NULL; 1667 1668 if (receive_ring > 0) 1669 npaths++; 1670 if (transmit_ring > 0) 1671 npaths++; 1672 1673 if (WARN_ON(!npaths)) 1674 return NULL; 1675 1676 tunnel = tb_tunnel_alloc(tb, npaths, TB_TUNNEL_DMA); 1677 if (!tunnel) 1678 return NULL; 1679 1680 tunnel->src_port = nhi; 1681 tunnel->dst_port = dst; 1682 tunnel->deinit = tb_dma_deinit; 1683 1684 credits = min_not_zero(dma_credits, nhi->sw->max_dma_credits); 1685 1686 if (receive_ring > 0) { 1687 path = tb_path_alloc(tb, dst, receive_path, nhi, receive_ring, 0, 1688 "DMA RX"); 1689 if (!path) 1690 goto err_free; 1691 tunnel->paths[i++] = path; 1692 if (tb_dma_init_rx_path(path, credits)) { 1693 tb_tunnel_dbg(tunnel, "not enough buffers for RX path\n"); 1694 goto err_free; 1695 } 1696 } 1697 1698 if (transmit_ring > 0) { 1699 path = tb_path_alloc(tb, nhi, transmit_ring, dst, transmit_path, 0, 1700 "DMA TX"); 1701 if (!path) 1702 goto err_free; 1703 tunnel->paths[i++] = path; 1704 if (tb_dma_init_tx_path(path, credits)) { 1705 tb_tunnel_dbg(tunnel, "not enough buffers for TX path\n"); 1706 goto err_free; 1707 } 1708 } 1709 1710 return tunnel; 1711 1712 err_free: 1713 tb_tunnel_free(tunnel); 1714 return NULL; 1715 } 1716 1717 /** 1718 * tb_tunnel_match_dma() - Match DMA tunnel 1719 * @tunnel: Tunnel to match 1720 * @transmit_path: HopID used for transmitting packets. Pass %-1 to ignore. 1721 * @transmit_ring: NHI ring number used to send packets towards the 1722 * other domain. Pass %-1 to ignore. 1723 * @receive_path: HopID used for receiving packets. Pass %-1 to ignore. 1724 * @receive_ring: NHI ring number used to receive packets from the 1725 * other domain. Pass %-1 to ignore. 1726 * 1727 * This function can be used to match specific DMA tunnel, if there are 1728 * multiple DMA tunnels going through the same XDomain connection. 1729 * Returns true if there is match and false otherwise. 1730 */ 1731 bool tb_tunnel_match_dma(const struct tb_tunnel *tunnel, int transmit_path, 1732 int transmit_ring, int receive_path, int receive_ring) 1733 { 1734 const struct tb_path *tx_path = NULL, *rx_path = NULL; 1735 int i; 1736 1737 if (!receive_ring || !transmit_ring) 1738 return false; 1739 1740 for (i = 0; i < tunnel->npaths; i++) { 1741 const struct tb_path *path = tunnel->paths[i]; 1742 1743 if (!path) 1744 continue; 1745 1746 if (tb_port_is_nhi(path->hops[0].in_port)) 1747 tx_path = path; 1748 else if (tb_port_is_nhi(path->hops[path->path_length - 1].out_port)) 1749 rx_path = path; 1750 } 1751 1752 if (transmit_ring > 0 || transmit_path > 0) { 1753 if (!tx_path) 1754 return false; 1755 if (transmit_ring > 0 && 1756 (tx_path->hops[0].in_hop_index != transmit_ring)) 1757 return false; 1758 if (transmit_path > 0 && 1759 (tx_path->hops[tx_path->path_length - 1].next_hop_index != transmit_path)) 1760 return false; 1761 } 1762 1763 if (receive_ring > 0 || receive_path > 0) { 1764 if (!rx_path) 1765 return false; 1766 if (receive_path > 0 && 1767 (rx_path->hops[0].in_hop_index != receive_path)) 1768 return false; 1769 if (receive_ring > 0 && 1770 (rx_path->hops[rx_path->path_length - 1].next_hop_index != receive_ring)) 1771 return false; 1772 } 1773 1774 return true; 1775 } 1776 1777 static int tb_usb3_max_link_rate(struct tb_port *up, struct tb_port *down) 1778 { 1779 int ret, up_max_rate, down_max_rate; 1780 1781 ret = usb4_usb3_port_max_link_rate(up); 1782 if (ret < 0) 1783 return ret; 1784 up_max_rate = ret; 1785 1786 ret = usb4_usb3_port_max_link_rate(down); 1787 if (ret < 0) 1788 return ret; 1789 down_max_rate = ret; 1790 1791 return min(up_max_rate, down_max_rate); 1792 } 1793 1794 static int tb_usb3_init(struct tb_tunnel *tunnel) 1795 { 1796 tb_tunnel_dbg(tunnel, "allocating initial bandwidth %d/%d Mb/s\n", 1797 tunnel->allocated_up, tunnel->allocated_down); 1798 1799 return usb4_usb3_port_allocate_bandwidth(tunnel->src_port, 1800 &tunnel->allocated_up, 1801 &tunnel->allocated_down); 1802 } 1803 1804 static int tb_usb3_activate(struct tb_tunnel *tunnel, bool activate) 1805 { 1806 int res; 1807 1808 res = tb_usb3_port_enable(tunnel->src_port, activate); 1809 if (res) 1810 return res; 1811 1812 if (tb_port_is_usb3_up(tunnel->dst_port)) 1813 return tb_usb3_port_enable(tunnel->dst_port, activate); 1814 1815 return 0; 1816 } 1817 1818 static int tb_usb3_consumed_bandwidth(struct tb_tunnel *tunnel, 1819 int *consumed_up, int *consumed_down) 1820 { 1821 struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw); 1822 int pcie_weight = tb_acpi_may_tunnel_pcie() ? TB_PCI_WEIGHT : 0; 1823 1824 /* 1825 * PCIe tunneling, if enabled, affects the USB3 bandwidth so 1826 * take that it into account here. 1827 */ 1828 *consumed_up = tunnel->allocated_up * 1829 (TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT; 1830 *consumed_down = tunnel->allocated_down * 1831 (TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT; 1832 1833 if (tb_port_get_link_generation(port) >= 4) { 1834 *consumed_up = max(*consumed_up, USB4_V2_USB3_MIN_BANDWIDTH); 1835 *consumed_down = max(*consumed_down, USB4_V2_USB3_MIN_BANDWIDTH); 1836 } 1837 1838 return 0; 1839 } 1840 1841 static int tb_usb3_release_unused_bandwidth(struct tb_tunnel *tunnel) 1842 { 1843 int ret; 1844 1845 ret = usb4_usb3_port_release_bandwidth(tunnel->src_port, 1846 &tunnel->allocated_up, 1847 &tunnel->allocated_down); 1848 if (ret) 1849 return ret; 1850 1851 tb_tunnel_dbg(tunnel, "decreased bandwidth allocation to %d/%d Mb/s\n", 1852 tunnel->allocated_up, tunnel->allocated_down); 1853 return 0; 1854 } 1855 1856 static void tb_usb3_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 1857 int *available_up, 1858 int *available_down) 1859 { 1860 int ret, max_rate, allocate_up, allocate_down; 1861 1862 ret = tb_usb3_max_link_rate(tunnel->dst_port, tunnel->src_port); 1863 if (ret < 0) { 1864 tb_tunnel_warn(tunnel, "failed to read maximum link rate\n"); 1865 return; 1866 } 1867 1868 /* 1869 * 90% of the max rate can be allocated for isochronous 1870 * transfers. 1871 */ 1872 max_rate = ret * 90 / 100; 1873 1874 /* No need to reclaim if already at maximum */ 1875 if (tunnel->allocated_up >= max_rate && 1876 tunnel->allocated_down >= max_rate) 1877 return; 1878 1879 /* Don't go lower than what is already allocated */ 1880 allocate_up = min(max_rate, *available_up); 1881 if (allocate_up < tunnel->allocated_up) 1882 allocate_up = tunnel->allocated_up; 1883 1884 allocate_down = min(max_rate, *available_down); 1885 if (allocate_down < tunnel->allocated_down) 1886 allocate_down = tunnel->allocated_down; 1887 1888 /* If no changes no need to do more */ 1889 if (allocate_up == tunnel->allocated_up && 1890 allocate_down == tunnel->allocated_down) 1891 return; 1892 1893 ret = usb4_usb3_port_allocate_bandwidth(tunnel->src_port, &allocate_up, 1894 &allocate_down); 1895 if (ret) { 1896 tb_tunnel_info(tunnel, "failed to allocate bandwidth\n"); 1897 return; 1898 } 1899 1900 tunnel->allocated_up = allocate_up; 1901 *available_up -= tunnel->allocated_up; 1902 1903 tunnel->allocated_down = allocate_down; 1904 *available_down -= tunnel->allocated_down; 1905 1906 tb_tunnel_dbg(tunnel, "increased bandwidth allocation to %d/%d Mb/s\n", 1907 tunnel->allocated_up, tunnel->allocated_down); 1908 } 1909 1910 static void tb_usb3_init_credits(struct tb_path_hop *hop) 1911 { 1912 struct tb_port *port = hop->in_port; 1913 struct tb_switch *sw = port->sw; 1914 unsigned int credits; 1915 1916 if (tb_port_use_credit_allocation(port)) { 1917 credits = sw->max_usb3_credits; 1918 } else { 1919 if (tb_port_is_null(port)) 1920 credits = port->bonded ? 32 : 16; 1921 else 1922 credits = 7; 1923 } 1924 1925 hop->initial_credits = credits; 1926 } 1927 1928 static void tb_usb3_init_path(struct tb_path *path) 1929 { 1930 struct tb_path_hop *hop; 1931 1932 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1933 path->egress_shared_buffer = TB_PATH_NONE; 1934 path->ingress_fc_enable = TB_PATH_ALL; 1935 path->ingress_shared_buffer = TB_PATH_NONE; 1936 path->priority = TB_USB3_PRIORITY; 1937 path->weight = TB_USB3_WEIGHT; 1938 path->drop_packages = 0; 1939 1940 tb_path_for_each_hop(path, hop) 1941 tb_usb3_init_credits(hop); 1942 } 1943 1944 /** 1945 * tb_tunnel_discover_usb3() - Discover existing USB3 tunnels 1946 * @tb: Pointer to the domain structure 1947 * @down: USB3 downstream adapter 1948 * @alloc_hopid: Allocate HopIDs from visited ports 1949 * 1950 * If @down adapter is active, follows the tunnel to the USB3 upstream 1951 * adapter and back. Returns the discovered tunnel or %NULL if there was 1952 * no tunnel. 1953 */ 1954 struct tb_tunnel *tb_tunnel_discover_usb3(struct tb *tb, struct tb_port *down, 1955 bool alloc_hopid) 1956 { 1957 struct tb_tunnel *tunnel; 1958 struct tb_path *path; 1959 1960 if (!tb_usb3_port_is_enabled(down)) 1961 return NULL; 1962 1963 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 1964 if (!tunnel) 1965 return NULL; 1966 1967 tunnel->activate = tb_usb3_activate; 1968 tunnel->src_port = down; 1969 1970 /* 1971 * Discover both paths even if they are not complete. We will 1972 * clean them up by calling tb_tunnel_deactivate() below in that 1973 * case. 1974 */ 1975 path = tb_path_discover(down, TB_USB3_HOPID, NULL, -1, 1976 &tunnel->dst_port, "USB3 Down", alloc_hopid); 1977 if (!path) { 1978 /* Just disable the downstream port */ 1979 tb_usb3_port_enable(down, false); 1980 goto err_free; 1981 } 1982 tunnel->paths[TB_USB3_PATH_DOWN] = path; 1983 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_DOWN]); 1984 1985 path = tb_path_discover(tunnel->dst_port, -1, down, TB_USB3_HOPID, NULL, 1986 "USB3 Up", alloc_hopid); 1987 if (!path) 1988 goto err_deactivate; 1989 tunnel->paths[TB_USB3_PATH_UP] = path; 1990 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_UP]); 1991 1992 /* Validate that the tunnel is complete */ 1993 if (!tb_port_is_usb3_up(tunnel->dst_port)) { 1994 tb_port_warn(tunnel->dst_port, 1995 "path does not end on an USB3 adapter, cleaning up\n"); 1996 goto err_deactivate; 1997 } 1998 1999 if (down != tunnel->src_port) { 2000 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 2001 goto err_deactivate; 2002 } 2003 2004 if (!tb_usb3_port_is_enabled(tunnel->dst_port)) { 2005 tb_tunnel_warn(tunnel, 2006 "tunnel is not fully activated, cleaning up\n"); 2007 goto err_deactivate; 2008 } 2009 2010 if (!tb_route(down->sw)) { 2011 int ret; 2012 2013 /* 2014 * Read the initial bandwidth allocation for the first 2015 * hop tunnel. 2016 */ 2017 ret = usb4_usb3_port_allocated_bandwidth(down, 2018 &tunnel->allocated_up, &tunnel->allocated_down); 2019 if (ret) 2020 goto err_deactivate; 2021 2022 tb_tunnel_dbg(tunnel, "currently allocated bandwidth %d/%d Mb/s\n", 2023 tunnel->allocated_up, tunnel->allocated_down); 2024 2025 tunnel->init = tb_usb3_init; 2026 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 2027 tunnel->release_unused_bandwidth = 2028 tb_usb3_release_unused_bandwidth; 2029 tunnel->reclaim_available_bandwidth = 2030 tb_usb3_reclaim_available_bandwidth; 2031 } 2032 2033 tb_tunnel_dbg(tunnel, "discovered\n"); 2034 return tunnel; 2035 2036 err_deactivate: 2037 tb_tunnel_deactivate(tunnel); 2038 err_free: 2039 tb_tunnel_free(tunnel); 2040 2041 return NULL; 2042 } 2043 2044 /** 2045 * tb_tunnel_alloc_usb3() - allocate a USB3 tunnel 2046 * @tb: Pointer to the domain structure 2047 * @up: USB3 upstream adapter port 2048 * @down: USB3 downstream adapter port 2049 * @max_up: Maximum available upstream bandwidth for the USB3 tunnel (%0 2050 * if not limited). 2051 * @max_down: Maximum available downstream bandwidth for the USB3 tunnel 2052 * (%0 if not limited). 2053 * 2054 * Allocate an USB3 tunnel. The ports must be of type @TB_TYPE_USB3_UP and 2055 * @TB_TYPE_USB3_DOWN. 2056 * 2057 * Return: Returns a tb_tunnel on success or %NULL on failure. 2058 */ 2059 struct tb_tunnel *tb_tunnel_alloc_usb3(struct tb *tb, struct tb_port *up, 2060 struct tb_port *down, int max_up, 2061 int max_down) 2062 { 2063 struct tb_tunnel *tunnel; 2064 struct tb_path *path; 2065 int max_rate = 0; 2066 2067 /* 2068 * Check that we have enough bandwidth available for the new 2069 * USB3 tunnel. 2070 */ 2071 if (max_up > 0 || max_down > 0) { 2072 max_rate = tb_usb3_max_link_rate(down, up); 2073 if (max_rate < 0) 2074 return NULL; 2075 2076 /* Only 90% can be allocated for USB3 isochronous transfers */ 2077 max_rate = max_rate * 90 / 100; 2078 tb_port_dbg(up, "required bandwidth for USB3 tunnel %d Mb/s\n", 2079 max_rate); 2080 2081 if (max_rate > max_up || max_rate > max_down) { 2082 tb_port_warn(up, "not enough bandwidth for USB3 tunnel\n"); 2083 return NULL; 2084 } 2085 } 2086 2087 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 2088 if (!tunnel) 2089 return NULL; 2090 2091 tunnel->activate = tb_usb3_activate; 2092 tunnel->src_port = down; 2093 tunnel->dst_port = up; 2094 tunnel->max_up = max_up; 2095 tunnel->max_down = max_down; 2096 2097 path = tb_path_alloc(tb, down, TB_USB3_HOPID, up, TB_USB3_HOPID, 0, 2098 "USB3 Down"); 2099 if (!path) { 2100 tb_tunnel_free(tunnel); 2101 return NULL; 2102 } 2103 tb_usb3_init_path(path); 2104 tunnel->paths[TB_USB3_PATH_DOWN] = path; 2105 2106 path = tb_path_alloc(tb, up, TB_USB3_HOPID, down, TB_USB3_HOPID, 0, 2107 "USB3 Up"); 2108 if (!path) { 2109 tb_tunnel_free(tunnel); 2110 return NULL; 2111 } 2112 tb_usb3_init_path(path); 2113 tunnel->paths[TB_USB3_PATH_UP] = path; 2114 2115 if (!tb_route(down->sw)) { 2116 tunnel->allocated_up = max_rate; 2117 tunnel->allocated_down = max_rate; 2118 2119 tunnel->init = tb_usb3_init; 2120 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 2121 tunnel->release_unused_bandwidth = 2122 tb_usb3_release_unused_bandwidth; 2123 tunnel->reclaim_available_bandwidth = 2124 tb_usb3_reclaim_available_bandwidth; 2125 } 2126 2127 return tunnel; 2128 } 2129 2130 /** 2131 * tb_tunnel_free() - free a tunnel 2132 * @tunnel: Tunnel to be freed 2133 * 2134 * Frees a tunnel. The tunnel does not need to be deactivated. 2135 */ 2136 void tb_tunnel_free(struct tb_tunnel *tunnel) 2137 { 2138 int i; 2139 2140 if (!tunnel) 2141 return; 2142 2143 if (tunnel->deinit) 2144 tunnel->deinit(tunnel); 2145 2146 for (i = 0; i < tunnel->npaths; i++) { 2147 if (tunnel->paths[i]) 2148 tb_path_free(tunnel->paths[i]); 2149 } 2150 2151 kfree(tunnel->paths); 2152 kfree(tunnel); 2153 } 2154 2155 /** 2156 * tb_tunnel_is_invalid - check whether an activated path is still valid 2157 * @tunnel: Tunnel to check 2158 */ 2159 bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel) 2160 { 2161 int i; 2162 2163 for (i = 0; i < tunnel->npaths; i++) { 2164 WARN_ON(!tunnel->paths[i]->activated); 2165 if (tb_path_is_invalid(tunnel->paths[i])) 2166 return true; 2167 } 2168 2169 return false; 2170 } 2171 2172 /** 2173 * tb_tunnel_restart() - activate a tunnel after a hardware reset 2174 * @tunnel: Tunnel to restart 2175 * 2176 * Return: 0 on success and negative errno in case if failure 2177 */ 2178 int tb_tunnel_restart(struct tb_tunnel *tunnel) 2179 { 2180 int res, i; 2181 2182 tb_tunnel_dbg(tunnel, "activating\n"); 2183 2184 /* 2185 * Make sure all paths are properly disabled before enabling 2186 * them again. 2187 */ 2188 for (i = 0; i < tunnel->npaths; i++) { 2189 if (tunnel->paths[i]->activated) { 2190 tb_path_deactivate(tunnel->paths[i]); 2191 tunnel->paths[i]->activated = false; 2192 } 2193 } 2194 2195 if (tunnel->init) { 2196 res = tunnel->init(tunnel); 2197 if (res) 2198 return res; 2199 } 2200 2201 for (i = 0; i < tunnel->npaths; i++) { 2202 res = tb_path_activate(tunnel->paths[i]); 2203 if (res) 2204 goto err; 2205 } 2206 2207 if (tunnel->activate) { 2208 res = tunnel->activate(tunnel, true); 2209 if (res) 2210 goto err; 2211 } 2212 2213 return 0; 2214 2215 err: 2216 tb_tunnel_warn(tunnel, "activation failed\n"); 2217 tb_tunnel_deactivate(tunnel); 2218 return res; 2219 } 2220 2221 /** 2222 * tb_tunnel_activate() - activate a tunnel 2223 * @tunnel: Tunnel to activate 2224 * 2225 * Return: Returns 0 on success or an error code on failure. 2226 */ 2227 int tb_tunnel_activate(struct tb_tunnel *tunnel) 2228 { 2229 int i; 2230 2231 for (i = 0; i < tunnel->npaths; i++) { 2232 if (tunnel->paths[i]->activated) { 2233 tb_tunnel_WARN(tunnel, 2234 "trying to activate an already activated tunnel\n"); 2235 return -EINVAL; 2236 } 2237 } 2238 2239 return tb_tunnel_restart(tunnel); 2240 } 2241 2242 /** 2243 * tb_tunnel_deactivate() - deactivate a tunnel 2244 * @tunnel: Tunnel to deactivate 2245 */ 2246 void tb_tunnel_deactivate(struct tb_tunnel *tunnel) 2247 { 2248 int i; 2249 2250 tb_tunnel_dbg(tunnel, "deactivating\n"); 2251 2252 if (tunnel->activate) 2253 tunnel->activate(tunnel, false); 2254 2255 for (i = 0; i < tunnel->npaths; i++) { 2256 if (tunnel->paths[i] && tunnel->paths[i]->activated) 2257 tb_path_deactivate(tunnel->paths[i]); 2258 } 2259 } 2260 2261 /** 2262 * tb_tunnel_port_on_path() - Does the tunnel go through port 2263 * @tunnel: Tunnel to check 2264 * @port: Port to check 2265 * 2266 * Returns true if @tunnel goes through @port (direction does not matter), 2267 * false otherwise. 2268 */ 2269 bool tb_tunnel_port_on_path(const struct tb_tunnel *tunnel, 2270 const struct tb_port *port) 2271 { 2272 int i; 2273 2274 for (i = 0; i < tunnel->npaths; i++) { 2275 if (!tunnel->paths[i]) 2276 continue; 2277 2278 if (tb_path_port_on_path(tunnel->paths[i], port)) 2279 return true; 2280 } 2281 2282 return false; 2283 } 2284 2285 static bool tb_tunnel_is_active(const struct tb_tunnel *tunnel) 2286 { 2287 int i; 2288 2289 for (i = 0; i < tunnel->npaths; i++) { 2290 if (!tunnel->paths[i]) 2291 return false; 2292 if (!tunnel->paths[i]->activated) 2293 return false; 2294 } 2295 2296 return true; 2297 } 2298 2299 /** 2300 * tb_tunnel_maximum_bandwidth() - Return maximum possible bandwidth 2301 * @tunnel: Tunnel to check 2302 * @max_up: Maximum upstream bandwidth in Mb/s 2303 * @max_down: Maximum downstream bandwidth in Mb/s 2304 * 2305 * Returns maximum possible bandwidth this tunnel can go if not limited 2306 * by other bandwidth clients. If the tunnel does not support this 2307 * returns %-EOPNOTSUPP. 2308 */ 2309 int tb_tunnel_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up, 2310 int *max_down) 2311 { 2312 if (!tb_tunnel_is_active(tunnel)) 2313 return -EINVAL; 2314 2315 if (tunnel->maximum_bandwidth) 2316 return tunnel->maximum_bandwidth(tunnel, max_up, max_down); 2317 return -EOPNOTSUPP; 2318 } 2319 2320 /** 2321 * tb_tunnel_allocated_bandwidth() - Return bandwidth allocated for the tunnel 2322 * @tunnel: Tunnel to check 2323 * @allocated_up: Currently allocated upstream bandwidth in Mb/s is stored here 2324 * @allocated_down: Currently allocated downstream bandwidth in Mb/s is 2325 * stored here 2326 * 2327 * Returns the bandwidth allocated for the tunnel. This may be higher 2328 * than what the tunnel actually consumes. 2329 */ 2330 int tb_tunnel_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up, 2331 int *allocated_down) 2332 { 2333 if (!tb_tunnel_is_active(tunnel)) 2334 return -EINVAL; 2335 2336 if (tunnel->allocated_bandwidth) 2337 return tunnel->allocated_bandwidth(tunnel, allocated_up, 2338 allocated_down); 2339 return -EOPNOTSUPP; 2340 } 2341 2342 /** 2343 * tb_tunnel_alloc_bandwidth() - Change tunnel bandwidth allocation 2344 * @tunnel: Tunnel whose bandwidth allocation to change 2345 * @alloc_up: New upstream bandwidth in Mb/s 2346 * @alloc_down: New downstream bandwidth in Mb/s 2347 * 2348 * Tries to change tunnel bandwidth allocation. If succeeds returns %0 2349 * and updates @alloc_up and @alloc_down to that was actually allocated 2350 * (it may not be the same as passed originally). Returns negative errno 2351 * in case of failure. 2352 */ 2353 int tb_tunnel_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up, 2354 int *alloc_down) 2355 { 2356 if (!tb_tunnel_is_active(tunnel)) 2357 return -EINVAL; 2358 2359 if (tunnel->alloc_bandwidth) 2360 return tunnel->alloc_bandwidth(tunnel, alloc_up, alloc_down); 2361 2362 return -EOPNOTSUPP; 2363 } 2364 2365 /** 2366 * tb_tunnel_consumed_bandwidth() - Return bandwidth consumed by the tunnel 2367 * @tunnel: Tunnel to check 2368 * @consumed_up: Consumed bandwidth in Mb/s from @dst_port to @src_port. 2369 * Can be %NULL. 2370 * @consumed_down: Consumed bandwidth in Mb/s from @src_port to @dst_port. 2371 * Can be %NULL. 2372 * 2373 * Stores the amount of isochronous bandwidth @tunnel consumes in 2374 * @consumed_up and @consumed_down. In case of success returns %0, 2375 * negative errno otherwise. 2376 */ 2377 int tb_tunnel_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 2378 int *consumed_down) 2379 { 2380 int up_bw = 0, down_bw = 0; 2381 2382 if (!tb_tunnel_is_active(tunnel)) 2383 goto out; 2384 2385 if (tunnel->consumed_bandwidth) { 2386 int ret; 2387 2388 ret = tunnel->consumed_bandwidth(tunnel, &up_bw, &down_bw); 2389 if (ret) 2390 return ret; 2391 2392 tb_tunnel_dbg(tunnel, "consumed bandwidth %d/%d Mb/s\n", up_bw, 2393 down_bw); 2394 } 2395 2396 out: 2397 if (consumed_up) 2398 *consumed_up = up_bw; 2399 if (consumed_down) 2400 *consumed_down = down_bw; 2401 2402 return 0; 2403 } 2404 2405 /** 2406 * tb_tunnel_release_unused_bandwidth() - Release unused bandwidth 2407 * @tunnel: Tunnel whose unused bandwidth to release 2408 * 2409 * If tunnel supports dynamic bandwidth management (USB3 tunnels at the 2410 * moment) this function makes it to release all the unused bandwidth. 2411 * 2412 * Returns %0 in case of success and negative errno otherwise. 2413 */ 2414 int tb_tunnel_release_unused_bandwidth(struct tb_tunnel *tunnel) 2415 { 2416 if (!tb_tunnel_is_active(tunnel)) 2417 return 0; 2418 2419 if (tunnel->release_unused_bandwidth) { 2420 int ret; 2421 2422 ret = tunnel->release_unused_bandwidth(tunnel); 2423 if (ret) 2424 return ret; 2425 } 2426 2427 return 0; 2428 } 2429 2430 /** 2431 * tb_tunnel_reclaim_available_bandwidth() - Reclaim available bandwidth 2432 * @tunnel: Tunnel reclaiming available bandwidth 2433 * @available_up: Available upstream bandwidth (in Mb/s) 2434 * @available_down: Available downstream bandwidth (in Mb/s) 2435 * 2436 * Reclaims bandwidth from @available_up and @available_down and updates 2437 * the variables accordingly (e.g decreases both according to what was 2438 * reclaimed by the tunnel). If nothing was reclaimed the values are 2439 * kept as is. 2440 */ 2441 void tb_tunnel_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 2442 int *available_up, 2443 int *available_down) 2444 { 2445 if (!tb_tunnel_is_active(tunnel)) 2446 return; 2447 2448 if (tunnel->reclaim_available_bandwidth) 2449 tunnel->reclaim_available_bandwidth(tunnel, available_up, 2450 available_down); 2451 } 2452 2453 const char *tb_tunnel_type_name(const struct tb_tunnel *tunnel) 2454 { 2455 return tb_tunnel_names[tunnel->type]; 2456 } 2457