1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - Tunneling support 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/list.h> 12 #include <linux/ktime.h> 13 #include <linux/string_helpers.h> 14 15 #include "tunnel.h" 16 #include "tb.h" 17 18 /* PCIe adapters use always HopID of 8 for both directions */ 19 #define TB_PCI_HOPID 8 20 21 #define TB_PCI_PATH_DOWN 0 22 #define TB_PCI_PATH_UP 1 23 24 /* USB3 adapters use always HopID of 8 for both directions */ 25 #define TB_USB3_HOPID 8 26 27 #define TB_USB3_PATH_DOWN 0 28 #define TB_USB3_PATH_UP 1 29 30 /* DP adapters use HopID 8 for AUX and 9 for Video */ 31 #define TB_DP_AUX_TX_HOPID 8 32 #define TB_DP_AUX_RX_HOPID 8 33 #define TB_DP_VIDEO_HOPID 9 34 35 #define TB_DP_VIDEO_PATH_OUT 0 36 #define TB_DP_AUX_PATH_OUT 1 37 #define TB_DP_AUX_PATH_IN 2 38 39 /* Minimum number of credits needed for PCIe path */ 40 #define TB_MIN_PCIE_CREDITS 6U 41 /* 42 * Number of credits we try to allocate for each DMA path if not limited 43 * by the host router baMaxHI. 44 */ 45 #define TB_DMA_CREDITS 14 46 /* Minimum number of credits for DMA path */ 47 #define TB_MIN_DMA_CREDITS 1 48 49 static unsigned int dma_credits = TB_DMA_CREDITS; 50 module_param(dma_credits, uint, 0444); 51 MODULE_PARM_DESC(dma_credits, "specify custom credits for DMA tunnels (default: " 52 __MODULE_STRING(TB_DMA_CREDITS) ")"); 53 54 static bool bw_alloc_mode = true; 55 module_param(bw_alloc_mode, bool, 0444); 56 MODULE_PARM_DESC(bw_alloc_mode, 57 "enable bandwidth allocation mode if supported (default: true)"); 58 59 static const char * const tb_tunnel_names[] = { "PCI", "DP", "DMA", "USB3" }; 60 61 #define __TB_TUNNEL_PRINT(level, tunnel, fmt, arg...) \ 62 do { \ 63 struct tb_tunnel *__tunnel = (tunnel); \ 64 level(__tunnel->tb, "%llx:%u <-> %llx:%u (%s): " fmt, \ 65 tb_route(__tunnel->src_port->sw), \ 66 __tunnel->src_port->port, \ 67 tb_route(__tunnel->dst_port->sw), \ 68 __tunnel->dst_port->port, \ 69 tb_tunnel_names[__tunnel->type], \ 70 ## arg); \ 71 } while (0) 72 73 #define tb_tunnel_WARN(tunnel, fmt, arg...) \ 74 __TB_TUNNEL_PRINT(tb_WARN, tunnel, fmt, ##arg) 75 #define tb_tunnel_warn(tunnel, fmt, arg...) \ 76 __TB_TUNNEL_PRINT(tb_warn, tunnel, fmt, ##arg) 77 #define tb_tunnel_info(tunnel, fmt, arg...) \ 78 __TB_TUNNEL_PRINT(tb_info, tunnel, fmt, ##arg) 79 #define tb_tunnel_dbg(tunnel, fmt, arg...) \ 80 __TB_TUNNEL_PRINT(tb_dbg, tunnel, fmt, ##arg) 81 82 static inline unsigned int tb_usable_credits(const struct tb_port *port) 83 { 84 return port->total_credits - port->ctl_credits; 85 } 86 87 /** 88 * tb_available_credits() - Available credits for PCIe and DMA 89 * @port: Lane adapter to check 90 * @max_dp_streams: If non-%NULL stores maximum number of simultaneous DP 91 * streams possible through this lane adapter 92 */ 93 static unsigned int tb_available_credits(const struct tb_port *port, 94 size_t *max_dp_streams) 95 { 96 const struct tb_switch *sw = port->sw; 97 int credits, usb3, pcie, spare; 98 size_t ndp; 99 100 usb3 = tb_acpi_may_tunnel_usb3() ? sw->max_usb3_credits : 0; 101 pcie = tb_acpi_may_tunnel_pcie() ? sw->max_pcie_credits : 0; 102 103 if (tb_acpi_is_xdomain_allowed()) { 104 spare = min_not_zero(sw->max_dma_credits, dma_credits); 105 /* Add some credits for potential second DMA tunnel */ 106 spare += TB_MIN_DMA_CREDITS; 107 } else { 108 spare = 0; 109 } 110 111 credits = tb_usable_credits(port); 112 if (tb_acpi_may_tunnel_dp()) { 113 /* 114 * Maximum number of DP streams possible through the 115 * lane adapter. 116 */ 117 if (sw->min_dp_aux_credits + sw->min_dp_main_credits) 118 ndp = (credits - (usb3 + pcie + spare)) / 119 (sw->min_dp_aux_credits + sw->min_dp_main_credits); 120 else 121 ndp = 0; 122 } else { 123 ndp = 0; 124 } 125 credits -= ndp * (sw->min_dp_aux_credits + sw->min_dp_main_credits); 126 credits -= usb3; 127 128 if (max_dp_streams) 129 *max_dp_streams = ndp; 130 131 return credits > 0 ? credits : 0; 132 } 133 134 static struct tb_tunnel *tb_tunnel_alloc(struct tb *tb, size_t npaths, 135 enum tb_tunnel_type type) 136 { 137 struct tb_tunnel *tunnel; 138 139 tunnel = kzalloc(sizeof(*tunnel), GFP_KERNEL); 140 if (!tunnel) 141 return NULL; 142 143 tunnel->paths = kcalloc(npaths, sizeof(tunnel->paths[0]), GFP_KERNEL); 144 if (!tunnel->paths) { 145 tb_tunnel_free(tunnel); 146 return NULL; 147 } 148 149 INIT_LIST_HEAD(&tunnel->list); 150 tunnel->tb = tb; 151 tunnel->npaths = npaths; 152 tunnel->type = type; 153 154 return tunnel; 155 } 156 157 static int tb_pci_set_ext_encapsulation(struct tb_tunnel *tunnel, bool enable) 158 { 159 int ret; 160 161 /* Only supported of both routers are at least USB4 v2 */ 162 if (usb4_switch_version(tunnel->src_port->sw) < 2 || 163 usb4_switch_version(tunnel->dst_port->sw) < 2) 164 return 0; 165 166 ret = usb4_pci_port_set_ext_encapsulation(tunnel->src_port, enable); 167 if (ret) 168 return ret; 169 170 ret = usb4_pci_port_set_ext_encapsulation(tunnel->dst_port, enable); 171 if (ret) 172 return ret; 173 174 tb_tunnel_dbg(tunnel, "extended encapsulation %s\n", 175 str_enabled_disabled(enable)); 176 return 0; 177 } 178 179 static int tb_pci_activate(struct tb_tunnel *tunnel, bool activate) 180 { 181 int res; 182 183 if (activate) { 184 res = tb_pci_set_ext_encapsulation(tunnel, activate); 185 if (res) 186 return res; 187 } 188 189 res = tb_pci_port_enable(tunnel->src_port, activate); 190 if (res) 191 return res; 192 193 if (tb_port_is_pcie_up(tunnel->dst_port)) { 194 res = tb_pci_port_enable(tunnel->dst_port, activate); 195 if (res) 196 return res; 197 } 198 199 return activate ? 0 : tb_pci_set_ext_encapsulation(tunnel, activate); 200 } 201 202 static int tb_pci_init_credits(struct tb_path_hop *hop) 203 { 204 struct tb_port *port = hop->in_port; 205 struct tb_switch *sw = port->sw; 206 unsigned int credits; 207 208 if (tb_port_use_credit_allocation(port)) { 209 unsigned int available; 210 211 available = tb_available_credits(port, NULL); 212 credits = min(sw->max_pcie_credits, available); 213 214 if (credits < TB_MIN_PCIE_CREDITS) 215 return -ENOSPC; 216 217 credits = max(TB_MIN_PCIE_CREDITS, credits); 218 } else { 219 if (tb_port_is_null(port)) 220 credits = port->bonded ? 32 : 16; 221 else 222 credits = 7; 223 } 224 225 hop->initial_credits = credits; 226 return 0; 227 } 228 229 static int tb_pci_init_path(struct tb_path *path) 230 { 231 struct tb_path_hop *hop; 232 233 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 234 path->egress_shared_buffer = TB_PATH_NONE; 235 path->ingress_fc_enable = TB_PATH_ALL; 236 path->ingress_shared_buffer = TB_PATH_NONE; 237 path->priority = 3; 238 path->weight = 1; 239 path->drop_packages = 0; 240 241 tb_path_for_each_hop(path, hop) { 242 int ret; 243 244 ret = tb_pci_init_credits(hop); 245 if (ret) 246 return ret; 247 } 248 249 return 0; 250 } 251 252 /** 253 * tb_tunnel_discover_pci() - Discover existing PCIe tunnels 254 * @tb: Pointer to the domain structure 255 * @down: PCIe downstream adapter 256 * @alloc_hopid: Allocate HopIDs from visited ports 257 * 258 * If @down adapter is active, follows the tunnel to the PCIe upstream 259 * adapter and back. Returns the discovered tunnel or %NULL if there was 260 * no tunnel. 261 */ 262 struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down, 263 bool alloc_hopid) 264 { 265 struct tb_tunnel *tunnel; 266 struct tb_path *path; 267 268 if (!tb_pci_port_is_enabled(down)) 269 return NULL; 270 271 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 272 if (!tunnel) 273 return NULL; 274 275 tunnel->activate = tb_pci_activate; 276 tunnel->src_port = down; 277 278 /* 279 * Discover both paths even if they are not complete. We will 280 * clean them up by calling tb_tunnel_deactivate() below in that 281 * case. 282 */ 283 path = tb_path_discover(down, TB_PCI_HOPID, NULL, -1, 284 &tunnel->dst_port, "PCIe Up", alloc_hopid); 285 if (!path) { 286 /* Just disable the downstream port */ 287 tb_pci_port_enable(down, false); 288 goto err_free; 289 } 290 tunnel->paths[TB_PCI_PATH_UP] = path; 291 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_UP])) 292 goto err_free; 293 294 path = tb_path_discover(tunnel->dst_port, -1, down, TB_PCI_HOPID, NULL, 295 "PCIe Down", alloc_hopid); 296 if (!path) 297 goto err_deactivate; 298 tunnel->paths[TB_PCI_PATH_DOWN] = path; 299 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_DOWN])) 300 goto err_deactivate; 301 302 /* Validate that the tunnel is complete */ 303 if (!tb_port_is_pcie_up(tunnel->dst_port)) { 304 tb_port_warn(tunnel->dst_port, 305 "path does not end on a PCIe adapter, cleaning up\n"); 306 goto err_deactivate; 307 } 308 309 if (down != tunnel->src_port) { 310 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 311 goto err_deactivate; 312 } 313 314 if (!tb_pci_port_is_enabled(tunnel->dst_port)) { 315 tb_tunnel_warn(tunnel, 316 "tunnel is not fully activated, cleaning up\n"); 317 goto err_deactivate; 318 } 319 320 tb_tunnel_dbg(tunnel, "discovered\n"); 321 return tunnel; 322 323 err_deactivate: 324 tb_tunnel_deactivate(tunnel); 325 err_free: 326 tb_tunnel_free(tunnel); 327 328 return NULL; 329 } 330 331 /** 332 * tb_tunnel_alloc_pci() - allocate a pci tunnel 333 * @tb: Pointer to the domain structure 334 * @up: PCIe upstream adapter port 335 * @down: PCIe downstream adapter port 336 * 337 * Allocate a PCI tunnel. The ports must be of type TB_TYPE_PCIE_UP and 338 * TB_TYPE_PCIE_DOWN. 339 * 340 * Return: Returns a tb_tunnel on success or NULL on failure. 341 */ 342 struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up, 343 struct tb_port *down) 344 { 345 struct tb_tunnel *tunnel; 346 struct tb_path *path; 347 348 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 349 if (!tunnel) 350 return NULL; 351 352 tunnel->activate = tb_pci_activate; 353 tunnel->src_port = down; 354 tunnel->dst_port = up; 355 356 path = tb_path_alloc(tb, down, TB_PCI_HOPID, up, TB_PCI_HOPID, 0, 357 "PCIe Down"); 358 if (!path) 359 goto err_free; 360 tunnel->paths[TB_PCI_PATH_DOWN] = path; 361 if (tb_pci_init_path(path)) 362 goto err_free; 363 364 path = tb_path_alloc(tb, up, TB_PCI_HOPID, down, TB_PCI_HOPID, 0, 365 "PCIe Up"); 366 if (!path) 367 goto err_free; 368 tunnel->paths[TB_PCI_PATH_UP] = path; 369 if (tb_pci_init_path(path)) 370 goto err_free; 371 372 return tunnel; 373 374 err_free: 375 tb_tunnel_free(tunnel); 376 return NULL; 377 } 378 379 static bool tb_dp_is_usb4(const struct tb_switch *sw) 380 { 381 /* Titan Ridge DP adapters need the same treatment as USB4 */ 382 return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw); 383 } 384 385 static int tb_dp_cm_handshake(struct tb_port *in, struct tb_port *out, 386 int timeout_msec) 387 { 388 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 389 u32 val; 390 int ret; 391 392 /* Both ends need to support this */ 393 if (!tb_dp_is_usb4(in->sw) || !tb_dp_is_usb4(out->sw)) 394 return 0; 395 396 ret = tb_port_read(out, &val, TB_CFG_PORT, 397 out->cap_adap + DP_STATUS_CTRL, 1); 398 if (ret) 399 return ret; 400 401 val |= DP_STATUS_CTRL_UF | DP_STATUS_CTRL_CMHS; 402 403 ret = tb_port_write(out, &val, TB_CFG_PORT, 404 out->cap_adap + DP_STATUS_CTRL, 1); 405 if (ret) 406 return ret; 407 408 do { 409 ret = tb_port_read(out, &val, TB_CFG_PORT, 410 out->cap_adap + DP_STATUS_CTRL, 1); 411 if (ret) 412 return ret; 413 if (!(val & DP_STATUS_CTRL_CMHS)) 414 return 0; 415 usleep_range(100, 150); 416 } while (ktime_before(ktime_get(), timeout)); 417 418 return -ETIMEDOUT; 419 } 420 421 /* 422 * Returns maximum possible rate from capability supporting only DP 2.0 423 * and below. Used when DP BW allocation mode is not enabled. 424 */ 425 static inline u32 tb_dp_cap_get_rate(u32 val) 426 { 427 u32 rate = (val & DP_COMMON_CAP_RATE_MASK) >> DP_COMMON_CAP_RATE_SHIFT; 428 429 switch (rate) { 430 case DP_COMMON_CAP_RATE_RBR: 431 return 1620; 432 case DP_COMMON_CAP_RATE_HBR: 433 return 2700; 434 case DP_COMMON_CAP_RATE_HBR2: 435 return 5400; 436 case DP_COMMON_CAP_RATE_HBR3: 437 return 8100; 438 default: 439 return 0; 440 } 441 } 442 443 /* 444 * Returns maximum possible rate from capability supporting DP 2.1 445 * UHBR20, 13.5 and 10 rates as well. Use only when DP BW allocation 446 * mode is enabled. 447 */ 448 static inline u32 tb_dp_cap_get_rate_ext(u32 val) 449 { 450 if (val & DP_COMMON_CAP_UHBR20) 451 return 20000; 452 else if (val & DP_COMMON_CAP_UHBR13_5) 453 return 13500; 454 else if (val & DP_COMMON_CAP_UHBR10) 455 return 10000; 456 457 return tb_dp_cap_get_rate(val); 458 } 459 460 static inline bool tb_dp_is_uhbr_rate(unsigned int rate) 461 { 462 return rate >= 10000; 463 } 464 465 static inline u32 tb_dp_cap_set_rate(u32 val, u32 rate) 466 { 467 val &= ~DP_COMMON_CAP_RATE_MASK; 468 switch (rate) { 469 default: 470 WARN(1, "invalid rate %u passed, defaulting to 1620 MB/s\n", rate); 471 fallthrough; 472 case 1620: 473 val |= DP_COMMON_CAP_RATE_RBR << DP_COMMON_CAP_RATE_SHIFT; 474 break; 475 case 2700: 476 val |= DP_COMMON_CAP_RATE_HBR << DP_COMMON_CAP_RATE_SHIFT; 477 break; 478 case 5400: 479 val |= DP_COMMON_CAP_RATE_HBR2 << DP_COMMON_CAP_RATE_SHIFT; 480 break; 481 case 8100: 482 val |= DP_COMMON_CAP_RATE_HBR3 << DP_COMMON_CAP_RATE_SHIFT; 483 break; 484 } 485 return val; 486 } 487 488 static inline u32 tb_dp_cap_get_lanes(u32 val) 489 { 490 u32 lanes = (val & DP_COMMON_CAP_LANES_MASK) >> DP_COMMON_CAP_LANES_SHIFT; 491 492 switch (lanes) { 493 case DP_COMMON_CAP_1_LANE: 494 return 1; 495 case DP_COMMON_CAP_2_LANES: 496 return 2; 497 case DP_COMMON_CAP_4_LANES: 498 return 4; 499 default: 500 return 0; 501 } 502 } 503 504 static inline u32 tb_dp_cap_set_lanes(u32 val, u32 lanes) 505 { 506 val &= ~DP_COMMON_CAP_LANES_MASK; 507 switch (lanes) { 508 default: 509 WARN(1, "invalid number of lanes %u passed, defaulting to 1\n", 510 lanes); 511 fallthrough; 512 case 1: 513 val |= DP_COMMON_CAP_1_LANE << DP_COMMON_CAP_LANES_SHIFT; 514 break; 515 case 2: 516 val |= DP_COMMON_CAP_2_LANES << DP_COMMON_CAP_LANES_SHIFT; 517 break; 518 case 4: 519 val |= DP_COMMON_CAP_4_LANES << DP_COMMON_CAP_LANES_SHIFT; 520 break; 521 } 522 return val; 523 } 524 525 static unsigned int tb_dp_bandwidth(unsigned int rate, unsigned int lanes) 526 { 527 /* Tunneling removes the DP 8b/10b 128/132b encoding */ 528 if (tb_dp_is_uhbr_rate(rate)) 529 return rate * lanes * 128 / 132; 530 return rate * lanes * 8 / 10; 531 } 532 533 static int tb_dp_reduce_bandwidth(int max_bw, u32 in_rate, u32 in_lanes, 534 u32 out_rate, u32 out_lanes, u32 *new_rate, 535 u32 *new_lanes) 536 { 537 static const u32 dp_bw[][2] = { 538 /* Mb/s, lanes */ 539 { 8100, 4 }, /* 25920 Mb/s */ 540 { 5400, 4 }, /* 17280 Mb/s */ 541 { 8100, 2 }, /* 12960 Mb/s */ 542 { 2700, 4 }, /* 8640 Mb/s */ 543 { 5400, 2 }, /* 8640 Mb/s */ 544 { 8100, 1 }, /* 6480 Mb/s */ 545 { 1620, 4 }, /* 5184 Mb/s */ 546 { 5400, 1 }, /* 4320 Mb/s */ 547 { 2700, 2 }, /* 4320 Mb/s */ 548 { 1620, 2 }, /* 2592 Mb/s */ 549 { 2700, 1 }, /* 2160 Mb/s */ 550 { 1620, 1 }, /* 1296 Mb/s */ 551 }; 552 unsigned int i; 553 554 /* 555 * Find a combination that can fit into max_bw and does not 556 * exceed the maximum rate and lanes supported by the DP OUT and 557 * DP IN adapters. 558 */ 559 for (i = 0; i < ARRAY_SIZE(dp_bw); i++) { 560 if (dp_bw[i][0] > out_rate || dp_bw[i][1] > out_lanes) 561 continue; 562 563 if (dp_bw[i][0] > in_rate || dp_bw[i][1] > in_lanes) 564 continue; 565 566 if (tb_dp_bandwidth(dp_bw[i][0], dp_bw[i][1]) <= max_bw) { 567 *new_rate = dp_bw[i][0]; 568 *new_lanes = dp_bw[i][1]; 569 return 0; 570 } 571 } 572 573 return -ENOSR; 574 } 575 576 static int tb_dp_xchg_caps(struct tb_tunnel *tunnel) 577 { 578 u32 out_dp_cap, out_rate, out_lanes, in_dp_cap, in_rate, in_lanes, bw; 579 struct tb_port *out = tunnel->dst_port; 580 struct tb_port *in = tunnel->src_port; 581 int ret, max_bw; 582 583 /* 584 * Copy DP_LOCAL_CAP register to DP_REMOTE_CAP register for 585 * newer generation hardware. 586 */ 587 if (in->sw->generation < 2 || out->sw->generation < 2) 588 return 0; 589 590 /* 591 * Perform connection manager handshake between IN and OUT ports 592 * before capabilities exchange can take place. 593 */ 594 ret = tb_dp_cm_handshake(in, out, 3000); 595 if (ret) 596 return ret; 597 598 /* Read both DP_LOCAL_CAP registers */ 599 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 600 in->cap_adap + DP_LOCAL_CAP, 1); 601 if (ret) 602 return ret; 603 604 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 605 out->cap_adap + DP_LOCAL_CAP, 1); 606 if (ret) 607 return ret; 608 609 /* Write IN local caps to OUT remote caps */ 610 ret = tb_port_write(out, &in_dp_cap, TB_CFG_PORT, 611 out->cap_adap + DP_REMOTE_CAP, 1); 612 if (ret) 613 return ret; 614 615 in_rate = tb_dp_cap_get_rate(in_dp_cap); 616 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 617 tb_port_dbg(in, "maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 618 in_rate, in_lanes, tb_dp_bandwidth(in_rate, in_lanes)); 619 620 /* 621 * If the tunnel bandwidth is limited (max_bw is set) then see 622 * if we need to reduce bandwidth to fit there. 623 */ 624 out_rate = tb_dp_cap_get_rate(out_dp_cap); 625 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 626 bw = tb_dp_bandwidth(out_rate, out_lanes); 627 tb_port_dbg(out, "maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 628 out_rate, out_lanes, bw); 629 630 if (in->sw->config.depth < out->sw->config.depth) 631 max_bw = tunnel->max_down; 632 else 633 max_bw = tunnel->max_up; 634 635 if (max_bw && bw > max_bw) { 636 u32 new_rate, new_lanes, new_bw; 637 638 ret = tb_dp_reduce_bandwidth(max_bw, in_rate, in_lanes, 639 out_rate, out_lanes, &new_rate, 640 &new_lanes); 641 if (ret) { 642 tb_port_info(out, "not enough bandwidth for DP tunnel\n"); 643 return ret; 644 } 645 646 new_bw = tb_dp_bandwidth(new_rate, new_lanes); 647 tb_port_dbg(out, "bandwidth reduced to %u Mb/s x%u = %u Mb/s\n", 648 new_rate, new_lanes, new_bw); 649 650 /* 651 * Set new rate and number of lanes before writing it to 652 * the IN port remote caps. 653 */ 654 out_dp_cap = tb_dp_cap_set_rate(out_dp_cap, new_rate); 655 out_dp_cap = tb_dp_cap_set_lanes(out_dp_cap, new_lanes); 656 } 657 658 /* 659 * Titan Ridge does not disable AUX timers when it gets 660 * SET_CONFIG with SET_LTTPR_MODE set. This causes problems with 661 * DP tunneling. 662 */ 663 if (tb_route(out->sw) && tb_switch_is_titan_ridge(out->sw)) { 664 out_dp_cap |= DP_COMMON_CAP_LTTPR_NS; 665 tb_port_dbg(out, "disabling LTTPR\n"); 666 } 667 668 return tb_port_write(in, &out_dp_cap, TB_CFG_PORT, 669 in->cap_adap + DP_REMOTE_CAP, 1); 670 } 671 672 static int tb_dp_bandwidth_alloc_mode_enable(struct tb_tunnel *tunnel) 673 { 674 int ret, estimated_bw, granularity, tmp; 675 struct tb_port *out = tunnel->dst_port; 676 struct tb_port *in = tunnel->src_port; 677 u32 out_dp_cap, out_rate, out_lanes; 678 u32 in_dp_cap, in_rate, in_lanes; 679 u32 rate, lanes; 680 681 if (!bw_alloc_mode) 682 return 0; 683 684 ret = usb4_dp_port_set_cm_bandwidth_mode_supported(in, true); 685 if (ret) 686 return ret; 687 688 ret = usb4_dp_port_set_group_id(in, in->group->index); 689 if (ret) 690 return ret; 691 692 /* 693 * Get the non-reduced rate and lanes based on the lowest 694 * capability of both adapters. 695 */ 696 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 697 in->cap_adap + DP_LOCAL_CAP, 1); 698 if (ret) 699 return ret; 700 701 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 702 out->cap_adap + DP_LOCAL_CAP, 1); 703 if (ret) 704 return ret; 705 706 in_rate = tb_dp_cap_get_rate(in_dp_cap); 707 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 708 out_rate = tb_dp_cap_get_rate(out_dp_cap); 709 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 710 711 rate = min(in_rate, out_rate); 712 lanes = min(in_lanes, out_lanes); 713 tmp = tb_dp_bandwidth(rate, lanes); 714 715 tb_port_dbg(in, "non-reduced bandwidth %u Mb/s x%u = %u Mb/s\n", rate, 716 lanes, tmp); 717 718 ret = usb4_dp_port_set_nrd(in, rate, lanes); 719 if (ret) 720 return ret; 721 722 /* 723 * Pick up granularity that supports maximum possible bandwidth. 724 * For that we use the UHBR rates too. 725 */ 726 in_rate = tb_dp_cap_get_rate_ext(in_dp_cap); 727 out_rate = tb_dp_cap_get_rate_ext(out_dp_cap); 728 rate = min(in_rate, out_rate); 729 tmp = tb_dp_bandwidth(rate, lanes); 730 731 tb_port_dbg(in, 732 "maximum bandwidth through allocation mode %u Mb/s x%u = %u Mb/s\n", 733 rate, lanes, tmp); 734 735 for (granularity = 250; tmp / granularity > 255 && granularity <= 1000; 736 granularity *= 2) 737 ; 738 739 tb_port_dbg(in, "granularity %d Mb/s\n", granularity); 740 741 /* 742 * Returns -EINVAL if granularity above is outside of the 743 * accepted ranges. 744 */ 745 ret = usb4_dp_port_set_granularity(in, granularity); 746 if (ret) 747 return ret; 748 749 /* 750 * Bandwidth estimation is pretty much what we have in 751 * max_up/down fields. For discovery we just read what the 752 * estimation was set to. 753 */ 754 if (in->sw->config.depth < out->sw->config.depth) 755 estimated_bw = tunnel->max_down; 756 else 757 estimated_bw = tunnel->max_up; 758 759 tb_port_dbg(in, "estimated bandwidth %d Mb/s\n", estimated_bw); 760 761 ret = usb4_dp_port_set_estimated_bandwidth(in, estimated_bw); 762 if (ret) 763 return ret; 764 765 /* Initial allocation should be 0 according the spec */ 766 ret = usb4_dp_port_allocate_bandwidth(in, 0); 767 if (ret) 768 return ret; 769 770 tb_port_dbg(in, "bandwidth allocation mode enabled\n"); 771 return 0; 772 } 773 774 static int tb_dp_init(struct tb_tunnel *tunnel) 775 { 776 struct tb_port *in = tunnel->src_port; 777 struct tb_switch *sw = in->sw; 778 struct tb *tb = in->sw->tb; 779 int ret; 780 781 ret = tb_dp_xchg_caps(tunnel); 782 if (ret) 783 return ret; 784 785 if (!tb_switch_is_usb4(sw)) 786 return 0; 787 788 if (!usb4_dp_port_bandwidth_mode_supported(in)) 789 return 0; 790 791 tb_port_dbg(in, "bandwidth allocation mode supported\n"); 792 793 ret = usb4_dp_port_set_cm_id(in, tb->index); 794 if (ret) 795 return ret; 796 797 return tb_dp_bandwidth_alloc_mode_enable(tunnel); 798 } 799 800 static void tb_dp_deinit(struct tb_tunnel *tunnel) 801 { 802 struct tb_port *in = tunnel->src_port; 803 804 if (!usb4_dp_port_bandwidth_mode_supported(in)) 805 return; 806 if (usb4_dp_port_bandwidth_mode_enabled(in)) { 807 usb4_dp_port_set_cm_bandwidth_mode_supported(in, false); 808 tb_port_dbg(in, "bandwidth allocation mode disabled\n"); 809 } 810 } 811 812 static int tb_dp_activate(struct tb_tunnel *tunnel, bool active) 813 { 814 int ret; 815 816 if (active) { 817 struct tb_path **paths; 818 int last; 819 820 paths = tunnel->paths; 821 last = paths[TB_DP_VIDEO_PATH_OUT]->path_length - 1; 822 823 tb_dp_port_set_hops(tunnel->src_port, 824 paths[TB_DP_VIDEO_PATH_OUT]->hops[0].in_hop_index, 825 paths[TB_DP_AUX_PATH_OUT]->hops[0].in_hop_index, 826 paths[TB_DP_AUX_PATH_IN]->hops[last].next_hop_index); 827 828 tb_dp_port_set_hops(tunnel->dst_port, 829 paths[TB_DP_VIDEO_PATH_OUT]->hops[last].next_hop_index, 830 paths[TB_DP_AUX_PATH_IN]->hops[0].in_hop_index, 831 paths[TB_DP_AUX_PATH_OUT]->hops[last].next_hop_index); 832 } else { 833 tb_dp_port_hpd_clear(tunnel->src_port); 834 tb_dp_port_set_hops(tunnel->src_port, 0, 0, 0); 835 if (tb_port_is_dpout(tunnel->dst_port)) 836 tb_dp_port_set_hops(tunnel->dst_port, 0, 0, 0); 837 } 838 839 ret = tb_dp_port_enable(tunnel->src_port, active); 840 if (ret) 841 return ret; 842 843 if (tb_port_is_dpout(tunnel->dst_port)) 844 return tb_dp_port_enable(tunnel->dst_port, active); 845 846 return 0; 847 } 848 849 /* max_bw is rounded up to next granularity */ 850 static int tb_dp_bandwidth_mode_maximum_bandwidth(struct tb_tunnel *tunnel, 851 int *max_bw) 852 { 853 struct tb_port *in = tunnel->src_port; 854 int ret, rate, lanes, nrd_bw; 855 u32 cap; 856 857 /* 858 * DP IN adapter DP_LOCAL_CAP gets updated to the lowest AUX 859 * read parameter values so this so we can use this to determine 860 * the maximum possible bandwidth over this link. 861 * 862 * See USB4 v2 spec 1.0 10.4.4.5. 863 */ 864 ret = tb_port_read(in, &cap, TB_CFG_PORT, 865 in->cap_adap + DP_LOCAL_CAP, 1); 866 if (ret) 867 return ret; 868 869 rate = tb_dp_cap_get_rate_ext(cap); 870 if (tb_dp_is_uhbr_rate(rate)) { 871 /* 872 * When UHBR is used there is no reduction in lanes so 873 * we can use this directly. 874 */ 875 lanes = tb_dp_cap_get_lanes(cap); 876 } else { 877 /* 878 * If there is no UHBR supported then check the 879 * non-reduced rate and lanes. 880 */ 881 ret = usb4_dp_port_nrd(in, &rate, &lanes); 882 if (ret) 883 return ret; 884 } 885 886 nrd_bw = tb_dp_bandwidth(rate, lanes); 887 888 if (max_bw) { 889 ret = usb4_dp_port_granularity(in); 890 if (ret < 0) 891 return ret; 892 *max_bw = roundup(nrd_bw, ret); 893 } 894 895 return nrd_bw; 896 } 897 898 static int tb_dp_bandwidth_mode_consumed_bandwidth(struct tb_tunnel *tunnel, 899 int *consumed_up, 900 int *consumed_down) 901 { 902 struct tb_port *out = tunnel->dst_port; 903 struct tb_port *in = tunnel->src_port; 904 int ret, allocated_bw, max_bw; 905 906 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 907 return -EOPNOTSUPP; 908 909 if (!tunnel->bw_mode) 910 return -EOPNOTSUPP; 911 912 /* Read what was allocated previously if any */ 913 ret = usb4_dp_port_allocated_bandwidth(in); 914 if (ret < 0) 915 return ret; 916 allocated_bw = ret; 917 918 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 919 if (ret < 0) 920 return ret; 921 if (allocated_bw == max_bw) 922 allocated_bw = ret; 923 924 tb_port_dbg(in, "consumed bandwidth through allocation mode %d Mb/s\n", 925 allocated_bw); 926 927 if (in->sw->config.depth < out->sw->config.depth) { 928 *consumed_up = 0; 929 *consumed_down = allocated_bw; 930 } else { 931 *consumed_up = allocated_bw; 932 *consumed_down = 0; 933 } 934 935 return 0; 936 } 937 938 static int tb_dp_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up, 939 int *allocated_down) 940 { 941 struct tb_port *out = tunnel->dst_port; 942 struct tb_port *in = tunnel->src_port; 943 944 /* 945 * If we have already set the allocated bandwidth then use that. 946 * Otherwise we read it from the DPRX. 947 */ 948 if (usb4_dp_port_bandwidth_mode_enabled(in) && tunnel->bw_mode) { 949 int ret, allocated_bw, max_bw; 950 951 ret = usb4_dp_port_allocated_bandwidth(in); 952 if (ret < 0) 953 return ret; 954 allocated_bw = ret; 955 956 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 957 if (ret < 0) 958 return ret; 959 if (allocated_bw == max_bw) 960 allocated_bw = ret; 961 962 if (in->sw->config.depth < out->sw->config.depth) { 963 *allocated_up = 0; 964 *allocated_down = allocated_bw; 965 } else { 966 *allocated_up = allocated_bw; 967 *allocated_down = 0; 968 } 969 return 0; 970 } 971 972 return tunnel->consumed_bandwidth(tunnel, allocated_up, 973 allocated_down); 974 } 975 976 static int tb_dp_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up, 977 int *alloc_down) 978 { 979 struct tb_port *out = tunnel->dst_port; 980 struct tb_port *in = tunnel->src_port; 981 int max_bw, ret, tmp; 982 983 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 984 return -EOPNOTSUPP; 985 986 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw); 987 if (ret < 0) 988 return ret; 989 990 if (in->sw->config.depth < out->sw->config.depth) { 991 tmp = min(*alloc_down, max_bw); 992 ret = usb4_dp_port_allocate_bandwidth(in, tmp); 993 if (ret) 994 return ret; 995 *alloc_down = tmp; 996 *alloc_up = 0; 997 } else { 998 tmp = min(*alloc_up, max_bw); 999 ret = usb4_dp_port_allocate_bandwidth(in, tmp); 1000 if (ret) 1001 return ret; 1002 *alloc_down = 0; 1003 *alloc_up = tmp; 1004 } 1005 1006 /* Now we can use BW mode registers to figure out the bandwidth */ 1007 /* TODO: need to handle discovery too */ 1008 tunnel->bw_mode = true; 1009 1010 tb_port_dbg(in, "allocated bandwidth through allocation mode %d Mb/s\n", 1011 tmp); 1012 return 0; 1013 } 1014 1015 static int tb_dp_read_dprx(struct tb_tunnel *tunnel, u32 *rate, u32 *lanes, 1016 int timeout_msec) 1017 { 1018 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1019 struct tb_port *in = tunnel->src_port; 1020 1021 /* 1022 * Wait for DPRX done. Normally it should be already set for 1023 * active tunnel. 1024 */ 1025 do { 1026 u32 val; 1027 int ret; 1028 1029 ret = tb_port_read(in, &val, TB_CFG_PORT, 1030 in->cap_adap + DP_COMMON_CAP, 1); 1031 if (ret) 1032 return ret; 1033 1034 if (val & DP_COMMON_CAP_DPRX_DONE) { 1035 *rate = tb_dp_cap_get_rate(val); 1036 *lanes = tb_dp_cap_get_lanes(val); 1037 1038 tb_port_dbg(in, "consumed bandwidth through DPRX %d Mb/s\n", 1039 tb_dp_bandwidth(*rate, *lanes)); 1040 return 0; 1041 } 1042 usleep_range(100, 150); 1043 } while (ktime_before(ktime_get(), timeout)); 1044 1045 return -ETIMEDOUT; 1046 } 1047 1048 /* Read cap from tunnel DP IN */ 1049 static int tb_dp_read_cap(struct tb_tunnel *tunnel, unsigned int cap, u32 *rate, 1050 u32 *lanes) 1051 { 1052 struct tb_port *in = tunnel->src_port; 1053 u32 val; 1054 int ret; 1055 1056 switch (cap) { 1057 case DP_LOCAL_CAP: 1058 case DP_REMOTE_CAP: 1059 break; 1060 1061 default: 1062 tb_tunnel_WARN(tunnel, "invalid capability index %#x\n", cap); 1063 return -EINVAL; 1064 } 1065 1066 /* 1067 * Read from the copied remote cap so that we take into account 1068 * if capabilities were reduced during exchange. 1069 */ 1070 ret = tb_port_read(in, &val, TB_CFG_PORT, in->cap_adap + cap, 1); 1071 if (ret) 1072 return ret; 1073 1074 *rate = tb_dp_cap_get_rate(val); 1075 *lanes = tb_dp_cap_get_lanes(val); 1076 1077 tb_port_dbg(in, "bandwidth from %#x capability %d Mb/s\n", cap, 1078 tb_dp_bandwidth(*rate, *lanes)); 1079 return 0; 1080 } 1081 1082 static int tb_dp_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up, 1083 int *max_down) 1084 { 1085 struct tb_port *in = tunnel->src_port; 1086 int ret; 1087 1088 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1089 return -EOPNOTSUPP; 1090 1091 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, NULL); 1092 if (ret < 0) 1093 return ret; 1094 1095 if (in->sw->config.depth < tunnel->dst_port->sw->config.depth) { 1096 *max_up = 0; 1097 *max_down = ret; 1098 } else { 1099 *max_up = ret; 1100 *max_down = 0; 1101 } 1102 1103 return 0; 1104 } 1105 1106 static int tb_dp_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 1107 int *consumed_down) 1108 { 1109 struct tb_port *in = tunnel->src_port; 1110 const struct tb_switch *sw = in->sw; 1111 u32 rate = 0, lanes = 0; 1112 int ret; 1113 1114 if (tb_dp_is_usb4(sw)) { 1115 /* 1116 * On USB4 routers check if the bandwidth allocation 1117 * mode is enabled first and then read the bandwidth 1118 * through those registers. 1119 */ 1120 ret = tb_dp_bandwidth_mode_consumed_bandwidth(tunnel, consumed_up, 1121 consumed_down); 1122 if (ret < 0) { 1123 if (ret != -EOPNOTSUPP) 1124 return ret; 1125 } else if (!ret) { 1126 return 0; 1127 } 1128 /* 1129 * Then see if the DPRX negotiation is ready and if yes 1130 * return that bandwidth (it may be smaller than the 1131 * reduced one). Otherwise return the remote (possibly 1132 * reduced) caps. 1133 */ 1134 ret = tb_dp_read_dprx(tunnel, &rate, &lanes, 150); 1135 if (ret) { 1136 if (ret == -ETIMEDOUT) 1137 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, 1138 &rate, &lanes); 1139 if (ret) 1140 return ret; 1141 } 1142 } else if (sw->generation >= 2) { 1143 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, &rate, &lanes); 1144 if (ret) 1145 return ret; 1146 } else { 1147 /* No bandwidth management for legacy devices */ 1148 *consumed_up = 0; 1149 *consumed_down = 0; 1150 return 0; 1151 } 1152 1153 if (in->sw->config.depth < tunnel->dst_port->sw->config.depth) { 1154 *consumed_up = 0; 1155 *consumed_down = tb_dp_bandwidth(rate, lanes); 1156 } else { 1157 *consumed_up = tb_dp_bandwidth(rate, lanes); 1158 *consumed_down = 0; 1159 } 1160 1161 return 0; 1162 } 1163 1164 static void tb_dp_init_aux_credits(struct tb_path_hop *hop) 1165 { 1166 struct tb_port *port = hop->in_port; 1167 struct tb_switch *sw = port->sw; 1168 1169 if (tb_port_use_credit_allocation(port)) 1170 hop->initial_credits = sw->min_dp_aux_credits; 1171 else 1172 hop->initial_credits = 1; 1173 } 1174 1175 static void tb_dp_init_aux_path(struct tb_path *path) 1176 { 1177 struct tb_path_hop *hop; 1178 1179 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1180 path->egress_shared_buffer = TB_PATH_NONE; 1181 path->ingress_fc_enable = TB_PATH_ALL; 1182 path->ingress_shared_buffer = TB_PATH_NONE; 1183 path->priority = 2; 1184 path->weight = 1; 1185 1186 tb_path_for_each_hop(path, hop) 1187 tb_dp_init_aux_credits(hop); 1188 } 1189 1190 static int tb_dp_init_video_credits(struct tb_path_hop *hop) 1191 { 1192 struct tb_port *port = hop->in_port; 1193 struct tb_switch *sw = port->sw; 1194 1195 if (tb_port_use_credit_allocation(port)) { 1196 unsigned int nfc_credits; 1197 size_t max_dp_streams; 1198 1199 tb_available_credits(port, &max_dp_streams); 1200 /* 1201 * Read the number of currently allocated NFC credits 1202 * from the lane adapter. Since we only use them for DP 1203 * tunneling we can use that to figure out how many DP 1204 * tunnels already go through the lane adapter. 1205 */ 1206 nfc_credits = port->config.nfc_credits & 1207 ADP_CS_4_NFC_BUFFERS_MASK; 1208 if (nfc_credits / sw->min_dp_main_credits > max_dp_streams) 1209 return -ENOSPC; 1210 1211 hop->nfc_credits = sw->min_dp_main_credits; 1212 } else { 1213 hop->nfc_credits = min(port->total_credits - 2, 12U); 1214 } 1215 1216 return 0; 1217 } 1218 1219 static int tb_dp_init_video_path(struct tb_path *path) 1220 { 1221 struct tb_path_hop *hop; 1222 1223 path->egress_fc_enable = TB_PATH_NONE; 1224 path->egress_shared_buffer = TB_PATH_NONE; 1225 path->ingress_fc_enable = TB_PATH_NONE; 1226 path->ingress_shared_buffer = TB_PATH_NONE; 1227 path->priority = 1; 1228 path->weight = 1; 1229 1230 tb_path_for_each_hop(path, hop) { 1231 int ret; 1232 1233 ret = tb_dp_init_video_credits(hop); 1234 if (ret) 1235 return ret; 1236 } 1237 1238 return 0; 1239 } 1240 1241 static void tb_dp_dump(struct tb_tunnel *tunnel) 1242 { 1243 struct tb_port *in, *out; 1244 u32 dp_cap, rate, lanes; 1245 1246 in = tunnel->src_port; 1247 out = tunnel->dst_port; 1248 1249 if (tb_port_read(in, &dp_cap, TB_CFG_PORT, 1250 in->cap_adap + DP_LOCAL_CAP, 1)) 1251 return; 1252 1253 rate = tb_dp_cap_get_rate(dp_cap); 1254 lanes = tb_dp_cap_get_lanes(dp_cap); 1255 1256 tb_port_dbg(in, "maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 1257 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1258 1259 out = tunnel->dst_port; 1260 1261 if (tb_port_read(out, &dp_cap, TB_CFG_PORT, 1262 out->cap_adap + DP_LOCAL_CAP, 1)) 1263 return; 1264 1265 rate = tb_dp_cap_get_rate(dp_cap); 1266 lanes = tb_dp_cap_get_lanes(dp_cap); 1267 1268 tb_port_dbg(out, "maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 1269 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1270 1271 if (tb_port_read(in, &dp_cap, TB_CFG_PORT, 1272 in->cap_adap + DP_REMOTE_CAP, 1)) 1273 return; 1274 1275 rate = tb_dp_cap_get_rate(dp_cap); 1276 lanes = tb_dp_cap_get_lanes(dp_cap); 1277 1278 tb_port_dbg(in, "reduced bandwidth %u Mb/s x%u = %u Mb/s\n", 1279 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1280 } 1281 1282 /** 1283 * tb_tunnel_discover_dp() - Discover existing Display Port tunnels 1284 * @tb: Pointer to the domain structure 1285 * @in: DP in adapter 1286 * @alloc_hopid: Allocate HopIDs from visited ports 1287 * 1288 * If @in adapter is active, follows the tunnel to the DP out adapter 1289 * and back. Returns the discovered tunnel or %NULL if there was no 1290 * tunnel. 1291 * 1292 * Return: DP tunnel or %NULL if no tunnel found. 1293 */ 1294 struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in, 1295 bool alloc_hopid) 1296 { 1297 struct tb_tunnel *tunnel; 1298 struct tb_port *port; 1299 struct tb_path *path; 1300 1301 if (!tb_dp_port_is_enabled(in)) 1302 return NULL; 1303 1304 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 1305 if (!tunnel) 1306 return NULL; 1307 1308 tunnel->init = tb_dp_init; 1309 tunnel->deinit = tb_dp_deinit; 1310 tunnel->activate = tb_dp_activate; 1311 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth; 1312 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth; 1313 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth; 1314 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 1315 tunnel->src_port = in; 1316 1317 path = tb_path_discover(in, TB_DP_VIDEO_HOPID, NULL, -1, 1318 &tunnel->dst_port, "Video", alloc_hopid); 1319 if (!path) { 1320 /* Just disable the DP IN port */ 1321 tb_dp_port_enable(in, false); 1322 goto err_free; 1323 } 1324 tunnel->paths[TB_DP_VIDEO_PATH_OUT] = path; 1325 if (tb_dp_init_video_path(tunnel->paths[TB_DP_VIDEO_PATH_OUT])) 1326 goto err_free; 1327 1328 path = tb_path_discover(in, TB_DP_AUX_TX_HOPID, NULL, -1, NULL, "AUX TX", 1329 alloc_hopid); 1330 if (!path) 1331 goto err_deactivate; 1332 tunnel->paths[TB_DP_AUX_PATH_OUT] = path; 1333 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_OUT]); 1334 1335 path = tb_path_discover(tunnel->dst_port, -1, in, TB_DP_AUX_RX_HOPID, 1336 &port, "AUX RX", alloc_hopid); 1337 if (!path) 1338 goto err_deactivate; 1339 tunnel->paths[TB_DP_AUX_PATH_IN] = path; 1340 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_IN]); 1341 1342 /* Validate that the tunnel is complete */ 1343 if (!tb_port_is_dpout(tunnel->dst_port)) { 1344 tb_port_warn(in, "path does not end on a DP adapter, cleaning up\n"); 1345 goto err_deactivate; 1346 } 1347 1348 if (!tb_dp_port_is_enabled(tunnel->dst_port)) 1349 goto err_deactivate; 1350 1351 if (!tb_dp_port_hpd_is_active(tunnel->dst_port)) 1352 goto err_deactivate; 1353 1354 if (port != tunnel->src_port) { 1355 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 1356 goto err_deactivate; 1357 } 1358 1359 tb_dp_dump(tunnel); 1360 1361 tb_tunnel_dbg(tunnel, "discovered\n"); 1362 return tunnel; 1363 1364 err_deactivate: 1365 tb_tunnel_deactivate(tunnel); 1366 err_free: 1367 tb_tunnel_free(tunnel); 1368 1369 return NULL; 1370 } 1371 1372 /** 1373 * tb_tunnel_alloc_dp() - allocate a Display Port tunnel 1374 * @tb: Pointer to the domain structure 1375 * @in: DP in adapter port 1376 * @out: DP out adapter port 1377 * @link_nr: Preferred lane adapter when the link is not bonded 1378 * @max_up: Maximum available upstream bandwidth for the DP tunnel (%0 1379 * if not limited) 1380 * @max_down: Maximum available downstream bandwidth for the DP tunnel 1381 * (%0 if not limited) 1382 * 1383 * Allocates a tunnel between @in and @out that is capable of tunneling 1384 * Display Port traffic. 1385 * 1386 * Return: Returns a tb_tunnel on success or NULL on failure. 1387 */ 1388 struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in, 1389 struct tb_port *out, int link_nr, 1390 int max_up, int max_down) 1391 { 1392 struct tb_tunnel *tunnel; 1393 struct tb_path **paths; 1394 struct tb_path *path; 1395 1396 if (WARN_ON(!in->cap_adap || !out->cap_adap)) 1397 return NULL; 1398 1399 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 1400 if (!tunnel) 1401 return NULL; 1402 1403 tunnel->init = tb_dp_init; 1404 tunnel->deinit = tb_dp_deinit; 1405 tunnel->activate = tb_dp_activate; 1406 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth; 1407 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth; 1408 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth; 1409 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 1410 tunnel->src_port = in; 1411 tunnel->dst_port = out; 1412 tunnel->max_up = max_up; 1413 tunnel->max_down = max_down; 1414 1415 paths = tunnel->paths; 1416 1417 path = tb_path_alloc(tb, in, TB_DP_VIDEO_HOPID, out, TB_DP_VIDEO_HOPID, 1418 link_nr, "Video"); 1419 if (!path) 1420 goto err_free; 1421 tb_dp_init_video_path(path); 1422 paths[TB_DP_VIDEO_PATH_OUT] = path; 1423 1424 path = tb_path_alloc(tb, in, TB_DP_AUX_TX_HOPID, out, 1425 TB_DP_AUX_TX_HOPID, link_nr, "AUX TX"); 1426 if (!path) 1427 goto err_free; 1428 tb_dp_init_aux_path(path); 1429 paths[TB_DP_AUX_PATH_OUT] = path; 1430 1431 path = tb_path_alloc(tb, out, TB_DP_AUX_RX_HOPID, in, 1432 TB_DP_AUX_RX_HOPID, link_nr, "AUX RX"); 1433 if (!path) 1434 goto err_free; 1435 tb_dp_init_aux_path(path); 1436 paths[TB_DP_AUX_PATH_IN] = path; 1437 1438 return tunnel; 1439 1440 err_free: 1441 tb_tunnel_free(tunnel); 1442 return NULL; 1443 } 1444 1445 static unsigned int tb_dma_available_credits(const struct tb_port *port) 1446 { 1447 const struct tb_switch *sw = port->sw; 1448 int credits; 1449 1450 credits = tb_available_credits(port, NULL); 1451 if (tb_acpi_may_tunnel_pcie()) 1452 credits -= sw->max_pcie_credits; 1453 credits -= port->dma_credits; 1454 1455 return credits > 0 ? credits : 0; 1456 } 1457 1458 static int tb_dma_reserve_credits(struct tb_path_hop *hop, unsigned int credits) 1459 { 1460 struct tb_port *port = hop->in_port; 1461 1462 if (tb_port_use_credit_allocation(port)) { 1463 unsigned int available = tb_dma_available_credits(port); 1464 1465 /* 1466 * Need to have at least TB_MIN_DMA_CREDITS, otherwise 1467 * DMA path cannot be established. 1468 */ 1469 if (available < TB_MIN_DMA_CREDITS) 1470 return -ENOSPC; 1471 1472 while (credits > available) 1473 credits--; 1474 1475 tb_port_dbg(port, "reserving %u credits for DMA path\n", 1476 credits); 1477 1478 port->dma_credits += credits; 1479 } else { 1480 if (tb_port_is_null(port)) 1481 credits = port->bonded ? 14 : 6; 1482 else 1483 credits = min(port->total_credits, credits); 1484 } 1485 1486 hop->initial_credits = credits; 1487 return 0; 1488 } 1489 1490 /* Path from lane adapter to NHI */ 1491 static int tb_dma_init_rx_path(struct tb_path *path, unsigned int credits) 1492 { 1493 struct tb_path_hop *hop; 1494 unsigned int i, tmp; 1495 1496 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1497 path->ingress_fc_enable = TB_PATH_ALL; 1498 path->egress_shared_buffer = TB_PATH_NONE; 1499 path->ingress_shared_buffer = TB_PATH_NONE; 1500 path->priority = 5; 1501 path->weight = 1; 1502 path->clear_fc = true; 1503 1504 /* 1505 * First lane adapter is the one connected to the remote host. 1506 * We don't tunnel other traffic over this link so can use all 1507 * the credits (except the ones reserved for control traffic). 1508 */ 1509 hop = &path->hops[0]; 1510 tmp = min(tb_usable_credits(hop->in_port), credits); 1511 hop->initial_credits = tmp; 1512 hop->in_port->dma_credits += tmp; 1513 1514 for (i = 1; i < path->path_length; i++) { 1515 int ret; 1516 1517 ret = tb_dma_reserve_credits(&path->hops[i], credits); 1518 if (ret) 1519 return ret; 1520 } 1521 1522 return 0; 1523 } 1524 1525 /* Path from NHI to lane adapter */ 1526 static int tb_dma_init_tx_path(struct tb_path *path, unsigned int credits) 1527 { 1528 struct tb_path_hop *hop; 1529 1530 path->egress_fc_enable = TB_PATH_ALL; 1531 path->ingress_fc_enable = TB_PATH_ALL; 1532 path->egress_shared_buffer = TB_PATH_NONE; 1533 path->ingress_shared_buffer = TB_PATH_NONE; 1534 path->priority = 5; 1535 path->weight = 1; 1536 path->clear_fc = true; 1537 1538 tb_path_for_each_hop(path, hop) { 1539 int ret; 1540 1541 ret = tb_dma_reserve_credits(hop, credits); 1542 if (ret) 1543 return ret; 1544 } 1545 1546 return 0; 1547 } 1548 1549 static void tb_dma_release_credits(struct tb_path_hop *hop) 1550 { 1551 struct tb_port *port = hop->in_port; 1552 1553 if (tb_port_use_credit_allocation(port)) { 1554 port->dma_credits -= hop->initial_credits; 1555 1556 tb_port_dbg(port, "released %u DMA path credits\n", 1557 hop->initial_credits); 1558 } 1559 } 1560 1561 static void tb_dma_deinit_path(struct tb_path *path) 1562 { 1563 struct tb_path_hop *hop; 1564 1565 tb_path_for_each_hop(path, hop) 1566 tb_dma_release_credits(hop); 1567 } 1568 1569 static void tb_dma_deinit(struct tb_tunnel *tunnel) 1570 { 1571 int i; 1572 1573 for (i = 0; i < tunnel->npaths; i++) { 1574 if (!tunnel->paths[i]) 1575 continue; 1576 tb_dma_deinit_path(tunnel->paths[i]); 1577 } 1578 } 1579 1580 /** 1581 * tb_tunnel_alloc_dma() - allocate a DMA tunnel 1582 * @tb: Pointer to the domain structure 1583 * @nhi: Host controller port 1584 * @dst: Destination null port which the other domain is connected to 1585 * @transmit_path: HopID used for transmitting packets 1586 * @transmit_ring: NHI ring number used to send packets towards the 1587 * other domain. Set to %-1 if TX path is not needed. 1588 * @receive_path: HopID used for receiving packets 1589 * @receive_ring: NHI ring number used to receive packets from the 1590 * other domain. Set to %-1 if RX path is not needed. 1591 * 1592 * Return: Returns a tb_tunnel on success or NULL on failure. 1593 */ 1594 struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi, 1595 struct tb_port *dst, int transmit_path, 1596 int transmit_ring, int receive_path, 1597 int receive_ring) 1598 { 1599 struct tb_tunnel *tunnel; 1600 size_t npaths = 0, i = 0; 1601 struct tb_path *path; 1602 int credits; 1603 1604 /* Ring 0 is reserved for control channel */ 1605 if (WARN_ON(!receive_ring || !transmit_ring)) 1606 return NULL; 1607 1608 if (receive_ring > 0) 1609 npaths++; 1610 if (transmit_ring > 0) 1611 npaths++; 1612 1613 if (WARN_ON(!npaths)) 1614 return NULL; 1615 1616 tunnel = tb_tunnel_alloc(tb, npaths, TB_TUNNEL_DMA); 1617 if (!tunnel) 1618 return NULL; 1619 1620 tunnel->src_port = nhi; 1621 tunnel->dst_port = dst; 1622 tunnel->deinit = tb_dma_deinit; 1623 1624 credits = min_not_zero(dma_credits, nhi->sw->max_dma_credits); 1625 1626 if (receive_ring > 0) { 1627 path = tb_path_alloc(tb, dst, receive_path, nhi, receive_ring, 0, 1628 "DMA RX"); 1629 if (!path) 1630 goto err_free; 1631 tunnel->paths[i++] = path; 1632 if (tb_dma_init_rx_path(path, credits)) { 1633 tb_tunnel_dbg(tunnel, "not enough buffers for RX path\n"); 1634 goto err_free; 1635 } 1636 } 1637 1638 if (transmit_ring > 0) { 1639 path = tb_path_alloc(tb, nhi, transmit_ring, dst, transmit_path, 0, 1640 "DMA TX"); 1641 if (!path) 1642 goto err_free; 1643 tunnel->paths[i++] = path; 1644 if (tb_dma_init_tx_path(path, credits)) { 1645 tb_tunnel_dbg(tunnel, "not enough buffers for TX path\n"); 1646 goto err_free; 1647 } 1648 } 1649 1650 return tunnel; 1651 1652 err_free: 1653 tb_tunnel_free(tunnel); 1654 return NULL; 1655 } 1656 1657 /** 1658 * tb_tunnel_match_dma() - Match DMA tunnel 1659 * @tunnel: Tunnel to match 1660 * @transmit_path: HopID used for transmitting packets. Pass %-1 to ignore. 1661 * @transmit_ring: NHI ring number used to send packets towards the 1662 * other domain. Pass %-1 to ignore. 1663 * @receive_path: HopID used for receiving packets. Pass %-1 to ignore. 1664 * @receive_ring: NHI ring number used to receive packets from the 1665 * other domain. Pass %-1 to ignore. 1666 * 1667 * This function can be used to match specific DMA tunnel, if there are 1668 * multiple DMA tunnels going through the same XDomain connection. 1669 * Returns true if there is match and false otherwise. 1670 */ 1671 bool tb_tunnel_match_dma(const struct tb_tunnel *tunnel, int transmit_path, 1672 int transmit_ring, int receive_path, int receive_ring) 1673 { 1674 const struct tb_path *tx_path = NULL, *rx_path = NULL; 1675 int i; 1676 1677 if (!receive_ring || !transmit_ring) 1678 return false; 1679 1680 for (i = 0; i < tunnel->npaths; i++) { 1681 const struct tb_path *path = tunnel->paths[i]; 1682 1683 if (!path) 1684 continue; 1685 1686 if (tb_port_is_nhi(path->hops[0].in_port)) 1687 tx_path = path; 1688 else if (tb_port_is_nhi(path->hops[path->path_length - 1].out_port)) 1689 rx_path = path; 1690 } 1691 1692 if (transmit_ring > 0 || transmit_path > 0) { 1693 if (!tx_path) 1694 return false; 1695 if (transmit_ring > 0 && 1696 (tx_path->hops[0].in_hop_index != transmit_ring)) 1697 return false; 1698 if (transmit_path > 0 && 1699 (tx_path->hops[tx_path->path_length - 1].next_hop_index != transmit_path)) 1700 return false; 1701 } 1702 1703 if (receive_ring > 0 || receive_path > 0) { 1704 if (!rx_path) 1705 return false; 1706 if (receive_path > 0 && 1707 (rx_path->hops[0].in_hop_index != receive_path)) 1708 return false; 1709 if (receive_ring > 0 && 1710 (rx_path->hops[rx_path->path_length - 1].next_hop_index != receive_ring)) 1711 return false; 1712 } 1713 1714 return true; 1715 } 1716 1717 static int tb_usb3_max_link_rate(struct tb_port *up, struct tb_port *down) 1718 { 1719 int ret, up_max_rate, down_max_rate; 1720 1721 ret = usb4_usb3_port_max_link_rate(up); 1722 if (ret < 0) 1723 return ret; 1724 up_max_rate = ret; 1725 1726 ret = usb4_usb3_port_max_link_rate(down); 1727 if (ret < 0) 1728 return ret; 1729 down_max_rate = ret; 1730 1731 return min(up_max_rate, down_max_rate); 1732 } 1733 1734 static int tb_usb3_init(struct tb_tunnel *tunnel) 1735 { 1736 tb_tunnel_dbg(tunnel, "allocating initial bandwidth %d/%d Mb/s\n", 1737 tunnel->allocated_up, tunnel->allocated_down); 1738 1739 return usb4_usb3_port_allocate_bandwidth(tunnel->src_port, 1740 &tunnel->allocated_up, 1741 &tunnel->allocated_down); 1742 } 1743 1744 static int tb_usb3_activate(struct tb_tunnel *tunnel, bool activate) 1745 { 1746 int res; 1747 1748 res = tb_usb3_port_enable(tunnel->src_port, activate); 1749 if (res) 1750 return res; 1751 1752 if (tb_port_is_usb3_up(tunnel->dst_port)) 1753 return tb_usb3_port_enable(tunnel->dst_port, activate); 1754 1755 return 0; 1756 } 1757 1758 static int tb_usb3_consumed_bandwidth(struct tb_tunnel *tunnel, 1759 int *consumed_up, int *consumed_down) 1760 { 1761 int pcie_enabled = tb_acpi_may_tunnel_pcie(); 1762 1763 /* 1764 * PCIe tunneling, if enabled, affects the USB3 bandwidth so 1765 * take that it into account here. 1766 */ 1767 *consumed_up = tunnel->allocated_up * (3 + pcie_enabled) / 3; 1768 *consumed_down = tunnel->allocated_down * (3 + pcie_enabled) / 3; 1769 return 0; 1770 } 1771 1772 static int tb_usb3_release_unused_bandwidth(struct tb_tunnel *tunnel) 1773 { 1774 int ret; 1775 1776 ret = usb4_usb3_port_release_bandwidth(tunnel->src_port, 1777 &tunnel->allocated_up, 1778 &tunnel->allocated_down); 1779 if (ret) 1780 return ret; 1781 1782 tb_tunnel_dbg(tunnel, "decreased bandwidth allocation to %d/%d Mb/s\n", 1783 tunnel->allocated_up, tunnel->allocated_down); 1784 return 0; 1785 } 1786 1787 static void tb_usb3_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 1788 int *available_up, 1789 int *available_down) 1790 { 1791 int ret, max_rate, allocate_up, allocate_down; 1792 1793 ret = usb4_usb3_port_actual_link_rate(tunnel->src_port); 1794 if (ret < 0) { 1795 tb_tunnel_warn(tunnel, "failed to read actual link rate\n"); 1796 return; 1797 } else if (!ret) { 1798 /* Use maximum link rate if the link valid is not set */ 1799 ret = tb_usb3_max_link_rate(tunnel->dst_port, tunnel->src_port); 1800 if (ret < 0) { 1801 tb_tunnel_warn(tunnel, "failed to read maximum link rate\n"); 1802 return; 1803 } 1804 } 1805 1806 /* 1807 * 90% of the max rate can be allocated for isochronous 1808 * transfers. 1809 */ 1810 max_rate = ret * 90 / 100; 1811 1812 /* No need to reclaim if already at maximum */ 1813 if (tunnel->allocated_up >= max_rate && 1814 tunnel->allocated_down >= max_rate) 1815 return; 1816 1817 /* Don't go lower than what is already allocated */ 1818 allocate_up = min(max_rate, *available_up); 1819 if (allocate_up < tunnel->allocated_up) 1820 allocate_up = tunnel->allocated_up; 1821 1822 allocate_down = min(max_rate, *available_down); 1823 if (allocate_down < tunnel->allocated_down) 1824 allocate_down = tunnel->allocated_down; 1825 1826 /* If no changes no need to do more */ 1827 if (allocate_up == tunnel->allocated_up && 1828 allocate_down == tunnel->allocated_down) 1829 return; 1830 1831 ret = usb4_usb3_port_allocate_bandwidth(tunnel->src_port, &allocate_up, 1832 &allocate_down); 1833 if (ret) { 1834 tb_tunnel_info(tunnel, "failed to allocate bandwidth\n"); 1835 return; 1836 } 1837 1838 tunnel->allocated_up = allocate_up; 1839 *available_up -= tunnel->allocated_up; 1840 1841 tunnel->allocated_down = allocate_down; 1842 *available_down -= tunnel->allocated_down; 1843 1844 tb_tunnel_dbg(tunnel, "increased bandwidth allocation to %d/%d Mb/s\n", 1845 tunnel->allocated_up, tunnel->allocated_down); 1846 } 1847 1848 static void tb_usb3_init_credits(struct tb_path_hop *hop) 1849 { 1850 struct tb_port *port = hop->in_port; 1851 struct tb_switch *sw = port->sw; 1852 unsigned int credits; 1853 1854 if (tb_port_use_credit_allocation(port)) { 1855 credits = sw->max_usb3_credits; 1856 } else { 1857 if (tb_port_is_null(port)) 1858 credits = port->bonded ? 32 : 16; 1859 else 1860 credits = 7; 1861 } 1862 1863 hop->initial_credits = credits; 1864 } 1865 1866 static void tb_usb3_init_path(struct tb_path *path) 1867 { 1868 struct tb_path_hop *hop; 1869 1870 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1871 path->egress_shared_buffer = TB_PATH_NONE; 1872 path->ingress_fc_enable = TB_PATH_ALL; 1873 path->ingress_shared_buffer = TB_PATH_NONE; 1874 path->priority = 3; 1875 path->weight = 3; 1876 path->drop_packages = 0; 1877 1878 tb_path_for_each_hop(path, hop) 1879 tb_usb3_init_credits(hop); 1880 } 1881 1882 /** 1883 * tb_tunnel_discover_usb3() - Discover existing USB3 tunnels 1884 * @tb: Pointer to the domain structure 1885 * @down: USB3 downstream adapter 1886 * @alloc_hopid: Allocate HopIDs from visited ports 1887 * 1888 * If @down adapter is active, follows the tunnel to the USB3 upstream 1889 * adapter and back. Returns the discovered tunnel or %NULL if there was 1890 * no tunnel. 1891 */ 1892 struct tb_tunnel *tb_tunnel_discover_usb3(struct tb *tb, struct tb_port *down, 1893 bool alloc_hopid) 1894 { 1895 struct tb_tunnel *tunnel; 1896 struct tb_path *path; 1897 1898 if (!tb_usb3_port_is_enabled(down)) 1899 return NULL; 1900 1901 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 1902 if (!tunnel) 1903 return NULL; 1904 1905 tunnel->activate = tb_usb3_activate; 1906 tunnel->src_port = down; 1907 1908 /* 1909 * Discover both paths even if they are not complete. We will 1910 * clean them up by calling tb_tunnel_deactivate() below in that 1911 * case. 1912 */ 1913 path = tb_path_discover(down, TB_USB3_HOPID, NULL, -1, 1914 &tunnel->dst_port, "USB3 Down", alloc_hopid); 1915 if (!path) { 1916 /* Just disable the downstream port */ 1917 tb_usb3_port_enable(down, false); 1918 goto err_free; 1919 } 1920 tunnel->paths[TB_USB3_PATH_DOWN] = path; 1921 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_DOWN]); 1922 1923 path = tb_path_discover(tunnel->dst_port, -1, down, TB_USB3_HOPID, NULL, 1924 "USB3 Up", alloc_hopid); 1925 if (!path) 1926 goto err_deactivate; 1927 tunnel->paths[TB_USB3_PATH_UP] = path; 1928 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_UP]); 1929 1930 /* Validate that the tunnel is complete */ 1931 if (!tb_port_is_usb3_up(tunnel->dst_port)) { 1932 tb_port_warn(tunnel->dst_port, 1933 "path does not end on an USB3 adapter, cleaning up\n"); 1934 goto err_deactivate; 1935 } 1936 1937 if (down != tunnel->src_port) { 1938 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 1939 goto err_deactivate; 1940 } 1941 1942 if (!tb_usb3_port_is_enabled(tunnel->dst_port)) { 1943 tb_tunnel_warn(tunnel, 1944 "tunnel is not fully activated, cleaning up\n"); 1945 goto err_deactivate; 1946 } 1947 1948 if (!tb_route(down->sw)) { 1949 int ret; 1950 1951 /* 1952 * Read the initial bandwidth allocation for the first 1953 * hop tunnel. 1954 */ 1955 ret = usb4_usb3_port_allocated_bandwidth(down, 1956 &tunnel->allocated_up, &tunnel->allocated_down); 1957 if (ret) 1958 goto err_deactivate; 1959 1960 tb_tunnel_dbg(tunnel, "currently allocated bandwidth %d/%d Mb/s\n", 1961 tunnel->allocated_up, tunnel->allocated_down); 1962 1963 tunnel->init = tb_usb3_init; 1964 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 1965 tunnel->release_unused_bandwidth = 1966 tb_usb3_release_unused_bandwidth; 1967 tunnel->reclaim_available_bandwidth = 1968 tb_usb3_reclaim_available_bandwidth; 1969 } 1970 1971 tb_tunnel_dbg(tunnel, "discovered\n"); 1972 return tunnel; 1973 1974 err_deactivate: 1975 tb_tunnel_deactivate(tunnel); 1976 err_free: 1977 tb_tunnel_free(tunnel); 1978 1979 return NULL; 1980 } 1981 1982 /** 1983 * tb_tunnel_alloc_usb3() - allocate a USB3 tunnel 1984 * @tb: Pointer to the domain structure 1985 * @up: USB3 upstream adapter port 1986 * @down: USB3 downstream adapter port 1987 * @max_up: Maximum available upstream bandwidth for the USB3 tunnel (%0 1988 * if not limited). 1989 * @max_down: Maximum available downstream bandwidth for the USB3 tunnel 1990 * (%0 if not limited). 1991 * 1992 * Allocate an USB3 tunnel. The ports must be of type @TB_TYPE_USB3_UP and 1993 * @TB_TYPE_USB3_DOWN. 1994 * 1995 * Return: Returns a tb_tunnel on success or %NULL on failure. 1996 */ 1997 struct tb_tunnel *tb_tunnel_alloc_usb3(struct tb *tb, struct tb_port *up, 1998 struct tb_port *down, int max_up, 1999 int max_down) 2000 { 2001 struct tb_tunnel *tunnel; 2002 struct tb_path *path; 2003 int max_rate = 0; 2004 2005 /* 2006 * Check that we have enough bandwidth available for the new 2007 * USB3 tunnel. 2008 */ 2009 if (max_up > 0 || max_down > 0) { 2010 max_rate = tb_usb3_max_link_rate(down, up); 2011 if (max_rate < 0) 2012 return NULL; 2013 2014 /* Only 90% can be allocated for USB3 isochronous transfers */ 2015 max_rate = max_rate * 90 / 100; 2016 tb_port_dbg(up, "required bandwidth for USB3 tunnel %d Mb/s\n", 2017 max_rate); 2018 2019 if (max_rate > max_up || max_rate > max_down) { 2020 tb_port_warn(up, "not enough bandwidth for USB3 tunnel\n"); 2021 return NULL; 2022 } 2023 } 2024 2025 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 2026 if (!tunnel) 2027 return NULL; 2028 2029 tunnel->activate = tb_usb3_activate; 2030 tunnel->src_port = down; 2031 tunnel->dst_port = up; 2032 tunnel->max_up = max_up; 2033 tunnel->max_down = max_down; 2034 2035 path = tb_path_alloc(tb, down, TB_USB3_HOPID, up, TB_USB3_HOPID, 0, 2036 "USB3 Down"); 2037 if (!path) { 2038 tb_tunnel_free(tunnel); 2039 return NULL; 2040 } 2041 tb_usb3_init_path(path); 2042 tunnel->paths[TB_USB3_PATH_DOWN] = path; 2043 2044 path = tb_path_alloc(tb, up, TB_USB3_HOPID, down, TB_USB3_HOPID, 0, 2045 "USB3 Up"); 2046 if (!path) { 2047 tb_tunnel_free(tunnel); 2048 return NULL; 2049 } 2050 tb_usb3_init_path(path); 2051 tunnel->paths[TB_USB3_PATH_UP] = path; 2052 2053 if (!tb_route(down->sw)) { 2054 tunnel->allocated_up = max_rate; 2055 tunnel->allocated_down = max_rate; 2056 2057 tunnel->init = tb_usb3_init; 2058 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 2059 tunnel->release_unused_bandwidth = 2060 tb_usb3_release_unused_bandwidth; 2061 tunnel->reclaim_available_bandwidth = 2062 tb_usb3_reclaim_available_bandwidth; 2063 } 2064 2065 return tunnel; 2066 } 2067 2068 /** 2069 * tb_tunnel_free() - free a tunnel 2070 * @tunnel: Tunnel to be freed 2071 * 2072 * Frees a tunnel. The tunnel does not need to be deactivated. 2073 */ 2074 void tb_tunnel_free(struct tb_tunnel *tunnel) 2075 { 2076 int i; 2077 2078 if (!tunnel) 2079 return; 2080 2081 if (tunnel->deinit) 2082 tunnel->deinit(tunnel); 2083 2084 for (i = 0; i < tunnel->npaths; i++) { 2085 if (tunnel->paths[i]) 2086 tb_path_free(tunnel->paths[i]); 2087 } 2088 2089 kfree(tunnel->paths); 2090 kfree(tunnel); 2091 } 2092 2093 /** 2094 * tb_tunnel_is_invalid - check whether an activated path is still valid 2095 * @tunnel: Tunnel to check 2096 */ 2097 bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel) 2098 { 2099 int i; 2100 2101 for (i = 0; i < tunnel->npaths; i++) { 2102 WARN_ON(!tunnel->paths[i]->activated); 2103 if (tb_path_is_invalid(tunnel->paths[i])) 2104 return true; 2105 } 2106 2107 return false; 2108 } 2109 2110 /** 2111 * tb_tunnel_restart() - activate a tunnel after a hardware reset 2112 * @tunnel: Tunnel to restart 2113 * 2114 * Return: 0 on success and negative errno in case if failure 2115 */ 2116 int tb_tunnel_restart(struct tb_tunnel *tunnel) 2117 { 2118 int res, i; 2119 2120 tb_tunnel_dbg(tunnel, "activating\n"); 2121 2122 /* 2123 * Make sure all paths are properly disabled before enabling 2124 * them again. 2125 */ 2126 for (i = 0; i < tunnel->npaths; i++) { 2127 if (tunnel->paths[i]->activated) { 2128 tb_path_deactivate(tunnel->paths[i]); 2129 tunnel->paths[i]->activated = false; 2130 } 2131 } 2132 2133 if (tunnel->init) { 2134 res = tunnel->init(tunnel); 2135 if (res) 2136 return res; 2137 } 2138 2139 for (i = 0; i < tunnel->npaths; i++) { 2140 res = tb_path_activate(tunnel->paths[i]); 2141 if (res) 2142 goto err; 2143 } 2144 2145 if (tunnel->activate) { 2146 res = tunnel->activate(tunnel, true); 2147 if (res) 2148 goto err; 2149 } 2150 2151 return 0; 2152 2153 err: 2154 tb_tunnel_warn(tunnel, "activation failed\n"); 2155 tb_tunnel_deactivate(tunnel); 2156 return res; 2157 } 2158 2159 /** 2160 * tb_tunnel_activate() - activate a tunnel 2161 * @tunnel: Tunnel to activate 2162 * 2163 * Return: Returns 0 on success or an error code on failure. 2164 */ 2165 int tb_tunnel_activate(struct tb_tunnel *tunnel) 2166 { 2167 int i; 2168 2169 for (i = 0; i < tunnel->npaths; i++) { 2170 if (tunnel->paths[i]->activated) { 2171 tb_tunnel_WARN(tunnel, 2172 "trying to activate an already activated tunnel\n"); 2173 return -EINVAL; 2174 } 2175 } 2176 2177 return tb_tunnel_restart(tunnel); 2178 } 2179 2180 /** 2181 * tb_tunnel_deactivate() - deactivate a tunnel 2182 * @tunnel: Tunnel to deactivate 2183 */ 2184 void tb_tunnel_deactivate(struct tb_tunnel *tunnel) 2185 { 2186 int i; 2187 2188 tb_tunnel_dbg(tunnel, "deactivating\n"); 2189 2190 if (tunnel->activate) 2191 tunnel->activate(tunnel, false); 2192 2193 for (i = 0; i < tunnel->npaths; i++) { 2194 if (tunnel->paths[i] && tunnel->paths[i]->activated) 2195 tb_path_deactivate(tunnel->paths[i]); 2196 } 2197 } 2198 2199 /** 2200 * tb_tunnel_port_on_path() - Does the tunnel go through port 2201 * @tunnel: Tunnel to check 2202 * @port: Port to check 2203 * 2204 * Returns true if @tunnel goes through @port (direction does not matter), 2205 * false otherwise. 2206 */ 2207 bool tb_tunnel_port_on_path(const struct tb_tunnel *tunnel, 2208 const struct tb_port *port) 2209 { 2210 int i; 2211 2212 for (i = 0; i < tunnel->npaths; i++) { 2213 if (!tunnel->paths[i]) 2214 continue; 2215 2216 if (tb_path_port_on_path(tunnel->paths[i], port)) 2217 return true; 2218 } 2219 2220 return false; 2221 } 2222 2223 static bool tb_tunnel_is_active(const struct tb_tunnel *tunnel) 2224 { 2225 int i; 2226 2227 for (i = 0; i < tunnel->npaths; i++) { 2228 if (!tunnel->paths[i]) 2229 return false; 2230 if (!tunnel->paths[i]->activated) 2231 return false; 2232 } 2233 2234 return true; 2235 } 2236 2237 /** 2238 * tb_tunnel_maximum_bandwidth() - Return maximum possible bandwidth 2239 * @tunnel: Tunnel to check 2240 * @max_up: Maximum upstream bandwidth in Mb/s 2241 * @max_down: Maximum downstream bandwidth in Mb/s 2242 * 2243 * Returns maximum possible bandwidth this tunnel can go if not limited 2244 * by other bandwidth clients. If the tunnel does not support this 2245 * returns %-EOPNOTSUPP. 2246 */ 2247 int tb_tunnel_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up, 2248 int *max_down) 2249 { 2250 if (!tb_tunnel_is_active(tunnel)) 2251 return -EINVAL; 2252 2253 if (tunnel->maximum_bandwidth) 2254 return tunnel->maximum_bandwidth(tunnel, max_up, max_down); 2255 return -EOPNOTSUPP; 2256 } 2257 2258 /** 2259 * tb_tunnel_allocated_bandwidth() - Return bandwidth allocated for the tunnel 2260 * @tunnel: Tunnel to check 2261 * @allocated_up: Currently allocated upstream bandwidth in Mb/s is stored here 2262 * @allocated_down: Currently allocated downstream bandwidth in Mb/s is 2263 * stored here 2264 * 2265 * Returns the bandwidth allocated for the tunnel. This may be higher 2266 * than what the tunnel actually consumes. 2267 */ 2268 int tb_tunnel_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up, 2269 int *allocated_down) 2270 { 2271 if (!tb_tunnel_is_active(tunnel)) 2272 return -EINVAL; 2273 2274 if (tunnel->allocated_bandwidth) 2275 return tunnel->allocated_bandwidth(tunnel, allocated_up, 2276 allocated_down); 2277 return -EOPNOTSUPP; 2278 } 2279 2280 /** 2281 * tb_tunnel_alloc_bandwidth() - Change tunnel bandwidth allocation 2282 * @tunnel: Tunnel whose bandwidth allocation to change 2283 * @alloc_up: New upstream bandwidth in Mb/s 2284 * @alloc_down: New downstream bandwidth in Mb/s 2285 * 2286 * Tries to change tunnel bandwidth allocation. If succeeds returns %0 2287 * and updates @alloc_up and @alloc_down to that was actually allocated 2288 * (it may not be the same as passed originally). Returns negative errno 2289 * in case of failure. 2290 */ 2291 int tb_tunnel_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up, 2292 int *alloc_down) 2293 { 2294 if (!tb_tunnel_is_active(tunnel)) 2295 return -EINVAL; 2296 2297 if (tunnel->alloc_bandwidth) 2298 return tunnel->alloc_bandwidth(tunnel, alloc_up, alloc_down); 2299 2300 return -EOPNOTSUPP; 2301 } 2302 2303 /** 2304 * tb_tunnel_consumed_bandwidth() - Return bandwidth consumed by the tunnel 2305 * @tunnel: Tunnel to check 2306 * @consumed_up: Consumed bandwidth in Mb/s from @dst_port to @src_port. 2307 * Can be %NULL. 2308 * @consumed_down: Consumed bandwidth in Mb/s from @src_port to @dst_port. 2309 * Can be %NULL. 2310 * 2311 * Stores the amount of isochronous bandwidth @tunnel consumes in 2312 * @consumed_up and @consumed_down. In case of success returns %0, 2313 * negative errno otherwise. 2314 */ 2315 int tb_tunnel_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 2316 int *consumed_down) 2317 { 2318 int up_bw = 0, down_bw = 0; 2319 2320 if (!tb_tunnel_is_active(tunnel)) 2321 goto out; 2322 2323 if (tunnel->consumed_bandwidth) { 2324 int ret; 2325 2326 ret = tunnel->consumed_bandwidth(tunnel, &up_bw, &down_bw); 2327 if (ret) 2328 return ret; 2329 2330 tb_tunnel_dbg(tunnel, "consumed bandwidth %d/%d Mb/s\n", up_bw, 2331 down_bw); 2332 } 2333 2334 out: 2335 if (consumed_up) 2336 *consumed_up = up_bw; 2337 if (consumed_down) 2338 *consumed_down = down_bw; 2339 2340 return 0; 2341 } 2342 2343 /** 2344 * tb_tunnel_release_unused_bandwidth() - Release unused bandwidth 2345 * @tunnel: Tunnel whose unused bandwidth to release 2346 * 2347 * If tunnel supports dynamic bandwidth management (USB3 tunnels at the 2348 * moment) this function makes it to release all the unused bandwidth. 2349 * 2350 * Returns %0 in case of success and negative errno otherwise. 2351 */ 2352 int tb_tunnel_release_unused_bandwidth(struct tb_tunnel *tunnel) 2353 { 2354 if (!tb_tunnel_is_active(tunnel)) 2355 return 0; 2356 2357 if (tunnel->release_unused_bandwidth) { 2358 int ret; 2359 2360 ret = tunnel->release_unused_bandwidth(tunnel); 2361 if (ret) 2362 return ret; 2363 } 2364 2365 return 0; 2366 } 2367 2368 /** 2369 * tb_tunnel_reclaim_available_bandwidth() - Reclaim available bandwidth 2370 * @tunnel: Tunnel reclaiming available bandwidth 2371 * @available_up: Available upstream bandwidth (in Mb/s) 2372 * @available_down: Available downstream bandwidth (in Mb/s) 2373 * 2374 * Reclaims bandwidth from @available_up and @available_down and updates 2375 * the variables accordingly (e.g decreases both according to what was 2376 * reclaimed by the tunnel). If nothing was reclaimed the values are 2377 * kept as is. 2378 */ 2379 void tb_tunnel_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 2380 int *available_up, 2381 int *available_down) 2382 { 2383 if (!tb_tunnel_is_active(tunnel)) 2384 return; 2385 2386 if (tunnel->reclaim_available_bandwidth) 2387 tunnel->reclaim_available_bandwidth(tunnel, available_up, 2388 available_down); 2389 } 2390