1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - Tunneling support 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/list.h> 12 #include <linux/ktime.h> 13 #include <linux/string_helpers.h> 14 15 #include "tunnel.h" 16 #include "tb.h" 17 18 /* PCIe adapters use always HopID of 8 for both directions */ 19 #define TB_PCI_HOPID 8 20 21 #define TB_PCI_PATH_DOWN 0 22 #define TB_PCI_PATH_UP 1 23 24 #define TB_PCI_PRIORITY 3 25 #define TB_PCI_WEIGHT 1 26 27 /* USB3 adapters use always HopID of 8 for both directions */ 28 #define TB_USB3_HOPID 8 29 30 #define TB_USB3_PATH_DOWN 0 31 #define TB_USB3_PATH_UP 1 32 33 #define TB_USB3_PRIORITY 3 34 #define TB_USB3_WEIGHT 2 35 36 /* DP adapters use HopID 8 for AUX and 9 for Video */ 37 #define TB_DP_AUX_TX_HOPID 8 38 #define TB_DP_AUX_RX_HOPID 8 39 #define TB_DP_VIDEO_HOPID 9 40 41 #define TB_DP_VIDEO_PATH_OUT 0 42 #define TB_DP_AUX_PATH_OUT 1 43 #define TB_DP_AUX_PATH_IN 2 44 45 #define TB_DP_VIDEO_PRIORITY 1 46 #define TB_DP_VIDEO_WEIGHT 1 47 48 #define TB_DP_AUX_PRIORITY 2 49 #define TB_DP_AUX_WEIGHT 1 50 51 /* Minimum number of credits needed for PCIe path */ 52 #define TB_MIN_PCIE_CREDITS 6U 53 /* 54 * Number of credits we try to allocate for each DMA path if not limited 55 * by the host router baMaxHI. 56 */ 57 #define TB_DMA_CREDITS 14 58 /* Minimum number of credits for DMA path */ 59 #define TB_MIN_DMA_CREDITS 1 60 61 #define TB_DMA_PRIORITY 5 62 #define TB_DMA_WEIGHT 1 63 64 /* 65 * Reserve additional bandwidth for USB 3.x and PCIe bulk traffic 66 * according to USB4 v2 Connection Manager guide. This ends up reserving 67 * 1500 Mb/s for PCIe and 3000 Mb/s for USB 3.x taking weights into 68 * account. 69 */ 70 #define USB4_V2_PCI_MIN_BANDWIDTH (1500 * TB_PCI_WEIGHT) 71 #define USB4_V2_USB3_MIN_BANDWIDTH (1500 * TB_USB3_WEIGHT) 72 73 static unsigned int dma_credits = TB_DMA_CREDITS; 74 module_param(dma_credits, uint, 0444); 75 MODULE_PARM_DESC(dma_credits, "specify custom credits for DMA tunnels (default: " 76 __MODULE_STRING(TB_DMA_CREDITS) ")"); 77 78 static bool bw_alloc_mode = true; 79 module_param(bw_alloc_mode, bool, 0444); 80 MODULE_PARM_DESC(bw_alloc_mode, 81 "enable bandwidth allocation mode if supported (default: true)"); 82 83 static const char * const tb_tunnel_names[] = { "PCI", "DP", "DMA", "USB3" }; 84 85 static inline unsigned int tb_usable_credits(const struct tb_port *port) 86 { 87 return port->total_credits - port->ctl_credits; 88 } 89 90 /** 91 * tb_available_credits() - Available credits for PCIe and DMA 92 * @port: Lane adapter to check 93 * @max_dp_streams: If non-%NULL stores maximum number of simultaneous DP 94 * streams possible through this lane adapter 95 */ 96 static unsigned int tb_available_credits(const struct tb_port *port, 97 size_t *max_dp_streams) 98 { 99 const struct tb_switch *sw = port->sw; 100 int credits, usb3, pcie, spare; 101 size_t ndp; 102 103 usb3 = tb_acpi_may_tunnel_usb3() ? sw->max_usb3_credits : 0; 104 pcie = tb_acpi_may_tunnel_pcie() ? sw->max_pcie_credits : 0; 105 106 if (tb_acpi_is_xdomain_allowed()) { 107 spare = min_not_zero(sw->max_dma_credits, dma_credits); 108 /* Add some credits for potential second DMA tunnel */ 109 spare += TB_MIN_DMA_CREDITS; 110 } else { 111 spare = 0; 112 } 113 114 credits = tb_usable_credits(port); 115 if (tb_acpi_may_tunnel_dp()) { 116 /* 117 * Maximum number of DP streams possible through the 118 * lane adapter. 119 */ 120 if (sw->min_dp_aux_credits + sw->min_dp_main_credits) 121 ndp = (credits - (usb3 + pcie + spare)) / 122 (sw->min_dp_aux_credits + sw->min_dp_main_credits); 123 else 124 ndp = 0; 125 } else { 126 ndp = 0; 127 } 128 credits -= ndp * (sw->min_dp_aux_credits + sw->min_dp_main_credits); 129 credits -= usb3; 130 131 if (max_dp_streams) 132 *max_dp_streams = ndp; 133 134 return credits > 0 ? credits : 0; 135 } 136 137 static void tb_init_pm_support(struct tb_path_hop *hop) 138 { 139 struct tb_port *out_port = hop->out_port; 140 struct tb_port *in_port = hop->in_port; 141 142 if (tb_port_is_null(in_port) && tb_port_is_null(out_port) && 143 usb4_switch_version(in_port->sw) >= 2) 144 hop->pm_support = true; 145 } 146 147 static struct tb_tunnel *tb_tunnel_alloc(struct tb *tb, size_t npaths, 148 enum tb_tunnel_type type) 149 { 150 struct tb_tunnel *tunnel; 151 152 tunnel = kzalloc(sizeof(*tunnel), GFP_KERNEL); 153 if (!tunnel) 154 return NULL; 155 156 tunnel->paths = kcalloc(npaths, sizeof(tunnel->paths[0]), GFP_KERNEL); 157 if (!tunnel->paths) { 158 tb_tunnel_free(tunnel); 159 return NULL; 160 } 161 162 INIT_LIST_HEAD(&tunnel->list); 163 tunnel->tb = tb; 164 tunnel->npaths = npaths; 165 tunnel->type = type; 166 167 return tunnel; 168 } 169 170 static int tb_pci_set_ext_encapsulation(struct tb_tunnel *tunnel, bool enable) 171 { 172 struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw); 173 int ret; 174 175 /* Only supported of both routers are at least USB4 v2 */ 176 if ((usb4_switch_version(tunnel->src_port->sw) < 2) || 177 (usb4_switch_version(tunnel->dst_port->sw) < 2)) 178 return 0; 179 180 if (enable && tb_port_get_link_generation(port) < 4) 181 return 0; 182 183 ret = usb4_pci_port_set_ext_encapsulation(tunnel->src_port, enable); 184 if (ret) 185 return ret; 186 187 /* 188 * Downstream router could be unplugged so disable of encapsulation 189 * in upstream router is still possible. 190 */ 191 ret = usb4_pci_port_set_ext_encapsulation(tunnel->dst_port, enable); 192 if (ret) { 193 if (enable) 194 return ret; 195 if (ret != -ENODEV) 196 return ret; 197 } 198 199 tb_tunnel_dbg(tunnel, "extended encapsulation %s\n", 200 str_enabled_disabled(enable)); 201 return 0; 202 } 203 204 static int tb_pci_activate(struct tb_tunnel *tunnel, bool activate) 205 { 206 int res; 207 208 if (activate) { 209 res = tb_pci_set_ext_encapsulation(tunnel, activate); 210 if (res) 211 return res; 212 } 213 214 if (activate) 215 res = tb_pci_port_enable(tunnel->dst_port, activate); 216 else 217 res = tb_pci_port_enable(tunnel->src_port, activate); 218 if (res) 219 return res; 220 221 222 if (activate) { 223 res = tb_pci_port_enable(tunnel->src_port, activate); 224 if (res) 225 return res; 226 } else { 227 /* Downstream router could be unplugged */ 228 tb_pci_port_enable(tunnel->dst_port, activate); 229 } 230 231 return activate ? 0 : tb_pci_set_ext_encapsulation(tunnel, activate); 232 } 233 234 static int tb_pci_init_credits(struct tb_path_hop *hop) 235 { 236 struct tb_port *port = hop->in_port; 237 struct tb_switch *sw = port->sw; 238 unsigned int credits; 239 240 if (tb_port_use_credit_allocation(port)) { 241 unsigned int available; 242 243 available = tb_available_credits(port, NULL); 244 credits = min(sw->max_pcie_credits, available); 245 246 if (credits < TB_MIN_PCIE_CREDITS) 247 return -ENOSPC; 248 249 credits = max(TB_MIN_PCIE_CREDITS, credits); 250 } else { 251 if (tb_port_is_null(port)) 252 credits = port->bonded ? 32 : 16; 253 else 254 credits = 7; 255 } 256 257 hop->initial_credits = credits; 258 return 0; 259 } 260 261 static int tb_pci_init_path(struct tb_path *path) 262 { 263 struct tb_path_hop *hop; 264 265 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 266 path->egress_shared_buffer = TB_PATH_NONE; 267 path->ingress_fc_enable = TB_PATH_ALL; 268 path->ingress_shared_buffer = TB_PATH_NONE; 269 path->priority = TB_PCI_PRIORITY; 270 path->weight = TB_PCI_WEIGHT; 271 path->drop_packages = 0; 272 273 tb_path_for_each_hop(path, hop) { 274 int ret; 275 276 ret = tb_pci_init_credits(hop); 277 if (ret) 278 return ret; 279 } 280 281 return 0; 282 } 283 284 /** 285 * tb_tunnel_discover_pci() - Discover existing PCIe tunnels 286 * @tb: Pointer to the domain structure 287 * @down: PCIe downstream adapter 288 * @alloc_hopid: Allocate HopIDs from visited ports 289 * 290 * If @down adapter is active, follows the tunnel to the PCIe upstream 291 * adapter and back. Returns the discovered tunnel or %NULL if there was 292 * no tunnel. 293 */ 294 struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down, 295 bool alloc_hopid) 296 { 297 struct tb_tunnel *tunnel; 298 struct tb_path *path; 299 300 if (!tb_pci_port_is_enabled(down)) 301 return NULL; 302 303 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 304 if (!tunnel) 305 return NULL; 306 307 tunnel->activate = tb_pci_activate; 308 tunnel->src_port = down; 309 310 /* 311 * Discover both paths even if they are not complete. We will 312 * clean them up by calling tb_tunnel_deactivate() below in that 313 * case. 314 */ 315 path = tb_path_discover(down, TB_PCI_HOPID, NULL, -1, 316 &tunnel->dst_port, "PCIe Up", alloc_hopid); 317 if (!path) { 318 /* Just disable the downstream port */ 319 tb_pci_port_enable(down, false); 320 goto err_free; 321 } 322 tunnel->paths[TB_PCI_PATH_UP] = path; 323 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_UP])) 324 goto err_free; 325 326 path = tb_path_discover(tunnel->dst_port, -1, down, TB_PCI_HOPID, NULL, 327 "PCIe Down", alloc_hopid); 328 if (!path) 329 goto err_deactivate; 330 tunnel->paths[TB_PCI_PATH_DOWN] = path; 331 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_DOWN])) 332 goto err_deactivate; 333 334 /* Validate that the tunnel is complete */ 335 if (!tb_port_is_pcie_up(tunnel->dst_port)) { 336 tb_port_warn(tunnel->dst_port, 337 "path does not end on a PCIe adapter, cleaning up\n"); 338 goto err_deactivate; 339 } 340 341 if (down != tunnel->src_port) { 342 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 343 goto err_deactivate; 344 } 345 346 if (!tb_pci_port_is_enabled(tunnel->dst_port)) { 347 tb_tunnel_warn(tunnel, 348 "tunnel is not fully activated, cleaning up\n"); 349 goto err_deactivate; 350 } 351 352 tb_tunnel_dbg(tunnel, "discovered\n"); 353 return tunnel; 354 355 err_deactivate: 356 tb_tunnel_deactivate(tunnel); 357 err_free: 358 tb_tunnel_free(tunnel); 359 360 return NULL; 361 } 362 363 /** 364 * tb_tunnel_alloc_pci() - allocate a pci tunnel 365 * @tb: Pointer to the domain structure 366 * @up: PCIe upstream adapter port 367 * @down: PCIe downstream adapter port 368 * 369 * Allocate a PCI tunnel. The ports must be of type TB_TYPE_PCIE_UP and 370 * TB_TYPE_PCIE_DOWN. 371 * 372 * Return: Returns a tb_tunnel on success or NULL on failure. 373 */ 374 struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up, 375 struct tb_port *down) 376 { 377 struct tb_tunnel *tunnel; 378 struct tb_path *path; 379 380 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 381 if (!tunnel) 382 return NULL; 383 384 tunnel->activate = tb_pci_activate; 385 tunnel->src_port = down; 386 tunnel->dst_port = up; 387 388 path = tb_path_alloc(tb, down, TB_PCI_HOPID, up, TB_PCI_HOPID, 0, 389 "PCIe Down"); 390 if (!path) 391 goto err_free; 392 tunnel->paths[TB_PCI_PATH_DOWN] = path; 393 if (tb_pci_init_path(path)) 394 goto err_free; 395 396 path = tb_path_alloc(tb, up, TB_PCI_HOPID, down, TB_PCI_HOPID, 0, 397 "PCIe Up"); 398 if (!path) 399 goto err_free; 400 tunnel->paths[TB_PCI_PATH_UP] = path; 401 if (tb_pci_init_path(path)) 402 goto err_free; 403 404 return tunnel; 405 406 err_free: 407 tb_tunnel_free(tunnel); 408 return NULL; 409 } 410 411 /** 412 * tb_tunnel_reserved_pci() - Amount of bandwidth to reserve for PCIe 413 * @port: Lane 0 adapter 414 * @reserved_up: Upstream bandwidth in Mb/s to reserve 415 * @reserved_down: Downstream bandwidth in Mb/s to reserve 416 * 417 * Can be called to any connected lane 0 adapter to find out how much 418 * bandwidth needs to be left in reserve for possible PCIe bulk traffic. 419 * Returns true if there is something to be reserved and writes the 420 * amount to @reserved_down/@reserved_up. Otherwise returns false and 421 * does not touch the parameters. 422 */ 423 bool tb_tunnel_reserved_pci(struct tb_port *port, int *reserved_up, 424 int *reserved_down) 425 { 426 if (WARN_ON_ONCE(!port->remote)) 427 return false; 428 429 if (!tb_acpi_may_tunnel_pcie()) 430 return false; 431 432 if (tb_port_get_link_generation(port) < 4) 433 return false; 434 435 /* Must have PCIe adapters */ 436 if (tb_is_upstream_port(port)) { 437 if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_UP)) 438 return false; 439 if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_DOWN)) 440 return false; 441 } else { 442 if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_DOWN)) 443 return false; 444 if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_UP)) 445 return false; 446 } 447 448 *reserved_up = USB4_V2_PCI_MIN_BANDWIDTH; 449 *reserved_down = USB4_V2_PCI_MIN_BANDWIDTH; 450 451 tb_port_dbg(port, "reserving %u/%u Mb/s for PCIe\n", *reserved_up, 452 *reserved_down); 453 return true; 454 } 455 456 static bool tb_dp_is_usb4(const struct tb_switch *sw) 457 { 458 /* Titan Ridge DP adapters need the same treatment as USB4 */ 459 return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw); 460 } 461 462 static int tb_dp_cm_handshake(struct tb_port *in, struct tb_port *out, 463 int timeout_msec) 464 { 465 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 466 u32 val; 467 int ret; 468 469 /* Both ends need to support this */ 470 if (!tb_dp_is_usb4(in->sw) || !tb_dp_is_usb4(out->sw)) 471 return 0; 472 473 ret = tb_port_read(out, &val, TB_CFG_PORT, 474 out->cap_adap + DP_STATUS_CTRL, 1); 475 if (ret) 476 return ret; 477 478 val |= DP_STATUS_CTRL_UF | DP_STATUS_CTRL_CMHS; 479 480 ret = tb_port_write(out, &val, TB_CFG_PORT, 481 out->cap_adap + DP_STATUS_CTRL, 1); 482 if (ret) 483 return ret; 484 485 do { 486 ret = tb_port_read(out, &val, TB_CFG_PORT, 487 out->cap_adap + DP_STATUS_CTRL, 1); 488 if (ret) 489 return ret; 490 if (!(val & DP_STATUS_CTRL_CMHS)) 491 return 0; 492 usleep_range(100, 150); 493 } while (ktime_before(ktime_get(), timeout)); 494 495 return -ETIMEDOUT; 496 } 497 498 /* 499 * Returns maximum possible rate from capability supporting only DP 2.0 500 * and below. Used when DP BW allocation mode is not enabled. 501 */ 502 static inline u32 tb_dp_cap_get_rate(u32 val) 503 { 504 u32 rate = (val & DP_COMMON_CAP_RATE_MASK) >> DP_COMMON_CAP_RATE_SHIFT; 505 506 switch (rate) { 507 case DP_COMMON_CAP_RATE_RBR: 508 return 1620; 509 case DP_COMMON_CAP_RATE_HBR: 510 return 2700; 511 case DP_COMMON_CAP_RATE_HBR2: 512 return 5400; 513 case DP_COMMON_CAP_RATE_HBR3: 514 return 8100; 515 default: 516 return 0; 517 } 518 } 519 520 /* 521 * Returns maximum possible rate from capability supporting DP 2.1 522 * UHBR20, 13.5 and 10 rates as well. Use only when DP BW allocation 523 * mode is enabled. 524 */ 525 static inline u32 tb_dp_cap_get_rate_ext(u32 val) 526 { 527 if (val & DP_COMMON_CAP_UHBR20) 528 return 20000; 529 else if (val & DP_COMMON_CAP_UHBR13_5) 530 return 13500; 531 else if (val & DP_COMMON_CAP_UHBR10) 532 return 10000; 533 534 return tb_dp_cap_get_rate(val); 535 } 536 537 static inline bool tb_dp_is_uhbr_rate(unsigned int rate) 538 { 539 return rate >= 10000; 540 } 541 542 static inline u32 tb_dp_cap_set_rate(u32 val, u32 rate) 543 { 544 val &= ~DP_COMMON_CAP_RATE_MASK; 545 switch (rate) { 546 default: 547 WARN(1, "invalid rate %u passed, defaulting to 1620 MB/s\n", rate); 548 fallthrough; 549 case 1620: 550 val |= DP_COMMON_CAP_RATE_RBR << DP_COMMON_CAP_RATE_SHIFT; 551 break; 552 case 2700: 553 val |= DP_COMMON_CAP_RATE_HBR << DP_COMMON_CAP_RATE_SHIFT; 554 break; 555 case 5400: 556 val |= DP_COMMON_CAP_RATE_HBR2 << DP_COMMON_CAP_RATE_SHIFT; 557 break; 558 case 8100: 559 val |= DP_COMMON_CAP_RATE_HBR3 << DP_COMMON_CAP_RATE_SHIFT; 560 break; 561 } 562 return val; 563 } 564 565 static inline u32 tb_dp_cap_get_lanes(u32 val) 566 { 567 u32 lanes = (val & DP_COMMON_CAP_LANES_MASK) >> DP_COMMON_CAP_LANES_SHIFT; 568 569 switch (lanes) { 570 case DP_COMMON_CAP_1_LANE: 571 return 1; 572 case DP_COMMON_CAP_2_LANES: 573 return 2; 574 case DP_COMMON_CAP_4_LANES: 575 return 4; 576 default: 577 return 0; 578 } 579 } 580 581 static inline u32 tb_dp_cap_set_lanes(u32 val, u32 lanes) 582 { 583 val &= ~DP_COMMON_CAP_LANES_MASK; 584 switch (lanes) { 585 default: 586 WARN(1, "invalid number of lanes %u passed, defaulting to 1\n", 587 lanes); 588 fallthrough; 589 case 1: 590 val |= DP_COMMON_CAP_1_LANE << DP_COMMON_CAP_LANES_SHIFT; 591 break; 592 case 2: 593 val |= DP_COMMON_CAP_2_LANES << DP_COMMON_CAP_LANES_SHIFT; 594 break; 595 case 4: 596 val |= DP_COMMON_CAP_4_LANES << DP_COMMON_CAP_LANES_SHIFT; 597 break; 598 } 599 return val; 600 } 601 602 static unsigned int tb_dp_bandwidth(unsigned int rate, unsigned int lanes) 603 { 604 /* Tunneling removes the DP 8b/10b 128/132b encoding */ 605 if (tb_dp_is_uhbr_rate(rate)) 606 return rate * lanes * 128 / 132; 607 return rate * lanes * 8 / 10; 608 } 609 610 static int tb_dp_reduce_bandwidth(int max_bw, u32 in_rate, u32 in_lanes, 611 u32 out_rate, u32 out_lanes, u32 *new_rate, 612 u32 *new_lanes) 613 { 614 static const u32 dp_bw[][2] = { 615 /* Mb/s, lanes */ 616 { 8100, 4 }, /* 25920 Mb/s */ 617 { 5400, 4 }, /* 17280 Mb/s */ 618 { 8100, 2 }, /* 12960 Mb/s */ 619 { 2700, 4 }, /* 8640 Mb/s */ 620 { 5400, 2 }, /* 8640 Mb/s */ 621 { 8100, 1 }, /* 6480 Mb/s */ 622 { 1620, 4 }, /* 5184 Mb/s */ 623 { 5400, 1 }, /* 4320 Mb/s */ 624 { 2700, 2 }, /* 4320 Mb/s */ 625 { 1620, 2 }, /* 2592 Mb/s */ 626 { 2700, 1 }, /* 2160 Mb/s */ 627 { 1620, 1 }, /* 1296 Mb/s */ 628 }; 629 unsigned int i; 630 631 /* 632 * Find a combination that can fit into max_bw and does not 633 * exceed the maximum rate and lanes supported by the DP OUT and 634 * DP IN adapters. 635 */ 636 for (i = 0; i < ARRAY_SIZE(dp_bw); i++) { 637 if (dp_bw[i][0] > out_rate || dp_bw[i][1] > out_lanes) 638 continue; 639 640 if (dp_bw[i][0] > in_rate || dp_bw[i][1] > in_lanes) 641 continue; 642 643 if (tb_dp_bandwidth(dp_bw[i][0], dp_bw[i][1]) <= max_bw) { 644 *new_rate = dp_bw[i][0]; 645 *new_lanes = dp_bw[i][1]; 646 return 0; 647 } 648 } 649 650 return -ENOSR; 651 } 652 653 static int tb_dp_xchg_caps(struct tb_tunnel *tunnel) 654 { 655 u32 out_dp_cap, out_rate, out_lanes, in_dp_cap, in_rate, in_lanes, bw; 656 struct tb_port *out = tunnel->dst_port; 657 struct tb_port *in = tunnel->src_port; 658 int ret, max_bw; 659 660 /* 661 * Copy DP_LOCAL_CAP register to DP_REMOTE_CAP register for 662 * newer generation hardware. 663 */ 664 if (in->sw->generation < 2 || out->sw->generation < 2) 665 return 0; 666 667 /* 668 * Perform connection manager handshake between IN and OUT ports 669 * before capabilities exchange can take place. 670 */ 671 ret = tb_dp_cm_handshake(in, out, 3000); 672 if (ret) 673 return ret; 674 675 /* Read both DP_LOCAL_CAP registers */ 676 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 677 in->cap_adap + DP_LOCAL_CAP, 1); 678 if (ret) 679 return ret; 680 681 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 682 out->cap_adap + DP_LOCAL_CAP, 1); 683 if (ret) 684 return ret; 685 686 /* Write IN local caps to OUT remote caps */ 687 ret = tb_port_write(out, &in_dp_cap, TB_CFG_PORT, 688 out->cap_adap + DP_REMOTE_CAP, 1); 689 if (ret) 690 return ret; 691 692 in_rate = tb_dp_cap_get_rate(in_dp_cap); 693 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 694 tb_tunnel_dbg(tunnel, 695 "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 696 in_rate, in_lanes, tb_dp_bandwidth(in_rate, in_lanes)); 697 698 /* 699 * If the tunnel bandwidth is limited (max_bw is set) then see 700 * if we need to reduce bandwidth to fit there. 701 */ 702 out_rate = tb_dp_cap_get_rate(out_dp_cap); 703 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 704 bw = tb_dp_bandwidth(out_rate, out_lanes); 705 tb_tunnel_dbg(tunnel, 706 "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 707 out_rate, out_lanes, bw); 708 709 if (tb_tunnel_direction_downstream(tunnel)) 710 max_bw = tunnel->max_down; 711 else 712 max_bw = tunnel->max_up; 713 714 if (max_bw && bw > max_bw) { 715 u32 new_rate, new_lanes, new_bw; 716 717 ret = tb_dp_reduce_bandwidth(max_bw, in_rate, in_lanes, 718 out_rate, out_lanes, &new_rate, 719 &new_lanes); 720 if (ret) { 721 tb_tunnel_info(tunnel, "not enough bandwidth\n"); 722 return ret; 723 } 724 725 new_bw = tb_dp_bandwidth(new_rate, new_lanes); 726 tb_tunnel_dbg(tunnel, 727 "bandwidth reduced to %u Mb/s x%u = %u Mb/s\n", 728 new_rate, new_lanes, new_bw); 729 730 /* 731 * Set new rate and number of lanes before writing it to 732 * the IN port remote caps. 733 */ 734 out_dp_cap = tb_dp_cap_set_rate(out_dp_cap, new_rate); 735 out_dp_cap = tb_dp_cap_set_lanes(out_dp_cap, new_lanes); 736 } 737 738 /* 739 * Titan Ridge does not disable AUX timers when it gets 740 * SET_CONFIG with SET_LTTPR_MODE set. This causes problems with 741 * DP tunneling. 742 */ 743 if (tb_route(out->sw) && tb_switch_is_titan_ridge(out->sw)) { 744 out_dp_cap |= DP_COMMON_CAP_LTTPR_NS; 745 tb_tunnel_dbg(tunnel, "disabling LTTPR\n"); 746 } 747 748 return tb_port_write(in, &out_dp_cap, TB_CFG_PORT, 749 in->cap_adap + DP_REMOTE_CAP, 1); 750 } 751 752 static int tb_dp_bandwidth_alloc_mode_enable(struct tb_tunnel *tunnel) 753 { 754 int ret, estimated_bw, granularity, tmp; 755 struct tb_port *out = tunnel->dst_port; 756 struct tb_port *in = tunnel->src_port; 757 u32 out_dp_cap, out_rate, out_lanes; 758 u32 in_dp_cap, in_rate, in_lanes; 759 u32 rate, lanes; 760 761 if (!bw_alloc_mode) 762 return 0; 763 764 ret = usb4_dp_port_set_cm_bandwidth_mode_supported(in, true); 765 if (ret) 766 return ret; 767 768 ret = usb4_dp_port_set_group_id(in, in->group->index); 769 if (ret) 770 return ret; 771 772 /* 773 * Get the non-reduced rate and lanes based on the lowest 774 * capability of both adapters. 775 */ 776 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 777 in->cap_adap + DP_LOCAL_CAP, 1); 778 if (ret) 779 return ret; 780 781 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 782 out->cap_adap + DP_LOCAL_CAP, 1); 783 if (ret) 784 return ret; 785 786 in_rate = tb_dp_cap_get_rate(in_dp_cap); 787 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 788 out_rate = tb_dp_cap_get_rate(out_dp_cap); 789 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 790 791 rate = min(in_rate, out_rate); 792 lanes = min(in_lanes, out_lanes); 793 tmp = tb_dp_bandwidth(rate, lanes); 794 795 tb_tunnel_dbg(tunnel, "non-reduced bandwidth %u Mb/s x%u = %u Mb/s\n", 796 rate, lanes, tmp); 797 798 ret = usb4_dp_port_set_nrd(in, rate, lanes); 799 if (ret) 800 return ret; 801 802 /* 803 * Pick up granularity that supports maximum possible bandwidth. 804 * For that we use the UHBR rates too. 805 */ 806 in_rate = tb_dp_cap_get_rate_ext(in_dp_cap); 807 out_rate = tb_dp_cap_get_rate_ext(out_dp_cap); 808 rate = min(in_rate, out_rate); 809 tmp = tb_dp_bandwidth(rate, lanes); 810 811 tb_tunnel_dbg(tunnel, 812 "maximum bandwidth through allocation mode %u Mb/s x%u = %u Mb/s\n", 813 rate, lanes, tmp); 814 815 for (granularity = 250; tmp / granularity > 255 && granularity <= 1000; 816 granularity *= 2) 817 ; 818 819 tb_tunnel_dbg(tunnel, "granularity %d Mb/s\n", granularity); 820 821 /* 822 * Returns -EINVAL if granularity above is outside of the 823 * accepted ranges. 824 */ 825 ret = usb4_dp_port_set_granularity(in, granularity); 826 if (ret) 827 return ret; 828 829 /* 830 * Bandwidth estimation is pretty much what we have in 831 * max_up/down fields. For discovery we just read what the 832 * estimation was set to. 833 */ 834 if (tb_tunnel_direction_downstream(tunnel)) 835 estimated_bw = tunnel->max_down; 836 else 837 estimated_bw = tunnel->max_up; 838 839 tb_tunnel_dbg(tunnel, "estimated bandwidth %d Mb/s\n", estimated_bw); 840 841 ret = usb4_dp_port_set_estimated_bandwidth(in, estimated_bw); 842 if (ret) 843 return ret; 844 845 /* Initial allocation should be 0 according the spec */ 846 ret = usb4_dp_port_allocate_bandwidth(in, 0); 847 if (ret) 848 return ret; 849 850 tb_tunnel_dbg(tunnel, "bandwidth allocation mode enabled\n"); 851 return 0; 852 } 853 854 static int tb_dp_init(struct tb_tunnel *tunnel) 855 { 856 struct tb_port *in = tunnel->src_port; 857 struct tb_switch *sw = in->sw; 858 struct tb *tb = in->sw->tb; 859 int ret; 860 861 ret = tb_dp_xchg_caps(tunnel); 862 if (ret) 863 return ret; 864 865 if (!tb_switch_is_usb4(sw)) 866 return 0; 867 868 if (!usb4_dp_port_bandwidth_mode_supported(in)) 869 return 0; 870 871 tb_tunnel_dbg(tunnel, "bandwidth allocation mode supported\n"); 872 873 ret = usb4_dp_port_set_cm_id(in, tb->index); 874 if (ret) 875 return ret; 876 877 return tb_dp_bandwidth_alloc_mode_enable(tunnel); 878 } 879 880 static void tb_dp_deinit(struct tb_tunnel *tunnel) 881 { 882 struct tb_port *in = tunnel->src_port; 883 884 if (!usb4_dp_port_bandwidth_mode_supported(in)) 885 return; 886 if (usb4_dp_port_bandwidth_mode_enabled(in)) { 887 usb4_dp_port_set_cm_bandwidth_mode_supported(in, false); 888 tb_tunnel_dbg(tunnel, "bandwidth allocation mode disabled\n"); 889 } 890 } 891 892 static int tb_dp_activate(struct tb_tunnel *tunnel, bool active) 893 { 894 int ret; 895 896 if (active) { 897 struct tb_path **paths; 898 int last; 899 900 paths = tunnel->paths; 901 last = paths[TB_DP_VIDEO_PATH_OUT]->path_length - 1; 902 903 tb_dp_port_set_hops(tunnel->src_port, 904 paths[TB_DP_VIDEO_PATH_OUT]->hops[0].in_hop_index, 905 paths[TB_DP_AUX_PATH_OUT]->hops[0].in_hop_index, 906 paths[TB_DP_AUX_PATH_IN]->hops[last].next_hop_index); 907 908 tb_dp_port_set_hops(tunnel->dst_port, 909 paths[TB_DP_VIDEO_PATH_OUT]->hops[last].next_hop_index, 910 paths[TB_DP_AUX_PATH_IN]->hops[0].in_hop_index, 911 paths[TB_DP_AUX_PATH_OUT]->hops[last].next_hop_index); 912 } else { 913 tb_dp_port_hpd_clear(tunnel->src_port); 914 tb_dp_port_set_hops(tunnel->src_port, 0, 0, 0); 915 if (tb_port_is_dpout(tunnel->dst_port)) 916 tb_dp_port_set_hops(tunnel->dst_port, 0, 0, 0); 917 } 918 919 ret = tb_dp_port_enable(tunnel->src_port, active); 920 if (ret) 921 return ret; 922 923 if (tb_port_is_dpout(tunnel->dst_port)) 924 return tb_dp_port_enable(tunnel->dst_port, active); 925 926 return 0; 927 } 928 929 /** 930 * tb_dp_bandwidth_mode_maximum_bandwidth() - Maximum possible bandwidth 931 * @tunnel: DP tunnel to check 932 * @max_bw_rounded: Maximum bandwidth in Mb/s rounded up to the next granularity 933 * 934 * Returns maximum possible bandwidth for this tunnel in Mb/s. 935 */ 936 static int tb_dp_bandwidth_mode_maximum_bandwidth(struct tb_tunnel *tunnel, 937 int *max_bw_rounded) 938 { 939 struct tb_port *in = tunnel->src_port; 940 int ret, rate, lanes, max_bw; 941 u32 cap; 942 943 /* 944 * DP IN adapter DP_LOCAL_CAP gets updated to the lowest AUX 945 * read parameter values so this so we can use this to determine 946 * the maximum possible bandwidth over this link. 947 * 948 * See USB4 v2 spec 1.0 10.4.4.5. 949 */ 950 ret = tb_port_read(in, &cap, TB_CFG_PORT, 951 in->cap_adap + DP_LOCAL_CAP, 1); 952 if (ret) 953 return ret; 954 955 rate = tb_dp_cap_get_rate_ext(cap); 956 lanes = tb_dp_cap_get_lanes(cap); 957 958 max_bw = tb_dp_bandwidth(rate, lanes); 959 960 if (max_bw_rounded) { 961 ret = usb4_dp_port_granularity(in); 962 if (ret < 0) 963 return ret; 964 *max_bw_rounded = roundup(max_bw, ret); 965 } 966 967 return max_bw; 968 } 969 970 static int tb_dp_bandwidth_mode_consumed_bandwidth(struct tb_tunnel *tunnel, 971 int *consumed_up, 972 int *consumed_down) 973 { 974 struct tb_port *in = tunnel->src_port; 975 int ret, allocated_bw, max_bw_rounded; 976 977 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 978 return -EOPNOTSUPP; 979 980 if (!tunnel->bw_mode) 981 return -EOPNOTSUPP; 982 983 /* Read what was allocated previously if any */ 984 ret = usb4_dp_port_allocated_bandwidth(in); 985 if (ret < 0) 986 return ret; 987 allocated_bw = ret; 988 989 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw_rounded); 990 if (ret < 0) 991 return ret; 992 if (allocated_bw == max_bw_rounded) 993 allocated_bw = ret; 994 995 if (tb_tunnel_direction_downstream(tunnel)) { 996 *consumed_up = 0; 997 *consumed_down = allocated_bw; 998 } else { 999 *consumed_up = allocated_bw; 1000 *consumed_down = 0; 1001 } 1002 1003 return 0; 1004 } 1005 1006 static int tb_dp_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up, 1007 int *allocated_down) 1008 { 1009 struct tb_port *in = tunnel->src_port; 1010 1011 /* 1012 * If we have already set the allocated bandwidth then use that. 1013 * Otherwise we read it from the DPRX. 1014 */ 1015 if (usb4_dp_port_bandwidth_mode_enabled(in) && tunnel->bw_mode) { 1016 int ret, allocated_bw, max_bw_rounded; 1017 1018 ret = usb4_dp_port_allocated_bandwidth(in); 1019 if (ret < 0) 1020 return ret; 1021 allocated_bw = ret; 1022 1023 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, 1024 &max_bw_rounded); 1025 if (ret < 0) 1026 return ret; 1027 if (allocated_bw == max_bw_rounded) 1028 allocated_bw = ret; 1029 1030 if (tb_tunnel_direction_downstream(tunnel)) { 1031 *allocated_up = 0; 1032 *allocated_down = allocated_bw; 1033 } else { 1034 *allocated_up = allocated_bw; 1035 *allocated_down = 0; 1036 } 1037 return 0; 1038 } 1039 1040 return tunnel->consumed_bandwidth(tunnel, allocated_up, 1041 allocated_down); 1042 } 1043 1044 static int tb_dp_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up, 1045 int *alloc_down) 1046 { 1047 struct tb_port *in = tunnel->src_port; 1048 int max_bw_rounded, ret, tmp; 1049 1050 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1051 return -EOPNOTSUPP; 1052 1053 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw_rounded); 1054 if (ret < 0) 1055 return ret; 1056 1057 if (tb_tunnel_direction_downstream(tunnel)) { 1058 tmp = min(*alloc_down, max_bw_rounded); 1059 ret = usb4_dp_port_allocate_bandwidth(in, tmp); 1060 if (ret) 1061 return ret; 1062 *alloc_down = tmp; 1063 *alloc_up = 0; 1064 } else { 1065 tmp = min(*alloc_up, max_bw_rounded); 1066 ret = usb4_dp_port_allocate_bandwidth(in, tmp); 1067 if (ret) 1068 return ret; 1069 *alloc_down = 0; 1070 *alloc_up = tmp; 1071 } 1072 1073 /* Now we can use BW mode registers to figure out the bandwidth */ 1074 /* TODO: need to handle discovery too */ 1075 tunnel->bw_mode = true; 1076 return 0; 1077 } 1078 1079 static int tb_dp_wait_dprx(struct tb_tunnel *tunnel, int timeout_msec) 1080 { 1081 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1082 struct tb_port *in = tunnel->src_port; 1083 1084 /* 1085 * Wait for DPRX done. Normally it should be already set for 1086 * active tunnel. 1087 */ 1088 do { 1089 u32 val; 1090 int ret; 1091 1092 ret = tb_port_read(in, &val, TB_CFG_PORT, 1093 in->cap_adap + DP_COMMON_CAP, 1); 1094 if (ret) 1095 return ret; 1096 1097 if (val & DP_COMMON_CAP_DPRX_DONE) { 1098 tb_tunnel_dbg(tunnel, "DPRX read done\n"); 1099 return 0; 1100 } 1101 usleep_range(100, 150); 1102 } while (ktime_before(ktime_get(), timeout)); 1103 1104 tb_tunnel_dbg(tunnel, "DPRX read timeout\n"); 1105 return -ETIMEDOUT; 1106 } 1107 1108 /* Read cap from tunnel DP IN */ 1109 static int tb_dp_read_cap(struct tb_tunnel *tunnel, unsigned int cap, u32 *rate, 1110 u32 *lanes) 1111 { 1112 struct tb_port *in = tunnel->src_port; 1113 u32 val; 1114 int ret; 1115 1116 switch (cap) { 1117 case DP_LOCAL_CAP: 1118 case DP_REMOTE_CAP: 1119 case DP_COMMON_CAP: 1120 break; 1121 1122 default: 1123 tb_tunnel_WARN(tunnel, "invalid capability index %#x\n", cap); 1124 return -EINVAL; 1125 } 1126 1127 /* 1128 * Read from the copied remote cap so that we take into account 1129 * if capabilities were reduced during exchange. 1130 */ 1131 ret = tb_port_read(in, &val, TB_CFG_PORT, in->cap_adap + cap, 1); 1132 if (ret) 1133 return ret; 1134 1135 *rate = tb_dp_cap_get_rate(val); 1136 *lanes = tb_dp_cap_get_lanes(val); 1137 return 0; 1138 } 1139 1140 static int tb_dp_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up, 1141 int *max_down) 1142 { 1143 int ret; 1144 1145 if (!usb4_dp_port_bandwidth_mode_enabled(tunnel->src_port)) 1146 return -EOPNOTSUPP; 1147 1148 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, NULL); 1149 if (ret < 0) 1150 return ret; 1151 1152 if (tb_tunnel_direction_downstream(tunnel)) { 1153 *max_up = 0; 1154 *max_down = ret; 1155 } else { 1156 *max_up = ret; 1157 *max_down = 0; 1158 } 1159 1160 return 0; 1161 } 1162 1163 static int tb_dp_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 1164 int *consumed_down) 1165 { 1166 const struct tb_switch *sw = tunnel->src_port->sw; 1167 u32 rate = 0, lanes = 0; 1168 int ret; 1169 1170 if (tb_dp_is_usb4(sw)) { 1171 /* 1172 * On USB4 routers check if the bandwidth allocation 1173 * mode is enabled first and then read the bandwidth 1174 * through those registers. 1175 */ 1176 ret = tb_dp_bandwidth_mode_consumed_bandwidth(tunnel, consumed_up, 1177 consumed_down); 1178 if (ret < 0) { 1179 if (ret != -EOPNOTSUPP) 1180 return ret; 1181 } else if (!ret) { 1182 return 0; 1183 } 1184 /* 1185 * Then see if the DPRX negotiation is ready and if yes 1186 * return that bandwidth (it may be smaller than the 1187 * reduced one). According to VESA spec, the DPRX 1188 * negotiation shall compete in 5 seconds after tunnel 1189 * established. We give it 100ms extra just in case. 1190 */ 1191 ret = tb_dp_wait_dprx(tunnel, 5100); 1192 if (ret) 1193 return ret; 1194 ret = tb_dp_read_cap(tunnel, DP_COMMON_CAP, &rate, &lanes); 1195 if (ret) 1196 return ret; 1197 } else if (sw->generation >= 2) { 1198 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, &rate, &lanes); 1199 if (ret) 1200 return ret; 1201 } else { 1202 /* No bandwidth management for legacy devices */ 1203 *consumed_up = 0; 1204 *consumed_down = 0; 1205 return 0; 1206 } 1207 1208 if (tb_tunnel_direction_downstream(tunnel)) { 1209 *consumed_up = 0; 1210 *consumed_down = tb_dp_bandwidth(rate, lanes); 1211 } else { 1212 *consumed_up = tb_dp_bandwidth(rate, lanes); 1213 *consumed_down = 0; 1214 } 1215 1216 return 0; 1217 } 1218 1219 static void tb_dp_init_aux_credits(struct tb_path_hop *hop) 1220 { 1221 struct tb_port *port = hop->in_port; 1222 struct tb_switch *sw = port->sw; 1223 1224 if (tb_port_use_credit_allocation(port)) 1225 hop->initial_credits = sw->min_dp_aux_credits; 1226 else 1227 hop->initial_credits = 1; 1228 } 1229 1230 static void tb_dp_init_aux_path(struct tb_path *path, bool pm_support) 1231 { 1232 struct tb_path_hop *hop; 1233 1234 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1235 path->egress_shared_buffer = TB_PATH_NONE; 1236 path->ingress_fc_enable = TB_PATH_ALL; 1237 path->ingress_shared_buffer = TB_PATH_NONE; 1238 path->priority = TB_DP_AUX_PRIORITY; 1239 path->weight = TB_DP_AUX_WEIGHT; 1240 1241 tb_path_for_each_hop(path, hop) { 1242 tb_dp_init_aux_credits(hop); 1243 if (pm_support) 1244 tb_init_pm_support(hop); 1245 } 1246 } 1247 1248 static int tb_dp_init_video_credits(struct tb_path_hop *hop) 1249 { 1250 struct tb_port *port = hop->in_port; 1251 struct tb_switch *sw = port->sw; 1252 1253 if (tb_port_use_credit_allocation(port)) { 1254 unsigned int nfc_credits; 1255 size_t max_dp_streams; 1256 1257 tb_available_credits(port, &max_dp_streams); 1258 /* 1259 * Read the number of currently allocated NFC credits 1260 * from the lane adapter. Since we only use them for DP 1261 * tunneling we can use that to figure out how many DP 1262 * tunnels already go through the lane adapter. 1263 */ 1264 nfc_credits = port->config.nfc_credits & 1265 ADP_CS_4_NFC_BUFFERS_MASK; 1266 if (nfc_credits / sw->min_dp_main_credits > max_dp_streams) 1267 return -ENOSPC; 1268 1269 hop->nfc_credits = sw->min_dp_main_credits; 1270 } else { 1271 hop->nfc_credits = min(port->total_credits - 2, 12U); 1272 } 1273 1274 return 0; 1275 } 1276 1277 static int tb_dp_init_video_path(struct tb_path *path, bool pm_support) 1278 { 1279 struct tb_path_hop *hop; 1280 1281 path->egress_fc_enable = TB_PATH_NONE; 1282 path->egress_shared_buffer = TB_PATH_NONE; 1283 path->ingress_fc_enable = TB_PATH_NONE; 1284 path->ingress_shared_buffer = TB_PATH_NONE; 1285 path->priority = TB_DP_VIDEO_PRIORITY; 1286 path->weight = TB_DP_VIDEO_WEIGHT; 1287 1288 tb_path_for_each_hop(path, hop) { 1289 int ret; 1290 1291 ret = tb_dp_init_video_credits(hop); 1292 if (ret) 1293 return ret; 1294 if (pm_support) 1295 tb_init_pm_support(hop); 1296 } 1297 1298 return 0; 1299 } 1300 1301 static void tb_dp_dump(struct tb_tunnel *tunnel) 1302 { 1303 struct tb_port *in, *out; 1304 u32 dp_cap, rate, lanes; 1305 1306 in = tunnel->src_port; 1307 out = tunnel->dst_port; 1308 1309 if (tb_port_read(in, &dp_cap, TB_CFG_PORT, 1310 in->cap_adap + DP_LOCAL_CAP, 1)) 1311 return; 1312 1313 rate = tb_dp_cap_get_rate(dp_cap); 1314 lanes = tb_dp_cap_get_lanes(dp_cap); 1315 1316 tb_tunnel_dbg(tunnel, 1317 "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 1318 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1319 1320 if (tb_port_read(out, &dp_cap, TB_CFG_PORT, 1321 out->cap_adap + DP_LOCAL_CAP, 1)) 1322 return; 1323 1324 rate = tb_dp_cap_get_rate(dp_cap); 1325 lanes = tb_dp_cap_get_lanes(dp_cap); 1326 1327 tb_tunnel_dbg(tunnel, 1328 "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 1329 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1330 1331 if (tb_port_read(in, &dp_cap, TB_CFG_PORT, 1332 in->cap_adap + DP_REMOTE_CAP, 1)) 1333 return; 1334 1335 rate = tb_dp_cap_get_rate(dp_cap); 1336 lanes = tb_dp_cap_get_lanes(dp_cap); 1337 1338 tb_tunnel_dbg(tunnel, "reduced bandwidth %u Mb/s x%u = %u Mb/s\n", 1339 rate, lanes, tb_dp_bandwidth(rate, lanes)); 1340 } 1341 1342 /** 1343 * tb_tunnel_discover_dp() - Discover existing Display Port tunnels 1344 * @tb: Pointer to the domain structure 1345 * @in: DP in adapter 1346 * @alloc_hopid: Allocate HopIDs from visited ports 1347 * 1348 * If @in adapter is active, follows the tunnel to the DP out adapter 1349 * and back. Returns the discovered tunnel or %NULL if there was no 1350 * tunnel. 1351 * 1352 * Return: DP tunnel or %NULL if no tunnel found. 1353 */ 1354 struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in, 1355 bool alloc_hopid) 1356 { 1357 struct tb_tunnel *tunnel; 1358 struct tb_port *port; 1359 struct tb_path *path; 1360 1361 if (!tb_dp_port_is_enabled(in)) 1362 return NULL; 1363 1364 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 1365 if (!tunnel) 1366 return NULL; 1367 1368 tunnel->init = tb_dp_init; 1369 tunnel->deinit = tb_dp_deinit; 1370 tunnel->activate = tb_dp_activate; 1371 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth; 1372 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth; 1373 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth; 1374 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 1375 tunnel->src_port = in; 1376 1377 path = tb_path_discover(in, TB_DP_VIDEO_HOPID, NULL, -1, 1378 &tunnel->dst_port, "Video", alloc_hopid); 1379 if (!path) { 1380 /* Just disable the DP IN port */ 1381 tb_dp_port_enable(in, false); 1382 goto err_free; 1383 } 1384 tunnel->paths[TB_DP_VIDEO_PATH_OUT] = path; 1385 if (tb_dp_init_video_path(tunnel->paths[TB_DP_VIDEO_PATH_OUT], false)) 1386 goto err_free; 1387 1388 path = tb_path_discover(in, TB_DP_AUX_TX_HOPID, NULL, -1, NULL, "AUX TX", 1389 alloc_hopid); 1390 if (!path) 1391 goto err_deactivate; 1392 tunnel->paths[TB_DP_AUX_PATH_OUT] = path; 1393 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_OUT], false); 1394 1395 path = tb_path_discover(tunnel->dst_port, -1, in, TB_DP_AUX_RX_HOPID, 1396 &port, "AUX RX", alloc_hopid); 1397 if (!path) 1398 goto err_deactivate; 1399 tunnel->paths[TB_DP_AUX_PATH_IN] = path; 1400 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_IN], false); 1401 1402 /* Validate that the tunnel is complete */ 1403 if (!tb_port_is_dpout(tunnel->dst_port)) { 1404 tb_port_warn(in, "path does not end on a DP adapter, cleaning up\n"); 1405 goto err_deactivate; 1406 } 1407 1408 if (!tb_dp_port_is_enabled(tunnel->dst_port)) 1409 goto err_deactivate; 1410 1411 if (!tb_dp_port_hpd_is_active(tunnel->dst_port)) 1412 goto err_deactivate; 1413 1414 if (port != tunnel->src_port) { 1415 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 1416 goto err_deactivate; 1417 } 1418 1419 tb_dp_dump(tunnel); 1420 1421 tb_tunnel_dbg(tunnel, "discovered\n"); 1422 return tunnel; 1423 1424 err_deactivate: 1425 tb_tunnel_deactivate(tunnel); 1426 err_free: 1427 tb_tunnel_free(tunnel); 1428 1429 return NULL; 1430 } 1431 1432 /** 1433 * tb_tunnel_alloc_dp() - allocate a Display Port tunnel 1434 * @tb: Pointer to the domain structure 1435 * @in: DP in adapter port 1436 * @out: DP out adapter port 1437 * @link_nr: Preferred lane adapter when the link is not bonded 1438 * @max_up: Maximum available upstream bandwidth for the DP tunnel. 1439 * %0 if no available bandwidth. 1440 * @max_down: Maximum available downstream bandwidth for the DP tunnel. 1441 * %0 if no available bandwidth. 1442 * 1443 * Allocates a tunnel between @in and @out that is capable of tunneling 1444 * Display Port traffic. 1445 * 1446 * Return: Returns a tb_tunnel on success or NULL on failure. 1447 */ 1448 struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in, 1449 struct tb_port *out, int link_nr, 1450 int max_up, int max_down) 1451 { 1452 struct tb_tunnel *tunnel; 1453 struct tb_path **paths; 1454 struct tb_path *path; 1455 bool pm_support; 1456 1457 if (WARN_ON(!in->cap_adap || !out->cap_adap)) 1458 return NULL; 1459 1460 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 1461 if (!tunnel) 1462 return NULL; 1463 1464 tunnel->init = tb_dp_init; 1465 tunnel->deinit = tb_dp_deinit; 1466 tunnel->activate = tb_dp_activate; 1467 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth; 1468 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth; 1469 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth; 1470 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 1471 tunnel->src_port = in; 1472 tunnel->dst_port = out; 1473 tunnel->max_up = max_up; 1474 tunnel->max_down = max_down; 1475 1476 paths = tunnel->paths; 1477 pm_support = usb4_switch_version(in->sw) >= 2; 1478 1479 path = tb_path_alloc(tb, in, TB_DP_VIDEO_HOPID, out, TB_DP_VIDEO_HOPID, 1480 link_nr, "Video"); 1481 if (!path) 1482 goto err_free; 1483 tb_dp_init_video_path(path, pm_support); 1484 paths[TB_DP_VIDEO_PATH_OUT] = path; 1485 1486 path = tb_path_alloc(tb, in, TB_DP_AUX_TX_HOPID, out, 1487 TB_DP_AUX_TX_HOPID, link_nr, "AUX TX"); 1488 if (!path) 1489 goto err_free; 1490 tb_dp_init_aux_path(path, pm_support); 1491 paths[TB_DP_AUX_PATH_OUT] = path; 1492 1493 path = tb_path_alloc(tb, out, TB_DP_AUX_RX_HOPID, in, 1494 TB_DP_AUX_RX_HOPID, link_nr, "AUX RX"); 1495 if (!path) 1496 goto err_free; 1497 tb_dp_init_aux_path(path, pm_support); 1498 paths[TB_DP_AUX_PATH_IN] = path; 1499 1500 return tunnel; 1501 1502 err_free: 1503 tb_tunnel_free(tunnel); 1504 return NULL; 1505 } 1506 1507 static unsigned int tb_dma_available_credits(const struct tb_port *port) 1508 { 1509 const struct tb_switch *sw = port->sw; 1510 int credits; 1511 1512 credits = tb_available_credits(port, NULL); 1513 if (tb_acpi_may_tunnel_pcie()) 1514 credits -= sw->max_pcie_credits; 1515 credits -= port->dma_credits; 1516 1517 return credits > 0 ? credits : 0; 1518 } 1519 1520 static int tb_dma_reserve_credits(struct tb_path_hop *hop, unsigned int credits) 1521 { 1522 struct tb_port *port = hop->in_port; 1523 1524 if (tb_port_use_credit_allocation(port)) { 1525 unsigned int available = tb_dma_available_credits(port); 1526 1527 /* 1528 * Need to have at least TB_MIN_DMA_CREDITS, otherwise 1529 * DMA path cannot be established. 1530 */ 1531 if (available < TB_MIN_DMA_CREDITS) 1532 return -ENOSPC; 1533 1534 while (credits > available) 1535 credits--; 1536 1537 tb_port_dbg(port, "reserving %u credits for DMA path\n", 1538 credits); 1539 1540 port->dma_credits += credits; 1541 } else { 1542 if (tb_port_is_null(port)) 1543 credits = port->bonded ? 14 : 6; 1544 else 1545 credits = min(port->total_credits, credits); 1546 } 1547 1548 hop->initial_credits = credits; 1549 return 0; 1550 } 1551 1552 /* Path from lane adapter to NHI */ 1553 static int tb_dma_init_rx_path(struct tb_path *path, unsigned int credits) 1554 { 1555 struct tb_path_hop *hop; 1556 unsigned int i, tmp; 1557 1558 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1559 path->ingress_fc_enable = TB_PATH_ALL; 1560 path->egress_shared_buffer = TB_PATH_NONE; 1561 path->ingress_shared_buffer = TB_PATH_NONE; 1562 path->priority = TB_DMA_PRIORITY; 1563 path->weight = TB_DMA_WEIGHT; 1564 path->clear_fc = true; 1565 1566 /* 1567 * First lane adapter is the one connected to the remote host. 1568 * We don't tunnel other traffic over this link so can use all 1569 * the credits (except the ones reserved for control traffic). 1570 */ 1571 hop = &path->hops[0]; 1572 tmp = min(tb_usable_credits(hop->in_port), credits); 1573 hop->initial_credits = tmp; 1574 hop->in_port->dma_credits += tmp; 1575 1576 for (i = 1; i < path->path_length; i++) { 1577 int ret; 1578 1579 ret = tb_dma_reserve_credits(&path->hops[i], credits); 1580 if (ret) 1581 return ret; 1582 } 1583 1584 return 0; 1585 } 1586 1587 /* Path from NHI to lane adapter */ 1588 static int tb_dma_init_tx_path(struct tb_path *path, unsigned int credits) 1589 { 1590 struct tb_path_hop *hop; 1591 1592 path->egress_fc_enable = TB_PATH_ALL; 1593 path->ingress_fc_enable = TB_PATH_ALL; 1594 path->egress_shared_buffer = TB_PATH_NONE; 1595 path->ingress_shared_buffer = TB_PATH_NONE; 1596 path->priority = TB_DMA_PRIORITY; 1597 path->weight = TB_DMA_WEIGHT; 1598 path->clear_fc = true; 1599 1600 tb_path_for_each_hop(path, hop) { 1601 int ret; 1602 1603 ret = tb_dma_reserve_credits(hop, credits); 1604 if (ret) 1605 return ret; 1606 } 1607 1608 return 0; 1609 } 1610 1611 static void tb_dma_release_credits(struct tb_path_hop *hop) 1612 { 1613 struct tb_port *port = hop->in_port; 1614 1615 if (tb_port_use_credit_allocation(port)) { 1616 port->dma_credits -= hop->initial_credits; 1617 1618 tb_port_dbg(port, "released %u DMA path credits\n", 1619 hop->initial_credits); 1620 } 1621 } 1622 1623 static void tb_dma_deinit_path(struct tb_path *path) 1624 { 1625 struct tb_path_hop *hop; 1626 1627 tb_path_for_each_hop(path, hop) 1628 tb_dma_release_credits(hop); 1629 } 1630 1631 static void tb_dma_deinit(struct tb_tunnel *tunnel) 1632 { 1633 int i; 1634 1635 for (i = 0; i < tunnel->npaths; i++) { 1636 if (!tunnel->paths[i]) 1637 continue; 1638 tb_dma_deinit_path(tunnel->paths[i]); 1639 } 1640 } 1641 1642 /** 1643 * tb_tunnel_alloc_dma() - allocate a DMA tunnel 1644 * @tb: Pointer to the domain structure 1645 * @nhi: Host controller port 1646 * @dst: Destination null port which the other domain is connected to 1647 * @transmit_path: HopID used for transmitting packets 1648 * @transmit_ring: NHI ring number used to send packets towards the 1649 * other domain. Set to %-1 if TX path is not needed. 1650 * @receive_path: HopID used for receiving packets 1651 * @receive_ring: NHI ring number used to receive packets from the 1652 * other domain. Set to %-1 if RX path is not needed. 1653 * 1654 * Return: Returns a tb_tunnel on success or NULL on failure. 1655 */ 1656 struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi, 1657 struct tb_port *dst, int transmit_path, 1658 int transmit_ring, int receive_path, 1659 int receive_ring) 1660 { 1661 struct tb_tunnel *tunnel; 1662 size_t npaths = 0, i = 0; 1663 struct tb_path *path; 1664 int credits; 1665 1666 /* Ring 0 is reserved for control channel */ 1667 if (WARN_ON(!receive_ring || !transmit_ring)) 1668 return NULL; 1669 1670 if (receive_ring > 0) 1671 npaths++; 1672 if (transmit_ring > 0) 1673 npaths++; 1674 1675 if (WARN_ON(!npaths)) 1676 return NULL; 1677 1678 tunnel = tb_tunnel_alloc(tb, npaths, TB_TUNNEL_DMA); 1679 if (!tunnel) 1680 return NULL; 1681 1682 tunnel->src_port = nhi; 1683 tunnel->dst_port = dst; 1684 tunnel->deinit = tb_dma_deinit; 1685 1686 credits = min_not_zero(dma_credits, nhi->sw->max_dma_credits); 1687 1688 if (receive_ring > 0) { 1689 path = tb_path_alloc(tb, dst, receive_path, nhi, receive_ring, 0, 1690 "DMA RX"); 1691 if (!path) 1692 goto err_free; 1693 tunnel->paths[i++] = path; 1694 if (tb_dma_init_rx_path(path, credits)) { 1695 tb_tunnel_dbg(tunnel, "not enough buffers for RX path\n"); 1696 goto err_free; 1697 } 1698 } 1699 1700 if (transmit_ring > 0) { 1701 path = tb_path_alloc(tb, nhi, transmit_ring, dst, transmit_path, 0, 1702 "DMA TX"); 1703 if (!path) 1704 goto err_free; 1705 tunnel->paths[i++] = path; 1706 if (tb_dma_init_tx_path(path, credits)) { 1707 tb_tunnel_dbg(tunnel, "not enough buffers for TX path\n"); 1708 goto err_free; 1709 } 1710 } 1711 1712 return tunnel; 1713 1714 err_free: 1715 tb_tunnel_free(tunnel); 1716 return NULL; 1717 } 1718 1719 /** 1720 * tb_tunnel_match_dma() - Match DMA tunnel 1721 * @tunnel: Tunnel to match 1722 * @transmit_path: HopID used for transmitting packets. Pass %-1 to ignore. 1723 * @transmit_ring: NHI ring number used to send packets towards the 1724 * other domain. Pass %-1 to ignore. 1725 * @receive_path: HopID used for receiving packets. Pass %-1 to ignore. 1726 * @receive_ring: NHI ring number used to receive packets from the 1727 * other domain. Pass %-1 to ignore. 1728 * 1729 * This function can be used to match specific DMA tunnel, if there are 1730 * multiple DMA tunnels going through the same XDomain connection. 1731 * Returns true if there is match and false otherwise. 1732 */ 1733 bool tb_tunnel_match_dma(const struct tb_tunnel *tunnel, int transmit_path, 1734 int transmit_ring, int receive_path, int receive_ring) 1735 { 1736 const struct tb_path *tx_path = NULL, *rx_path = NULL; 1737 int i; 1738 1739 if (!receive_ring || !transmit_ring) 1740 return false; 1741 1742 for (i = 0; i < tunnel->npaths; i++) { 1743 const struct tb_path *path = tunnel->paths[i]; 1744 1745 if (!path) 1746 continue; 1747 1748 if (tb_port_is_nhi(path->hops[0].in_port)) 1749 tx_path = path; 1750 else if (tb_port_is_nhi(path->hops[path->path_length - 1].out_port)) 1751 rx_path = path; 1752 } 1753 1754 if (transmit_ring > 0 || transmit_path > 0) { 1755 if (!tx_path) 1756 return false; 1757 if (transmit_ring > 0 && 1758 (tx_path->hops[0].in_hop_index != transmit_ring)) 1759 return false; 1760 if (transmit_path > 0 && 1761 (tx_path->hops[tx_path->path_length - 1].next_hop_index != transmit_path)) 1762 return false; 1763 } 1764 1765 if (receive_ring > 0 || receive_path > 0) { 1766 if (!rx_path) 1767 return false; 1768 if (receive_path > 0 && 1769 (rx_path->hops[0].in_hop_index != receive_path)) 1770 return false; 1771 if (receive_ring > 0 && 1772 (rx_path->hops[rx_path->path_length - 1].next_hop_index != receive_ring)) 1773 return false; 1774 } 1775 1776 return true; 1777 } 1778 1779 static int tb_usb3_max_link_rate(struct tb_port *up, struct tb_port *down) 1780 { 1781 int ret, up_max_rate, down_max_rate; 1782 1783 ret = usb4_usb3_port_max_link_rate(up); 1784 if (ret < 0) 1785 return ret; 1786 up_max_rate = ret; 1787 1788 ret = usb4_usb3_port_max_link_rate(down); 1789 if (ret < 0) 1790 return ret; 1791 down_max_rate = ret; 1792 1793 return min(up_max_rate, down_max_rate); 1794 } 1795 1796 static int tb_usb3_init(struct tb_tunnel *tunnel) 1797 { 1798 tb_tunnel_dbg(tunnel, "allocating initial bandwidth %d/%d Mb/s\n", 1799 tunnel->allocated_up, tunnel->allocated_down); 1800 1801 return usb4_usb3_port_allocate_bandwidth(tunnel->src_port, 1802 &tunnel->allocated_up, 1803 &tunnel->allocated_down); 1804 } 1805 1806 static int tb_usb3_activate(struct tb_tunnel *tunnel, bool activate) 1807 { 1808 int res; 1809 1810 res = tb_usb3_port_enable(tunnel->src_port, activate); 1811 if (res) 1812 return res; 1813 1814 if (tb_port_is_usb3_up(tunnel->dst_port)) 1815 return tb_usb3_port_enable(tunnel->dst_port, activate); 1816 1817 return 0; 1818 } 1819 1820 static int tb_usb3_consumed_bandwidth(struct tb_tunnel *tunnel, 1821 int *consumed_up, int *consumed_down) 1822 { 1823 struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw); 1824 int pcie_weight = tb_acpi_may_tunnel_pcie() ? TB_PCI_WEIGHT : 0; 1825 1826 /* 1827 * PCIe tunneling, if enabled, affects the USB3 bandwidth so 1828 * take that it into account here. 1829 */ 1830 *consumed_up = tunnel->allocated_up * 1831 (TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT; 1832 *consumed_down = tunnel->allocated_down * 1833 (TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT; 1834 1835 if (tb_port_get_link_generation(port) >= 4) { 1836 *consumed_up = max(*consumed_up, USB4_V2_USB3_MIN_BANDWIDTH); 1837 *consumed_down = max(*consumed_down, USB4_V2_USB3_MIN_BANDWIDTH); 1838 } 1839 1840 return 0; 1841 } 1842 1843 static int tb_usb3_release_unused_bandwidth(struct tb_tunnel *tunnel) 1844 { 1845 int ret; 1846 1847 ret = usb4_usb3_port_release_bandwidth(tunnel->src_port, 1848 &tunnel->allocated_up, 1849 &tunnel->allocated_down); 1850 if (ret) 1851 return ret; 1852 1853 tb_tunnel_dbg(tunnel, "decreased bandwidth allocation to %d/%d Mb/s\n", 1854 tunnel->allocated_up, tunnel->allocated_down); 1855 return 0; 1856 } 1857 1858 static void tb_usb3_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 1859 int *available_up, 1860 int *available_down) 1861 { 1862 int ret, max_rate, allocate_up, allocate_down; 1863 1864 ret = tb_usb3_max_link_rate(tunnel->dst_port, tunnel->src_port); 1865 if (ret < 0) { 1866 tb_tunnel_warn(tunnel, "failed to read maximum link rate\n"); 1867 return; 1868 } 1869 1870 /* 1871 * 90% of the max rate can be allocated for isochronous 1872 * transfers. 1873 */ 1874 max_rate = ret * 90 / 100; 1875 1876 /* No need to reclaim if already at maximum */ 1877 if (tunnel->allocated_up >= max_rate && 1878 tunnel->allocated_down >= max_rate) 1879 return; 1880 1881 /* Don't go lower than what is already allocated */ 1882 allocate_up = min(max_rate, *available_up); 1883 if (allocate_up < tunnel->allocated_up) 1884 allocate_up = tunnel->allocated_up; 1885 1886 allocate_down = min(max_rate, *available_down); 1887 if (allocate_down < tunnel->allocated_down) 1888 allocate_down = tunnel->allocated_down; 1889 1890 /* If no changes no need to do more */ 1891 if (allocate_up == tunnel->allocated_up && 1892 allocate_down == tunnel->allocated_down) 1893 return; 1894 1895 ret = usb4_usb3_port_allocate_bandwidth(tunnel->src_port, &allocate_up, 1896 &allocate_down); 1897 if (ret) { 1898 tb_tunnel_info(tunnel, "failed to allocate bandwidth\n"); 1899 return; 1900 } 1901 1902 tunnel->allocated_up = allocate_up; 1903 *available_up -= tunnel->allocated_up; 1904 1905 tunnel->allocated_down = allocate_down; 1906 *available_down -= tunnel->allocated_down; 1907 1908 tb_tunnel_dbg(tunnel, "increased bandwidth allocation to %d/%d Mb/s\n", 1909 tunnel->allocated_up, tunnel->allocated_down); 1910 } 1911 1912 static void tb_usb3_init_credits(struct tb_path_hop *hop) 1913 { 1914 struct tb_port *port = hop->in_port; 1915 struct tb_switch *sw = port->sw; 1916 unsigned int credits; 1917 1918 if (tb_port_use_credit_allocation(port)) { 1919 credits = sw->max_usb3_credits; 1920 } else { 1921 if (tb_port_is_null(port)) 1922 credits = port->bonded ? 32 : 16; 1923 else 1924 credits = 7; 1925 } 1926 1927 hop->initial_credits = credits; 1928 } 1929 1930 static void tb_usb3_init_path(struct tb_path *path) 1931 { 1932 struct tb_path_hop *hop; 1933 1934 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1935 path->egress_shared_buffer = TB_PATH_NONE; 1936 path->ingress_fc_enable = TB_PATH_ALL; 1937 path->ingress_shared_buffer = TB_PATH_NONE; 1938 path->priority = TB_USB3_PRIORITY; 1939 path->weight = TB_USB3_WEIGHT; 1940 path->drop_packages = 0; 1941 1942 tb_path_for_each_hop(path, hop) 1943 tb_usb3_init_credits(hop); 1944 } 1945 1946 /** 1947 * tb_tunnel_discover_usb3() - Discover existing USB3 tunnels 1948 * @tb: Pointer to the domain structure 1949 * @down: USB3 downstream adapter 1950 * @alloc_hopid: Allocate HopIDs from visited ports 1951 * 1952 * If @down adapter is active, follows the tunnel to the USB3 upstream 1953 * adapter and back. Returns the discovered tunnel or %NULL if there was 1954 * no tunnel. 1955 */ 1956 struct tb_tunnel *tb_tunnel_discover_usb3(struct tb *tb, struct tb_port *down, 1957 bool alloc_hopid) 1958 { 1959 struct tb_tunnel *tunnel; 1960 struct tb_path *path; 1961 1962 if (!tb_usb3_port_is_enabled(down)) 1963 return NULL; 1964 1965 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 1966 if (!tunnel) 1967 return NULL; 1968 1969 tunnel->activate = tb_usb3_activate; 1970 tunnel->src_port = down; 1971 1972 /* 1973 * Discover both paths even if they are not complete. We will 1974 * clean them up by calling tb_tunnel_deactivate() below in that 1975 * case. 1976 */ 1977 path = tb_path_discover(down, TB_USB3_HOPID, NULL, -1, 1978 &tunnel->dst_port, "USB3 Down", alloc_hopid); 1979 if (!path) { 1980 /* Just disable the downstream port */ 1981 tb_usb3_port_enable(down, false); 1982 goto err_free; 1983 } 1984 tunnel->paths[TB_USB3_PATH_DOWN] = path; 1985 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_DOWN]); 1986 1987 path = tb_path_discover(tunnel->dst_port, -1, down, TB_USB3_HOPID, NULL, 1988 "USB3 Up", alloc_hopid); 1989 if (!path) 1990 goto err_deactivate; 1991 tunnel->paths[TB_USB3_PATH_UP] = path; 1992 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_UP]); 1993 1994 /* Validate that the tunnel is complete */ 1995 if (!tb_port_is_usb3_up(tunnel->dst_port)) { 1996 tb_port_warn(tunnel->dst_port, 1997 "path does not end on an USB3 adapter, cleaning up\n"); 1998 goto err_deactivate; 1999 } 2000 2001 if (down != tunnel->src_port) { 2002 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 2003 goto err_deactivate; 2004 } 2005 2006 if (!tb_usb3_port_is_enabled(tunnel->dst_port)) { 2007 tb_tunnel_warn(tunnel, 2008 "tunnel is not fully activated, cleaning up\n"); 2009 goto err_deactivate; 2010 } 2011 2012 if (!tb_route(down->sw)) { 2013 int ret; 2014 2015 /* 2016 * Read the initial bandwidth allocation for the first 2017 * hop tunnel. 2018 */ 2019 ret = usb4_usb3_port_allocated_bandwidth(down, 2020 &tunnel->allocated_up, &tunnel->allocated_down); 2021 if (ret) 2022 goto err_deactivate; 2023 2024 tb_tunnel_dbg(tunnel, "currently allocated bandwidth %d/%d Mb/s\n", 2025 tunnel->allocated_up, tunnel->allocated_down); 2026 2027 tunnel->init = tb_usb3_init; 2028 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 2029 tunnel->release_unused_bandwidth = 2030 tb_usb3_release_unused_bandwidth; 2031 tunnel->reclaim_available_bandwidth = 2032 tb_usb3_reclaim_available_bandwidth; 2033 } 2034 2035 tb_tunnel_dbg(tunnel, "discovered\n"); 2036 return tunnel; 2037 2038 err_deactivate: 2039 tb_tunnel_deactivate(tunnel); 2040 err_free: 2041 tb_tunnel_free(tunnel); 2042 2043 return NULL; 2044 } 2045 2046 /** 2047 * tb_tunnel_alloc_usb3() - allocate a USB3 tunnel 2048 * @tb: Pointer to the domain structure 2049 * @up: USB3 upstream adapter port 2050 * @down: USB3 downstream adapter port 2051 * @max_up: Maximum available upstream bandwidth for the USB3 tunnel. 2052 * %0 if no available bandwidth. 2053 * @max_down: Maximum available downstream bandwidth for the USB3 tunnel. 2054 * %0 if no available bandwidth. 2055 * 2056 * Allocate an USB3 tunnel. The ports must be of type @TB_TYPE_USB3_UP and 2057 * @TB_TYPE_USB3_DOWN. 2058 * 2059 * Return: Returns a tb_tunnel on success or %NULL on failure. 2060 */ 2061 struct tb_tunnel *tb_tunnel_alloc_usb3(struct tb *tb, struct tb_port *up, 2062 struct tb_port *down, int max_up, 2063 int max_down) 2064 { 2065 struct tb_tunnel *tunnel; 2066 struct tb_path *path; 2067 int max_rate = 0; 2068 2069 if (!tb_route(down->sw) && (max_up > 0 || max_down > 0)) { 2070 /* 2071 * For USB3 isochronous transfers, we allow bandwidth which is 2072 * not higher than 90% of maximum supported bandwidth by USB3 2073 * adapters. 2074 */ 2075 max_rate = tb_usb3_max_link_rate(down, up); 2076 if (max_rate < 0) 2077 return NULL; 2078 2079 max_rate = max_rate * 90 / 100; 2080 tb_port_dbg(up, "maximum required bandwidth for USB3 tunnel %d Mb/s\n", 2081 max_rate); 2082 } 2083 2084 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 2085 if (!tunnel) 2086 return NULL; 2087 2088 tunnel->activate = tb_usb3_activate; 2089 tunnel->src_port = down; 2090 tunnel->dst_port = up; 2091 tunnel->max_up = max_up; 2092 tunnel->max_down = max_down; 2093 2094 path = tb_path_alloc(tb, down, TB_USB3_HOPID, up, TB_USB3_HOPID, 0, 2095 "USB3 Down"); 2096 if (!path) { 2097 tb_tunnel_free(tunnel); 2098 return NULL; 2099 } 2100 tb_usb3_init_path(path); 2101 tunnel->paths[TB_USB3_PATH_DOWN] = path; 2102 2103 path = tb_path_alloc(tb, up, TB_USB3_HOPID, down, TB_USB3_HOPID, 0, 2104 "USB3 Up"); 2105 if (!path) { 2106 tb_tunnel_free(tunnel); 2107 return NULL; 2108 } 2109 tb_usb3_init_path(path); 2110 tunnel->paths[TB_USB3_PATH_UP] = path; 2111 2112 if (!tb_route(down->sw)) { 2113 tunnel->allocated_up = min(max_rate, max_up); 2114 tunnel->allocated_down = min(max_rate, max_down); 2115 2116 tunnel->init = tb_usb3_init; 2117 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 2118 tunnel->release_unused_bandwidth = 2119 tb_usb3_release_unused_bandwidth; 2120 tunnel->reclaim_available_bandwidth = 2121 tb_usb3_reclaim_available_bandwidth; 2122 } 2123 2124 return tunnel; 2125 } 2126 2127 /** 2128 * tb_tunnel_free() - free a tunnel 2129 * @tunnel: Tunnel to be freed 2130 * 2131 * Frees a tunnel. The tunnel does not need to be deactivated. 2132 */ 2133 void tb_tunnel_free(struct tb_tunnel *tunnel) 2134 { 2135 int i; 2136 2137 if (!tunnel) 2138 return; 2139 2140 if (tunnel->deinit) 2141 tunnel->deinit(tunnel); 2142 2143 for (i = 0; i < tunnel->npaths; i++) { 2144 if (tunnel->paths[i]) 2145 tb_path_free(tunnel->paths[i]); 2146 } 2147 2148 kfree(tunnel->paths); 2149 kfree(tunnel); 2150 } 2151 2152 /** 2153 * tb_tunnel_is_invalid - check whether an activated path is still valid 2154 * @tunnel: Tunnel to check 2155 */ 2156 bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel) 2157 { 2158 int i; 2159 2160 for (i = 0; i < tunnel->npaths; i++) { 2161 WARN_ON(!tunnel->paths[i]->activated); 2162 if (tb_path_is_invalid(tunnel->paths[i])) 2163 return true; 2164 } 2165 2166 return false; 2167 } 2168 2169 /** 2170 * tb_tunnel_restart() - activate a tunnel after a hardware reset 2171 * @tunnel: Tunnel to restart 2172 * 2173 * Return: 0 on success and negative errno in case if failure 2174 */ 2175 int tb_tunnel_restart(struct tb_tunnel *tunnel) 2176 { 2177 int res, i; 2178 2179 tb_tunnel_dbg(tunnel, "activating\n"); 2180 2181 /* 2182 * Make sure all paths are properly disabled before enabling 2183 * them again. 2184 */ 2185 for (i = 0; i < tunnel->npaths; i++) { 2186 if (tunnel->paths[i]->activated) { 2187 tb_path_deactivate(tunnel->paths[i]); 2188 tunnel->paths[i]->activated = false; 2189 } 2190 } 2191 2192 if (tunnel->init) { 2193 res = tunnel->init(tunnel); 2194 if (res) 2195 return res; 2196 } 2197 2198 for (i = 0; i < tunnel->npaths; i++) { 2199 res = tb_path_activate(tunnel->paths[i]); 2200 if (res) 2201 goto err; 2202 } 2203 2204 if (tunnel->activate) { 2205 res = tunnel->activate(tunnel, true); 2206 if (res) 2207 goto err; 2208 } 2209 2210 return 0; 2211 2212 err: 2213 tb_tunnel_warn(tunnel, "activation failed\n"); 2214 tb_tunnel_deactivate(tunnel); 2215 return res; 2216 } 2217 2218 /** 2219 * tb_tunnel_activate() - activate a tunnel 2220 * @tunnel: Tunnel to activate 2221 * 2222 * Return: Returns 0 on success or an error code on failure. 2223 */ 2224 int tb_tunnel_activate(struct tb_tunnel *tunnel) 2225 { 2226 int i; 2227 2228 for (i = 0; i < tunnel->npaths; i++) { 2229 if (tunnel->paths[i]->activated) { 2230 tb_tunnel_WARN(tunnel, 2231 "trying to activate an already activated tunnel\n"); 2232 return -EINVAL; 2233 } 2234 } 2235 2236 return tb_tunnel_restart(tunnel); 2237 } 2238 2239 /** 2240 * tb_tunnel_deactivate() - deactivate a tunnel 2241 * @tunnel: Tunnel to deactivate 2242 */ 2243 void tb_tunnel_deactivate(struct tb_tunnel *tunnel) 2244 { 2245 int i; 2246 2247 tb_tunnel_dbg(tunnel, "deactivating\n"); 2248 2249 if (tunnel->activate) 2250 tunnel->activate(tunnel, false); 2251 2252 for (i = 0; i < tunnel->npaths; i++) { 2253 if (tunnel->paths[i] && tunnel->paths[i]->activated) 2254 tb_path_deactivate(tunnel->paths[i]); 2255 } 2256 } 2257 2258 /** 2259 * tb_tunnel_port_on_path() - Does the tunnel go through port 2260 * @tunnel: Tunnel to check 2261 * @port: Port to check 2262 * 2263 * Returns true if @tunnel goes through @port (direction does not matter), 2264 * false otherwise. 2265 */ 2266 bool tb_tunnel_port_on_path(const struct tb_tunnel *tunnel, 2267 const struct tb_port *port) 2268 { 2269 int i; 2270 2271 for (i = 0; i < tunnel->npaths; i++) { 2272 if (!tunnel->paths[i]) 2273 continue; 2274 2275 if (tb_path_port_on_path(tunnel->paths[i], port)) 2276 return true; 2277 } 2278 2279 return false; 2280 } 2281 2282 static bool tb_tunnel_is_active(const struct tb_tunnel *tunnel) 2283 { 2284 int i; 2285 2286 for (i = 0; i < tunnel->npaths; i++) { 2287 if (!tunnel->paths[i]) 2288 return false; 2289 if (!tunnel->paths[i]->activated) 2290 return false; 2291 } 2292 2293 return true; 2294 } 2295 2296 /** 2297 * tb_tunnel_maximum_bandwidth() - Return maximum possible bandwidth 2298 * @tunnel: Tunnel to check 2299 * @max_up: Maximum upstream bandwidth in Mb/s 2300 * @max_down: Maximum downstream bandwidth in Mb/s 2301 * 2302 * Returns maximum possible bandwidth this tunnel can go if not limited 2303 * by other bandwidth clients. If the tunnel does not support this 2304 * returns %-EOPNOTSUPP. 2305 */ 2306 int tb_tunnel_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up, 2307 int *max_down) 2308 { 2309 if (!tb_tunnel_is_active(tunnel)) 2310 return -EINVAL; 2311 2312 if (tunnel->maximum_bandwidth) 2313 return tunnel->maximum_bandwidth(tunnel, max_up, max_down); 2314 return -EOPNOTSUPP; 2315 } 2316 2317 /** 2318 * tb_tunnel_allocated_bandwidth() - Return bandwidth allocated for the tunnel 2319 * @tunnel: Tunnel to check 2320 * @allocated_up: Currently allocated upstream bandwidth in Mb/s is stored here 2321 * @allocated_down: Currently allocated downstream bandwidth in Mb/s is 2322 * stored here 2323 * 2324 * Returns the bandwidth allocated for the tunnel. This may be higher 2325 * than what the tunnel actually consumes. 2326 */ 2327 int tb_tunnel_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up, 2328 int *allocated_down) 2329 { 2330 if (!tb_tunnel_is_active(tunnel)) 2331 return -EINVAL; 2332 2333 if (tunnel->allocated_bandwidth) 2334 return tunnel->allocated_bandwidth(tunnel, allocated_up, 2335 allocated_down); 2336 return -EOPNOTSUPP; 2337 } 2338 2339 /** 2340 * tb_tunnel_alloc_bandwidth() - Change tunnel bandwidth allocation 2341 * @tunnel: Tunnel whose bandwidth allocation to change 2342 * @alloc_up: New upstream bandwidth in Mb/s 2343 * @alloc_down: New downstream bandwidth in Mb/s 2344 * 2345 * Tries to change tunnel bandwidth allocation. If succeeds returns %0 2346 * and updates @alloc_up and @alloc_down to that was actually allocated 2347 * (it may not be the same as passed originally). Returns negative errno 2348 * in case of failure. 2349 */ 2350 int tb_tunnel_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up, 2351 int *alloc_down) 2352 { 2353 if (!tb_tunnel_is_active(tunnel)) 2354 return -EINVAL; 2355 2356 if (tunnel->alloc_bandwidth) 2357 return tunnel->alloc_bandwidth(tunnel, alloc_up, alloc_down); 2358 2359 return -EOPNOTSUPP; 2360 } 2361 2362 /** 2363 * tb_tunnel_consumed_bandwidth() - Return bandwidth consumed by the tunnel 2364 * @tunnel: Tunnel to check 2365 * @consumed_up: Consumed bandwidth in Mb/s from @dst_port to @src_port. 2366 * Can be %NULL. 2367 * @consumed_down: Consumed bandwidth in Mb/s from @src_port to @dst_port. 2368 * Can be %NULL. 2369 * 2370 * Stores the amount of isochronous bandwidth @tunnel consumes in 2371 * @consumed_up and @consumed_down. In case of success returns %0, 2372 * negative errno otherwise. 2373 */ 2374 int tb_tunnel_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 2375 int *consumed_down) 2376 { 2377 int up_bw = 0, down_bw = 0; 2378 2379 if (!tb_tunnel_is_active(tunnel)) 2380 goto out; 2381 2382 if (tunnel->consumed_bandwidth) { 2383 int ret; 2384 2385 ret = tunnel->consumed_bandwidth(tunnel, &up_bw, &down_bw); 2386 if (ret) 2387 return ret; 2388 2389 tb_tunnel_dbg(tunnel, "consumed bandwidth %d/%d Mb/s\n", up_bw, 2390 down_bw); 2391 } 2392 2393 out: 2394 if (consumed_up) 2395 *consumed_up = up_bw; 2396 if (consumed_down) 2397 *consumed_down = down_bw; 2398 2399 return 0; 2400 } 2401 2402 /** 2403 * tb_tunnel_release_unused_bandwidth() - Release unused bandwidth 2404 * @tunnel: Tunnel whose unused bandwidth to release 2405 * 2406 * If tunnel supports dynamic bandwidth management (USB3 tunnels at the 2407 * moment) this function makes it to release all the unused bandwidth. 2408 * 2409 * Returns %0 in case of success and negative errno otherwise. 2410 */ 2411 int tb_tunnel_release_unused_bandwidth(struct tb_tunnel *tunnel) 2412 { 2413 if (!tb_tunnel_is_active(tunnel)) 2414 return 0; 2415 2416 if (tunnel->release_unused_bandwidth) { 2417 int ret; 2418 2419 ret = tunnel->release_unused_bandwidth(tunnel); 2420 if (ret) 2421 return ret; 2422 } 2423 2424 return 0; 2425 } 2426 2427 /** 2428 * tb_tunnel_reclaim_available_bandwidth() - Reclaim available bandwidth 2429 * @tunnel: Tunnel reclaiming available bandwidth 2430 * @available_up: Available upstream bandwidth (in Mb/s) 2431 * @available_down: Available downstream bandwidth (in Mb/s) 2432 * 2433 * Reclaims bandwidth from @available_up and @available_down and updates 2434 * the variables accordingly (e.g decreases both according to what was 2435 * reclaimed by the tunnel). If nothing was reclaimed the values are 2436 * kept as is. 2437 */ 2438 void tb_tunnel_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 2439 int *available_up, 2440 int *available_down) 2441 { 2442 if (!tb_tunnel_is_active(tunnel)) 2443 return; 2444 2445 if (tunnel->reclaim_available_bandwidth) 2446 tunnel->reclaim_available_bandwidth(tunnel, available_up, 2447 available_down); 2448 } 2449 2450 const char *tb_tunnel_type_name(const struct tb_tunnel *tunnel) 2451 { 2452 return tb_tunnel_names[tunnel->type]; 2453 } 2454