1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - bus logic (NHI independent) 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/errno.h> 11 #include <linux/delay.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/platform_data/x86/apple.h> 14 15 #include "tb.h" 16 #include "tb_regs.h" 17 #include "tunnel.h" 18 19 #define TB_TIMEOUT 100 /* ms */ 20 #define TB_RELEASE_BW_TIMEOUT 10000 /* ms */ 21 22 /* 23 * How many time bandwidth allocation request from graphics driver is 24 * retried if the DP tunnel is still activating. 25 */ 26 #define TB_BW_ALLOC_RETRIES 3 27 28 /* 29 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver 30 * direction. This is 40G - 10% guard band bandwidth. 31 */ 32 #define TB_ASYM_MIN (40000 * 90 / 100) 33 34 /* 35 * Threshold bandwidth (in Mb/s) that is used to switch the links to 36 * asymmetric and back. This is selected as 45G which means when the 37 * request is higher than this, we switch the link to asymmetric, and 38 * when it is less than this we switch it back. The 45G is selected so 39 * that we still have 27G (of the total 72G) for bulk PCIe traffic when 40 * switching back to symmetric. 41 */ 42 #define TB_ASYM_THRESHOLD 45000 43 44 #define MAX_GROUPS 7 /* max Group_ID is 7 */ 45 46 static unsigned int asym_threshold = TB_ASYM_THRESHOLD; 47 module_param_named(asym_threshold, asym_threshold, uint, 0444); 48 MODULE_PARM_DESC(asym_threshold, 49 "threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: " 50 __MODULE_STRING(TB_ASYM_THRESHOLD) ")"); 51 52 /** 53 * struct tb_cm - Simple Thunderbolt connection manager 54 * @tunnel_list: List of active tunnels 55 * @dp_resources: List of available DP resources for DP tunneling 56 * @hotplug_active: tb_handle_hotplug will stop progressing plug 57 * events and exit if this is not set (it needs to 58 * acquire the lock one more time). Used to drain wq 59 * after cfg has been paused. 60 * @remove_work: Work used to remove any unplugged routers after 61 * runtime resume 62 * @groups: Bandwidth groups used in this domain. 63 */ 64 struct tb_cm { 65 struct list_head tunnel_list; 66 struct list_head dp_resources; 67 bool hotplug_active; 68 struct delayed_work remove_work; 69 struct tb_bandwidth_group groups[MAX_GROUPS]; 70 }; 71 72 static inline struct tb *tcm_to_tb(struct tb_cm *tcm) 73 { 74 return ((void *)tcm - sizeof(struct tb)); 75 } 76 77 struct tb_hotplug_event { 78 struct delayed_work work; 79 struct tb *tb; 80 u64 route; 81 u8 port; 82 bool unplug; 83 int retry; 84 }; 85 86 static void tb_scan_port(struct tb_port *port); 87 static void tb_handle_hotplug(struct work_struct *work); 88 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port, 89 const char *reason); 90 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port, 91 int retry, unsigned long delay); 92 93 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug) 94 { 95 struct tb_hotplug_event *ev; 96 97 ev = kmalloc(sizeof(*ev), GFP_KERNEL); 98 if (!ev) 99 return; 100 101 ev->tb = tb; 102 ev->route = route; 103 ev->port = port; 104 ev->unplug = unplug; 105 INIT_DELAYED_WORK(&ev->work, tb_handle_hotplug); 106 queue_delayed_work(tb->wq, &ev->work, 0); 107 } 108 109 /* enumeration & hot plug handling */ 110 111 static void tb_add_dp_resources(struct tb_switch *sw) 112 { 113 struct tb_cm *tcm = tb_priv(sw->tb); 114 struct tb_port *port; 115 116 tb_switch_for_each_port(sw, port) { 117 if (!tb_port_is_dpin(port)) 118 continue; 119 120 if (!tb_switch_query_dp_resource(sw, port)) 121 continue; 122 123 /* 124 * If DP IN on device router exist, position it at the 125 * beginning of the DP resources list, so that it is used 126 * before DP IN of the host router. This way external GPU(s) 127 * will be prioritized when pairing DP IN to a DP OUT. 128 */ 129 if (tb_route(sw)) 130 list_add(&port->list, &tcm->dp_resources); 131 else 132 list_add_tail(&port->list, &tcm->dp_resources); 133 134 tb_port_dbg(port, "DP IN resource available\n"); 135 } 136 } 137 138 static void tb_remove_dp_resources(struct tb_switch *sw) 139 { 140 struct tb_cm *tcm = tb_priv(sw->tb); 141 struct tb_port *port, *tmp; 142 143 /* Clear children resources first */ 144 tb_switch_for_each_port(sw, port) { 145 if (tb_port_has_remote(port)) 146 tb_remove_dp_resources(port->remote->sw); 147 } 148 149 list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) { 150 if (port->sw == sw) { 151 tb_port_dbg(port, "DP OUT resource unavailable\n"); 152 list_del_init(&port->list); 153 } 154 } 155 } 156 157 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port) 158 { 159 struct tb_cm *tcm = tb_priv(tb); 160 struct tb_port *p; 161 162 list_for_each_entry(p, &tcm->dp_resources, list) { 163 if (p == port) 164 return; 165 } 166 167 tb_port_dbg(port, "DP %s resource available discovered\n", 168 tb_port_is_dpin(port) ? "IN" : "OUT"); 169 list_add_tail(&port->list, &tcm->dp_resources); 170 } 171 172 static void tb_discover_dp_resources(struct tb *tb) 173 { 174 struct tb_cm *tcm = tb_priv(tb); 175 struct tb_tunnel *tunnel; 176 177 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 178 if (tb_tunnel_is_dp(tunnel)) 179 tb_discover_dp_resource(tb, tunnel->dst_port); 180 } 181 } 182 183 /* Enables CL states up to host router */ 184 static int tb_enable_clx(struct tb_switch *sw) 185 { 186 struct tb_cm *tcm = tb_priv(sw->tb); 187 unsigned int clx = TB_CL0S | TB_CL1; 188 const struct tb_tunnel *tunnel; 189 int ret; 190 191 /* 192 * Currently only enable CLx for the first link. This is enough 193 * to allow the CPU to save energy at least on Intel hardware 194 * and makes it slightly simpler to implement. We may change 195 * this in the future to cover the whole topology if it turns 196 * out to be beneficial. 197 */ 198 while (sw && tb_switch_depth(sw) > 1) 199 sw = tb_switch_parent(sw); 200 201 if (!sw) 202 return 0; 203 204 if (tb_switch_depth(sw) != 1) 205 return 0; 206 207 /* 208 * If we are re-enabling then check if there is an active DMA 209 * tunnel and in that case bail out. 210 */ 211 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 212 if (tb_tunnel_is_dma(tunnel)) { 213 if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw))) 214 return 0; 215 } 216 } 217 218 /* 219 * Initially try with CL2. If that's not supported by the 220 * topology try with CL0s and CL1 and then give up. 221 */ 222 ret = tb_switch_clx_enable(sw, clx | TB_CL2); 223 if (ret == -EOPNOTSUPP) 224 ret = tb_switch_clx_enable(sw, clx); 225 return ret == -EOPNOTSUPP ? 0 : ret; 226 } 227 228 /** 229 * tb_disable_clx() - Disable CL states up to host router 230 * @sw: Router to start 231 * 232 * Disables CL states from @sw up to the host router. Returns true if 233 * any CL state were disabled. This can be used to figure out whether 234 * the link was setup by us or the boot firmware so we don't 235 * accidentally enable them if they were not enabled during discovery. 236 */ 237 static bool tb_disable_clx(struct tb_switch *sw) 238 { 239 bool disabled = false; 240 241 do { 242 int ret; 243 244 ret = tb_switch_clx_disable(sw); 245 if (ret > 0) 246 disabled = true; 247 else if (ret < 0) 248 tb_sw_warn(sw, "failed to disable CL states\n"); 249 250 sw = tb_switch_parent(sw); 251 } while (sw); 252 253 return disabled; 254 } 255 256 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data) 257 { 258 struct tb_switch *sw; 259 260 sw = tb_to_switch(dev); 261 if (!sw) 262 return 0; 263 264 if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) { 265 enum tb_switch_tmu_mode mode; 266 int ret; 267 268 if (tb_switch_clx_is_enabled(sw, TB_CL1)) 269 mode = TB_SWITCH_TMU_MODE_HIFI_UNI; 270 else 271 mode = TB_SWITCH_TMU_MODE_HIFI_BI; 272 273 ret = tb_switch_tmu_configure(sw, mode); 274 if (ret) 275 return ret; 276 277 return tb_switch_tmu_enable(sw); 278 } 279 280 return 0; 281 } 282 283 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel) 284 { 285 struct tb_switch *sw; 286 287 if (!tunnel) 288 return; 289 290 /* 291 * Once first DP tunnel is established we change the TMU 292 * accuracy of first depth child routers (and the host router) 293 * to the highest. This is needed for the DP tunneling to work 294 * but also allows CL0s. 295 * 296 * If both routers are v2 then we don't need to do anything as 297 * they are using enhanced TMU mode that allows all CLx. 298 */ 299 sw = tunnel->tb->root_switch; 300 device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy); 301 } 302 303 static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used) 304 { 305 struct tb_switch *sw = tb_to_switch(dev); 306 307 if (sw && tb_switch_tmu_is_enabled(sw) && 308 tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI)) 309 return 1; 310 311 return device_for_each_child(dev, NULL, 312 tb_switch_tmu_hifi_uni_required); 313 } 314 315 static bool tb_tmu_hifi_uni_required(struct tb *tb) 316 { 317 return device_for_each_child(&tb->dev, NULL, 318 tb_switch_tmu_hifi_uni_required) == 1; 319 } 320 321 static int tb_enable_tmu(struct tb_switch *sw) 322 { 323 int ret; 324 325 /* 326 * If both routers at the end of the link are v2 we simply 327 * enable the enhanched uni-directional mode. That covers all 328 * the CL states. For v1 and before we need to use the normal 329 * rate to allow CL1 (when supported). Otherwise we keep the TMU 330 * running at the highest accuracy. 331 */ 332 ret = tb_switch_tmu_configure(sw, 333 TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI); 334 if (ret == -EOPNOTSUPP) { 335 if (tb_switch_clx_is_enabled(sw, TB_CL1)) { 336 /* 337 * Figure out uni-directional HiFi TMU requirements 338 * currently in the domain. If there are no 339 * uni-directional HiFi requirements we can put the TMU 340 * into LowRes mode. 341 * 342 * Deliberately skip bi-directional HiFi links 343 * as these work independently of other links 344 * (and they do not allow any CL states anyway). 345 */ 346 if (tb_tmu_hifi_uni_required(sw->tb)) 347 ret = tb_switch_tmu_configure(sw, 348 TB_SWITCH_TMU_MODE_HIFI_UNI); 349 else 350 ret = tb_switch_tmu_configure(sw, 351 TB_SWITCH_TMU_MODE_LOWRES); 352 } else { 353 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI); 354 } 355 356 /* If not supported, fallback to bi-directional HiFi */ 357 if (ret == -EOPNOTSUPP) 358 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI); 359 } 360 if (ret) 361 return ret; 362 363 /* If it is already enabled in correct mode, don't touch it */ 364 if (tb_switch_tmu_is_enabled(sw)) 365 return 0; 366 367 ret = tb_switch_tmu_disable(sw); 368 if (ret) 369 return ret; 370 371 ret = tb_switch_tmu_post_time(sw); 372 if (ret) 373 return ret; 374 375 return tb_switch_tmu_enable(sw); 376 } 377 378 static void tb_switch_discover_tunnels(struct tb_switch *sw, 379 struct list_head *list, 380 bool alloc_hopids) 381 { 382 struct tb *tb = sw->tb; 383 struct tb_port *port; 384 385 tb_switch_for_each_port(sw, port) { 386 struct tb_tunnel *tunnel = NULL; 387 388 switch (port->config.type) { 389 case TB_TYPE_DP_HDMI_IN: 390 tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids); 391 tb_increase_tmu_accuracy(tunnel); 392 break; 393 394 case TB_TYPE_PCIE_DOWN: 395 tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids); 396 break; 397 398 case TB_TYPE_USB3_DOWN: 399 tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids); 400 break; 401 402 default: 403 break; 404 } 405 406 if (tunnel) 407 list_add_tail(&tunnel->list, list); 408 } 409 410 tb_switch_for_each_port(sw, port) { 411 if (tb_port_has_remote(port)) { 412 tb_switch_discover_tunnels(port->remote->sw, list, 413 alloc_hopids); 414 } 415 } 416 } 417 418 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) 419 { 420 if (tb_switch_is_usb4(port->sw)) 421 return usb4_port_configure_xdomain(port, xd); 422 return tb_lc_configure_xdomain(port); 423 } 424 425 static void tb_port_unconfigure_xdomain(struct tb_port *port) 426 { 427 if (tb_switch_is_usb4(port->sw)) 428 usb4_port_unconfigure_xdomain(port); 429 else 430 tb_lc_unconfigure_xdomain(port); 431 } 432 433 static void tb_scan_xdomain(struct tb_port *port) 434 { 435 struct tb_switch *sw = port->sw; 436 struct tb *tb = sw->tb; 437 struct tb_xdomain *xd; 438 u64 route; 439 440 if (!tb_is_xdomain_enabled()) 441 return; 442 443 route = tb_downstream_route(port); 444 xd = tb_xdomain_find_by_route(tb, route); 445 if (xd) { 446 tb_xdomain_put(xd); 447 return; 448 } 449 450 xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid, 451 NULL); 452 if (xd) { 453 tb_port_at(route, sw)->xdomain = xd; 454 tb_port_configure_xdomain(port, xd); 455 tb_xdomain_add(xd); 456 } 457 } 458 459 /** 460 * tb_find_unused_port() - return the first inactive port on @sw 461 * @sw: Switch to find the port on 462 * @type: Port type to look for 463 */ 464 static struct tb_port *tb_find_unused_port(struct tb_switch *sw, 465 enum tb_port_type type) 466 { 467 struct tb_port *port; 468 469 tb_switch_for_each_port(sw, port) { 470 if (tb_is_upstream_port(port)) 471 continue; 472 if (port->config.type != type) 473 continue; 474 if (!port->cap_adap) 475 continue; 476 if (tb_port_is_enabled(port)) 477 continue; 478 return port; 479 } 480 return NULL; 481 } 482 483 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw, 484 const struct tb_port *port) 485 { 486 struct tb_port *down; 487 488 down = usb4_switch_map_usb3_down(sw, port); 489 if (down && !tb_usb3_port_is_enabled(down)) 490 return down; 491 return NULL; 492 } 493 494 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type, 495 struct tb_port *src_port, 496 struct tb_port *dst_port) 497 { 498 struct tb_cm *tcm = tb_priv(tb); 499 struct tb_tunnel *tunnel; 500 501 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 502 if (tunnel->type == type && 503 ((src_port && src_port == tunnel->src_port) || 504 (dst_port && dst_port == tunnel->dst_port))) { 505 return tunnel; 506 } 507 } 508 509 return NULL; 510 } 511 512 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb, 513 struct tb_port *src_port, 514 struct tb_port *dst_port) 515 { 516 struct tb_port *port, *usb3_down; 517 struct tb_switch *sw; 518 519 /* Pick the router that is deepest in the topology */ 520 if (tb_port_path_direction_downstream(src_port, dst_port)) 521 sw = dst_port->sw; 522 else 523 sw = src_port->sw; 524 525 /* Can't be the host router */ 526 if (sw == tb->root_switch) 527 return NULL; 528 529 /* Find the downstream USB4 port that leads to this router */ 530 port = tb_port_at(tb_route(sw), tb->root_switch); 531 /* Find the corresponding host router USB3 downstream port */ 532 usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port); 533 if (!usb3_down) 534 return NULL; 535 536 return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL); 537 } 538 539 /** 540 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link 541 * @tb: Domain structure 542 * @src_port: Source protocol adapter 543 * @dst_port: Destination protocol adapter 544 * @port: USB4 port the consumed bandwidth is calculated 545 * @consumed_up: Consumed upsream bandwidth (Mb/s) 546 * @consumed_down: Consumed downstream bandwidth (Mb/s) 547 * 548 * Calculates consumed USB3 and PCIe bandwidth at @port between path 549 * from @src_port to @dst_port. Does not take USB3 tunnel starting from 550 * @src_port and ending on @src_port into account because that bandwidth is 551 * already included in as part of the "first hop" USB3 tunnel. 552 */ 553 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb, 554 struct tb_port *src_port, 555 struct tb_port *dst_port, 556 struct tb_port *port, 557 int *consumed_up, 558 int *consumed_down) 559 { 560 int pci_consumed_up, pci_consumed_down; 561 struct tb_tunnel *tunnel; 562 563 *consumed_up = *consumed_down = 0; 564 565 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 566 if (tunnel && !tb_port_is_usb3_down(src_port) && 567 !tb_port_is_usb3_up(dst_port)) { 568 int ret; 569 570 ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up, 571 consumed_down); 572 if (ret) 573 return ret; 574 } 575 576 /* 577 * If there is anything reserved for PCIe bulk traffic take it 578 * into account here too. 579 */ 580 if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) { 581 *consumed_up += pci_consumed_up; 582 *consumed_down += pci_consumed_down; 583 } 584 585 return 0; 586 } 587 588 /** 589 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link 590 * @tb: Domain structure 591 * @src_port: Source protocol adapter 592 * @dst_port: Destination protocol adapter 593 * @port: USB4 port the consumed bandwidth is calculated 594 * @consumed_up: Consumed upsream bandwidth (Mb/s) 595 * @consumed_down: Consumed downstream bandwidth (Mb/s) 596 * 597 * Calculates consumed DP bandwidth at @port between path from @src_port 598 * to @dst_port. Does not take tunnel starting from @src_port and ending 599 * from @src_port into account. 600 * 601 * If there is bandwidth reserved for any of the groups between 602 * @src_port and @dst_port (but not yet used) that is also taken into 603 * account in the returned consumed bandwidth. 604 */ 605 static int tb_consumed_dp_bandwidth(struct tb *tb, 606 struct tb_port *src_port, 607 struct tb_port *dst_port, 608 struct tb_port *port, 609 int *consumed_up, 610 int *consumed_down) 611 { 612 int group_reserved[MAX_GROUPS] = {}; 613 struct tb_cm *tcm = tb_priv(tb); 614 struct tb_tunnel *tunnel; 615 bool downstream; 616 int i, ret; 617 618 *consumed_up = *consumed_down = 0; 619 620 /* 621 * Find all DP tunnels that cross the port and reduce 622 * their consumed bandwidth from the available. 623 */ 624 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 625 const struct tb_bandwidth_group *group; 626 int dp_consumed_up, dp_consumed_down; 627 628 if (tb_tunnel_is_invalid(tunnel)) 629 continue; 630 631 if (!tb_tunnel_is_dp(tunnel)) 632 continue; 633 634 if (!tb_tunnel_port_on_path(tunnel, port)) 635 continue; 636 637 /* 638 * Calculate what is reserved for groups crossing the 639 * same ports only once (as that is reserved for all the 640 * tunnels in the group). 641 */ 642 group = tunnel->src_port->group; 643 if (group && group->reserved && !group_reserved[group->index]) 644 group_reserved[group->index] = group->reserved; 645 646 /* 647 * Ignore the DP tunnel between src_port and dst_port 648 * because it is the same tunnel and we may be 649 * re-calculating estimated bandwidth. 650 */ 651 if (tunnel->src_port == src_port && 652 tunnel->dst_port == dst_port) 653 continue; 654 655 ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up, 656 &dp_consumed_down); 657 if (ret) 658 return ret; 659 660 *consumed_up += dp_consumed_up; 661 *consumed_down += dp_consumed_down; 662 } 663 664 downstream = tb_port_path_direction_downstream(src_port, dst_port); 665 for (i = 0; i < ARRAY_SIZE(group_reserved); i++) { 666 if (downstream) 667 *consumed_down += group_reserved[i]; 668 else 669 *consumed_up += group_reserved[i]; 670 } 671 672 return 0; 673 } 674 675 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port, 676 struct tb_port *port) 677 { 678 bool downstream = tb_port_path_direction_downstream(src_port, dst_port); 679 enum tb_link_width width; 680 681 if (tb_is_upstream_port(port)) 682 width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX; 683 else 684 width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX; 685 686 return tb_port_width_supported(port, width); 687 } 688 689 /** 690 * tb_maximum_bandwidth() - Maximum bandwidth over a single link 691 * @tb: Domain structure 692 * @src_port: Source protocol adapter 693 * @dst_port: Destination protocol adapter 694 * @port: USB4 port the total bandwidth is calculated 695 * @max_up: Maximum upstream bandwidth (Mb/s) 696 * @max_down: Maximum downstream bandwidth (Mb/s) 697 * @include_asym: Include bandwidth if the link is switched from 698 * symmetric to asymmetric 699 * 700 * Returns maximum possible bandwidth in @max_up and @max_down over a 701 * single link at @port. If @include_asym is set then includes the 702 * additional banwdith if the links are transitioned into asymmetric to 703 * direction from @src_port to @dst_port. 704 */ 705 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port, 706 struct tb_port *dst_port, struct tb_port *port, 707 int *max_up, int *max_down, bool include_asym) 708 { 709 bool downstream = tb_port_path_direction_downstream(src_port, dst_port); 710 int link_speed, link_width, up_bw, down_bw; 711 712 /* 713 * Can include asymmetric, only if it is actually supported by 714 * the lane adapter. 715 */ 716 if (!tb_asym_supported(src_port, dst_port, port)) 717 include_asym = false; 718 719 if (tb_is_upstream_port(port)) { 720 link_speed = port->sw->link_speed; 721 /* 722 * sw->link_width is from upstream perspective so we use 723 * the opposite for downstream of the host router. 724 */ 725 if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) { 726 up_bw = link_speed * 3 * 1000; 727 down_bw = link_speed * 1 * 1000; 728 } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) { 729 up_bw = link_speed * 1 * 1000; 730 down_bw = link_speed * 3 * 1000; 731 } else if (include_asym) { 732 /* 733 * The link is symmetric at the moment but we 734 * can switch it to asymmetric as needed. Report 735 * this bandwidth as available (even though it 736 * is not yet enabled). 737 */ 738 if (downstream) { 739 up_bw = link_speed * 1 * 1000; 740 down_bw = link_speed * 3 * 1000; 741 } else { 742 up_bw = link_speed * 3 * 1000; 743 down_bw = link_speed * 1 * 1000; 744 } 745 } else { 746 up_bw = link_speed * port->sw->link_width * 1000; 747 down_bw = up_bw; 748 } 749 } else { 750 link_speed = tb_port_get_link_speed(port); 751 if (link_speed < 0) 752 return link_speed; 753 754 link_width = tb_port_get_link_width(port); 755 if (link_width < 0) 756 return link_width; 757 758 if (link_width == TB_LINK_WIDTH_ASYM_TX) { 759 up_bw = link_speed * 1 * 1000; 760 down_bw = link_speed * 3 * 1000; 761 } else if (link_width == TB_LINK_WIDTH_ASYM_RX) { 762 up_bw = link_speed * 3 * 1000; 763 down_bw = link_speed * 1 * 1000; 764 } else if (include_asym) { 765 /* 766 * The link is symmetric at the moment but we 767 * can switch it to asymmetric as needed. Report 768 * this bandwidth as available (even though it 769 * is not yet enabled). 770 */ 771 if (downstream) { 772 up_bw = link_speed * 1 * 1000; 773 down_bw = link_speed * 3 * 1000; 774 } else { 775 up_bw = link_speed * 3 * 1000; 776 down_bw = link_speed * 1 * 1000; 777 } 778 } else { 779 up_bw = link_speed * link_width * 1000; 780 down_bw = up_bw; 781 } 782 } 783 784 /* Leave 10% guard band */ 785 *max_up = up_bw - up_bw / 10; 786 *max_down = down_bw - down_bw / 10; 787 788 tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down); 789 return 0; 790 } 791 792 /** 793 * tb_available_bandwidth() - Available bandwidth for tunneling 794 * @tb: Domain structure 795 * @src_port: Source protocol adapter 796 * @dst_port: Destination protocol adapter 797 * @available_up: Available bandwidth upstream (Mb/s) 798 * @available_down: Available bandwidth downstream (Mb/s) 799 * @include_asym: Include bandwidth if the link is switched from 800 * symmetric to asymmetric 801 * 802 * Calculates maximum available bandwidth for protocol tunneling between 803 * @src_port and @dst_port at the moment. This is minimum of maximum 804 * link bandwidth across all links reduced by currently consumed 805 * bandwidth on that link. 806 * 807 * If @include_asym is true then includes also bandwidth that can be 808 * added when the links are transitioned into asymmetric (but does not 809 * transition the links). 810 */ 811 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port, 812 struct tb_port *dst_port, int *available_up, 813 int *available_down, bool include_asym) 814 { 815 struct tb_port *port; 816 int ret; 817 818 /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */ 819 *available_up = *available_down = 120000; 820 821 /* Find the minimum available bandwidth over all links */ 822 tb_for_each_port_on_path(src_port, dst_port, port) { 823 int max_up, max_down, consumed_up, consumed_down; 824 825 if (!tb_port_is_null(port)) 826 continue; 827 828 ret = tb_maximum_bandwidth(tb, src_port, dst_port, port, 829 &max_up, &max_down, include_asym); 830 if (ret) 831 return ret; 832 833 ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port, 834 port, &consumed_up, 835 &consumed_down); 836 if (ret) 837 return ret; 838 max_up -= consumed_up; 839 max_down -= consumed_down; 840 841 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port, 842 &consumed_up, &consumed_down); 843 if (ret) 844 return ret; 845 max_up -= consumed_up; 846 max_down -= consumed_down; 847 848 if (max_up < *available_up) 849 *available_up = max_up; 850 if (max_down < *available_down) 851 *available_down = max_down; 852 } 853 854 if (*available_up < 0) 855 *available_up = 0; 856 if (*available_down < 0) 857 *available_down = 0; 858 859 return 0; 860 } 861 862 static int tb_release_unused_usb3_bandwidth(struct tb *tb, 863 struct tb_port *src_port, 864 struct tb_port *dst_port) 865 { 866 struct tb_tunnel *tunnel; 867 868 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 869 return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0; 870 } 871 872 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port, 873 struct tb_port *dst_port) 874 { 875 int ret, available_up, available_down; 876 struct tb_tunnel *tunnel; 877 878 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 879 if (!tunnel) 880 return; 881 882 tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n"); 883 884 /* 885 * Calculate available bandwidth for the first hop USB3 tunnel. 886 * That determines the whole USB3 bandwidth for this branch. 887 */ 888 ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port, 889 &available_up, &available_down, false); 890 if (ret) { 891 tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n"); 892 return; 893 } 894 895 tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up, 896 available_down); 897 898 tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down); 899 } 900 901 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw) 902 { 903 struct tb_switch *parent = tb_switch_parent(sw); 904 int ret, available_up, available_down; 905 struct tb_port *up, *down, *port; 906 struct tb_cm *tcm = tb_priv(tb); 907 struct tb_tunnel *tunnel; 908 909 if (!tb_acpi_may_tunnel_usb3()) { 910 tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n"); 911 return 0; 912 } 913 914 up = tb_switch_find_port(sw, TB_TYPE_USB3_UP); 915 if (!up) 916 return 0; 917 918 if (!sw->link_usb4) 919 return 0; 920 921 /* 922 * Look up available down port. Since we are chaining it should 923 * be found right above this switch. 924 */ 925 port = tb_switch_downstream_port(sw); 926 down = tb_find_usb3_down(parent, port); 927 if (!down) 928 return 0; 929 930 if (tb_route(parent)) { 931 struct tb_port *parent_up; 932 /* 933 * Check first that the parent switch has its upstream USB3 934 * port enabled. Otherwise the chain is not complete and 935 * there is no point setting up a new tunnel. 936 */ 937 parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP); 938 if (!parent_up || !tb_port_is_enabled(parent_up)) 939 return 0; 940 941 /* Make all unused bandwidth available for the new tunnel */ 942 ret = tb_release_unused_usb3_bandwidth(tb, down, up); 943 if (ret) 944 return ret; 945 } 946 947 ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down, 948 false); 949 if (ret) 950 goto err_reclaim; 951 952 tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n", 953 available_up, available_down); 954 955 tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up, 956 available_down); 957 if (!tunnel) { 958 ret = -ENOMEM; 959 goto err_reclaim; 960 } 961 962 if (tb_tunnel_activate(tunnel)) { 963 tb_port_info(up, 964 "USB3 tunnel activation failed, aborting\n"); 965 ret = -EIO; 966 goto err_free; 967 } 968 969 list_add_tail(&tunnel->list, &tcm->tunnel_list); 970 if (tb_route(parent)) 971 tb_reclaim_usb3_bandwidth(tb, down, up); 972 973 return 0; 974 975 err_free: 976 tb_tunnel_put(tunnel); 977 err_reclaim: 978 if (tb_route(parent)) 979 tb_reclaim_usb3_bandwidth(tb, down, up); 980 981 return ret; 982 } 983 984 static int tb_create_usb3_tunnels(struct tb_switch *sw) 985 { 986 struct tb_port *port; 987 int ret; 988 989 if (!tb_acpi_may_tunnel_usb3()) 990 return 0; 991 992 if (tb_route(sw)) { 993 ret = tb_tunnel_usb3(sw->tb, sw); 994 if (ret) 995 return ret; 996 } 997 998 tb_switch_for_each_port(sw, port) { 999 if (!tb_port_has_remote(port)) 1000 continue; 1001 ret = tb_create_usb3_tunnels(port->remote->sw); 1002 if (ret) 1003 return ret; 1004 } 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * tb_configure_asym() - Transition links to asymmetric if needed 1011 * @tb: Domain structure 1012 * @src_port: Source adapter to start the transition 1013 * @dst_port: Destination adapter 1014 * @requested_up: Additional bandwidth (Mb/s) required upstream 1015 * @requested_down: Additional bandwidth (Mb/s) required downstream 1016 * 1017 * Transition links between @src_port and @dst_port into asymmetric, with 1018 * three lanes in the direction from @src_port towards @dst_port and one lane 1019 * in the opposite direction, if the bandwidth requirements 1020 * (requested + currently consumed) on that link exceed @asym_threshold. 1021 * 1022 * Must be called with available >= requested over all links. 1023 */ 1024 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port, 1025 struct tb_port *dst_port, int requested_up, 1026 int requested_down) 1027 { 1028 bool clx = false, clx_disabled = false, downstream; 1029 struct tb_switch *sw; 1030 struct tb_port *up; 1031 int ret = 0; 1032 1033 if (!asym_threshold) 1034 return 0; 1035 1036 downstream = tb_port_path_direction_downstream(src_port, dst_port); 1037 /* Pick up router deepest in the hierarchy */ 1038 if (downstream) 1039 sw = dst_port->sw; 1040 else 1041 sw = src_port->sw; 1042 1043 tb_for_each_upstream_port_on_path(src_port, dst_port, up) { 1044 struct tb_port *down = tb_switch_downstream_port(up->sw); 1045 enum tb_link_width width_up, width_down; 1046 int consumed_up, consumed_down; 1047 1048 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up, 1049 &consumed_up, &consumed_down); 1050 if (ret) 1051 break; 1052 1053 if (downstream) { 1054 /* 1055 * Downstream so make sure upstream is within the 36G 1056 * (40G - guard band 10%), and the requested is above 1057 * what the threshold is. 1058 */ 1059 if (consumed_up + requested_up >= TB_ASYM_MIN) { 1060 ret = -ENOBUFS; 1061 break; 1062 } 1063 /* Does consumed + requested exceed the threshold */ 1064 if (consumed_down + requested_down < asym_threshold) 1065 continue; 1066 1067 width_up = TB_LINK_WIDTH_ASYM_RX; 1068 width_down = TB_LINK_WIDTH_ASYM_TX; 1069 } else { 1070 /* Upstream, the opposite of above */ 1071 if (consumed_down + requested_down >= TB_ASYM_MIN) { 1072 ret = -ENOBUFS; 1073 break; 1074 } 1075 if (consumed_up + requested_up < asym_threshold) 1076 continue; 1077 1078 width_up = TB_LINK_WIDTH_ASYM_TX; 1079 width_down = TB_LINK_WIDTH_ASYM_RX; 1080 } 1081 1082 if (up->sw->link_width == width_up) 1083 continue; 1084 1085 if (!tb_port_width_supported(up, width_up) || 1086 !tb_port_width_supported(down, width_down)) 1087 continue; 1088 1089 /* 1090 * Disable CL states before doing any transitions. We 1091 * delayed it until now that we know there is a real 1092 * transition taking place. 1093 */ 1094 if (!clx_disabled) { 1095 clx = tb_disable_clx(sw); 1096 clx_disabled = true; 1097 } 1098 1099 tb_sw_dbg(up->sw, "configuring asymmetric link\n"); 1100 1101 /* 1102 * Here requested + consumed > threshold so we need to 1103 * transtion the link into asymmetric now. 1104 */ 1105 ret = tb_switch_set_link_width(up->sw, width_up); 1106 if (ret) { 1107 tb_sw_warn(up->sw, "failed to set link width\n"); 1108 break; 1109 } 1110 } 1111 1112 /* Re-enable CL states if they were previosly enabled */ 1113 if (clx) 1114 tb_enable_clx(sw); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * tb_configure_sym() - Transition links to symmetric if possible 1121 * @tb: Domain structure 1122 * @src_port: Source adapter to start the transition 1123 * @dst_port: Destination adapter 1124 * @keep_asym: Keep asymmetric link if preferred 1125 * 1126 * Goes over each link from @src_port to @dst_port and tries to 1127 * transition the link to symmetric if the currently consumed bandwidth 1128 * allows and link asymmetric preference is ignored (if @keep_asym is %false). 1129 */ 1130 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port, 1131 struct tb_port *dst_port, bool keep_asym) 1132 { 1133 bool clx = false, clx_disabled = false, downstream; 1134 struct tb_switch *sw; 1135 struct tb_port *up; 1136 int ret = 0; 1137 1138 if (!asym_threshold) 1139 return 0; 1140 1141 downstream = tb_port_path_direction_downstream(src_port, dst_port); 1142 /* Pick up router deepest in the hierarchy */ 1143 if (downstream) 1144 sw = dst_port->sw; 1145 else 1146 sw = src_port->sw; 1147 1148 tb_for_each_upstream_port_on_path(src_port, dst_port, up) { 1149 int consumed_up, consumed_down; 1150 1151 /* Already symmetric */ 1152 if (up->sw->link_width <= TB_LINK_WIDTH_DUAL) 1153 continue; 1154 /* Unplugged, no need to switch */ 1155 if (up->sw->is_unplugged) 1156 continue; 1157 1158 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up, 1159 &consumed_up, &consumed_down); 1160 if (ret) 1161 break; 1162 1163 if (downstream) { 1164 /* 1165 * Downstream so we want the consumed_down < threshold. 1166 * Upstream traffic should be less than 36G (40G 1167 * guard band 10%) as the link was configured asymmetric 1168 * already. 1169 */ 1170 if (consumed_down >= asym_threshold) 1171 continue; 1172 } else { 1173 if (consumed_up >= asym_threshold) 1174 continue; 1175 } 1176 1177 if (up->sw->link_width == TB_LINK_WIDTH_DUAL) 1178 continue; 1179 1180 /* 1181 * Here consumed < threshold so we can transition the 1182 * link to symmetric. 1183 * 1184 * However, if the router prefers asymmetric link we 1185 * honor that (unless @keep_asym is %false). 1186 */ 1187 if (keep_asym && 1188 up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) { 1189 tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n"); 1190 continue; 1191 } 1192 1193 /* Disable CL states before doing any transitions */ 1194 if (!clx_disabled) { 1195 clx = tb_disable_clx(sw); 1196 clx_disabled = true; 1197 } 1198 1199 tb_sw_dbg(up->sw, "configuring symmetric link\n"); 1200 1201 ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL); 1202 if (ret) { 1203 tb_sw_warn(up->sw, "failed to set link width\n"); 1204 break; 1205 } 1206 } 1207 1208 /* Re-enable CL states if they were previosly enabled */ 1209 if (clx) 1210 tb_enable_clx(sw); 1211 1212 return ret; 1213 } 1214 1215 static void tb_configure_link(struct tb_port *down, struct tb_port *up, 1216 struct tb_switch *sw) 1217 { 1218 struct tb *tb = sw->tb; 1219 1220 /* Link the routers using both links if available */ 1221 down->remote = up; 1222 up->remote = down; 1223 if (down->dual_link_port && up->dual_link_port) { 1224 down->dual_link_port->remote = up->dual_link_port; 1225 up->dual_link_port->remote = down->dual_link_port; 1226 } 1227 1228 /* 1229 * Enable lane bonding if the link is currently two single lane 1230 * links. 1231 */ 1232 if (sw->link_width < TB_LINK_WIDTH_DUAL) 1233 tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL); 1234 1235 /* 1236 * Device router that comes up as symmetric link is 1237 * connected deeper in the hierarchy, we transition the links 1238 * above into symmetric if bandwidth allows. 1239 */ 1240 if (tb_switch_depth(sw) > 1 && 1241 tb_port_get_link_generation(up) >= 4 && 1242 up->sw->link_width == TB_LINK_WIDTH_DUAL) { 1243 struct tb_port *host_port; 1244 1245 host_port = tb_port_at(tb_route(sw), tb->root_switch); 1246 tb_configure_sym(tb, host_port, up, false); 1247 } 1248 1249 /* Set the link configured */ 1250 tb_switch_configure_link(sw); 1251 } 1252 1253 /* 1254 * tb_scan_switch() - scan for and initialize downstream switches 1255 */ 1256 static void tb_scan_switch(struct tb_switch *sw) 1257 { 1258 struct tb_port *port; 1259 1260 pm_runtime_get_sync(&sw->dev); 1261 1262 tb_switch_for_each_port(sw, port) 1263 tb_scan_port(port); 1264 1265 pm_runtime_mark_last_busy(&sw->dev); 1266 pm_runtime_put_autosuspend(&sw->dev); 1267 } 1268 1269 /* 1270 * tb_scan_port() - check for and initialize switches below port 1271 */ 1272 static void tb_scan_port(struct tb_port *port) 1273 { 1274 struct tb_cm *tcm = tb_priv(port->sw->tb); 1275 struct tb_port *upstream_port; 1276 bool discovery = false; 1277 struct tb_switch *sw; 1278 1279 if (tb_is_upstream_port(port)) 1280 return; 1281 1282 if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 && 1283 !tb_dp_port_is_enabled(port)) { 1284 tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n"); 1285 tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port, 1286 false); 1287 return; 1288 } 1289 1290 if (port->config.type != TB_TYPE_PORT) 1291 return; 1292 if (port->dual_link_port && port->link_nr) 1293 return; /* 1294 * Downstream switch is reachable through two ports. 1295 * Only scan on the primary port (link_nr == 0). 1296 */ 1297 1298 if (port->usb4) 1299 pm_runtime_get_sync(&port->usb4->dev); 1300 1301 if (tb_wait_for_port(port, false) <= 0) 1302 goto out_rpm_put; 1303 if (port->remote) { 1304 tb_port_dbg(port, "port already has a remote\n"); 1305 goto out_rpm_put; 1306 } 1307 1308 tb_retimer_scan(port, true); 1309 1310 sw = tb_switch_alloc(port->sw->tb, &port->sw->dev, 1311 tb_downstream_route(port)); 1312 if (IS_ERR(sw)) { 1313 /* 1314 * If there is an error accessing the connected switch 1315 * it may be connected to another domain. Also we allow 1316 * the other domain to be connected to a max depth switch. 1317 */ 1318 if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL) 1319 tb_scan_xdomain(port); 1320 goto out_rpm_put; 1321 } 1322 1323 if (tb_switch_configure(sw)) { 1324 tb_switch_put(sw); 1325 goto out_rpm_put; 1326 } 1327 1328 /* 1329 * If there was previously another domain connected remove it 1330 * first. 1331 */ 1332 if (port->xdomain) { 1333 tb_xdomain_remove(port->xdomain); 1334 tb_port_unconfigure_xdomain(port); 1335 port->xdomain = NULL; 1336 } 1337 1338 /* 1339 * Do not send uevents until we have discovered all existing 1340 * tunnels and know which switches were authorized already by 1341 * the boot firmware. 1342 */ 1343 if (!tcm->hotplug_active) { 1344 dev_set_uevent_suppress(&sw->dev, true); 1345 discovery = true; 1346 } 1347 1348 /* 1349 * At the moment Thunderbolt 2 and beyond (devices with LC) we 1350 * can support runtime PM. 1351 */ 1352 sw->rpm = sw->generation > 1; 1353 1354 if (tb_switch_add(sw)) { 1355 tb_switch_put(sw); 1356 goto out_rpm_put; 1357 } 1358 1359 upstream_port = tb_upstream_port(sw); 1360 tb_configure_link(port, upstream_port, sw); 1361 1362 /* 1363 * CL0s and CL1 are enabled and supported together. 1364 * Silently ignore CLx enabling in case CLx is not supported. 1365 */ 1366 if (discovery) 1367 tb_sw_dbg(sw, "discovery, not touching CL states\n"); 1368 else if (tb_enable_clx(sw)) 1369 tb_sw_warn(sw, "failed to enable CL states\n"); 1370 1371 if (tb_enable_tmu(sw)) 1372 tb_sw_warn(sw, "failed to enable TMU\n"); 1373 1374 /* 1375 * Configuration valid needs to be set after the TMU has been 1376 * enabled for the upstream port of the router so we do it here. 1377 */ 1378 tb_switch_configuration_valid(sw); 1379 1380 /* Scan upstream retimers */ 1381 tb_retimer_scan(upstream_port, true); 1382 1383 /* 1384 * Create USB 3.x tunnels only when the switch is plugged to the 1385 * domain. This is because we scan the domain also during discovery 1386 * and want to discover existing USB 3.x tunnels before we create 1387 * any new. 1388 */ 1389 if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw)) 1390 tb_sw_warn(sw, "USB3 tunnel creation failed\n"); 1391 1392 tb_add_dp_resources(sw); 1393 tb_scan_switch(sw); 1394 1395 out_rpm_put: 1396 if (port->usb4) { 1397 pm_runtime_mark_last_busy(&port->usb4->dev); 1398 pm_runtime_put_autosuspend(&port->usb4->dev); 1399 } 1400 } 1401 1402 static void 1403 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group) 1404 { 1405 struct tb_tunnel *first_tunnel; 1406 struct tb *tb = group->tb; 1407 struct tb_port *in; 1408 int ret; 1409 1410 tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n", 1411 group->index); 1412 1413 first_tunnel = NULL; 1414 list_for_each_entry(in, &group->ports, group_list) { 1415 int estimated_bw, estimated_up, estimated_down; 1416 struct tb_tunnel *tunnel; 1417 struct tb_port *out; 1418 1419 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1420 continue; 1421 1422 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); 1423 if (WARN_ON(!tunnel)) 1424 break; 1425 1426 if (!first_tunnel) { 1427 /* 1428 * Since USB3 bandwidth is shared by all DP 1429 * tunnels under the host router USB4 port, even 1430 * if they do not begin from the host router, we 1431 * can release USB3 bandwidth just once and not 1432 * for each tunnel separately. 1433 */ 1434 first_tunnel = tunnel; 1435 ret = tb_release_unused_usb3_bandwidth(tb, 1436 first_tunnel->src_port, first_tunnel->dst_port); 1437 if (ret) { 1438 tb_tunnel_warn(tunnel, 1439 "failed to release unused bandwidth\n"); 1440 break; 1441 } 1442 } 1443 1444 out = tunnel->dst_port; 1445 ret = tb_available_bandwidth(tb, in, out, &estimated_up, 1446 &estimated_down, true); 1447 if (ret) { 1448 tb_tunnel_warn(tunnel, 1449 "failed to re-calculate estimated bandwidth\n"); 1450 break; 1451 } 1452 1453 /* 1454 * Estimated bandwidth includes: 1455 * - already allocated bandwidth for the DP tunnel 1456 * - available bandwidth along the path 1457 * - bandwidth allocated for USB 3.x but not used. 1458 */ 1459 if (tb_tunnel_direction_downstream(tunnel)) 1460 estimated_bw = estimated_down; 1461 else 1462 estimated_bw = estimated_up; 1463 1464 /* 1465 * If there is reserved bandwidth for the group that is 1466 * not yet released we report that too. 1467 */ 1468 tb_tunnel_dbg(tunnel, 1469 "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n", 1470 estimated_bw, group->reserved, 1471 estimated_bw + group->reserved); 1472 1473 if (usb4_dp_port_set_estimated_bandwidth(in, 1474 estimated_bw + group->reserved)) 1475 tb_tunnel_warn(tunnel, 1476 "failed to update estimated bandwidth\n"); 1477 } 1478 1479 if (first_tunnel) 1480 tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port, 1481 first_tunnel->dst_port); 1482 1483 tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index); 1484 } 1485 1486 static void tb_recalc_estimated_bandwidth(struct tb *tb) 1487 { 1488 struct tb_cm *tcm = tb_priv(tb); 1489 int i; 1490 1491 tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n"); 1492 1493 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1494 struct tb_bandwidth_group *group = &tcm->groups[i]; 1495 1496 if (!list_empty(&group->ports)) 1497 tb_recalc_estimated_bandwidth_for_group(group); 1498 } 1499 1500 tb_dbg(tb, "bandwidth re-calculation done\n"); 1501 } 1502 1503 static bool __release_group_bandwidth(struct tb_bandwidth_group *group) 1504 { 1505 if (group->reserved) { 1506 tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index, 1507 group->reserved); 1508 group->reserved = 0; 1509 return true; 1510 } 1511 return false; 1512 } 1513 1514 static void __configure_group_sym(struct tb_bandwidth_group *group) 1515 { 1516 struct tb_tunnel *tunnel; 1517 struct tb_port *in; 1518 1519 if (list_empty(&group->ports)) 1520 return; 1521 1522 /* 1523 * All the tunnels in the group go through the same USB4 links 1524 * so we find the first one here and pass the IN and OUT 1525 * adapters to tb_configure_sym() which now transitions the 1526 * links back to symmetric if bandwidth requirement < asym_threshold. 1527 * 1528 * We do this here to avoid unnecessary transitions (for example 1529 * if the graphics released bandwidth for other tunnel in the 1530 * same group). 1531 */ 1532 in = list_first_entry(&group->ports, struct tb_port, group_list); 1533 tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL); 1534 if (tunnel) 1535 tb_configure_sym(group->tb, in, tunnel->dst_port, true); 1536 } 1537 1538 static void tb_bandwidth_group_release_work(struct work_struct *work) 1539 { 1540 struct tb_bandwidth_group *group = 1541 container_of(work, typeof(*group), release_work.work); 1542 struct tb *tb = group->tb; 1543 1544 mutex_lock(&tb->lock); 1545 if (__release_group_bandwidth(group)) 1546 tb_recalc_estimated_bandwidth(tb); 1547 __configure_group_sym(group); 1548 mutex_unlock(&tb->lock); 1549 } 1550 1551 static void tb_init_bandwidth_groups(struct tb_cm *tcm) 1552 { 1553 int i; 1554 1555 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1556 struct tb_bandwidth_group *group = &tcm->groups[i]; 1557 1558 group->tb = tcm_to_tb(tcm); 1559 group->index = i + 1; 1560 INIT_LIST_HEAD(&group->ports); 1561 INIT_DELAYED_WORK(&group->release_work, 1562 tb_bandwidth_group_release_work); 1563 } 1564 } 1565 1566 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group, 1567 struct tb_port *in) 1568 { 1569 if (!group || WARN_ON(in->group)) 1570 return; 1571 1572 in->group = group; 1573 list_add_tail(&in->group_list, &group->ports); 1574 1575 tb_port_dbg(in, "attached to bandwidth group %d\n", group->index); 1576 } 1577 1578 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm) 1579 { 1580 int i; 1581 1582 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1583 struct tb_bandwidth_group *group = &tcm->groups[i]; 1584 1585 if (list_empty(&group->ports)) 1586 return group; 1587 } 1588 1589 return NULL; 1590 } 1591 1592 static struct tb_bandwidth_group * 1593 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, 1594 struct tb_port *out) 1595 { 1596 struct tb_bandwidth_group *group; 1597 struct tb_tunnel *tunnel; 1598 1599 /* 1600 * Find all DP tunnels that go through all the same USB4 links 1601 * as this one. Because we always setup tunnels the same way we 1602 * can just check for the routers at both ends of the tunnels 1603 * and if they are the same we have a match. 1604 */ 1605 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1606 if (!tb_tunnel_is_dp(tunnel)) 1607 continue; 1608 1609 if (tunnel->src_port->sw == in->sw && 1610 tunnel->dst_port->sw == out->sw) { 1611 group = tunnel->src_port->group; 1612 if (group) { 1613 tb_bandwidth_group_attach_port(group, in); 1614 return group; 1615 } 1616 } 1617 } 1618 1619 /* Pick up next available group then */ 1620 group = tb_find_free_bandwidth_group(tcm); 1621 if (group) 1622 tb_bandwidth_group_attach_port(group, in); 1623 else 1624 tb_port_warn(in, "no available bandwidth groups\n"); 1625 1626 return group; 1627 } 1628 1629 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, 1630 struct tb_port *out) 1631 { 1632 if (usb4_dp_port_bandwidth_mode_enabled(in)) { 1633 int index, i; 1634 1635 index = usb4_dp_port_group_id(in); 1636 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1637 if (tcm->groups[i].index == index) { 1638 tb_bandwidth_group_attach_port(&tcm->groups[i], in); 1639 return; 1640 } 1641 } 1642 } 1643 1644 tb_attach_bandwidth_group(tcm, in, out); 1645 } 1646 1647 static void tb_detach_bandwidth_group(struct tb_port *in) 1648 { 1649 struct tb_bandwidth_group *group = in->group; 1650 1651 if (group) { 1652 in->group = NULL; 1653 list_del_init(&in->group_list); 1654 1655 tb_port_dbg(in, "detached from bandwidth group %d\n", group->index); 1656 1657 /* No more tunnels so release the reserved bandwidth if any */ 1658 if (list_empty(&group->ports)) { 1659 cancel_delayed_work(&group->release_work); 1660 __release_group_bandwidth(group); 1661 } 1662 } 1663 } 1664 1665 static void tb_discover_tunnels(struct tb *tb) 1666 { 1667 struct tb_cm *tcm = tb_priv(tb); 1668 struct tb_tunnel *tunnel; 1669 1670 tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true); 1671 1672 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1673 if (tb_tunnel_is_pci(tunnel)) { 1674 struct tb_switch *parent = tunnel->dst_port->sw; 1675 1676 while (parent != tunnel->src_port->sw) { 1677 parent->boot = true; 1678 parent = tb_switch_parent(parent); 1679 } 1680 } else if (tb_tunnel_is_dp(tunnel)) { 1681 struct tb_port *in = tunnel->src_port; 1682 struct tb_port *out = tunnel->dst_port; 1683 1684 /* Keep the domain from powering down */ 1685 pm_runtime_get_sync(&in->sw->dev); 1686 pm_runtime_get_sync(&out->sw->dev); 1687 1688 tb_discover_bandwidth_group(tcm, in, out); 1689 } 1690 } 1691 } 1692 1693 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel) 1694 { 1695 struct tb_port *src_port, *dst_port; 1696 struct tb *tb; 1697 1698 if (!tunnel) 1699 return; 1700 1701 tb_tunnel_deactivate(tunnel); 1702 list_del(&tunnel->list); 1703 1704 tb = tunnel->tb; 1705 src_port = tunnel->src_port; 1706 dst_port = tunnel->dst_port; 1707 1708 switch (tunnel->type) { 1709 case TB_TUNNEL_DP: 1710 tb_detach_bandwidth_group(src_port); 1711 /* 1712 * In case of DP tunnel make sure the DP IN resource is 1713 * deallocated properly. 1714 */ 1715 tb_switch_dealloc_dp_resource(src_port->sw, src_port); 1716 /* 1717 * If bandwidth on a link is < asym_threshold 1718 * transition the link to symmetric. 1719 */ 1720 tb_configure_sym(tb, src_port, dst_port, true); 1721 /* Now we can allow the domain to runtime suspend again */ 1722 pm_runtime_mark_last_busy(&dst_port->sw->dev); 1723 pm_runtime_put_autosuspend(&dst_port->sw->dev); 1724 pm_runtime_mark_last_busy(&src_port->sw->dev); 1725 pm_runtime_put_autosuspend(&src_port->sw->dev); 1726 fallthrough; 1727 1728 case TB_TUNNEL_USB3: 1729 tb_reclaim_usb3_bandwidth(tb, src_port, dst_port); 1730 break; 1731 1732 default: 1733 /* 1734 * PCIe and DMA tunnels do not consume guaranteed 1735 * bandwidth. 1736 */ 1737 break; 1738 } 1739 1740 tb_tunnel_put(tunnel); 1741 } 1742 1743 /* 1744 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away 1745 */ 1746 static void tb_free_invalid_tunnels(struct tb *tb) 1747 { 1748 struct tb_cm *tcm = tb_priv(tb); 1749 struct tb_tunnel *tunnel; 1750 struct tb_tunnel *n; 1751 1752 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 1753 if (tb_tunnel_is_invalid(tunnel)) 1754 tb_deactivate_and_free_tunnel(tunnel); 1755 } 1756 } 1757 1758 /* 1759 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches 1760 */ 1761 static void tb_free_unplugged_children(struct tb_switch *sw) 1762 { 1763 struct tb_port *port; 1764 1765 tb_switch_for_each_port(sw, port) { 1766 if (!tb_port_has_remote(port)) 1767 continue; 1768 1769 if (port->remote->sw->is_unplugged) { 1770 tb_retimer_remove_all(port); 1771 tb_remove_dp_resources(port->remote->sw); 1772 tb_switch_unconfigure_link(port->remote->sw); 1773 tb_switch_set_link_width(port->remote->sw, 1774 TB_LINK_WIDTH_SINGLE); 1775 tb_switch_remove(port->remote->sw); 1776 port->remote = NULL; 1777 if (port->dual_link_port) 1778 port->dual_link_port->remote = NULL; 1779 } else { 1780 tb_free_unplugged_children(port->remote->sw); 1781 } 1782 } 1783 } 1784 1785 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw, 1786 const struct tb_port *port) 1787 { 1788 struct tb_port *down = NULL; 1789 1790 /* 1791 * To keep plugging devices consistently in the same PCIe 1792 * hierarchy, do mapping here for switch downstream PCIe ports. 1793 */ 1794 if (tb_switch_is_usb4(sw)) { 1795 down = usb4_switch_map_pcie_down(sw, port); 1796 } else if (!tb_route(sw)) { 1797 int phy_port = tb_phy_port_from_link(port->port); 1798 int index; 1799 1800 /* 1801 * Hard-coded Thunderbolt port to PCIe down port mapping 1802 * per controller. 1803 */ 1804 if (tb_switch_is_cactus_ridge(sw) || 1805 tb_switch_is_alpine_ridge(sw)) 1806 index = !phy_port ? 6 : 7; 1807 else if (tb_switch_is_falcon_ridge(sw)) 1808 index = !phy_port ? 6 : 8; 1809 else if (tb_switch_is_titan_ridge(sw)) 1810 index = !phy_port ? 8 : 9; 1811 else 1812 goto out; 1813 1814 /* Validate the hard-coding */ 1815 if (WARN_ON(index > sw->config.max_port_number)) 1816 goto out; 1817 1818 down = &sw->ports[index]; 1819 } 1820 1821 if (down) { 1822 if (WARN_ON(!tb_port_is_pcie_down(down))) 1823 goto out; 1824 if (tb_pci_port_is_enabled(down)) 1825 goto out; 1826 1827 return down; 1828 } 1829 1830 out: 1831 return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN); 1832 } 1833 1834 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in) 1835 { 1836 struct tb_port *host_port, *port; 1837 struct tb_cm *tcm = tb_priv(tb); 1838 1839 host_port = tb_route(in->sw) ? 1840 tb_port_at(tb_route(in->sw), tb->root_switch) : NULL; 1841 1842 list_for_each_entry(port, &tcm->dp_resources, list) { 1843 if (!tb_port_is_dpout(port)) 1844 continue; 1845 1846 if (tb_port_is_enabled(port)) { 1847 tb_port_dbg(port, "DP OUT in use\n"); 1848 continue; 1849 } 1850 1851 /* Needs to be on different routers */ 1852 if (in->sw == port->sw) { 1853 tb_port_dbg(port, "skipping DP OUT on same router\n"); 1854 continue; 1855 } 1856 1857 tb_port_dbg(port, "DP OUT available\n"); 1858 1859 /* 1860 * Keep the DP tunnel under the topology starting from 1861 * the same host router downstream port. 1862 */ 1863 if (host_port && tb_route(port->sw)) { 1864 struct tb_port *p; 1865 1866 p = tb_port_at(tb_route(port->sw), tb->root_switch); 1867 if (p != host_port) 1868 continue; 1869 } 1870 1871 return port; 1872 } 1873 1874 return NULL; 1875 } 1876 1877 static void tb_dp_tunnel_active(struct tb_tunnel *tunnel, void *data) 1878 { 1879 struct tb_port *in = tunnel->src_port; 1880 struct tb_port *out = tunnel->dst_port; 1881 struct tb *tb = data; 1882 1883 mutex_lock(&tb->lock); 1884 if (tb_tunnel_is_active(tunnel)) { 1885 int consumed_up, consumed_down, ret; 1886 1887 tb_tunnel_dbg(tunnel, "DPRX capabilities read completed\n"); 1888 1889 /* If fail reading tunnel's consumed bandwidth, tear it down */ 1890 ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, 1891 &consumed_down); 1892 if (ret) { 1893 tb_tunnel_warn(tunnel, 1894 "failed to read consumed bandwidth, tearing down\n"); 1895 tb_deactivate_and_free_tunnel(tunnel); 1896 } else { 1897 tb_reclaim_usb3_bandwidth(tb, in, out); 1898 /* 1899 * Transition the links to asymmetric if the 1900 * consumption exceeds the threshold. 1901 */ 1902 tb_configure_asym(tb, in, out, consumed_up, 1903 consumed_down); 1904 /* 1905 * Update the domain with the new bandwidth 1906 * estimation. 1907 */ 1908 tb_recalc_estimated_bandwidth(tb); 1909 /* 1910 * In case of DP tunnel exists, change host 1911 * router's 1st children TMU mode to HiFi for 1912 * CL0s to work. 1913 */ 1914 tb_increase_tmu_accuracy(tunnel); 1915 } 1916 } else { 1917 struct tb_port *in = tunnel->src_port; 1918 1919 /* 1920 * This tunnel failed to establish. This means DPRX 1921 * negotiation most likely did not complete which 1922 * happens either because there is no graphics driver 1923 * loaded or not all DP cables where connected to the 1924 * discrete router. 1925 * 1926 * In both cases we remove the DP IN adapter from the 1927 * available resources as it is not usable. This will 1928 * also tear down the tunnel and try to re-use the 1929 * released DP OUT. 1930 * 1931 * It will be added back only if there is hotplug for 1932 * the DP IN again. 1933 */ 1934 tb_tunnel_warn(tunnel, "not active, tearing down\n"); 1935 tb_dp_resource_unavailable(tb, in, "DPRX negotiation failed"); 1936 } 1937 mutex_unlock(&tb->lock); 1938 1939 tb_domain_put(tb); 1940 } 1941 1942 static void tb_tunnel_one_dp(struct tb *tb, struct tb_port *in, 1943 struct tb_port *out) 1944 { 1945 int available_up, available_down, ret, link_nr; 1946 struct tb_cm *tcm = tb_priv(tb); 1947 struct tb_tunnel *tunnel; 1948 1949 /* 1950 * This is only applicable to links that are not bonded (so 1951 * when Thunderbolt 1 hardware is involved somewhere in the 1952 * topology). For these try to share the DP bandwidth between 1953 * the two lanes. 1954 */ 1955 link_nr = 1; 1956 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1957 if (tb_tunnel_is_dp(tunnel)) { 1958 link_nr = 0; 1959 break; 1960 } 1961 } 1962 1963 /* 1964 * DP stream needs the domain to be active so runtime resume 1965 * both ends of the tunnel. 1966 * 1967 * This should bring the routers in the middle active as well 1968 * and keeps the domain from runtime suspending while the DP 1969 * tunnel is active. 1970 */ 1971 pm_runtime_get_sync(&in->sw->dev); 1972 pm_runtime_get_sync(&out->sw->dev); 1973 1974 if (tb_switch_alloc_dp_resource(in->sw, in)) { 1975 tb_port_dbg(in, "no resource available for DP IN, not tunneling\n"); 1976 goto err_rpm_put; 1977 } 1978 1979 if (!tb_attach_bandwidth_group(tcm, in, out)) 1980 goto err_dealloc_dp; 1981 1982 /* Make all unused USB3 bandwidth available for the new DP tunnel */ 1983 ret = tb_release_unused_usb3_bandwidth(tb, in, out); 1984 if (ret) { 1985 tb_warn(tb, "failed to release unused bandwidth\n"); 1986 goto err_detach_group; 1987 } 1988 1989 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down, 1990 true); 1991 if (ret) 1992 goto err_reclaim_usb; 1993 1994 tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n", 1995 available_up, available_down); 1996 1997 tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up, 1998 available_down, tb_dp_tunnel_active, 1999 tb_domain_get(tb)); 2000 if (!tunnel) { 2001 tb_port_dbg(out, "could not allocate DP tunnel\n"); 2002 goto err_reclaim_usb; 2003 } 2004 2005 list_add_tail(&tunnel->list, &tcm->tunnel_list); 2006 2007 ret = tb_tunnel_activate(tunnel); 2008 if (ret && ret != -EINPROGRESS) { 2009 tb_port_info(out, "DP tunnel activation failed, aborting\n"); 2010 list_del(&tunnel->list); 2011 goto err_free; 2012 } 2013 2014 return; 2015 2016 err_free: 2017 tb_tunnel_put(tunnel); 2018 err_reclaim_usb: 2019 tb_reclaim_usb3_bandwidth(tb, in, out); 2020 tb_domain_put(tb); 2021 err_detach_group: 2022 tb_detach_bandwidth_group(in); 2023 err_dealloc_dp: 2024 tb_switch_dealloc_dp_resource(in->sw, in); 2025 err_rpm_put: 2026 pm_runtime_mark_last_busy(&out->sw->dev); 2027 pm_runtime_put_autosuspend(&out->sw->dev); 2028 pm_runtime_mark_last_busy(&in->sw->dev); 2029 pm_runtime_put_autosuspend(&in->sw->dev); 2030 } 2031 2032 static void tb_tunnel_dp(struct tb *tb) 2033 { 2034 struct tb_cm *tcm = tb_priv(tb); 2035 struct tb_port *port, *in, *out; 2036 2037 if (!tb_acpi_may_tunnel_dp()) { 2038 tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n"); 2039 return; 2040 } 2041 2042 /* 2043 * Find pair of inactive DP IN and DP OUT adapters and then 2044 * establish a DP tunnel between them. 2045 */ 2046 tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n"); 2047 2048 in = NULL; 2049 out = NULL; 2050 list_for_each_entry(port, &tcm->dp_resources, list) { 2051 if (!tb_port_is_dpin(port)) 2052 continue; 2053 2054 if (tb_port_is_enabled(port)) { 2055 tb_port_dbg(port, "DP IN in use\n"); 2056 continue; 2057 } 2058 2059 in = port; 2060 tb_port_dbg(in, "DP IN available\n"); 2061 2062 out = tb_find_dp_out(tb, port); 2063 if (out) 2064 tb_tunnel_one_dp(tb, in, out); 2065 else 2066 tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n"); 2067 } 2068 2069 if (!in) 2070 tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n"); 2071 } 2072 2073 static void tb_enter_redrive(struct tb_port *port) 2074 { 2075 struct tb_switch *sw = port->sw; 2076 2077 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2078 return; 2079 2080 /* 2081 * If we get hot-unplug for the DP IN port of the host router 2082 * and the DP resource is not available anymore it means there 2083 * is a monitor connected directly to the Type-C port and we are 2084 * in "redrive" mode. For this to work we cannot enter RTD3 so 2085 * we bump up the runtime PM reference count here. 2086 */ 2087 if (!tb_port_is_dpin(port)) 2088 return; 2089 if (tb_route(sw)) 2090 return; 2091 if (!tb_switch_query_dp_resource(sw, port)) { 2092 port->redrive = true; 2093 pm_runtime_get(&sw->dev); 2094 tb_port_dbg(port, "enter redrive mode, keeping powered\n"); 2095 } 2096 } 2097 2098 static void tb_exit_redrive(struct tb_port *port) 2099 { 2100 struct tb_switch *sw = port->sw; 2101 2102 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2103 return; 2104 2105 if (!tb_port_is_dpin(port)) 2106 return; 2107 if (tb_route(sw)) 2108 return; 2109 if (port->redrive && tb_switch_query_dp_resource(sw, port)) { 2110 port->redrive = false; 2111 pm_runtime_put(&sw->dev); 2112 tb_port_dbg(port, "exit redrive mode\n"); 2113 } 2114 } 2115 2116 static void tb_switch_enter_redrive(struct tb_switch *sw) 2117 { 2118 struct tb_port *port; 2119 2120 tb_switch_for_each_port(sw, port) 2121 tb_enter_redrive(port); 2122 } 2123 2124 /* 2125 * Called during system and runtime suspend to forcefully exit redrive 2126 * mode without querying whether the resource is available. 2127 */ 2128 static void tb_switch_exit_redrive(struct tb_switch *sw) 2129 { 2130 struct tb_port *port; 2131 2132 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2133 return; 2134 2135 tb_switch_for_each_port(sw, port) { 2136 if (!tb_port_is_dpin(port)) 2137 continue; 2138 2139 if (port->redrive) { 2140 port->redrive = false; 2141 pm_runtime_put(&sw->dev); 2142 tb_port_dbg(port, "exit redrive mode\n"); 2143 } 2144 } 2145 } 2146 2147 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port, 2148 const char *reason) 2149 { 2150 struct tb_port *in, *out; 2151 struct tb_tunnel *tunnel; 2152 2153 if (tb_port_is_dpin(port)) { 2154 tb_port_dbg(port, "DP IN resource unavailable: %s\n", reason); 2155 in = port; 2156 out = NULL; 2157 } else { 2158 tb_port_dbg(port, "DP OUT resource unavailable: %s\n", reason); 2159 in = NULL; 2160 out = port; 2161 } 2162 2163 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out); 2164 if (tunnel) 2165 tb_deactivate_and_free_tunnel(tunnel); 2166 else 2167 tb_enter_redrive(port); 2168 list_del_init(&port->list); 2169 2170 /* 2171 * See if there is another DP OUT port that can be used for 2172 * to create another tunnel. 2173 */ 2174 tb_recalc_estimated_bandwidth(tb); 2175 tb_tunnel_dp(tb); 2176 } 2177 2178 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port) 2179 { 2180 struct tb_cm *tcm = tb_priv(tb); 2181 struct tb_port *p; 2182 2183 if (tb_port_is_enabled(port)) 2184 return; 2185 2186 list_for_each_entry(p, &tcm->dp_resources, list) { 2187 if (p == port) 2188 return; 2189 } 2190 2191 tb_port_dbg(port, "DP %s resource available after hotplug\n", 2192 tb_port_is_dpin(port) ? "IN" : "OUT"); 2193 list_add_tail(&port->list, &tcm->dp_resources); 2194 tb_exit_redrive(port); 2195 2196 /* Look for suitable DP IN <-> DP OUT pairs now */ 2197 tb_tunnel_dp(tb); 2198 } 2199 2200 static void tb_disconnect_and_release_dp(struct tb *tb) 2201 { 2202 struct tb_cm *tcm = tb_priv(tb); 2203 struct tb_tunnel *tunnel, *n; 2204 2205 /* 2206 * Tear down all DP tunnels and release their resources. They 2207 * will be re-established after resume based on plug events. 2208 */ 2209 list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) { 2210 if (tb_tunnel_is_dp(tunnel)) 2211 tb_deactivate_and_free_tunnel(tunnel); 2212 } 2213 2214 while (!list_empty(&tcm->dp_resources)) { 2215 struct tb_port *port; 2216 2217 port = list_first_entry(&tcm->dp_resources, 2218 struct tb_port, list); 2219 list_del_init(&port->list); 2220 } 2221 } 2222 2223 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw) 2224 { 2225 struct tb_tunnel *tunnel; 2226 struct tb_port *up; 2227 2228 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); 2229 if (WARN_ON(!up)) 2230 return -ENODEV; 2231 2232 tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up); 2233 if (WARN_ON(!tunnel)) 2234 return -ENODEV; 2235 2236 tb_switch_xhci_disconnect(sw); 2237 2238 tb_tunnel_deactivate(tunnel); 2239 list_del(&tunnel->list); 2240 tb_tunnel_put(tunnel); 2241 return 0; 2242 } 2243 2244 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw) 2245 { 2246 struct tb_port *up, *down, *port; 2247 struct tb_cm *tcm = tb_priv(tb); 2248 struct tb_tunnel *tunnel; 2249 2250 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); 2251 if (!up) 2252 return 0; 2253 2254 /* 2255 * Look up available down port. Since we are chaining it should 2256 * be found right above this switch. 2257 */ 2258 port = tb_switch_downstream_port(sw); 2259 down = tb_find_pcie_down(tb_switch_parent(sw), port); 2260 if (!down) 2261 return 0; 2262 2263 tunnel = tb_tunnel_alloc_pci(tb, up, down); 2264 if (!tunnel) 2265 return -ENOMEM; 2266 2267 if (tb_tunnel_activate(tunnel)) { 2268 tb_port_info(up, 2269 "PCIe tunnel activation failed, aborting\n"); 2270 tb_tunnel_put(tunnel); 2271 return -EIO; 2272 } 2273 2274 /* 2275 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it 2276 * here. 2277 */ 2278 if (tb_switch_pcie_l1_enable(sw)) 2279 tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n"); 2280 2281 if (tb_switch_xhci_connect(sw)) 2282 tb_sw_warn(sw, "failed to connect xHCI\n"); 2283 2284 list_add_tail(&tunnel->list, &tcm->tunnel_list); 2285 return 0; 2286 } 2287 2288 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2289 int transmit_path, int transmit_ring, 2290 int receive_path, int receive_ring) 2291 { 2292 struct tb_cm *tcm = tb_priv(tb); 2293 struct tb_port *nhi_port, *dst_port; 2294 struct tb_tunnel *tunnel; 2295 struct tb_switch *sw; 2296 int ret; 2297 2298 sw = tb_to_switch(xd->dev.parent); 2299 dst_port = tb_port_at(xd->route, sw); 2300 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); 2301 2302 mutex_lock(&tb->lock); 2303 2304 /* 2305 * When tunneling DMA paths the link should not enter CL states 2306 * so disable them now. 2307 */ 2308 tb_disable_clx(sw); 2309 2310 tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path, 2311 transmit_ring, receive_path, receive_ring); 2312 if (!tunnel) { 2313 ret = -ENOMEM; 2314 goto err_clx; 2315 } 2316 2317 if (tb_tunnel_activate(tunnel)) { 2318 tb_port_info(nhi_port, 2319 "DMA tunnel activation failed, aborting\n"); 2320 ret = -EIO; 2321 goto err_free; 2322 } 2323 2324 list_add_tail(&tunnel->list, &tcm->tunnel_list); 2325 mutex_unlock(&tb->lock); 2326 return 0; 2327 2328 err_free: 2329 tb_tunnel_put(tunnel); 2330 err_clx: 2331 tb_enable_clx(sw); 2332 mutex_unlock(&tb->lock); 2333 2334 return ret; 2335 } 2336 2337 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2338 int transmit_path, int transmit_ring, 2339 int receive_path, int receive_ring) 2340 { 2341 struct tb_cm *tcm = tb_priv(tb); 2342 struct tb_port *nhi_port, *dst_port; 2343 struct tb_tunnel *tunnel, *n; 2344 struct tb_switch *sw; 2345 2346 sw = tb_to_switch(xd->dev.parent); 2347 dst_port = tb_port_at(xd->route, sw); 2348 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); 2349 2350 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 2351 if (!tb_tunnel_is_dma(tunnel)) 2352 continue; 2353 if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port) 2354 continue; 2355 2356 if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring, 2357 receive_path, receive_ring)) 2358 tb_deactivate_and_free_tunnel(tunnel); 2359 } 2360 2361 /* 2362 * Try to re-enable CL states now, it is OK if this fails 2363 * because we may still have another DMA tunnel active through 2364 * the same host router USB4 downstream port. 2365 */ 2366 tb_enable_clx(sw); 2367 } 2368 2369 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2370 int transmit_path, int transmit_ring, 2371 int receive_path, int receive_ring) 2372 { 2373 if (!xd->is_unplugged) { 2374 mutex_lock(&tb->lock); 2375 __tb_disconnect_xdomain_paths(tb, xd, transmit_path, 2376 transmit_ring, receive_path, 2377 receive_ring); 2378 mutex_unlock(&tb->lock); 2379 } 2380 return 0; 2381 } 2382 2383 /* hotplug handling */ 2384 2385 /* 2386 * tb_handle_hotplug() - handle hotplug event 2387 * 2388 * Executes on tb->wq. 2389 */ 2390 static void tb_handle_hotplug(struct work_struct *work) 2391 { 2392 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work); 2393 struct tb *tb = ev->tb; 2394 struct tb_cm *tcm = tb_priv(tb); 2395 struct tb_switch *sw; 2396 struct tb_port *port; 2397 2398 /* Bring the domain back from sleep if it was suspended */ 2399 pm_runtime_get_sync(&tb->dev); 2400 2401 mutex_lock(&tb->lock); 2402 if (!tcm->hotplug_active) 2403 goto out; /* during init, suspend or shutdown */ 2404 2405 sw = tb_switch_find_by_route(tb, ev->route); 2406 if (!sw) { 2407 tb_warn(tb, 2408 "hotplug event from non existent switch %llx:%x (unplug: %d)\n", 2409 ev->route, ev->port, ev->unplug); 2410 goto out; 2411 } 2412 if (ev->port > sw->config.max_port_number) { 2413 tb_warn(tb, 2414 "hotplug event from non existent port %llx:%x (unplug: %d)\n", 2415 ev->route, ev->port, ev->unplug); 2416 goto put_sw; 2417 } 2418 port = &sw->ports[ev->port]; 2419 if (tb_is_upstream_port(port)) { 2420 tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n", 2421 ev->route, ev->port, ev->unplug); 2422 goto put_sw; 2423 } 2424 2425 pm_runtime_get_sync(&sw->dev); 2426 2427 if (ev->unplug) { 2428 tb_retimer_remove_all(port); 2429 2430 if (tb_port_has_remote(port)) { 2431 tb_port_dbg(port, "switch unplugged\n"); 2432 tb_sw_set_unplugged(port->remote->sw); 2433 tb_free_invalid_tunnels(tb); 2434 tb_remove_dp_resources(port->remote->sw); 2435 tb_switch_tmu_disable(port->remote->sw); 2436 tb_switch_unconfigure_link(port->remote->sw); 2437 tb_switch_set_link_width(port->remote->sw, 2438 TB_LINK_WIDTH_SINGLE); 2439 tb_switch_remove(port->remote->sw); 2440 port->remote = NULL; 2441 if (port->dual_link_port) 2442 port->dual_link_port->remote = NULL; 2443 /* Maybe we can create another DP tunnel */ 2444 tb_recalc_estimated_bandwidth(tb); 2445 tb_tunnel_dp(tb); 2446 } else if (port->xdomain) { 2447 struct tb_xdomain *xd = tb_xdomain_get(port->xdomain); 2448 2449 tb_port_dbg(port, "xdomain unplugged\n"); 2450 /* 2451 * Service drivers are unbound during 2452 * tb_xdomain_remove() so setting XDomain as 2453 * unplugged here prevents deadlock if they call 2454 * tb_xdomain_disable_paths(). We will tear down 2455 * all the tunnels below. 2456 */ 2457 xd->is_unplugged = true; 2458 tb_xdomain_remove(xd); 2459 port->xdomain = NULL; 2460 __tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1); 2461 tb_xdomain_put(xd); 2462 tb_port_unconfigure_xdomain(port); 2463 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { 2464 tb_dp_resource_unavailable(tb, port, "adapter unplug"); 2465 } else if (!port->port) { 2466 tb_sw_dbg(sw, "xHCI disconnect request\n"); 2467 tb_switch_xhci_disconnect(sw); 2468 } else { 2469 tb_port_dbg(port, 2470 "got unplug event for disconnected port, ignoring\n"); 2471 } 2472 } else if (port->remote) { 2473 tb_port_dbg(port, "got plug event for connected port, ignoring\n"); 2474 } else if (!port->port && sw->authorized) { 2475 tb_sw_dbg(sw, "xHCI connect request\n"); 2476 tb_switch_xhci_connect(sw); 2477 } else { 2478 if (tb_port_is_null(port)) { 2479 tb_port_dbg(port, "hotplug: scanning\n"); 2480 tb_scan_port(port); 2481 if (!port->remote) 2482 tb_port_dbg(port, "hotplug: no switch found\n"); 2483 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { 2484 tb_dp_resource_available(tb, port); 2485 } 2486 } 2487 2488 pm_runtime_mark_last_busy(&sw->dev); 2489 pm_runtime_put_autosuspend(&sw->dev); 2490 2491 put_sw: 2492 tb_switch_put(sw); 2493 out: 2494 mutex_unlock(&tb->lock); 2495 2496 pm_runtime_mark_last_busy(&tb->dev); 2497 pm_runtime_put_autosuspend(&tb->dev); 2498 2499 kfree(ev); 2500 } 2501 2502 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up, 2503 int *requested_down) 2504 { 2505 int allocated_up, allocated_down, available_up, available_down, ret; 2506 int requested_up_corrected, requested_down_corrected, granularity; 2507 int max_up, max_down, max_up_rounded, max_down_rounded; 2508 struct tb_bandwidth_group *group; 2509 struct tb *tb = tunnel->tb; 2510 struct tb_port *in, *out; 2511 bool downstream; 2512 2513 ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down); 2514 if (ret) 2515 return ret; 2516 2517 in = tunnel->src_port; 2518 out = tunnel->dst_port; 2519 2520 tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n", 2521 allocated_up, allocated_down); 2522 2523 /* 2524 * If we get rounded up request from graphics side, say HBR2 x 4 2525 * that is 17500 instead of 17280 (this is because of the 2526 * granularity), we allow it too. Here the graphics has already 2527 * negotiated with the DPRX the maximum possible rates (which is 2528 * 17280 in this case). 2529 * 2530 * Since the link cannot go higher than 17280 we use that in our 2531 * calculations but the DP IN adapter Allocated BW write must be 2532 * the same value (17500) otherwise the adapter will mark it as 2533 * failed for graphics. 2534 */ 2535 ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down); 2536 if (ret) 2537 goto fail; 2538 2539 ret = usb4_dp_port_granularity(in); 2540 if (ret < 0) 2541 goto fail; 2542 granularity = ret; 2543 2544 max_up_rounded = roundup(max_up, granularity); 2545 max_down_rounded = roundup(max_down, granularity); 2546 2547 /* 2548 * This will "fix" the request down to the maximum supported 2549 * rate * lanes if it is at the maximum rounded up level. 2550 */ 2551 requested_up_corrected = *requested_up; 2552 if (requested_up_corrected == max_up_rounded) 2553 requested_up_corrected = max_up; 2554 else if (requested_up_corrected < 0) 2555 requested_up_corrected = 0; 2556 requested_down_corrected = *requested_down; 2557 if (requested_down_corrected == max_down_rounded) 2558 requested_down_corrected = max_down; 2559 else if (requested_down_corrected < 0) 2560 requested_down_corrected = 0; 2561 2562 tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n", 2563 requested_up_corrected, requested_down_corrected); 2564 2565 if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) || 2566 (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) { 2567 tb_tunnel_dbg(tunnel, 2568 "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n", 2569 requested_up_corrected, requested_down_corrected, 2570 max_up_rounded, max_down_rounded); 2571 ret = -ENOBUFS; 2572 goto fail; 2573 } 2574 2575 downstream = tb_tunnel_direction_downstream(tunnel); 2576 group = in->group; 2577 2578 if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) || 2579 (*requested_down >= 0 && requested_down_corrected <= allocated_down)) { 2580 if (tunnel->bw_mode) { 2581 int reserved; 2582 /* 2583 * If requested bandwidth is less or equal than 2584 * what is currently allocated to that tunnel we 2585 * simply change the reservation of the tunnel 2586 * and add the released bandwidth for the group 2587 * for the next 10s. Then we release it for 2588 * others to use. 2589 */ 2590 if (downstream) 2591 reserved = allocated_down - *requested_down; 2592 else 2593 reserved = allocated_up - *requested_up; 2594 2595 if (reserved > 0) { 2596 group->reserved += reserved; 2597 tb_dbg(tb, "group %d reserved %d total %d Mb/s\n", 2598 group->index, reserved, group->reserved); 2599 2600 /* 2601 * If it was not already pending, 2602 * schedule release now. If it is then 2603 * postpone it for the next 10s (unless 2604 * it is already running in which case 2605 * the 10s already expired and we should 2606 * give the reserved back to others). 2607 */ 2608 mod_delayed_work(system_wq, &group->release_work, 2609 msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT)); 2610 } 2611 } 2612 2613 return tb_tunnel_alloc_bandwidth(tunnel, requested_up, 2614 requested_down); 2615 } 2616 2617 /* 2618 * More bandwidth is requested. Release all the potential 2619 * bandwidth from USB3 first. 2620 */ 2621 ret = tb_release_unused_usb3_bandwidth(tb, in, out); 2622 if (ret) 2623 goto fail; 2624 2625 /* 2626 * Then go over all tunnels that cross the same USB4 ports (they 2627 * are also in the same group but we use the same function here 2628 * that we use with the normal bandwidth allocation). 2629 */ 2630 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down, 2631 true); 2632 if (ret) 2633 goto reclaim; 2634 2635 tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n", 2636 available_up, available_down, group->reserved); 2637 2638 if ((*requested_up >= 0 && 2639 available_up + group->reserved >= requested_up_corrected) || 2640 (*requested_down >= 0 && 2641 available_down + group->reserved >= requested_down_corrected)) { 2642 int released = 0; 2643 2644 /* 2645 * If bandwidth on a link is >= asym_threshold 2646 * transition the link to asymmetric. 2647 */ 2648 ret = tb_configure_asym(tb, in, out, *requested_up, 2649 *requested_down); 2650 if (ret) { 2651 tb_configure_sym(tb, in, out, true); 2652 goto fail; 2653 } 2654 2655 ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up, 2656 requested_down); 2657 if (ret) { 2658 tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n"); 2659 tb_configure_sym(tb, in, out, true); 2660 } 2661 2662 if (downstream) { 2663 if (*requested_down > available_down) 2664 released = *requested_down - available_down; 2665 } else { 2666 if (*requested_up > available_up) 2667 released = *requested_up - available_up; 2668 } 2669 if (released) { 2670 group->reserved -= released; 2671 tb_dbg(tb, "group %d released %d total %d Mb/s\n", 2672 group->index, released, group->reserved); 2673 } 2674 } else { 2675 ret = -ENOBUFS; 2676 } 2677 2678 reclaim: 2679 tb_reclaim_usb3_bandwidth(tb, in, out); 2680 fail: 2681 if (ret && ret != -ENODEV) { 2682 /* 2683 * Write back the same allocated (so no change), this 2684 * makes the DPTX request fail on graphics side. 2685 */ 2686 tb_tunnel_dbg(tunnel, 2687 "failing the request by rewriting allocated %d/%d Mb/s\n", 2688 allocated_up, allocated_down); 2689 tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down); 2690 } 2691 2692 return ret; 2693 } 2694 2695 static void tb_handle_dp_bandwidth_request(struct work_struct *work) 2696 { 2697 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work); 2698 int requested_bw, requested_up, requested_down, ret; 2699 struct tb_tunnel *tunnel; 2700 struct tb *tb = ev->tb; 2701 struct tb_cm *tcm = tb_priv(tb); 2702 struct tb_switch *sw; 2703 struct tb_port *in; 2704 2705 pm_runtime_get_sync(&tb->dev); 2706 2707 mutex_lock(&tb->lock); 2708 if (!tcm->hotplug_active) 2709 goto unlock; 2710 2711 sw = tb_switch_find_by_route(tb, ev->route); 2712 if (!sw) { 2713 tb_warn(tb, "bandwidth request from non-existent router %llx\n", 2714 ev->route); 2715 goto unlock; 2716 } 2717 2718 in = &sw->ports[ev->port]; 2719 if (!tb_port_is_dpin(in)) { 2720 tb_port_warn(in, "bandwidth request to non-DP IN adapter\n"); 2721 goto put_sw; 2722 } 2723 2724 tb_port_dbg(in, "handling bandwidth allocation request, retry %d\n", ev->retry); 2725 2726 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); 2727 if (!tunnel) { 2728 tb_port_warn(in, "failed to find tunnel\n"); 2729 goto put_sw; 2730 } 2731 2732 if (!usb4_dp_port_bandwidth_mode_enabled(in)) { 2733 if (tunnel->bw_mode) { 2734 /* 2735 * Reset the tunnel back to use the legacy 2736 * allocation. 2737 */ 2738 tunnel->bw_mode = false; 2739 tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n"); 2740 } else { 2741 tb_port_warn(in, "bandwidth allocation mode not enabled\n"); 2742 } 2743 goto put_sw; 2744 } 2745 2746 ret = usb4_dp_port_requested_bandwidth(in); 2747 if (ret < 0) { 2748 if (ret == -ENODATA) { 2749 /* 2750 * There is no request active so this means the 2751 * BW allocation mode was enabled from graphics 2752 * side. At this point we know that the graphics 2753 * driver has read the DRPX capabilities so we 2754 * can offer an better bandwidth estimatation. 2755 */ 2756 tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n"); 2757 tb_recalc_estimated_bandwidth(tb); 2758 } else { 2759 tb_port_warn(in, "failed to read requested bandwidth\n"); 2760 } 2761 goto put_sw; 2762 } 2763 requested_bw = ret; 2764 2765 tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw); 2766 2767 if (tb_tunnel_direction_downstream(tunnel)) { 2768 requested_up = -1; 2769 requested_down = requested_bw; 2770 } else { 2771 requested_up = requested_bw; 2772 requested_down = -1; 2773 } 2774 2775 ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down); 2776 if (ret) { 2777 if (ret == -ENOBUFS) { 2778 tb_tunnel_warn(tunnel, 2779 "not enough bandwidth available\n"); 2780 } else if (ret == -ENOTCONN) { 2781 tb_tunnel_dbg(tunnel, "not active yet\n"); 2782 /* 2783 * We got bandwidth allocation request but the 2784 * tunnel is not yet active. This means that 2785 * tb_dp_tunnel_active() is not yet called for 2786 * this tunnel. Allow it some time and retry 2787 * this request a couple of times. 2788 */ 2789 if (ev->retry < TB_BW_ALLOC_RETRIES) { 2790 tb_tunnel_dbg(tunnel, 2791 "retrying bandwidth allocation request\n"); 2792 tb_queue_dp_bandwidth_request(tb, ev->route, 2793 ev->port, 2794 ev->retry + 1, 2795 msecs_to_jiffies(50)); 2796 } else { 2797 tb_tunnel_dbg(tunnel, 2798 "run out of retries, failing the request"); 2799 } 2800 } else { 2801 tb_tunnel_warn(tunnel, 2802 "failed to change bandwidth allocation\n"); 2803 } 2804 } else { 2805 tb_tunnel_dbg(tunnel, 2806 "bandwidth allocation changed to %d/%d Mb/s\n", 2807 requested_up, requested_down); 2808 2809 /* Update other clients about the allocation change */ 2810 tb_recalc_estimated_bandwidth(tb); 2811 } 2812 2813 put_sw: 2814 tb_switch_put(sw); 2815 unlock: 2816 mutex_unlock(&tb->lock); 2817 2818 pm_runtime_mark_last_busy(&tb->dev); 2819 pm_runtime_put_autosuspend(&tb->dev); 2820 2821 kfree(ev); 2822 } 2823 2824 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port, 2825 int retry, unsigned long delay) 2826 { 2827 struct tb_hotplug_event *ev; 2828 2829 ev = kmalloc(sizeof(*ev), GFP_KERNEL); 2830 if (!ev) 2831 return; 2832 2833 ev->tb = tb; 2834 ev->route = route; 2835 ev->port = port; 2836 ev->retry = retry; 2837 INIT_DELAYED_WORK(&ev->work, tb_handle_dp_bandwidth_request); 2838 queue_delayed_work(tb->wq, &ev->work, delay); 2839 } 2840 2841 static void tb_handle_notification(struct tb *tb, u64 route, 2842 const struct cfg_error_pkg *error) 2843 { 2844 2845 switch (error->error) { 2846 case TB_CFG_ERROR_PCIE_WAKE: 2847 case TB_CFG_ERROR_DP_CON_CHANGE: 2848 case TB_CFG_ERROR_DPTX_DISCOVERY: 2849 if (tb_cfg_ack_notification(tb->ctl, route, error)) 2850 tb_warn(tb, "could not ack notification on %llx\n", 2851 route); 2852 break; 2853 2854 case TB_CFG_ERROR_DP_BW: 2855 if (tb_cfg_ack_notification(tb->ctl, route, error)) 2856 tb_warn(tb, "could not ack notification on %llx\n", 2857 route); 2858 tb_queue_dp_bandwidth_request(tb, route, error->port, 0, 0); 2859 break; 2860 2861 default: 2862 /* Ignore for now */ 2863 break; 2864 } 2865 } 2866 2867 /* 2868 * tb_schedule_hotplug_handler() - callback function for the control channel 2869 * 2870 * Delegates to tb_handle_hotplug. 2871 */ 2872 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type, 2873 const void *buf, size_t size) 2874 { 2875 const struct cfg_event_pkg *pkg = buf; 2876 u64 route = tb_cfg_get_route(&pkg->header); 2877 2878 switch (type) { 2879 case TB_CFG_PKG_ERROR: 2880 tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf); 2881 return; 2882 case TB_CFG_PKG_EVENT: 2883 break; 2884 default: 2885 tb_warn(tb, "unexpected event %#x, ignoring\n", type); 2886 return; 2887 } 2888 2889 if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) { 2890 tb_warn(tb, "could not ack plug event on %llx:%x\n", route, 2891 pkg->port); 2892 } 2893 2894 tb_queue_hotplug(tb, route, pkg->port, pkg->unplug); 2895 } 2896 2897 static void tb_stop(struct tb *tb) 2898 { 2899 struct tb_cm *tcm = tb_priv(tb); 2900 struct tb_tunnel *tunnel; 2901 struct tb_tunnel *n; 2902 2903 cancel_delayed_work(&tcm->remove_work); 2904 /* tunnels are only present after everything has been initialized */ 2905 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 2906 /* 2907 * DMA tunnels require the driver to be functional so we 2908 * tear them down. Other protocol tunnels can be left 2909 * intact. 2910 */ 2911 if (tb_tunnel_is_dma(tunnel)) 2912 tb_tunnel_deactivate(tunnel); 2913 tb_tunnel_put(tunnel); 2914 } 2915 tb_switch_remove(tb->root_switch); 2916 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ 2917 } 2918 2919 static void tb_deinit(struct tb *tb) 2920 { 2921 struct tb_cm *tcm = tb_priv(tb); 2922 int i; 2923 2924 /* Cancel all the release bandwidth workers */ 2925 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) 2926 cancel_delayed_work_sync(&tcm->groups[i].release_work); 2927 } 2928 2929 static int tb_scan_finalize_switch(struct device *dev, void *data) 2930 { 2931 if (tb_is_switch(dev)) { 2932 struct tb_switch *sw = tb_to_switch(dev); 2933 2934 /* 2935 * If we found that the switch was already setup by the 2936 * boot firmware, mark it as authorized now before we 2937 * send uevent to userspace. 2938 */ 2939 if (sw->boot) 2940 sw->authorized = 1; 2941 2942 dev_set_uevent_suppress(dev, false); 2943 kobject_uevent(&dev->kobj, KOBJ_ADD); 2944 device_for_each_child(dev, NULL, tb_scan_finalize_switch); 2945 } 2946 2947 return 0; 2948 } 2949 2950 static int tb_start(struct tb *tb, bool reset) 2951 { 2952 struct tb_cm *tcm = tb_priv(tb); 2953 bool discover = true; 2954 int ret; 2955 2956 tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0); 2957 if (IS_ERR(tb->root_switch)) 2958 return PTR_ERR(tb->root_switch); 2959 2960 /* 2961 * ICM firmware upgrade needs running firmware and in native 2962 * mode that is not available so disable firmware upgrade of the 2963 * root switch. 2964 * 2965 * However, USB4 routers support NVM firmware upgrade if they 2966 * implement the necessary router operations. 2967 */ 2968 tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch); 2969 /* All USB4 routers support runtime PM */ 2970 tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch); 2971 2972 ret = tb_switch_configure(tb->root_switch); 2973 if (ret) { 2974 tb_switch_put(tb->root_switch); 2975 return ret; 2976 } 2977 2978 /* Announce the switch to the world */ 2979 ret = tb_switch_add(tb->root_switch); 2980 if (ret) { 2981 tb_switch_put(tb->root_switch); 2982 return ret; 2983 } 2984 2985 /* 2986 * To support highest CLx state, we set host router's TMU to 2987 * Normal mode. 2988 */ 2989 tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES); 2990 /* Enable TMU if it is off */ 2991 tb_switch_tmu_enable(tb->root_switch); 2992 2993 /* 2994 * Boot firmware might have created tunnels of its own. Since we 2995 * cannot be sure they are usable for us, tear them down and 2996 * reset the ports to handle it as new hotplug for USB4 v1 2997 * routers (for USB4 v2 and beyond we already do host reset). 2998 */ 2999 if (reset && tb_switch_is_usb4(tb->root_switch)) { 3000 discover = false; 3001 if (usb4_switch_version(tb->root_switch) == 1) 3002 tb_switch_reset(tb->root_switch); 3003 } 3004 3005 if (discover) { 3006 /* Full scan to discover devices added before the driver was loaded. */ 3007 tb_scan_switch(tb->root_switch); 3008 /* Find out tunnels created by the boot firmware */ 3009 tb_discover_tunnels(tb); 3010 /* Add DP resources from the DP tunnels created by the boot firmware */ 3011 tb_discover_dp_resources(tb); 3012 } 3013 3014 /* 3015 * If the boot firmware did not create USB 3.x tunnels create them 3016 * now for the whole topology. 3017 */ 3018 tb_create_usb3_tunnels(tb->root_switch); 3019 /* Add DP IN resources for the root switch */ 3020 tb_add_dp_resources(tb->root_switch); 3021 tb_switch_enter_redrive(tb->root_switch); 3022 /* Make the discovered switches available to the userspace */ 3023 device_for_each_child(&tb->root_switch->dev, NULL, 3024 tb_scan_finalize_switch); 3025 3026 /* Allow tb_handle_hotplug to progress events */ 3027 tcm->hotplug_active = true; 3028 return 0; 3029 } 3030 3031 static int tb_suspend_noirq(struct tb *tb) 3032 { 3033 struct tb_cm *tcm = tb_priv(tb); 3034 3035 tb_dbg(tb, "suspending...\n"); 3036 tb_disconnect_and_release_dp(tb); 3037 tb_switch_exit_redrive(tb->root_switch); 3038 tb_switch_suspend(tb->root_switch, false); 3039 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ 3040 tb_dbg(tb, "suspend finished\n"); 3041 3042 return 0; 3043 } 3044 3045 static void tb_restore_children(struct tb_switch *sw) 3046 { 3047 struct tb_port *port; 3048 3049 /* No need to restore if the router is already unplugged */ 3050 if (sw->is_unplugged) 3051 return; 3052 3053 if (tb_enable_clx(sw)) 3054 tb_sw_warn(sw, "failed to re-enable CL states\n"); 3055 3056 if (tb_enable_tmu(sw)) 3057 tb_sw_warn(sw, "failed to restore TMU configuration\n"); 3058 3059 tb_switch_configuration_valid(sw); 3060 3061 tb_switch_for_each_port(sw, port) { 3062 if (!tb_port_has_remote(port) && !port->xdomain) 3063 continue; 3064 3065 if (port->remote) { 3066 tb_switch_set_link_width(port->remote->sw, 3067 port->remote->sw->link_width); 3068 tb_switch_configure_link(port->remote->sw); 3069 3070 tb_restore_children(port->remote->sw); 3071 } else if (port->xdomain) { 3072 tb_port_configure_xdomain(port, port->xdomain); 3073 } 3074 } 3075 } 3076 3077 static int tb_resume_noirq(struct tb *tb) 3078 { 3079 struct tb_cm *tcm = tb_priv(tb); 3080 struct tb_tunnel *tunnel, *n; 3081 unsigned int usb3_delay = 0; 3082 LIST_HEAD(tunnels); 3083 3084 tb_dbg(tb, "resuming...\n"); 3085 3086 /* 3087 * For non-USB4 hosts (Apple systems) remove any PCIe devices 3088 * the firmware might have setup. 3089 */ 3090 if (!tb_switch_is_usb4(tb->root_switch)) 3091 tb_switch_reset(tb->root_switch); 3092 3093 tb_switch_resume(tb->root_switch, false); 3094 tb_free_invalid_tunnels(tb); 3095 tb_free_unplugged_children(tb->root_switch); 3096 tb_restore_children(tb->root_switch); 3097 3098 /* 3099 * If we get here from suspend to disk the boot firmware or the 3100 * restore kernel might have created tunnels of its own. Since 3101 * we cannot be sure they are usable for us we find and tear 3102 * them down. 3103 */ 3104 tb_switch_discover_tunnels(tb->root_switch, &tunnels, false); 3105 list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) { 3106 if (tb_tunnel_is_usb3(tunnel)) 3107 usb3_delay = 500; 3108 tb_tunnel_deactivate(tunnel); 3109 tb_tunnel_put(tunnel); 3110 } 3111 3112 /* Re-create our tunnels now */ 3113 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 3114 /* USB3 requires delay before it can be re-activated */ 3115 if (tb_tunnel_is_usb3(tunnel)) { 3116 msleep(usb3_delay); 3117 /* Only need to do it once */ 3118 usb3_delay = 0; 3119 } 3120 tb_tunnel_activate(tunnel); 3121 } 3122 if (!list_empty(&tcm->tunnel_list)) { 3123 /* 3124 * the pcie links need some time to get going. 3125 * 100ms works for me... 3126 */ 3127 tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n"); 3128 msleep(100); 3129 } 3130 tb_switch_enter_redrive(tb->root_switch); 3131 /* Allow tb_handle_hotplug to progress events */ 3132 tcm->hotplug_active = true; 3133 tb_dbg(tb, "resume finished\n"); 3134 3135 return 0; 3136 } 3137 3138 static int tb_free_unplugged_xdomains(struct tb_switch *sw) 3139 { 3140 struct tb_port *port; 3141 int ret = 0; 3142 3143 tb_switch_for_each_port(sw, port) { 3144 if (tb_is_upstream_port(port)) 3145 continue; 3146 if (port->xdomain && port->xdomain->is_unplugged) { 3147 tb_retimer_remove_all(port); 3148 tb_xdomain_remove(port->xdomain); 3149 tb_port_unconfigure_xdomain(port); 3150 port->xdomain = NULL; 3151 ret++; 3152 } else if (port->remote) { 3153 ret += tb_free_unplugged_xdomains(port->remote->sw); 3154 } 3155 } 3156 3157 return ret; 3158 } 3159 3160 static int tb_freeze_noirq(struct tb *tb) 3161 { 3162 struct tb_cm *tcm = tb_priv(tb); 3163 3164 tcm->hotplug_active = false; 3165 return 0; 3166 } 3167 3168 static int tb_thaw_noirq(struct tb *tb) 3169 { 3170 struct tb_cm *tcm = tb_priv(tb); 3171 3172 tcm->hotplug_active = true; 3173 return 0; 3174 } 3175 3176 static void tb_complete(struct tb *tb) 3177 { 3178 /* 3179 * Release any unplugged XDomains and if there is a case where 3180 * another domain is swapped in place of unplugged XDomain we 3181 * need to run another rescan. 3182 */ 3183 mutex_lock(&tb->lock); 3184 if (tb_free_unplugged_xdomains(tb->root_switch)) 3185 tb_scan_switch(tb->root_switch); 3186 mutex_unlock(&tb->lock); 3187 } 3188 3189 static int tb_runtime_suspend(struct tb *tb) 3190 { 3191 struct tb_cm *tcm = tb_priv(tb); 3192 3193 mutex_lock(&tb->lock); 3194 /* 3195 * The below call only releases DP resources to allow exiting and 3196 * re-entering redrive mode. 3197 */ 3198 tb_disconnect_and_release_dp(tb); 3199 tb_switch_exit_redrive(tb->root_switch); 3200 tb_switch_suspend(tb->root_switch, true); 3201 tcm->hotplug_active = false; 3202 mutex_unlock(&tb->lock); 3203 3204 return 0; 3205 } 3206 3207 static void tb_remove_work(struct work_struct *work) 3208 { 3209 struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work); 3210 struct tb *tb = tcm_to_tb(tcm); 3211 3212 mutex_lock(&tb->lock); 3213 if (tb->root_switch) { 3214 tb_free_unplugged_children(tb->root_switch); 3215 tb_free_unplugged_xdomains(tb->root_switch); 3216 } 3217 mutex_unlock(&tb->lock); 3218 } 3219 3220 static int tb_runtime_resume(struct tb *tb) 3221 { 3222 struct tb_cm *tcm = tb_priv(tb); 3223 struct tb_tunnel *tunnel, *n; 3224 3225 mutex_lock(&tb->lock); 3226 tb_switch_resume(tb->root_switch, true); 3227 tb_free_invalid_tunnels(tb); 3228 tb_restore_children(tb->root_switch); 3229 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) 3230 tb_tunnel_activate(tunnel); 3231 tb_switch_enter_redrive(tb->root_switch); 3232 tcm->hotplug_active = true; 3233 mutex_unlock(&tb->lock); 3234 3235 /* 3236 * Schedule cleanup of any unplugged devices. Run this in a 3237 * separate thread to avoid possible deadlock if the device 3238 * removal runtime resumes the unplugged device. 3239 */ 3240 queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50)); 3241 return 0; 3242 } 3243 3244 static const struct tb_cm_ops tb_cm_ops = { 3245 .start = tb_start, 3246 .stop = tb_stop, 3247 .deinit = tb_deinit, 3248 .suspend_noirq = tb_suspend_noirq, 3249 .resume_noirq = tb_resume_noirq, 3250 .freeze_noirq = tb_freeze_noirq, 3251 .thaw_noirq = tb_thaw_noirq, 3252 .complete = tb_complete, 3253 .runtime_suspend = tb_runtime_suspend, 3254 .runtime_resume = tb_runtime_resume, 3255 .handle_event = tb_handle_event, 3256 .disapprove_switch = tb_disconnect_pci, 3257 .approve_switch = tb_tunnel_pci, 3258 .approve_xdomain_paths = tb_approve_xdomain_paths, 3259 .disconnect_xdomain_paths = tb_disconnect_xdomain_paths, 3260 }; 3261 3262 /* 3263 * During suspend the Thunderbolt controller is reset and all PCIe 3264 * tunnels are lost. The NHI driver will try to reestablish all tunnels 3265 * during resume. This adds device links between the tunneled PCIe 3266 * downstream ports and the NHI so that the device core will make sure 3267 * NHI is resumed first before the rest. 3268 */ 3269 static bool tb_apple_add_links(struct tb_nhi *nhi) 3270 { 3271 struct pci_dev *upstream, *pdev; 3272 bool ret; 3273 3274 if (!x86_apple_machine) 3275 return false; 3276 3277 switch (nhi->pdev->device) { 3278 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 3279 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 3280 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 3281 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 3282 break; 3283 default: 3284 return false; 3285 } 3286 3287 upstream = pci_upstream_bridge(nhi->pdev); 3288 while (upstream) { 3289 if (!pci_is_pcie(upstream)) 3290 return false; 3291 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM) 3292 break; 3293 upstream = pci_upstream_bridge(upstream); 3294 } 3295 3296 if (!upstream) 3297 return false; 3298 3299 /* 3300 * For each hotplug downstream port, create add device link 3301 * back to NHI so that PCIe tunnels can be re-established after 3302 * sleep. 3303 */ 3304 ret = false; 3305 for_each_pci_bridge(pdev, upstream->subordinate) { 3306 const struct device_link *link; 3307 3308 if (!pci_is_pcie(pdev)) 3309 continue; 3310 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM || 3311 !pdev->is_hotplug_bridge) 3312 continue; 3313 3314 link = device_link_add(&pdev->dev, &nhi->pdev->dev, 3315 DL_FLAG_AUTOREMOVE_SUPPLIER | 3316 DL_FLAG_PM_RUNTIME); 3317 if (link) { 3318 dev_dbg(&nhi->pdev->dev, "created link from %s\n", 3319 dev_name(&pdev->dev)); 3320 ret = true; 3321 } else { 3322 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", 3323 dev_name(&pdev->dev)); 3324 } 3325 } 3326 3327 return ret; 3328 } 3329 3330 struct tb *tb_probe(struct tb_nhi *nhi) 3331 { 3332 struct tb_cm *tcm; 3333 struct tb *tb; 3334 3335 tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm)); 3336 if (!tb) 3337 return NULL; 3338 3339 if (tb_acpi_may_tunnel_pcie()) 3340 tb->security_level = TB_SECURITY_USER; 3341 else 3342 tb->security_level = TB_SECURITY_NOPCIE; 3343 3344 tb->cm_ops = &tb_cm_ops; 3345 3346 tcm = tb_priv(tb); 3347 INIT_LIST_HEAD(&tcm->tunnel_list); 3348 INIT_LIST_HEAD(&tcm->dp_resources); 3349 INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work); 3350 tb_init_bandwidth_groups(tcm); 3351 3352 tb_dbg(tb, "using software connection manager\n"); 3353 3354 /* 3355 * Device links are needed to make sure we establish tunnels 3356 * before the PCIe/USB stack is resumed so complain here if we 3357 * found them missing. 3358 */ 3359 if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi)) 3360 tb_warn(tb, "device links to tunneled native ports are missing!\n"); 3361 3362 return tb; 3363 } 3364