1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - bus logic (NHI independent) 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/errno.h> 11 #include <linux/delay.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/platform_data/x86/apple.h> 14 15 #include "tb.h" 16 #include "tb_regs.h" 17 #include "tunnel.h" 18 19 #define TB_TIMEOUT 100 /* ms */ 20 #define TB_RELEASE_BW_TIMEOUT 10000 /* ms */ 21 22 /* 23 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver 24 * direction. This is 40G - 10% guard band bandwidth. 25 */ 26 #define TB_ASYM_MIN (40000 * 90 / 100) 27 28 /* 29 * Threshold bandwidth (in Mb/s) that is used to switch the links to 30 * asymmetric and back. This is selected as 45G which means when the 31 * request is higher than this, we switch the link to asymmetric, and 32 * when it is less than this we switch it back. The 45G is selected so 33 * that we still have 27G (of the total 72G) for bulk PCIe traffic when 34 * switching back to symmetric. 35 */ 36 #define TB_ASYM_THRESHOLD 45000 37 38 #define MAX_GROUPS 7 /* max Group_ID is 7 */ 39 40 static unsigned int asym_threshold = TB_ASYM_THRESHOLD; 41 module_param_named(asym_threshold, asym_threshold, uint, 0444); 42 MODULE_PARM_DESC(asym_threshold, 43 "threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: " 44 __MODULE_STRING(TB_ASYM_THRESHOLD) ")"); 45 46 /** 47 * struct tb_cm - Simple Thunderbolt connection manager 48 * @tunnel_list: List of active tunnels 49 * @dp_resources: List of available DP resources for DP tunneling 50 * @hotplug_active: tb_handle_hotplug will stop progressing plug 51 * events and exit if this is not set (it needs to 52 * acquire the lock one more time). Used to drain wq 53 * after cfg has been paused. 54 * @remove_work: Work used to remove any unplugged routers after 55 * runtime resume 56 * @groups: Bandwidth groups used in this domain. 57 */ 58 struct tb_cm { 59 struct list_head tunnel_list; 60 struct list_head dp_resources; 61 bool hotplug_active; 62 struct delayed_work remove_work; 63 struct tb_bandwidth_group groups[MAX_GROUPS]; 64 }; 65 66 static inline struct tb *tcm_to_tb(struct tb_cm *tcm) 67 { 68 return ((void *)tcm - sizeof(struct tb)); 69 } 70 71 struct tb_hotplug_event { 72 struct work_struct work; 73 struct tb *tb; 74 u64 route; 75 u8 port; 76 bool unplug; 77 }; 78 79 static void tb_handle_hotplug(struct work_struct *work); 80 81 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug) 82 { 83 struct tb_hotplug_event *ev; 84 85 ev = kmalloc(sizeof(*ev), GFP_KERNEL); 86 if (!ev) 87 return; 88 89 ev->tb = tb; 90 ev->route = route; 91 ev->port = port; 92 ev->unplug = unplug; 93 INIT_WORK(&ev->work, tb_handle_hotplug); 94 queue_work(tb->wq, &ev->work); 95 } 96 97 /* enumeration & hot plug handling */ 98 99 static void tb_add_dp_resources(struct tb_switch *sw) 100 { 101 struct tb_cm *tcm = tb_priv(sw->tb); 102 struct tb_port *port; 103 104 tb_switch_for_each_port(sw, port) { 105 if (!tb_port_is_dpin(port)) 106 continue; 107 108 if (!tb_switch_query_dp_resource(sw, port)) 109 continue; 110 111 /* 112 * If DP IN on device router exist, position it at the 113 * beginning of the DP resources list, so that it is used 114 * before DP IN of the host router. This way external GPU(s) 115 * will be prioritized when pairing DP IN to a DP OUT. 116 */ 117 if (tb_route(sw)) 118 list_add(&port->list, &tcm->dp_resources); 119 else 120 list_add_tail(&port->list, &tcm->dp_resources); 121 122 tb_port_dbg(port, "DP IN resource available\n"); 123 } 124 } 125 126 static void tb_remove_dp_resources(struct tb_switch *sw) 127 { 128 struct tb_cm *tcm = tb_priv(sw->tb); 129 struct tb_port *port, *tmp; 130 131 /* Clear children resources first */ 132 tb_switch_for_each_port(sw, port) { 133 if (tb_port_has_remote(port)) 134 tb_remove_dp_resources(port->remote->sw); 135 } 136 137 list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) { 138 if (port->sw == sw) { 139 tb_port_dbg(port, "DP OUT resource unavailable\n"); 140 list_del_init(&port->list); 141 } 142 } 143 } 144 145 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port) 146 { 147 struct tb_cm *tcm = tb_priv(tb); 148 struct tb_port *p; 149 150 list_for_each_entry(p, &tcm->dp_resources, list) { 151 if (p == port) 152 return; 153 } 154 155 tb_port_dbg(port, "DP %s resource available discovered\n", 156 tb_port_is_dpin(port) ? "IN" : "OUT"); 157 list_add_tail(&port->list, &tcm->dp_resources); 158 } 159 160 static void tb_discover_dp_resources(struct tb *tb) 161 { 162 struct tb_cm *tcm = tb_priv(tb); 163 struct tb_tunnel *tunnel; 164 165 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 166 if (tb_tunnel_is_dp(tunnel)) 167 tb_discover_dp_resource(tb, tunnel->dst_port); 168 } 169 } 170 171 /* Enables CL states up to host router */ 172 static int tb_enable_clx(struct tb_switch *sw) 173 { 174 struct tb_cm *tcm = tb_priv(sw->tb); 175 unsigned int clx = TB_CL0S | TB_CL1; 176 const struct tb_tunnel *tunnel; 177 int ret; 178 179 /* 180 * Currently only enable CLx for the first link. This is enough 181 * to allow the CPU to save energy at least on Intel hardware 182 * and makes it slightly simpler to implement. We may change 183 * this in the future to cover the whole topology if it turns 184 * out to be beneficial. 185 */ 186 while (sw && tb_switch_depth(sw) > 1) 187 sw = tb_switch_parent(sw); 188 189 if (!sw) 190 return 0; 191 192 if (tb_switch_depth(sw) != 1) 193 return 0; 194 195 /* 196 * If we are re-enabling then check if there is an active DMA 197 * tunnel and in that case bail out. 198 */ 199 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 200 if (tb_tunnel_is_dma(tunnel)) { 201 if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw))) 202 return 0; 203 } 204 } 205 206 /* 207 * Initially try with CL2. If that's not supported by the 208 * topology try with CL0s and CL1 and then give up. 209 */ 210 ret = tb_switch_clx_enable(sw, clx | TB_CL2); 211 if (ret == -EOPNOTSUPP) 212 ret = tb_switch_clx_enable(sw, clx); 213 return ret == -EOPNOTSUPP ? 0 : ret; 214 } 215 216 /** 217 * tb_disable_clx() - Disable CL states up to host router 218 * @sw: Router to start 219 * 220 * Disables CL states from @sw up to the host router. Returns true if 221 * any CL state were disabled. This can be used to figure out whether 222 * the link was setup by us or the boot firmware so we don't 223 * accidentally enable them if they were not enabled during discovery. 224 */ 225 static bool tb_disable_clx(struct tb_switch *sw) 226 { 227 bool disabled = false; 228 229 do { 230 int ret; 231 232 ret = tb_switch_clx_disable(sw); 233 if (ret > 0) 234 disabled = true; 235 else if (ret < 0) 236 tb_sw_warn(sw, "failed to disable CL states\n"); 237 238 sw = tb_switch_parent(sw); 239 } while (sw); 240 241 return disabled; 242 } 243 244 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data) 245 { 246 struct tb_switch *sw; 247 248 sw = tb_to_switch(dev); 249 if (!sw) 250 return 0; 251 252 if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) { 253 enum tb_switch_tmu_mode mode; 254 int ret; 255 256 if (tb_switch_clx_is_enabled(sw, TB_CL1)) 257 mode = TB_SWITCH_TMU_MODE_HIFI_UNI; 258 else 259 mode = TB_SWITCH_TMU_MODE_HIFI_BI; 260 261 ret = tb_switch_tmu_configure(sw, mode); 262 if (ret) 263 return ret; 264 265 return tb_switch_tmu_enable(sw); 266 } 267 268 return 0; 269 } 270 271 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel) 272 { 273 struct tb_switch *sw; 274 275 if (!tunnel) 276 return; 277 278 /* 279 * Once first DP tunnel is established we change the TMU 280 * accuracy of first depth child routers (and the host router) 281 * to the highest. This is needed for the DP tunneling to work 282 * but also allows CL0s. 283 * 284 * If both routers are v2 then we don't need to do anything as 285 * they are using enhanced TMU mode that allows all CLx. 286 */ 287 sw = tunnel->tb->root_switch; 288 device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy); 289 } 290 291 static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used) 292 { 293 struct tb_switch *sw = tb_to_switch(dev); 294 295 if (sw && tb_switch_tmu_is_enabled(sw) && 296 tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI)) 297 return 1; 298 299 return device_for_each_child(dev, NULL, 300 tb_switch_tmu_hifi_uni_required); 301 } 302 303 static bool tb_tmu_hifi_uni_required(struct tb *tb) 304 { 305 return device_for_each_child(&tb->dev, NULL, 306 tb_switch_tmu_hifi_uni_required) == 1; 307 } 308 309 static int tb_enable_tmu(struct tb_switch *sw) 310 { 311 int ret; 312 313 /* 314 * If both routers at the end of the link are v2 we simply 315 * enable the enhanched uni-directional mode. That covers all 316 * the CL states. For v1 and before we need to use the normal 317 * rate to allow CL1 (when supported). Otherwise we keep the TMU 318 * running at the highest accuracy. 319 */ 320 ret = tb_switch_tmu_configure(sw, 321 TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI); 322 if (ret == -EOPNOTSUPP) { 323 if (tb_switch_clx_is_enabled(sw, TB_CL1)) { 324 /* 325 * Figure out uni-directional HiFi TMU requirements 326 * currently in the domain. If there are no 327 * uni-directional HiFi requirements we can put the TMU 328 * into LowRes mode. 329 * 330 * Deliberately skip bi-directional HiFi links 331 * as these work independently of other links 332 * (and they do not allow any CL states anyway). 333 */ 334 if (tb_tmu_hifi_uni_required(sw->tb)) 335 ret = tb_switch_tmu_configure(sw, 336 TB_SWITCH_TMU_MODE_HIFI_UNI); 337 else 338 ret = tb_switch_tmu_configure(sw, 339 TB_SWITCH_TMU_MODE_LOWRES); 340 } else { 341 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI); 342 } 343 344 /* If not supported, fallback to bi-directional HiFi */ 345 if (ret == -EOPNOTSUPP) 346 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI); 347 } 348 if (ret) 349 return ret; 350 351 /* If it is already enabled in correct mode, don't touch it */ 352 if (tb_switch_tmu_is_enabled(sw)) 353 return 0; 354 355 ret = tb_switch_tmu_disable(sw); 356 if (ret) 357 return ret; 358 359 ret = tb_switch_tmu_post_time(sw); 360 if (ret) 361 return ret; 362 363 return tb_switch_tmu_enable(sw); 364 } 365 366 static void tb_switch_discover_tunnels(struct tb_switch *sw, 367 struct list_head *list, 368 bool alloc_hopids) 369 { 370 struct tb *tb = sw->tb; 371 struct tb_port *port; 372 373 tb_switch_for_each_port(sw, port) { 374 struct tb_tunnel *tunnel = NULL; 375 376 switch (port->config.type) { 377 case TB_TYPE_DP_HDMI_IN: 378 tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids); 379 tb_increase_tmu_accuracy(tunnel); 380 break; 381 382 case TB_TYPE_PCIE_DOWN: 383 tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids); 384 break; 385 386 case TB_TYPE_USB3_DOWN: 387 tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids); 388 break; 389 390 default: 391 break; 392 } 393 394 if (tunnel) 395 list_add_tail(&tunnel->list, list); 396 } 397 398 tb_switch_for_each_port(sw, port) { 399 if (tb_port_has_remote(port)) { 400 tb_switch_discover_tunnels(port->remote->sw, list, 401 alloc_hopids); 402 } 403 } 404 } 405 406 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) 407 { 408 if (tb_switch_is_usb4(port->sw)) 409 return usb4_port_configure_xdomain(port, xd); 410 return tb_lc_configure_xdomain(port); 411 } 412 413 static void tb_port_unconfigure_xdomain(struct tb_port *port) 414 { 415 if (tb_switch_is_usb4(port->sw)) 416 usb4_port_unconfigure_xdomain(port); 417 else 418 tb_lc_unconfigure_xdomain(port); 419 } 420 421 static void tb_scan_xdomain(struct tb_port *port) 422 { 423 struct tb_switch *sw = port->sw; 424 struct tb *tb = sw->tb; 425 struct tb_xdomain *xd; 426 u64 route; 427 428 if (!tb_is_xdomain_enabled()) 429 return; 430 431 route = tb_downstream_route(port); 432 xd = tb_xdomain_find_by_route(tb, route); 433 if (xd) { 434 tb_xdomain_put(xd); 435 return; 436 } 437 438 xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid, 439 NULL); 440 if (xd) { 441 tb_port_at(route, sw)->xdomain = xd; 442 tb_port_configure_xdomain(port, xd); 443 tb_xdomain_add(xd); 444 } 445 } 446 447 /** 448 * tb_find_unused_port() - return the first inactive port on @sw 449 * @sw: Switch to find the port on 450 * @type: Port type to look for 451 */ 452 static struct tb_port *tb_find_unused_port(struct tb_switch *sw, 453 enum tb_port_type type) 454 { 455 struct tb_port *port; 456 457 tb_switch_for_each_port(sw, port) { 458 if (tb_is_upstream_port(port)) 459 continue; 460 if (port->config.type != type) 461 continue; 462 if (!port->cap_adap) 463 continue; 464 if (tb_port_is_enabled(port)) 465 continue; 466 return port; 467 } 468 return NULL; 469 } 470 471 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw, 472 const struct tb_port *port) 473 { 474 struct tb_port *down; 475 476 down = usb4_switch_map_usb3_down(sw, port); 477 if (down && !tb_usb3_port_is_enabled(down)) 478 return down; 479 return NULL; 480 } 481 482 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type, 483 struct tb_port *src_port, 484 struct tb_port *dst_port) 485 { 486 struct tb_cm *tcm = tb_priv(tb); 487 struct tb_tunnel *tunnel; 488 489 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 490 if (tunnel->type == type && 491 ((src_port && src_port == tunnel->src_port) || 492 (dst_port && dst_port == tunnel->dst_port))) { 493 return tunnel; 494 } 495 } 496 497 return NULL; 498 } 499 500 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb, 501 struct tb_port *src_port, 502 struct tb_port *dst_port) 503 { 504 struct tb_port *port, *usb3_down; 505 struct tb_switch *sw; 506 507 /* Pick the router that is deepest in the topology */ 508 if (tb_port_path_direction_downstream(src_port, dst_port)) 509 sw = dst_port->sw; 510 else 511 sw = src_port->sw; 512 513 /* Can't be the host router */ 514 if (sw == tb->root_switch) 515 return NULL; 516 517 /* Find the downstream USB4 port that leads to this router */ 518 port = tb_port_at(tb_route(sw), tb->root_switch); 519 /* Find the corresponding host router USB3 downstream port */ 520 usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port); 521 if (!usb3_down) 522 return NULL; 523 524 return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL); 525 } 526 527 /** 528 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link 529 * @tb: Domain structure 530 * @src_port: Source protocol adapter 531 * @dst_port: Destination protocol adapter 532 * @port: USB4 port the consumed bandwidth is calculated 533 * @consumed_up: Consumed upsream bandwidth (Mb/s) 534 * @consumed_down: Consumed downstream bandwidth (Mb/s) 535 * 536 * Calculates consumed USB3 and PCIe bandwidth at @port between path 537 * from @src_port to @dst_port. Does not take USB3 tunnel starting from 538 * @src_port and ending on @src_port into account because that bandwidth is 539 * already included in as part of the "first hop" USB3 tunnel. 540 */ 541 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb, 542 struct tb_port *src_port, 543 struct tb_port *dst_port, 544 struct tb_port *port, 545 int *consumed_up, 546 int *consumed_down) 547 { 548 int pci_consumed_up, pci_consumed_down; 549 struct tb_tunnel *tunnel; 550 551 *consumed_up = *consumed_down = 0; 552 553 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 554 if (tunnel && !tb_port_is_usb3_down(src_port) && 555 !tb_port_is_usb3_up(dst_port)) { 556 int ret; 557 558 ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up, 559 consumed_down); 560 if (ret) 561 return ret; 562 } 563 564 /* 565 * If there is anything reserved for PCIe bulk traffic take it 566 * into account here too. 567 */ 568 if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) { 569 *consumed_up += pci_consumed_up; 570 *consumed_down += pci_consumed_down; 571 } 572 573 return 0; 574 } 575 576 /** 577 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link 578 * @tb: Domain structure 579 * @src_port: Source protocol adapter 580 * @dst_port: Destination protocol adapter 581 * @port: USB4 port the consumed bandwidth is calculated 582 * @consumed_up: Consumed upsream bandwidth (Mb/s) 583 * @consumed_down: Consumed downstream bandwidth (Mb/s) 584 * 585 * Calculates consumed DP bandwidth at @port between path from @src_port 586 * to @dst_port. Does not take tunnel starting from @src_port and ending 587 * from @src_port into account. 588 * 589 * If there is bandwidth reserved for any of the groups between 590 * @src_port and @dst_port (but not yet used) that is also taken into 591 * account in the returned consumed bandwidth. 592 */ 593 static int tb_consumed_dp_bandwidth(struct tb *tb, 594 struct tb_port *src_port, 595 struct tb_port *dst_port, 596 struct tb_port *port, 597 int *consumed_up, 598 int *consumed_down) 599 { 600 int group_reserved[MAX_GROUPS] = {}; 601 struct tb_cm *tcm = tb_priv(tb); 602 struct tb_tunnel *tunnel; 603 bool downstream; 604 int i, ret; 605 606 *consumed_up = *consumed_down = 0; 607 608 /* 609 * Find all DP tunnels that cross the port and reduce 610 * their consumed bandwidth from the available. 611 */ 612 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 613 const struct tb_bandwidth_group *group; 614 int dp_consumed_up, dp_consumed_down; 615 616 if (tb_tunnel_is_invalid(tunnel)) 617 continue; 618 619 if (!tb_tunnel_is_dp(tunnel)) 620 continue; 621 622 if (!tb_tunnel_port_on_path(tunnel, port)) 623 continue; 624 625 /* 626 * Calculate what is reserved for groups crossing the 627 * same ports only once (as that is reserved for all the 628 * tunnels in the group). 629 */ 630 group = tunnel->src_port->group; 631 if (group && group->reserved && !group_reserved[group->index]) 632 group_reserved[group->index] = group->reserved; 633 634 /* 635 * Ignore the DP tunnel between src_port and dst_port 636 * because it is the same tunnel and we may be 637 * re-calculating estimated bandwidth. 638 */ 639 if (tunnel->src_port == src_port && 640 tunnel->dst_port == dst_port) 641 continue; 642 643 ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up, 644 &dp_consumed_down); 645 if (ret) 646 return ret; 647 648 *consumed_up += dp_consumed_up; 649 *consumed_down += dp_consumed_down; 650 } 651 652 downstream = tb_port_path_direction_downstream(src_port, dst_port); 653 for (i = 0; i < ARRAY_SIZE(group_reserved); i++) { 654 if (downstream) 655 *consumed_down += group_reserved[i]; 656 else 657 *consumed_up += group_reserved[i]; 658 } 659 660 return 0; 661 } 662 663 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port, 664 struct tb_port *port) 665 { 666 bool downstream = tb_port_path_direction_downstream(src_port, dst_port); 667 enum tb_link_width width; 668 669 if (tb_is_upstream_port(port)) 670 width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX; 671 else 672 width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX; 673 674 return tb_port_width_supported(port, width); 675 } 676 677 /** 678 * tb_maximum_bandwidth() - Maximum bandwidth over a single link 679 * @tb: Domain structure 680 * @src_port: Source protocol adapter 681 * @dst_port: Destination protocol adapter 682 * @port: USB4 port the total bandwidth is calculated 683 * @max_up: Maximum upstream bandwidth (Mb/s) 684 * @max_down: Maximum downstream bandwidth (Mb/s) 685 * @include_asym: Include bandwidth if the link is switched from 686 * symmetric to asymmetric 687 * 688 * Returns maximum possible bandwidth in @max_up and @max_down over a 689 * single link at @port. If @include_asym is set then includes the 690 * additional banwdith if the links are transitioned into asymmetric to 691 * direction from @src_port to @dst_port. 692 */ 693 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port, 694 struct tb_port *dst_port, struct tb_port *port, 695 int *max_up, int *max_down, bool include_asym) 696 { 697 bool downstream = tb_port_path_direction_downstream(src_port, dst_port); 698 int link_speed, link_width, up_bw, down_bw; 699 700 /* 701 * Can include asymmetric, only if it is actually supported by 702 * the lane adapter. 703 */ 704 if (!tb_asym_supported(src_port, dst_port, port)) 705 include_asym = false; 706 707 if (tb_is_upstream_port(port)) { 708 link_speed = port->sw->link_speed; 709 /* 710 * sw->link_width is from upstream perspective so we use 711 * the opposite for downstream of the host router. 712 */ 713 if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) { 714 up_bw = link_speed * 3 * 1000; 715 down_bw = link_speed * 1 * 1000; 716 } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) { 717 up_bw = link_speed * 1 * 1000; 718 down_bw = link_speed * 3 * 1000; 719 } else if (include_asym) { 720 /* 721 * The link is symmetric at the moment but we 722 * can switch it to asymmetric as needed. Report 723 * this bandwidth as available (even though it 724 * is not yet enabled). 725 */ 726 if (downstream) { 727 up_bw = link_speed * 1 * 1000; 728 down_bw = link_speed * 3 * 1000; 729 } else { 730 up_bw = link_speed * 3 * 1000; 731 down_bw = link_speed * 1 * 1000; 732 } 733 } else { 734 up_bw = link_speed * port->sw->link_width * 1000; 735 down_bw = up_bw; 736 } 737 } else { 738 link_speed = tb_port_get_link_speed(port); 739 if (link_speed < 0) 740 return link_speed; 741 742 link_width = tb_port_get_link_width(port); 743 if (link_width < 0) 744 return link_width; 745 746 if (link_width == TB_LINK_WIDTH_ASYM_TX) { 747 up_bw = link_speed * 1 * 1000; 748 down_bw = link_speed * 3 * 1000; 749 } else if (link_width == TB_LINK_WIDTH_ASYM_RX) { 750 up_bw = link_speed * 3 * 1000; 751 down_bw = link_speed * 1 * 1000; 752 } else if (include_asym) { 753 /* 754 * The link is symmetric at the moment but we 755 * can switch it to asymmetric as needed. Report 756 * this bandwidth as available (even though it 757 * is not yet enabled). 758 */ 759 if (downstream) { 760 up_bw = link_speed * 1 * 1000; 761 down_bw = link_speed * 3 * 1000; 762 } else { 763 up_bw = link_speed * 3 * 1000; 764 down_bw = link_speed * 1 * 1000; 765 } 766 } else { 767 up_bw = link_speed * link_width * 1000; 768 down_bw = up_bw; 769 } 770 } 771 772 /* Leave 10% guard band */ 773 *max_up = up_bw - up_bw / 10; 774 *max_down = down_bw - down_bw / 10; 775 776 tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down); 777 return 0; 778 } 779 780 /** 781 * tb_available_bandwidth() - Available bandwidth for tunneling 782 * @tb: Domain structure 783 * @src_port: Source protocol adapter 784 * @dst_port: Destination protocol adapter 785 * @available_up: Available bandwidth upstream (Mb/s) 786 * @available_down: Available bandwidth downstream (Mb/s) 787 * @include_asym: Include bandwidth if the link is switched from 788 * symmetric to asymmetric 789 * 790 * Calculates maximum available bandwidth for protocol tunneling between 791 * @src_port and @dst_port at the moment. This is minimum of maximum 792 * link bandwidth across all links reduced by currently consumed 793 * bandwidth on that link. 794 * 795 * If @include_asym is true then includes also bandwidth that can be 796 * added when the links are transitioned into asymmetric (but does not 797 * transition the links). 798 */ 799 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port, 800 struct tb_port *dst_port, int *available_up, 801 int *available_down, bool include_asym) 802 { 803 struct tb_port *port; 804 int ret; 805 806 /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */ 807 *available_up = *available_down = 120000; 808 809 /* Find the minimum available bandwidth over all links */ 810 tb_for_each_port_on_path(src_port, dst_port, port) { 811 int max_up, max_down, consumed_up, consumed_down; 812 813 if (!tb_port_is_null(port)) 814 continue; 815 816 ret = tb_maximum_bandwidth(tb, src_port, dst_port, port, 817 &max_up, &max_down, include_asym); 818 if (ret) 819 return ret; 820 821 ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port, 822 port, &consumed_up, 823 &consumed_down); 824 if (ret) 825 return ret; 826 max_up -= consumed_up; 827 max_down -= consumed_down; 828 829 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port, 830 &consumed_up, &consumed_down); 831 if (ret) 832 return ret; 833 max_up -= consumed_up; 834 max_down -= consumed_down; 835 836 if (max_up < *available_up) 837 *available_up = max_up; 838 if (max_down < *available_down) 839 *available_down = max_down; 840 } 841 842 if (*available_up < 0) 843 *available_up = 0; 844 if (*available_down < 0) 845 *available_down = 0; 846 847 return 0; 848 } 849 850 static int tb_release_unused_usb3_bandwidth(struct tb *tb, 851 struct tb_port *src_port, 852 struct tb_port *dst_port) 853 { 854 struct tb_tunnel *tunnel; 855 856 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 857 return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0; 858 } 859 860 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port, 861 struct tb_port *dst_port) 862 { 863 int ret, available_up, available_down; 864 struct tb_tunnel *tunnel; 865 866 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 867 if (!tunnel) 868 return; 869 870 tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n"); 871 872 /* 873 * Calculate available bandwidth for the first hop USB3 tunnel. 874 * That determines the whole USB3 bandwidth for this branch. 875 */ 876 ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port, 877 &available_up, &available_down, false); 878 if (ret) { 879 tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n"); 880 return; 881 } 882 883 tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up, 884 available_down); 885 886 tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down); 887 } 888 889 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw) 890 { 891 struct tb_switch *parent = tb_switch_parent(sw); 892 int ret, available_up, available_down; 893 struct tb_port *up, *down, *port; 894 struct tb_cm *tcm = tb_priv(tb); 895 struct tb_tunnel *tunnel; 896 897 if (!tb_acpi_may_tunnel_usb3()) { 898 tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n"); 899 return 0; 900 } 901 902 up = tb_switch_find_port(sw, TB_TYPE_USB3_UP); 903 if (!up) 904 return 0; 905 906 if (!sw->link_usb4) 907 return 0; 908 909 /* 910 * Look up available down port. Since we are chaining it should 911 * be found right above this switch. 912 */ 913 port = tb_switch_downstream_port(sw); 914 down = tb_find_usb3_down(parent, port); 915 if (!down) 916 return 0; 917 918 if (tb_route(parent)) { 919 struct tb_port *parent_up; 920 /* 921 * Check first that the parent switch has its upstream USB3 922 * port enabled. Otherwise the chain is not complete and 923 * there is no point setting up a new tunnel. 924 */ 925 parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP); 926 if (!parent_up || !tb_port_is_enabled(parent_up)) 927 return 0; 928 929 /* Make all unused bandwidth available for the new tunnel */ 930 ret = tb_release_unused_usb3_bandwidth(tb, down, up); 931 if (ret) 932 return ret; 933 } 934 935 ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down, 936 false); 937 if (ret) 938 goto err_reclaim; 939 940 tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n", 941 available_up, available_down); 942 943 tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up, 944 available_down); 945 if (!tunnel) { 946 ret = -ENOMEM; 947 goto err_reclaim; 948 } 949 950 if (tb_tunnel_activate(tunnel)) { 951 tb_port_info(up, 952 "USB3 tunnel activation failed, aborting\n"); 953 ret = -EIO; 954 goto err_free; 955 } 956 957 list_add_tail(&tunnel->list, &tcm->tunnel_list); 958 if (tb_route(parent)) 959 tb_reclaim_usb3_bandwidth(tb, down, up); 960 961 return 0; 962 963 err_free: 964 tb_tunnel_free(tunnel); 965 err_reclaim: 966 if (tb_route(parent)) 967 tb_reclaim_usb3_bandwidth(tb, down, up); 968 969 return ret; 970 } 971 972 static int tb_create_usb3_tunnels(struct tb_switch *sw) 973 { 974 struct tb_port *port; 975 int ret; 976 977 if (!tb_acpi_may_tunnel_usb3()) 978 return 0; 979 980 if (tb_route(sw)) { 981 ret = tb_tunnel_usb3(sw->tb, sw); 982 if (ret) 983 return ret; 984 } 985 986 tb_switch_for_each_port(sw, port) { 987 if (!tb_port_has_remote(port)) 988 continue; 989 ret = tb_create_usb3_tunnels(port->remote->sw); 990 if (ret) 991 return ret; 992 } 993 994 return 0; 995 } 996 997 /** 998 * tb_configure_asym() - Transition links to asymmetric if needed 999 * @tb: Domain structure 1000 * @src_port: Source adapter to start the transition 1001 * @dst_port: Destination adapter 1002 * @requested_up: Additional bandwidth (Mb/s) required upstream 1003 * @requested_down: Additional bandwidth (Mb/s) required downstream 1004 * 1005 * Transition links between @src_port and @dst_port into asymmetric, with 1006 * three lanes in the direction from @src_port towards @dst_port and one lane 1007 * in the opposite direction, if the bandwidth requirements 1008 * (requested + currently consumed) on that link exceed @asym_threshold. 1009 * 1010 * Must be called with available >= requested over all links. 1011 */ 1012 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port, 1013 struct tb_port *dst_port, int requested_up, 1014 int requested_down) 1015 { 1016 bool clx = false, clx_disabled = false, downstream; 1017 struct tb_switch *sw; 1018 struct tb_port *up; 1019 int ret = 0; 1020 1021 if (!asym_threshold) 1022 return 0; 1023 1024 downstream = tb_port_path_direction_downstream(src_port, dst_port); 1025 /* Pick up router deepest in the hierarchy */ 1026 if (downstream) 1027 sw = dst_port->sw; 1028 else 1029 sw = src_port->sw; 1030 1031 tb_for_each_upstream_port_on_path(src_port, dst_port, up) { 1032 struct tb_port *down = tb_switch_downstream_port(up->sw); 1033 enum tb_link_width width_up, width_down; 1034 int consumed_up, consumed_down; 1035 1036 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up, 1037 &consumed_up, &consumed_down); 1038 if (ret) 1039 break; 1040 1041 if (downstream) { 1042 /* 1043 * Downstream so make sure upstream is within the 36G 1044 * (40G - guard band 10%), and the requested is above 1045 * what the threshold is. 1046 */ 1047 if (consumed_up + requested_up >= TB_ASYM_MIN) { 1048 ret = -ENOBUFS; 1049 break; 1050 } 1051 /* Does consumed + requested exceed the threshold */ 1052 if (consumed_down + requested_down < asym_threshold) 1053 continue; 1054 1055 width_up = TB_LINK_WIDTH_ASYM_RX; 1056 width_down = TB_LINK_WIDTH_ASYM_TX; 1057 } else { 1058 /* Upstream, the opposite of above */ 1059 if (consumed_down + requested_down >= TB_ASYM_MIN) { 1060 ret = -ENOBUFS; 1061 break; 1062 } 1063 if (consumed_up + requested_up < asym_threshold) 1064 continue; 1065 1066 width_up = TB_LINK_WIDTH_ASYM_TX; 1067 width_down = TB_LINK_WIDTH_ASYM_RX; 1068 } 1069 1070 if (up->sw->link_width == width_up) 1071 continue; 1072 1073 if (!tb_port_width_supported(up, width_up) || 1074 !tb_port_width_supported(down, width_down)) 1075 continue; 1076 1077 /* 1078 * Disable CL states before doing any transitions. We 1079 * delayed it until now that we know there is a real 1080 * transition taking place. 1081 */ 1082 if (!clx_disabled) { 1083 clx = tb_disable_clx(sw); 1084 clx_disabled = true; 1085 } 1086 1087 tb_sw_dbg(up->sw, "configuring asymmetric link\n"); 1088 1089 /* 1090 * Here requested + consumed > threshold so we need to 1091 * transtion the link into asymmetric now. 1092 */ 1093 ret = tb_switch_set_link_width(up->sw, width_up); 1094 if (ret) { 1095 tb_sw_warn(up->sw, "failed to set link width\n"); 1096 break; 1097 } 1098 } 1099 1100 /* Re-enable CL states if they were previosly enabled */ 1101 if (clx) 1102 tb_enable_clx(sw); 1103 1104 return ret; 1105 } 1106 1107 /** 1108 * tb_configure_sym() - Transition links to symmetric if possible 1109 * @tb: Domain structure 1110 * @src_port: Source adapter to start the transition 1111 * @dst_port: Destination adapter 1112 * @keep_asym: Keep asymmetric link if preferred 1113 * 1114 * Goes over each link from @src_port to @dst_port and tries to 1115 * transition the link to symmetric if the currently consumed bandwidth 1116 * allows and link asymmetric preference is ignored (if @keep_asym is %false). 1117 */ 1118 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port, 1119 struct tb_port *dst_port, bool keep_asym) 1120 { 1121 bool clx = false, clx_disabled = false, downstream; 1122 struct tb_switch *sw; 1123 struct tb_port *up; 1124 int ret = 0; 1125 1126 if (!asym_threshold) 1127 return 0; 1128 1129 downstream = tb_port_path_direction_downstream(src_port, dst_port); 1130 /* Pick up router deepest in the hierarchy */ 1131 if (downstream) 1132 sw = dst_port->sw; 1133 else 1134 sw = src_port->sw; 1135 1136 tb_for_each_upstream_port_on_path(src_port, dst_port, up) { 1137 int consumed_up, consumed_down; 1138 1139 /* Already symmetric */ 1140 if (up->sw->link_width <= TB_LINK_WIDTH_DUAL) 1141 continue; 1142 /* Unplugged, no need to switch */ 1143 if (up->sw->is_unplugged) 1144 continue; 1145 1146 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up, 1147 &consumed_up, &consumed_down); 1148 if (ret) 1149 break; 1150 1151 if (downstream) { 1152 /* 1153 * Downstream so we want the consumed_down < threshold. 1154 * Upstream traffic should be less than 36G (40G 1155 * guard band 10%) as the link was configured asymmetric 1156 * already. 1157 */ 1158 if (consumed_down >= asym_threshold) 1159 continue; 1160 } else { 1161 if (consumed_up >= asym_threshold) 1162 continue; 1163 } 1164 1165 if (up->sw->link_width == TB_LINK_WIDTH_DUAL) 1166 continue; 1167 1168 /* 1169 * Here consumed < threshold so we can transition the 1170 * link to symmetric. 1171 * 1172 * However, if the router prefers asymmetric link we 1173 * honor that (unless @keep_asym is %false). 1174 */ 1175 if (keep_asym && 1176 up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) { 1177 tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n"); 1178 continue; 1179 } 1180 1181 /* Disable CL states before doing any transitions */ 1182 if (!clx_disabled) { 1183 clx = tb_disable_clx(sw); 1184 clx_disabled = true; 1185 } 1186 1187 tb_sw_dbg(up->sw, "configuring symmetric link\n"); 1188 1189 ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL); 1190 if (ret) { 1191 tb_sw_warn(up->sw, "failed to set link width\n"); 1192 break; 1193 } 1194 } 1195 1196 /* Re-enable CL states if they were previosly enabled */ 1197 if (clx) 1198 tb_enable_clx(sw); 1199 1200 return ret; 1201 } 1202 1203 static void tb_configure_link(struct tb_port *down, struct tb_port *up, 1204 struct tb_switch *sw) 1205 { 1206 struct tb *tb = sw->tb; 1207 1208 /* Link the routers using both links if available */ 1209 down->remote = up; 1210 up->remote = down; 1211 if (down->dual_link_port && up->dual_link_port) { 1212 down->dual_link_port->remote = up->dual_link_port; 1213 up->dual_link_port->remote = down->dual_link_port; 1214 } 1215 1216 /* 1217 * Enable lane bonding if the link is currently two single lane 1218 * links. 1219 */ 1220 if (sw->link_width < TB_LINK_WIDTH_DUAL) 1221 tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL); 1222 1223 /* 1224 * Device router that comes up as symmetric link is 1225 * connected deeper in the hierarchy, we transition the links 1226 * above into symmetric if bandwidth allows. 1227 */ 1228 if (tb_switch_depth(sw) > 1 && 1229 tb_port_get_link_generation(up) >= 4 && 1230 up->sw->link_width == TB_LINK_WIDTH_DUAL) { 1231 struct tb_port *host_port; 1232 1233 host_port = tb_port_at(tb_route(sw), tb->root_switch); 1234 tb_configure_sym(tb, host_port, up, false); 1235 } 1236 1237 /* Set the link configured */ 1238 tb_switch_configure_link(sw); 1239 } 1240 1241 static void tb_scan_port(struct tb_port *port); 1242 1243 /* 1244 * tb_scan_switch() - scan for and initialize downstream switches 1245 */ 1246 static void tb_scan_switch(struct tb_switch *sw) 1247 { 1248 struct tb_port *port; 1249 1250 pm_runtime_get_sync(&sw->dev); 1251 1252 tb_switch_for_each_port(sw, port) 1253 tb_scan_port(port); 1254 1255 pm_runtime_mark_last_busy(&sw->dev); 1256 pm_runtime_put_autosuspend(&sw->dev); 1257 } 1258 1259 /* 1260 * tb_scan_port() - check for and initialize switches below port 1261 */ 1262 static void tb_scan_port(struct tb_port *port) 1263 { 1264 struct tb_cm *tcm = tb_priv(port->sw->tb); 1265 struct tb_port *upstream_port; 1266 bool discovery = false; 1267 struct tb_switch *sw; 1268 1269 if (tb_is_upstream_port(port)) 1270 return; 1271 1272 if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 && 1273 !tb_dp_port_is_enabled(port)) { 1274 tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n"); 1275 tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port, 1276 false); 1277 return; 1278 } 1279 1280 if (port->config.type != TB_TYPE_PORT) 1281 return; 1282 if (port->dual_link_port && port->link_nr) 1283 return; /* 1284 * Downstream switch is reachable through two ports. 1285 * Only scan on the primary port (link_nr == 0). 1286 */ 1287 1288 if (port->usb4) 1289 pm_runtime_get_sync(&port->usb4->dev); 1290 1291 if (tb_wait_for_port(port, false) <= 0) 1292 goto out_rpm_put; 1293 if (port->remote) { 1294 tb_port_dbg(port, "port already has a remote\n"); 1295 goto out_rpm_put; 1296 } 1297 1298 tb_retimer_scan(port, true); 1299 1300 sw = tb_switch_alloc(port->sw->tb, &port->sw->dev, 1301 tb_downstream_route(port)); 1302 if (IS_ERR(sw)) { 1303 /* 1304 * If there is an error accessing the connected switch 1305 * it may be connected to another domain. Also we allow 1306 * the other domain to be connected to a max depth switch. 1307 */ 1308 if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL) 1309 tb_scan_xdomain(port); 1310 goto out_rpm_put; 1311 } 1312 1313 if (tb_switch_configure(sw)) { 1314 tb_switch_put(sw); 1315 goto out_rpm_put; 1316 } 1317 1318 /* 1319 * If there was previously another domain connected remove it 1320 * first. 1321 */ 1322 if (port->xdomain) { 1323 tb_xdomain_remove(port->xdomain); 1324 tb_port_unconfigure_xdomain(port); 1325 port->xdomain = NULL; 1326 } 1327 1328 /* 1329 * Do not send uevents until we have discovered all existing 1330 * tunnels and know which switches were authorized already by 1331 * the boot firmware. 1332 */ 1333 if (!tcm->hotplug_active) { 1334 dev_set_uevent_suppress(&sw->dev, true); 1335 discovery = true; 1336 } 1337 1338 /* 1339 * At the moment Thunderbolt 2 and beyond (devices with LC) we 1340 * can support runtime PM. 1341 */ 1342 sw->rpm = sw->generation > 1; 1343 1344 if (tb_switch_add(sw)) { 1345 tb_switch_put(sw); 1346 goto out_rpm_put; 1347 } 1348 1349 upstream_port = tb_upstream_port(sw); 1350 tb_configure_link(port, upstream_port, sw); 1351 1352 /* 1353 * CL0s and CL1 are enabled and supported together. 1354 * Silently ignore CLx enabling in case CLx is not supported. 1355 */ 1356 if (discovery) 1357 tb_sw_dbg(sw, "discovery, not touching CL states\n"); 1358 else if (tb_enable_clx(sw)) 1359 tb_sw_warn(sw, "failed to enable CL states\n"); 1360 1361 if (tb_enable_tmu(sw)) 1362 tb_sw_warn(sw, "failed to enable TMU\n"); 1363 1364 /* 1365 * Configuration valid needs to be set after the TMU has been 1366 * enabled for the upstream port of the router so we do it here. 1367 */ 1368 tb_switch_configuration_valid(sw); 1369 1370 /* Scan upstream retimers */ 1371 tb_retimer_scan(upstream_port, true); 1372 1373 /* 1374 * Create USB 3.x tunnels only when the switch is plugged to the 1375 * domain. This is because we scan the domain also during discovery 1376 * and want to discover existing USB 3.x tunnels before we create 1377 * any new. 1378 */ 1379 if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw)) 1380 tb_sw_warn(sw, "USB3 tunnel creation failed\n"); 1381 1382 tb_add_dp_resources(sw); 1383 tb_scan_switch(sw); 1384 1385 out_rpm_put: 1386 if (port->usb4) { 1387 pm_runtime_mark_last_busy(&port->usb4->dev); 1388 pm_runtime_put_autosuspend(&port->usb4->dev); 1389 } 1390 } 1391 1392 static void 1393 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group) 1394 { 1395 struct tb_tunnel *first_tunnel; 1396 struct tb *tb = group->tb; 1397 struct tb_port *in; 1398 int ret; 1399 1400 tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n", 1401 group->index); 1402 1403 first_tunnel = NULL; 1404 list_for_each_entry(in, &group->ports, group_list) { 1405 int estimated_bw, estimated_up, estimated_down; 1406 struct tb_tunnel *tunnel; 1407 struct tb_port *out; 1408 1409 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1410 continue; 1411 1412 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); 1413 if (WARN_ON(!tunnel)) 1414 break; 1415 1416 if (!first_tunnel) { 1417 /* 1418 * Since USB3 bandwidth is shared by all DP 1419 * tunnels under the host router USB4 port, even 1420 * if they do not begin from the host router, we 1421 * can release USB3 bandwidth just once and not 1422 * for each tunnel separately. 1423 */ 1424 first_tunnel = tunnel; 1425 ret = tb_release_unused_usb3_bandwidth(tb, 1426 first_tunnel->src_port, first_tunnel->dst_port); 1427 if (ret) { 1428 tb_tunnel_warn(tunnel, 1429 "failed to release unused bandwidth\n"); 1430 break; 1431 } 1432 } 1433 1434 out = tunnel->dst_port; 1435 ret = tb_available_bandwidth(tb, in, out, &estimated_up, 1436 &estimated_down, true); 1437 if (ret) { 1438 tb_tunnel_warn(tunnel, 1439 "failed to re-calculate estimated bandwidth\n"); 1440 break; 1441 } 1442 1443 /* 1444 * Estimated bandwidth includes: 1445 * - already allocated bandwidth for the DP tunnel 1446 * - available bandwidth along the path 1447 * - bandwidth allocated for USB 3.x but not used. 1448 */ 1449 if (tb_tunnel_direction_downstream(tunnel)) 1450 estimated_bw = estimated_down; 1451 else 1452 estimated_bw = estimated_up; 1453 1454 /* 1455 * If there is reserved bandwidth for the group that is 1456 * not yet released we report that too. 1457 */ 1458 tb_tunnel_dbg(tunnel, 1459 "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n", 1460 estimated_bw, group->reserved, 1461 estimated_bw + group->reserved); 1462 1463 if (usb4_dp_port_set_estimated_bandwidth(in, 1464 estimated_bw + group->reserved)) 1465 tb_tunnel_warn(tunnel, 1466 "failed to update estimated bandwidth\n"); 1467 } 1468 1469 if (first_tunnel) 1470 tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port, 1471 first_tunnel->dst_port); 1472 1473 tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index); 1474 } 1475 1476 static void tb_recalc_estimated_bandwidth(struct tb *tb) 1477 { 1478 struct tb_cm *tcm = tb_priv(tb); 1479 int i; 1480 1481 tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n"); 1482 1483 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1484 struct tb_bandwidth_group *group = &tcm->groups[i]; 1485 1486 if (!list_empty(&group->ports)) 1487 tb_recalc_estimated_bandwidth_for_group(group); 1488 } 1489 1490 tb_dbg(tb, "bandwidth re-calculation done\n"); 1491 } 1492 1493 static bool __release_group_bandwidth(struct tb_bandwidth_group *group) 1494 { 1495 if (group->reserved) { 1496 tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index, 1497 group->reserved); 1498 group->reserved = 0; 1499 return true; 1500 } 1501 return false; 1502 } 1503 1504 static void __configure_group_sym(struct tb_bandwidth_group *group) 1505 { 1506 struct tb_tunnel *tunnel; 1507 struct tb_port *in; 1508 1509 if (list_empty(&group->ports)) 1510 return; 1511 1512 /* 1513 * All the tunnels in the group go through the same USB4 links 1514 * so we find the first one here and pass the IN and OUT 1515 * adapters to tb_configure_sym() which now transitions the 1516 * links back to symmetric if bandwidth requirement < asym_threshold. 1517 * 1518 * We do this here to avoid unnecessary transitions (for example 1519 * if the graphics released bandwidth for other tunnel in the 1520 * same group). 1521 */ 1522 in = list_first_entry(&group->ports, struct tb_port, group_list); 1523 tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL); 1524 if (tunnel) 1525 tb_configure_sym(group->tb, in, tunnel->dst_port, true); 1526 } 1527 1528 static void tb_bandwidth_group_release_work(struct work_struct *work) 1529 { 1530 struct tb_bandwidth_group *group = 1531 container_of(work, typeof(*group), release_work.work); 1532 struct tb *tb = group->tb; 1533 1534 mutex_lock(&tb->lock); 1535 if (__release_group_bandwidth(group)) 1536 tb_recalc_estimated_bandwidth(tb); 1537 __configure_group_sym(group); 1538 mutex_unlock(&tb->lock); 1539 } 1540 1541 static void tb_init_bandwidth_groups(struct tb_cm *tcm) 1542 { 1543 int i; 1544 1545 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1546 struct tb_bandwidth_group *group = &tcm->groups[i]; 1547 1548 group->tb = tcm_to_tb(tcm); 1549 group->index = i + 1; 1550 INIT_LIST_HEAD(&group->ports); 1551 INIT_DELAYED_WORK(&group->release_work, 1552 tb_bandwidth_group_release_work); 1553 } 1554 } 1555 1556 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group, 1557 struct tb_port *in) 1558 { 1559 if (!group || WARN_ON(in->group)) 1560 return; 1561 1562 in->group = group; 1563 list_add_tail(&in->group_list, &group->ports); 1564 1565 tb_port_dbg(in, "attached to bandwidth group %d\n", group->index); 1566 } 1567 1568 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm) 1569 { 1570 int i; 1571 1572 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1573 struct tb_bandwidth_group *group = &tcm->groups[i]; 1574 1575 if (list_empty(&group->ports)) 1576 return group; 1577 } 1578 1579 return NULL; 1580 } 1581 1582 static struct tb_bandwidth_group * 1583 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, 1584 struct tb_port *out) 1585 { 1586 struct tb_bandwidth_group *group; 1587 struct tb_tunnel *tunnel; 1588 1589 /* 1590 * Find all DP tunnels that go through all the same USB4 links 1591 * as this one. Because we always setup tunnels the same way we 1592 * can just check for the routers at both ends of the tunnels 1593 * and if they are the same we have a match. 1594 */ 1595 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1596 if (!tb_tunnel_is_dp(tunnel)) 1597 continue; 1598 1599 if (tunnel->src_port->sw == in->sw && 1600 tunnel->dst_port->sw == out->sw) { 1601 group = tunnel->src_port->group; 1602 if (group) { 1603 tb_bandwidth_group_attach_port(group, in); 1604 return group; 1605 } 1606 } 1607 } 1608 1609 /* Pick up next available group then */ 1610 group = tb_find_free_bandwidth_group(tcm); 1611 if (group) 1612 tb_bandwidth_group_attach_port(group, in); 1613 else 1614 tb_port_warn(in, "no available bandwidth groups\n"); 1615 1616 return group; 1617 } 1618 1619 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, 1620 struct tb_port *out) 1621 { 1622 if (usb4_dp_port_bandwidth_mode_enabled(in)) { 1623 int index, i; 1624 1625 index = usb4_dp_port_group_id(in); 1626 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1627 if (tcm->groups[i].index == index) { 1628 tb_bandwidth_group_attach_port(&tcm->groups[i], in); 1629 return; 1630 } 1631 } 1632 } 1633 1634 tb_attach_bandwidth_group(tcm, in, out); 1635 } 1636 1637 static void tb_detach_bandwidth_group(struct tb_port *in) 1638 { 1639 struct tb_bandwidth_group *group = in->group; 1640 1641 if (group) { 1642 in->group = NULL; 1643 list_del_init(&in->group_list); 1644 1645 tb_port_dbg(in, "detached from bandwidth group %d\n", group->index); 1646 1647 /* No more tunnels so release the reserved bandwidth if any */ 1648 if (list_empty(&group->ports)) { 1649 cancel_delayed_work(&group->release_work); 1650 __release_group_bandwidth(group); 1651 } 1652 } 1653 } 1654 1655 static void tb_discover_tunnels(struct tb *tb) 1656 { 1657 struct tb_cm *tcm = tb_priv(tb); 1658 struct tb_tunnel *tunnel; 1659 1660 tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true); 1661 1662 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1663 if (tb_tunnel_is_pci(tunnel)) { 1664 struct tb_switch *parent = tunnel->dst_port->sw; 1665 1666 while (parent != tunnel->src_port->sw) { 1667 parent->boot = true; 1668 parent = tb_switch_parent(parent); 1669 } 1670 } else if (tb_tunnel_is_dp(tunnel)) { 1671 struct tb_port *in = tunnel->src_port; 1672 struct tb_port *out = tunnel->dst_port; 1673 1674 /* Keep the domain from powering down */ 1675 pm_runtime_get_sync(&in->sw->dev); 1676 pm_runtime_get_sync(&out->sw->dev); 1677 1678 tb_discover_bandwidth_group(tcm, in, out); 1679 } 1680 } 1681 } 1682 1683 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel) 1684 { 1685 struct tb_port *src_port, *dst_port; 1686 struct tb *tb; 1687 1688 if (!tunnel) 1689 return; 1690 1691 tb_tunnel_deactivate(tunnel); 1692 list_del(&tunnel->list); 1693 1694 tb = tunnel->tb; 1695 src_port = tunnel->src_port; 1696 dst_port = tunnel->dst_port; 1697 1698 switch (tunnel->type) { 1699 case TB_TUNNEL_DP: 1700 tb_detach_bandwidth_group(src_port); 1701 /* 1702 * In case of DP tunnel make sure the DP IN resource is 1703 * deallocated properly. 1704 */ 1705 tb_switch_dealloc_dp_resource(src_port->sw, src_port); 1706 /* 1707 * If bandwidth on a link is < asym_threshold 1708 * transition the link to symmetric. 1709 */ 1710 tb_configure_sym(tb, src_port, dst_port, true); 1711 /* Now we can allow the domain to runtime suspend again */ 1712 pm_runtime_mark_last_busy(&dst_port->sw->dev); 1713 pm_runtime_put_autosuspend(&dst_port->sw->dev); 1714 pm_runtime_mark_last_busy(&src_port->sw->dev); 1715 pm_runtime_put_autosuspend(&src_port->sw->dev); 1716 fallthrough; 1717 1718 case TB_TUNNEL_USB3: 1719 tb_reclaim_usb3_bandwidth(tb, src_port, dst_port); 1720 break; 1721 1722 default: 1723 /* 1724 * PCIe and DMA tunnels do not consume guaranteed 1725 * bandwidth. 1726 */ 1727 break; 1728 } 1729 1730 tb_tunnel_free(tunnel); 1731 } 1732 1733 /* 1734 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away 1735 */ 1736 static void tb_free_invalid_tunnels(struct tb *tb) 1737 { 1738 struct tb_cm *tcm = tb_priv(tb); 1739 struct tb_tunnel *tunnel; 1740 struct tb_tunnel *n; 1741 1742 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 1743 if (tb_tunnel_is_invalid(tunnel)) 1744 tb_deactivate_and_free_tunnel(tunnel); 1745 } 1746 } 1747 1748 /* 1749 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches 1750 */ 1751 static void tb_free_unplugged_children(struct tb_switch *sw) 1752 { 1753 struct tb_port *port; 1754 1755 tb_switch_for_each_port(sw, port) { 1756 if (!tb_port_has_remote(port)) 1757 continue; 1758 1759 if (port->remote->sw->is_unplugged) { 1760 tb_retimer_remove_all(port); 1761 tb_remove_dp_resources(port->remote->sw); 1762 tb_switch_unconfigure_link(port->remote->sw); 1763 tb_switch_set_link_width(port->remote->sw, 1764 TB_LINK_WIDTH_SINGLE); 1765 tb_switch_remove(port->remote->sw); 1766 port->remote = NULL; 1767 if (port->dual_link_port) 1768 port->dual_link_port->remote = NULL; 1769 } else { 1770 tb_free_unplugged_children(port->remote->sw); 1771 } 1772 } 1773 } 1774 1775 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw, 1776 const struct tb_port *port) 1777 { 1778 struct tb_port *down = NULL; 1779 1780 /* 1781 * To keep plugging devices consistently in the same PCIe 1782 * hierarchy, do mapping here for switch downstream PCIe ports. 1783 */ 1784 if (tb_switch_is_usb4(sw)) { 1785 down = usb4_switch_map_pcie_down(sw, port); 1786 } else if (!tb_route(sw)) { 1787 int phy_port = tb_phy_port_from_link(port->port); 1788 int index; 1789 1790 /* 1791 * Hard-coded Thunderbolt port to PCIe down port mapping 1792 * per controller. 1793 */ 1794 if (tb_switch_is_cactus_ridge(sw) || 1795 tb_switch_is_alpine_ridge(sw)) 1796 index = !phy_port ? 6 : 7; 1797 else if (tb_switch_is_falcon_ridge(sw)) 1798 index = !phy_port ? 6 : 8; 1799 else if (tb_switch_is_titan_ridge(sw)) 1800 index = !phy_port ? 8 : 9; 1801 else 1802 goto out; 1803 1804 /* Validate the hard-coding */ 1805 if (WARN_ON(index > sw->config.max_port_number)) 1806 goto out; 1807 1808 down = &sw->ports[index]; 1809 } 1810 1811 if (down) { 1812 if (WARN_ON(!tb_port_is_pcie_down(down))) 1813 goto out; 1814 if (tb_pci_port_is_enabled(down)) 1815 goto out; 1816 1817 return down; 1818 } 1819 1820 out: 1821 return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN); 1822 } 1823 1824 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in) 1825 { 1826 struct tb_port *host_port, *port; 1827 struct tb_cm *tcm = tb_priv(tb); 1828 1829 host_port = tb_route(in->sw) ? 1830 tb_port_at(tb_route(in->sw), tb->root_switch) : NULL; 1831 1832 list_for_each_entry(port, &tcm->dp_resources, list) { 1833 if (!tb_port_is_dpout(port)) 1834 continue; 1835 1836 if (tb_port_is_enabled(port)) { 1837 tb_port_dbg(port, "DP OUT in use\n"); 1838 continue; 1839 } 1840 1841 /* Needs to be on different routers */ 1842 if (in->sw == port->sw) { 1843 tb_port_dbg(port, "skipping DP OUT on same router\n"); 1844 continue; 1845 } 1846 1847 tb_port_dbg(port, "DP OUT available\n"); 1848 1849 /* 1850 * Keep the DP tunnel under the topology starting from 1851 * the same host router downstream port. 1852 */ 1853 if (host_port && tb_route(port->sw)) { 1854 struct tb_port *p; 1855 1856 p = tb_port_at(tb_route(port->sw), tb->root_switch); 1857 if (p != host_port) 1858 continue; 1859 } 1860 1861 return port; 1862 } 1863 1864 return NULL; 1865 } 1866 1867 static bool tb_tunnel_one_dp(struct tb *tb, struct tb_port *in, 1868 struct tb_port *out) 1869 { 1870 int available_up, available_down, ret, link_nr; 1871 struct tb_cm *tcm = tb_priv(tb); 1872 int consumed_up, consumed_down; 1873 struct tb_tunnel *tunnel; 1874 1875 /* 1876 * This is only applicable to links that are not bonded (so 1877 * when Thunderbolt 1 hardware is involved somewhere in the 1878 * topology). For these try to share the DP bandwidth between 1879 * the two lanes. 1880 */ 1881 link_nr = 1; 1882 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1883 if (tb_tunnel_is_dp(tunnel)) { 1884 link_nr = 0; 1885 break; 1886 } 1887 } 1888 1889 /* 1890 * DP stream needs the domain to be active so runtime resume 1891 * both ends of the tunnel. 1892 * 1893 * This should bring the routers in the middle active as well 1894 * and keeps the domain from runtime suspending while the DP 1895 * tunnel is active. 1896 */ 1897 pm_runtime_get_sync(&in->sw->dev); 1898 pm_runtime_get_sync(&out->sw->dev); 1899 1900 if (tb_switch_alloc_dp_resource(in->sw, in)) { 1901 tb_port_dbg(in, "no resource available for DP IN, not tunneling\n"); 1902 goto err_rpm_put; 1903 } 1904 1905 if (!tb_attach_bandwidth_group(tcm, in, out)) 1906 goto err_dealloc_dp; 1907 1908 /* Make all unused USB3 bandwidth available for the new DP tunnel */ 1909 ret = tb_release_unused_usb3_bandwidth(tb, in, out); 1910 if (ret) { 1911 tb_warn(tb, "failed to release unused bandwidth\n"); 1912 goto err_detach_group; 1913 } 1914 1915 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down, 1916 true); 1917 if (ret) 1918 goto err_reclaim_usb; 1919 1920 tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n", 1921 available_up, available_down); 1922 1923 tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up, 1924 available_down); 1925 if (!tunnel) { 1926 tb_port_dbg(out, "could not allocate DP tunnel\n"); 1927 goto err_reclaim_usb; 1928 } 1929 1930 if (tb_tunnel_activate(tunnel)) { 1931 tb_port_info(out, "DP tunnel activation failed, aborting\n"); 1932 goto err_free; 1933 } 1934 1935 /* If fail reading tunnel's consumed bandwidth, tear it down */ 1936 ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down); 1937 if (ret) 1938 goto err_deactivate; 1939 1940 list_add_tail(&tunnel->list, &tcm->tunnel_list); 1941 1942 tb_reclaim_usb3_bandwidth(tb, in, out); 1943 /* 1944 * Transition the links to asymmetric if the consumption exceeds 1945 * the threshold. 1946 */ 1947 tb_configure_asym(tb, in, out, consumed_up, consumed_down); 1948 1949 /* Update the domain with the new bandwidth estimation */ 1950 tb_recalc_estimated_bandwidth(tb); 1951 1952 /* 1953 * In case of DP tunnel exists, change host router's 1st children 1954 * TMU mode to HiFi for CL0s to work. 1955 */ 1956 tb_increase_tmu_accuracy(tunnel); 1957 return true; 1958 1959 err_deactivate: 1960 tb_tunnel_deactivate(tunnel); 1961 err_free: 1962 tb_tunnel_free(tunnel); 1963 err_reclaim_usb: 1964 tb_reclaim_usb3_bandwidth(tb, in, out); 1965 err_detach_group: 1966 tb_detach_bandwidth_group(in); 1967 err_dealloc_dp: 1968 tb_switch_dealloc_dp_resource(in->sw, in); 1969 err_rpm_put: 1970 pm_runtime_mark_last_busy(&out->sw->dev); 1971 pm_runtime_put_autosuspend(&out->sw->dev); 1972 pm_runtime_mark_last_busy(&in->sw->dev); 1973 pm_runtime_put_autosuspend(&in->sw->dev); 1974 1975 return false; 1976 } 1977 1978 static void tb_tunnel_dp(struct tb *tb) 1979 { 1980 struct tb_cm *tcm = tb_priv(tb); 1981 struct tb_port *port, *in, *out; 1982 1983 if (!tb_acpi_may_tunnel_dp()) { 1984 tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n"); 1985 return; 1986 } 1987 1988 /* 1989 * Find pair of inactive DP IN and DP OUT adapters and then 1990 * establish a DP tunnel between them. 1991 */ 1992 tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n"); 1993 1994 in = NULL; 1995 out = NULL; 1996 list_for_each_entry(port, &tcm->dp_resources, list) { 1997 if (!tb_port_is_dpin(port)) 1998 continue; 1999 2000 if (tb_port_is_enabled(port)) { 2001 tb_port_dbg(port, "DP IN in use\n"); 2002 continue; 2003 } 2004 2005 in = port; 2006 tb_port_dbg(in, "DP IN available\n"); 2007 2008 out = tb_find_dp_out(tb, port); 2009 if (out) 2010 tb_tunnel_one_dp(tb, in, out); 2011 else 2012 tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n"); 2013 } 2014 2015 if (!in) 2016 tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n"); 2017 } 2018 2019 static void tb_enter_redrive(struct tb_port *port) 2020 { 2021 struct tb_switch *sw = port->sw; 2022 2023 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2024 return; 2025 2026 /* 2027 * If we get hot-unplug for the DP IN port of the host router 2028 * and the DP resource is not available anymore it means there 2029 * is a monitor connected directly to the Type-C port and we are 2030 * in "redrive" mode. For this to work we cannot enter RTD3 so 2031 * we bump up the runtime PM reference count here. 2032 */ 2033 if (!tb_port_is_dpin(port)) 2034 return; 2035 if (tb_route(sw)) 2036 return; 2037 if (!tb_switch_query_dp_resource(sw, port)) { 2038 port->redrive = true; 2039 pm_runtime_get(&sw->dev); 2040 tb_port_dbg(port, "enter redrive mode, keeping powered\n"); 2041 } 2042 } 2043 2044 static void tb_exit_redrive(struct tb_port *port) 2045 { 2046 struct tb_switch *sw = port->sw; 2047 2048 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2049 return; 2050 2051 if (!tb_port_is_dpin(port)) 2052 return; 2053 if (tb_route(sw)) 2054 return; 2055 if (port->redrive && tb_switch_query_dp_resource(sw, port)) { 2056 port->redrive = false; 2057 pm_runtime_put(&sw->dev); 2058 tb_port_dbg(port, "exit redrive mode\n"); 2059 } 2060 } 2061 2062 static void tb_switch_enter_redrive(struct tb_switch *sw) 2063 { 2064 struct tb_port *port; 2065 2066 tb_switch_for_each_port(sw, port) 2067 tb_enter_redrive(port); 2068 } 2069 2070 /* 2071 * Called during system and runtime suspend to forcefully exit redrive 2072 * mode without querying whether the resource is available. 2073 */ 2074 static void tb_switch_exit_redrive(struct tb_switch *sw) 2075 { 2076 struct tb_port *port; 2077 2078 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2079 return; 2080 2081 tb_switch_for_each_port(sw, port) { 2082 if (!tb_port_is_dpin(port)) 2083 continue; 2084 2085 if (port->redrive) { 2086 port->redrive = false; 2087 pm_runtime_put(&sw->dev); 2088 tb_port_dbg(port, "exit redrive mode\n"); 2089 } 2090 } 2091 } 2092 2093 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port) 2094 { 2095 struct tb_port *in, *out; 2096 struct tb_tunnel *tunnel; 2097 2098 if (tb_port_is_dpin(port)) { 2099 tb_port_dbg(port, "DP IN resource unavailable\n"); 2100 in = port; 2101 out = NULL; 2102 } else { 2103 tb_port_dbg(port, "DP OUT resource unavailable\n"); 2104 in = NULL; 2105 out = port; 2106 } 2107 2108 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out); 2109 if (tunnel) 2110 tb_deactivate_and_free_tunnel(tunnel); 2111 else 2112 tb_enter_redrive(port); 2113 list_del_init(&port->list); 2114 2115 /* 2116 * See if there is another DP OUT port that can be used for 2117 * to create another tunnel. 2118 */ 2119 tb_recalc_estimated_bandwidth(tb); 2120 tb_tunnel_dp(tb); 2121 } 2122 2123 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port) 2124 { 2125 struct tb_cm *tcm = tb_priv(tb); 2126 struct tb_port *p; 2127 2128 if (tb_port_is_enabled(port)) 2129 return; 2130 2131 list_for_each_entry(p, &tcm->dp_resources, list) { 2132 if (p == port) 2133 return; 2134 } 2135 2136 tb_port_dbg(port, "DP %s resource available after hotplug\n", 2137 tb_port_is_dpin(port) ? "IN" : "OUT"); 2138 list_add_tail(&port->list, &tcm->dp_resources); 2139 tb_exit_redrive(port); 2140 2141 /* Look for suitable DP IN <-> DP OUT pairs now */ 2142 tb_tunnel_dp(tb); 2143 } 2144 2145 static void tb_disconnect_and_release_dp(struct tb *tb) 2146 { 2147 struct tb_cm *tcm = tb_priv(tb); 2148 struct tb_tunnel *tunnel, *n; 2149 2150 /* 2151 * Tear down all DP tunnels and release their resources. They 2152 * will be re-established after resume based on plug events. 2153 */ 2154 list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) { 2155 if (tb_tunnel_is_dp(tunnel)) 2156 tb_deactivate_and_free_tunnel(tunnel); 2157 } 2158 2159 while (!list_empty(&tcm->dp_resources)) { 2160 struct tb_port *port; 2161 2162 port = list_first_entry(&tcm->dp_resources, 2163 struct tb_port, list); 2164 list_del_init(&port->list); 2165 } 2166 } 2167 2168 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw) 2169 { 2170 struct tb_tunnel *tunnel; 2171 struct tb_port *up; 2172 2173 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); 2174 if (WARN_ON(!up)) 2175 return -ENODEV; 2176 2177 tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up); 2178 if (WARN_ON(!tunnel)) 2179 return -ENODEV; 2180 2181 tb_switch_xhci_disconnect(sw); 2182 2183 tb_tunnel_deactivate(tunnel); 2184 list_del(&tunnel->list); 2185 tb_tunnel_free(tunnel); 2186 return 0; 2187 } 2188 2189 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw) 2190 { 2191 struct tb_port *up, *down, *port; 2192 struct tb_cm *tcm = tb_priv(tb); 2193 struct tb_tunnel *tunnel; 2194 2195 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); 2196 if (!up) 2197 return 0; 2198 2199 /* 2200 * Look up available down port. Since we are chaining it should 2201 * be found right above this switch. 2202 */ 2203 port = tb_switch_downstream_port(sw); 2204 down = tb_find_pcie_down(tb_switch_parent(sw), port); 2205 if (!down) 2206 return 0; 2207 2208 tunnel = tb_tunnel_alloc_pci(tb, up, down); 2209 if (!tunnel) 2210 return -ENOMEM; 2211 2212 if (tb_tunnel_activate(tunnel)) { 2213 tb_port_info(up, 2214 "PCIe tunnel activation failed, aborting\n"); 2215 tb_tunnel_free(tunnel); 2216 return -EIO; 2217 } 2218 2219 /* 2220 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it 2221 * here. 2222 */ 2223 if (tb_switch_pcie_l1_enable(sw)) 2224 tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n"); 2225 2226 if (tb_switch_xhci_connect(sw)) 2227 tb_sw_warn(sw, "failed to connect xHCI\n"); 2228 2229 list_add_tail(&tunnel->list, &tcm->tunnel_list); 2230 return 0; 2231 } 2232 2233 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2234 int transmit_path, int transmit_ring, 2235 int receive_path, int receive_ring) 2236 { 2237 struct tb_cm *tcm = tb_priv(tb); 2238 struct tb_port *nhi_port, *dst_port; 2239 struct tb_tunnel *tunnel; 2240 struct tb_switch *sw; 2241 int ret; 2242 2243 sw = tb_to_switch(xd->dev.parent); 2244 dst_port = tb_port_at(xd->route, sw); 2245 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); 2246 2247 mutex_lock(&tb->lock); 2248 2249 /* 2250 * When tunneling DMA paths the link should not enter CL states 2251 * so disable them now. 2252 */ 2253 tb_disable_clx(sw); 2254 2255 tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path, 2256 transmit_ring, receive_path, receive_ring); 2257 if (!tunnel) { 2258 ret = -ENOMEM; 2259 goto err_clx; 2260 } 2261 2262 if (tb_tunnel_activate(tunnel)) { 2263 tb_port_info(nhi_port, 2264 "DMA tunnel activation failed, aborting\n"); 2265 ret = -EIO; 2266 goto err_free; 2267 } 2268 2269 list_add_tail(&tunnel->list, &tcm->tunnel_list); 2270 mutex_unlock(&tb->lock); 2271 return 0; 2272 2273 err_free: 2274 tb_tunnel_free(tunnel); 2275 err_clx: 2276 tb_enable_clx(sw); 2277 mutex_unlock(&tb->lock); 2278 2279 return ret; 2280 } 2281 2282 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2283 int transmit_path, int transmit_ring, 2284 int receive_path, int receive_ring) 2285 { 2286 struct tb_cm *tcm = tb_priv(tb); 2287 struct tb_port *nhi_port, *dst_port; 2288 struct tb_tunnel *tunnel, *n; 2289 struct tb_switch *sw; 2290 2291 sw = tb_to_switch(xd->dev.parent); 2292 dst_port = tb_port_at(xd->route, sw); 2293 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); 2294 2295 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 2296 if (!tb_tunnel_is_dma(tunnel)) 2297 continue; 2298 if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port) 2299 continue; 2300 2301 if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring, 2302 receive_path, receive_ring)) 2303 tb_deactivate_and_free_tunnel(tunnel); 2304 } 2305 2306 /* 2307 * Try to re-enable CL states now, it is OK if this fails 2308 * because we may still have another DMA tunnel active through 2309 * the same host router USB4 downstream port. 2310 */ 2311 tb_enable_clx(sw); 2312 } 2313 2314 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2315 int transmit_path, int transmit_ring, 2316 int receive_path, int receive_ring) 2317 { 2318 if (!xd->is_unplugged) { 2319 mutex_lock(&tb->lock); 2320 __tb_disconnect_xdomain_paths(tb, xd, transmit_path, 2321 transmit_ring, receive_path, 2322 receive_ring); 2323 mutex_unlock(&tb->lock); 2324 } 2325 return 0; 2326 } 2327 2328 /* hotplug handling */ 2329 2330 /* 2331 * tb_handle_hotplug() - handle hotplug event 2332 * 2333 * Executes on tb->wq. 2334 */ 2335 static void tb_handle_hotplug(struct work_struct *work) 2336 { 2337 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work); 2338 struct tb *tb = ev->tb; 2339 struct tb_cm *tcm = tb_priv(tb); 2340 struct tb_switch *sw; 2341 struct tb_port *port; 2342 2343 /* Bring the domain back from sleep if it was suspended */ 2344 pm_runtime_get_sync(&tb->dev); 2345 2346 mutex_lock(&tb->lock); 2347 if (!tcm->hotplug_active) 2348 goto out; /* during init, suspend or shutdown */ 2349 2350 sw = tb_switch_find_by_route(tb, ev->route); 2351 if (!sw) { 2352 tb_warn(tb, 2353 "hotplug event from non existent switch %llx:%x (unplug: %d)\n", 2354 ev->route, ev->port, ev->unplug); 2355 goto out; 2356 } 2357 if (ev->port > sw->config.max_port_number) { 2358 tb_warn(tb, 2359 "hotplug event from non existent port %llx:%x (unplug: %d)\n", 2360 ev->route, ev->port, ev->unplug); 2361 goto put_sw; 2362 } 2363 port = &sw->ports[ev->port]; 2364 if (tb_is_upstream_port(port)) { 2365 tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n", 2366 ev->route, ev->port, ev->unplug); 2367 goto put_sw; 2368 } 2369 2370 pm_runtime_get_sync(&sw->dev); 2371 2372 if (ev->unplug) { 2373 tb_retimer_remove_all(port); 2374 2375 if (tb_port_has_remote(port)) { 2376 tb_port_dbg(port, "switch unplugged\n"); 2377 tb_sw_set_unplugged(port->remote->sw); 2378 tb_free_invalid_tunnels(tb); 2379 tb_remove_dp_resources(port->remote->sw); 2380 tb_switch_tmu_disable(port->remote->sw); 2381 tb_switch_unconfigure_link(port->remote->sw); 2382 tb_switch_set_link_width(port->remote->sw, 2383 TB_LINK_WIDTH_SINGLE); 2384 tb_switch_remove(port->remote->sw); 2385 port->remote = NULL; 2386 if (port->dual_link_port) 2387 port->dual_link_port->remote = NULL; 2388 /* Maybe we can create another DP tunnel */ 2389 tb_recalc_estimated_bandwidth(tb); 2390 tb_tunnel_dp(tb); 2391 } else if (port->xdomain) { 2392 struct tb_xdomain *xd = tb_xdomain_get(port->xdomain); 2393 2394 tb_port_dbg(port, "xdomain unplugged\n"); 2395 /* 2396 * Service drivers are unbound during 2397 * tb_xdomain_remove() so setting XDomain as 2398 * unplugged here prevents deadlock if they call 2399 * tb_xdomain_disable_paths(). We will tear down 2400 * all the tunnels below. 2401 */ 2402 xd->is_unplugged = true; 2403 tb_xdomain_remove(xd); 2404 port->xdomain = NULL; 2405 __tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1); 2406 tb_xdomain_put(xd); 2407 tb_port_unconfigure_xdomain(port); 2408 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { 2409 tb_dp_resource_unavailable(tb, port); 2410 } else if (!port->port) { 2411 tb_sw_dbg(sw, "xHCI disconnect request\n"); 2412 tb_switch_xhci_disconnect(sw); 2413 } else { 2414 tb_port_dbg(port, 2415 "got unplug event for disconnected port, ignoring\n"); 2416 } 2417 } else if (port->remote) { 2418 tb_port_dbg(port, "got plug event for connected port, ignoring\n"); 2419 } else if (!port->port && sw->authorized) { 2420 tb_sw_dbg(sw, "xHCI connect request\n"); 2421 tb_switch_xhci_connect(sw); 2422 } else { 2423 if (tb_port_is_null(port)) { 2424 tb_port_dbg(port, "hotplug: scanning\n"); 2425 tb_scan_port(port); 2426 if (!port->remote) 2427 tb_port_dbg(port, "hotplug: no switch found\n"); 2428 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { 2429 tb_dp_resource_available(tb, port); 2430 } 2431 } 2432 2433 pm_runtime_mark_last_busy(&sw->dev); 2434 pm_runtime_put_autosuspend(&sw->dev); 2435 2436 put_sw: 2437 tb_switch_put(sw); 2438 out: 2439 mutex_unlock(&tb->lock); 2440 2441 pm_runtime_mark_last_busy(&tb->dev); 2442 pm_runtime_put_autosuspend(&tb->dev); 2443 2444 kfree(ev); 2445 } 2446 2447 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up, 2448 int *requested_down) 2449 { 2450 int allocated_up, allocated_down, available_up, available_down, ret; 2451 int requested_up_corrected, requested_down_corrected, granularity; 2452 int max_up, max_down, max_up_rounded, max_down_rounded; 2453 struct tb_bandwidth_group *group; 2454 struct tb *tb = tunnel->tb; 2455 struct tb_port *in, *out; 2456 bool downstream; 2457 2458 ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down); 2459 if (ret) 2460 return ret; 2461 2462 in = tunnel->src_port; 2463 out = tunnel->dst_port; 2464 2465 tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n", 2466 allocated_up, allocated_down); 2467 2468 /* 2469 * If we get rounded up request from graphics side, say HBR2 x 4 2470 * that is 17500 instead of 17280 (this is because of the 2471 * granularity), we allow it too. Here the graphics has already 2472 * negotiated with the DPRX the maximum possible rates (which is 2473 * 17280 in this case). 2474 * 2475 * Since the link cannot go higher than 17280 we use that in our 2476 * calculations but the DP IN adapter Allocated BW write must be 2477 * the same value (17500) otherwise the adapter will mark it as 2478 * failed for graphics. 2479 */ 2480 ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down); 2481 if (ret) 2482 goto fail; 2483 2484 ret = usb4_dp_port_granularity(in); 2485 if (ret < 0) 2486 goto fail; 2487 granularity = ret; 2488 2489 max_up_rounded = roundup(max_up, granularity); 2490 max_down_rounded = roundup(max_down, granularity); 2491 2492 /* 2493 * This will "fix" the request down to the maximum supported 2494 * rate * lanes if it is at the maximum rounded up level. 2495 */ 2496 requested_up_corrected = *requested_up; 2497 if (requested_up_corrected == max_up_rounded) 2498 requested_up_corrected = max_up; 2499 else if (requested_up_corrected < 0) 2500 requested_up_corrected = 0; 2501 requested_down_corrected = *requested_down; 2502 if (requested_down_corrected == max_down_rounded) 2503 requested_down_corrected = max_down; 2504 else if (requested_down_corrected < 0) 2505 requested_down_corrected = 0; 2506 2507 tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n", 2508 requested_up_corrected, requested_down_corrected); 2509 2510 if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) || 2511 (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) { 2512 tb_tunnel_dbg(tunnel, 2513 "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n", 2514 requested_up_corrected, requested_down_corrected, 2515 max_up_rounded, max_down_rounded); 2516 ret = -ENOBUFS; 2517 goto fail; 2518 } 2519 2520 downstream = tb_tunnel_direction_downstream(tunnel); 2521 group = in->group; 2522 2523 if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) || 2524 (*requested_down >= 0 && requested_down_corrected <= allocated_down)) { 2525 if (tunnel->bw_mode) { 2526 int reserved; 2527 /* 2528 * If requested bandwidth is less or equal than 2529 * what is currently allocated to that tunnel we 2530 * simply change the reservation of the tunnel 2531 * and add the released bandwidth for the group 2532 * for the next 10s. Then we release it for 2533 * others to use. 2534 */ 2535 if (downstream) 2536 reserved = allocated_down - *requested_down; 2537 else 2538 reserved = allocated_up - *requested_up; 2539 2540 if (reserved > 0) { 2541 group->reserved += reserved; 2542 tb_dbg(tb, "group %d reserved %d total %d Mb/s\n", 2543 group->index, reserved, group->reserved); 2544 2545 /* 2546 * If it was not already pending, 2547 * schedule release now. If it is then 2548 * postpone it for the next 10s (unless 2549 * it is already running in which case 2550 * the 10s already expired and we should 2551 * give the reserved back to others). 2552 */ 2553 mod_delayed_work(system_wq, &group->release_work, 2554 msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT)); 2555 } 2556 } 2557 2558 return tb_tunnel_alloc_bandwidth(tunnel, requested_up, 2559 requested_down); 2560 } 2561 2562 /* 2563 * More bandwidth is requested. Release all the potential 2564 * bandwidth from USB3 first. 2565 */ 2566 ret = tb_release_unused_usb3_bandwidth(tb, in, out); 2567 if (ret) 2568 goto fail; 2569 2570 /* 2571 * Then go over all tunnels that cross the same USB4 ports (they 2572 * are also in the same group but we use the same function here 2573 * that we use with the normal bandwidth allocation). 2574 */ 2575 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down, 2576 true); 2577 if (ret) 2578 goto reclaim; 2579 2580 tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n", 2581 available_up, available_down, group->reserved); 2582 2583 if ((*requested_up >= 0 && 2584 available_up + group->reserved >= requested_up_corrected) || 2585 (*requested_down >= 0 && 2586 available_down + group->reserved >= requested_down_corrected)) { 2587 int released = 0; 2588 2589 /* 2590 * If bandwidth on a link is >= asym_threshold 2591 * transition the link to asymmetric. 2592 */ 2593 ret = tb_configure_asym(tb, in, out, *requested_up, 2594 *requested_down); 2595 if (ret) { 2596 tb_configure_sym(tb, in, out, true); 2597 goto fail; 2598 } 2599 2600 ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up, 2601 requested_down); 2602 if (ret) { 2603 tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n"); 2604 tb_configure_sym(tb, in, out, true); 2605 } 2606 2607 if (downstream) { 2608 if (*requested_down > available_down) 2609 released = *requested_down - available_down; 2610 } else { 2611 if (*requested_up > available_up) 2612 released = *requested_up - available_up; 2613 } 2614 if (released) { 2615 group->reserved -= released; 2616 tb_dbg(tb, "group %d released %d total %d Mb/s\n", 2617 group->index, released, group->reserved); 2618 } 2619 } else { 2620 ret = -ENOBUFS; 2621 } 2622 2623 reclaim: 2624 tb_reclaim_usb3_bandwidth(tb, in, out); 2625 fail: 2626 if (ret && ret != -ENODEV) { 2627 /* 2628 * Write back the same allocated (so no change), this 2629 * makes the DPTX request fail on graphics side. 2630 */ 2631 tb_tunnel_dbg(tunnel, 2632 "failing the request by rewriting allocated %d/%d Mb/s\n", 2633 allocated_up, allocated_down); 2634 tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down); 2635 } 2636 2637 return ret; 2638 } 2639 2640 static void tb_handle_dp_bandwidth_request(struct work_struct *work) 2641 { 2642 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work); 2643 int requested_bw, requested_up, requested_down, ret; 2644 struct tb_tunnel *tunnel; 2645 struct tb *tb = ev->tb; 2646 struct tb_cm *tcm = tb_priv(tb); 2647 struct tb_switch *sw; 2648 struct tb_port *in; 2649 2650 pm_runtime_get_sync(&tb->dev); 2651 2652 mutex_lock(&tb->lock); 2653 if (!tcm->hotplug_active) 2654 goto unlock; 2655 2656 sw = tb_switch_find_by_route(tb, ev->route); 2657 if (!sw) { 2658 tb_warn(tb, "bandwidth request from non-existent router %llx\n", 2659 ev->route); 2660 goto unlock; 2661 } 2662 2663 in = &sw->ports[ev->port]; 2664 if (!tb_port_is_dpin(in)) { 2665 tb_port_warn(in, "bandwidth request to non-DP IN adapter\n"); 2666 goto put_sw; 2667 } 2668 2669 tb_port_dbg(in, "handling bandwidth allocation request\n"); 2670 2671 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); 2672 if (!tunnel) { 2673 tb_port_warn(in, "failed to find tunnel\n"); 2674 goto put_sw; 2675 } 2676 2677 if (!usb4_dp_port_bandwidth_mode_enabled(in)) { 2678 if (tunnel->bw_mode) { 2679 /* 2680 * Reset the tunnel back to use the legacy 2681 * allocation. 2682 */ 2683 tunnel->bw_mode = false; 2684 tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n"); 2685 } else { 2686 tb_port_warn(in, "bandwidth allocation mode not enabled\n"); 2687 } 2688 goto put_sw; 2689 } 2690 2691 ret = usb4_dp_port_requested_bandwidth(in); 2692 if (ret < 0) { 2693 if (ret == -ENODATA) { 2694 /* 2695 * There is no request active so this means the 2696 * BW allocation mode was enabled from graphics 2697 * side. At this point we know that the graphics 2698 * driver has read the DRPX capabilities so we 2699 * can offer an better bandwidth estimatation. 2700 */ 2701 tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n"); 2702 tb_recalc_estimated_bandwidth(tb); 2703 } else { 2704 tb_port_warn(in, "failed to read requested bandwidth\n"); 2705 } 2706 goto put_sw; 2707 } 2708 requested_bw = ret; 2709 2710 tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw); 2711 2712 if (tb_tunnel_direction_downstream(tunnel)) { 2713 requested_up = -1; 2714 requested_down = requested_bw; 2715 } else { 2716 requested_up = requested_bw; 2717 requested_down = -1; 2718 } 2719 2720 ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down); 2721 if (ret) { 2722 if (ret == -ENOBUFS) 2723 tb_tunnel_warn(tunnel, 2724 "not enough bandwidth available\n"); 2725 else 2726 tb_tunnel_warn(tunnel, 2727 "failed to change bandwidth allocation\n"); 2728 } else { 2729 tb_tunnel_dbg(tunnel, 2730 "bandwidth allocation changed to %d/%d Mb/s\n", 2731 requested_up, requested_down); 2732 2733 /* Update other clients about the allocation change */ 2734 tb_recalc_estimated_bandwidth(tb); 2735 } 2736 2737 put_sw: 2738 tb_switch_put(sw); 2739 unlock: 2740 mutex_unlock(&tb->lock); 2741 2742 pm_runtime_mark_last_busy(&tb->dev); 2743 pm_runtime_put_autosuspend(&tb->dev); 2744 2745 kfree(ev); 2746 } 2747 2748 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port) 2749 { 2750 struct tb_hotplug_event *ev; 2751 2752 ev = kmalloc(sizeof(*ev), GFP_KERNEL); 2753 if (!ev) 2754 return; 2755 2756 ev->tb = tb; 2757 ev->route = route; 2758 ev->port = port; 2759 INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request); 2760 queue_work(tb->wq, &ev->work); 2761 } 2762 2763 static void tb_handle_notification(struct tb *tb, u64 route, 2764 const struct cfg_error_pkg *error) 2765 { 2766 2767 switch (error->error) { 2768 case TB_CFG_ERROR_PCIE_WAKE: 2769 case TB_CFG_ERROR_DP_CON_CHANGE: 2770 case TB_CFG_ERROR_DPTX_DISCOVERY: 2771 if (tb_cfg_ack_notification(tb->ctl, route, error)) 2772 tb_warn(tb, "could not ack notification on %llx\n", 2773 route); 2774 break; 2775 2776 case TB_CFG_ERROR_DP_BW: 2777 if (tb_cfg_ack_notification(tb->ctl, route, error)) 2778 tb_warn(tb, "could not ack notification on %llx\n", 2779 route); 2780 tb_queue_dp_bandwidth_request(tb, route, error->port); 2781 break; 2782 2783 default: 2784 /* Ignore for now */ 2785 break; 2786 } 2787 } 2788 2789 /* 2790 * tb_schedule_hotplug_handler() - callback function for the control channel 2791 * 2792 * Delegates to tb_handle_hotplug. 2793 */ 2794 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type, 2795 const void *buf, size_t size) 2796 { 2797 const struct cfg_event_pkg *pkg = buf; 2798 u64 route = tb_cfg_get_route(&pkg->header); 2799 2800 switch (type) { 2801 case TB_CFG_PKG_ERROR: 2802 tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf); 2803 return; 2804 case TB_CFG_PKG_EVENT: 2805 break; 2806 default: 2807 tb_warn(tb, "unexpected event %#x, ignoring\n", type); 2808 return; 2809 } 2810 2811 if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) { 2812 tb_warn(tb, "could not ack plug event on %llx:%x\n", route, 2813 pkg->port); 2814 } 2815 2816 tb_queue_hotplug(tb, route, pkg->port, pkg->unplug); 2817 } 2818 2819 static void tb_stop(struct tb *tb) 2820 { 2821 struct tb_cm *tcm = tb_priv(tb); 2822 struct tb_tunnel *tunnel; 2823 struct tb_tunnel *n; 2824 2825 cancel_delayed_work(&tcm->remove_work); 2826 /* tunnels are only present after everything has been initialized */ 2827 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 2828 /* 2829 * DMA tunnels require the driver to be functional so we 2830 * tear them down. Other protocol tunnels can be left 2831 * intact. 2832 */ 2833 if (tb_tunnel_is_dma(tunnel)) 2834 tb_tunnel_deactivate(tunnel); 2835 tb_tunnel_free(tunnel); 2836 } 2837 tb_switch_remove(tb->root_switch); 2838 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ 2839 } 2840 2841 static void tb_deinit(struct tb *tb) 2842 { 2843 struct tb_cm *tcm = tb_priv(tb); 2844 int i; 2845 2846 /* Cancel all the release bandwidth workers */ 2847 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) 2848 cancel_delayed_work_sync(&tcm->groups[i].release_work); 2849 } 2850 2851 static int tb_scan_finalize_switch(struct device *dev, void *data) 2852 { 2853 if (tb_is_switch(dev)) { 2854 struct tb_switch *sw = tb_to_switch(dev); 2855 2856 /* 2857 * If we found that the switch was already setup by the 2858 * boot firmware, mark it as authorized now before we 2859 * send uevent to userspace. 2860 */ 2861 if (sw->boot) 2862 sw->authorized = 1; 2863 2864 dev_set_uevent_suppress(dev, false); 2865 kobject_uevent(&dev->kobj, KOBJ_ADD); 2866 device_for_each_child(dev, NULL, tb_scan_finalize_switch); 2867 } 2868 2869 return 0; 2870 } 2871 2872 static int tb_start(struct tb *tb, bool reset) 2873 { 2874 struct tb_cm *tcm = tb_priv(tb); 2875 bool discover = true; 2876 int ret; 2877 2878 tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0); 2879 if (IS_ERR(tb->root_switch)) 2880 return PTR_ERR(tb->root_switch); 2881 2882 /* 2883 * ICM firmware upgrade needs running firmware and in native 2884 * mode that is not available so disable firmware upgrade of the 2885 * root switch. 2886 * 2887 * However, USB4 routers support NVM firmware upgrade if they 2888 * implement the necessary router operations. 2889 */ 2890 tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch); 2891 /* All USB4 routers support runtime PM */ 2892 tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch); 2893 2894 ret = tb_switch_configure(tb->root_switch); 2895 if (ret) { 2896 tb_switch_put(tb->root_switch); 2897 return ret; 2898 } 2899 2900 /* Announce the switch to the world */ 2901 ret = tb_switch_add(tb->root_switch); 2902 if (ret) { 2903 tb_switch_put(tb->root_switch); 2904 return ret; 2905 } 2906 2907 /* 2908 * To support highest CLx state, we set host router's TMU to 2909 * Normal mode. 2910 */ 2911 tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES); 2912 /* Enable TMU if it is off */ 2913 tb_switch_tmu_enable(tb->root_switch); 2914 2915 /* 2916 * Boot firmware might have created tunnels of its own. Since we 2917 * cannot be sure they are usable for us, tear them down and 2918 * reset the ports to handle it as new hotplug for USB4 v1 2919 * routers (for USB4 v2 and beyond we already do host reset). 2920 */ 2921 if (reset && tb_switch_is_usb4(tb->root_switch)) { 2922 discover = false; 2923 if (usb4_switch_version(tb->root_switch) == 1) 2924 tb_switch_reset(tb->root_switch); 2925 } 2926 2927 if (discover) { 2928 /* Full scan to discover devices added before the driver was loaded. */ 2929 tb_scan_switch(tb->root_switch); 2930 /* Find out tunnels created by the boot firmware */ 2931 tb_discover_tunnels(tb); 2932 /* Add DP resources from the DP tunnels created by the boot firmware */ 2933 tb_discover_dp_resources(tb); 2934 } 2935 2936 /* 2937 * If the boot firmware did not create USB 3.x tunnels create them 2938 * now for the whole topology. 2939 */ 2940 tb_create_usb3_tunnels(tb->root_switch); 2941 /* Add DP IN resources for the root switch */ 2942 tb_add_dp_resources(tb->root_switch); 2943 tb_switch_enter_redrive(tb->root_switch); 2944 /* Make the discovered switches available to the userspace */ 2945 device_for_each_child(&tb->root_switch->dev, NULL, 2946 tb_scan_finalize_switch); 2947 2948 /* Allow tb_handle_hotplug to progress events */ 2949 tcm->hotplug_active = true; 2950 return 0; 2951 } 2952 2953 static int tb_suspend_noirq(struct tb *tb) 2954 { 2955 struct tb_cm *tcm = tb_priv(tb); 2956 2957 tb_dbg(tb, "suspending...\n"); 2958 tb_disconnect_and_release_dp(tb); 2959 tb_switch_exit_redrive(tb->root_switch); 2960 tb_switch_suspend(tb->root_switch, false); 2961 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ 2962 tb_dbg(tb, "suspend finished\n"); 2963 2964 return 0; 2965 } 2966 2967 static void tb_restore_children(struct tb_switch *sw) 2968 { 2969 struct tb_port *port; 2970 2971 /* No need to restore if the router is already unplugged */ 2972 if (sw->is_unplugged) 2973 return; 2974 2975 if (tb_enable_clx(sw)) 2976 tb_sw_warn(sw, "failed to re-enable CL states\n"); 2977 2978 if (tb_enable_tmu(sw)) 2979 tb_sw_warn(sw, "failed to restore TMU configuration\n"); 2980 2981 tb_switch_configuration_valid(sw); 2982 2983 tb_switch_for_each_port(sw, port) { 2984 if (!tb_port_has_remote(port) && !port->xdomain) 2985 continue; 2986 2987 if (port->remote) { 2988 tb_switch_set_link_width(port->remote->sw, 2989 port->remote->sw->link_width); 2990 tb_switch_configure_link(port->remote->sw); 2991 2992 tb_restore_children(port->remote->sw); 2993 } else if (port->xdomain) { 2994 tb_port_configure_xdomain(port, port->xdomain); 2995 } 2996 } 2997 } 2998 2999 static int tb_resume_noirq(struct tb *tb) 3000 { 3001 struct tb_cm *tcm = tb_priv(tb); 3002 struct tb_tunnel *tunnel, *n; 3003 unsigned int usb3_delay = 0; 3004 LIST_HEAD(tunnels); 3005 3006 tb_dbg(tb, "resuming...\n"); 3007 3008 /* 3009 * For non-USB4 hosts (Apple systems) remove any PCIe devices 3010 * the firmware might have setup. 3011 */ 3012 if (!tb_switch_is_usb4(tb->root_switch)) 3013 tb_switch_reset(tb->root_switch); 3014 3015 tb_switch_resume(tb->root_switch, false); 3016 tb_free_invalid_tunnels(tb); 3017 tb_free_unplugged_children(tb->root_switch); 3018 tb_restore_children(tb->root_switch); 3019 3020 /* 3021 * If we get here from suspend to disk the boot firmware or the 3022 * restore kernel might have created tunnels of its own. Since 3023 * we cannot be sure they are usable for us we find and tear 3024 * them down. 3025 */ 3026 tb_switch_discover_tunnels(tb->root_switch, &tunnels, false); 3027 list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) { 3028 if (tb_tunnel_is_usb3(tunnel)) 3029 usb3_delay = 500; 3030 tb_tunnel_deactivate(tunnel); 3031 tb_tunnel_free(tunnel); 3032 } 3033 3034 /* Re-create our tunnels now */ 3035 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 3036 /* USB3 requires delay before it can be re-activated */ 3037 if (tb_tunnel_is_usb3(tunnel)) { 3038 msleep(usb3_delay); 3039 /* Only need to do it once */ 3040 usb3_delay = 0; 3041 } 3042 tb_tunnel_restart(tunnel); 3043 } 3044 if (!list_empty(&tcm->tunnel_list)) { 3045 /* 3046 * the pcie links need some time to get going. 3047 * 100ms works for me... 3048 */ 3049 tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n"); 3050 msleep(100); 3051 } 3052 tb_switch_enter_redrive(tb->root_switch); 3053 /* Allow tb_handle_hotplug to progress events */ 3054 tcm->hotplug_active = true; 3055 tb_dbg(tb, "resume finished\n"); 3056 3057 return 0; 3058 } 3059 3060 static int tb_free_unplugged_xdomains(struct tb_switch *sw) 3061 { 3062 struct tb_port *port; 3063 int ret = 0; 3064 3065 tb_switch_for_each_port(sw, port) { 3066 if (tb_is_upstream_port(port)) 3067 continue; 3068 if (port->xdomain && port->xdomain->is_unplugged) { 3069 tb_retimer_remove_all(port); 3070 tb_xdomain_remove(port->xdomain); 3071 tb_port_unconfigure_xdomain(port); 3072 port->xdomain = NULL; 3073 ret++; 3074 } else if (port->remote) { 3075 ret += tb_free_unplugged_xdomains(port->remote->sw); 3076 } 3077 } 3078 3079 return ret; 3080 } 3081 3082 static int tb_freeze_noirq(struct tb *tb) 3083 { 3084 struct tb_cm *tcm = tb_priv(tb); 3085 3086 tcm->hotplug_active = false; 3087 return 0; 3088 } 3089 3090 static int tb_thaw_noirq(struct tb *tb) 3091 { 3092 struct tb_cm *tcm = tb_priv(tb); 3093 3094 tcm->hotplug_active = true; 3095 return 0; 3096 } 3097 3098 static void tb_complete(struct tb *tb) 3099 { 3100 /* 3101 * Release any unplugged XDomains and if there is a case where 3102 * another domain is swapped in place of unplugged XDomain we 3103 * need to run another rescan. 3104 */ 3105 mutex_lock(&tb->lock); 3106 if (tb_free_unplugged_xdomains(tb->root_switch)) 3107 tb_scan_switch(tb->root_switch); 3108 mutex_unlock(&tb->lock); 3109 } 3110 3111 static int tb_runtime_suspend(struct tb *tb) 3112 { 3113 struct tb_cm *tcm = tb_priv(tb); 3114 3115 mutex_lock(&tb->lock); 3116 /* 3117 * The below call only releases DP resources to allow exiting and 3118 * re-entering redrive mode. 3119 */ 3120 tb_disconnect_and_release_dp(tb); 3121 tb_switch_exit_redrive(tb->root_switch); 3122 tb_switch_suspend(tb->root_switch, true); 3123 tcm->hotplug_active = false; 3124 mutex_unlock(&tb->lock); 3125 3126 return 0; 3127 } 3128 3129 static void tb_remove_work(struct work_struct *work) 3130 { 3131 struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work); 3132 struct tb *tb = tcm_to_tb(tcm); 3133 3134 mutex_lock(&tb->lock); 3135 if (tb->root_switch) { 3136 tb_free_unplugged_children(tb->root_switch); 3137 tb_free_unplugged_xdomains(tb->root_switch); 3138 } 3139 mutex_unlock(&tb->lock); 3140 } 3141 3142 static int tb_runtime_resume(struct tb *tb) 3143 { 3144 struct tb_cm *tcm = tb_priv(tb); 3145 struct tb_tunnel *tunnel, *n; 3146 3147 mutex_lock(&tb->lock); 3148 tb_switch_resume(tb->root_switch, true); 3149 tb_free_invalid_tunnels(tb); 3150 tb_restore_children(tb->root_switch); 3151 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) 3152 tb_tunnel_restart(tunnel); 3153 tb_switch_enter_redrive(tb->root_switch); 3154 tcm->hotplug_active = true; 3155 mutex_unlock(&tb->lock); 3156 3157 /* 3158 * Schedule cleanup of any unplugged devices. Run this in a 3159 * separate thread to avoid possible deadlock if the device 3160 * removal runtime resumes the unplugged device. 3161 */ 3162 queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50)); 3163 return 0; 3164 } 3165 3166 static const struct tb_cm_ops tb_cm_ops = { 3167 .start = tb_start, 3168 .stop = tb_stop, 3169 .deinit = tb_deinit, 3170 .suspend_noirq = tb_suspend_noirq, 3171 .resume_noirq = tb_resume_noirq, 3172 .freeze_noirq = tb_freeze_noirq, 3173 .thaw_noirq = tb_thaw_noirq, 3174 .complete = tb_complete, 3175 .runtime_suspend = tb_runtime_suspend, 3176 .runtime_resume = tb_runtime_resume, 3177 .handle_event = tb_handle_event, 3178 .disapprove_switch = tb_disconnect_pci, 3179 .approve_switch = tb_tunnel_pci, 3180 .approve_xdomain_paths = tb_approve_xdomain_paths, 3181 .disconnect_xdomain_paths = tb_disconnect_xdomain_paths, 3182 }; 3183 3184 /* 3185 * During suspend the Thunderbolt controller is reset and all PCIe 3186 * tunnels are lost. The NHI driver will try to reestablish all tunnels 3187 * during resume. This adds device links between the tunneled PCIe 3188 * downstream ports and the NHI so that the device core will make sure 3189 * NHI is resumed first before the rest. 3190 */ 3191 static bool tb_apple_add_links(struct tb_nhi *nhi) 3192 { 3193 struct pci_dev *upstream, *pdev; 3194 bool ret; 3195 3196 if (!x86_apple_machine) 3197 return false; 3198 3199 switch (nhi->pdev->device) { 3200 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 3201 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 3202 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 3203 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 3204 break; 3205 default: 3206 return false; 3207 } 3208 3209 upstream = pci_upstream_bridge(nhi->pdev); 3210 while (upstream) { 3211 if (!pci_is_pcie(upstream)) 3212 return false; 3213 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM) 3214 break; 3215 upstream = pci_upstream_bridge(upstream); 3216 } 3217 3218 if (!upstream) 3219 return false; 3220 3221 /* 3222 * For each hotplug downstream port, create add device link 3223 * back to NHI so that PCIe tunnels can be re-established after 3224 * sleep. 3225 */ 3226 ret = false; 3227 for_each_pci_bridge(pdev, upstream->subordinate) { 3228 const struct device_link *link; 3229 3230 if (!pci_is_pcie(pdev)) 3231 continue; 3232 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM || 3233 !pdev->is_hotplug_bridge) 3234 continue; 3235 3236 link = device_link_add(&pdev->dev, &nhi->pdev->dev, 3237 DL_FLAG_AUTOREMOVE_SUPPLIER | 3238 DL_FLAG_PM_RUNTIME); 3239 if (link) { 3240 dev_dbg(&nhi->pdev->dev, "created link from %s\n", 3241 dev_name(&pdev->dev)); 3242 ret = true; 3243 } else { 3244 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", 3245 dev_name(&pdev->dev)); 3246 } 3247 } 3248 3249 return ret; 3250 } 3251 3252 struct tb *tb_probe(struct tb_nhi *nhi) 3253 { 3254 struct tb_cm *tcm; 3255 struct tb *tb; 3256 3257 tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm)); 3258 if (!tb) 3259 return NULL; 3260 3261 if (tb_acpi_may_tunnel_pcie()) 3262 tb->security_level = TB_SECURITY_USER; 3263 else 3264 tb->security_level = TB_SECURITY_NOPCIE; 3265 3266 tb->cm_ops = &tb_cm_ops; 3267 3268 tcm = tb_priv(tb); 3269 INIT_LIST_HEAD(&tcm->tunnel_list); 3270 INIT_LIST_HEAD(&tcm->dp_resources); 3271 INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work); 3272 tb_init_bandwidth_groups(tcm); 3273 3274 tb_dbg(tb, "using software connection manager\n"); 3275 3276 /* 3277 * Device links are needed to make sure we establish tunnels 3278 * before the PCIe/USB stack is resumed so complain here if we 3279 * found them missing. 3280 */ 3281 if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi)) 3282 tb_warn(tb, "device links to tunneled native ports are missing!\n"); 3283 3284 return tb; 3285 } 3286