xref: /linux/drivers/thunderbolt/tb.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - bus logic (NHI independent)
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2019, Intel Corporation
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/platform_data/x86/apple.h>
14 
15 #include "tb.h"
16 #include "tb_regs.h"
17 #include "tunnel.h"
18 
19 #define TB_TIMEOUT		100	/* ms */
20 
21 /*
22  * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
23  * direction. This is 40G - 10% guard band bandwidth.
24  */
25 #define TB_ASYM_MIN		(40000 * 90 / 100)
26 
27 /*
28  * Threshold bandwidth (in Mb/s) that is used to switch the links to
29  * asymmetric and back. This is selected as 45G which means when the
30  * request is higher than this, we switch the link to asymmetric, and
31  * when it is less than this we switch it back. The 45G is selected so
32  * that we still have 27G (of the total 72G) for bulk PCIe traffic when
33  * switching back to symmetric.
34  */
35 #define TB_ASYM_THRESHOLD	45000
36 
37 #define MAX_GROUPS		7	/* max Group_ID is 7 */
38 
39 static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
40 module_param_named(asym_threshold, asym_threshold, uint, 0444);
41 MODULE_PARM_DESC(asym_threshold,
42 		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
43 		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
44 
45 /**
46  * struct tb_cm - Simple Thunderbolt connection manager
47  * @tunnel_list: List of active tunnels
48  * @dp_resources: List of available DP resources for DP tunneling
49  * @hotplug_active: tb_handle_hotplug will stop progressing plug
50  *		    events and exit if this is not set (it needs to
51  *		    acquire the lock one more time). Used to drain wq
52  *		    after cfg has been paused.
53  * @remove_work: Work used to remove any unplugged routers after
54  *		 runtime resume
55  * @groups: Bandwidth groups used in this domain.
56  */
57 struct tb_cm {
58 	struct list_head tunnel_list;
59 	struct list_head dp_resources;
60 	bool hotplug_active;
61 	struct delayed_work remove_work;
62 	struct tb_bandwidth_group groups[MAX_GROUPS];
63 };
64 
65 static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
66 {
67 	return ((void *)tcm - sizeof(struct tb));
68 }
69 
70 struct tb_hotplug_event {
71 	struct work_struct work;
72 	struct tb *tb;
73 	u64 route;
74 	u8 port;
75 	bool unplug;
76 };
77 
78 static void tb_init_bandwidth_groups(struct tb_cm *tcm)
79 {
80 	int i;
81 
82 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
83 		struct tb_bandwidth_group *group = &tcm->groups[i];
84 
85 		group->tb = tcm_to_tb(tcm);
86 		group->index = i + 1;
87 		INIT_LIST_HEAD(&group->ports);
88 	}
89 }
90 
91 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
92 					   struct tb_port *in)
93 {
94 	if (!group || WARN_ON(in->group))
95 		return;
96 
97 	in->group = group;
98 	list_add_tail(&in->group_list, &group->ports);
99 
100 	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
101 }
102 
103 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
104 {
105 	int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
108 		struct tb_bandwidth_group *group = &tcm->groups[i];
109 
110 		if (list_empty(&group->ports))
111 			return group;
112 	}
113 
114 	return NULL;
115 }
116 
117 static struct tb_bandwidth_group *
118 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
119 			  struct tb_port *out)
120 {
121 	struct tb_bandwidth_group *group;
122 	struct tb_tunnel *tunnel;
123 
124 	/*
125 	 * Find all DP tunnels that go through all the same USB4 links
126 	 * as this one. Because we always setup tunnels the same way we
127 	 * can just check for the routers at both ends of the tunnels
128 	 * and if they are the same we have a match.
129 	 */
130 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
131 		if (!tb_tunnel_is_dp(tunnel))
132 			continue;
133 
134 		if (tunnel->src_port->sw == in->sw &&
135 		    tunnel->dst_port->sw == out->sw) {
136 			group = tunnel->src_port->group;
137 			if (group) {
138 				tb_bandwidth_group_attach_port(group, in);
139 				return group;
140 			}
141 		}
142 	}
143 
144 	/* Pick up next available group then */
145 	group = tb_find_free_bandwidth_group(tcm);
146 	if (group)
147 		tb_bandwidth_group_attach_port(group, in);
148 	else
149 		tb_port_warn(in, "no available bandwidth groups\n");
150 
151 	return group;
152 }
153 
154 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
155 					struct tb_port *out)
156 {
157 	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
158 		int index, i;
159 
160 		index = usb4_dp_port_group_id(in);
161 		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
162 			if (tcm->groups[i].index == index) {
163 				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
164 				return;
165 			}
166 		}
167 	}
168 
169 	tb_attach_bandwidth_group(tcm, in, out);
170 }
171 
172 static void tb_detach_bandwidth_group(struct tb_port *in)
173 {
174 	struct tb_bandwidth_group *group = in->group;
175 
176 	if (group) {
177 		in->group = NULL;
178 		list_del_init(&in->group_list);
179 
180 		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
181 	}
182 }
183 
184 static void tb_handle_hotplug(struct work_struct *work);
185 
186 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
187 {
188 	struct tb_hotplug_event *ev;
189 
190 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
191 	if (!ev)
192 		return;
193 
194 	ev->tb = tb;
195 	ev->route = route;
196 	ev->port = port;
197 	ev->unplug = unplug;
198 	INIT_WORK(&ev->work, tb_handle_hotplug);
199 	queue_work(tb->wq, &ev->work);
200 }
201 
202 /* enumeration & hot plug handling */
203 
204 static void tb_add_dp_resources(struct tb_switch *sw)
205 {
206 	struct tb_cm *tcm = tb_priv(sw->tb);
207 	struct tb_port *port;
208 
209 	tb_switch_for_each_port(sw, port) {
210 		if (!tb_port_is_dpin(port))
211 			continue;
212 
213 		if (!tb_switch_query_dp_resource(sw, port))
214 			continue;
215 
216 		/*
217 		 * If DP IN on device router exist, position it at the
218 		 * beginning of the DP resources list, so that it is used
219 		 * before DP IN of the host router. This way external GPU(s)
220 		 * will be prioritized when pairing DP IN to a DP OUT.
221 		 */
222 		if (tb_route(sw))
223 			list_add(&port->list, &tcm->dp_resources);
224 		else
225 			list_add_tail(&port->list, &tcm->dp_resources);
226 
227 		tb_port_dbg(port, "DP IN resource available\n");
228 	}
229 }
230 
231 static void tb_remove_dp_resources(struct tb_switch *sw)
232 {
233 	struct tb_cm *tcm = tb_priv(sw->tb);
234 	struct tb_port *port, *tmp;
235 
236 	/* Clear children resources first */
237 	tb_switch_for_each_port(sw, port) {
238 		if (tb_port_has_remote(port))
239 			tb_remove_dp_resources(port->remote->sw);
240 	}
241 
242 	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
243 		if (port->sw == sw) {
244 			tb_port_dbg(port, "DP OUT resource unavailable\n");
245 			list_del_init(&port->list);
246 		}
247 	}
248 }
249 
250 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
251 {
252 	struct tb_cm *tcm = tb_priv(tb);
253 	struct tb_port *p;
254 
255 	list_for_each_entry(p, &tcm->dp_resources, list) {
256 		if (p == port)
257 			return;
258 	}
259 
260 	tb_port_dbg(port, "DP %s resource available discovered\n",
261 		    tb_port_is_dpin(port) ? "IN" : "OUT");
262 	list_add_tail(&port->list, &tcm->dp_resources);
263 }
264 
265 static void tb_discover_dp_resources(struct tb *tb)
266 {
267 	struct tb_cm *tcm = tb_priv(tb);
268 	struct tb_tunnel *tunnel;
269 
270 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
271 		if (tb_tunnel_is_dp(tunnel))
272 			tb_discover_dp_resource(tb, tunnel->dst_port);
273 	}
274 }
275 
276 /* Enables CL states up to host router */
277 static int tb_enable_clx(struct tb_switch *sw)
278 {
279 	struct tb_cm *tcm = tb_priv(sw->tb);
280 	unsigned int clx = TB_CL0S | TB_CL1;
281 	const struct tb_tunnel *tunnel;
282 	int ret;
283 
284 	/*
285 	 * Currently only enable CLx for the first link. This is enough
286 	 * to allow the CPU to save energy at least on Intel hardware
287 	 * and makes it slightly simpler to implement. We may change
288 	 * this in the future to cover the whole topology if it turns
289 	 * out to be beneficial.
290 	 */
291 	while (sw && tb_switch_depth(sw) > 1)
292 		sw = tb_switch_parent(sw);
293 
294 	if (!sw)
295 		return 0;
296 
297 	if (tb_switch_depth(sw) != 1)
298 		return 0;
299 
300 	/*
301 	 * If we are re-enabling then check if there is an active DMA
302 	 * tunnel and in that case bail out.
303 	 */
304 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
305 		if (tb_tunnel_is_dma(tunnel)) {
306 			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
307 				return 0;
308 		}
309 	}
310 
311 	/*
312 	 * Initially try with CL2. If that's not supported by the
313 	 * topology try with CL0s and CL1 and then give up.
314 	 */
315 	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
316 	if (ret == -EOPNOTSUPP)
317 		ret = tb_switch_clx_enable(sw, clx);
318 	return ret == -EOPNOTSUPP ? 0 : ret;
319 }
320 
321 /**
322  * tb_disable_clx() - Disable CL states up to host router
323  * @sw: Router to start
324  *
325  * Disables CL states from @sw up to the host router. Returns true if
326  * any CL state were disabled. This can be used to figure out whether
327  * the link was setup by us or the boot firmware so we don't
328  * accidentally enable them if they were not enabled during discovery.
329  */
330 static bool tb_disable_clx(struct tb_switch *sw)
331 {
332 	bool disabled = false;
333 
334 	do {
335 		int ret;
336 
337 		ret = tb_switch_clx_disable(sw);
338 		if (ret > 0)
339 			disabled = true;
340 		else if (ret < 0)
341 			tb_sw_warn(sw, "failed to disable CL states\n");
342 
343 		sw = tb_switch_parent(sw);
344 	} while (sw);
345 
346 	return disabled;
347 }
348 
349 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
350 {
351 	struct tb_switch *sw;
352 
353 	sw = tb_to_switch(dev);
354 	if (!sw)
355 		return 0;
356 
357 	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
358 		enum tb_switch_tmu_mode mode;
359 		int ret;
360 
361 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
362 			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
363 		else
364 			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
365 
366 		ret = tb_switch_tmu_configure(sw, mode);
367 		if (ret)
368 			return ret;
369 
370 		return tb_switch_tmu_enable(sw);
371 	}
372 
373 	return 0;
374 }
375 
376 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
377 {
378 	struct tb_switch *sw;
379 
380 	if (!tunnel)
381 		return;
382 
383 	/*
384 	 * Once first DP tunnel is established we change the TMU
385 	 * accuracy of first depth child routers (and the host router)
386 	 * to the highest. This is needed for the DP tunneling to work
387 	 * but also allows CL0s.
388 	 *
389 	 * If both routers are v2 then we don't need to do anything as
390 	 * they are using enhanced TMU mode that allows all CLx.
391 	 */
392 	sw = tunnel->tb->root_switch;
393 	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
394 }
395 
396 static int tb_enable_tmu(struct tb_switch *sw)
397 {
398 	int ret;
399 
400 	/*
401 	 * If both routers at the end of the link are v2 we simply
402 	 * enable the enhanched uni-directional mode. That covers all
403 	 * the CL states. For v1 and before we need to use the normal
404 	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
405 	 * running at the highest accuracy.
406 	 */
407 	ret = tb_switch_tmu_configure(sw,
408 			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
409 	if (ret == -EOPNOTSUPP) {
410 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
411 			ret = tb_switch_tmu_configure(sw,
412 					TB_SWITCH_TMU_MODE_LOWRES);
413 		else
414 			ret = tb_switch_tmu_configure(sw,
415 					TB_SWITCH_TMU_MODE_HIFI_BI);
416 	}
417 	if (ret)
418 		return ret;
419 
420 	/* If it is already enabled in correct mode, don't touch it */
421 	if (tb_switch_tmu_is_enabled(sw))
422 		return 0;
423 
424 	ret = tb_switch_tmu_disable(sw);
425 	if (ret)
426 		return ret;
427 
428 	ret = tb_switch_tmu_post_time(sw);
429 	if (ret)
430 		return ret;
431 
432 	return tb_switch_tmu_enable(sw);
433 }
434 
435 static void tb_switch_discover_tunnels(struct tb_switch *sw,
436 				       struct list_head *list,
437 				       bool alloc_hopids)
438 {
439 	struct tb *tb = sw->tb;
440 	struct tb_port *port;
441 
442 	tb_switch_for_each_port(sw, port) {
443 		struct tb_tunnel *tunnel = NULL;
444 
445 		switch (port->config.type) {
446 		case TB_TYPE_DP_HDMI_IN:
447 			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
448 			tb_increase_tmu_accuracy(tunnel);
449 			break;
450 
451 		case TB_TYPE_PCIE_DOWN:
452 			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
453 			break;
454 
455 		case TB_TYPE_USB3_DOWN:
456 			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
457 			break;
458 
459 		default:
460 			break;
461 		}
462 
463 		if (tunnel)
464 			list_add_tail(&tunnel->list, list);
465 	}
466 
467 	tb_switch_for_each_port(sw, port) {
468 		if (tb_port_has_remote(port)) {
469 			tb_switch_discover_tunnels(port->remote->sw, list,
470 						   alloc_hopids);
471 		}
472 	}
473 }
474 
475 static void tb_discover_tunnels(struct tb *tb)
476 {
477 	struct tb_cm *tcm = tb_priv(tb);
478 	struct tb_tunnel *tunnel;
479 
480 	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
481 
482 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
483 		if (tb_tunnel_is_pci(tunnel)) {
484 			struct tb_switch *parent = tunnel->dst_port->sw;
485 
486 			while (parent != tunnel->src_port->sw) {
487 				parent->boot = true;
488 				parent = tb_switch_parent(parent);
489 			}
490 		} else if (tb_tunnel_is_dp(tunnel)) {
491 			struct tb_port *in = tunnel->src_port;
492 			struct tb_port *out = tunnel->dst_port;
493 
494 			/* Keep the domain from powering down */
495 			pm_runtime_get_sync(&in->sw->dev);
496 			pm_runtime_get_sync(&out->sw->dev);
497 
498 			tb_discover_bandwidth_group(tcm, in, out);
499 		}
500 	}
501 }
502 
503 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
504 {
505 	if (tb_switch_is_usb4(port->sw))
506 		return usb4_port_configure_xdomain(port, xd);
507 	return tb_lc_configure_xdomain(port);
508 }
509 
510 static void tb_port_unconfigure_xdomain(struct tb_port *port)
511 {
512 	if (tb_switch_is_usb4(port->sw))
513 		usb4_port_unconfigure_xdomain(port);
514 	else
515 		tb_lc_unconfigure_xdomain(port);
516 }
517 
518 static void tb_scan_xdomain(struct tb_port *port)
519 {
520 	struct tb_switch *sw = port->sw;
521 	struct tb *tb = sw->tb;
522 	struct tb_xdomain *xd;
523 	u64 route;
524 
525 	if (!tb_is_xdomain_enabled())
526 		return;
527 
528 	route = tb_downstream_route(port);
529 	xd = tb_xdomain_find_by_route(tb, route);
530 	if (xd) {
531 		tb_xdomain_put(xd);
532 		return;
533 	}
534 
535 	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
536 			      NULL);
537 	if (xd) {
538 		tb_port_at(route, sw)->xdomain = xd;
539 		tb_port_configure_xdomain(port, xd);
540 		tb_xdomain_add(xd);
541 	}
542 }
543 
544 /**
545  * tb_find_unused_port() - return the first inactive port on @sw
546  * @sw: Switch to find the port on
547  * @type: Port type to look for
548  */
549 static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
550 					   enum tb_port_type type)
551 {
552 	struct tb_port *port;
553 
554 	tb_switch_for_each_port(sw, port) {
555 		if (tb_is_upstream_port(port))
556 			continue;
557 		if (port->config.type != type)
558 			continue;
559 		if (!port->cap_adap)
560 			continue;
561 		if (tb_port_is_enabled(port))
562 			continue;
563 		return port;
564 	}
565 	return NULL;
566 }
567 
568 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
569 					 const struct tb_port *port)
570 {
571 	struct tb_port *down;
572 
573 	down = usb4_switch_map_usb3_down(sw, port);
574 	if (down && !tb_usb3_port_is_enabled(down))
575 		return down;
576 	return NULL;
577 }
578 
579 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
580 					struct tb_port *src_port,
581 					struct tb_port *dst_port)
582 {
583 	struct tb_cm *tcm = tb_priv(tb);
584 	struct tb_tunnel *tunnel;
585 
586 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
587 		if (tunnel->type == type &&
588 		    ((src_port && src_port == tunnel->src_port) ||
589 		     (dst_port && dst_port == tunnel->dst_port))) {
590 			return tunnel;
591 		}
592 	}
593 
594 	return NULL;
595 }
596 
597 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
598 						   struct tb_port *src_port,
599 						   struct tb_port *dst_port)
600 {
601 	struct tb_port *port, *usb3_down;
602 	struct tb_switch *sw;
603 
604 	/* Pick the router that is deepest in the topology */
605 	if (tb_port_path_direction_downstream(src_port, dst_port))
606 		sw = dst_port->sw;
607 	else
608 		sw = src_port->sw;
609 
610 	/* Can't be the host router */
611 	if (sw == tb->root_switch)
612 		return NULL;
613 
614 	/* Find the downstream USB4 port that leads to this router */
615 	port = tb_port_at(tb_route(sw), tb->root_switch);
616 	/* Find the corresponding host router USB3 downstream port */
617 	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
618 	if (!usb3_down)
619 		return NULL;
620 
621 	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
622 }
623 
624 /**
625  * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
626  * @tb: Domain structure
627  * @src_port: Source protocol adapter
628  * @dst_port: Destination protocol adapter
629  * @port: USB4 port the consumed bandwidth is calculated
630  * @consumed_up: Consumed upsream bandwidth (Mb/s)
631  * @consumed_down: Consumed downstream bandwidth (Mb/s)
632  *
633  * Calculates consumed USB3 and PCIe bandwidth at @port between path
634  * from @src_port to @dst_port. Does not take tunnel starting from
635  * @src_port and ending from @src_port into account.
636  */
637 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
638 					   struct tb_port *src_port,
639 					   struct tb_port *dst_port,
640 					   struct tb_port *port,
641 					   int *consumed_up,
642 					   int *consumed_down)
643 {
644 	int pci_consumed_up, pci_consumed_down;
645 	struct tb_tunnel *tunnel;
646 
647 	*consumed_up = *consumed_down = 0;
648 
649 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
650 	if (tunnel && tunnel->src_port != src_port &&
651 	    tunnel->dst_port != dst_port) {
652 		int ret;
653 
654 		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
655 						   consumed_down);
656 		if (ret)
657 			return ret;
658 	}
659 
660 	/*
661 	 * If there is anything reserved for PCIe bulk traffic take it
662 	 * into account here too.
663 	 */
664 	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
665 		*consumed_up += pci_consumed_up;
666 		*consumed_down += pci_consumed_down;
667 	}
668 
669 	return 0;
670 }
671 
672 /**
673  * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
674  * @tb: Domain structure
675  * @src_port: Source protocol adapter
676  * @dst_port: Destination protocol adapter
677  * @port: USB4 port the consumed bandwidth is calculated
678  * @consumed_up: Consumed upsream bandwidth (Mb/s)
679  * @consumed_down: Consumed downstream bandwidth (Mb/s)
680  *
681  * Calculates consumed DP bandwidth at @port between path from @src_port
682  * to @dst_port. Does not take tunnel starting from @src_port and ending
683  * from @src_port into account.
684  */
685 static int tb_consumed_dp_bandwidth(struct tb *tb,
686 				    struct tb_port *src_port,
687 				    struct tb_port *dst_port,
688 				    struct tb_port *port,
689 				    int *consumed_up,
690 				    int *consumed_down)
691 {
692 	struct tb_cm *tcm = tb_priv(tb);
693 	struct tb_tunnel *tunnel;
694 	int ret;
695 
696 	*consumed_up = *consumed_down = 0;
697 
698 	/*
699 	 * Find all DP tunnels that cross the port and reduce
700 	 * their consumed bandwidth from the available.
701 	 */
702 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
703 		int dp_consumed_up, dp_consumed_down;
704 
705 		if (tb_tunnel_is_invalid(tunnel))
706 			continue;
707 
708 		if (!tb_tunnel_is_dp(tunnel))
709 			continue;
710 
711 		if (!tb_tunnel_port_on_path(tunnel, port))
712 			continue;
713 
714 		/*
715 		 * Ignore the DP tunnel between src_port and dst_port
716 		 * because it is the same tunnel and we may be
717 		 * re-calculating estimated bandwidth.
718 		 */
719 		if (tunnel->src_port == src_port &&
720 		    tunnel->dst_port == dst_port)
721 			continue;
722 
723 		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
724 						   &dp_consumed_down);
725 		if (ret)
726 			return ret;
727 
728 		*consumed_up += dp_consumed_up;
729 		*consumed_down += dp_consumed_down;
730 	}
731 
732 	return 0;
733 }
734 
735 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
736 			      struct tb_port *port)
737 {
738 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
739 	enum tb_link_width width;
740 
741 	if (tb_is_upstream_port(port))
742 		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
743 	else
744 		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
745 
746 	return tb_port_width_supported(port, width);
747 }
748 
749 /**
750  * tb_maximum_bandwidth() - Maximum bandwidth over a single link
751  * @tb: Domain structure
752  * @src_port: Source protocol adapter
753  * @dst_port: Destination protocol adapter
754  * @port: USB4 port the total bandwidth is calculated
755  * @max_up: Maximum upstream bandwidth (Mb/s)
756  * @max_down: Maximum downstream bandwidth (Mb/s)
757  * @include_asym: Include bandwidth if the link is switched from
758  *		  symmetric to asymmetric
759  *
760  * Returns maximum possible bandwidth in @max_up and @max_down over a
761  * single link at @port. If @include_asym is set then includes the
762  * additional banwdith if the links are transitioned into asymmetric to
763  * direction from @src_port to @dst_port.
764  */
765 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
766 				struct tb_port *dst_port, struct tb_port *port,
767 				int *max_up, int *max_down, bool include_asym)
768 {
769 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
770 	int link_speed, link_width, up_bw, down_bw;
771 
772 	/*
773 	 * Can include asymmetric, only if it is actually supported by
774 	 * the lane adapter.
775 	 */
776 	if (!tb_asym_supported(src_port, dst_port, port))
777 		include_asym = false;
778 
779 	if (tb_is_upstream_port(port)) {
780 		link_speed = port->sw->link_speed;
781 		/*
782 		 * sw->link_width is from upstream perspective so we use
783 		 * the opposite for downstream of the host router.
784 		 */
785 		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
786 			up_bw = link_speed * 3 * 1000;
787 			down_bw = link_speed * 1 * 1000;
788 		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
789 			up_bw = link_speed * 1 * 1000;
790 			down_bw = link_speed * 3 * 1000;
791 		} else if (include_asym) {
792 			/*
793 			 * The link is symmetric at the moment but we
794 			 * can switch it to asymmetric as needed. Report
795 			 * this bandwidth as available (even though it
796 			 * is not yet enabled).
797 			 */
798 			if (downstream) {
799 				up_bw = link_speed * 1 * 1000;
800 				down_bw = link_speed * 3 * 1000;
801 			} else {
802 				up_bw = link_speed * 3 * 1000;
803 				down_bw = link_speed * 1 * 1000;
804 			}
805 		} else {
806 			up_bw = link_speed * port->sw->link_width * 1000;
807 			down_bw = up_bw;
808 		}
809 	} else {
810 		link_speed = tb_port_get_link_speed(port);
811 		if (link_speed < 0)
812 			return link_speed;
813 
814 		link_width = tb_port_get_link_width(port);
815 		if (link_width < 0)
816 			return link_width;
817 
818 		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
819 			up_bw = link_speed * 1 * 1000;
820 			down_bw = link_speed * 3 * 1000;
821 		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
822 			up_bw = link_speed * 3 * 1000;
823 			down_bw = link_speed * 1 * 1000;
824 		} else if (include_asym) {
825 			/*
826 			 * The link is symmetric at the moment but we
827 			 * can switch it to asymmetric as needed. Report
828 			 * this bandwidth as available (even though it
829 			 * is not yet enabled).
830 			 */
831 			if (downstream) {
832 				up_bw = link_speed * 1 * 1000;
833 				down_bw = link_speed * 3 * 1000;
834 			} else {
835 				up_bw = link_speed * 3 * 1000;
836 				down_bw = link_speed * 1 * 1000;
837 			}
838 		} else {
839 			up_bw = link_speed * link_width * 1000;
840 			down_bw = up_bw;
841 		}
842 	}
843 
844 	/* Leave 10% guard band */
845 	*max_up = up_bw - up_bw / 10;
846 	*max_down = down_bw - down_bw / 10;
847 
848 	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
849 	return 0;
850 }
851 
852 /**
853  * tb_available_bandwidth() - Available bandwidth for tunneling
854  * @tb: Domain structure
855  * @src_port: Source protocol adapter
856  * @dst_port: Destination protocol adapter
857  * @available_up: Available bandwidth upstream (Mb/s)
858  * @available_down: Available bandwidth downstream (Mb/s)
859  * @include_asym: Include bandwidth if the link is switched from
860  *		  symmetric to asymmetric
861  *
862  * Calculates maximum available bandwidth for protocol tunneling between
863  * @src_port and @dst_port at the moment. This is minimum of maximum
864  * link bandwidth across all links reduced by currently consumed
865  * bandwidth on that link.
866  *
867  * If @include_asym is true then includes also bandwidth that can be
868  * added when the links are transitioned into asymmetric (but does not
869  * transition the links).
870  */
871 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
872 				 struct tb_port *dst_port, int *available_up,
873 				 int *available_down, bool include_asym)
874 {
875 	struct tb_port *port;
876 	int ret;
877 
878 	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
879 	*available_up = *available_down = 120000;
880 
881 	/* Find the minimum available bandwidth over all links */
882 	tb_for_each_port_on_path(src_port, dst_port, port) {
883 		int max_up, max_down, consumed_up, consumed_down;
884 
885 		if (!tb_port_is_null(port))
886 			continue;
887 
888 		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
889 					   &max_up, &max_down, include_asym);
890 		if (ret)
891 			return ret;
892 
893 		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
894 						      port, &consumed_up,
895 						      &consumed_down);
896 		if (ret)
897 			return ret;
898 		max_up -= consumed_up;
899 		max_down -= consumed_down;
900 
901 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
902 					       &consumed_up, &consumed_down);
903 		if (ret)
904 			return ret;
905 		max_up -= consumed_up;
906 		max_down -= consumed_down;
907 
908 		if (max_up < *available_up)
909 			*available_up = max_up;
910 		if (max_down < *available_down)
911 			*available_down = max_down;
912 	}
913 
914 	if (*available_up < 0)
915 		*available_up = 0;
916 	if (*available_down < 0)
917 		*available_down = 0;
918 
919 	return 0;
920 }
921 
922 static int tb_release_unused_usb3_bandwidth(struct tb *tb,
923 					    struct tb_port *src_port,
924 					    struct tb_port *dst_port)
925 {
926 	struct tb_tunnel *tunnel;
927 
928 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
929 	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
930 }
931 
932 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
933 				      struct tb_port *dst_port)
934 {
935 	int ret, available_up, available_down;
936 	struct tb_tunnel *tunnel;
937 
938 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
939 	if (!tunnel)
940 		return;
941 
942 	tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
943 
944 	/*
945 	 * Calculate available bandwidth for the first hop USB3 tunnel.
946 	 * That determines the whole USB3 bandwidth for this branch.
947 	 */
948 	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
949 				     &available_up, &available_down, false);
950 	if (ret) {
951 		tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
952 		return;
953 	}
954 
955 	tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
956 		      available_down);
957 
958 	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
959 }
960 
961 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
962 {
963 	struct tb_switch *parent = tb_switch_parent(sw);
964 	int ret, available_up, available_down;
965 	struct tb_port *up, *down, *port;
966 	struct tb_cm *tcm = tb_priv(tb);
967 	struct tb_tunnel *tunnel;
968 
969 	if (!tb_acpi_may_tunnel_usb3()) {
970 		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
971 		return 0;
972 	}
973 
974 	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
975 	if (!up)
976 		return 0;
977 
978 	if (!sw->link_usb4)
979 		return 0;
980 
981 	/*
982 	 * Look up available down port. Since we are chaining it should
983 	 * be found right above this switch.
984 	 */
985 	port = tb_switch_downstream_port(sw);
986 	down = tb_find_usb3_down(parent, port);
987 	if (!down)
988 		return 0;
989 
990 	if (tb_route(parent)) {
991 		struct tb_port *parent_up;
992 		/*
993 		 * Check first that the parent switch has its upstream USB3
994 		 * port enabled. Otherwise the chain is not complete and
995 		 * there is no point setting up a new tunnel.
996 		 */
997 		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
998 		if (!parent_up || !tb_port_is_enabled(parent_up))
999 			return 0;
1000 
1001 		/* Make all unused bandwidth available for the new tunnel */
1002 		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
1008 				     false);
1009 	if (ret)
1010 		goto err_reclaim;
1011 
1012 	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
1013 		    available_up, available_down);
1014 
1015 	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
1016 				      available_down);
1017 	if (!tunnel) {
1018 		ret = -ENOMEM;
1019 		goto err_reclaim;
1020 	}
1021 
1022 	if (tb_tunnel_activate(tunnel)) {
1023 		tb_port_info(up,
1024 			     "USB3 tunnel activation failed, aborting\n");
1025 		ret = -EIO;
1026 		goto err_free;
1027 	}
1028 
1029 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1030 	if (tb_route(parent))
1031 		tb_reclaim_usb3_bandwidth(tb, down, up);
1032 
1033 	return 0;
1034 
1035 err_free:
1036 	tb_tunnel_free(tunnel);
1037 err_reclaim:
1038 	if (tb_route(parent))
1039 		tb_reclaim_usb3_bandwidth(tb, down, up);
1040 
1041 	return ret;
1042 }
1043 
1044 static int tb_create_usb3_tunnels(struct tb_switch *sw)
1045 {
1046 	struct tb_port *port;
1047 	int ret;
1048 
1049 	if (!tb_acpi_may_tunnel_usb3())
1050 		return 0;
1051 
1052 	if (tb_route(sw)) {
1053 		ret = tb_tunnel_usb3(sw->tb, sw);
1054 		if (ret)
1055 			return ret;
1056 	}
1057 
1058 	tb_switch_for_each_port(sw, port) {
1059 		if (!tb_port_has_remote(port))
1060 			continue;
1061 		ret = tb_create_usb3_tunnels(port->remote->sw);
1062 		if (ret)
1063 			return ret;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 /**
1070  * tb_configure_asym() - Transition links to asymmetric if needed
1071  * @tb: Domain structure
1072  * @src_port: Source adapter to start the transition
1073  * @dst_port: Destination adapter
1074  * @requested_up: Additional bandwidth (Mb/s) required upstream
1075  * @requested_down: Additional bandwidth (Mb/s) required downstream
1076  *
1077  * Transition links between @src_port and @dst_port into asymmetric, with
1078  * three lanes in the direction from @src_port towards @dst_port and one lane
1079  * in the opposite direction, if the bandwidth requirements
1080  * (requested + currently consumed) on that link exceed @asym_threshold.
1081  *
1082  * Must be called with available >= requested over all links.
1083  */
1084 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1085 			     struct tb_port *dst_port, int requested_up,
1086 			     int requested_down)
1087 {
1088 	bool clx = false, clx_disabled = false, downstream;
1089 	struct tb_switch *sw;
1090 	struct tb_port *up;
1091 	int ret = 0;
1092 
1093 	if (!asym_threshold)
1094 		return 0;
1095 
1096 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1097 	/* Pick up router deepest in the hierarchy */
1098 	if (downstream)
1099 		sw = dst_port->sw;
1100 	else
1101 		sw = src_port->sw;
1102 
1103 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1104 		struct tb_port *down = tb_switch_downstream_port(up->sw);
1105 		enum tb_link_width width_up, width_down;
1106 		int consumed_up, consumed_down;
1107 
1108 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1109 					       &consumed_up, &consumed_down);
1110 		if (ret)
1111 			break;
1112 
1113 		if (downstream) {
1114 			/*
1115 			 * Downstream so make sure upstream is within the 36G
1116 			 * (40G - guard band 10%), and the requested is above
1117 			 * what the threshold is.
1118 			 */
1119 			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1120 				ret = -ENOBUFS;
1121 				break;
1122 			}
1123 			/* Does consumed + requested exceed the threshold */
1124 			if (consumed_down + requested_down < asym_threshold)
1125 				continue;
1126 
1127 			width_up = TB_LINK_WIDTH_ASYM_RX;
1128 			width_down = TB_LINK_WIDTH_ASYM_TX;
1129 		} else {
1130 			/* Upstream, the opposite of above */
1131 			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1132 				ret = -ENOBUFS;
1133 				break;
1134 			}
1135 			if (consumed_up + requested_up < asym_threshold)
1136 				continue;
1137 
1138 			width_up = TB_LINK_WIDTH_ASYM_TX;
1139 			width_down = TB_LINK_WIDTH_ASYM_RX;
1140 		}
1141 
1142 		if (up->sw->link_width == width_up)
1143 			continue;
1144 
1145 		if (!tb_port_width_supported(up, width_up) ||
1146 		    !tb_port_width_supported(down, width_down))
1147 			continue;
1148 
1149 		/*
1150 		 * Disable CL states before doing any transitions. We
1151 		 * delayed it until now that we know there is a real
1152 		 * transition taking place.
1153 		 */
1154 		if (!clx_disabled) {
1155 			clx = tb_disable_clx(sw);
1156 			clx_disabled = true;
1157 		}
1158 
1159 		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1160 
1161 		/*
1162 		 * Here requested + consumed > threshold so we need to
1163 		 * transtion the link into asymmetric now.
1164 		 */
1165 		ret = tb_switch_set_link_width(up->sw, width_up);
1166 		if (ret) {
1167 			tb_sw_warn(up->sw, "failed to set link width\n");
1168 			break;
1169 		}
1170 	}
1171 
1172 	/* Re-enable CL states if they were previosly enabled */
1173 	if (clx)
1174 		tb_enable_clx(sw);
1175 
1176 	return ret;
1177 }
1178 
1179 /**
1180  * tb_configure_sym() - Transition links to symmetric if possible
1181  * @tb: Domain structure
1182  * @src_port: Source adapter to start the transition
1183  * @dst_port: Destination adapter
1184  * @requested_up: New lower bandwidth request upstream (Mb/s)
1185  * @requested_down: New lower bandwidth request downstream (Mb/s)
1186  * @keep_asym: Keep asymmetric link if preferred
1187  *
1188  * Goes over each link from @src_port to @dst_port and tries to
1189  * transition the link to symmetric if the currently consumed bandwidth
1190  * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1191  */
1192 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1193 			    struct tb_port *dst_port, int requested_up,
1194 			    int requested_down, bool keep_asym)
1195 {
1196 	bool clx = false, clx_disabled = false, downstream;
1197 	struct tb_switch *sw;
1198 	struct tb_port *up;
1199 	int ret = 0;
1200 
1201 	if (!asym_threshold)
1202 		return 0;
1203 
1204 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1205 	/* Pick up router deepest in the hierarchy */
1206 	if (downstream)
1207 		sw = dst_port->sw;
1208 	else
1209 		sw = src_port->sw;
1210 
1211 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1212 		int consumed_up, consumed_down;
1213 
1214 		/* Already symmetric */
1215 		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1216 			continue;
1217 		/* Unplugged, no need to switch */
1218 		if (up->sw->is_unplugged)
1219 			continue;
1220 
1221 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1222 					       &consumed_up, &consumed_down);
1223 		if (ret)
1224 			break;
1225 
1226 		if (downstream) {
1227 			/*
1228 			 * Downstream so we want the consumed_down < threshold.
1229 			 * Upstream traffic should be less than 36G (40G
1230 			 * guard band 10%) as the link was configured asymmetric
1231 			 * already.
1232 			 */
1233 			if (consumed_down + requested_down >= asym_threshold)
1234 				continue;
1235 		} else {
1236 			if (consumed_up + requested_up >= asym_threshold)
1237 				continue;
1238 		}
1239 
1240 		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1241 			continue;
1242 
1243 		/*
1244 		 * Here consumed < threshold so we can transition the
1245 		 * link to symmetric.
1246 		 *
1247 		 * However, if the router prefers asymmetric link we
1248 		 * honor that (unless @keep_asym is %false).
1249 		 */
1250 		if (keep_asym &&
1251 		    up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1252 			tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1253 			continue;
1254 		}
1255 
1256 		/* Disable CL states before doing any transitions */
1257 		if (!clx_disabled) {
1258 			clx = tb_disable_clx(sw);
1259 			clx_disabled = true;
1260 		}
1261 
1262 		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1263 
1264 		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1265 		if (ret) {
1266 			tb_sw_warn(up->sw, "failed to set link width\n");
1267 			break;
1268 		}
1269 	}
1270 
1271 	/* Re-enable CL states if they were previosly enabled */
1272 	if (clx)
1273 		tb_enable_clx(sw);
1274 
1275 	return ret;
1276 }
1277 
1278 static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1279 			      struct tb_switch *sw)
1280 {
1281 	struct tb *tb = sw->tb;
1282 
1283 	/* Link the routers using both links if available */
1284 	down->remote = up;
1285 	up->remote = down;
1286 	if (down->dual_link_port && up->dual_link_port) {
1287 		down->dual_link_port->remote = up->dual_link_port;
1288 		up->dual_link_port->remote = down->dual_link_port;
1289 	}
1290 
1291 	/*
1292 	 * Enable lane bonding if the link is currently two single lane
1293 	 * links.
1294 	 */
1295 	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1296 		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1297 
1298 	/*
1299 	 * Device router that comes up as symmetric link is
1300 	 * connected deeper in the hierarchy, we transition the links
1301 	 * above into symmetric if bandwidth allows.
1302 	 */
1303 	if (tb_switch_depth(sw) > 1 &&
1304 	    tb_port_get_link_generation(up) >= 4 &&
1305 	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1306 		struct tb_port *host_port;
1307 
1308 		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1309 		tb_configure_sym(tb, host_port, up, 0, 0, false);
1310 	}
1311 
1312 	/* Set the link configured */
1313 	tb_switch_configure_link(sw);
1314 }
1315 
1316 static void tb_scan_port(struct tb_port *port);
1317 
1318 /*
1319  * tb_scan_switch() - scan for and initialize downstream switches
1320  */
1321 static void tb_scan_switch(struct tb_switch *sw)
1322 {
1323 	struct tb_port *port;
1324 
1325 	pm_runtime_get_sync(&sw->dev);
1326 
1327 	tb_switch_for_each_port(sw, port)
1328 		tb_scan_port(port);
1329 
1330 	pm_runtime_mark_last_busy(&sw->dev);
1331 	pm_runtime_put_autosuspend(&sw->dev);
1332 }
1333 
1334 /*
1335  * tb_scan_port() - check for and initialize switches below port
1336  */
1337 static void tb_scan_port(struct tb_port *port)
1338 {
1339 	struct tb_cm *tcm = tb_priv(port->sw->tb);
1340 	struct tb_port *upstream_port;
1341 	bool discovery = false;
1342 	struct tb_switch *sw;
1343 
1344 	if (tb_is_upstream_port(port))
1345 		return;
1346 
1347 	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1348 	    !tb_dp_port_is_enabled(port)) {
1349 		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1350 		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1351 				 false);
1352 		return;
1353 	}
1354 
1355 	if (port->config.type != TB_TYPE_PORT)
1356 		return;
1357 	if (port->dual_link_port && port->link_nr)
1358 		return; /*
1359 			 * Downstream switch is reachable through two ports.
1360 			 * Only scan on the primary port (link_nr == 0).
1361 			 */
1362 
1363 	if (port->usb4)
1364 		pm_runtime_get_sync(&port->usb4->dev);
1365 
1366 	if (tb_wait_for_port(port, false) <= 0)
1367 		goto out_rpm_put;
1368 	if (port->remote) {
1369 		tb_port_dbg(port, "port already has a remote\n");
1370 		goto out_rpm_put;
1371 	}
1372 
1373 	tb_retimer_scan(port, true);
1374 
1375 	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1376 			     tb_downstream_route(port));
1377 	if (IS_ERR(sw)) {
1378 		/*
1379 		 * If there is an error accessing the connected switch
1380 		 * it may be connected to another domain. Also we allow
1381 		 * the other domain to be connected to a max depth switch.
1382 		 */
1383 		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1384 			tb_scan_xdomain(port);
1385 		goto out_rpm_put;
1386 	}
1387 
1388 	if (tb_switch_configure(sw)) {
1389 		tb_switch_put(sw);
1390 		goto out_rpm_put;
1391 	}
1392 
1393 	/*
1394 	 * If there was previously another domain connected remove it
1395 	 * first.
1396 	 */
1397 	if (port->xdomain) {
1398 		tb_xdomain_remove(port->xdomain);
1399 		tb_port_unconfigure_xdomain(port);
1400 		port->xdomain = NULL;
1401 	}
1402 
1403 	/*
1404 	 * Do not send uevents until we have discovered all existing
1405 	 * tunnels and know which switches were authorized already by
1406 	 * the boot firmware.
1407 	 */
1408 	if (!tcm->hotplug_active) {
1409 		dev_set_uevent_suppress(&sw->dev, true);
1410 		discovery = true;
1411 	}
1412 
1413 	/*
1414 	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1415 	 * can support runtime PM.
1416 	 */
1417 	sw->rpm = sw->generation > 1;
1418 
1419 	if (tb_switch_add(sw)) {
1420 		tb_switch_put(sw);
1421 		goto out_rpm_put;
1422 	}
1423 
1424 	upstream_port = tb_upstream_port(sw);
1425 	tb_configure_link(port, upstream_port, sw);
1426 
1427 	/*
1428 	 * CL0s and CL1 are enabled and supported together.
1429 	 * Silently ignore CLx enabling in case CLx is not supported.
1430 	 */
1431 	if (discovery)
1432 		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1433 	else if (tb_enable_clx(sw))
1434 		tb_sw_warn(sw, "failed to enable CL states\n");
1435 
1436 	if (tb_enable_tmu(sw))
1437 		tb_sw_warn(sw, "failed to enable TMU\n");
1438 
1439 	/*
1440 	 * Configuration valid needs to be set after the TMU has been
1441 	 * enabled for the upstream port of the router so we do it here.
1442 	 */
1443 	tb_switch_configuration_valid(sw);
1444 
1445 	/* Scan upstream retimers */
1446 	tb_retimer_scan(upstream_port, true);
1447 
1448 	/*
1449 	 * Create USB 3.x tunnels only when the switch is plugged to the
1450 	 * domain. This is because we scan the domain also during discovery
1451 	 * and want to discover existing USB 3.x tunnels before we create
1452 	 * any new.
1453 	 */
1454 	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1455 		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1456 
1457 	tb_add_dp_resources(sw);
1458 	tb_scan_switch(sw);
1459 
1460 out_rpm_put:
1461 	if (port->usb4) {
1462 		pm_runtime_mark_last_busy(&port->usb4->dev);
1463 		pm_runtime_put_autosuspend(&port->usb4->dev);
1464 	}
1465 }
1466 
1467 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1468 {
1469 	struct tb_port *src_port, *dst_port;
1470 	struct tb *tb;
1471 
1472 	if (!tunnel)
1473 		return;
1474 
1475 	tb_tunnel_deactivate(tunnel);
1476 	list_del(&tunnel->list);
1477 
1478 	tb = tunnel->tb;
1479 	src_port = tunnel->src_port;
1480 	dst_port = tunnel->dst_port;
1481 
1482 	switch (tunnel->type) {
1483 	case TB_TUNNEL_DP:
1484 		tb_detach_bandwidth_group(src_port);
1485 		/*
1486 		 * In case of DP tunnel make sure the DP IN resource is
1487 		 * deallocated properly.
1488 		 */
1489 		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1490 		/*
1491 		 * If bandwidth on a link is < asym_threshold
1492 		 * transition the link to symmetric.
1493 		 */
1494 		tb_configure_sym(tb, src_port, dst_port, 0, 0, true);
1495 		/* Now we can allow the domain to runtime suspend again */
1496 		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1497 		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1498 		pm_runtime_mark_last_busy(&src_port->sw->dev);
1499 		pm_runtime_put_autosuspend(&src_port->sw->dev);
1500 		fallthrough;
1501 
1502 	case TB_TUNNEL_USB3:
1503 		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1504 		break;
1505 
1506 	default:
1507 		/*
1508 		 * PCIe and DMA tunnels do not consume guaranteed
1509 		 * bandwidth.
1510 		 */
1511 		break;
1512 	}
1513 
1514 	tb_tunnel_free(tunnel);
1515 }
1516 
1517 /*
1518  * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1519  */
1520 static void tb_free_invalid_tunnels(struct tb *tb)
1521 {
1522 	struct tb_cm *tcm = tb_priv(tb);
1523 	struct tb_tunnel *tunnel;
1524 	struct tb_tunnel *n;
1525 
1526 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1527 		if (tb_tunnel_is_invalid(tunnel))
1528 			tb_deactivate_and_free_tunnel(tunnel);
1529 	}
1530 }
1531 
1532 /*
1533  * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1534  */
1535 static void tb_free_unplugged_children(struct tb_switch *sw)
1536 {
1537 	struct tb_port *port;
1538 
1539 	tb_switch_for_each_port(sw, port) {
1540 		if (!tb_port_has_remote(port))
1541 			continue;
1542 
1543 		if (port->remote->sw->is_unplugged) {
1544 			tb_retimer_remove_all(port);
1545 			tb_remove_dp_resources(port->remote->sw);
1546 			tb_switch_unconfigure_link(port->remote->sw);
1547 			tb_switch_set_link_width(port->remote->sw,
1548 						 TB_LINK_WIDTH_SINGLE);
1549 			tb_switch_remove(port->remote->sw);
1550 			port->remote = NULL;
1551 			if (port->dual_link_port)
1552 				port->dual_link_port->remote = NULL;
1553 		} else {
1554 			tb_free_unplugged_children(port->remote->sw);
1555 		}
1556 	}
1557 }
1558 
1559 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1560 					 const struct tb_port *port)
1561 {
1562 	struct tb_port *down = NULL;
1563 
1564 	/*
1565 	 * To keep plugging devices consistently in the same PCIe
1566 	 * hierarchy, do mapping here for switch downstream PCIe ports.
1567 	 */
1568 	if (tb_switch_is_usb4(sw)) {
1569 		down = usb4_switch_map_pcie_down(sw, port);
1570 	} else if (!tb_route(sw)) {
1571 		int phy_port = tb_phy_port_from_link(port->port);
1572 		int index;
1573 
1574 		/*
1575 		 * Hard-coded Thunderbolt port to PCIe down port mapping
1576 		 * per controller.
1577 		 */
1578 		if (tb_switch_is_cactus_ridge(sw) ||
1579 		    tb_switch_is_alpine_ridge(sw))
1580 			index = !phy_port ? 6 : 7;
1581 		else if (tb_switch_is_falcon_ridge(sw))
1582 			index = !phy_port ? 6 : 8;
1583 		else if (tb_switch_is_titan_ridge(sw))
1584 			index = !phy_port ? 8 : 9;
1585 		else
1586 			goto out;
1587 
1588 		/* Validate the hard-coding */
1589 		if (WARN_ON(index > sw->config.max_port_number))
1590 			goto out;
1591 
1592 		down = &sw->ports[index];
1593 	}
1594 
1595 	if (down) {
1596 		if (WARN_ON(!tb_port_is_pcie_down(down)))
1597 			goto out;
1598 		if (tb_pci_port_is_enabled(down))
1599 			goto out;
1600 
1601 		return down;
1602 	}
1603 
1604 out:
1605 	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1606 }
1607 
1608 static void
1609 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1610 {
1611 	struct tb_tunnel *first_tunnel;
1612 	struct tb *tb = group->tb;
1613 	struct tb_port *in;
1614 	int ret;
1615 
1616 	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1617 	       group->index);
1618 
1619 	first_tunnel = NULL;
1620 	list_for_each_entry(in, &group->ports, group_list) {
1621 		int estimated_bw, estimated_up, estimated_down;
1622 		struct tb_tunnel *tunnel;
1623 		struct tb_port *out;
1624 
1625 		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1626 			continue;
1627 
1628 		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1629 		if (WARN_ON(!tunnel))
1630 			break;
1631 
1632 		if (!first_tunnel) {
1633 			/*
1634 			 * Since USB3 bandwidth is shared by all DP
1635 			 * tunnels under the host router USB4 port, even
1636 			 * if they do not begin from the host router, we
1637 			 * can release USB3 bandwidth just once and not
1638 			 * for each tunnel separately.
1639 			 */
1640 			first_tunnel = tunnel;
1641 			ret = tb_release_unused_usb3_bandwidth(tb,
1642 				first_tunnel->src_port, first_tunnel->dst_port);
1643 			if (ret) {
1644 				tb_tunnel_warn(tunnel,
1645 					"failed to release unused bandwidth\n");
1646 				break;
1647 			}
1648 		}
1649 
1650 		out = tunnel->dst_port;
1651 		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1652 					     &estimated_down, true);
1653 		if (ret) {
1654 			tb_tunnel_warn(tunnel,
1655 				"failed to re-calculate estimated bandwidth\n");
1656 			break;
1657 		}
1658 
1659 		/*
1660 		 * Estimated bandwidth includes:
1661 		 *  - already allocated bandwidth for the DP tunnel
1662 		 *  - available bandwidth along the path
1663 		 *  - bandwidth allocated for USB 3.x but not used.
1664 		 */
1665 		tb_tunnel_dbg(tunnel,
1666 			      "re-calculated estimated bandwidth %u/%u Mb/s\n",
1667 			      estimated_up, estimated_down);
1668 
1669 		if (tb_port_path_direction_downstream(in, out))
1670 			estimated_bw = estimated_down;
1671 		else
1672 			estimated_bw = estimated_up;
1673 
1674 		if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw))
1675 			tb_tunnel_warn(tunnel,
1676 				       "failed to update estimated bandwidth\n");
1677 	}
1678 
1679 	if (first_tunnel)
1680 		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1681 					  first_tunnel->dst_port);
1682 
1683 	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1684 }
1685 
1686 static void tb_recalc_estimated_bandwidth(struct tb *tb)
1687 {
1688 	struct tb_cm *tcm = tb_priv(tb);
1689 	int i;
1690 
1691 	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1692 
1693 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1694 		struct tb_bandwidth_group *group = &tcm->groups[i];
1695 
1696 		if (!list_empty(&group->ports))
1697 			tb_recalc_estimated_bandwidth_for_group(group);
1698 	}
1699 
1700 	tb_dbg(tb, "bandwidth re-calculation done\n");
1701 }
1702 
1703 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1704 {
1705 	struct tb_port *host_port, *port;
1706 	struct tb_cm *tcm = tb_priv(tb);
1707 
1708 	host_port = tb_route(in->sw) ?
1709 		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1710 
1711 	list_for_each_entry(port, &tcm->dp_resources, list) {
1712 		if (!tb_port_is_dpout(port))
1713 			continue;
1714 
1715 		if (tb_port_is_enabled(port)) {
1716 			tb_port_dbg(port, "DP OUT in use\n");
1717 			continue;
1718 		}
1719 
1720 		tb_port_dbg(port, "DP OUT available\n");
1721 
1722 		/*
1723 		 * Keep the DP tunnel under the topology starting from
1724 		 * the same host router downstream port.
1725 		 */
1726 		if (host_port && tb_route(port->sw)) {
1727 			struct tb_port *p;
1728 
1729 			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1730 			if (p != host_port)
1731 				continue;
1732 		}
1733 
1734 		return port;
1735 	}
1736 
1737 	return NULL;
1738 }
1739 
1740 static bool tb_tunnel_one_dp(struct tb *tb)
1741 {
1742 	int available_up, available_down, ret, link_nr;
1743 	struct tb_cm *tcm = tb_priv(tb);
1744 	struct tb_port *port, *in, *out;
1745 	int consumed_up, consumed_down;
1746 	struct tb_tunnel *tunnel;
1747 
1748 	/*
1749 	 * Find pair of inactive DP IN and DP OUT adapters and then
1750 	 * establish a DP tunnel between them.
1751 	 */
1752 	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1753 
1754 	in = NULL;
1755 	out = NULL;
1756 	list_for_each_entry(port, &tcm->dp_resources, list) {
1757 		if (!tb_port_is_dpin(port))
1758 			continue;
1759 
1760 		if (tb_port_is_enabled(port)) {
1761 			tb_port_dbg(port, "DP IN in use\n");
1762 			continue;
1763 		}
1764 
1765 		in = port;
1766 		tb_port_dbg(in, "DP IN available\n");
1767 
1768 		out = tb_find_dp_out(tb, port);
1769 		if (out)
1770 			break;
1771 	}
1772 
1773 	if (!in) {
1774 		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
1775 		return false;
1776 	}
1777 	if (!out) {
1778 		tb_dbg(tb, "no suitable DP OUT adapter available, not tunneling\n");
1779 		return false;
1780 	}
1781 
1782 	/*
1783 	 * This is only applicable to links that are not bonded (so
1784 	 * when Thunderbolt 1 hardware is involved somewhere in the
1785 	 * topology). For these try to share the DP bandwidth between
1786 	 * the two lanes.
1787 	 */
1788 	link_nr = 1;
1789 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1790 		if (tb_tunnel_is_dp(tunnel)) {
1791 			link_nr = 0;
1792 			break;
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * DP stream needs the domain to be active so runtime resume
1798 	 * both ends of the tunnel.
1799 	 *
1800 	 * This should bring the routers in the middle active as well
1801 	 * and keeps the domain from runtime suspending while the DP
1802 	 * tunnel is active.
1803 	 */
1804 	pm_runtime_get_sync(&in->sw->dev);
1805 	pm_runtime_get_sync(&out->sw->dev);
1806 
1807 	if (tb_switch_alloc_dp_resource(in->sw, in)) {
1808 		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1809 		goto err_rpm_put;
1810 	}
1811 
1812 	if (!tb_attach_bandwidth_group(tcm, in, out))
1813 		goto err_dealloc_dp;
1814 
1815 	/* Make all unused USB3 bandwidth available for the new DP tunnel */
1816 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1817 	if (ret) {
1818 		tb_warn(tb, "failed to release unused bandwidth\n");
1819 		goto err_detach_group;
1820 	}
1821 
1822 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
1823 				     true);
1824 	if (ret)
1825 		goto err_reclaim_usb;
1826 
1827 	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1828 	       available_up, available_down);
1829 
1830 	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
1831 				    available_down);
1832 	if (!tunnel) {
1833 		tb_port_dbg(out, "could not allocate DP tunnel\n");
1834 		goto err_reclaim_usb;
1835 	}
1836 
1837 	if (tb_tunnel_activate(tunnel)) {
1838 		tb_port_info(out, "DP tunnel activation failed, aborting\n");
1839 		goto err_free;
1840 	}
1841 
1842 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1843 	tb_reclaim_usb3_bandwidth(tb, in, out);
1844 
1845 	/*
1846 	 * Transition the links to asymmetric if the consumption exceeds
1847 	 * the threshold.
1848 	 */
1849 	if (!tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down))
1850 		tb_configure_asym(tb, in, out, consumed_up, consumed_down);
1851 
1852 	/* Update the domain with the new bandwidth estimation */
1853 	tb_recalc_estimated_bandwidth(tb);
1854 
1855 	/*
1856 	 * In case of DP tunnel exists, change host router's 1st children
1857 	 * TMU mode to HiFi for CL0s to work.
1858 	 */
1859 	tb_increase_tmu_accuracy(tunnel);
1860 	return true;
1861 
1862 err_free:
1863 	tb_tunnel_free(tunnel);
1864 err_reclaim_usb:
1865 	tb_reclaim_usb3_bandwidth(tb, in, out);
1866 err_detach_group:
1867 	tb_detach_bandwidth_group(in);
1868 err_dealloc_dp:
1869 	tb_switch_dealloc_dp_resource(in->sw, in);
1870 err_rpm_put:
1871 	pm_runtime_mark_last_busy(&out->sw->dev);
1872 	pm_runtime_put_autosuspend(&out->sw->dev);
1873 	pm_runtime_mark_last_busy(&in->sw->dev);
1874 	pm_runtime_put_autosuspend(&in->sw->dev);
1875 
1876 	return false;
1877 }
1878 
1879 static void tb_tunnel_dp(struct tb *tb)
1880 {
1881 	if (!tb_acpi_may_tunnel_dp()) {
1882 		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1883 		return;
1884 	}
1885 
1886 	while (tb_tunnel_one_dp(tb))
1887 		;
1888 }
1889 
1890 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
1891 {
1892 	struct tb_port *in, *out;
1893 	struct tb_tunnel *tunnel;
1894 
1895 	if (tb_port_is_dpin(port)) {
1896 		tb_port_dbg(port, "DP IN resource unavailable\n");
1897 		in = port;
1898 		out = NULL;
1899 	} else {
1900 		tb_port_dbg(port, "DP OUT resource unavailable\n");
1901 		in = NULL;
1902 		out = port;
1903 	}
1904 
1905 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
1906 	tb_deactivate_and_free_tunnel(tunnel);
1907 	list_del_init(&port->list);
1908 
1909 	/*
1910 	 * See if there is another DP OUT port that can be used for
1911 	 * to create another tunnel.
1912 	 */
1913 	tb_recalc_estimated_bandwidth(tb);
1914 	tb_tunnel_dp(tb);
1915 }
1916 
1917 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
1918 {
1919 	struct tb_cm *tcm = tb_priv(tb);
1920 	struct tb_port *p;
1921 
1922 	if (tb_port_is_enabled(port))
1923 		return;
1924 
1925 	list_for_each_entry(p, &tcm->dp_resources, list) {
1926 		if (p == port)
1927 			return;
1928 	}
1929 
1930 	tb_port_dbg(port, "DP %s resource available after hotplug\n",
1931 		    tb_port_is_dpin(port) ? "IN" : "OUT");
1932 	list_add_tail(&port->list, &tcm->dp_resources);
1933 
1934 	/* Look for suitable DP IN <-> DP OUT pairs now */
1935 	tb_tunnel_dp(tb);
1936 }
1937 
1938 static void tb_disconnect_and_release_dp(struct tb *tb)
1939 {
1940 	struct tb_cm *tcm = tb_priv(tb);
1941 	struct tb_tunnel *tunnel, *n;
1942 
1943 	/*
1944 	 * Tear down all DP tunnels and release their resources. They
1945 	 * will be re-established after resume based on plug events.
1946 	 */
1947 	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
1948 		if (tb_tunnel_is_dp(tunnel))
1949 			tb_deactivate_and_free_tunnel(tunnel);
1950 	}
1951 
1952 	while (!list_empty(&tcm->dp_resources)) {
1953 		struct tb_port *port;
1954 
1955 		port = list_first_entry(&tcm->dp_resources,
1956 					struct tb_port, list);
1957 		list_del_init(&port->list);
1958 	}
1959 }
1960 
1961 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
1962 {
1963 	struct tb_tunnel *tunnel;
1964 	struct tb_port *up;
1965 
1966 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1967 	if (WARN_ON(!up))
1968 		return -ENODEV;
1969 
1970 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
1971 	if (WARN_ON(!tunnel))
1972 		return -ENODEV;
1973 
1974 	tb_switch_xhci_disconnect(sw);
1975 
1976 	tb_tunnel_deactivate(tunnel);
1977 	list_del(&tunnel->list);
1978 	tb_tunnel_free(tunnel);
1979 	return 0;
1980 }
1981 
1982 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
1983 {
1984 	struct tb_port *up, *down, *port;
1985 	struct tb_cm *tcm = tb_priv(tb);
1986 	struct tb_tunnel *tunnel;
1987 
1988 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1989 	if (!up)
1990 		return 0;
1991 
1992 	/*
1993 	 * Look up available down port. Since we are chaining it should
1994 	 * be found right above this switch.
1995 	 */
1996 	port = tb_switch_downstream_port(sw);
1997 	down = tb_find_pcie_down(tb_switch_parent(sw), port);
1998 	if (!down)
1999 		return 0;
2000 
2001 	tunnel = tb_tunnel_alloc_pci(tb, up, down);
2002 	if (!tunnel)
2003 		return -ENOMEM;
2004 
2005 	if (tb_tunnel_activate(tunnel)) {
2006 		tb_port_info(up,
2007 			     "PCIe tunnel activation failed, aborting\n");
2008 		tb_tunnel_free(tunnel);
2009 		return -EIO;
2010 	}
2011 
2012 	/*
2013 	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2014 	 * here.
2015 	 */
2016 	if (tb_switch_pcie_l1_enable(sw))
2017 		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2018 
2019 	if (tb_switch_xhci_connect(sw))
2020 		tb_sw_warn(sw, "failed to connect xHCI\n");
2021 
2022 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2023 	return 0;
2024 }
2025 
2026 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2027 				    int transmit_path, int transmit_ring,
2028 				    int receive_path, int receive_ring)
2029 {
2030 	struct tb_cm *tcm = tb_priv(tb);
2031 	struct tb_port *nhi_port, *dst_port;
2032 	struct tb_tunnel *tunnel;
2033 	struct tb_switch *sw;
2034 	int ret;
2035 
2036 	sw = tb_to_switch(xd->dev.parent);
2037 	dst_port = tb_port_at(xd->route, sw);
2038 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2039 
2040 	mutex_lock(&tb->lock);
2041 
2042 	/*
2043 	 * When tunneling DMA paths the link should not enter CL states
2044 	 * so disable them now.
2045 	 */
2046 	tb_disable_clx(sw);
2047 
2048 	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2049 				     transmit_ring, receive_path, receive_ring);
2050 	if (!tunnel) {
2051 		ret = -ENOMEM;
2052 		goto err_clx;
2053 	}
2054 
2055 	if (tb_tunnel_activate(tunnel)) {
2056 		tb_port_info(nhi_port,
2057 			     "DMA tunnel activation failed, aborting\n");
2058 		ret = -EIO;
2059 		goto err_free;
2060 	}
2061 
2062 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2063 	mutex_unlock(&tb->lock);
2064 	return 0;
2065 
2066 err_free:
2067 	tb_tunnel_free(tunnel);
2068 err_clx:
2069 	tb_enable_clx(sw);
2070 	mutex_unlock(&tb->lock);
2071 
2072 	return ret;
2073 }
2074 
2075 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2076 					  int transmit_path, int transmit_ring,
2077 					  int receive_path, int receive_ring)
2078 {
2079 	struct tb_cm *tcm = tb_priv(tb);
2080 	struct tb_port *nhi_port, *dst_port;
2081 	struct tb_tunnel *tunnel, *n;
2082 	struct tb_switch *sw;
2083 
2084 	sw = tb_to_switch(xd->dev.parent);
2085 	dst_port = tb_port_at(xd->route, sw);
2086 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2087 
2088 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2089 		if (!tb_tunnel_is_dma(tunnel))
2090 			continue;
2091 		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2092 			continue;
2093 
2094 		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2095 					receive_path, receive_ring))
2096 			tb_deactivate_and_free_tunnel(tunnel);
2097 	}
2098 
2099 	/*
2100 	 * Try to re-enable CL states now, it is OK if this fails
2101 	 * because we may still have another DMA tunnel active through
2102 	 * the same host router USB4 downstream port.
2103 	 */
2104 	tb_enable_clx(sw);
2105 }
2106 
2107 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2108 				       int transmit_path, int transmit_ring,
2109 				       int receive_path, int receive_ring)
2110 {
2111 	if (!xd->is_unplugged) {
2112 		mutex_lock(&tb->lock);
2113 		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2114 					      transmit_ring, receive_path,
2115 					      receive_ring);
2116 		mutex_unlock(&tb->lock);
2117 	}
2118 	return 0;
2119 }
2120 
2121 /* hotplug handling */
2122 
2123 /*
2124  * tb_handle_hotplug() - handle hotplug event
2125  *
2126  * Executes on tb->wq.
2127  */
2128 static void tb_handle_hotplug(struct work_struct *work)
2129 {
2130 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2131 	struct tb *tb = ev->tb;
2132 	struct tb_cm *tcm = tb_priv(tb);
2133 	struct tb_switch *sw;
2134 	struct tb_port *port;
2135 
2136 	/* Bring the domain back from sleep if it was suspended */
2137 	pm_runtime_get_sync(&tb->dev);
2138 
2139 	mutex_lock(&tb->lock);
2140 	if (!tcm->hotplug_active)
2141 		goto out; /* during init, suspend or shutdown */
2142 
2143 	sw = tb_switch_find_by_route(tb, ev->route);
2144 	if (!sw) {
2145 		tb_warn(tb,
2146 			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2147 			ev->route, ev->port, ev->unplug);
2148 		goto out;
2149 	}
2150 	if (ev->port > sw->config.max_port_number) {
2151 		tb_warn(tb,
2152 			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2153 			ev->route, ev->port, ev->unplug);
2154 		goto put_sw;
2155 	}
2156 	port = &sw->ports[ev->port];
2157 	if (tb_is_upstream_port(port)) {
2158 		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2159 		       ev->route, ev->port, ev->unplug);
2160 		goto put_sw;
2161 	}
2162 
2163 	pm_runtime_get_sync(&sw->dev);
2164 
2165 	if (ev->unplug) {
2166 		tb_retimer_remove_all(port);
2167 
2168 		if (tb_port_has_remote(port)) {
2169 			tb_port_dbg(port, "switch unplugged\n");
2170 			tb_sw_set_unplugged(port->remote->sw);
2171 			tb_free_invalid_tunnels(tb);
2172 			tb_remove_dp_resources(port->remote->sw);
2173 			tb_switch_tmu_disable(port->remote->sw);
2174 			tb_switch_unconfigure_link(port->remote->sw);
2175 			tb_switch_set_link_width(port->remote->sw,
2176 						 TB_LINK_WIDTH_SINGLE);
2177 			tb_switch_remove(port->remote->sw);
2178 			port->remote = NULL;
2179 			if (port->dual_link_port)
2180 				port->dual_link_port->remote = NULL;
2181 			/* Maybe we can create another DP tunnel */
2182 			tb_recalc_estimated_bandwidth(tb);
2183 			tb_tunnel_dp(tb);
2184 		} else if (port->xdomain) {
2185 			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2186 
2187 			tb_port_dbg(port, "xdomain unplugged\n");
2188 			/*
2189 			 * Service drivers are unbound during
2190 			 * tb_xdomain_remove() so setting XDomain as
2191 			 * unplugged here prevents deadlock if they call
2192 			 * tb_xdomain_disable_paths(). We will tear down
2193 			 * all the tunnels below.
2194 			 */
2195 			xd->is_unplugged = true;
2196 			tb_xdomain_remove(xd);
2197 			port->xdomain = NULL;
2198 			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2199 			tb_xdomain_put(xd);
2200 			tb_port_unconfigure_xdomain(port);
2201 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2202 			tb_dp_resource_unavailable(tb, port);
2203 		} else if (!port->port) {
2204 			tb_sw_dbg(sw, "xHCI disconnect request\n");
2205 			tb_switch_xhci_disconnect(sw);
2206 		} else {
2207 			tb_port_dbg(port,
2208 				   "got unplug event for disconnected port, ignoring\n");
2209 		}
2210 	} else if (port->remote) {
2211 		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2212 	} else if (!port->port && sw->authorized) {
2213 		tb_sw_dbg(sw, "xHCI connect request\n");
2214 		tb_switch_xhci_connect(sw);
2215 	} else {
2216 		if (tb_port_is_null(port)) {
2217 			tb_port_dbg(port, "hotplug: scanning\n");
2218 			tb_scan_port(port);
2219 			if (!port->remote)
2220 				tb_port_dbg(port, "hotplug: no switch found\n");
2221 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2222 			tb_dp_resource_available(tb, port);
2223 		}
2224 	}
2225 
2226 	pm_runtime_mark_last_busy(&sw->dev);
2227 	pm_runtime_put_autosuspend(&sw->dev);
2228 
2229 put_sw:
2230 	tb_switch_put(sw);
2231 out:
2232 	mutex_unlock(&tb->lock);
2233 
2234 	pm_runtime_mark_last_busy(&tb->dev);
2235 	pm_runtime_put_autosuspend(&tb->dev);
2236 
2237 	kfree(ev);
2238 }
2239 
2240 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2241 				 int *requested_down)
2242 {
2243 	int allocated_up, allocated_down, available_up, available_down, ret;
2244 	int requested_up_corrected, requested_down_corrected, granularity;
2245 	int max_up, max_down, max_up_rounded, max_down_rounded;
2246 	struct tb *tb = tunnel->tb;
2247 	struct tb_port *in, *out;
2248 
2249 	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2250 	if (ret)
2251 		return ret;
2252 
2253 	in = tunnel->src_port;
2254 	out = tunnel->dst_port;
2255 
2256 	tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2257 		      allocated_up, allocated_down);
2258 
2259 	/*
2260 	 * If we get rounded up request from graphics side, say HBR2 x 4
2261 	 * that is 17500 instead of 17280 (this is because of the
2262 	 * granularity), we allow it too. Here the graphics has already
2263 	 * negotiated with the DPRX the maximum possible rates (which is
2264 	 * 17280 in this case).
2265 	 *
2266 	 * Since the link cannot go higher than 17280 we use that in our
2267 	 * calculations but the DP IN adapter Allocated BW write must be
2268 	 * the same value (17500) otherwise the adapter will mark it as
2269 	 * failed for graphics.
2270 	 */
2271 	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2272 	if (ret)
2273 		return ret;
2274 
2275 	ret = usb4_dp_port_granularity(in);
2276 	if (ret < 0)
2277 		return ret;
2278 	granularity = ret;
2279 
2280 	max_up_rounded = roundup(max_up, granularity);
2281 	max_down_rounded = roundup(max_down, granularity);
2282 
2283 	/*
2284 	 * This will "fix" the request down to the maximum supported
2285 	 * rate * lanes if it is at the maximum rounded up level.
2286 	 */
2287 	requested_up_corrected = *requested_up;
2288 	if (requested_up_corrected == max_up_rounded)
2289 		requested_up_corrected = max_up;
2290 	else if (requested_up_corrected < 0)
2291 		requested_up_corrected = 0;
2292 	requested_down_corrected = *requested_down;
2293 	if (requested_down_corrected == max_down_rounded)
2294 		requested_down_corrected = max_down;
2295 	else if (requested_down_corrected < 0)
2296 		requested_down_corrected = 0;
2297 
2298 	tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2299 		      requested_up_corrected, requested_down_corrected);
2300 
2301 	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2302 	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2303 		tb_tunnel_dbg(tunnel,
2304 			      "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2305 			      requested_up_corrected, requested_down_corrected,
2306 			      max_up_rounded, max_down_rounded);
2307 		return -ENOBUFS;
2308 	}
2309 
2310 	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2311 	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2312 		/*
2313 		 * If bandwidth on a link is < asym_threshold transition
2314 		 * the link to symmetric.
2315 		 */
2316 		tb_configure_sym(tb, in, out, *requested_up, *requested_down, true);
2317 		/*
2318 		 * If requested bandwidth is less or equal than what is
2319 		 * currently allocated to that tunnel we simply change
2320 		 * the reservation of the tunnel. Since all the tunnels
2321 		 * going out from the same USB4 port are in the same
2322 		 * group the released bandwidth will be taken into
2323 		 * account for the other tunnels automatically below.
2324 		 */
2325 		return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2326 						 requested_down);
2327 	}
2328 
2329 	/*
2330 	 * More bandwidth is requested. Release all the potential
2331 	 * bandwidth from USB3 first.
2332 	 */
2333 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2334 	if (ret)
2335 		return ret;
2336 
2337 	/*
2338 	 * Then go over all tunnels that cross the same USB4 ports (they
2339 	 * are also in the same group but we use the same function here
2340 	 * that we use with the normal bandwidth allocation).
2341 	 */
2342 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2343 				     true);
2344 	if (ret)
2345 		goto reclaim;
2346 
2347 	tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d Mb/s\n",
2348 		      available_up, available_down);
2349 
2350 	if ((*requested_up >= 0 && available_up >= requested_up_corrected) ||
2351 	    (*requested_down >= 0 && available_down >= requested_down_corrected)) {
2352 		/*
2353 		 * If bandwidth on a link is >= asym_threshold
2354 		 * transition the link to asymmetric.
2355 		 */
2356 		ret = tb_configure_asym(tb, in, out, *requested_up,
2357 					*requested_down);
2358 		if (ret) {
2359 			tb_configure_sym(tb, in, out, 0, 0, true);
2360 			return ret;
2361 		}
2362 
2363 		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2364 						requested_down);
2365 		if (ret) {
2366 			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2367 			tb_configure_sym(tb, in, out, 0, 0, true);
2368 		}
2369 	} else {
2370 		ret = -ENOBUFS;
2371 	}
2372 
2373 reclaim:
2374 	tb_reclaim_usb3_bandwidth(tb, in, out);
2375 	return ret;
2376 }
2377 
2378 static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2379 {
2380 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2381 	int requested_bw, requested_up, requested_down, ret;
2382 	struct tb_port *in, *out;
2383 	struct tb_tunnel *tunnel;
2384 	struct tb *tb = ev->tb;
2385 	struct tb_cm *tcm = tb_priv(tb);
2386 	struct tb_switch *sw;
2387 
2388 	pm_runtime_get_sync(&tb->dev);
2389 
2390 	mutex_lock(&tb->lock);
2391 	if (!tcm->hotplug_active)
2392 		goto unlock;
2393 
2394 	sw = tb_switch_find_by_route(tb, ev->route);
2395 	if (!sw) {
2396 		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2397 			ev->route);
2398 		goto unlock;
2399 	}
2400 
2401 	in = &sw->ports[ev->port];
2402 	if (!tb_port_is_dpin(in)) {
2403 		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2404 		goto put_sw;
2405 	}
2406 
2407 	tb_port_dbg(in, "handling bandwidth allocation request\n");
2408 
2409 	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2410 		tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2411 		goto put_sw;
2412 	}
2413 
2414 	ret = usb4_dp_port_requested_bandwidth(in);
2415 	if (ret < 0) {
2416 		if (ret == -ENODATA)
2417 			tb_port_dbg(in, "no bandwidth request active\n");
2418 		else
2419 			tb_port_warn(in, "failed to read requested bandwidth\n");
2420 		goto put_sw;
2421 	}
2422 	requested_bw = ret;
2423 
2424 	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2425 
2426 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2427 	if (!tunnel) {
2428 		tb_port_warn(in, "failed to find tunnel\n");
2429 		goto put_sw;
2430 	}
2431 
2432 	out = tunnel->dst_port;
2433 
2434 	if (tb_port_path_direction_downstream(in, out)) {
2435 		requested_up = -1;
2436 		requested_down = requested_bw;
2437 	} else {
2438 		requested_up = requested_bw;
2439 		requested_down = -1;
2440 	}
2441 
2442 	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2443 	if (ret) {
2444 		if (ret == -ENOBUFS)
2445 			tb_tunnel_warn(tunnel,
2446 				       "not enough bandwidth available\n");
2447 		else
2448 			tb_tunnel_warn(tunnel,
2449 				       "failed to change bandwidth allocation\n");
2450 	} else {
2451 		tb_tunnel_dbg(tunnel,
2452 			      "bandwidth allocation changed to %d/%d Mb/s\n",
2453 			      requested_up, requested_down);
2454 
2455 		/* Update other clients about the allocation change */
2456 		tb_recalc_estimated_bandwidth(tb);
2457 	}
2458 
2459 put_sw:
2460 	tb_switch_put(sw);
2461 unlock:
2462 	mutex_unlock(&tb->lock);
2463 
2464 	pm_runtime_mark_last_busy(&tb->dev);
2465 	pm_runtime_put_autosuspend(&tb->dev);
2466 
2467 	kfree(ev);
2468 }
2469 
2470 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2471 {
2472 	struct tb_hotplug_event *ev;
2473 
2474 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2475 	if (!ev)
2476 		return;
2477 
2478 	ev->tb = tb;
2479 	ev->route = route;
2480 	ev->port = port;
2481 	INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2482 	queue_work(tb->wq, &ev->work);
2483 }
2484 
2485 static void tb_handle_notification(struct tb *tb, u64 route,
2486 				   const struct cfg_error_pkg *error)
2487 {
2488 
2489 	switch (error->error) {
2490 	case TB_CFG_ERROR_PCIE_WAKE:
2491 	case TB_CFG_ERROR_DP_CON_CHANGE:
2492 	case TB_CFG_ERROR_DPTX_DISCOVERY:
2493 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2494 			tb_warn(tb, "could not ack notification on %llx\n",
2495 				route);
2496 		break;
2497 
2498 	case TB_CFG_ERROR_DP_BW:
2499 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2500 			tb_warn(tb, "could not ack notification on %llx\n",
2501 				route);
2502 		tb_queue_dp_bandwidth_request(tb, route, error->port);
2503 		break;
2504 
2505 	default:
2506 		/* Ignore for now */
2507 		break;
2508 	}
2509 }
2510 
2511 /*
2512  * tb_schedule_hotplug_handler() - callback function for the control channel
2513  *
2514  * Delegates to tb_handle_hotplug.
2515  */
2516 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2517 			    const void *buf, size_t size)
2518 {
2519 	const struct cfg_event_pkg *pkg = buf;
2520 	u64 route = tb_cfg_get_route(&pkg->header);
2521 
2522 	switch (type) {
2523 	case TB_CFG_PKG_ERROR:
2524 		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2525 		return;
2526 	case TB_CFG_PKG_EVENT:
2527 		break;
2528 	default:
2529 		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2530 		return;
2531 	}
2532 
2533 	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2534 		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2535 			pkg->port);
2536 	}
2537 
2538 	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2539 }
2540 
2541 static void tb_stop(struct tb *tb)
2542 {
2543 	struct tb_cm *tcm = tb_priv(tb);
2544 	struct tb_tunnel *tunnel;
2545 	struct tb_tunnel *n;
2546 
2547 	cancel_delayed_work(&tcm->remove_work);
2548 	/* tunnels are only present after everything has been initialized */
2549 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2550 		/*
2551 		 * DMA tunnels require the driver to be functional so we
2552 		 * tear them down. Other protocol tunnels can be left
2553 		 * intact.
2554 		 */
2555 		if (tb_tunnel_is_dma(tunnel))
2556 			tb_tunnel_deactivate(tunnel);
2557 		tb_tunnel_free(tunnel);
2558 	}
2559 	tb_switch_remove(tb->root_switch);
2560 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2561 }
2562 
2563 static int tb_scan_finalize_switch(struct device *dev, void *data)
2564 {
2565 	if (tb_is_switch(dev)) {
2566 		struct tb_switch *sw = tb_to_switch(dev);
2567 
2568 		/*
2569 		 * If we found that the switch was already setup by the
2570 		 * boot firmware, mark it as authorized now before we
2571 		 * send uevent to userspace.
2572 		 */
2573 		if (sw->boot)
2574 			sw->authorized = 1;
2575 
2576 		dev_set_uevent_suppress(dev, false);
2577 		kobject_uevent(&dev->kobj, KOBJ_ADD);
2578 		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static int tb_start(struct tb *tb)
2585 {
2586 	struct tb_cm *tcm = tb_priv(tb);
2587 	int ret;
2588 
2589 	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2590 	if (IS_ERR(tb->root_switch))
2591 		return PTR_ERR(tb->root_switch);
2592 
2593 	/*
2594 	 * ICM firmware upgrade needs running firmware and in native
2595 	 * mode that is not available so disable firmware upgrade of the
2596 	 * root switch.
2597 	 *
2598 	 * However, USB4 routers support NVM firmware upgrade if they
2599 	 * implement the necessary router operations.
2600 	 */
2601 	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2602 	/* All USB4 routers support runtime PM */
2603 	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2604 
2605 	ret = tb_switch_configure(tb->root_switch);
2606 	if (ret) {
2607 		tb_switch_put(tb->root_switch);
2608 		return ret;
2609 	}
2610 
2611 	/* Announce the switch to the world */
2612 	ret = tb_switch_add(tb->root_switch);
2613 	if (ret) {
2614 		tb_switch_put(tb->root_switch);
2615 		return ret;
2616 	}
2617 
2618 	/*
2619 	 * To support highest CLx state, we set host router's TMU to
2620 	 * Normal mode.
2621 	 */
2622 	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
2623 	/* Enable TMU if it is off */
2624 	tb_switch_tmu_enable(tb->root_switch);
2625 	/* Full scan to discover devices added before the driver was loaded. */
2626 	tb_scan_switch(tb->root_switch);
2627 	/* Find out tunnels created by the boot firmware */
2628 	tb_discover_tunnels(tb);
2629 	/* Add DP resources from the DP tunnels created by the boot firmware */
2630 	tb_discover_dp_resources(tb);
2631 	/*
2632 	 * If the boot firmware did not create USB 3.x tunnels create them
2633 	 * now for the whole topology.
2634 	 */
2635 	tb_create_usb3_tunnels(tb->root_switch);
2636 	/* Add DP IN resources for the root switch */
2637 	tb_add_dp_resources(tb->root_switch);
2638 	/* Make the discovered switches available to the userspace */
2639 	device_for_each_child(&tb->root_switch->dev, NULL,
2640 			      tb_scan_finalize_switch);
2641 
2642 	/* Allow tb_handle_hotplug to progress events */
2643 	tcm->hotplug_active = true;
2644 	return 0;
2645 }
2646 
2647 static int tb_suspend_noirq(struct tb *tb)
2648 {
2649 	struct tb_cm *tcm = tb_priv(tb);
2650 
2651 	tb_dbg(tb, "suspending...\n");
2652 	tb_disconnect_and_release_dp(tb);
2653 	tb_switch_suspend(tb->root_switch, false);
2654 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2655 	tb_dbg(tb, "suspend finished\n");
2656 
2657 	return 0;
2658 }
2659 
2660 static void tb_restore_children(struct tb_switch *sw)
2661 {
2662 	struct tb_port *port;
2663 
2664 	/* No need to restore if the router is already unplugged */
2665 	if (sw->is_unplugged)
2666 		return;
2667 
2668 	if (tb_enable_clx(sw))
2669 		tb_sw_warn(sw, "failed to re-enable CL states\n");
2670 
2671 	if (tb_enable_tmu(sw))
2672 		tb_sw_warn(sw, "failed to restore TMU configuration\n");
2673 
2674 	tb_switch_configuration_valid(sw);
2675 
2676 	tb_switch_for_each_port(sw, port) {
2677 		if (!tb_port_has_remote(port) && !port->xdomain)
2678 			continue;
2679 
2680 		if (port->remote) {
2681 			tb_switch_set_link_width(port->remote->sw,
2682 						 port->remote->sw->link_width);
2683 			tb_switch_configure_link(port->remote->sw);
2684 
2685 			tb_restore_children(port->remote->sw);
2686 		} else if (port->xdomain) {
2687 			tb_port_configure_xdomain(port, port->xdomain);
2688 		}
2689 	}
2690 }
2691 
2692 static int tb_resume_noirq(struct tb *tb)
2693 {
2694 	struct tb_cm *tcm = tb_priv(tb);
2695 	struct tb_tunnel *tunnel, *n;
2696 	unsigned int usb3_delay = 0;
2697 	LIST_HEAD(tunnels);
2698 
2699 	tb_dbg(tb, "resuming...\n");
2700 
2701 	/* remove any pci devices the firmware might have setup */
2702 	tb_switch_reset(tb->root_switch);
2703 
2704 	tb_switch_resume(tb->root_switch);
2705 	tb_free_invalid_tunnels(tb);
2706 	tb_free_unplugged_children(tb->root_switch);
2707 	tb_restore_children(tb->root_switch);
2708 
2709 	/*
2710 	 * If we get here from suspend to disk the boot firmware or the
2711 	 * restore kernel might have created tunnels of its own. Since
2712 	 * we cannot be sure they are usable for us we find and tear
2713 	 * them down.
2714 	 */
2715 	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
2716 	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
2717 		if (tb_tunnel_is_usb3(tunnel))
2718 			usb3_delay = 500;
2719 		tb_tunnel_deactivate(tunnel);
2720 		tb_tunnel_free(tunnel);
2721 	}
2722 
2723 	/* Re-create our tunnels now */
2724 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2725 		/* USB3 requires delay before it can be re-activated */
2726 		if (tb_tunnel_is_usb3(tunnel)) {
2727 			msleep(usb3_delay);
2728 			/* Only need to do it once */
2729 			usb3_delay = 0;
2730 		}
2731 		tb_tunnel_restart(tunnel);
2732 	}
2733 	if (!list_empty(&tcm->tunnel_list)) {
2734 		/*
2735 		 * the pcie links need some time to get going.
2736 		 * 100ms works for me...
2737 		 */
2738 		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
2739 		msleep(100);
2740 	}
2741 	 /* Allow tb_handle_hotplug to progress events */
2742 	tcm->hotplug_active = true;
2743 	tb_dbg(tb, "resume finished\n");
2744 
2745 	return 0;
2746 }
2747 
2748 static int tb_free_unplugged_xdomains(struct tb_switch *sw)
2749 {
2750 	struct tb_port *port;
2751 	int ret = 0;
2752 
2753 	tb_switch_for_each_port(sw, port) {
2754 		if (tb_is_upstream_port(port))
2755 			continue;
2756 		if (port->xdomain && port->xdomain->is_unplugged) {
2757 			tb_retimer_remove_all(port);
2758 			tb_xdomain_remove(port->xdomain);
2759 			tb_port_unconfigure_xdomain(port);
2760 			port->xdomain = NULL;
2761 			ret++;
2762 		} else if (port->remote) {
2763 			ret += tb_free_unplugged_xdomains(port->remote->sw);
2764 		}
2765 	}
2766 
2767 	return ret;
2768 }
2769 
2770 static int tb_freeze_noirq(struct tb *tb)
2771 {
2772 	struct tb_cm *tcm = tb_priv(tb);
2773 
2774 	tcm->hotplug_active = false;
2775 	return 0;
2776 }
2777 
2778 static int tb_thaw_noirq(struct tb *tb)
2779 {
2780 	struct tb_cm *tcm = tb_priv(tb);
2781 
2782 	tcm->hotplug_active = true;
2783 	return 0;
2784 }
2785 
2786 static void tb_complete(struct tb *tb)
2787 {
2788 	/*
2789 	 * Release any unplugged XDomains and if there is a case where
2790 	 * another domain is swapped in place of unplugged XDomain we
2791 	 * need to run another rescan.
2792 	 */
2793 	mutex_lock(&tb->lock);
2794 	if (tb_free_unplugged_xdomains(tb->root_switch))
2795 		tb_scan_switch(tb->root_switch);
2796 	mutex_unlock(&tb->lock);
2797 }
2798 
2799 static int tb_runtime_suspend(struct tb *tb)
2800 {
2801 	struct tb_cm *tcm = tb_priv(tb);
2802 
2803 	mutex_lock(&tb->lock);
2804 	tb_switch_suspend(tb->root_switch, true);
2805 	tcm->hotplug_active = false;
2806 	mutex_unlock(&tb->lock);
2807 
2808 	return 0;
2809 }
2810 
2811 static void tb_remove_work(struct work_struct *work)
2812 {
2813 	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
2814 	struct tb *tb = tcm_to_tb(tcm);
2815 
2816 	mutex_lock(&tb->lock);
2817 	if (tb->root_switch) {
2818 		tb_free_unplugged_children(tb->root_switch);
2819 		tb_free_unplugged_xdomains(tb->root_switch);
2820 	}
2821 	mutex_unlock(&tb->lock);
2822 }
2823 
2824 static int tb_runtime_resume(struct tb *tb)
2825 {
2826 	struct tb_cm *tcm = tb_priv(tb);
2827 	struct tb_tunnel *tunnel, *n;
2828 
2829 	mutex_lock(&tb->lock);
2830 	tb_switch_resume(tb->root_switch);
2831 	tb_free_invalid_tunnels(tb);
2832 	tb_restore_children(tb->root_switch);
2833 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
2834 		tb_tunnel_restart(tunnel);
2835 	tcm->hotplug_active = true;
2836 	mutex_unlock(&tb->lock);
2837 
2838 	/*
2839 	 * Schedule cleanup of any unplugged devices. Run this in a
2840 	 * separate thread to avoid possible deadlock if the device
2841 	 * removal runtime resumes the unplugged device.
2842 	 */
2843 	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
2844 	return 0;
2845 }
2846 
2847 static const struct tb_cm_ops tb_cm_ops = {
2848 	.start = tb_start,
2849 	.stop = tb_stop,
2850 	.suspend_noirq = tb_suspend_noirq,
2851 	.resume_noirq = tb_resume_noirq,
2852 	.freeze_noirq = tb_freeze_noirq,
2853 	.thaw_noirq = tb_thaw_noirq,
2854 	.complete = tb_complete,
2855 	.runtime_suspend = tb_runtime_suspend,
2856 	.runtime_resume = tb_runtime_resume,
2857 	.handle_event = tb_handle_event,
2858 	.disapprove_switch = tb_disconnect_pci,
2859 	.approve_switch = tb_tunnel_pci,
2860 	.approve_xdomain_paths = tb_approve_xdomain_paths,
2861 	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
2862 };
2863 
2864 /*
2865  * During suspend the Thunderbolt controller is reset and all PCIe
2866  * tunnels are lost. The NHI driver will try to reestablish all tunnels
2867  * during resume. This adds device links between the tunneled PCIe
2868  * downstream ports and the NHI so that the device core will make sure
2869  * NHI is resumed first before the rest.
2870  */
2871 static bool tb_apple_add_links(struct tb_nhi *nhi)
2872 {
2873 	struct pci_dev *upstream, *pdev;
2874 	bool ret;
2875 
2876 	if (!x86_apple_machine)
2877 		return false;
2878 
2879 	switch (nhi->pdev->device) {
2880 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2881 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2882 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
2883 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
2884 		break;
2885 	default:
2886 		return false;
2887 	}
2888 
2889 	upstream = pci_upstream_bridge(nhi->pdev);
2890 	while (upstream) {
2891 		if (!pci_is_pcie(upstream))
2892 			return false;
2893 		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
2894 			break;
2895 		upstream = pci_upstream_bridge(upstream);
2896 	}
2897 
2898 	if (!upstream)
2899 		return false;
2900 
2901 	/*
2902 	 * For each hotplug downstream port, create add device link
2903 	 * back to NHI so that PCIe tunnels can be re-established after
2904 	 * sleep.
2905 	 */
2906 	ret = false;
2907 	for_each_pci_bridge(pdev, upstream->subordinate) {
2908 		const struct device_link *link;
2909 
2910 		if (!pci_is_pcie(pdev))
2911 			continue;
2912 		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
2913 		    !pdev->is_hotplug_bridge)
2914 			continue;
2915 
2916 		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
2917 				       DL_FLAG_AUTOREMOVE_SUPPLIER |
2918 				       DL_FLAG_PM_RUNTIME);
2919 		if (link) {
2920 			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
2921 				dev_name(&pdev->dev));
2922 			ret = true;
2923 		} else {
2924 			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
2925 				 dev_name(&pdev->dev));
2926 		}
2927 	}
2928 
2929 	return ret;
2930 }
2931 
2932 struct tb *tb_probe(struct tb_nhi *nhi)
2933 {
2934 	struct tb_cm *tcm;
2935 	struct tb *tb;
2936 
2937 	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
2938 	if (!tb)
2939 		return NULL;
2940 
2941 	if (tb_acpi_may_tunnel_pcie())
2942 		tb->security_level = TB_SECURITY_USER;
2943 	else
2944 		tb->security_level = TB_SECURITY_NOPCIE;
2945 
2946 	tb->cm_ops = &tb_cm_ops;
2947 
2948 	tcm = tb_priv(tb);
2949 	INIT_LIST_HEAD(&tcm->tunnel_list);
2950 	INIT_LIST_HEAD(&tcm->dp_resources);
2951 	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
2952 	tb_init_bandwidth_groups(tcm);
2953 
2954 	tb_dbg(tb, "using software connection manager\n");
2955 
2956 	/*
2957 	 * Device links are needed to make sure we establish tunnels
2958 	 * before the PCIe/USB stack is resumed so complain here if we
2959 	 * found them missing.
2960 	 */
2961 	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
2962 		tb_warn(tb, "device links to tunneled native ports are missing!\n");
2963 
2964 	return tb;
2965 }
2966