xref: /linux/drivers/thunderbolt/tb.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - bus logic (NHI independent)
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2019, Intel Corporation
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/platform_data/x86/apple.h>
14 
15 #include "tb.h"
16 #include "tb_regs.h"
17 #include "tunnel.h"
18 
19 #define TB_TIMEOUT		100	/* ms */
20 #define TB_RELEASE_BW_TIMEOUT	10000	/* ms */
21 
22 /*
23  * How many time bandwidth allocation request from graphics driver is
24  * retried if the DP tunnel is still activating.
25  */
26 #define TB_BW_ALLOC_RETRIES	3
27 
28 /*
29  * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
30  * direction. This is 40G - 10% guard band bandwidth.
31  */
32 #define TB_ASYM_MIN		(40000 * 90 / 100)
33 
34 /*
35  * Threshold bandwidth (in Mb/s) that is used to switch the links to
36  * asymmetric and back. This is selected as 45G which means when the
37  * request is higher than this, we switch the link to asymmetric, and
38  * when it is less than this we switch it back. The 45G is selected so
39  * that we still have 27G (of the total 72G) for bulk PCIe traffic when
40  * switching back to symmetric.
41  */
42 #define TB_ASYM_THRESHOLD	45000
43 
44 #define MAX_GROUPS		7	/* max Group_ID is 7 */
45 
46 static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
47 module_param_named(asym_threshold, asym_threshold, uint, 0444);
48 MODULE_PARM_DESC(asym_threshold,
49 		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
50 		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
51 
52 /**
53  * struct tb_cm - Simple Thunderbolt connection manager
54  * @tunnel_list: List of active tunnels
55  * @dp_resources: List of available DP resources for DP tunneling
56  * @hotplug_active: tb_handle_hotplug will stop progressing plug
57  *		    events and exit if this is not set (it needs to
58  *		    acquire the lock one more time). Used to drain wq
59  *		    after cfg has been paused.
60  * @remove_work: Work used to remove any unplugged routers after
61  *		 runtime resume
62  * @groups: Bandwidth groups used in this domain.
63  */
64 struct tb_cm {
65 	struct list_head tunnel_list;
66 	struct list_head dp_resources;
67 	bool hotplug_active;
68 	struct delayed_work remove_work;
69 	struct tb_bandwidth_group groups[MAX_GROUPS];
70 };
71 
72 static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
73 {
74 	return ((void *)tcm - sizeof(struct tb));
75 }
76 
77 struct tb_hotplug_event {
78 	struct delayed_work work;
79 	struct tb *tb;
80 	u64 route;
81 	u8 port;
82 	bool unplug;
83 	int retry;
84 };
85 
86 static void tb_scan_port(struct tb_port *port);
87 static void tb_handle_hotplug(struct work_struct *work);
88 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port,
89 				       const char *reason);
90 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port,
91 					  int retry, unsigned long delay);
92 
93 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
94 {
95 	struct tb_hotplug_event *ev;
96 
97 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
98 	if (!ev)
99 		return;
100 
101 	ev->tb = tb;
102 	ev->route = route;
103 	ev->port = port;
104 	ev->unplug = unplug;
105 	INIT_DELAYED_WORK(&ev->work, tb_handle_hotplug);
106 	queue_delayed_work(tb->wq, &ev->work, 0);
107 }
108 
109 /* enumeration & hot plug handling */
110 
111 static void tb_add_dp_resources(struct tb_switch *sw)
112 {
113 	struct tb_cm *tcm = tb_priv(sw->tb);
114 	struct tb_port *port;
115 
116 	tb_switch_for_each_port(sw, port) {
117 		if (!tb_port_is_dpin(port))
118 			continue;
119 
120 		if (!tb_switch_query_dp_resource(sw, port))
121 			continue;
122 
123 		/*
124 		 * If DP IN on device router exist, position it at the
125 		 * beginning of the DP resources list, so that it is used
126 		 * before DP IN of the host router. This way external GPU(s)
127 		 * will be prioritized when pairing DP IN to a DP OUT.
128 		 */
129 		if (tb_route(sw))
130 			list_add(&port->list, &tcm->dp_resources);
131 		else
132 			list_add_tail(&port->list, &tcm->dp_resources);
133 
134 		tb_port_dbg(port, "DP IN resource available\n");
135 	}
136 }
137 
138 static void tb_remove_dp_resources(struct tb_switch *sw)
139 {
140 	struct tb_cm *tcm = tb_priv(sw->tb);
141 	struct tb_port *port, *tmp;
142 
143 	/* Clear children resources first */
144 	tb_switch_for_each_port(sw, port) {
145 		if (tb_port_has_remote(port))
146 			tb_remove_dp_resources(port->remote->sw);
147 	}
148 
149 	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
150 		if (port->sw == sw) {
151 			tb_port_dbg(port, "DP OUT resource unavailable\n");
152 			list_del_init(&port->list);
153 		}
154 	}
155 }
156 
157 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
158 {
159 	struct tb_cm *tcm = tb_priv(tb);
160 	struct tb_port *p;
161 
162 	list_for_each_entry(p, &tcm->dp_resources, list) {
163 		if (p == port)
164 			return;
165 	}
166 
167 	tb_port_dbg(port, "DP %s resource available discovered\n",
168 		    tb_port_is_dpin(port) ? "IN" : "OUT");
169 	list_add_tail(&port->list, &tcm->dp_resources);
170 }
171 
172 static void tb_discover_dp_resources(struct tb *tb)
173 {
174 	struct tb_cm *tcm = tb_priv(tb);
175 	struct tb_tunnel *tunnel;
176 
177 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
178 		if (tb_tunnel_is_dp(tunnel))
179 			tb_discover_dp_resource(tb, tunnel->dst_port);
180 	}
181 }
182 
183 /* Enables CL states up to host router */
184 static int tb_enable_clx(struct tb_switch *sw)
185 {
186 	struct tb_cm *tcm = tb_priv(sw->tb);
187 	unsigned int clx = TB_CL0S | TB_CL1;
188 	const struct tb_tunnel *tunnel;
189 	int ret;
190 
191 	/*
192 	 * Currently only enable CLx for the first link. This is enough
193 	 * to allow the CPU to save energy at least on Intel hardware
194 	 * and makes it slightly simpler to implement. We may change
195 	 * this in the future to cover the whole topology if it turns
196 	 * out to be beneficial.
197 	 */
198 	while (sw && tb_switch_depth(sw) > 1)
199 		sw = tb_switch_parent(sw);
200 
201 	if (!sw)
202 		return 0;
203 
204 	if (tb_switch_depth(sw) != 1)
205 		return 0;
206 
207 	/*
208 	 * If we are re-enabling then check if there is an active DMA
209 	 * tunnel and in that case bail out.
210 	 */
211 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
212 		if (tb_tunnel_is_dma(tunnel)) {
213 			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
214 				return 0;
215 		}
216 	}
217 
218 	/*
219 	 * Initially try with CL2. If that's not supported by the
220 	 * topology try with CL0s and CL1 and then give up.
221 	 */
222 	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
223 	if (ret == -EOPNOTSUPP)
224 		ret = tb_switch_clx_enable(sw, clx);
225 	return ret == -EOPNOTSUPP ? 0 : ret;
226 }
227 
228 /*
229  * Disables CL states from @sw up to the host router.
230  *
231  * This can be used to figure out whether the link was setup by us or the
232  * boot firmware so we don't accidentally enable them if they were not
233  * enabled during discovery.
234  */
235 static bool tb_disable_clx(struct tb_switch *sw)
236 {
237 	bool disabled = false;
238 
239 	do {
240 		int ret;
241 
242 		ret = tb_switch_clx_disable(sw);
243 		if (ret > 0)
244 			disabled = true;
245 		else if (ret < 0)
246 			tb_sw_warn(sw, "failed to disable CL states\n");
247 
248 		sw = tb_switch_parent(sw);
249 	} while (sw);
250 
251 	return disabled;
252 }
253 
254 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
255 {
256 	struct tb_switch *sw;
257 
258 	sw = tb_to_switch(dev);
259 	if (!sw)
260 		return 0;
261 
262 	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
263 		enum tb_switch_tmu_mode mode;
264 		int ret;
265 
266 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
267 			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
268 		else
269 			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
270 
271 		ret = tb_switch_tmu_configure(sw, mode);
272 		if (ret)
273 			return ret;
274 
275 		return tb_switch_tmu_enable(sw);
276 	}
277 
278 	return 0;
279 }
280 
281 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
282 {
283 	struct tb_switch *sw;
284 
285 	if (!tunnel)
286 		return;
287 
288 	/*
289 	 * Once first DP tunnel is established we change the TMU
290 	 * accuracy of first depth child routers (and the host router)
291 	 * to the highest. This is needed for the DP tunneling to work
292 	 * but also allows CL0s.
293 	 *
294 	 * If both routers are v2 then we don't need to do anything as
295 	 * they are using enhanced TMU mode that allows all CLx.
296 	 */
297 	sw = tunnel->tb->root_switch;
298 	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
299 }
300 
301 static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used)
302 {
303 	struct tb_switch *sw = tb_to_switch(dev);
304 
305 	if (sw && tb_switch_tmu_is_enabled(sw) &&
306 	    tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI))
307 		return 1;
308 
309 	return device_for_each_child(dev, NULL,
310 				     tb_switch_tmu_hifi_uni_required);
311 }
312 
313 static bool tb_tmu_hifi_uni_required(struct tb *tb)
314 {
315 	return device_for_each_child(&tb->dev, NULL,
316 				     tb_switch_tmu_hifi_uni_required) == 1;
317 }
318 
319 static int tb_enable_tmu(struct tb_switch *sw)
320 {
321 	int ret;
322 
323 	/*
324 	 * If both routers at the end of the link are v2 we simply
325 	 * enable the enhanched uni-directional mode. That covers all
326 	 * the CL states. For v1 and before we need to use the normal
327 	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
328 	 * running at the highest accuracy.
329 	 */
330 	ret = tb_switch_tmu_configure(sw,
331 			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
332 	if (ret == -EOPNOTSUPP) {
333 		if (tb_switch_clx_is_enabled(sw, TB_CL1)) {
334 			/*
335 			 * Figure out uni-directional HiFi TMU requirements
336 			 * currently in the domain. If there are no
337 			 * uni-directional HiFi requirements we can put the TMU
338 			 * into LowRes mode.
339 			 *
340 			 * Deliberately skip bi-directional HiFi links
341 			 * as these work independently of other links
342 			 * (and they do not allow any CL states anyway).
343 			 */
344 			if (tb_tmu_hifi_uni_required(sw->tb))
345 				ret = tb_switch_tmu_configure(sw,
346 						TB_SWITCH_TMU_MODE_HIFI_UNI);
347 			else
348 				ret = tb_switch_tmu_configure(sw,
349 						TB_SWITCH_TMU_MODE_LOWRES);
350 		} else {
351 			ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
352 		}
353 
354 		/* If not supported, fallback to bi-directional HiFi */
355 		if (ret == -EOPNOTSUPP)
356 			ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
357 	}
358 	if (ret)
359 		return ret;
360 
361 	/* If it is already enabled in correct mode, don't touch it */
362 	if (tb_switch_tmu_is_enabled(sw))
363 		return 0;
364 
365 	ret = tb_switch_tmu_disable(sw);
366 	if (ret)
367 		return ret;
368 
369 	ret = tb_switch_tmu_post_time(sw);
370 	if (ret)
371 		return ret;
372 
373 	return tb_switch_tmu_enable(sw);
374 }
375 
376 static void tb_switch_discover_tunnels(struct tb_switch *sw,
377 				       struct list_head *list,
378 				       bool alloc_hopids)
379 {
380 	struct tb *tb = sw->tb;
381 	struct tb_port *port;
382 
383 	tb_switch_for_each_port(sw, port) {
384 		struct tb_tunnel *tunnel = NULL;
385 
386 		switch (port->config.type) {
387 		case TB_TYPE_DP_HDMI_IN:
388 			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
389 			tb_increase_tmu_accuracy(tunnel);
390 			break;
391 
392 		case TB_TYPE_PCIE_DOWN:
393 			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
394 			break;
395 
396 		case TB_TYPE_USB3_DOWN:
397 			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
398 			break;
399 
400 		default:
401 			break;
402 		}
403 
404 		if (tunnel)
405 			list_add_tail(&tunnel->list, list);
406 	}
407 
408 	tb_switch_for_each_port(sw, port) {
409 		if (tb_port_has_remote(port)) {
410 			tb_switch_discover_tunnels(port->remote->sw, list,
411 						   alloc_hopids);
412 		}
413 	}
414 }
415 
416 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
417 {
418 	if (tb_switch_is_usb4(port->sw))
419 		return usb4_port_configure_xdomain(port, xd);
420 	return tb_lc_configure_xdomain(port);
421 }
422 
423 static void tb_port_unconfigure_xdomain(struct tb_port *port)
424 {
425 	if (tb_switch_is_usb4(port->sw))
426 		usb4_port_unconfigure_xdomain(port);
427 	else
428 		tb_lc_unconfigure_xdomain(port);
429 }
430 
431 static void tb_scan_xdomain(struct tb_port *port)
432 {
433 	struct tb_switch *sw = port->sw;
434 	struct tb *tb = sw->tb;
435 	struct tb_xdomain *xd;
436 	u64 route;
437 
438 	if (!tb_is_xdomain_enabled())
439 		return;
440 
441 	route = tb_downstream_route(port);
442 	xd = tb_xdomain_find_by_route(tb, route);
443 	if (xd) {
444 		tb_xdomain_put(xd);
445 		return;
446 	}
447 
448 	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
449 			      NULL);
450 	if (xd) {
451 		tb_port_at(route, sw)->xdomain = xd;
452 		tb_port_configure_xdomain(port, xd);
453 		tb_xdomain_add(xd);
454 	}
455 }
456 
457 /*
458  * Returns the first inactive port on @sw.
459  */
460 static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
461 					   enum tb_port_type type)
462 {
463 	struct tb_port *port;
464 
465 	tb_switch_for_each_port(sw, port) {
466 		if (tb_is_upstream_port(port))
467 			continue;
468 		if (port->config.type != type)
469 			continue;
470 		if (!port->cap_adap)
471 			continue;
472 		if (tb_port_is_enabled(port))
473 			continue;
474 		return port;
475 	}
476 	return NULL;
477 }
478 
479 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
480 					 const struct tb_port *port)
481 {
482 	struct tb_port *down;
483 
484 	down = usb4_switch_map_usb3_down(sw, port);
485 	if (down && !tb_usb3_port_is_enabled(down))
486 		return down;
487 	return NULL;
488 }
489 
490 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
491 					struct tb_port *src_port,
492 					struct tb_port *dst_port)
493 {
494 	struct tb_cm *tcm = tb_priv(tb);
495 	struct tb_tunnel *tunnel;
496 
497 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
498 		if (tunnel->type == type &&
499 		    ((src_port && src_port == tunnel->src_port) ||
500 		     (dst_port && dst_port == tunnel->dst_port))) {
501 			return tunnel;
502 		}
503 	}
504 
505 	return NULL;
506 }
507 
508 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
509 						   struct tb_port *src_port,
510 						   struct tb_port *dst_port)
511 {
512 	struct tb_port *port, *usb3_down;
513 	struct tb_switch *sw;
514 
515 	/* Pick the router that is deepest in the topology */
516 	if (tb_port_path_direction_downstream(src_port, dst_port))
517 		sw = dst_port->sw;
518 	else
519 		sw = src_port->sw;
520 
521 	/* Can't be the host router */
522 	if (sw == tb->root_switch)
523 		return NULL;
524 
525 	/* Find the downstream USB4 port that leads to this router */
526 	port = tb_port_at(tb_route(sw), tb->root_switch);
527 	/* Find the corresponding host router USB3 downstream port */
528 	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
529 	if (!usb3_down)
530 		return NULL;
531 
532 	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
533 }
534 
535 /**
536  * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
537  * @tb: Domain structure
538  * @src_port: Source protocol adapter
539  * @dst_port: Destination protocol adapter
540  * @port: USB4 port the consumed bandwidth is calculated
541  * @consumed_up: Consumed upsream bandwidth (Mb/s)
542  * @consumed_down: Consumed downstream bandwidth (Mb/s)
543  *
544  * Calculates consumed USB3 and PCIe bandwidth at @port between path
545  * from @src_port to @dst_port. Does not take USB3 tunnel starting from
546  * @src_port and ending on @src_port into account because that bandwidth is
547  * already included in as part of the "first hop" USB3 tunnel.
548  *
549  * Return: %0 on success, negative errno otherwise.
550  */
551 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
552 					   struct tb_port *src_port,
553 					   struct tb_port *dst_port,
554 					   struct tb_port *port,
555 					   int *consumed_up,
556 					   int *consumed_down)
557 {
558 	int pci_consumed_up, pci_consumed_down;
559 	struct tb_tunnel *tunnel;
560 
561 	*consumed_up = *consumed_down = 0;
562 
563 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
564 	if (tunnel && !tb_port_is_usb3_down(src_port) &&
565 	    !tb_port_is_usb3_up(dst_port)) {
566 		int ret;
567 
568 		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
569 						   consumed_down);
570 		if (ret)
571 			return ret;
572 	}
573 
574 	/*
575 	 * If there is anything reserved for PCIe bulk traffic take it
576 	 * into account here too.
577 	 */
578 	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
579 		*consumed_up += pci_consumed_up;
580 		*consumed_down += pci_consumed_down;
581 	}
582 
583 	return 0;
584 }
585 
586 /**
587  * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
588  * @tb: Domain structure
589  * @src_port: Source protocol adapter
590  * @dst_port: Destination protocol adapter
591  * @port: USB4 port the consumed bandwidth is calculated
592  * @consumed_up: Consumed upsream bandwidth (Mb/s)
593  * @consumed_down: Consumed downstream bandwidth (Mb/s)
594  *
595  * Calculates consumed DP bandwidth at @port between path from @src_port
596  * to @dst_port. Does not take tunnel starting from @src_port and ending
597  * from @src_port into account.
598  *
599  * If there is bandwidth reserved for any of the groups between
600  * @src_port and @dst_port (but not yet used) that is also taken into
601  * account in the returned consumed bandwidth.
602  *
603  * Return: %0 on success, negative errno otherwise.
604  */
605 static int tb_consumed_dp_bandwidth(struct tb *tb,
606 				    struct tb_port *src_port,
607 				    struct tb_port *dst_port,
608 				    struct tb_port *port,
609 				    int *consumed_up,
610 				    int *consumed_down)
611 {
612 	int group_reserved[MAX_GROUPS] = {};
613 	struct tb_cm *tcm = tb_priv(tb);
614 	struct tb_tunnel *tunnel;
615 	bool downstream;
616 	int i, ret;
617 
618 	*consumed_up = *consumed_down = 0;
619 
620 	/*
621 	 * Find all DP tunnels that cross the port and reduce
622 	 * their consumed bandwidth from the available.
623 	 */
624 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
625 		const struct tb_bandwidth_group *group;
626 		int dp_consumed_up, dp_consumed_down;
627 
628 		if (tb_tunnel_is_invalid(tunnel))
629 			continue;
630 
631 		if (!tb_tunnel_is_dp(tunnel))
632 			continue;
633 
634 		if (!tb_tunnel_port_on_path(tunnel, port))
635 			continue;
636 
637 		/*
638 		 * Calculate what is reserved for groups crossing the
639 		 * same ports only once (as that is reserved for all the
640 		 * tunnels in the group).
641 		 */
642 		group = tunnel->src_port->group;
643 		if (group && group->reserved && !group_reserved[group->index])
644 			group_reserved[group->index] = group->reserved;
645 
646 		/*
647 		 * Ignore the DP tunnel between src_port and dst_port
648 		 * because it is the same tunnel and we may be
649 		 * re-calculating estimated bandwidth.
650 		 */
651 		if (tunnel->src_port == src_port &&
652 		    tunnel->dst_port == dst_port)
653 			continue;
654 
655 		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
656 						   &dp_consumed_down);
657 		if (ret)
658 			return ret;
659 
660 		*consumed_up += dp_consumed_up;
661 		*consumed_down += dp_consumed_down;
662 	}
663 
664 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
665 	for (i = 0; i < ARRAY_SIZE(group_reserved); i++) {
666 		if (downstream)
667 			*consumed_down += group_reserved[i];
668 		else
669 			*consumed_up += group_reserved[i];
670 	}
671 
672 	return 0;
673 }
674 
675 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
676 			      struct tb_port *port)
677 {
678 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
679 	enum tb_link_width width;
680 
681 	if (tb_is_upstream_port(port))
682 		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
683 	else
684 		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
685 
686 	return tb_port_width_supported(port, width);
687 }
688 
689 /**
690  * tb_maximum_bandwidth() - Maximum bandwidth over a single link
691  * @tb: Domain structure
692  * @src_port: Source protocol adapter
693  * @dst_port: Destination protocol adapter
694  * @port: USB4 port the total bandwidth is calculated
695  * @max_up: Maximum upstream bandwidth (Mb/s)
696  * @max_down: Maximum downstream bandwidth (Mb/s)
697  * @include_asym: Include bandwidth if the link is switched from
698  *		  symmetric to asymmetric
699  *
700  * Returns maximum possible bandwidth in @max_up and @max_down over a
701  * single link at @port. If @include_asym is set then includes the
702  * additional banwdith if the links are transitioned into asymmetric to
703  * direction from @src_port to @dst_port.
704  *
705  * Return: %0 on success, negative errno otherwise.
706  */
707 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
708 				struct tb_port *dst_port, struct tb_port *port,
709 				int *max_up, int *max_down, bool include_asym)
710 {
711 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
712 	int link_speed, link_width, up_bw, down_bw;
713 
714 	/*
715 	 * Can include asymmetric, only if it is actually supported by
716 	 * the lane adapter.
717 	 */
718 	if (!tb_asym_supported(src_port, dst_port, port))
719 		include_asym = false;
720 
721 	if (tb_is_upstream_port(port)) {
722 		link_speed = port->sw->link_speed;
723 		/*
724 		 * sw->link_width is from upstream perspective so we use
725 		 * the opposite for downstream of the host router.
726 		 */
727 		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
728 			up_bw = link_speed * 3 * 1000;
729 			down_bw = link_speed * 1 * 1000;
730 		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
731 			up_bw = link_speed * 1 * 1000;
732 			down_bw = link_speed * 3 * 1000;
733 		} else if (include_asym) {
734 			/*
735 			 * The link is symmetric at the moment but we
736 			 * can switch it to asymmetric as needed. Report
737 			 * this bandwidth as available (even though it
738 			 * is not yet enabled).
739 			 */
740 			if (downstream) {
741 				up_bw = link_speed * 1 * 1000;
742 				down_bw = link_speed * 3 * 1000;
743 			} else {
744 				up_bw = link_speed * 3 * 1000;
745 				down_bw = link_speed * 1 * 1000;
746 			}
747 		} else {
748 			up_bw = link_speed * port->sw->link_width * 1000;
749 			down_bw = up_bw;
750 		}
751 	} else {
752 		link_speed = tb_port_get_link_speed(port);
753 		if (link_speed < 0)
754 			return link_speed;
755 
756 		link_width = tb_port_get_link_width(port);
757 		if (link_width < 0)
758 			return link_width;
759 
760 		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
761 			up_bw = link_speed * 1 * 1000;
762 			down_bw = link_speed * 3 * 1000;
763 		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
764 			up_bw = link_speed * 3 * 1000;
765 			down_bw = link_speed * 1 * 1000;
766 		} else if (include_asym) {
767 			/*
768 			 * The link is symmetric at the moment but we
769 			 * can switch it to asymmetric as needed. Report
770 			 * this bandwidth as available (even though it
771 			 * is not yet enabled).
772 			 */
773 			if (downstream) {
774 				up_bw = link_speed * 1 * 1000;
775 				down_bw = link_speed * 3 * 1000;
776 			} else {
777 				up_bw = link_speed * 3 * 1000;
778 				down_bw = link_speed * 1 * 1000;
779 			}
780 		} else {
781 			up_bw = link_speed * link_width * 1000;
782 			down_bw = up_bw;
783 		}
784 	}
785 
786 	/* Leave 10% guard band */
787 	*max_up = up_bw - up_bw / 10;
788 	*max_down = down_bw - down_bw / 10;
789 
790 	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
791 	return 0;
792 }
793 
794 /**
795  * tb_available_bandwidth() - Available bandwidth for tunneling
796  * @tb: Domain structure
797  * @src_port: Source protocol adapter
798  * @dst_port: Destination protocol adapter
799  * @available_up: Available bandwidth upstream (Mb/s)
800  * @available_down: Available bandwidth downstream (Mb/s)
801  * @include_asym: Include bandwidth if the link is switched from
802  *		  symmetric to asymmetric
803  *
804  * Calculates maximum available bandwidth for protocol tunneling between
805  * @src_port and @dst_port at the moment. This is minimum of maximum
806  * link bandwidth across all links reduced by currently consumed
807  * bandwidth on that link.
808  *
809  * If @include_asym is true then includes also bandwidth that can be
810  * added when the links are transitioned into asymmetric (but does not
811  * transition the links).
812  *
813  * Return: %0 on success, negative errno otherwise.
814  */
815 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
816 				 struct tb_port *dst_port, int *available_up,
817 				 int *available_down, bool include_asym)
818 {
819 	struct tb_port *port;
820 	int ret;
821 
822 	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
823 	*available_up = *available_down = 120000;
824 
825 	/* Find the minimum available bandwidth over all links */
826 	tb_for_each_port_on_path(src_port, dst_port, port) {
827 		int max_up, max_down, consumed_up, consumed_down;
828 
829 		if (!tb_port_is_null(port))
830 			continue;
831 
832 		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
833 					   &max_up, &max_down, include_asym);
834 		if (ret)
835 			return ret;
836 
837 		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
838 						      port, &consumed_up,
839 						      &consumed_down);
840 		if (ret)
841 			return ret;
842 		max_up -= consumed_up;
843 		max_down -= consumed_down;
844 
845 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
846 					       &consumed_up, &consumed_down);
847 		if (ret)
848 			return ret;
849 		max_up -= consumed_up;
850 		max_down -= consumed_down;
851 
852 		if (max_up < *available_up)
853 			*available_up = max_up;
854 		if (max_down < *available_down)
855 			*available_down = max_down;
856 	}
857 
858 	if (*available_up < 0)
859 		*available_up = 0;
860 	if (*available_down < 0)
861 		*available_down = 0;
862 
863 	return 0;
864 }
865 
866 static int tb_release_unused_usb3_bandwidth(struct tb *tb,
867 					    struct tb_port *src_port,
868 					    struct tb_port *dst_port)
869 {
870 	struct tb_tunnel *tunnel;
871 
872 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
873 	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
874 }
875 
876 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
877 				      struct tb_port *dst_port)
878 {
879 	int ret, available_up, available_down;
880 	struct tb_tunnel *tunnel;
881 
882 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
883 	if (!tunnel)
884 		return;
885 
886 	tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
887 
888 	/*
889 	 * Calculate available bandwidth for the first hop USB3 tunnel.
890 	 * That determines the whole USB3 bandwidth for this branch.
891 	 */
892 	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
893 				     &available_up, &available_down, false);
894 	if (ret) {
895 		tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
896 		return;
897 	}
898 
899 	tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
900 		      available_down);
901 
902 	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
903 }
904 
905 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
906 {
907 	struct tb_switch *parent = tb_switch_parent(sw);
908 	int ret, available_up, available_down;
909 	struct tb_port *up, *down, *port;
910 	struct tb_cm *tcm = tb_priv(tb);
911 	struct tb_tunnel *tunnel;
912 
913 	if (!tb_acpi_may_tunnel_usb3()) {
914 		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
915 		return 0;
916 	}
917 
918 	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
919 	if (!up)
920 		return 0;
921 
922 	if (!sw->link_usb4)
923 		return 0;
924 
925 	/*
926 	 * Look up available down port. Since we are chaining it should
927 	 * be found right above this switch.
928 	 */
929 	port = tb_switch_downstream_port(sw);
930 	down = tb_find_usb3_down(parent, port);
931 	if (!down)
932 		return 0;
933 
934 	if (tb_route(parent)) {
935 		struct tb_port *parent_up;
936 		/*
937 		 * Check first that the parent switch has its upstream USB3
938 		 * port enabled. Otherwise the chain is not complete and
939 		 * there is no point setting up a new tunnel.
940 		 */
941 		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
942 		if (!parent_up || !tb_port_is_enabled(parent_up))
943 			return 0;
944 
945 		/* Make all unused bandwidth available for the new tunnel */
946 		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
947 		if (ret)
948 			return ret;
949 	}
950 
951 	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
952 				     false);
953 	if (ret)
954 		goto err_reclaim;
955 
956 	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
957 		    available_up, available_down);
958 
959 	/*
960 	 * If the available bandwidth is less than 1.5 Gb/s notify
961 	 * userspace that the connected isochronous device may not work
962 	 * properly.
963 	 */
964 	if (available_up < 1500 || available_down < 1500)
965 		tb_tunnel_event(tb, TB_TUNNEL_LOW_BANDWIDTH, TB_TUNNEL_USB3,
966 				down, up);
967 
968 	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
969 				      available_down);
970 	if (!tunnel) {
971 		ret = -ENOMEM;
972 		goto err_reclaim;
973 	}
974 
975 	if (tb_tunnel_activate(tunnel)) {
976 		tb_port_info(up,
977 			     "USB3 tunnel activation failed, aborting\n");
978 		ret = -EIO;
979 		goto err_free;
980 	}
981 
982 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
983 	if (tb_route(parent))
984 		tb_reclaim_usb3_bandwidth(tb, down, up);
985 
986 	return 0;
987 
988 err_free:
989 	tb_tunnel_put(tunnel);
990 err_reclaim:
991 	if (tb_route(parent))
992 		tb_reclaim_usb3_bandwidth(tb, down, up);
993 
994 	return ret;
995 }
996 
997 static int tb_create_usb3_tunnels(struct tb_switch *sw)
998 {
999 	struct tb_port *port;
1000 	int ret;
1001 
1002 	if (!tb_acpi_may_tunnel_usb3())
1003 		return 0;
1004 
1005 	if (tb_route(sw)) {
1006 		ret = tb_tunnel_usb3(sw->tb, sw);
1007 		if (ret)
1008 			return ret;
1009 	}
1010 
1011 	tb_switch_for_each_port(sw, port) {
1012 		if (!tb_port_has_remote(port))
1013 			continue;
1014 		ret = tb_create_usb3_tunnels(port->remote->sw);
1015 		if (ret)
1016 			return ret;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  * tb_configure_asym() - Transition links to asymmetric if needed
1024  * @tb: Domain structure
1025  * @src_port: Source adapter to start the transition
1026  * @dst_port: Destination adapter
1027  * @requested_up: Additional bandwidth (Mb/s) required upstream
1028  * @requested_down: Additional bandwidth (Mb/s) required downstream
1029  *
1030  * Transition links between @src_port and @dst_port into asymmetric, with
1031  * three lanes in the direction from @src_port towards @dst_port and one lane
1032  * in the opposite direction, if the bandwidth requirements
1033  * (requested + currently consumed) on that link exceed @asym_threshold.
1034  *
1035  * Must be called with available >= requested over all links.
1036  *
1037  * Return: %0 on success, negative errno otherwise.
1038  */
1039 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1040 			     struct tb_port *dst_port, int requested_up,
1041 			     int requested_down)
1042 {
1043 	bool clx = false, clx_disabled = false, downstream;
1044 	struct tb_switch *sw;
1045 	struct tb_port *up;
1046 	int ret = 0;
1047 
1048 	if (!asym_threshold)
1049 		return 0;
1050 
1051 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1052 	/* Pick up router deepest in the hierarchy */
1053 	if (downstream)
1054 		sw = dst_port->sw;
1055 	else
1056 		sw = src_port->sw;
1057 
1058 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1059 		struct tb_port *down = tb_switch_downstream_port(up->sw);
1060 		enum tb_link_width width_up, width_down;
1061 		int consumed_up, consumed_down;
1062 
1063 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1064 					       &consumed_up, &consumed_down);
1065 		if (ret)
1066 			break;
1067 
1068 		if (downstream) {
1069 			/*
1070 			 * Downstream so make sure upstream is within the 36G
1071 			 * (40G - guard band 10%), and the requested is above
1072 			 * what the threshold is.
1073 			 */
1074 			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1075 				ret = -ENOBUFS;
1076 				break;
1077 			}
1078 			/* Does consumed + requested exceed the threshold */
1079 			if (consumed_down + requested_down < asym_threshold)
1080 				continue;
1081 
1082 			width_up = TB_LINK_WIDTH_ASYM_RX;
1083 			width_down = TB_LINK_WIDTH_ASYM_TX;
1084 		} else {
1085 			/* Upstream, the opposite of above */
1086 			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1087 				ret = -ENOBUFS;
1088 				break;
1089 			}
1090 			if (consumed_up + requested_up < asym_threshold)
1091 				continue;
1092 
1093 			width_up = TB_LINK_WIDTH_ASYM_TX;
1094 			width_down = TB_LINK_WIDTH_ASYM_RX;
1095 		}
1096 
1097 		if (up->sw->link_width == width_up)
1098 			continue;
1099 
1100 		if (!tb_port_width_supported(up, width_up) ||
1101 		    !tb_port_width_supported(down, width_down))
1102 			continue;
1103 
1104 		/*
1105 		 * Disable CL states before doing any transitions. We
1106 		 * delayed it until now that we know there is a real
1107 		 * transition taking place.
1108 		 */
1109 		if (!clx_disabled) {
1110 			clx = tb_disable_clx(sw);
1111 			clx_disabled = true;
1112 		}
1113 
1114 		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1115 
1116 		/*
1117 		 * Here requested + consumed > threshold so we need to
1118 		 * transtion the link into asymmetric now.
1119 		 */
1120 		ret = tb_switch_set_link_width(up->sw, width_up);
1121 		if (ret) {
1122 			tb_sw_warn(up->sw, "failed to set link width\n");
1123 			break;
1124 		}
1125 	}
1126 
1127 	/* Re-enable CL states if they were previosly enabled */
1128 	if (clx)
1129 		tb_enable_clx(sw);
1130 
1131 	return ret;
1132 }
1133 
1134 /**
1135  * tb_configure_sym() - Transition links to symmetric if possible
1136  * @tb: Domain structure
1137  * @src_port: Source adapter to start the transition
1138  * @dst_port: Destination adapter
1139  * @keep_asym: Keep asymmetric link if preferred
1140  *
1141  * Goes over each link from @src_port to @dst_port and tries to
1142  * transition the link to symmetric if the currently consumed bandwidth
1143  * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1144  *
1145  * Return: %0 on success, negative errno otherwise.
1146  */
1147 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1148 			    struct tb_port *dst_port, bool keep_asym)
1149 {
1150 	bool clx = false, clx_disabled = false, downstream;
1151 	struct tb_switch *sw;
1152 	struct tb_port *up;
1153 	int ret = 0;
1154 
1155 	if (!asym_threshold)
1156 		return 0;
1157 
1158 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1159 	/* Pick up router deepest in the hierarchy */
1160 	if (downstream)
1161 		sw = dst_port->sw;
1162 	else
1163 		sw = src_port->sw;
1164 
1165 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1166 		int consumed_up, consumed_down;
1167 
1168 		/* Already symmetric */
1169 		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1170 			continue;
1171 		/* Unplugged, no need to switch */
1172 		if (up->sw->is_unplugged)
1173 			continue;
1174 
1175 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1176 					       &consumed_up, &consumed_down);
1177 		if (ret)
1178 			break;
1179 
1180 		if (downstream) {
1181 			/*
1182 			 * Downstream so we want the consumed_down < threshold.
1183 			 * Upstream traffic should be less than 36G (40G
1184 			 * guard band 10%) as the link was configured asymmetric
1185 			 * already.
1186 			 */
1187 			if (consumed_down >= asym_threshold)
1188 				continue;
1189 		} else {
1190 			if (consumed_up >= asym_threshold)
1191 				continue;
1192 		}
1193 
1194 		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1195 			continue;
1196 
1197 		/*
1198 		 * Here consumed < threshold so we can transition the
1199 		 * link to symmetric.
1200 		 *
1201 		 * However, if the router prefers asymmetric link we
1202 		 * honor that (unless @keep_asym is %false).
1203 		 */
1204 		if (keep_asym &&
1205 		    up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1206 			tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1207 			continue;
1208 		}
1209 
1210 		/* Disable CL states before doing any transitions */
1211 		if (!clx_disabled) {
1212 			clx = tb_disable_clx(sw);
1213 			clx_disabled = true;
1214 		}
1215 
1216 		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1217 
1218 		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1219 		if (ret) {
1220 			tb_sw_warn(up->sw, "failed to set link width\n");
1221 			break;
1222 		}
1223 	}
1224 
1225 	/* Re-enable CL states if they were previosly enabled */
1226 	if (clx)
1227 		tb_enable_clx(sw);
1228 
1229 	return ret;
1230 }
1231 
1232 static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1233 			      struct tb_switch *sw)
1234 {
1235 	struct tb *tb = sw->tb;
1236 
1237 	/* Link the routers using both links if available */
1238 	down->remote = up;
1239 	up->remote = down;
1240 	if (down->dual_link_port && up->dual_link_port) {
1241 		down->dual_link_port->remote = up->dual_link_port;
1242 		up->dual_link_port->remote = down->dual_link_port;
1243 	}
1244 
1245 	/*
1246 	 * Enable lane bonding if the link is currently two single lane
1247 	 * links.
1248 	 */
1249 	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1250 		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1251 
1252 	/*
1253 	 * Device router that comes up as symmetric link is
1254 	 * connected deeper in the hierarchy, we transition the links
1255 	 * above into symmetric if bandwidth allows.
1256 	 */
1257 	if (tb_switch_depth(sw) > 1 &&
1258 	    tb_port_get_link_generation(up) >= 4 &&
1259 	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1260 		struct tb_port *host_port;
1261 
1262 		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1263 		tb_configure_sym(tb, host_port, up, false);
1264 	}
1265 
1266 	/* Set the link configured */
1267 	tb_switch_configure_link(sw);
1268 }
1269 
1270 /*
1271  * tb_scan_switch() - scan for and initialize downstream switches
1272  */
1273 static void tb_scan_switch(struct tb_switch *sw)
1274 {
1275 	struct tb_port *port;
1276 
1277 	pm_runtime_get_sync(&sw->dev);
1278 
1279 	tb_switch_for_each_port(sw, port)
1280 		tb_scan_port(port);
1281 
1282 	pm_runtime_mark_last_busy(&sw->dev);
1283 	pm_runtime_put_autosuspend(&sw->dev);
1284 }
1285 
1286 /*
1287  * tb_scan_port() - check for and initialize switches below port
1288  */
1289 static void tb_scan_port(struct tb_port *port)
1290 {
1291 	struct tb_cm *tcm = tb_priv(port->sw->tb);
1292 	struct tb_port *upstream_port;
1293 	bool discovery = false;
1294 	struct tb_switch *sw;
1295 
1296 	if (tb_is_upstream_port(port))
1297 		return;
1298 
1299 	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1300 	    !tb_dp_port_is_enabled(port)) {
1301 		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1302 		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1303 				 false);
1304 		return;
1305 	}
1306 
1307 	if (port->config.type != TB_TYPE_PORT)
1308 		return;
1309 	if (port->dual_link_port && port->link_nr)
1310 		return; /*
1311 			 * Downstream switch is reachable through two ports.
1312 			 * Only scan on the primary port (link_nr == 0).
1313 			 */
1314 
1315 	if (port->usb4)
1316 		pm_runtime_get_sync(&port->usb4->dev);
1317 
1318 	if (tb_wait_for_port(port, false) <= 0)
1319 		goto out_rpm_put;
1320 	if (port->remote) {
1321 		tb_port_dbg(port, "port already has a remote\n");
1322 		goto out_rpm_put;
1323 	}
1324 
1325 	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1326 			     tb_downstream_route(port));
1327 	if (IS_ERR(sw)) {
1328 		/*
1329 		 * Make the downstream retimers available even if there
1330 		 * is no router connected.
1331 		 */
1332 		tb_retimer_scan(port, true);
1333 
1334 		/*
1335 		 * If there is an error accessing the connected switch
1336 		 * it may be connected to another domain. Also we allow
1337 		 * the other domain to be connected to a max depth switch.
1338 		 */
1339 		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1340 			tb_scan_xdomain(port);
1341 		goto out_rpm_put;
1342 	}
1343 
1344 	if (tb_switch_configure(sw)) {
1345 		tb_switch_put(sw);
1346 		goto out_rpm_put;
1347 	}
1348 
1349 	/*
1350 	 * If there was previously another domain connected remove it
1351 	 * first.
1352 	 */
1353 	if (port->xdomain) {
1354 		tb_xdomain_remove(port->xdomain);
1355 		tb_port_unconfigure_xdomain(port);
1356 		port->xdomain = NULL;
1357 	}
1358 
1359 	/*
1360 	 * Do not send uevents until we have discovered all existing
1361 	 * tunnels and know which switches were authorized already by
1362 	 * the boot firmware.
1363 	 */
1364 	if (!tcm->hotplug_active) {
1365 		dev_set_uevent_suppress(&sw->dev, true);
1366 		discovery = true;
1367 	}
1368 
1369 	/*
1370 	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1371 	 * can support runtime PM.
1372 	 */
1373 	sw->rpm = sw->generation > 1;
1374 
1375 	if (tb_switch_add(sw)) {
1376 		tb_switch_put(sw);
1377 		goto out_rpm_put;
1378 	}
1379 
1380 	upstream_port = tb_upstream_port(sw);
1381 	tb_configure_link(port, upstream_port, sw);
1382 
1383 	/*
1384 	 * Scan for downstream retimers. We only scan them after the
1385 	 * router has been enumerated to avoid issues with certain
1386 	 * Pluggable devices that expect the host to enumerate them
1387 	 * within certain timeout.
1388 	 */
1389 	tb_retimer_scan(port, true);
1390 
1391 	/*
1392 	 * CL0s and CL1 are enabled and supported together.
1393 	 * Silently ignore CLx enabling in case CLx is not supported.
1394 	 */
1395 	if (discovery)
1396 		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1397 	else if (tb_enable_clx(sw))
1398 		tb_sw_warn(sw, "failed to enable CL states\n");
1399 
1400 	if (tb_enable_tmu(sw))
1401 		tb_sw_warn(sw, "failed to enable TMU\n");
1402 
1403 	/*
1404 	 * Configuration valid needs to be set after the TMU has been
1405 	 * enabled for the upstream port of the router so we do it here.
1406 	 */
1407 	tb_switch_configuration_valid(sw);
1408 
1409 	/* Scan upstream retimers */
1410 	tb_retimer_scan(upstream_port, true);
1411 
1412 	/*
1413 	 * Create USB 3.x tunnels only when the switch is plugged to the
1414 	 * domain. This is because we scan the domain also during discovery
1415 	 * and want to discover existing USB 3.x tunnels before we create
1416 	 * any new.
1417 	 */
1418 	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1419 		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1420 
1421 	tb_add_dp_resources(sw);
1422 	tb_scan_switch(sw);
1423 
1424 out_rpm_put:
1425 	if (port->usb4) {
1426 		pm_runtime_mark_last_busy(&port->usb4->dev);
1427 		pm_runtime_put_autosuspend(&port->usb4->dev);
1428 	}
1429 }
1430 
1431 static void
1432 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1433 {
1434 	struct tb_tunnel *first_tunnel;
1435 	struct tb *tb = group->tb;
1436 	struct tb_port *in;
1437 	int ret;
1438 
1439 	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1440 	       group->index);
1441 
1442 	first_tunnel = NULL;
1443 	list_for_each_entry(in, &group->ports, group_list) {
1444 		int estimated_bw, estimated_up, estimated_down;
1445 		struct tb_tunnel *tunnel;
1446 		struct tb_port *out;
1447 
1448 		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1449 			continue;
1450 
1451 		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1452 		if (WARN_ON(!tunnel))
1453 			break;
1454 
1455 		if (!first_tunnel) {
1456 			/*
1457 			 * Since USB3 bandwidth is shared by all DP
1458 			 * tunnels under the host router USB4 port, even
1459 			 * if they do not begin from the host router, we
1460 			 * can release USB3 bandwidth just once and not
1461 			 * for each tunnel separately.
1462 			 */
1463 			first_tunnel = tunnel;
1464 			ret = tb_release_unused_usb3_bandwidth(tb,
1465 				first_tunnel->src_port, first_tunnel->dst_port);
1466 			if (ret) {
1467 				tb_tunnel_warn(tunnel,
1468 					"failed to release unused bandwidth\n");
1469 				break;
1470 			}
1471 		}
1472 
1473 		out = tunnel->dst_port;
1474 		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1475 					     &estimated_down, true);
1476 		if (ret) {
1477 			tb_tunnel_warn(tunnel,
1478 				"failed to re-calculate estimated bandwidth\n");
1479 			break;
1480 		}
1481 
1482 		/*
1483 		 * Estimated bandwidth includes:
1484 		 *  - already allocated bandwidth for the DP tunnel
1485 		 *  - available bandwidth along the path
1486 		 *  - bandwidth allocated for USB 3.x but not used.
1487 		 */
1488 		if (tb_tunnel_direction_downstream(tunnel))
1489 			estimated_bw = estimated_down;
1490 		else
1491 			estimated_bw = estimated_up;
1492 
1493 		/*
1494 		 * If there is reserved bandwidth for the group that is
1495 		 * not yet released we report that too.
1496 		 */
1497 		tb_tunnel_dbg(tunnel,
1498 			      "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n",
1499 			      estimated_bw, group->reserved,
1500 			      estimated_bw + group->reserved);
1501 
1502 		if (usb4_dp_port_set_estimated_bandwidth(in,
1503 				estimated_bw + group->reserved))
1504 			tb_tunnel_warn(tunnel,
1505 				       "failed to update estimated bandwidth\n");
1506 	}
1507 
1508 	if (first_tunnel)
1509 		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1510 					  first_tunnel->dst_port);
1511 
1512 	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1513 }
1514 
1515 static void tb_recalc_estimated_bandwidth(struct tb *tb)
1516 {
1517 	struct tb_cm *tcm = tb_priv(tb);
1518 	int i;
1519 
1520 	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1521 
1522 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1523 		struct tb_bandwidth_group *group = &tcm->groups[i];
1524 
1525 		if (!list_empty(&group->ports))
1526 			tb_recalc_estimated_bandwidth_for_group(group);
1527 	}
1528 
1529 	tb_dbg(tb, "bandwidth re-calculation done\n");
1530 }
1531 
1532 static bool __release_group_bandwidth(struct tb_bandwidth_group *group)
1533 {
1534 	if (group->reserved) {
1535 		tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index,
1536 			group->reserved);
1537 		group->reserved = 0;
1538 		return true;
1539 	}
1540 	return false;
1541 }
1542 
1543 static void __configure_group_sym(struct tb_bandwidth_group *group)
1544 {
1545 	struct tb_tunnel *tunnel;
1546 	struct tb_port *in;
1547 
1548 	if (list_empty(&group->ports))
1549 		return;
1550 
1551 	/*
1552 	 * All the tunnels in the group go through the same USB4 links
1553 	 * so we find the first one here and pass the IN and OUT
1554 	 * adapters to tb_configure_sym() which now transitions the
1555 	 * links back to symmetric if bandwidth requirement < asym_threshold.
1556 	 *
1557 	 * We do this here to avoid unnecessary transitions (for example
1558 	 * if the graphics released bandwidth for other tunnel in the
1559 	 * same group).
1560 	 */
1561 	in = list_first_entry(&group->ports, struct tb_port, group_list);
1562 	tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL);
1563 	if (tunnel)
1564 		tb_configure_sym(group->tb, in, tunnel->dst_port, true);
1565 }
1566 
1567 static void tb_bandwidth_group_release_work(struct work_struct *work)
1568 {
1569 	struct tb_bandwidth_group *group =
1570 		container_of(work, typeof(*group), release_work.work);
1571 	struct tb *tb = group->tb;
1572 
1573 	mutex_lock(&tb->lock);
1574 	if (__release_group_bandwidth(group))
1575 		tb_recalc_estimated_bandwidth(tb);
1576 	__configure_group_sym(group);
1577 	mutex_unlock(&tb->lock);
1578 }
1579 
1580 static void tb_init_bandwidth_groups(struct tb_cm *tcm)
1581 {
1582 	int i;
1583 
1584 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1585 		struct tb_bandwidth_group *group = &tcm->groups[i];
1586 
1587 		group->tb = tcm_to_tb(tcm);
1588 		group->index = i + 1;
1589 		INIT_LIST_HEAD(&group->ports);
1590 		INIT_DELAYED_WORK(&group->release_work,
1591 				  tb_bandwidth_group_release_work);
1592 	}
1593 }
1594 
1595 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
1596 					   struct tb_port *in)
1597 {
1598 	if (!group || WARN_ON(in->group))
1599 		return;
1600 
1601 	in->group = group;
1602 	list_add_tail(&in->group_list, &group->ports);
1603 
1604 	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
1605 }
1606 
1607 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
1608 {
1609 	int i;
1610 
1611 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1612 		struct tb_bandwidth_group *group = &tcm->groups[i];
1613 
1614 		if (list_empty(&group->ports))
1615 			return group;
1616 	}
1617 
1618 	return NULL;
1619 }
1620 
1621 static struct tb_bandwidth_group *
1622 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1623 			  struct tb_port *out)
1624 {
1625 	struct tb_bandwidth_group *group;
1626 	struct tb_tunnel *tunnel;
1627 
1628 	/*
1629 	 * Find all DP tunnels that go through all the same USB4 links
1630 	 * as this one. Because we always setup tunnels the same way we
1631 	 * can just check for the routers at both ends of the tunnels
1632 	 * and if they are the same we have a match.
1633 	 */
1634 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1635 		if (!tb_tunnel_is_dp(tunnel))
1636 			continue;
1637 
1638 		if (tunnel->src_port->sw == in->sw &&
1639 		    tunnel->dst_port->sw == out->sw) {
1640 			group = tunnel->src_port->group;
1641 			if (group) {
1642 				tb_bandwidth_group_attach_port(group, in);
1643 				return group;
1644 			}
1645 		}
1646 	}
1647 
1648 	/* Pick up next available group then */
1649 	group = tb_find_free_bandwidth_group(tcm);
1650 	if (group)
1651 		tb_bandwidth_group_attach_port(group, in);
1652 	else
1653 		tb_port_warn(in, "no available bandwidth groups\n");
1654 
1655 	return group;
1656 }
1657 
1658 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1659 					struct tb_port *out)
1660 {
1661 	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
1662 		int index, i;
1663 
1664 		index = usb4_dp_port_group_id(in);
1665 		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1666 			if (tcm->groups[i].index == index) {
1667 				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
1668 				return;
1669 			}
1670 		}
1671 	}
1672 
1673 	tb_attach_bandwidth_group(tcm, in, out);
1674 }
1675 
1676 static void tb_detach_bandwidth_group(struct tb_port *in)
1677 {
1678 	struct tb_bandwidth_group *group = in->group;
1679 
1680 	if (group) {
1681 		in->group = NULL;
1682 		list_del_init(&in->group_list);
1683 
1684 		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
1685 
1686 		/* No more tunnels so release the reserved bandwidth if any */
1687 		if (list_empty(&group->ports)) {
1688 			cancel_delayed_work(&group->release_work);
1689 			__release_group_bandwidth(group);
1690 		}
1691 	}
1692 }
1693 
1694 static void tb_discover_tunnels(struct tb *tb)
1695 {
1696 	struct tb_cm *tcm = tb_priv(tb);
1697 	struct tb_tunnel *tunnel;
1698 
1699 	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
1700 
1701 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1702 		if (tb_tunnel_is_pci(tunnel)) {
1703 			struct tb_switch *parent = tunnel->dst_port->sw;
1704 
1705 			while (parent != tunnel->src_port->sw) {
1706 				parent->boot = true;
1707 				parent = tb_switch_parent(parent);
1708 			}
1709 		} else if (tb_tunnel_is_dp(tunnel)) {
1710 			struct tb_port *in = tunnel->src_port;
1711 			struct tb_port *out = tunnel->dst_port;
1712 
1713 			/* Keep the domain from powering down */
1714 			pm_runtime_get_sync(&in->sw->dev);
1715 			pm_runtime_get_sync(&out->sw->dev);
1716 
1717 			tb_discover_bandwidth_group(tcm, in, out);
1718 		}
1719 	}
1720 }
1721 
1722 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1723 {
1724 	struct tb_port *src_port, *dst_port;
1725 	struct tb *tb;
1726 
1727 	if (!tunnel)
1728 		return;
1729 
1730 	tb_tunnel_deactivate(tunnel);
1731 	list_del(&tunnel->list);
1732 
1733 	tb = tunnel->tb;
1734 	src_port = tunnel->src_port;
1735 	dst_port = tunnel->dst_port;
1736 
1737 	switch (tunnel->type) {
1738 	case TB_TUNNEL_DP:
1739 		tb_detach_bandwidth_group(src_port);
1740 		/*
1741 		 * In case of DP tunnel make sure the DP IN resource is
1742 		 * deallocated properly.
1743 		 */
1744 		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1745 		/*
1746 		 * If bandwidth on a link is < asym_threshold
1747 		 * transition the link to symmetric.
1748 		 */
1749 		tb_configure_sym(tb, src_port, dst_port, true);
1750 		/* Now we can allow the domain to runtime suspend again */
1751 		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1752 		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1753 		pm_runtime_mark_last_busy(&src_port->sw->dev);
1754 		pm_runtime_put_autosuspend(&src_port->sw->dev);
1755 		fallthrough;
1756 
1757 	case TB_TUNNEL_USB3:
1758 		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1759 		break;
1760 
1761 	default:
1762 		/*
1763 		 * PCIe and DMA tunnels do not consume guaranteed
1764 		 * bandwidth.
1765 		 */
1766 		break;
1767 	}
1768 
1769 	tb_tunnel_put(tunnel);
1770 }
1771 
1772 /*
1773  * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1774  */
1775 static void tb_free_invalid_tunnels(struct tb *tb)
1776 {
1777 	struct tb_cm *tcm = tb_priv(tb);
1778 	struct tb_tunnel *tunnel;
1779 	struct tb_tunnel *n;
1780 
1781 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1782 		if (tb_tunnel_is_invalid(tunnel))
1783 			tb_deactivate_and_free_tunnel(tunnel);
1784 	}
1785 }
1786 
1787 /*
1788  * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1789  */
1790 static void tb_free_unplugged_children(struct tb_switch *sw)
1791 {
1792 	struct tb_port *port;
1793 
1794 	tb_switch_for_each_port(sw, port) {
1795 		if (!tb_port_has_remote(port))
1796 			continue;
1797 
1798 		if (port->remote->sw->is_unplugged) {
1799 			tb_retimer_remove_all(port);
1800 			tb_remove_dp_resources(port->remote->sw);
1801 			tb_switch_unconfigure_link(port->remote->sw);
1802 			tb_switch_set_link_width(port->remote->sw,
1803 						 TB_LINK_WIDTH_SINGLE);
1804 			tb_switch_remove(port->remote->sw);
1805 			port->remote = NULL;
1806 			if (port->dual_link_port)
1807 				port->dual_link_port->remote = NULL;
1808 		} else {
1809 			tb_free_unplugged_children(port->remote->sw);
1810 		}
1811 	}
1812 }
1813 
1814 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1815 					 const struct tb_port *port)
1816 {
1817 	struct tb_port *down = NULL;
1818 
1819 	/*
1820 	 * To keep plugging devices consistently in the same PCIe
1821 	 * hierarchy, do mapping here for switch downstream PCIe ports.
1822 	 */
1823 	if (tb_switch_is_usb4(sw)) {
1824 		down = usb4_switch_map_pcie_down(sw, port);
1825 	} else if (!tb_route(sw)) {
1826 		int phy_port = tb_phy_port_from_link(port->port);
1827 		int index;
1828 
1829 		/*
1830 		 * Hard-coded Thunderbolt port to PCIe down port mapping
1831 		 * per controller.
1832 		 */
1833 		if (tb_switch_is_cactus_ridge(sw) ||
1834 		    tb_switch_is_alpine_ridge(sw))
1835 			index = !phy_port ? 6 : 7;
1836 		else if (tb_switch_is_falcon_ridge(sw))
1837 			index = !phy_port ? 6 : 8;
1838 		else if (tb_switch_is_titan_ridge(sw))
1839 			index = !phy_port ? 8 : 9;
1840 		else
1841 			goto out;
1842 
1843 		/* Validate the hard-coding */
1844 		if (WARN_ON(index > sw->config.max_port_number))
1845 			goto out;
1846 
1847 		down = &sw->ports[index];
1848 	}
1849 
1850 	if (down) {
1851 		if (WARN_ON(!tb_port_is_pcie_down(down)))
1852 			goto out;
1853 		if (tb_pci_port_is_enabled(down))
1854 			goto out;
1855 
1856 		return down;
1857 	}
1858 
1859 out:
1860 	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1861 }
1862 
1863 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1864 {
1865 	struct tb_port *host_port, *port;
1866 	struct tb_cm *tcm = tb_priv(tb);
1867 
1868 	host_port = tb_route(in->sw) ?
1869 		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1870 
1871 	list_for_each_entry(port, &tcm->dp_resources, list) {
1872 		if (!tb_port_is_dpout(port))
1873 			continue;
1874 
1875 		if (tb_port_is_enabled(port)) {
1876 			tb_port_dbg(port, "DP OUT in use\n");
1877 			continue;
1878 		}
1879 
1880 		/* Needs to be on different routers */
1881 		if (in->sw == port->sw) {
1882 			tb_port_dbg(port, "skipping DP OUT on same router\n");
1883 			continue;
1884 		}
1885 
1886 		tb_port_dbg(port, "DP OUT available\n");
1887 
1888 		/*
1889 		 * Keep the DP tunnel under the topology starting from
1890 		 * the same host router downstream port.
1891 		 */
1892 		if (host_port && tb_route(port->sw)) {
1893 			struct tb_port *p;
1894 
1895 			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1896 			if (p != host_port)
1897 				continue;
1898 		}
1899 
1900 		return port;
1901 	}
1902 
1903 	return NULL;
1904 }
1905 
1906 static void tb_dp_tunnel_active(struct tb_tunnel *tunnel, void *data)
1907 {
1908 	struct tb_port *in = tunnel->src_port;
1909 	struct tb_port *out = tunnel->dst_port;
1910 	struct tb *tb = data;
1911 
1912 	mutex_lock(&tb->lock);
1913 	if (tb_tunnel_is_active(tunnel)) {
1914 		int consumed_up, consumed_down, ret;
1915 
1916 		tb_tunnel_dbg(tunnel, "DPRX capabilities read completed\n");
1917 
1918 		/* If fail reading tunnel's consumed bandwidth, tear it down */
1919 		ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up,
1920 						   &consumed_down);
1921 		if (ret) {
1922 			tb_tunnel_warn(tunnel,
1923 				       "failed to read consumed bandwidth, tearing down\n");
1924 			tb_deactivate_and_free_tunnel(tunnel);
1925 		} else {
1926 			tb_reclaim_usb3_bandwidth(tb, in, out);
1927 			/*
1928 			 * Transition the links to asymmetric if the
1929 			 * consumption exceeds the threshold.
1930 			 */
1931 			tb_configure_asym(tb, in, out, consumed_up,
1932 					  consumed_down);
1933 			/*
1934 			 * Update the domain with the new bandwidth
1935 			 * estimation.
1936 			 */
1937 			tb_recalc_estimated_bandwidth(tb);
1938 			/*
1939 			 * In case of DP tunnel exists, change host
1940 			 * router's 1st children TMU mode to HiFi for
1941 			 * CL0s to work.
1942 			 */
1943 			tb_increase_tmu_accuracy(tunnel);
1944 		}
1945 	} else {
1946 		struct tb_port *in = tunnel->src_port;
1947 
1948 		/*
1949 		 * This tunnel failed to establish. This means DPRX
1950 		 * negotiation most likely did not complete which
1951 		 * happens either because there is no graphics driver
1952 		 * loaded or not all DP cables where connected to the
1953 		 * discrete router.
1954 		 *
1955 		 * In both cases we remove the DP IN adapter from the
1956 		 * available resources as it is not usable. This will
1957 		 * also tear down the tunnel and try to re-use the
1958 		 * released DP OUT.
1959 		 *
1960 		 * It will be added back only if there is hotplug for
1961 		 * the DP IN again.
1962 		 */
1963 		tb_tunnel_warn(tunnel, "not active, tearing down\n");
1964 		tb_dp_resource_unavailable(tb, in, "DPRX negotiation failed");
1965 	}
1966 	mutex_unlock(&tb->lock);
1967 
1968 	tb_domain_put(tb);
1969 }
1970 
1971 static void tb_tunnel_one_dp(struct tb *tb, struct tb_port *in,
1972 			     struct tb_port *out)
1973 {
1974 	int available_up, available_down, ret, link_nr;
1975 	struct tb_cm *tcm = tb_priv(tb);
1976 	struct tb_tunnel *tunnel;
1977 
1978 	/*
1979 	 * This is only applicable to links that are not bonded (so
1980 	 * when Thunderbolt 1 hardware is involved somewhere in the
1981 	 * topology). For these try to share the DP bandwidth between
1982 	 * the two lanes.
1983 	 */
1984 	link_nr = 1;
1985 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1986 		if (tb_tunnel_is_dp(tunnel)) {
1987 			link_nr = 0;
1988 			break;
1989 		}
1990 	}
1991 
1992 	/*
1993 	 * DP stream needs the domain to be active so runtime resume
1994 	 * both ends of the tunnel.
1995 	 *
1996 	 * This should bring the routers in the middle active as well
1997 	 * and keeps the domain from runtime suspending while the DP
1998 	 * tunnel is active.
1999 	 */
2000 	pm_runtime_get_sync(&in->sw->dev);
2001 	pm_runtime_get_sync(&out->sw->dev);
2002 
2003 	if (tb_switch_alloc_dp_resource(in->sw, in)) {
2004 		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
2005 		goto err_rpm_put;
2006 	}
2007 
2008 	if (!tb_attach_bandwidth_group(tcm, in, out))
2009 		goto err_dealloc_dp;
2010 
2011 	/* Make all unused USB3 bandwidth available for the new DP tunnel */
2012 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2013 	if (ret) {
2014 		tb_warn(tb, "failed to release unused bandwidth\n");
2015 		goto err_detach_group;
2016 	}
2017 
2018 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2019 				     true);
2020 	if (ret) {
2021 		tb_tunnel_event(tb, TB_TUNNEL_NO_BANDWIDTH, TB_TUNNEL_DP, in, out);
2022 		goto err_reclaim_usb;
2023 	}
2024 
2025 	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
2026 	       available_up, available_down);
2027 
2028 	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
2029 				    available_down, tb_dp_tunnel_active,
2030 				    tb_domain_get(tb));
2031 	if (!tunnel) {
2032 		tb_port_dbg(out, "could not allocate DP tunnel\n");
2033 		goto err_reclaim_usb;
2034 	}
2035 
2036 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2037 
2038 	ret = tb_tunnel_activate(tunnel);
2039 	if (ret && ret != -EINPROGRESS) {
2040 		tb_port_info(out, "DP tunnel activation failed, aborting\n");
2041 		list_del(&tunnel->list);
2042 		goto err_free;
2043 	}
2044 
2045 	return;
2046 
2047 err_free:
2048 	tb_tunnel_put(tunnel);
2049 err_reclaim_usb:
2050 	tb_reclaim_usb3_bandwidth(tb, in, out);
2051 	tb_domain_put(tb);
2052 err_detach_group:
2053 	tb_detach_bandwidth_group(in);
2054 err_dealloc_dp:
2055 	tb_switch_dealloc_dp_resource(in->sw, in);
2056 err_rpm_put:
2057 	pm_runtime_mark_last_busy(&out->sw->dev);
2058 	pm_runtime_put_autosuspend(&out->sw->dev);
2059 	pm_runtime_mark_last_busy(&in->sw->dev);
2060 	pm_runtime_put_autosuspend(&in->sw->dev);
2061 }
2062 
2063 static void tb_tunnel_dp(struct tb *tb)
2064 {
2065 	struct tb_cm *tcm = tb_priv(tb);
2066 	struct tb_port *port, *in, *out;
2067 
2068 	if (!tb_acpi_may_tunnel_dp()) {
2069 		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * Find pair of inactive DP IN and DP OUT adapters and then
2075 	 * establish a DP tunnel between them.
2076 	 */
2077 	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
2078 
2079 	in = NULL;
2080 	out = NULL;
2081 	list_for_each_entry(port, &tcm->dp_resources, list) {
2082 		if (!tb_port_is_dpin(port))
2083 			continue;
2084 
2085 		if (tb_port_is_enabled(port)) {
2086 			tb_port_dbg(port, "DP IN in use\n");
2087 			continue;
2088 		}
2089 
2090 		in = port;
2091 		tb_port_dbg(in, "DP IN available\n");
2092 
2093 		out = tb_find_dp_out(tb, port);
2094 		if (out)
2095 			tb_tunnel_one_dp(tb, in, out);
2096 		else
2097 			tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n");
2098 	}
2099 
2100 	if (!in)
2101 		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
2102 }
2103 
2104 static void tb_enter_redrive(struct tb_port *port)
2105 {
2106 	struct tb_switch *sw = port->sw;
2107 
2108 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2109 		return;
2110 
2111 	/*
2112 	 * If we get hot-unplug for the DP IN port of the host router
2113 	 * and the DP resource is not available anymore it means there
2114 	 * is a monitor connected directly to the Type-C port and we are
2115 	 * in "redrive" mode. For this to work we cannot enter RTD3 so
2116 	 * we bump up the runtime PM reference count here.
2117 	 */
2118 	if (!tb_port_is_dpin(port))
2119 		return;
2120 	if (tb_route(sw))
2121 		return;
2122 	if (!tb_switch_query_dp_resource(sw, port)) {
2123 		port->redrive = true;
2124 		pm_runtime_get(&sw->dev);
2125 		tb_port_dbg(port, "enter redrive mode, keeping powered\n");
2126 	}
2127 }
2128 
2129 static void tb_exit_redrive(struct tb_port *port)
2130 {
2131 	struct tb_switch *sw = port->sw;
2132 
2133 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2134 		return;
2135 
2136 	if (!tb_port_is_dpin(port))
2137 		return;
2138 	if (tb_route(sw))
2139 		return;
2140 	if (port->redrive && tb_switch_query_dp_resource(sw, port)) {
2141 		port->redrive = false;
2142 		pm_runtime_put(&sw->dev);
2143 		tb_port_dbg(port, "exit redrive mode\n");
2144 	}
2145 }
2146 
2147 static void tb_switch_enter_redrive(struct tb_switch *sw)
2148 {
2149 	struct tb_port *port;
2150 
2151 	tb_switch_for_each_port(sw, port)
2152 		tb_enter_redrive(port);
2153 }
2154 
2155 /*
2156  * Called during system and runtime suspend to forcefully exit redrive
2157  * mode without querying whether the resource is available.
2158  */
2159 static void tb_switch_exit_redrive(struct tb_switch *sw)
2160 {
2161 	struct tb_port *port;
2162 
2163 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2164 		return;
2165 
2166 	tb_switch_for_each_port(sw, port) {
2167 		if (!tb_port_is_dpin(port))
2168 			continue;
2169 
2170 		if (port->redrive) {
2171 			port->redrive = false;
2172 			pm_runtime_put(&sw->dev);
2173 			tb_port_dbg(port, "exit redrive mode\n");
2174 		}
2175 	}
2176 }
2177 
2178 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port,
2179 				       const char *reason)
2180 {
2181 	struct tb_port *in, *out;
2182 	struct tb_tunnel *tunnel;
2183 
2184 	if (tb_port_is_dpin(port)) {
2185 		tb_port_dbg(port, "DP IN resource unavailable: %s\n", reason);
2186 		in = port;
2187 		out = NULL;
2188 	} else {
2189 		tb_port_dbg(port, "DP OUT resource unavailable: %s\n", reason);
2190 		in = NULL;
2191 		out = port;
2192 	}
2193 
2194 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
2195 	if (tunnel)
2196 		tb_deactivate_and_free_tunnel(tunnel);
2197 	else
2198 		tb_enter_redrive(port);
2199 	list_del_init(&port->list);
2200 
2201 	/*
2202 	 * See if there is another DP OUT port that can be used for
2203 	 * to create another tunnel.
2204 	 */
2205 	tb_recalc_estimated_bandwidth(tb);
2206 	tb_tunnel_dp(tb);
2207 }
2208 
2209 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
2210 {
2211 	struct tb_cm *tcm = tb_priv(tb);
2212 	struct tb_port *p;
2213 
2214 	if (tb_port_is_enabled(port))
2215 		return;
2216 
2217 	list_for_each_entry(p, &tcm->dp_resources, list) {
2218 		if (p == port)
2219 			return;
2220 	}
2221 
2222 	tb_port_dbg(port, "DP %s resource available after hotplug\n",
2223 		    tb_port_is_dpin(port) ? "IN" : "OUT");
2224 	list_add_tail(&port->list, &tcm->dp_resources);
2225 	tb_exit_redrive(port);
2226 
2227 	/* Look for suitable DP IN <-> DP OUT pairs now */
2228 	tb_tunnel_dp(tb);
2229 }
2230 
2231 static void tb_disconnect_and_release_dp(struct tb *tb)
2232 {
2233 	struct tb_cm *tcm = tb_priv(tb);
2234 	struct tb_tunnel *tunnel, *n;
2235 
2236 	/*
2237 	 * Tear down all DP tunnels and release their resources. They
2238 	 * will be re-established after resume based on plug events.
2239 	 */
2240 	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
2241 		if (tb_tunnel_is_dp(tunnel))
2242 			tb_deactivate_and_free_tunnel(tunnel);
2243 	}
2244 
2245 	while (!list_empty(&tcm->dp_resources)) {
2246 		struct tb_port *port;
2247 
2248 		port = list_first_entry(&tcm->dp_resources,
2249 					struct tb_port, list);
2250 		list_del_init(&port->list);
2251 	}
2252 }
2253 
2254 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
2255 {
2256 	struct tb_tunnel *tunnel;
2257 	struct tb_port *up;
2258 
2259 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2260 	if (WARN_ON(!up))
2261 		return -ENODEV;
2262 
2263 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
2264 	if (WARN_ON(!tunnel))
2265 		return -ENODEV;
2266 
2267 	tb_switch_xhci_disconnect(sw);
2268 
2269 	tb_tunnel_deactivate(tunnel);
2270 	list_del(&tunnel->list);
2271 	tb_tunnel_put(tunnel);
2272 	return 0;
2273 }
2274 
2275 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
2276 {
2277 	struct tb_port *up, *down, *port;
2278 	struct tb_cm *tcm = tb_priv(tb);
2279 	struct tb_tunnel *tunnel;
2280 
2281 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2282 	if (!up)
2283 		return 0;
2284 
2285 	/*
2286 	 * Look up available down port. Since we are chaining it should
2287 	 * be found right above this switch.
2288 	 */
2289 	port = tb_switch_downstream_port(sw);
2290 	down = tb_find_pcie_down(tb_switch_parent(sw), port);
2291 	if (!down)
2292 		return 0;
2293 
2294 	tunnel = tb_tunnel_alloc_pci(tb, up, down);
2295 	if (!tunnel)
2296 		return -ENOMEM;
2297 
2298 	if (tb_tunnel_activate(tunnel)) {
2299 		tb_port_info(up,
2300 			     "PCIe tunnel activation failed, aborting\n");
2301 		tb_tunnel_put(tunnel);
2302 		return -EIO;
2303 	}
2304 
2305 	/*
2306 	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2307 	 * here.
2308 	 */
2309 	if (tb_switch_pcie_l1_enable(sw))
2310 		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2311 
2312 	if (tb_switch_xhci_connect(sw))
2313 		tb_sw_warn(sw, "failed to connect xHCI\n");
2314 
2315 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2316 	return 0;
2317 }
2318 
2319 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2320 				    int transmit_path, int transmit_ring,
2321 				    int receive_path, int receive_ring)
2322 {
2323 	struct tb_cm *tcm = tb_priv(tb);
2324 	struct tb_port *nhi_port, *dst_port;
2325 	struct tb_tunnel *tunnel;
2326 	struct tb_switch *sw;
2327 	int ret;
2328 
2329 	sw = tb_to_switch(xd->dev.parent);
2330 	dst_port = tb_port_at(xd->route, sw);
2331 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2332 
2333 	mutex_lock(&tb->lock);
2334 
2335 	/*
2336 	 * When tunneling DMA paths the link should not enter CL states
2337 	 * so disable them now.
2338 	 */
2339 	tb_disable_clx(sw);
2340 
2341 	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2342 				     transmit_ring, receive_path, receive_ring);
2343 	if (!tunnel) {
2344 		ret = -ENOMEM;
2345 		goto err_clx;
2346 	}
2347 
2348 	if (tb_tunnel_activate(tunnel)) {
2349 		tb_port_info(nhi_port,
2350 			     "DMA tunnel activation failed, aborting\n");
2351 		ret = -EIO;
2352 		goto err_free;
2353 	}
2354 
2355 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2356 	mutex_unlock(&tb->lock);
2357 	return 0;
2358 
2359 err_free:
2360 	tb_tunnel_put(tunnel);
2361 err_clx:
2362 	tb_enable_clx(sw);
2363 	mutex_unlock(&tb->lock);
2364 
2365 	return ret;
2366 }
2367 
2368 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2369 					  int transmit_path, int transmit_ring,
2370 					  int receive_path, int receive_ring)
2371 {
2372 	struct tb_cm *tcm = tb_priv(tb);
2373 	struct tb_port *nhi_port, *dst_port;
2374 	struct tb_tunnel *tunnel, *n;
2375 	struct tb_switch *sw;
2376 
2377 	sw = tb_to_switch(xd->dev.parent);
2378 	dst_port = tb_port_at(xd->route, sw);
2379 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2380 
2381 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2382 		if (!tb_tunnel_is_dma(tunnel))
2383 			continue;
2384 		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2385 			continue;
2386 
2387 		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2388 					receive_path, receive_ring))
2389 			tb_deactivate_and_free_tunnel(tunnel);
2390 	}
2391 
2392 	/*
2393 	 * Try to re-enable CL states now, it is OK if this fails
2394 	 * because we may still have another DMA tunnel active through
2395 	 * the same host router USB4 downstream port.
2396 	 */
2397 	tb_enable_clx(sw);
2398 }
2399 
2400 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2401 				       int transmit_path, int transmit_ring,
2402 				       int receive_path, int receive_ring)
2403 {
2404 	if (!xd->is_unplugged) {
2405 		mutex_lock(&tb->lock);
2406 		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2407 					      transmit_ring, receive_path,
2408 					      receive_ring);
2409 		mutex_unlock(&tb->lock);
2410 	}
2411 	return 0;
2412 }
2413 
2414 /* hotplug handling */
2415 
2416 /*
2417  * tb_handle_hotplug() - handle hotplug event
2418  *
2419  * Executes on tb->wq.
2420  */
2421 static void tb_handle_hotplug(struct work_struct *work)
2422 {
2423 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work);
2424 	struct tb *tb = ev->tb;
2425 	struct tb_cm *tcm = tb_priv(tb);
2426 	struct tb_switch *sw;
2427 	struct tb_port *port;
2428 
2429 	/* Bring the domain back from sleep if it was suspended */
2430 	pm_runtime_get_sync(&tb->dev);
2431 
2432 	mutex_lock(&tb->lock);
2433 	if (!tcm->hotplug_active)
2434 		goto out; /* during init, suspend or shutdown */
2435 
2436 	sw = tb_switch_find_by_route(tb, ev->route);
2437 	if (!sw) {
2438 		tb_warn(tb,
2439 			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2440 			ev->route, ev->port, ev->unplug);
2441 		goto out;
2442 	}
2443 	if (ev->port > sw->config.max_port_number) {
2444 		tb_warn(tb,
2445 			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2446 			ev->route, ev->port, ev->unplug);
2447 		goto put_sw;
2448 	}
2449 	port = &sw->ports[ev->port];
2450 	if (tb_is_upstream_port(port)) {
2451 		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2452 		       ev->route, ev->port, ev->unplug);
2453 		goto put_sw;
2454 	}
2455 
2456 	pm_runtime_get_sync(&sw->dev);
2457 
2458 	if (ev->unplug) {
2459 		tb_retimer_remove_all(port);
2460 
2461 		if (tb_port_has_remote(port)) {
2462 			tb_port_dbg(port, "switch unplugged\n");
2463 			tb_sw_set_unplugged(port->remote->sw);
2464 			tb_free_invalid_tunnels(tb);
2465 			tb_remove_dp_resources(port->remote->sw);
2466 			tb_switch_tmu_disable(port->remote->sw);
2467 			tb_switch_unconfigure_link(port->remote->sw);
2468 			tb_switch_set_link_width(port->remote->sw,
2469 						 TB_LINK_WIDTH_SINGLE);
2470 			tb_switch_remove(port->remote->sw);
2471 			port->remote = NULL;
2472 			if (port->dual_link_port)
2473 				port->dual_link_port->remote = NULL;
2474 			/* Maybe we can create another DP tunnel */
2475 			tb_recalc_estimated_bandwidth(tb);
2476 			tb_tunnel_dp(tb);
2477 		} else if (port->xdomain) {
2478 			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2479 
2480 			tb_port_dbg(port, "xdomain unplugged\n");
2481 			/*
2482 			 * Service drivers are unbound during
2483 			 * tb_xdomain_remove() so setting XDomain as
2484 			 * unplugged here prevents deadlock if they call
2485 			 * tb_xdomain_disable_paths(). We will tear down
2486 			 * all the tunnels below.
2487 			 */
2488 			xd->is_unplugged = true;
2489 			tb_xdomain_remove(xd);
2490 			port->xdomain = NULL;
2491 			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2492 			tb_xdomain_put(xd);
2493 			tb_port_unconfigure_xdomain(port);
2494 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2495 			tb_dp_resource_unavailable(tb, port, "adapter unplug");
2496 		} else if (!port->port) {
2497 			tb_sw_dbg(sw, "xHCI disconnect request\n");
2498 			tb_switch_xhci_disconnect(sw);
2499 		} else {
2500 			tb_port_dbg(port,
2501 				   "got unplug event for disconnected port, ignoring\n");
2502 		}
2503 	} else if (port->remote) {
2504 		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2505 	} else if (!port->port && sw->authorized) {
2506 		tb_sw_dbg(sw, "xHCI connect request\n");
2507 		tb_switch_xhci_connect(sw);
2508 	} else {
2509 		if (tb_port_is_null(port)) {
2510 			tb_port_dbg(port, "hotplug: scanning\n");
2511 			tb_scan_port(port);
2512 			if (!port->remote)
2513 				tb_port_dbg(port, "hotplug: no switch found\n");
2514 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2515 			tb_dp_resource_available(tb, port);
2516 		}
2517 	}
2518 
2519 	pm_runtime_mark_last_busy(&sw->dev);
2520 	pm_runtime_put_autosuspend(&sw->dev);
2521 
2522 put_sw:
2523 	tb_switch_put(sw);
2524 out:
2525 	mutex_unlock(&tb->lock);
2526 
2527 	pm_runtime_mark_last_busy(&tb->dev);
2528 	pm_runtime_put_autosuspend(&tb->dev);
2529 
2530 	kfree(ev);
2531 }
2532 
2533 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2534 				 int *requested_down)
2535 {
2536 	int allocated_up, allocated_down, available_up, available_down, ret;
2537 	int requested_up_corrected, requested_down_corrected, granularity;
2538 	int max_up, max_down, max_up_rounded, max_down_rounded;
2539 	struct tb_bandwidth_group *group;
2540 	struct tb *tb = tunnel->tb;
2541 	struct tb_port *in, *out;
2542 	bool downstream;
2543 
2544 	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2545 	if (ret)
2546 		return ret;
2547 
2548 	in = tunnel->src_port;
2549 	out = tunnel->dst_port;
2550 
2551 	tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2552 		      allocated_up, allocated_down);
2553 
2554 	/*
2555 	 * If we get rounded up request from graphics side, say HBR2 x 4
2556 	 * that is 17500 instead of 17280 (this is because of the
2557 	 * granularity), we allow it too. Here the graphics has already
2558 	 * negotiated with the DPRX the maximum possible rates (which is
2559 	 * 17280 in this case).
2560 	 *
2561 	 * Since the link cannot go higher than 17280 we use that in our
2562 	 * calculations but the DP IN adapter Allocated BW write must be
2563 	 * the same value (17500) otherwise the adapter will mark it as
2564 	 * failed for graphics.
2565 	 */
2566 	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2567 	if (ret)
2568 		goto fail;
2569 
2570 	ret = usb4_dp_port_granularity(in);
2571 	if (ret < 0)
2572 		goto fail;
2573 	granularity = ret;
2574 
2575 	max_up_rounded = roundup(max_up, granularity);
2576 	max_down_rounded = roundup(max_down, granularity);
2577 
2578 	/*
2579 	 * This will "fix" the request down to the maximum supported
2580 	 * rate * lanes if it is at the maximum rounded up level.
2581 	 */
2582 	requested_up_corrected = *requested_up;
2583 	if (requested_up_corrected == max_up_rounded)
2584 		requested_up_corrected = max_up;
2585 	else if (requested_up_corrected < 0)
2586 		requested_up_corrected = 0;
2587 	requested_down_corrected = *requested_down;
2588 	if (requested_down_corrected == max_down_rounded)
2589 		requested_down_corrected = max_down;
2590 	else if (requested_down_corrected < 0)
2591 		requested_down_corrected = 0;
2592 
2593 	tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2594 		      requested_up_corrected, requested_down_corrected);
2595 
2596 	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2597 	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2598 		tb_tunnel_dbg(tunnel,
2599 			      "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2600 			      requested_up_corrected, requested_down_corrected,
2601 			      max_up_rounded, max_down_rounded);
2602 		ret = -ENOBUFS;
2603 		goto fail;
2604 	}
2605 
2606 	downstream = tb_tunnel_direction_downstream(tunnel);
2607 	group = in->group;
2608 
2609 	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2610 	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2611 		if (tunnel->bw_mode) {
2612 			int reserved;
2613 			/*
2614 			 * If requested bandwidth is less or equal than
2615 			 * what is currently allocated to that tunnel we
2616 			 * simply change the reservation of the tunnel
2617 			 * and add the released bandwidth for the group
2618 			 * for the next 10s. Then we release it for
2619 			 * others to use.
2620 			 */
2621 			if (downstream)
2622 				reserved = allocated_down - *requested_down;
2623 			else
2624 				reserved = allocated_up - *requested_up;
2625 
2626 			if (reserved > 0) {
2627 				group->reserved += reserved;
2628 				tb_dbg(tb, "group %d reserved %d total %d Mb/s\n",
2629 				       group->index, reserved, group->reserved);
2630 
2631 				/*
2632 				 * If it was not already pending,
2633 				 * schedule release now. If it is then
2634 				 * postpone it for the next 10s (unless
2635 				 * it is already running in which case
2636 				 * the 10s already expired and we should
2637 				 * give the reserved back to others).
2638 				 */
2639 				mod_delayed_work(system_wq, &group->release_work,
2640 					msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT));
2641 			}
2642 		}
2643 
2644 		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2645 						requested_down);
2646 		if (ret)
2647 			goto fail;
2648 
2649 		return 0;
2650 	}
2651 
2652 	/*
2653 	 * More bandwidth is requested. Release all the potential
2654 	 * bandwidth from USB3 first.
2655 	 */
2656 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2657 	if (ret)
2658 		goto fail;
2659 
2660 	/*
2661 	 * Then go over all tunnels that cross the same USB4 ports (they
2662 	 * are also in the same group but we use the same function here
2663 	 * that we use with the normal bandwidth allocation).
2664 	 */
2665 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2666 				     true);
2667 	if (ret)
2668 		goto reclaim;
2669 
2670 	tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n",
2671 		      available_up, available_down, group->reserved);
2672 
2673 	if ((*requested_up >= 0 &&
2674 		available_up + group->reserved >= requested_up_corrected) ||
2675 	    (*requested_down >= 0 &&
2676 		available_down + group->reserved >= requested_down_corrected)) {
2677 		int released = 0;
2678 
2679 		/*
2680 		 * If bandwidth on a link is >= asym_threshold
2681 		 * transition the link to asymmetric.
2682 		 */
2683 		ret = tb_configure_asym(tb, in, out, *requested_up,
2684 					*requested_down);
2685 		if (ret) {
2686 			tb_configure_sym(tb, in, out, true);
2687 			goto fail;
2688 		}
2689 
2690 		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2691 						requested_down);
2692 		if (ret) {
2693 			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2694 			tb_configure_sym(tb, in, out, true);
2695 		}
2696 
2697 		if (downstream) {
2698 			if (*requested_down > available_down)
2699 				released = *requested_down - available_down;
2700 		} else {
2701 			if (*requested_up > available_up)
2702 				released = *requested_up - available_up;
2703 		}
2704 		if (released) {
2705 			group->reserved -= released;
2706 			tb_dbg(tb, "group %d released %d total %d Mb/s\n",
2707 			       group->index, released, group->reserved);
2708 		}
2709 	} else {
2710 		ret = -ENOBUFS;
2711 	}
2712 
2713 reclaim:
2714 	tb_reclaim_usb3_bandwidth(tb, in, out);
2715 fail:
2716 	if (ret && ret != -ENODEV) {
2717 		/*
2718 		 * Write back the same allocated (so no change), this
2719 		 * makes the DPTX request fail on graphics side.
2720 		 */
2721 		tb_tunnel_dbg(tunnel,
2722 			      "failing the request by rewriting allocated %d/%d Mb/s\n",
2723 			      allocated_up, allocated_down);
2724 		tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down);
2725 		tb_tunnel_event(tb, TB_TUNNEL_NO_BANDWIDTH, TB_TUNNEL_DP, in, out);
2726 	}
2727 
2728 	return ret;
2729 }
2730 
2731 static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2732 {
2733 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work);
2734 	int requested_bw, requested_up, requested_down, ret;
2735 	struct tb_tunnel *tunnel;
2736 	struct tb *tb = ev->tb;
2737 	struct tb_cm *tcm = tb_priv(tb);
2738 	struct tb_switch *sw;
2739 	struct tb_port *in;
2740 
2741 	pm_runtime_get_sync(&tb->dev);
2742 
2743 	mutex_lock(&tb->lock);
2744 	if (!tcm->hotplug_active)
2745 		goto unlock;
2746 
2747 	sw = tb_switch_find_by_route(tb, ev->route);
2748 	if (!sw) {
2749 		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2750 			ev->route);
2751 		goto unlock;
2752 	}
2753 
2754 	in = &sw->ports[ev->port];
2755 	if (!tb_port_is_dpin(in)) {
2756 		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2757 		goto put_sw;
2758 	}
2759 
2760 	tb_port_dbg(in, "handling bandwidth allocation request, retry %d\n", ev->retry);
2761 
2762 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2763 	if (!tunnel) {
2764 		tb_port_warn(in, "failed to find tunnel\n");
2765 		goto put_sw;
2766 	}
2767 
2768 	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2769 		if (tunnel->bw_mode) {
2770 			/*
2771 			 * Reset the tunnel back to use the legacy
2772 			 * allocation.
2773 			 */
2774 			tunnel->bw_mode = false;
2775 			tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n");
2776 		} else {
2777 			tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2778 		}
2779 		goto put_sw;
2780 	}
2781 
2782 	ret = usb4_dp_port_requested_bandwidth(in);
2783 	if (ret < 0) {
2784 		if (ret == -ENODATA) {
2785 			/*
2786 			 * There is no request active so this means the
2787 			 * BW allocation mode was enabled from graphics
2788 			 * side. At this point we know that the graphics
2789 			 * driver has read the DRPX capabilities so we
2790 			 * can offer an better bandwidth estimatation.
2791 			 */
2792 			tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n");
2793 			tb_recalc_estimated_bandwidth(tb);
2794 		} else {
2795 			tb_port_warn(in, "failed to read requested bandwidth\n");
2796 		}
2797 		goto put_sw;
2798 	}
2799 	requested_bw = ret;
2800 
2801 	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2802 
2803 	if (tb_tunnel_direction_downstream(tunnel)) {
2804 		requested_up = -1;
2805 		requested_down = requested_bw;
2806 	} else {
2807 		requested_up = requested_bw;
2808 		requested_down = -1;
2809 	}
2810 
2811 	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2812 	if (ret) {
2813 		if (ret == -ENOBUFS) {
2814 			tb_tunnel_warn(tunnel,
2815 				       "not enough bandwidth available\n");
2816 		} else if (ret == -ENOTCONN) {
2817 			tb_tunnel_dbg(tunnel, "not active yet\n");
2818 			/*
2819 			 * We got bandwidth allocation request but the
2820 			 * tunnel is not yet active. This means that
2821 			 * tb_dp_tunnel_active() is not yet called for
2822 			 * this tunnel. Allow it some time and retry
2823 			 * this request a couple of times.
2824 			 */
2825 			if (ev->retry < TB_BW_ALLOC_RETRIES) {
2826 				tb_tunnel_dbg(tunnel,
2827 					      "retrying bandwidth allocation request\n");
2828 				tb_queue_dp_bandwidth_request(tb, ev->route,
2829 							      ev->port,
2830 							      ev->retry + 1,
2831 							      msecs_to_jiffies(50));
2832 			} else {
2833 				tb_tunnel_dbg(tunnel,
2834 					      "run out of retries, failing the request");
2835 			}
2836 		} else {
2837 			tb_tunnel_warn(tunnel,
2838 				       "failed to change bandwidth allocation\n");
2839 		}
2840 	} else {
2841 		tb_tunnel_dbg(tunnel,
2842 			      "bandwidth allocation changed to %d/%d Mb/s\n",
2843 			      requested_up, requested_down);
2844 
2845 		/* Update other clients about the allocation change */
2846 		tb_recalc_estimated_bandwidth(tb);
2847 	}
2848 
2849 put_sw:
2850 	tb_switch_put(sw);
2851 unlock:
2852 	mutex_unlock(&tb->lock);
2853 
2854 	pm_runtime_mark_last_busy(&tb->dev);
2855 	pm_runtime_put_autosuspend(&tb->dev);
2856 
2857 	kfree(ev);
2858 }
2859 
2860 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port,
2861 					  int retry, unsigned long delay)
2862 {
2863 	struct tb_hotplug_event *ev;
2864 
2865 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2866 	if (!ev)
2867 		return;
2868 
2869 	ev->tb = tb;
2870 	ev->route = route;
2871 	ev->port = port;
2872 	ev->retry = retry;
2873 	INIT_DELAYED_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2874 	queue_delayed_work(tb->wq, &ev->work, delay);
2875 }
2876 
2877 static void tb_handle_notification(struct tb *tb, u64 route,
2878 				   const struct cfg_error_pkg *error)
2879 {
2880 
2881 	switch (error->error) {
2882 	case TB_CFG_ERROR_PCIE_WAKE:
2883 	case TB_CFG_ERROR_DP_CON_CHANGE:
2884 	case TB_CFG_ERROR_DPTX_DISCOVERY:
2885 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2886 			tb_warn(tb, "could not ack notification on %llx\n",
2887 				route);
2888 		break;
2889 
2890 	case TB_CFG_ERROR_DP_BW:
2891 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2892 			tb_warn(tb, "could not ack notification on %llx\n",
2893 				route);
2894 		tb_queue_dp_bandwidth_request(tb, route, error->port, 0, 0);
2895 		break;
2896 
2897 	default:
2898 		/* Ignore for now */
2899 		break;
2900 	}
2901 }
2902 
2903 /*
2904  * tb_schedule_hotplug_handler() - callback function for the control channel
2905  *
2906  * Delegates to tb_handle_hotplug.
2907  */
2908 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2909 			    const void *buf, size_t size)
2910 {
2911 	const struct cfg_event_pkg *pkg = buf;
2912 	u64 route = tb_cfg_get_route(&pkg->header);
2913 
2914 	switch (type) {
2915 	case TB_CFG_PKG_ERROR:
2916 		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2917 		return;
2918 	case TB_CFG_PKG_EVENT:
2919 		break;
2920 	default:
2921 		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2922 		return;
2923 	}
2924 
2925 	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2926 		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2927 			pkg->port);
2928 	}
2929 
2930 	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2931 }
2932 
2933 static void tb_stop(struct tb *tb)
2934 {
2935 	struct tb_cm *tcm = tb_priv(tb);
2936 	struct tb_tunnel *tunnel;
2937 	struct tb_tunnel *n;
2938 
2939 	cancel_delayed_work(&tcm->remove_work);
2940 	/* tunnels are only present after everything has been initialized */
2941 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2942 		/*
2943 		 * DMA tunnels require the driver to be functional so we
2944 		 * tear them down. Other protocol tunnels can be left
2945 		 * intact.
2946 		 */
2947 		if (tb_tunnel_is_dma(tunnel))
2948 			tb_tunnel_deactivate(tunnel);
2949 		tb_tunnel_put(tunnel);
2950 	}
2951 	tb_switch_remove(tb->root_switch);
2952 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2953 }
2954 
2955 static void tb_deinit(struct tb *tb)
2956 {
2957 	struct tb_cm *tcm = tb_priv(tb);
2958 	int i;
2959 
2960 	/* Cancel all the release bandwidth workers */
2961 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++)
2962 		cancel_delayed_work_sync(&tcm->groups[i].release_work);
2963 }
2964 
2965 static int tb_scan_finalize_switch(struct device *dev, void *data)
2966 {
2967 	if (tb_is_switch(dev)) {
2968 		struct tb_switch *sw = tb_to_switch(dev);
2969 
2970 		/*
2971 		 * If we found that the switch was already setup by the
2972 		 * boot firmware, mark it as authorized now before we
2973 		 * send uevent to userspace.
2974 		 */
2975 		if (sw->boot)
2976 			sw->authorized = 1;
2977 
2978 		dev_set_uevent_suppress(dev, false);
2979 		kobject_uevent(&dev->kobj, KOBJ_ADD);
2980 		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2981 	}
2982 
2983 	return 0;
2984 }
2985 
2986 static int tb_start(struct tb *tb, bool reset)
2987 {
2988 	struct tb_cm *tcm = tb_priv(tb);
2989 	bool discover = true;
2990 	int ret;
2991 
2992 	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2993 	if (IS_ERR(tb->root_switch))
2994 		return PTR_ERR(tb->root_switch);
2995 
2996 	/*
2997 	 * ICM firmware upgrade needs running firmware and in native
2998 	 * mode that is not available so disable firmware upgrade of the
2999 	 * root switch.
3000 	 *
3001 	 * However, USB4 routers support NVM firmware upgrade if they
3002 	 * implement the necessary router operations.
3003 	 */
3004 	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
3005 	/* All USB4 routers support runtime PM */
3006 	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
3007 
3008 	ret = tb_switch_configure(tb->root_switch);
3009 	if (ret) {
3010 		tb_switch_put(tb->root_switch);
3011 		return ret;
3012 	}
3013 
3014 	/* Announce the switch to the world */
3015 	ret = tb_switch_add(tb->root_switch);
3016 	if (ret) {
3017 		tb_switch_put(tb->root_switch);
3018 		return ret;
3019 	}
3020 
3021 	/*
3022 	 * To support highest CLx state, we set host router's TMU to
3023 	 * Normal mode.
3024 	 */
3025 	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
3026 	/* Enable TMU if it is off */
3027 	tb_switch_tmu_enable(tb->root_switch);
3028 
3029 	/*
3030 	 * Boot firmware might have created tunnels of its own. Since we
3031 	 * cannot be sure they are usable for us, tear them down and
3032 	 * reset the ports to handle it as new hotplug for USB4 v1
3033 	 * routers (for USB4 v2 and beyond we already do host reset).
3034 	 */
3035 	if (reset && tb_switch_is_usb4(tb->root_switch)) {
3036 		discover = false;
3037 		if (usb4_switch_version(tb->root_switch) == 1)
3038 			tb_switch_reset(tb->root_switch);
3039 	}
3040 
3041 	if (discover) {
3042 		/* Full scan to discover devices added before the driver was loaded. */
3043 		tb_scan_switch(tb->root_switch);
3044 		/* Find out tunnels created by the boot firmware */
3045 		tb_discover_tunnels(tb);
3046 		/* Add DP resources from the DP tunnels created by the boot firmware */
3047 		tb_discover_dp_resources(tb);
3048 	}
3049 
3050 	/*
3051 	 * If the boot firmware did not create USB 3.x tunnels create them
3052 	 * now for the whole topology.
3053 	 */
3054 	tb_create_usb3_tunnels(tb->root_switch);
3055 	/* Add DP IN resources for the root switch */
3056 	tb_add_dp_resources(tb->root_switch);
3057 	tb_switch_enter_redrive(tb->root_switch);
3058 	/* Make the discovered switches available to the userspace */
3059 	device_for_each_child(&tb->root_switch->dev, NULL,
3060 			      tb_scan_finalize_switch);
3061 
3062 	/* Allow tb_handle_hotplug to progress events */
3063 	tcm->hotplug_active = true;
3064 	return 0;
3065 }
3066 
3067 static int tb_suspend_noirq(struct tb *tb)
3068 {
3069 	struct tb_cm *tcm = tb_priv(tb);
3070 
3071 	tb_dbg(tb, "suspending...\n");
3072 	tb_disconnect_and_release_dp(tb);
3073 	tb_switch_exit_redrive(tb->root_switch);
3074 	tb_switch_suspend(tb->root_switch, false);
3075 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
3076 	tb_dbg(tb, "suspend finished\n");
3077 
3078 	return 0;
3079 }
3080 
3081 static void tb_restore_children(struct tb_switch *sw)
3082 {
3083 	struct tb_port *port;
3084 
3085 	/* No need to restore if the router is already unplugged */
3086 	if (sw->is_unplugged)
3087 		return;
3088 
3089 	if (tb_enable_clx(sw))
3090 		tb_sw_warn(sw, "failed to re-enable CL states\n");
3091 
3092 	if (tb_enable_tmu(sw))
3093 		tb_sw_warn(sw, "failed to restore TMU configuration\n");
3094 
3095 	tb_switch_configuration_valid(sw);
3096 
3097 	tb_switch_for_each_port(sw, port) {
3098 		if (!tb_port_has_remote(port) && !port->xdomain)
3099 			continue;
3100 
3101 		if (port->remote) {
3102 			tb_switch_set_link_width(port->remote->sw,
3103 						 port->remote->sw->link_width);
3104 			tb_switch_configure_link(port->remote->sw);
3105 
3106 			tb_restore_children(port->remote->sw);
3107 		} else if (port->xdomain) {
3108 			tb_port_configure_xdomain(port, port->xdomain);
3109 		}
3110 	}
3111 }
3112 
3113 static int tb_resume_noirq(struct tb *tb)
3114 {
3115 	struct tb_cm *tcm = tb_priv(tb);
3116 	struct tb_tunnel *tunnel, *n;
3117 	unsigned int usb3_delay = 0;
3118 	LIST_HEAD(tunnels);
3119 
3120 	tb_dbg(tb, "resuming...\n");
3121 
3122 	/*
3123 	 * For non-USB4 hosts (Apple systems) remove any PCIe devices
3124 	 * the firmware might have setup.
3125 	 */
3126 	if (!tb_switch_is_usb4(tb->root_switch))
3127 		tb_switch_reset(tb->root_switch);
3128 
3129 	tb_switch_resume(tb->root_switch, false);
3130 	tb_free_invalid_tunnels(tb);
3131 	tb_free_unplugged_children(tb->root_switch);
3132 	tb_restore_children(tb->root_switch);
3133 
3134 	/*
3135 	 * If we get here from suspend to disk the boot firmware or the
3136 	 * restore kernel might have created tunnels of its own. Since
3137 	 * we cannot be sure they are usable for us we find and tear
3138 	 * them down.
3139 	 */
3140 	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
3141 	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
3142 		if (tb_tunnel_is_usb3(tunnel))
3143 			usb3_delay = 500;
3144 		tb_tunnel_deactivate(tunnel);
3145 		tb_tunnel_put(tunnel);
3146 	}
3147 
3148 	/* Re-create our tunnels now */
3149 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
3150 		/* USB3 requires delay before it can be re-activated */
3151 		if (tb_tunnel_is_usb3(tunnel)) {
3152 			msleep(usb3_delay);
3153 			/* Only need to do it once */
3154 			usb3_delay = 0;
3155 		}
3156 		tb_tunnel_activate(tunnel);
3157 	}
3158 	if (!list_empty(&tcm->tunnel_list)) {
3159 		/*
3160 		 * the pcie links need some time to get going.
3161 		 * 100ms works for me...
3162 		 */
3163 		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
3164 		msleep(100);
3165 	}
3166 	tb_switch_enter_redrive(tb->root_switch);
3167 	 /* Allow tb_handle_hotplug to progress events */
3168 	tcm->hotplug_active = true;
3169 	tb_dbg(tb, "resume finished\n");
3170 
3171 	return 0;
3172 }
3173 
3174 static int tb_free_unplugged_xdomains(struct tb_switch *sw)
3175 {
3176 	struct tb_port *port;
3177 	int ret = 0;
3178 
3179 	tb_switch_for_each_port(sw, port) {
3180 		if (tb_is_upstream_port(port))
3181 			continue;
3182 		if (port->xdomain && port->xdomain->is_unplugged) {
3183 			tb_retimer_remove_all(port);
3184 			tb_xdomain_remove(port->xdomain);
3185 			tb_port_unconfigure_xdomain(port);
3186 			port->xdomain = NULL;
3187 			ret++;
3188 		} else if (port->remote) {
3189 			ret += tb_free_unplugged_xdomains(port->remote->sw);
3190 		}
3191 	}
3192 
3193 	return ret;
3194 }
3195 
3196 static int tb_freeze_noirq(struct tb *tb)
3197 {
3198 	struct tb_cm *tcm = tb_priv(tb);
3199 
3200 	tcm->hotplug_active = false;
3201 	return 0;
3202 }
3203 
3204 static int tb_thaw_noirq(struct tb *tb)
3205 {
3206 	struct tb_cm *tcm = tb_priv(tb);
3207 
3208 	tcm->hotplug_active = true;
3209 	return 0;
3210 }
3211 
3212 static void tb_complete(struct tb *tb)
3213 {
3214 	/*
3215 	 * Release any unplugged XDomains and if there is a case where
3216 	 * another domain is swapped in place of unplugged XDomain we
3217 	 * need to run another rescan.
3218 	 */
3219 	mutex_lock(&tb->lock);
3220 	if (tb_free_unplugged_xdomains(tb->root_switch))
3221 		tb_scan_switch(tb->root_switch);
3222 	mutex_unlock(&tb->lock);
3223 }
3224 
3225 static int tb_runtime_suspend(struct tb *tb)
3226 {
3227 	struct tb_cm *tcm = tb_priv(tb);
3228 
3229 	mutex_lock(&tb->lock);
3230 	/*
3231 	 * The below call only releases DP resources to allow exiting and
3232 	 * re-entering redrive mode.
3233 	 */
3234 	tb_disconnect_and_release_dp(tb);
3235 	tb_switch_exit_redrive(tb->root_switch);
3236 	tb_switch_suspend(tb->root_switch, true);
3237 	tcm->hotplug_active = false;
3238 	mutex_unlock(&tb->lock);
3239 
3240 	return 0;
3241 }
3242 
3243 static void tb_remove_work(struct work_struct *work)
3244 {
3245 	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
3246 	struct tb *tb = tcm_to_tb(tcm);
3247 
3248 	mutex_lock(&tb->lock);
3249 	if (tb->root_switch) {
3250 		tb_free_unplugged_children(tb->root_switch);
3251 		tb_free_unplugged_xdomains(tb->root_switch);
3252 	}
3253 	mutex_unlock(&tb->lock);
3254 }
3255 
3256 static int tb_runtime_resume(struct tb *tb)
3257 {
3258 	struct tb_cm *tcm = tb_priv(tb);
3259 	struct tb_tunnel *tunnel, *n;
3260 
3261 	mutex_lock(&tb->lock);
3262 	tb_switch_resume(tb->root_switch, true);
3263 	tb_free_invalid_tunnels(tb);
3264 	tb_restore_children(tb->root_switch);
3265 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
3266 		tb_tunnel_activate(tunnel);
3267 	tb_switch_enter_redrive(tb->root_switch);
3268 	tcm->hotplug_active = true;
3269 	mutex_unlock(&tb->lock);
3270 
3271 	/*
3272 	 * Schedule cleanup of any unplugged devices. Run this in a
3273 	 * separate thread to avoid possible deadlock if the device
3274 	 * removal runtime resumes the unplugged device.
3275 	 */
3276 	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
3277 	return 0;
3278 }
3279 
3280 static const struct tb_cm_ops tb_cm_ops = {
3281 	.start = tb_start,
3282 	.stop = tb_stop,
3283 	.deinit = tb_deinit,
3284 	.suspend_noirq = tb_suspend_noirq,
3285 	.resume_noirq = tb_resume_noirq,
3286 	.freeze_noirq = tb_freeze_noirq,
3287 	.thaw_noirq = tb_thaw_noirq,
3288 	.complete = tb_complete,
3289 	.runtime_suspend = tb_runtime_suspend,
3290 	.runtime_resume = tb_runtime_resume,
3291 	.handle_event = tb_handle_event,
3292 	.disapprove_switch = tb_disconnect_pci,
3293 	.approve_switch = tb_tunnel_pci,
3294 	.approve_xdomain_paths = tb_approve_xdomain_paths,
3295 	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
3296 };
3297 
3298 /*
3299  * During suspend the Thunderbolt controller is reset and all PCIe
3300  * tunnels are lost. The NHI driver will try to reestablish all tunnels
3301  * during resume. This adds device links between the tunneled PCIe
3302  * downstream ports and the NHI so that the device core will make sure
3303  * NHI is resumed first before the rest.
3304  */
3305 static bool tb_apple_add_links(struct tb_nhi *nhi)
3306 {
3307 	struct pci_dev *upstream, *pdev;
3308 	bool ret;
3309 
3310 	if (!x86_apple_machine)
3311 		return false;
3312 
3313 	switch (nhi->pdev->device) {
3314 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
3315 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
3316 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
3317 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
3318 		break;
3319 	default:
3320 		return false;
3321 	}
3322 
3323 	upstream = pci_upstream_bridge(nhi->pdev);
3324 	while (upstream) {
3325 		if (!pci_is_pcie(upstream))
3326 			return false;
3327 		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
3328 			break;
3329 		upstream = pci_upstream_bridge(upstream);
3330 	}
3331 
3332 	if (!upstream)
3333 		return false;
3334 
3335 	/*
3336 	 * For each hotplug downstream port, create add device link
3337 	 * back to NHI so that PCIe tunnels can be re-established after
3338 	 * sleep.
3339 	 */
3340 	ret = false;
3341 	for_each_pci_bridge(pdev, upstream->subordinate) {
3342 		const struct device_link *link;
3343 
3344 		if (!pci_is_pcie(pdev))
3345 			continue;
3346 		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
3347 		    !pdev->is_pciehp)
3348 			continue;
3349 
3350 		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
3351 				       DL_FLAG_AUTOREMOVE_SUPPLIER |
3352 				       DL_FLAG_PM_RUNTIME);
3353 		if (link) {
3354 			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
3355 				dev_name(&pdev->dev));
3356 			ret = true;
3357 		} else {
3358 			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
3359 				 dev_name(&pdev->dev));
3360 		}
3361 	}
3362 
3363 	return ret;
3364 }
3365 
3366 struct tb *tb_probe(struct tb_nhi *nhi)
3367 {
3368 	struct tb_cm *tcm;
3369 	struct tb *tb;
3370 
3371 	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
3372 	if (!tb)
3373 		return NULL;
3374 
3375 	if (tb_acpi_may_tunnel_pcie())
3376 		tb->security_level = TB_SECURITY_USER;
3377 	else
3378 		tb->security_level = TB_SECURITY_NOPCIE;
3379 
3380 	tb->cm_ops = &tb_cm_ops;
3381 
3382 	tcm = tb_priv(tb);
3383 	INIT_LIST_HEAD(&tcm->tunnel_list);
3384 	INIT_LIST_HEAD(&tcm->dp_resources);
3385 	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
3386 	tb_init_bandwidth_groups(tcm);
3387 
3388 	tb_dbg(tb, "using software connection manager\n");
3389 
3390 	/*
3391 	 * Device links are needed to make sure we establish tunnels
3392 	 * before the PCIe/USB stack is resumed so complain here if we
3393 	 * found them missing.
3394 	 */
3395 	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
3396 		tb_warn(tb, "device links to tunneled native ports are missing!\n");
3397 
3398 	return tb;
3399 }
3400