xref: /linux/drivers/thunderbolt/tb.c (revision 2241f81c91f211b512bd2c3a26a4a74258d0e008)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - bus logic (NHI independent)
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2019, Intel Corporation
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/platform_data/x86/apple.h>
14 
15 #include "tb.h"
16 #include "tb_regs.h"
17 #include "tunnel.h"
18 
19 #define TB_TIMEOUT		100	/* ms */
20 
21 /*
22  * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
23  * direction. This is 40G - 10% guard band bandwidth.
24  */
25 #define TB_ASYM_MIN		(40000 * 90 / 100)
26 
27 /*
28  * Threshold bandwidth (in Mb/s) that is used to switch the links to
29  * asymmetric and back. This is selected as 45G which means when the
30  * request is higher than this, we switch the link to asymmetric, and
31  * when it is less than this we switch it back. The 45G is selected so
32  * that we still have 27G (of the total 72G) for bulk PCIe traffic when
33  * switching back to symmetric.
34  */
35 #define TB_ASYM_THRESHOLD	45000
36 
37 #define MAX_GROUPS		7	/* max Group_ID is 7 */
38 
39 static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
40 module_param_named(asym_threshold, asym_threshold, uint, 0444);
41 MODULE_PARM_DESC(asym_threshold,
42 		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
43 		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
44 
45 /**
46  * struct tb_cm - Simple Thunderbolt connection manager
47  * @tunnel_list: List of active tunnels
48  * @dp_resources: List of available DP resources for DP tunneling
49  * @hotplug_active: tb_handle_hotplug will stop progressing plug
50  *		    events and exit if this is not set (it needs to
51  *		    acquire the lock one more time). Used to drain wq
52  *		    after cfg has been paused.
53  * @remove_work: Work used to remove any unplugged routers after
54  *		 runtime resume
55  * @groups: Bandwidth groups used in this domain.
56  */
57 struct tb_cm {
58 	struct list_head tunnel_list;
59 	struct list_head dp_resources;
60 	bool hotplug_active;
61 	struct delayed_work remove_work;
62 	struct tb_bandwidth_group groups[MAX_GROUPS];
63 };
64 
65 static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
66 {
67 	return ((void *)tcm - sizeof(struct tb));
68 }
69 
70 struct tb_hotplug_event {
71 	struct work_struct work;
72 	struct tb *tb;
73 	u64 route;
74 	u8 port;
75 	bool unplug;
76 };
77 
78 static void tb_init_bandwidth_groups(struct tb_cm *tcm)
79 {
80 	int i;
81 
82 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
83 		struct tb_bandwidth_group *group = &tcm->groups[i];
84 
85 		group->tb = tcm_to_tb(tcm);
86 		group->index = i + 1;
87 		INIT_LIST_HEAD(&group->ports);
88 	}
89 }
90 
91 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
92 					   struct tb_port *in)
93 {
94 	if (!group || WARN_ON(in->group))
95 		return;
96 
97 	in->group = group;
98 	list_add_tail(&in->group_list, &group->ports);
99 
100 	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
101 }
102 
103 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
104 {
105 	int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
108 		struct tb_bandwidth_group *group = &tcm->groups[i];
109 
110 		if (list_empty(&group->ports))
111 			return group;
112 	}
113 
114 	return NULL;
115 }
116 
117 static struct tb_bandwidth_group *
118 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
119 			  struct tb_port *out)
120 {
121 	struct tb_bandwidth_group *group;
122 	struct tb_tunnel *tunnel;
123 
124 	/*
125 	 * Find all DP tunnels that go through all the same USB4 links
126 	 * as this one. Because we always setup tunnels the same way we
127 	 * can just check for the routers at both ends of the tunnels
128 	 * and if they are the same we have a match.
129 	 */
130 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
131 		if (!tb_tunnel_is_dp(tunnel))
132 			continue;
133 
134 		if (tunnel->src_port->sw == in->sw &&
135 		    tunnel->dst_port->sw == out->sw) {
136 			group = tunnel->src_port->group;
137 			if (group) {
138 				tb_bandwidth_group_attach_port(group, in);
139 				return group;
140 			}
141 		}
142 	}
143 
144 	/* Pick up next available group then */
145 	group = tb_find_free_bandwidth_group(tcm);
146 	if (group)
147 		tb_bandwidth_group_attach_port(group, in);
148 	else
149 		tb_port_warn(in, "no available bandwidth groups\n");
150 
151 	return group;
152 }
153 
154 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
155 					struct tb_port *out)
156 {
157 	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
158 		int index, i;
159 
160 		index = usb4_dp_port_group_id(in);
161 		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
162 			if (tcm->groups[i].index == index) {
163 				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
164 				return;
165 			}
166 		}
167 	}
168 
169 	tb_attach_bandwidth_group(tcm, in, out);
170 }
171 
172 static void tb_detach_bandwidth_group(struct tb_port *in)
173 {
174 	struct tb_bandwidth_group *group = in->group;
175 
176 	if (group) {
177 		in->group = NULL;
178 		list_del_init(&in->group_list);
179 
180 		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
181 	}
182 }
183 
184 static void tb_handle_hotplug(struct work_struct *work);
185 
186 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
187 {
188 	struct tb_hotplug_event *ev;
189 
190 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
191 	if (!ev)
192 		return;
193 
194 	ev->tb = tb;
195 	ev->route = route;
196 	ev->port = port;
197 	ev->unplug = unplug;
198 	INIT_WORK(&ev->work, tb_handle_hotplug);
199 	queue_work(tb->wq, &ev->work);
200 }
201 
202 /* enumeration & hot plug handling */
203 
204 static void tb_add_dp_resources(struct tb_switch *sw)
205 {
206 	struct tb_cm *tcm = tb_priv(sw->tb);
207 	struct tb_port *port;
208 
209 	tb_switch_for_each_port(sw, port) {
210 		if (!tb_port_is_dpin(port))
211 			continue;
212 
213 		if (!tb_switch_query_dp_resource(sw, port))
214 			continue;
215 
216 		list_add(&port->list, &tcm->dp_resources);
217 		tb_port_dbg(port, "DP IN resource available\n");
218 	}
219 }
220 
221 static void tb_remove_dp_resources(struct tb_switch *sw)
222 {
223 	struct tb_cm *tcm = tb_priv(sw->tb);
224 	struct tb_port *port, *tmp;
225 
226 	/* Clear children resources first */
227 	tb_switch_for_each_port(sw, port) {
228 		if (tb_port_has_remote(port))
229 			tb_remove_dp_resources(port->remote->sw);
230 	}
231 
232 	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
233 		if (port->sw == sw) {
234 			tb_port_dbg(port, "DP OUT resource unavailable\n");
235 			list_del_init(&port->list);
236 		}
237 	}
238 }
239 
240 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
241 {
242 	struct tb_cm *tcm = tb_priv(tb);
243 	struct tb_port *p;
244 
245 	list_for_each_entry(p, &tcm->dp_resources, list) {
246 		if (p == port)
247 			return;
248 	}
249 
250 	tb_port_dbg(port, "DP %s resource available discovered\n",
251 		    tb_port_is_dpin(port) ? "IN" : "OUT");
252 	list_add_tail(&port->list, &tcm->dp_resources);
253 }
254 
255 static void tb_discover_dp_resources(struct tb *tb)
256 {
257 	struct tb_cm *tcm = tb_priv(tb);
258 	struct tb_tunnel *tunnel;
259 
260 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
261 		if (tb_tunnel_is_dp(tunnel))
262 			tb_discover_dp_resource(tb, tunnel->dst_port);
263 	}
264 }
265 
266 /* Enables CL states up to host router */
267 static int tb_enable_clx(struct tb_switch *sw)
268 {
269 	struct tb_cm *tcm = tb_priv(sw->tb);
270 	unsigned int clx = TB_CL0S | TB_CL1;
271 	const struct tb_tunnel *tunnel;
272 	int ret;
273 
274 	/*
275 	 * Currently only enable CLx for the first link. This is enough
276 	 * to allow the CPU to save energy at least on Intel hardware
277 	 * and makes it slightly simpler to implement. We may change
278 	 * this in the future to cover the whole topology if it turns
279 	 * out to be beneficial.
280 	 */
281 	while (sw && tb_switch_depth(sw) > 1)
282 		sw = tb_switch_parent(sw);
283 
284 	if (!sw)
285 		return 0;
286 
287 	if (tb_switch_depth(sw) != 1)
288 		return 0;
289 
290 	/*
291 	 * If we are re-enabling then check if there is an active DMA
292 	 * tunnel and in that case bail out.
293 	 */
294 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
295 		if (tb_tunnel_is_dma(tunnel)) {
296 			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
297 				return 0;
298 		}
299 	}
300 
301 	/*
302 	 * Initially try with CL2. If that's not supported by the
303 	 * topology try with CL0s and CL1 and then give up.
304 	 */
305 	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
306 	if (ret == -EOPNOTSUPP)
307 		ret = tb_switch_clx_enable(sw, clx);
308 	return ret == -EOPNOTSUPP ? 0 : ret;
309 }
310 
311 /**
312  * tb_disable_clx() - Disable CL states up to host router
313  * @sw: Router to start
314  *
315  * Disables CL states from @sw up to the host router. Returns true if
316  * any CL state were disabled. This can be used to figure out whether
317  * the link was setup by us or the boot firmware so we don't
318  * accidentally enable them if they were not enabled during discovery.
319  */
320 static bool tb_disable_clx(struct tb_switch *sw)
321 {
322 	bool disabled = false;
323 
324 	do {
325 		int ret;
326 
327 		ret = tb_switch_clx_disable(sw);
328 		if (ret > 0)
329 			disabled = true;
330 		else if (ret < 0)
331 			tb_sw_warn(sw, "failed to disable CL states\n");
332 
333 		sw = tb_switch_parent(sw);
334 	} while (sw);
335 
336 	return disabled;
337 }
338 
339 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
340 {
341 	struct tb_switch *sw;
342 
343 	sw = tb_to_switch(dev);
344 	if (!sw)
345 		return 0;
346 
347 	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
348 		enum tb_switch_tmu_mode mode;
349 		int ret;
350 
351 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
352 			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
353 		else
354 			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
355 
356 		ret = tb_switch_tmu_configure(sw, mode);
357 		if (ret)
358 			return ret;
359 
360 		return tb_switch_tmu_enable(sw);
361 	}
362 
363 	return 0;
364 }
365 
366 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
367 {
368 	struct tb_switch *sw;
369 
370 	if (!tunnel)
371 		return;
372 
373 	/*
374 	 * Once first DP tunnel is established we change the TMU
375 	 * accuracy of first depth child routers (and the host router)
376 	 * to the highest. This is needed for the DP tunneling to work
377 	 * but also allows CL0s.
378 	 *
379 	 * If both routers are v2 then we don't need to do anything as
380 	 * they are using enhanced TMU mode that allows all CLx.
381 	 */
382 	sw = tunnel->tb->root_switch;
383 	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
384 }
385 
386 static int tb_enable_tmu(struct tb_switch *sw)
387 {
388 	int ret;
389 
390 	/*
391 	 * If both routers at the end of the link are v2 we simply
392 	 * enable the enhanched uni-directional mode. That covers all
393 	 * the CL states. For v1 and before we need to use the normal
394 	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
395 	 * running at the highest accuracy.
396 	 */
397 	ret = tb_switch_tmu_configure(sw,
398 			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
399 	if (ret == -EOPNOTSUPP) {
400 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
401 			ret = tb_switch_tmu_configure(sw,
402 					TB_SWITCH_TMU_MODE_LOWRES);
403 		else
404 			ret = tb_switch_tmu_configure(sw,
405 					TB_SWITCH_TMU_MODE_HIFI_BI);
406 	}
407 	if (ret)
408 		return ret;
409 
410 	/* If it is already enabled in correct mode, don't touch it */
411 	if (tb_switch_tmu_is_enabled(sw))
412 		return 0;
413 
414 	ret = tb_switch_tmu_disable(sw);
415 	if (ret)
416 		return ret;
417 
418 	ret = tb_switch_tmu_post_time(sw);
419 	if (ret)
420 		return ret;
421 
422 	return tb_switch_tmu_enable(sw);
423 }
424 
425 static void tb_switch_discover_tunnels(struct tb_switch *sw,
426 				       struct list_head *list,
427 				       bool alloc_hopids)
428 {
429 	struct tb *tb = sw->tb;
430 	struct tb_port *port;
431 
432 	tb_switch_for_each_port(sw, port) {
433 		struct tb_tunnel *tunnel = NULL;
434 
435 		switch (port->config.type) {
436 		case TB_TYPE_DP_HDMI_IN:
437 			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
438 			tb_increase_tmu_accuracy(tunnel);
439 			break;
440 
441 		case TB_TYPE_PCIE_DOWN:
442 			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
443 			break;
444 
445 		case TB_TYPE_USB3_DOWN:
446 			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
447 			break;
448 
449 		default:
450 			break;
451 		}
452 
453 		if (tunnel)
454 			list_add_tail(&tunnel->list, list);
455 	}
456 
457 	tb_switch_for_each_port(sw, port) {
458 		if (tb_port_has_remote(port)) {
459 			tb_switch_discover_tunnels(port->remote->sw, list,
460 						   alloc_hopids);
461 		}
462 	}
463 }
464 
465 static void tb_discover_tunnels(struct tb *tb)
466 {
467 	struct tb_cm *tcm = tb_priv(tb);
468 	struct tb_tunnel *tunnel;
469 
470 	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
471 
472 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
473 		if (tb_tunnel_is_pci(tunnel)) {
474 			struct tb_switch *parent = tunnel->dst_port->sw;
475 
476 			while (parent != tunnel->src_port->sw) {
477 				parent->boot = true;
478 				parent = tb_switch_parent(parent);
479 			}
480 		} else if (tb_tunnel_is_dp(tunnel)) {
481 			struct tb_port *in = tunnel->src_port;
482 			struct tb_port *out = tunnel->dst_port;
483 
484 			/* Keep the domain from powering down */
485 			pm_runtime_get_sync(&in->sw->dev);
486 			pm_runtime_get_sync(&out->sw->dev);
487 
488 			tb_discover_bandwidth_group(tcm, in, out);
489 		}
490 	}
491 }
492 
493 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
494 {
495 	if (tb_switch_is_usb4(port->sw))
496 		return usb4_port_configure_xdomain(port, xd);
497 	return tb_lc_configure_xdomain(port);
498 }
499 
500 static void tb_port_unconfigure_xdomain(struct tb_port *port)
501 {
502 	if (tb_switch_is_usb4(port->sw))
503 		usb4_port_unconfigure_xdomain(port);
504 	else
505 		tb_lc_unconfigure_xdomain(port);
506 
507 	tb_port_enable(port->dual_link_port);
508 }
509 
510 static void tb_scan_xdomain(struct tb_port *port)
511 {
512 	struct tb_switch *sw = port->sw;
513 	struct tb *tb = sw->tb;
514 	struct tb_xdomain *xd;
515 	u64 route;
516 
517 	if (!tb_is_xdomain_enabled())
518 		return;
519 
520 	route = tb_downstream_route(port);
521 	xd = tb_xdomain_find_by_route(tb, route);
522 	if (xd) {
523 		tb_xdomain_put(xd);
524 		return;
525 	}
526 
527 	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
528 			      NULL);
529 	if (xd) {
530 		tb_port_at(route, sw)->xdomain = xd;
531 		tb_port_configure_xdomain(port, xd);
532 		tb_xdomain_add(xd);
533 	}
534 }
535 
536 /**
537  * tb_find_unused_port() - return the first inactive port on @sw
538  * @sw: Switch to find the port on
539  * @type: Port type to look for
540  */
541 static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
542 					   enum tb_port_type type)
543 {
544 	struct tb_port *port;
545 
546 	tb_switch_for_each_port(sw, port) {
547 		if (tb_is_upstream_port(port))
548 			continue;
549 		if (port->config.type != type)
550 			continue;
551 		if (!port->cap_adap)
552 			continue;
553 		if (tb_port_is_enabled(port))
554 			continue;
555 		return port;
556 	}
557 	return NULL;
558 }
559 
560 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
561 					 const struct tb_port *port)
562 {
563 	struct tb_port *down;
564 
565 	down = usb4_switch_map_usb3_down(sw, port);
566 	if (down && !tb_usb3_port_is_enabled(down))
567 		return down;
568 	return NULL;
569 }
570 
571 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
572 					struct tb_port *src_port,
573 					struct tb_port *dst_port)
574 {
575 	struct tb_cm *tcm = tb_priv(tb);
576 	struct tb_tunnel *tunnel;
577 
578 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
579 		if (tunnel->type == type &&
580 		    ((src_port && src_port == tunnel->src_port) ||
581 		     (dst_port && dst_port == tunnel->dst_port))) {
582 			return tunnel;
583 		}
584 	}
585 
586 	return NULL;
587 }
588 
589 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
590 						   struct tb_port *src_port,
591 						   struct tb_port *dst_port)
592 {
593 	struct tb_port *port, *usb3_down;
594 	struct tb_switch *sw;
595 
596 	/* Pick the router that is deepest in the topology */
597 	if (tb_port_path_direction_downstream(src_port, dst_port))
598 		sw = dst_port->sw;
599 	else
600 		sw = src_port->sw;
601 
602 	/* Can't be the host router */
603 	if (sw == tb->root_switch)
604 		return NULL;
605 
606 	/* Find the downstream USB4 port that leads to this router */
607 	port = tb_port_at(tb_route(sw), tb->root_switch);
608 	/* Find the corresponding host router USB3 downstream port */
609 	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
610 	if (!usb3_down)
611 		return NULL;
612 
613 	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
614 }
615 
616 /**
617  * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
618  * @tb: Domain structure
619  * @src_port: Source protocol adapter
620  * @dst_port: Destination protocol adapter
621  * @port: USB4 port the consumed bandwidth is calculated
622  * @consumed_up: Consumed upsream bandwidth (Mb/s)
623  * @consumed_down: Consumed downstream bandwidth (Mb/s)
624  *
625  * Calculates consumed USB3 and PCIe bandwidth at @port between path
626  * from @src_port to @dst_port. Does not take tunnel starting from
627  * @src_port and ending from @src_port into account.
628  */
629 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
630 					   struct tb_port *src_port,
631 					   struct tb_port *dst_port,
632 					   struct tb_port *port,
633 					   int *consumed_up,
634 					   int *consumed_down)
635 {
636 	int pci_consumed_up, pci_consumed_down;
637 	struct tb_tunnel *tunnel;
638 
639 	*consumed_up = *consumed_down = 0;
640 
641 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
642 	if (tunnel && tunnel->src_port != src_port &&
643 	    tunnel->dst_port != dst_port) {
644 		int ret;
645 
646 		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
647 						   consumed_down);
648 		if (ret)
649 			return ret;
650 	}
651 
652 	/*
653 	 * If there is anything reserved for PCIe bulk traffic take it
654 	 * into account here too.
655 	 */
656 	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
657 		*consumed_up += pci_consumed_up;
658 		*consumed_down += pci_consumed_down;
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
666  * @tb: Domain structure
667  * @src_port: Source protocol adapter
668  * @dst_port: Destination protocol adapter
669  * @port: USB4 port the consumed bandwidth is calculated
670  * @consumed_up: Consumed upsream bandwidth (Mb/s)
671  * @consumed_down: Consumed downstream bandwidth (Mb/s)
672  *
673  * Calculates consumed DP bandwidth at @port between path from @src_port
674  * to @dst_port. Does not take tunnel starting from @src_port and ending
675  * from @src_port into account.
676  */
677 static int tb_consumed_dp_bandwidth(struct tb *tb,
678 				    struct tb_port *src_port,
679 				    struct tb_port *dst_port,
680 				    struct tb_port *port,
681 				    int *consumed_up,
682 				    int *consumed_down)
683 {
684 	struct tb_cm *tcm = tb_priv(tb);
685 	struct tb_tunnel *tunnel;
686 	int ret;
687 
688 	*consumed_up = *consumed_down = 0;
689 
690 	/*
691 	 * Find all DP tunnels that cross the port and reduce
692 	 * their consumed bandwidth from the available.
693 	 */
694 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
695 		int dp_consumed_up, dp_consumed_down;
696 
697 		if (tb_tunnel_is_invalid(tunnel))
698 			continue;
699 
700 		if (!tb_tunnel_is_dp(tunnel))
701 			continue;
702 
703 		if (!tb_tunnel_port_on_path(tunnel, port))
704 			continue;
705 
706 		/*
707 		 * Ignore the DP tunnel between src_port and dst_port
708 		 * because it is the same tunnel and we may be
709 		 * re-calculating estimated bandwidth.
710 		 */
711 		if (tunnel->src_port == src_port &&
712 		    tunnel->dst_port == dst_port)
713 			continue;
714 
715 		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
716 						   &dp_consumed_down);
717 		if (ret)
718 			return ret;
719 
720 		*consumed_up += dp_consumed_up;
721 		*consumed_down += dp_consumed_down;
722 	}
723 
724 	return 0;
725 }
726 
727 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
728 			      struct tb_port *port)
729 {
730 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
731 	enum tb_link_width width;
732 
733 	if (tb_is_upstream_port(port))
734 		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
735 	else
736 		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
737 
738 	return tb_port_width_supported(port, width);
739 }
740 
741 /**
742  * tb_maximum_bandwidth() - Maximum bandwidth over a single link
743  * @tb: Domain structure
744  * @src_port: Source protocol adapter
745  * @dst_port: Destination protocol adapter
746  * @port: USB4 port the total bandwidth is calculated
747  * @max_up: Maximum upstream bandwidth (Mb/s)
748  * @max_down: Maximum downstream bandwidth (Mb/s)
749  * @include_asym: Include bandwidth if the link is switched from
750  *		  symmetric to asymmetric
751  *
752  * Returns maximum possible bandwidth in @max_up and @max_down over a
753  * single link at @port. If @include_asym is set then includes the
754  * additional banwdith if the links are transitioned into asymmetric to
755  * direction from @src_port to @dst_port.
756  */
757 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
758 				struct tb_port *dst_port, struct tb_port *port,
759 				int *max_up, int *max_down, bool include_asym)
760 {
761 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
762 	int link_speed, link_width, up_bw, down_bw;
763 
764 	/*
765 	 * Can include asymmetric, only if it is actually supported by
766 	 * the lane adapter.
767 	 */
768 	if (!tb_asym_supported(src_port, dst_port, port))
769 		include_asym = false;
770 
771 	if (tb_is_upstream_port(port)) {
772 		link_speed = port->sw->link_speed;
773 		/*
774 		 * sw->link_width is from upstream perspective so we use
775 		 * the opposite for downstream of the host router.
776 		 */
777 		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
778 			up_bw = link_speed * 3 * 1000;
779 			down_bw = link_speed * 1 * 1000;
780 		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
781 			up_bw = link_speed * 1 * 1000;
782 			down_bw = link_speed * 3 * 1000;
783 		} else if (include_asym) {
784 			/*
785 			 * The link is symmetric at the moment but we
786 			 * can switch it to asymmetric as needed. Report
787 			 * this bandwidth as available (even though it
788 			 * is not yet enabled).
789 			 */
790 			if (downstream) {
791 				up_bw = link_speed * 1 * 1000;
792 				down_bw = link_speed * 3 * 1000;
793 			} else {
794 				up_bw = link_speed * 3 * 1000;
795 				down_bw = link_speed * 1 * 1000;
796 			}
797 		} else {
798 			up_bw = link_speed * port->sw->link_width * 1000;
799 			down_bw = up_bw;
800 		}
801 	} else {
802 		link_speed = tb_port_get_link_speed(port);
803 		if (link_speed < 0)
804 			return link_speed;
805 
806 		link_width = tb_port_get_link_width(port);
807 		if (link_width < 0)
808 			return link_width;
809 
810 		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
811 			up_bw = link_speed * 1 * 1000;
812 			down_bw = link_speed * 3 * 1000;
813 		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
814 			up_bw = link_speed * 3 * 1000;
815 			down_bw = link_speed * 1 * 1000;
816 		} else if (include_asym) {
817 			/*
818 			 * The link is symmetric at the moment but we
819 			 * can switch it to asymmetric as needed. Report
820 			 * this bandwidth as available (even though it
821 			 * is not yet enabled).
822 			 */
823 			if (downstream) {
824 				up_bw = link_speed * 1 * 1000;
825 				down_bw = link_speed * 3 * 1000;
826 			} else {
827 				up_bw = link_speed * 3 * 1000;
828 				down_bw = link_speed * 1 * 1000;
829 			}
830 		} else {
831 			up_bw = link_speed * link_width * 1000;
832 			down_bw = up_bw;
833 		}
834 	}
835 
836 	/* Leave 10% guard band */
837 	*max_up = up_bw - up_bw / 10;
838 	*max_down = down_bw - down_bw / 10;
839 
840 	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
841 	return 0;
842 }
843 
844 /**
845  * tb_available_bandwidth() - Available bandwidth for tunneling
846  * @tb: Domain structure
847  * @src_port: Source protocol adapter
848  * @dst_port: Destination protocol adapter
849  * @available_up: Available bandwidth upstream (Mb/s)
850  * @available_down: Available bandwidth downstream (Mb/s)
851  * @include_asym: Include bandwidth if the link is switched from
852  *		  symmetric to asymmetric
853  *
854  * Calculates maximum available bandwidth for protocol tunneling between
855  * @src_port and @dst_port at the moment. This is minimum of maximum
856  * link bandwidth across all links reduced by currently consumed
857  * bandwidth on that link.
858  *
859  * If @include_asym is true then includes also bandwidth that can be
860  * added when the links are transitioned into asymmetric (but does not
861  * transition the links).
862  */
863 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
864 				 struct tb_port *dst_port, int *available_up,
865 				 int *available_down, bool include_asym)
866 {
867 	struct tb_port *port;
868 	int ret;
869 
870 	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
871 	*available_up = *available_down = 120000;
872 
873 	/* Find the minimum available bandwidth over all links */
874 	tb_for_each_port_on_path(src_port, dst_port, port) {
875 		int max_up, max_down, consumed_up, consumed_down;
876 
877 		if (!tb_port_is_null(port))
878 			continue;
879 
880 		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
881 					   &max_up, &max_down, include_asym);
882 		if (ret)
883 			return ret;
884 
885 		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
886 						      port, &consumed_up,
887 						      &consumed_down);
888 		if (ret)
889 			return ret;
890 		max_up -= consumed_up;
891 		max_down -= consumed_down;
892 
893 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
894 					       &consumed_up, &consumed_down);
895 		if (ret)
896 			return ret;
897 		max_up -= consumed_up;
898 		max_down -= consumed_down;
899 
900 		if (max_up < *available_up)
901 			*available_up = max_up;
902 		if (max_down < *available_down)
903 			*available_down = max_down;
904 	}
905 
906 	if (*available_up < 0)
907 		*available_up = 0;
908 	if (*available_down < 0)
909 		*available_down = 0;
910 
911 	return 0;
912 }
913 
914 static int tb_release_unused_usb3_bandwidth(struct tb *tb,
915 					    struct tb_port *src_port,
916 					    struct tb_port *dst_port)
917 {
918 	struct tb_tunnel *tunnel;
919 
920 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
921 	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
922 }
923 
924 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
925 				      struct tb_port *dst_port)
926 {
927 	int ret, available_up, available_down;
928 	struct tb_tunnel *tunnel;
929 
930 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
931 	if (!tunnel)
932 		return;
933 
934 	tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
935 
936 	/*
937 	 * Calculate available bandwidth for the first hop USB3 tunnel.
938 	 * That determines the whole USB3 bandwidth for this branch.
939 	 */
940 	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
941 				     &available_up, &available_down, false);
942 	if (ret) {
943 		tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
944 		return;
945 	}
946 
947 	tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
948 		      available_down);
949 
950 	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
951 }
952 
953 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
954 {
955 	struct tb_switch *parent = tb_switch_parent(sw);
956 	int ret, available_up, available_down;
957 	struct tb_port *up, *down, *port;
958 	struct tb_cm *tcm = tb_priv(tb);
959 	struct tb_tunnel *tunnel;
960 
961 	if (!tb_acpi_may_tunnel_usb3()) {
962 		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
963 		return 0;
964 	}
965 
966 	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
967 	if (!up)
968 		return 0;
969 
970 	if (!sw->link_usb4)
971 		return 0;
972 
973 	/*
974 	 * Look up available down port. Since we are chaining it should
975 	 * be found right above this switch.
976 	 */
977 	port = tb_switch_downstream_port(sw);
978 	down = tb_find_usb3_down(parent, port);
979 	if (!down)
980 		return 0;
981 
982 	if (tb_route(parent)) {
983 		struct tb_port *parent_up;
984 		/*
985 		 * Check first that the parent switch has its upstream USB3
986 		 * port enabled. Otherwise the chain is not complete and
987 		 * there is no point setting up a new tunnel.
988 		 */
989 		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
990 		if (!parent_up || !tb_port_is_enabled(parent_up))
991 			return 0;
992 
993 		/* Make all unused bandwidth available for the new tunnel */
994 		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
995 		if (ret)
996 			return ret;
997 	}
998 
999 	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
1000 				     false);
1001 	if (ret)
1002 		goto err_reclaim;
1003 
1004 	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
1005 		    available_up, available_down);
1006 
1007 	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
1008 				      available_down);
1009 	if (!tunnel) {
1010 		ret = -ENOMEM;
1011 		goto err_reclaim;
1012 	}
1013 
1014 	if (tb_tunnel_activate(tunnel)) {
1015 		tb_port_info(up,
1016 			     "USB3 tunnel activation failed, aborting\n");
1017 		ret = -EIO;
1018 		goto err_free;
1019 	}
1020 
1021 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1022 	if (tb_route(parent))
1023 		tb_reclaim_usb3_bandwidth(tb, down, up);
1024 
1025 	return 0;
1026 
1027 err_free:
1028 	tb_tunnel_free(tunnel);
1029 err_reclaim:
1030 	if (tb_route(parent))
1031 		tb_reclaim_usb3_bandwidth(tb, down, up);
1032 
1033 	return ret;
1034 }
1035 
1036 static int tb_create_usb3_tunnels(struct tb_switch *sw)
1037 {
1038 	struct tb_port *port;
1039 	int ret;
1040 
1041 	if (!tb_acpi_may_tunnel_usb3())
1042 		return 0;
1043 
1044 	if (tb_route(sw)) {
1045 		ret = tb_tunnel_usb3(sw->tb, sw);
1046 		if (ret)
1047 			return ret;
1048 	}
1049 
1050 	tb_switch_for_each_port(sw, port) {
1051 		if (!tb_port_has_remote(port))
1052 			continue;
1053 		ret = tb_create_usb3_tunnels(port->remote->sw);
1054 		if (ret)
1055 			return ret;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  * tb_configure_asym() - Transition links to asymmetric if needed
1063  * @tb: Domain structure
1064  * @src_port: Source adapter to start the transition
1065  * @dst_port: Destination adapter
1066  * @requested_up: Additional bandwidth (Mb/s) required upstream
1067  * @requested_down: Additional bandwidth (Mb/s) required downstream
1068  *
1069  * Transition links between @src_port and @dst_port into asymmetric, with
1070  * three lanes in the direction from @src_port towards @dst_port and one lane
1071  * in the opposite direction, if the bandwidth requirements
1072  * (requested + currently consumed) on that link exceed @asym_threshold.
1073  *
1074  * Must be called with available >= requested over all links.
1075  */
1076 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1077 			     struct tb_port *dst_port, int requested_up,
1078 			     int requested_down)
1079 {
1080 	struct tb_switch *sw;
1081 	bool clx, downstream;
1082 	struct tb_port *up;
1083 	int ret = 0;
1084 
1085 	if (!asym_threshold)
1086 		return 0;
1087 
1088 	/* Disable CL states before doing any transitions */
1089 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1090 	/* Pick up router deepest in the hierarchy */
1091 	if (downstream)
1092 		sw = dst_port->sw;
1093 	else
1094 		sw = src_port->sw;
1095 
1096 	clx = tb_disable_clx(sw);
1097 
1098 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1099 		int consumed_up, consumed_down;
1100 		enum tb_link_width width;
1101 
1102 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1103 					       &consumed_up, &consumed_down);
1104 		if (ret)
1105 			break;
1106 
1107 		if (downstream) {
1108 			/*
1109 			 * Downstream so make sure upstream is within the 36G
1110 			 * (40G - guard band 10%), and the requested is above
1111 			 * what the threshold is.
1112 			 */
1113 			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1114 				ret = -ENOBUFS;
1115 				break;
1116 			}
1117 			/* Does consumed + requested exceed the threshold */
1118 			if (consumed_down + requested_down < asym_threshold)
1119 				continue;
1120 
1121 			width = TB_LINK_WIDTH_ASYM_RX;
1122 		} else {
1123 			/* Upstream, the opposite of above */
1124 			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1125 				ret = -ENOBUFS;
1126 				break;
1127 			}
1128 			if (consumed_up + requested_up < asym_threshold)
1129 				continue;
1130 
1131 			width = TB_LINK_WIDTH_ASYM_TX;
1132 		}
1133 
1134 		if (up->sw->link_width == width)
1135 			continue;
1136 
1137 		if (!tb_port_width_supported(up, width))
1138 			continue;
1139 
1140 		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1141 
1142 		/*
1143 		 * Here requested + consumed > threshold so we need to
1144 		 * transtion the link into asymmetric now.
1145 		 */
1146 		ret = tb_switch_set_link_width(up->sw, width);
1147 		if (ret) {
1148 			tb_sw_warn(up->sw, "failed to set link width\n");
1149 			break;
1150 		}
1151 	}
1152 
1153 	/* Re-enable CL states if they were previosly enabled */
1154 	if (clx)
1155 		tb_enable_clx(sw);
1156 
1157 	return ret;
1158 }
1159 
1160 /**
1161  * tb_configure_sym() - Transition links to symmetric if possible
1162  * @tb: Domain structure
1163  * @src_port: Source adapter to start the transition
1164  * @dst_port: Destination adapter
1165  * @requested_up: New lower bandwidth request upstream (Mb/s)
1166  * @requested_down: New lower bandwidth request downstream (Mb/s)
1167  *
1168  * Goes over each link from @src_port to @dst_port and tries to
1169  * transition the link to symmetric if the currently consumed bandwidth
1170  * allows.
1171  */
1172 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1173 			    struct tb_port *dst_port, int requested_up,
1174 			    int requested_down)
1175 {
1176 	struct tb_switch *sw;
1177 	bool clx, downstream;
1178 	struct tb_port *up;
1179 	int ret = 0;
1180 
1181 	if (!asym_threshold)
1182 		return 0;
1183 
1184 	/* Disable CL states before doing any transitions */
1185 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1186 	/* Pick up router deepest in the hierarchy */
1187 	if (downstream)
1188 		sw = dst_port->sw;
1189 	else
1190 		sw = src_port->sw;
1191 
1192 	clx = tb_disable_clx(sw);
1193 
1194 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1195 		int consumed_up, consumed_down;
1196 
1197 		/* Already symmetric */
1198 		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1199 			continue;
1200 		/* Unplugged, no need to switch */
1201 		if (up->sw->is_unplugged)
1202 			continue;
1203 
1204 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1205 					       &consumed_up, &consumed_down);
1206 		if (ret)
1207 			break;
1208 
1209 		if (downstream) {
1210 			/*
1211 			 * Downstream so we want the consumed_down < threshold.
1212 			 * Upstream traffic should be less than 36G (40G
1213 			 * guard band 10%) as the link was configured asymmetric
1214 			 * already.
1215 			 */
1216 			if (consumed_down + requested_down >= asym_threshold)
1217 				continue;
1218 		} else {
1219 			if (consumed_up + requested_up >= asym_threshold)
1220 				continue;
1221 		}
1222 
1223 		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1224 			continue;
1225 
1226 		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1227 
1228 		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1229 		if (ret) {
1230 			tb_sw_warn(up->sw, "failed to set link width\n");
1231 			break;
1232 		}
1233 	}
1234 
1235 	/* Re-enable CL states if they were previosly enabled */
1236 	if (clx)
1237 		tb_enable_clx(sw);
1238 
1239 	return ret;
1240 }
1241 
1242 static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1243 			      struct tb_switch *sw)
1244 {
1245 	struct tb *tb = sw->tb;
1246 
1247 	/* Link the routers using both links if available */
1248 	down->remote = up;
1249 	up->remote = down;
1250 	if (down->dual_link_port && up->dual_link_port) {
1251 		down->dual_link_port->remote = up->dual_link_port;
1252 		up->dual_link_port->remote = down->dual_link_port;
1253 	}
1254 
1255 	/*
1256 	 * Enable lane bonding if the link is currently two single lane
1257 	 * links.
1258 	 */
1259 	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1260 		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1261 
1262 	/*
1263 	 * Device router that comes up as symmetric link is
1264 	 * connected deeper in the hierarchy, we transition the links
1265 	 * above into symmetric if bandwidth allows.
1266 	 */
1267 	if (tb_switch_depth(sw) > 1 &&
1268 	    tb_port_get_link_generation(up) >= 4 &&
1269 	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1270 		struct tb_port *host_port;
1271 
1272 		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1273 		tb_configure_sym(tb, host_port, up, 0, 0);
1274 	}
1275 
1276 	/* Set the link configured */
1277 	tb_switch_configure_link(sw);
1278 }
1279 
1280 static void tb_scan_port(struct tb_port *port);
1281 
1282 /*
1283  * tb_scan_switch() - scan for and initialize downstream switches
1284  */
1285 static void tb_scan_switch(struct tb_switch *sw)
1286 {
1287 	struct tb_port *port;
1288 
1289 	pm_runtime_get_sync(&sw->dev);
1290 
1291 	tb_switch_for_each_port(sw, port)
1292 		tb_scan_port(port);
1293 
1294 	pm_runtime_mark_last_busy(&sw->dev);
1295 	pm_runtime_put_autosuspend(&sw->dev);
1296 }
1297 
1298 /*
1299  * tb_scan_port() - check for and initialize switches below port
1300  */
1301 static void tb_scan_port(struct tb_port *port)
1302 {
1303 	struct tb_cm *tcm = tb_priv(port->sw->tb);
1304 	struct tb_port *upstream_port;
1305 	bool discovery = false;
1306 	struct tb_switch *sw;
1307 
1308 	if (tb_is_upstream_port(port))
1309 		return;
1310 
1311 	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1312 	    !tb_dp_port_is_enabled(port)) {
1313 		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1314 		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1315 				 false);
1316 		return;
1317 	}
1318 
1319 	if (port->config.type != TB_TYPE_PORT)
1320 		return;
1321 	if (port->dual_link_port && port->link_nr)
1322 		return; /*
1323 			 * Downstream switch is reachable through two ports.
1324 			 * Only scan on the primary port (link_nr == 0).
1325 			 */
1326 
1327 	if (port->usb4)
1328 		pm_runtime_get_sync(&port->usb4->dev);
1329 
1330 	if (tb_wait_for_port(port, false) <= 0)
1331 		goto out_rpm_put;
1332 	if (port->remote) {
1333 		tb_port_dbg(port, "port already has a remote\n");
1334 		goto out_rpm_put;
1335 	}
1336 
1337 	tb_retimer_scan(port, true);
1338 
1339 	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1340 			     tb_downstream_route(port));
1341 	if (IS_ERR(sw)) {
1342 		/*
1343 		 * If there is an error accessing the connected switch
1344 		 * it may be connected to another domain. Also we allow
1345 		 * the other domain to be connected to a max depth switch.
1346 		 */
1347 		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1348 			tb_scan_xdomain(port);
1349 		goto out_rpm_put;
1350 	}
1351 
1352 	if (tb_switch_configure(sw)) {
1353 		tb_switch_put(sw);
1354 		goto out_rpm_put;
1355 	}
1356 
1357 	/*
1358 	 * If there was previously another domain connected remove it
1359 	 * first.
1360 	 */
1361 	if (port->xdomain) {
1362 		tb_xdomain_remove(port->xdomain);
1363 		tb_port_unconfigure_xdomain(port);
1364 		port->xdomain = NULL;
1365 	}
1366 
1367 	/*
1368 	 * Do not send uevents until we have discovered all existing
1369 	 * tunnels and know which switches were authorized already by
1370 	 * the boot firmware.
1371 	 */
1372 	if (!tcm->hotplug_active) {
1373 		dev_set_uevent_suppress(&sw->dev, true);
1374 		discovery = true;
1375 	}
1376 
1377 	/*
1378 	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1379 	 * can support runtime PM.
1380 	 */
1381 	sw->rpm = sw->generation > 1;
1382 
1383 	if (tb_switch_add(sw)) {
1384 		tb_switch_put(sw);
1385 		goto out_rpm_put;
1386 	}
1387 
1388 	upstream_port = tb_upstream_port(sw);
1389 	tb_configure_link(port, upstream_port, sw);
1390 
1391 	/*
1392 	 * CL0s and CL1 are enabled and supported together.
1393 	 * Silently ignore CLx enabling in case CLx is not supported.
1394 	 */
1395 	if (discovery)
1396 		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1397 	else if (tb_enable_clx(sw))
1398 		tb_sw_warn(sw, "failed to enable CL states\n");
1399 
1400 	if (tb_enable_tmu(sw))
1401 		tb_sw_warn(sw, "failed to enable TMU\n");
1402 
1403 	/*
1404 	 * Configuration valid needs to be set after the TMU has been
1405 	 * enabled for the upstream port of the router so we do it here.
1406 	 */
1407 	tb_switch_configuration_valid(sw);
1408 
1409 	/* Scan upstream retimers */
1410 	tb_retimer_scan(upstream_port, true);
1411 
1412 	/*
1413 	 * Create USB 3.x tunnels only when the switch is plugged to the
1414 	 * domain. This is because we scan the domain also during discovery
1415 	 * and want to discover existing USB 3.x tunnels before we create
1416 	 * any new.
1417 	 */
1418 	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1419 		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1420 
1421 	tb_add_dp_resources(sw);
1422 	tb_scan_switch(sw);
1423 
1424 out_rpm_put:
1425 	if (port->usb4) {
1426 		pm_runtime_mark_last_busy(&port->usb4->dev);
1427 		pm_runtime_put_autosuspend(&port->usb4->dev);
1428 	}
1429 }
1430 
1431 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1432 {
1433 	struct tb_port *src_port, *dst_port;
1434 	struct tb *tb;
1435 
1436 	if (!tunnel)
1437 		return;
1438 
1439 	tb_tunnel_deactivate(tunnel);
1440 	list_del(&tunnel->list);
1441 
1442 	tb = tunnel->tb;
1443 	src_port = tunnel->src_port;
1444 	dst_port = tunnel->dst_port;
1445 
1446 	switch (tunnel->type) {
1447 	case TB_TUNNEL_DP:
1448 		tb_detach_bandwidth_group(src_port);
1449 		/*
1450 		 * In case of DP tunnel make sure the DP IN resource is
1451 		 * deallocated properly.
1452 		 */
1453 		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1454 		/*
1455 		 * If bandwidth on a link is < asym_threshold
1456 		 * transition the link to symmetric.
1457 		 */
1458 		tb_configure_sym(tb, src_port, dst_port, 0, 0);
1459 		/* Now we can allow the domain to runtime suspend again */
1460 		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1461 		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1462 		pm_runtime_mark_last_busy(&src_port->sw->dev);
1463 		pm_runtime_put_autosuspend(&src_port->sw->dev);
1464 		fallthrough;
1465 
1466 	case TB_TUNNEL_USB3:
1467 		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1468 		break;
1469 
1470 	default:
1471 		/*
1472 		 * PCIe and DMA tunnels do not consume guaranteed
1473 		 * bandwidth.
1474 		 */
1475 		break;
1476 	}
1477 
1478 	tb_tunnel_free(tunnel);
1479 }
1480 
1481 /*
1482  * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1483  */
1484 static void tb_free_invalid_tunnels(struct tb *tb)
1485 {
1486 	struct tb_cm *tcm = tb_priv(tb);
1487 	struct tb_tunnel *tunnel;
1488 	struct tb_tunnel *n;
1489 
1490 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1491 		if (tb_tunnel_is_invalid(tunnel))
1492 			tb_deactivate_and_free_tunnel(tunnel);
1493 	}
1494 }
1495 
1496 /*
1497  * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1498  */
1499 static void tb_free_unplugged_children(struct tb_switch *sw)
1500 {
1501 	struct tb_port *port;
1502 
1503 	tb_switch_for_each_port(sw, port) {
1504 		if (!tb_port_has_remote(port))
1505 			continue;
1506 
1507 		if (port->remote->sw->is_unplugged) {
1508 			tb_retimer_remove_all(port);
1509 			tb_remove_dp_resources(port->remote->sw);
1510 			tb_switch_unconfigure_link(port->remote->sw);
1511 			tb_switch_set_link_width(port->remote->sw,
1512 						 TB_LINK_WIDTH_SINGLE);
1513 			tb_switch_remove(port->remote->sw);
1514 			port->remote = NULL;
1515 			if (port->dual_link_port)
1516 				port->dual_link_port->remote = NULL;
1517 		} else {
1518 			tb_free_unplugged_children(port->remote->sw);
1519 		}
1520 	}
1521 }
1522 
1523 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1524 					 const struct tb_port *port)
1525 {
1526 	struct tb_port *down = NULL;
1527 
1528 	/*
1529 	 * To keep plugging devices consistently in the same PCIe
1530 	 * hierarchy, do mapping here for switch downstream PCIe ports.
1531 	 */
1532 	if (tb_switch_is_usb4(sw)) {
1533 		down = usb4_switch_map_pcie_down(sw, port);
1534 	} else if (!tb_route(sw)) {
1535 		int phy_port = tb_phy_port_from_link(port->port);
1536 		int index;
1537 
1538 		/*
1539 		 * Hard-coded Thunderbolt port to PCIe down port mapping
1540 		 * per controller.
1541 		 */
1542 		if (tb_switch_is_cactus_ridge(sw) ||
1543 		    tb_switch_is_alpine_ridge(sw))
1544 			index = !phy_port ? 6 : 7;
1545 		else if (tb_switch_is_falcon_ridge(sw))
1546 			index = !phy_port ? 6 : 8;
1547 		else if (tb_switch_is_titan_ridge(sw))
1548 			index = !phy_port ? 8 : 9;
1549 		else
1550 			goto out;
1551 
1552 		/* Validate the hard-coding */
1553 		if (WARN_ON(index > sw->config.max_port_number))
1554 			goto out;
1555 
1556 		down = &sw->ports[index];
1557 	}
1558 
1559 	if (down) {
1560 		if (WARN_ON(!tb_port_is_pcie_down(down)))
1561 			goto out;
1562 		if (tb_pci_port_is_enabled(down))
1563 			goto out;
1564 
1565 		return down;
1566 	}
1567 
1568 out:
1569 	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1570 }
1571 
1572 static void
1573 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1574 {
1575 	struct tb_tunnel *first_tunnel;
1576 	struct tb *tb = group->tb;
1577 	struct tb_port *in;
1578 	int ret;
1579 
1580 	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1581 	       group->index);
1582 
1583 	first_tunnel = NULL;
1584 	list_for_each_entry(in, &group->ports, group_list) {
1585 		int estimated_bw, estimated_up, estimated_down;
1586 		struct tb_tunnel *tunnel;
1587 		struct tb_port *out;
1588 
1589 		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1590 			continue;
1591 
1592 		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1593 		if (WARN_ON(!tunnel))
1594 			break;
1595 
1596 		if (!first_tunnel) {
1597 			/*
1598 			 * Since USB3 bandwidth is shared by all DP
1599 			 * tunnels under the host router USB4 port, even
1600 			 * if they do not begin from the host router, we
1601 			 * can release USB3 bandwidth just once and not
1602 			 * for each tunnel separately.
1603 			 */
1604 			first_tunnel = tunnel;
1605 			ret = tb_release_unused_usb3_bandwidth(tb,
1606 				first_tunnel->src_port, first_tunnel->dst_port);
1607 			if (ret) {
1608 				tb_tunnel_warn(tunnel,
1609 					"failed to release unused bandwidth\n");
1610 				break;
1611 			}
1612 		}
1613 
1614 		out = tunnel->dst_port;
1615 		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1616 					     &estimated_down, true);
1617 		if (ret) {
1618 			tb_tunnel_warn(tunnel,
1619 				"failed to re-calculate estimated bandwidth\n");
1620 			break;
1621 		}
1622 
1623 		/*
1624 		 * Estimated bandwidth includes:
1625 		 *  - already allocated bandwidth for the DP tunnel
1626 		 *  - available bandwidth along the path
1627 		 *  - bandwidth allocated for USB 3.x but not used.
1628 		 */
1629 		tb_tunnel_dbg(tunnel,
1630 			      "re-calculated estimated bandwidth %u/%u Mb/s\n",
1631 			      estimated_up, estimated_down);
1632 
1633 		if (tb_port_path_direction_downstream(in, out))
1634 			estimated_bw = estimated_down;
1635 		else
1636 			estimated_bw = estimated_up;
1637 
1638 		if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw))
1639 			tb_tunnel_warn(tunnel,
1640 				       "failed to update estimated bandwidth\n");
1641 	}
1642 
1643 	if (first_tunnel)
1644 		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1645 					  first_tunnel->dst_port);
1646 
1647 	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1648 }
1649 
1650 static void tb_recalc_estimated_bandwidth(struct tb *tb)
1651 {
1652 	struct tb_cm *tcm = tb_priv(tb);
1653 	int i;
1654 
1655 	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1656 
1657 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1658 		struct tb_bandwidth_group *group = &tcm->groups[i];
1659 
1660 		if (!list_empty(&group->ports))
1661 			tb_recalc_estimated_bandwidth_for_group(group);
1662 	}
1663 
1664 	tb_dbg(tb, "bandwidth re-calculation done\n");
1665 }
1666 
1667 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1668 {
1669 	struct tb_port *host_port, *port;
1670 	struct tb_cm *tcm = tb_priv(tb);
1671 
1672 	host_port = tb_route(in->sw) ?
1673 		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1674 
1675 	list_for_each_entry(port, &tcm->dp_resources, list) {
1676 		if (!tb_port_is_dpout(port))
1677 			continue;
1678 
1679 		if (tb_port_is_enabled(port)) {
1680 			tb_port_dbg(port, "DP OUT in use\n");
1681 			continue;
1682 		}
1683 
1684 		tb_port_dbg(port, "DP OUT available\n");
1685 
1686 		/*
1687 		 * Keep the DP tunnel under the topology starting from
1688 		 * the same host router downstream port.
1689 		 */
1690 		if (host_port && tb_route(port->sw)) {
1691 			struct tb_port *p;
1692 
1693 			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1694 			if (p != host_port)
1695 				continue;
1696 		}
1697 
1698 		return port;
1699 	}
1700 
1701 	return NULL;
1702 }
1703 
1704 static bool tb_tunnel_one_dp(struct tb *tb)
1705 {
1706 	int available_up, available_down, ret, link_nr;
1707 	struct tb_cm *tcm = tb_priv(tb);
1708 	struct tb_port *port, *in, *out;
1709 	int consumed_up, consumed_down;
1710 	struct tb_tunnel *tunnel;
1711 
1712 	/*
1713 	 * Find pair of inactive DP IN and DP OUT adapters and then
1714 	 * establish a DP tunnel between them.
1715 	 */
1716 	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1717 
1718 	in = NULL;
1719 	out = NULL;
1720 	list_for_each_entry(port, &tcm->dp_resources, list) {
1721 		if (!tb_port_is_dpin(port))
1722 			continue;
1723 
1724 		if (tb_port_is_enabled(port)) {
1725 			tb_port_dbg(port, "DP IN in use\n");
1726 			continue;
1727 		}
1728 
1729 		in = port;
1730 		tb_port_dbg(in, "DP IN available\n");
1731 
1732 		out = tb_find_dp_out(tb, port);
1733 		if (out)
1734 			break;
1735 	}
1736 
1737 	if (!in) {
1738 		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
1739 		return false;
1740 	}
1741 	if (!out) {
1742 		tb_dbg(tb, "no suitable DP OUT adapter available, not tunneling\n");
1743 		return false;
1744 	}
1745 
1746 	/*
1747 	 * This is only applicable to links that are not bonded (so
1748 	 * when Thunderbolt 1 hardware is involved somewhere in the
1749 	 * topology). For these try to share the DP bandwidth between
1750 	 * the two lanes.
1751 	 */
1752 	link_nr = 1;
1753 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1754 		if (tb_tunnel_is_dp(tunnel)) {
1755 			link_nr = 0;
1756 			break;
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * DP stream needs the domain to be active so runtime resume
1762 	 * both ends of the tunnel.
1763 	 *
1764 	 * This should bring the routers in the middle active as well
1765 	 * and keeps the domain from runtime suspending while the DP
1766 	 * tunnel is active.
1767 	 */
1768 	pm_runtime_get_sync(&in->sw->dev);
1769 	pm_runtime_get_sync(&out->sw->dev);
1770 
1771 	if (tb_switch_alloc_dp_resource(in->sw, in)) {
1772 		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1773 		goto err_rpm_put;
1774 	}
1775 
1776 	if (!tb_attach_bandwidth_group(tcm, in, out))
1777 		goto err_dealloc_dp;
1778 
1779 	/* Make all unused USB3 bandwidth available for the new DP tunnel */
1780 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1781 	if (ret) {
1782 		tb_warn(tb, "failed to release unused bandwidth\n");
1783 		goto err_detach_group;
1784 	}
1785 
1786 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
1787 				     true);
1788 	if (ret)
1789 		goto err_reclaim_usb;
1790 
1791 	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1792 	       available_up, available_down);
1793 
1794 	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
1795 				    available_down);
1796 	if (!tunnel) {
1797 		tb_port_dbg(out, "could not allocate DP tunnel\n");
1798 		goto err_reclaim_usb;
1799 	}
1800 
1801 	if (tb_tunnel_activate(tunnel)) {
1802 		tb_port_info(out, "DP tunnel activation failed, aborting\n");
1803 		goto err_free;
1804 	}
1805 
1806 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1807 	tb_reclaim_usb3_bandwidth(tb, in, out);
1808 
1809 	/*
1810 	 * Transition the links to asymmetric if the consumption exceeds
1811 	 * the threshold.
1812 	 */
1813 	if (!tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down))
1814 		tb_configure_asym(tb, in, out, consumed_up, consumed_down);
1815 
1816 	/* Update the domain with the new bandwidth estimation */
1817 	tb_recalc_estimated_bandwidth(tb);
1818 
1819 	/*
1820 	 * In case of DP tunnel exists, change host router's 1st children
1821 	 * TMU mode to HiFi for CL0s to work.
1822 	 */
1823 	tb_increase_tmu_accuracy(tunnel);
1824 	return true;
1825 
1826 err_free:
1827 	tb_tunnel_free(tunnel);
1828 err_reclaim_usb:
1829 	tb_reclaim_usb3_bandwidth(tb, in, out);
1830 err_detach_group:
1831 	tb_detach_bandwidth_group(in);
1832 err_dealloc_dp:
1833 	tb_switch_dealloc_dp_resource(in->sw, in);
1834 err_rpm_put:
1835 	pm_runtime_mark_last_busy(&out->sw->dev);
1836 	pm_runtime_put_autosuspend(&out->sw->dev);
1837 	pm_runtime_mark_last_busy(&in->sw->dev);
1838 	pm_runtime_put_autosuspend(&in->sw->dev);
1839 
1840 	return false;
1841 }
1842 
1843 static void tb_tunnel_dp(struct tb *tb)
1844 {
1845 	if (!tb_acpi_may_tunnel_dp()) {
1846 		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1847 		return;
1848 	}
1849 
1850 	while (tb_tunnel_one_dp(tb))
1851 		;
1852 }
1853 
1854 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
1855 {
1856 	struct tb_port *in, *out;
1857 	struct tb_tunnel *tunnel;
1858 
1859 	if (tb_port_is_dpin(port)) {
1860 		tb_port_dbg(port, "DP IN resource unavailable\n");
1861 		in = port;
1862 		out = NULL;
1863 	} else {
1864 		tb_port_dbg(port, "DP OUT resource unavailable\n");
1865 		in = NULL;
1866 		out = port;
1867 	}
1868 
1869 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
1870 	tb_deactivate_and_free_tunnel(tunnel);
1871 	list_del_init(&port->list);
1872 
1873 	/*
1874 	 * See if there is another DP OUT port that can be used for
1875 	 * to create another tunnel.
1876 	 */
1877 	tb_recalc_estimated_bandwidth(tb);
1878 	tb_tunnel_dp(tb);
1879 }
1880 
1881 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
1882 {
1883 	struct tb_cm *tcm = tb_priv(tb);
1884 	struct tb_port *p;
1885 
1886 	if (tb_port_is_enabled(port))
1887 		return;
1888 
1889 	list_for_each_entry(p, &tcm->dp_resources, list) {
1890 		if (p == port)
1891 			return;
1892 	}
1893 
1894 	tb_port_dbg(port, "DP %s resource available\n",
1895 		    tb_port_is_dpin(port) ? "IN" : "OUT");
1896 	list_add_tail(&port->list, &tcm->dp_resources);
1897 
1898 	/* Look for suitable DP IN <-> DP OUT pairs now */
1899 	tb_tunnel_dp(tb);
1900 }
1901 
1902 static void tb_disconnect_and_release_dp(struct tb *tb)
1903 {
1904 	struct tb_cm *tcm = tb_priv(tb);
1905 	struct tb_tunnel *tunnel, *n;
1906 
1907 	/*
1908 	 * Tear down all DP tunnels and release their resources. They
1909 	 * will be re-established after resume based on plug events.
1910 	 */
1911 	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
1912 		if (tb_tunnel_is_dp(tunnel))
1913 			tb_deactivate_and_free_tunnel(tunnel);
1914 	}
1915 
1916 	while (!list_empty(&tcm->dp_resources)) {
1917 		struct tb_port *port;
1918 
1919 		port = list_first_entry(&tcm->dp_resources,
1920 					struct tb_port, list);
1921 		list_del_init(&port->list);
1922 	}
1923 }
1924 
1925 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
1926 {
1927 	struct tb_tunnel *tunnel;
1928 	struct tb_port *up;
1929 
1930 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1931 	if (WARN_ON(!up))
1932 		return -ENODEV;
1933 
1934 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
1935 	if (WARN_ON(!tunnel))
1936 		return -ENODEV;
1937 
1938 	tb_switch_xhci_disconnect(sw);
1939 
1940 	tb_tunnel_deactivate(tunnel);
1941 	list_del(&tunnel->list);
1942 	tb_tunnel_free(tunnel);
1943 	return 0;
1944 }
1945 
1946 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
1947 {
1948 	struct tb_port *up, *down, *port;
1949 	struct tb_cm *tcm = tb_priv(tb);
1950 	struct tb_tunnel *tunnel;
1951 
1952 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1953 	if (!up)
1954 		return 0;
1955 
1956 	/*
1957 	 * Look up available down port. Since we are chaining it should
1958 	 * be found right above this switch.
1959 	 */
1960 	port = tb_switch_downstream_port(sw);
1961 	down = tb_find_pcie_down(tb_switch_parent(sw), port);
1962 	if (!down)
1963 		return 0;
1964 
1965 	tunnel = tb_tunnel_alloc_pci(tb, up, down);
1966 	if (!tunnel)
1967 		return -ENOMEM;
1968 
1969 	if (tb_tunnel_activate(tunnel)) {
1970 		tb_port_info(up,
1971 			     "PCIe tunnel activation failed, aborting\n");
1972 		tb_tunnel_free(tunnel);
1973 		return -EIO;
1974 	}
1975 
1976 	/*
1977 	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
1978 	 * here.
1979 	 */
1980 	if (tb_switch_pcie_l1_enable(sw))
1981 		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
1982 
1983 	if (tb_switch_xhci_connect(sw))
1984 		tb_sw_warn(sw, "failed to connect xHCI\n");
1985 
1986 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1987 	return 0;
1988 }
1989 
1990 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
1991 				    int transmit_path, int transmit_ring,
1992 				    int receive_path, int receive_ring)
1993 {
1994 	struct tb_cm *tcm = tb_priv(tb);
1995 	struct tb_port *nhi_port, *dst_port;
1996 	struct tb_tunnel *tunnel;
1997 	struct tb_switch *sw;
1998 	int ret;
1999 
2000 	sw = tb_to_switch(xd->dev.parent);
2001 	dst_port = tb_port_at(xd->route, sw);
2002 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2003 
2004 	mutex_lock(&tb->lock);
2005 
2006 	/*
2007 	 * When tunneling DMA paths the link should not enter CL states
2008 	 * so disable them now.
2009 	 */
2010 	tb_disable_clx(sw);
2011 
2012 	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2013 				     transmit_ring, receive_path, receive_ring);
2014 	if (!tunnel) {
2015 		ret = -ENOMEM;
2016 		goto err_clx;
2017 	}
2018 
2019 	if (tb_tunnel_activate(tunnel)) {
2020 		tb_port_info(nhi_port,
2021 			     "DMA tunnel activation failed, aborting\n");
2022 		ret = -EIO;
2023 		goto err_free;
2024 	}
2025 
2026 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2027 	mutex_unlock(&tb->lock);
2028 	return 0;
2029 
2030 err_free:
2031 	tb_tunnel_free(tunnel);
2032 err_clx:
2033 	tb_enable_clx(sw);
2034 	mutex_unlock(&tb->lock);
2035 
2036 	return ret;
2037 }
2038 
2039 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2040 					  int transmit_path, int transmit_ring,
2041 					  int receive_path, int receive_ring)
2042 {
2043 	struct tb_cm *tcm = tb_priv(tb);
2044 	struct tb_port *nhi_port, *dst_port;
2045 	struct tb_tunnel *tunnel, *n;
2046 	struct tb_switch *sw;
2047 
2048 	sw = tb_to_switch(xd->dev.parent);
2049 	dst_port = tb_port_at(xd->route, sw);
2050 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2051 
2052 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2053 		if (!tb_tunnel_is_dma(tunnel))
2054 			continue;
2055 		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2056 			continue;
2057 
2058 		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2059 					receive_path, receive_ring))
2060 			tb_deactivate_and_free_tunnel(tunnel);
2061 	}
2062 
2063 	/*
2064 	 * Try to re-enable CL states now, it is OK if this fails
2065 	 * because we may still have another DMA tunnel active through
2066 	 * the same host router USB4 downstream port.
2067 	 */
2068 	tb_enable_clx(sw);
2069 }
2070 
2071 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2072 				       int transmit_path, int transmit_ring,
2073 				       int receive_path, int receive_ring)
2074 {
2075 	if (!xd->is_unplugged) {
2076 		mutex_lock(&tb->lock);
2077 		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2078 					      transmit_ring, receive_path,
2079 					      receive_ring);
2080 		mutex_unlock(&tb->lock);
2081 	}
2082 	return 0;
2083 }
2084 
2085 /* hotplug handling */
2086 
2087 /*
2088  * tb_handle_hotplug() - handle hotplug event
2089  *
2090  * Executes on tb->wq.
2091  */
2092 static void tb_handle_hotplug(struct work_struct *work)
2093 {
2094 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2095 	struct tb *tb = ev->tb;
2096 	struct tb_cm *tcm = tb_priv(tb);
2097 	struct tb_switch *sw;
2098 	struct tb_port *port;
2099 
2100 	/* Bring the domain back from sleep if it was suspended */
2101 	pm_runtime_get_sync(&tb->dev);
2102 
2103 	mutex_lock(&tb->lock);
2104 	if (!tcm->hotplug_active)
2105 		goto out; /* during init, suspend or shutdown */
2106 
2107 	sw = tb_switch_find_by_route(tb, ev->route);
2108 	if (!sw) {
2109 		tb_warn(tb,
2110 			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2111 			ev->route, ev->port, ev->unplug);
2112 		goto out;
2113 	}
2114 	if (ev->port > sw->config.max_port_number) {
2115 		tb_warn(tb,
2116 			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2117 			ev->route, ev->port, ev->unplug);
2118 		goto put_sw;
2119 	}
2120 	port = &sw->ports[ev->port];
2121 	if (tb_is_upstream_port(port)) {
2122 		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2123 		       ev->route, ev->port, ev->unplug);
2124 		goto put_sw;
2125 	}
2126 
2127 	pm_runtime_get_sync(&sw->dev);
2128 
2129 	if (ev->unplug) {
2130 		tb_retimer_remove_all(port);
2131 
2132 		if (tb_port_has_remote(port)) {
2133 			tb_port_dbg(port, "switch unplugged\n");
2134 			tb_sw_set_unplugged(port->remote->sw);
2135 			tb_free_invalid_tunnels(tb);
2136 			tb_remove_dp_resources(port->remote->sw);
2137 			tb_switch_tmu_disable(port->remote->sw);
2138 			tb_switch_unconfigure_link(port->remote->sw);
2139 			tb_switch_set_link_width(port->remote->sw,
2140 						 TB_LINK_WIDTH_SINGLE);
2141 			tb_switch_remove(port->remote->sw);
2142 			port->remote = NULL;
2143 			if (port->dual_link_port)
2144 				port->dual_link_port->remote = NULL;
2145 			/* Maybe we can create another DP tunnel */
2146 			tb_recalc_estimated_bandwidth(tb);
2147 			tb_tunnel_dp(tb);
2148 		} else if (port->xdomain) {
2149 			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2150 
2151 			tb_port_dbg(port, "xdomain unplugged\n");
2152 			/*
2153 			 * Service drivers are unbound during
2154 			 * tb_xdomain_remove() so setting XDomain as
2155 			 * unplugged here prevents deadlock if they call
2156 			 * tb_xdomain_disable_paths(). We will tear down
2157 			 * all the tunnels below.
2158 			 */
2159 			xd->is_unplugged = true;
2160 			tb_xdomain_remove(xd);
2161 			port->xdomain = NULL;
2162 			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2163 			tb_xdomain_put(xd);
2164 			tb_port_unconfigure_xdomain(port);
2165 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2166 			tb_dp_resource_unavailable(tb, port);
2167 		} else if (!port->port) {
2168 			tb_sw_dbg(sw, "xHCI disconnect request\n");
2169 			tb_switch_xhci_disconnect(sw);
2170 		} else {
2171 			tb_port_dbg(port,
2172 				   "got unplug event for disconnected port, ignoring\n");
2173 		}
2174 	} else if (port->remote) {
2175 		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2176 	} else if (!port->port && sw->authorized) {
2177 		tb_sw_dbg(sw, "xHCI connect request\n");
2178 		tb_switch_xhci_connect(sw);
2179 	} else {
2180 		if (tb_port_is_null(port)) {
2181 			tb_port_dbg(port, "hotplug: scanning\n");
2182 			tb_scan_port(port);
2183 			if (!port->remote)
2184 				tb_port_dbg(port, "hotplug: no switch found\n");
2185 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2186 			tb_dp_resource_available(tb, port);
2187 		}
2188 	}
2189 
2190 	pm_runtime_mark_last_busy(&sw->dev);
2191 	pm_runtime_put_autosuspend(&sw->dev);
2192 
2193 put_sw:
2194 	tb_switch_put(sw);
2195 out:
2196 	mutex_unlock(&tb->lock);
2197 
2198 	pm_runtime_mark_last_busy(&tb->dev);
2199 	pm_runtime_put_autosuspend(&tb->dev);
2200 
2201 	kfree(ev);
2202 }
2203 
2204 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2205 				 int *requested_down)
2206 {
2207 	int allocated_up, allocated_down, available_up, available_down, ret;
2208 	int requested_up_corrected, requested_down_corrected, granularity;
2209 	int max_up, max_down, max_up_rounded, max_down_rounded;
2210 	struct tb *tb = tunnel->tb;
2211 	struct tb_port *in, *out;
2212 
2213 	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2214 	if (ret)
2215 		return ret;
2216 
2217 	in = tunnel->src_port;
2218 	out = tunnel->dst_port;
2219 
2220 	tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2221 		      allocated_up, allocated_down);
2222 
2223 	/*
2224 	 * If we get rounded up request from graphics side, say HBR2 x 4
2225 	 * that is 17500 instead of 17280 (this is because of the
2226 	 * granularity), we allow it too. Here the graphics has already
2227 	 * negotiated with the DPRX the maximum possible rates (which is
2228 	 * 17280 in this case).
2229 	 *
2230 	 * Since the link cannot go higher than 17280 we use that in our
2231 	 * calculations but the DP IN adapter Allocated BW write must be
2232 	 * the same value (17500) otherwise the adapter will mark it as
2233 	 * failed for graphics.
2234 	 */
2235 	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2236 	if (ret)
2237 		return ret;
2238 
2239 	ret = usb4_dp_port_granularity(in);
2240 	if (ret < 0)
2241 		return ret;
2242 	granularity = ret;
2243 
2244 	max_up_rounded = roundup(max_up, granularity);
2245 	max_down_rounded = roundup(max_down, granularity);
2246 
2247 	/*
2248 	 * This will "fix" the request down to the maximum supported
2249 	 * rate * lanes if it is at the maximum rounded up level.
2250 	 */
2251 	requested_up_corrected = *requested_up;
2252 	if (requested_up_corrected == max_up_rounded)
2253 		requested_up_corrected = max_up;
2254 	else if (requested_up_corrected < 0)
2255 		requested_up_corrected = 0;
2256 	requested_down_corrected = *requested_down;
2257 	if (requested_down_corrected == max_down_rounded)
2258 		requested_down_corrected = max_down;
2259 	else if (requested_down_corrected < 0)
2260 		requested_down_corrected = 0;
2261 
2262 	tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2263 		      requested_up_corrected, requested_down_corrected);
2264 
2265 	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2266 	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2267 		tb_tunnel_dbg(tunnel,
2268 			      "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2269 			      requested_up_corrected, requested_down_corrected,
2270 			      max_up_rounded, max_down_rounded);
2271 		return -ENOBUFS;
2272 	}
2273 
2274 	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2275 	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2276 		/*
2277 		 * If bandwidth on a link is < asym_threshold transition
2278 		 * the link to symmetric.
2279 		 */
2280 		tb_configure_sym(tb, in, out, *requested_up, *requested_down);
2281 		/*
2282 		 * If requested bandwidth is less or equal than what is
2283 		 * currently allocated to that tunnel we simply change
2284 		 * the reservation of the tunnel. Since all the tunnels
2285 		 * going out from the same USB4 port are in the same
2286 		 * group the released bandwidth will be taken into
2287 		 * account for the other tunnels automatically below.
2288 		 */
2289 		return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2290 						 requested_down);
2291 	}
2292 
2293 	/*
2294 	 * More bandwidth is requested. Release all the potential
2295 	 * bandwidth from USB3 first.
2296 	 */
2297 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2298 	if (ret)
2299 		return ret;
2300 
2301 	/*
2302 	 * Then go over all tunnels that cross the same USB4 ports (they
2303 	 * are also in the same group but we use the same function here
2304 	 * that we use with the normal bandwidth allocation).
2305 	 */
2306 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2307 				     true);
2308 	if (ret)
2309 		goto reclaim;
2310 
2311 	tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d Mb/s\n",
2312 		      available_up, available_down);
2313 
2314 	if ((*requested_up >= 0 && available_up >= requested_up_corrected) ||
2315 	    (*requested_down >= 0 && available_down >= requested_down_corrected)) {
2316 		/*
2317 		 * If bandwidth on a link is >= asym_threshold
2318 		 * transition the link to asymmetric.
2319 		 */
2320 		ret = tb_configure_asym(tb, in, out, *requested_up,
2321 					*requested_down);
2322 		if (ret) {
2323 			tb_configure_sym(tb, in, out, 0, 0);
2324 			return ret;
2325 		}
2326 
2327 		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2328 						requested_down);
2329 		if (ret) {
2330 			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2331 			tb_configure_sym(tb, in, out, 0, 0);
2332 		}
2333 	} else {
2334 		ret = -ENOBUFS;
2335 	}
2336 
2337 reclaim:
2338 	tb_reclaim_usb3_bandwidth(tb, in, out);
2339 	return ret;
2340 }
2341 
2342 static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2343 {
2344 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2345 	int requested_bw, requested_up, requested_down, ret;
2346 	struct tb_port *in, *out;
2347 	struct tb_tunnel *tunnel;
2348 	struct tb *tb = ev->tb;
2349 	struct tb_cm *tcm = tb_priv(tb);
2350 	struct tb_switch *sw;
2351 
2352 	pm_runtime_get_sync(&tb->dev);
2353 
2354 	mutex_lock(&tb->lock);
2355 	if (!tcm->hotplug_active)
2356 		goto unlock;
2357 
2358 	sw = tb_switch_find_by_route(tb, ev->route);
2359 	if (!sw) {
2360 		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2361 			ev->route);
2362 		goto unlock;
2363 	}
2364 
2365 	in = &sw->ports[ev->port];
2366 	if (!tb_port_is_dpin(in)) {
2367 		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2368 		goto put_sw;
2369 	}
2370 
2371 	tb_port_dbg(in, "handling bandwidth allocation request\n");
2372 
2373 	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2374 		tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2375 		goto put_sw;
2376 	}
2377 
2378 	ret = usb4_dp_port_requested_bandwidth(in);
2379 	if (ret < 0) {
2380 		if (ret == -ENODATA)
2381 			tb_port_dbg(in, "no bandwidth request active\n");
2382 		else
2383 			tb_port_warn(in, "failed to read requested bandwidth\n");
2384 		goto put_sw;
2385 	}
2386 	requested_bw = ret;
2387 
2388 	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2389 
2390 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2391 	if (!tunnel) {
2392 		tb_port_warn(in, "failed to find tunnel\n");
2393 		goto put_sw;
2394 	}
2395 
2396 	out = tunnel->dst_port;
2397 
2398 	if (tb_port_path_direction_downstream(in, out)) {
2399 		requested_up = -1;
2400 		requested_down = requested_bw;
2401 	} else {
2402 		requested_up = requested_bw;
2403 		requested_down = -1;
2404 	}
2405 
2406 	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2407 	if (ret) {
2408 		if (ret == -ENOBUFS)
2409 			tb_tunnel_warn(tunnel,
2410 				       "not enough bandwidth available\n");
2411 		else
2412 			tb_tunnel_warn(tunnel,
2413 				       "failed to change bandwidth allocation\n");
2414 	} else {
2415 		tb_tunnel_dbg(tunnel,
2416 			      "bandwidth allocation changed to %d/%d Mb/s\n",
2417 			      requested_up, requested_down);
2418 
2419 		/* Update other clients about the allocation change */
2420 		tb_recalc_estimated_bandwidth(tb);
2421 	}
2422 
2423 put_sw:
2424 	tb_switch_put(sw);
2425 unlock:
2426 	mutex_unlock(&tb->lock);
2427 
2428 	pm_runtime_mark_last_busy(&tb->dev);
2429 	pm_runtime_put_autosuspend(&tb->dev);
2430 
2431 	kfree(ev);
2432 }
2433 
2434 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2435 {
2436 	struct tb_hotplug_event *ev;
2437 
2438 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2439 	if (!ev)
2440 		return;
2441 
2442 	ev->tb = tb;
2443 	ev->route = route;
2444 	ev->port = port;
2445 	INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2446 	queue_work(tb->wq, &ev->work);
2447 }
2448 
2449 static void tb_handle_notification(struct tb *tb, u64 route,
2450 				   const struct cfg_error_pkg *error)
2451 {
2452 
2453 	switch (error->error) {
2454 	case TB_CFG_ERROR_PCIE_WAKE:
2455 	case TB_CFG_ERROR_DP_CON_CHANGE:
2456 	case TB_CFG_ERROR_DPTX_DISCOVERY:
2457 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2458 			tb_warn(tb, "could not ack notification on %llx\n",
2459 				route);
2460 		break;
2461 
2462 	case TB_CFG_ERROR_DP_BW:
2463 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2464 			tb_warn(tb, "could not ack notification on %llx\n",
2465 				route);
2466 		tb_queue_dp_bandwidth_request(tb, route, error->port);
2467 		break;
2468 
2469 	default:
2470 		/* Ignore for now */
2471 		break;
2472 	}
2473 }
2474 
2475 /*
2476  * tb_schedule_hotplug_handler() - callback function for the control channel
2477  *
2478  * Delegates to tb_handle_hotplug.
2479  */
2480 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2481 			    const void *buf, size_t size)
2482 {
2483 	const struct cfg_event_pkg *pkg = buf;
2484 	u64 route = tb_cfg_get_route(&pkg->header);
2485 
2486 	switch (type) {
2487 	case TB_CFG_PKG_ERROR:
2488 		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2489 		return;
2490 	case TB_CFG_PKG_EVENT:
2491 		break;
2492 	default:
2493 		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2494 		return;
2495 	}
2496 
2497 	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2498 		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2499 			pkg->port);
2500 	}
2501 
2502 	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2503 }
2504 
2505 static void tb_stop(struct tb *tb)
2506 {
2507 	struct tb_cm *tcm = tb_priv(tb);
2508 	struct tb_tunnel *tunnel;
2509 	struct tb_tunnel *n;
2510 
2511 	cancel_delayed_work(&tcm->remove_work);
2512 	/* tunnels are only present after everything has been initialized */
2513 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2514 		/*
2515 		 * DMA tunnels require the driver to be functional so we
2516 		 * tear them down. Other protocol tunnels can be left
2517 		 * intact.
2518 		 */
2519 		if (tb_tunnel_is_dma(tunnel))
2520 			tb_tunnel_deactivate(tunnel);
2521 		tb_tunnel_free(tunnel);
2522 	}
2523 	tb_switch_remove(tb->root_switch);
2524 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2525 }
2526 
2527 static int tb_scan_finalize_switch(struct device *dev, void *data)
2528 {
2529 	if (tb_is_switch(dev)) {
2530 		struct tb_switch *sw = tb_to_switch(dev);
2531 
2532 		/*
2533 		 * If we found that the switch was already setup by the
2534 		 * boot firmware, mark it as authorized now before we
2535 		 * send uevent to userspace.
2536 		 */
2537 		if (sw->boot)
2538 			sw->authorized = 1;
2539 
2540 		dev_set_uevent_suppress(dev, false);
2541 		kobject_uevent(&dev->kobj, KOBJ_ADD);
2542 		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2543 	}
2544 
2545 	return 0;
2546 }
2547 
2548 static int tb_start(struct tb *tb)
2549 {
2550 	struct tb_cm *tcm = tb_priv(tb);
2551 	int ret;
2552 
2553 	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2554 	if (IS_ERR(tb->root_switch))
2555 		return PTR_ERR(tb->root_switch);
2556 
2557 	/*
2558 	 * ICM firmware upgrade needs running firmware and in native
2559 	 * mode that is not available so disable firmware upgrade of the
2560 	 * root switch.
2561 	 *
2562 	 * However, USB4 routers support NVM firmware upgrade if they
2563 	 * implement the necessary router operations.
2564 	 */
2565 	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2566 	/* All USB4 routers support runtime PM */
2567 	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2568 
2569 	ret = tb_switch_configure(tb->root_switch);
2570 	if (ret) {
2571 		tb_switch_put(tb->root_switch);
2572 		return ret;
2573 	}
2574 
2575 	/* Announce the switch to the world */
2576 	ret = tb_switch_add(tb->root_switch);
2577 	if (ret) {
2578 		tb_switch_put(tb->root_switch);
2579 		return ret;
2580 	}
2581 
2582 	/*
2583 	 * To support highest CLx state, we set host router's TMU to
2584 	 * Normal mode.
2585 	 */
2586 	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
2587 	/* Enable TMU if it is off */
2588 	tb_switch_tmu_enable(tb->root_switch);
2589 	/* Full scan to discover devices added before the driver was loaded. */
2590 	tb_scan_switch(tb->root_switch);
2591 	/* Find out tunnels created by the boot firmware */
2592 	tb_discover_tunnels(tb);
2593 	/* Add DP resources from the DP tunnels created by the boot firmware */
2594 	tb_discover_dp_resources(tb);
2595 	/*
2596 	 * If the boot firmware did not create USB 3.x tunnels create them
2597 	 * now for the whole topology.
2598 	 */
2599 	tb_create_usb3_tunnels(tb->root_switch);
2600 	/* Add DP IN resources for the root switch */
2601 	tb_add_dp_resources(tb->root_switch);
2602 	/* Make the discovered switches available to the userspace */
2603 	device_for_each_child(&tb->root_switch->dev, NULL,
2604 			      tb_scan_finalize_switch);
2605 
2606 	/* Allow tb_handle_hotplug to progress events */
2607 	tcm->hotplug_active = true;
2608 	return 0;
2609 }
2610 
2611 static int tb_suspend_noirq(struct tb *tb)
2612 {
2613 	struct tb_cm *tcm = tb_priv(tb);
2614 
2615 	tb_dbg(tb, "suspending...\n");
2616 	tb_disconnect_and_release_dp(tb);
2617 	tb_switch_suspend(tb->root_switch, false);
2618 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2619 	tb_dbg(tb, "suspend finished\n");
2620 
2621 	return 0;
2622 }
2623 
2624 static void tb_restore_children(struct tb_switch *sw)
2625 {
2626 	struct tb_port *port;
2627 
2628 	/* No need to restore if the router is already unplugged */
2629 	if (sw->is_unplugged)
2630 		return;
2631 
2632 	if (tb_enable_clx(sw))
2633 		tb_sw_warn(sw, "failed to re-enable CL states\n");
2634 
2635 	if (tb_enable_tmu(sw))
2636 		tb_sw_warn(sw, "failed to restore TMU configuration\n");
2637 
2638 	tb_switch_configuration_valid(sw);
2639 
2640 	tb_switch_for_each_port(sw, port) {
2641 		if (!tb_port_has_remote(port) && !port->xdomain)
2642 			continue;
2643 
2644 		if (port->remote) {
2645 			tb_switch_set_link_width(port->remote->sw,
2646 						 port->remote->sw->link_width);
2647 			tb_switch_configure_link(port->remote->sw);
2648 
2649 			tb_restore_children(port->remote->sw);
2650 		} else if (port->xdomain) {
2651 			tb_port_configure_xdomain(port, port->xdomain);
2652 		}
2653 	}
2654 }
2655 
2656 static int tb_resume_noirq(struct tb *tb)
2657 {
2658 	struct tb_cm *tcm = tb_priv(tb);
2659 	struct tb_tunnel *tunnel, *n;
2660 	unsigned int usb3_delay = 0;
2661 	LIST_HEAD(tunnels);
2662 
2663 	tb_dbg(tb, "resuming...\n");
2664 
2665 	/* remove any pci devices the firmware might have setup */
2666 	tb_switch_reset(tb->root_switch);
2667 
2668 	tb_switch_resume(tb->root_switch);
2669 	tb_free_invalid_tunnels(tb);
2670 	tb_free_unplugged_children(tb->root_switch);
2671 	tb_restore_children(tb->root_switch);
2672 
2673 	/*
2674 	 * If we get here from suspend to disk the boot firmware or the
2675 	 * restore kernel might have created tunnels of its own. Since
2676 	 * we cannot be sure they are usable for us we find and tear
2677 	 * them down.
2678 	 */
2679 	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
2680 	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
2681 		if (tb_tunnel_is_usb3(tunnel))
2682 			usb3_delay = 500;
2683 		tb_tunnel_deactivate(tunnel);
2684 		tb_tunnel_free(tunnel);
2685 	}
2686 
2687 	/* Re-create our tunnels now */
2688 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2689 		/* USB3 requires delay before it can be re-activated */
2690 		if (tb_tunnel_is_usb3(tunnel)) {
2691 			msleep(usb3_delay);
2692 			/* Only need to do it once */
2693 			usb3_delay = 0;
2694 		}
2695 		tb_tunnel_restart(tunnel);
2696 	}
2697 	if (!list_empty(&tcm->tunnel_list)) {
2698 		/*
2699 		 * the pcie links need some time to get going.
2700 		 * 100ms works for me...
2701 		 */
2702 		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
2703 		msleep(100);
2704 	}
2705 	 /* Allow tb_handle_hotplug to progress events */
2706 	tcm->hotplug_active = true;
2707 	tb_dbg(tb, "resume finished\n");
2708 
2709 	return 0;
2710 }
2711 
2712 static int tb_free_unplugged_xdomains(struct tb_switch *sw)
2713 {
2714 	struct tb_port *port;
2715 	int ret = 0;
2716 
2717 	tb_switch_for_each_port(sw, port) {
2718 		if (tb_is_upstream_port(port))
2719 			continue;
2720 		if (port->xdomain && port->xdomain->is_unplugged) {
2721 			tb_retimer_remove_all(port);
2722 			tb_xdomain_remove(port->xdomain);
2723 			tb_port_unconfigure_xdomain(port);
2724 			port->xdomain = NULL;
2725 			ret++;
2726 		} else if (port->remote) {
2727 			ret += tb_free_unplugged_xdomains(port->remote->sw);
2728 		}
2729 	}
2730 
2731 	return ret;
2732 }
2733 
2734 static int tb_freeze_noirq(struct tb *tb)
2735 {
2736 	struct tb_cm *tcm = tb_priv(tb);
2737 
2738 	tcm->hotplug_active = false;
2739 	return 0;
2740 }
2741 
2742 static int tb_thaw_noirq(struct tb *tb)
2743 {
2744 	struct tb_cm *tcm = tb_priv(tb);
2745 
2746 	tcm->hotplug_active = true;
2747 	return 0;
2748 }
2749 
2750 static void tb_complete(struct tb *tb)
2751 {
2752 	/*
2753 	 * Release any unplugged XDomains and if there is a case where
2754 	 * another domain is swapped in place of unplugged XDomain we
2755 	 * need to run another rescan.
2756 	 */
2757 	mutex_lock(&tb->lock);
2758 	if (tb_free_unplugged_xdomains(tb->root_switch))
2759 		tb_scan_switch(tb->root_switch);
2760 	mutex_unlock(&tb->lock);
2761 }
2762 
2763 static int tb_runtime_suspend(struct tb *tb)
2764 {
2765 	struct tb_cm *tcm = tb_priv(tb);
2766 
2767 	mutex_lock(&tb->lock);
2768 	tb_switch_suspend(tb->root_switch, true);
2769 	tcm->hotplug_active = false;
2770 	mutex_unlock(&tb->lock);
2771 
2772 	return 0;
2773 }
2774 
2775 static void tb_remove_work(struct work_struct *work)
2776 {
2777 	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
2778 	struct tb *tb = tcm_to_tb(tcm);
2779 
2780 	mutex_lock(&tb->lock);
2781 	if (tb->root_switch) {
2782 		tb_free_unplugged_children(tb->root_switch);
2783 		tb_free_unplugged_xdomains(tb->root_switch);
2784 	}
2785 	mutex_unlock(&tb->lock);
2786 }
2787 
2788 static int tb_runtime_resume(struct tb *tb)
2789 {
2790 	struct tb_cm *tcm = tb_priv(tb);
2791 	struct tb_tunnel *tunnel, *n;
2792 
2793 	mutex_lock(&tb->lock);
2794 	tb_switch_resume(tb->root_switch);
2795 	tb_free_invalid_tunnels(tb);
2796 	tb_restore_children(tb->root_switch);
2797 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
2798 		tb_tunnel_restart(tunnel);
2799 	tcm->hotplug_active = true;
2800 	mutex_unlock(&tb->lock);
2801 
2802 	/*
2803 	 * Schedule cleanup of any unplugged devices. Run this in a
2804 	 * separate thread to avoid possible deadlock if the device
2805 	 * removal runtime resumes the unplugged device.
2806 	 */
2807 	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
2808 	return 0;
2809 }
2810 
2811 static const struct tb_cm_ops tb_cm_ops = {
2812 	.start = tb_start,
2813 	.stop = tb_stop,
2814 	.suspend_noirq = tb_suspend_noirq,
2815 	.resume_noirq = tb_resume_noirq,
2816 	.freeze_noirq = tb_freeze_noirq,
2817 	.thaw_noirq = tb_thaw_noirq,
2818 	.complete = tb_complete,
2819 	.runtime_suspend = tb_runtime_suspend,
2820 	.runtime_resume = tb_runtime_resume,
2821 	.handle_event = tb_handle_event,
2822 	.disapprove_switch = tb_disconnect_pci,
2823 	.approve_switch = tb_tunnel_pci,
2824 	.approve_xdomain_paths = tb_approve_xdomain_paths,
2825 	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
2826 };
2827 
2828 /*
2829  * During suspend the Thunderbolt controller is reset and all PCIe
2830  * tunnels are lost. The NHI driver will try to reestablish all tunnels
2831  * during resume. This adds device links between the tunneled PCIe
2832  * downstream ports and the NHI so that the device core will make sure
2833  * NHI is resumed first before the rest.
2834  */
2835 static bool tb_apple_add_links(struct tb_nhi *nhi)
2836 {
2837 	struct pci_dev *upstream, *pdev;
2838 	bool ret;
2839 
2840 	if (!x86_apple_machine)
2841 		return false;
2842 
2843 	switch (nhi->pdev->device) {
2844 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2845 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2846 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
2847 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
2848 		break;
2849 	default:
2850 		return false;
2851 	}
2852 
2853 	upstream = pci_upstream_bridge(nhi->pdev);
2854 	while (upstream) {
2855 		if (!pci_is_pcie(upstream))
2856 			return false;
2857 		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
2858 			break;
2859 		upstream = pci_upstream_bridge(upstream);
2860 	}
2861 
2862 	if (!upstream)
2863 		return false;
2864 
2865 	/*
2866 	 * For each hotplug downstream port, create add device link
2867 	 * back to NHI so that PCIe tunnels can be re-established after
2868 	 * sleep.
2869 	 */
2870 	ret = false;
2871 	for_each_pci_bridge(pdev, upstream->subordinate) {
2872 		const struct device_link *link;
2873 
2874 		if (!pci_is_pcie(pdev))
2875 			continue;
2876 		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
2877 		    !pdev->is_hotplug_bridge)
2878 			continue;
2879 
2880 		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
2881 				       DL_FLAG_AUTOREMOVE_SUPPLIER |
2882 				       DL_FLAG_PM_RUNTIME);
2883 		if (link) {
2884 			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
2885 				dev_name(&pdev->dev));
2886 			ret = true;
2887 		} else {
2888 			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
2889 				 dev_name(&pdev->dev));
2890 		}
2891 	}
2892 
2893 	return ret;
2894 }
2895 
2896 struct tb *tb_probe(struct tb_nhi *nhi)
2897 {
2898 	struct tb_cm *tcm;
2899 	struct tb *tb;
2900 
2901 	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
2902 	if (!tb)
2903 		return NULL;
2904 
2905 	if (tb_acpi_may_tunnel_pcie())
2906 		tb->security_level = TB_SECURITY_USER;
2907 	else
2908 		tb->security_level = TB_SECURITY_NOPCIE;
2909 
2910 	tb->cm_ops = &tb_cm_ops;
2911 
2912 	tcm = tb_priv(tb);
2913 	INIT_LIST_HEAD(&tcm->tunnel_list);
2914 	INIT_LIST_HEAD(&tcm->dp_resources);
2915 	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
2916 	tb_init_bandwidth_groups(tcm);
2917 
2918 	tb_dbg(tb, "using software connection manager\n");
2919 
2920 	/*
2921 	 * Device links are needed to make sure we establish tunnels
2922 	 * before the PCIe/USB stack is resumed so complain here if we
2923 	 * found them missing.
2924 	 */
2925 	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
2926 		tb_warn(tb, "device links to tunneled native ports are missing!\n");
2927 
2928 	return tb;
2929 }
2930