xref: /linux/drivers/thunderbolt/switch.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18 
19 #include "tb.h"
20 
21 /* Switch NVM support */
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 /*
30  * Hold NVM authentication failure status per switch This information
31  * needs to stay around even when the switch gets power cycled so we
32  * keep it separately.
33  */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36 
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 	struct nvm_auth_status *st;
40 
41 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 		if (uuid_equal(&st->uuid, sw->uuid))
43 			return st;
44 	}
45 
46 	return NULL;
47 }
48 
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 	struct nvm_auth_status *st;
52 
53 	mutex_lock(&nvm_auth_status_lock);
54 	st = __nvm_get_auth_status(sw);
55 	mutex_unlock(&nvm_auth_status_lock);
56 
57 	*status = st ? st->status : 0;
58 }
59 
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	if (WARN_ON(!sw->uuid))
65 		return;
66 
67 	mutex_lock(&nvm_auth_status_lock);
68 	st = __nvm_get_auth_status(sw);
69 
70 	if (!st) {
71 		st = kzalloc(sizeof(*st), GFP_KERNEL);
72 		if (!st)
73 			goto unlock;
74 
75 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 		INIT_LIST_HEAD(&st->list);
77 		list_add_tail(&st->list, &nvm_auth_status_cache);
78 	}
79 
80 	st->status = status;
81 unlock:
82 	mutex_unlock(&nvm_auth_status_lock);
83 }
84 
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 	struct nvm_auth_status *st;
88 
89 	mutex_lock(&nvm_auth_status_lock);
90 	st = __nvm_get_auth_status(sw);
91 	if (st) {
92 		list_del(&st->list);
93 		kfree(st);
94 	}
95 	mutex_unlock(&nvm_auth_status_lock);
96 }
97 
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 	unsigned int image_size;
101 	const u8 *buf;
102 	int ret;
103 
104 	ret = tb_nvm_validate(sw->nvm);
105 	if (ret)
106 		return ret;
107 
108 	ret = tb_nvm_write_headers(sw->nvm);
109 	if (ret)
110 		return ret;
111 
112 	buf = sw->nvm->buf_data_start;
113 	image_size = sw->nvm->buf_data_size;
114 
115 	if (tb_switch_is_usb4(sw))
116 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 	else
118 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 	if (ret)
120 		return ret;
121 
122 	sw->nvm->flushed = true;
123 	return 0;
124 }
125 
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 	int ret = 0;
129 
130 	/*
131 	 * Root switch NVM upgrade requires that we disconnect the
132 	 * existing paths first (in case it is not in safe mode
133 	 * already).
134 	 */
135 	if (!sw->safe_mode) {
136 		u32 status;
137 
138 		ret = tb_domain_disconnect_all_paths(sw->tb);
139 		if (ret)
140 			return ret;
141 		/*
142 		 * The host controller goes away pretty soon after this if
143 		 * everything goes well so getting timeout is expected.
144 		 */
145 		ret = dma_port_flash_update_auth(sw->dma_port);
146 		if (!ret || ret == -ETIMEDOUT)
147 			return 0;
148 
149 		/*
150 		 * Any error from update auth operation requires power
151 		 * cycling of the host router.
152 		 */
153 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 			nvm_set_auth_status(sw, status);
156 	}
157 
158 	/*
159 	 * From safe mode we can get out by just power cycling the
160 	 * switch.
161 	 */
162 	dma_port_power_cycle(sw->dma_port);
163 	return ret;
164 }
165 
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 	int ret, retries = 10;
169 
170 	ret = dma_port_flash_update_auth(sw->dma_port);
171 	switch (ret) {
172 	case 0:
173 	case -ETIMEDOUT:
174 	case -EACCES:
175 	case -EINVAL:
176 		/* Power cycle is required */
177 		break;
178 	default:
179 		return ret;
180 	}
181 
182 	/*
183 	 * Poll here for the authentication status. It takes some time
184 	 * for the device to respond (we get timeout for a while). Once
185 	 * we get response the device needs to be power cycled in order
186 	 * to the new NVM to be taken into use.
187 	 */
188 	do {
189 		u32 status;
190 
191 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 		if (ret < 0 && ret != -ETIMEDOUT)
193 			return ret;
194 		if (ret > 0) {
195 			if (status) {
196 				tb_sw_warn(sw, "failed to authenticate NVM\n");
197 				nvm_set_auth_status(sw, status);
198 			}
199 
200 			tb_sw_info(sw, "power cycling the switch now\n");
201 			dma_port_power_cycle(sw->dma_port);
202 			return 0;
203 		}
204 
205 		msleep(500);
206 	} while (--retries);
207 
208 	return -ETIMEDOUT;
209 }
210 
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 	struct pci_dev *root_port;
214 
215 	/*
216 	 * During host router NVM upgrade we should not allow root port to
217 	 * go into D3cold because some root ports cannot trigger PME
218 	 * itself. To be on the safe side keep the root port in D0 during
219 	 * the whole upgrade process.
220 	 */
221 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 	if (root_port)
223 		pm_runtime_get_noresume(&root_port->dev);
224 }
225 
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 	struct pci_dev *root_port;
229 
230 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 	if (root_port)
232 		pm_runtime_put(&root_port->dev);
233 }
234 
235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 	if (tb_switch_is_usb4(sw)) {
238 		/*
239 		 * USB4 devices must support NVM operations but it is
240 		 * optional for hosts. Therefore we query the NVM sector
241 		 * size here and if it is supported assume NVM
242 		 * operations are implemented.
243 		 */
244 		return usb4_switch_nvm_sector_size(sw) > 0;
245 	}
246 
247 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 	return !!sw->dma_port;
249 }
250 
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 	if (sw->no_nvm_upgrade)
254 		return false;
255 	return nvm_readable(sw);
256 }
257 
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 	int ret;
261 
262 	if (tb_switch_is_usb4(sw)) {
263 		if (auth_only) {
264 			ret = usb4_switch_nvm_set_offset(sw, 0);
265 			if (ret)
266 				return ret;
267 		}
268 		sw->nvm->authenticating = true;
269 		return usb4_switch_nvm_authenticate(sw);
270 	}
271 	if (auth_only)
272 		return -EOPNOTSUPP;
273 
274 	sw->nvm->authenticating = true;
275 	if (!tb_route(sw)) {
276 		nvm_authenticate_start_dma_port(sw);
277 		ret = nvm_authenticate_host_dma_port(sw);
278 	} else {
279 		ret = nvm_authenticate_device_dma_port(sw);
280 	}
281 
282 	return ret;
283 }
284 
285 /**
286  * tb_switch_nvm_read() - Read router NVM
287  * @sw: Router whose NVM to read
288  * @address: Start address on the NVM
289  * @buf: Buffer where the read data is copied
290  * @size: Size of the buffer in bytes
291  *
292  * Reads from router NVM and returns the requested data in @buf. Locking
293  * is up to the caller. Returns %0 in success and negative errno in case
294  * of failure.
295  */
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 		       size_t size)
298 {
299 	if (tb_switch_is_usb4(sw))
300 		return usb4_switch_nvm_read(sw, address, buf, size);
301 	return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303 
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 	struct tb_nvm *nvm = priv;
307 	struct tb_switch *sw = tb_to_switch(nvm->dev);
308 	int ret;
309 
310 	pm_runtime_get_sync(&sw->dev);
311 
312 	if (!mutex_trylock(&sw->tb->lock)) {
313 		ret = restart_syscall();
314 		goto out;
315 	}
316 
317 	ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 	mutex_unlock(&sw->tb->lock);
319 
320 out:
321 	pm_runtime_mark_last_busy(&sw->dev);
322 	pm_runtime_put_autosuspend(&sw->dev);
323 
324 	return ret;
325 }
326 
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 	struct tb_nvm *nvm = priv;
330 	struct tb_switch *sw = tb_to_switch(nvm->dev);
331 	int ret;
332 
333 	if (!mutex_trylock(&sw->tb->lock))
334 		return restart_syscall();
335 
336 	/*
337 	 * Since writing the NVM image might require some special steps,
338 	 * for example when CSS headers are written, we cache the image
339 	 * locally here and handle the special cases when the user asks
340 	 * us to authenticate the image.
341 	 */
342 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 	return ret;
346 }
347 
348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 	struct tb_nvm *nvm;
351 	int ret;
352 
353 	if (!nvm_readable(sw))
354 		return 0;
355 
356 	nvm = tb_nvm_alloc(&sw->dev);
357 	if (IS_ERR(nvm)) {
358 		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 		goto err_nvm;
360 	}
361 
362 	ret = tb_nvm_read_version(nvm);
363 	if (ret)
364 		goto err_nvm;
365 
366 	/*
367 	 * If the switch is in safe-mode the only accessible portion of
368 	 * the NVM is the non-active one where userspace is expected to
369 	 * write new functional NVM.
370 	 */
371 	if (!sw->safe_mode) {
372 		ret = tb_nvm_add_active(nvm, nvm_read);
373 		if (ret)
374 			goto err_nvm;
375 		tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
376 	}
377 
378 	if (!sw->no_nvm_upgrade) {
379 		ret = tb_nvm_add_non_active(nvm, nvm_write);
380 		if (ret)
381 			goto err_nvm;
382 	}
383 
384 	sw->nvm = nvm;
385 	return 0;
386 
387 err_nvm:
388 	tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 	sw->no_nvm_upgrade = true;
390 	if (!IS_ERR(nvm))
391 		tb_nvm_free(nvm);
392 
393 	return ret;
394 }
395 
396 static void tb_switch_nvm_remove(struct tb_switch *sw)
397 {
398 	struct tb_nvm *nvm;
399 
400 	nvm = sw->nvm;
401 	sw->nvm = NULL;
402 
403 	if (!nvm)
404 		return;
405 
406 	/* Remove authentication status in case the switch is unplugged */
407 	if (!nvm->authenticating)
408 		nvm_clear_auth_status(sw);
409 
410 	tb_nvm_free(nvm);
411 }
412 
413 /* port utility functions */
414 
415 static const char *tb_port_type(const struct tb_regs_port_header *port)
416 {
417 	switch (port->type >> 16) {
418 	case 0:
419 		switch ((u8) port->type) {
420 		case 0:
421 			return "Inactive";
422 		case 1:
423 			return "Port";
424 		case 2:
425 			return "NHI";
426 		default:
427 			return "unknown";
428 		}
429 	case 0x2:
430 		return "Ethernet";
431 	case 0x8:
432 		return "SATA";
433 	case 0xe:
434 		return "DP/HDMI";
435 	case 0x10:
436 		return "PCIe";
437 	case 0x20:
438 		return "USB";
439 	default:
440 		return "unknown";
441 	}
442 }
443 
444 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
445 {
446 	const struct tb_regs_port_header *regs = &port->config;
447 
448 	tb_dbg(tb,
449 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 	       regs->port_number, regs->vendor_id, regs->device_id,
451 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
452 	       regs->type);
453 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
454 	       regs->max_in_hop_id, regs->max_out_hop_id);
455 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
456 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
457 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
458 	       port->ctl_credits);
459 }
460 
461 /**
462  * tb_port_state() - get connectedness state of a port
463  * @port: the port to check
464  *
465  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
466  *
467  * Return: Returns an enum tb_port_state on success or an error code on failure.
468  */
469 int tb_port_state(struct tb_port *port)
470 {
471 	struct tb_cap_phy phy;
472 	int res;
473 	if (port->cap_phy == 0) {
474 		tb_port_WARN(port, "does not have a PHY\n");
475 		return -EINVAL;
476 	}
477 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
478 	if (res)
479 		return res;
480 	return phy.state;
481 }
482 
483 /**
484  * tb_wait_for_port() - wait for a port to become ready
485  * @port: Port to wait
486  * @wait_if_unplugged: Wait also when port is unplugged
487  *
488  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489  * wait_if_unplugged is set then we also wait if the port is in state
490  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491  * switch resume). Otherwise we only wait if a device is registered but the link
492  * has not yet been established.
493  *
494  * Return: Returns an error code on failure. Returns 0 if the port is not
495  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496  * if the port is connected and in state TB_PORT_UP.
497  */
498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
499 {
500 	int retries = 10;
501 	int state;
502 	if (!port->cap_phy) {
503 		tb_port_WARN(port, "does not have PHY\n");
504 		return -EINVAL;
505 	}
506 	if (tb_is_upstream_port(port)) {
507 		tb_port_WARN(port, "is the upstream port\n");
508 		return -EINVAL;
509 	}
510 
511 	while (retries--) {
512 		state = tb_port_state(port);
513 		switch (state) {
514 		case TB_PORT_DISABLED:
515 			tb_port_dbg(port, "is disabled (state: 0)\n");
516 			return 0;
517 
518 		case TB_PORT_UNPLUGGED:
519 			if (wait_if_unplugged) {
520 				/* used during resume */
521 				tb_port_dbg(port,
522 					    "is unplugged (state: 7), retrying...\n");
523 				msleep(100);
524 				break;
525 			}
526 			tb_port_dbg(port, "is unplugged (state: 7)\n");
527 			return 0;
528 
529 		case TB_PORT_UP:
530 		case TB_PORT_TX_CL0S:
531 		case TB_PORT_RX_CL0S:
532 		case TB_PORT_CL1:
533 		case TB_PORT_CL2:
534 			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
535 			return 1;
536 
537 		default:
538 			if (state < 0)
539 				return state;
540 
541 			/*
542 			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 			 * time.
544 			 */
545 			tb_port_dbg(port,
546 				    "is connected, link is not up (state: %d), retrying...\n",
547 				    state);
548 			msleep(100);
549 		}
550 
551 	}
552 	tb_port_warn(port,
553 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
554 	return 0;
555 }
556 
557 /**
558  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559  * @port: Port to add/remove NFC credits
560  * @credits: Credits to add/remove
561  *
562  * Change the number of NFC credits allocated to @port by @credits. To remove
563  * NFC credits pass a negative amount of credits.
564  *
565  * Return: Returns 0 on success or an error code on failure.
566  */
567 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
568 {
569 	u32 nfc_credits;
570 
571 	if (credits == 0 || port->sw->is_unplugged)
572 		return 0;
573 
574 	/*
575 	 * USB4 restricts programming NFC buffers to lane adapters only
576 	 * so skip other ports.
577 	 */
578 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
579 		return 0;
580 
581 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
582 	if (credits < 0)
583 		credits = max_t(int, -nfc_credits, credits);
584 
585 	nfc_credits += credits;
586 
587 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
589 
590 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 	port->config.nfc_credits |= nfc_credits;
592 
593 	return tb_port_write(port, &port->config.nfc_credits,
594 			     TB_CFG_PORT, ADP_CS_4, 1);
595 }
596 
597 /**
598  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599  * @port: Port whose counters to clear
600  * @counter: Counter index to clear
601  *
602  * Return: Returns 0 on success or an error code on failure.
603  */
604 int tb_port_clear_counter(struct tb_port *port, int counter)
605 {
606 	u32 zero[3] = { 0, 0, 0 };
607 	tb_port_dbg(port, "clearing counter %d\n", counter);
608 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
609 }
610 
611 /**
612  * tb_port_unlock() - Unlock downstream port
613  * @port: Port to unlock
614  *
615  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616  * downstream router accessible for CM.
617  */
618 int tb_port_unlock(struct tb_port *port)
619 {
620 	if (tb_switch_is_icm(port->sw))
621 		return 0;
622 	if (!tb_port_is_null(port))
623 		return -EINVAL;
624 	if (tb_switch_is_usb4(port->sw))
625 		return usb4_port_unlock(port);
626 	return 0;
627 }
628 
629 static int __tb_port_enable(struct tb_port *port, bool enable)
630 {
631 	int ret;
632 	u32 phy;
633 
634 	if (!tb_port_is_null(port))
635 		return -EINVAL;
636 
637 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 			   port->cap_phy + LANE_ADP_CS_1, 1);
639 	if (ret)
640 		return ret;
641 
642 	if (enable)
643 		phy &= ~LANE_ADP_CS_1_LD;
644 	else
645 		phy |= LANE_ADP_CS_1_LD;
646 
647 
648 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 			    port->cap_phy + LANE_ADP_CS_1, 1);
650 	if (ret)
651 		return ret;
652 
653 	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
654 	return 0;
655 }
656 
657 /**
658  * tb_port_enable() - Enable lane adapter
659  * @port: Port to enable (can be %NULL)
660  *
661  * This is used for lane 0 and 1 adapters to enable it.
662  */
663 int tb_port_enable(struct tb_port *port)
664 {
665 	return __tb_port_enable(port, true);
666 }
667 
668 /**
669  * tb_port_disable() - Disable lane adapter
670  * @port: Port to disable (can be %NULL)
671  *
672  * This is used for lane 0 and 1 adapters to disable it.
673  */
674 int tb_port_disable(struct tb_port *port)
675 {
676 	return __tb_port_enable(port, false);
677 }
678 
679 /*
680  * tb_init_port() - initialize a port
681  *
682  * This is a helper method for tb_switch_alloc. Does not check or initialize
683  * any downstream switches.
684  *
685  * Return: Returns 0 on success or an error code on failure.
686  */
687 static int tb_init_port(struct tb_port *port)
688 {
689 	int res;
690 	int cap;
691 
692 	INIT_LIST_HEAD(&port->list);
693 
694 	/* Control adapter does not have configuration space */
695 	if (!port->port)
696 		return 0;
697 
698 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
699 	if (res) {
700 		if (res == -ENODEV) {
701 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
702 			       port->port);
703 			port->disabled = true;
704 			return 0;
705 		}
706 		return res;
707 	}
708 
709 	/* Port 0 is the switch itself and has no PHY. */
710 	if (port->config.type == TB_TYPE_PORT) {
711 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
712 
713 		if (cap > 0)
714 			port->cap_phy = cap;
715 		else
716 			tb_port_WARN(port, "non switch port without a PHY\n");
717 
718 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
719 		if (cap > 0)
720 			port->cap_usb4 = cap;
721 
722 		/*
723 		 * USB4 ports the buffers allocated for the control path
724 		 * can be read from the path config space. Legacy
725 		 * devices we use hard-coded value.
726 		 */
727 		if (port->cap_usb4) {
728 			struct tb_regs_hop hop;
729 
730 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
731 				port->ctl_credits = hop.initial_credits;
732 		}
733 		if (!port->ctl_credits)
734 			port->ctl_credits = 2;
735 
736 	} else {
737 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
738 		if (cap > 0)
739 			port->cap_adap = cap;
740 	}
741 
742 	port->total_credits =
743 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
744 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
745 
746 	tb_dump_port(port->sw->tb, port);
747 	return 0;
748 }
749 
750 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
751 			       int max_hopid)
752 {
753 	int port_max_hopid;
754 	struct ida *ida;
755 
756 	if (in) {
757 		port_max_hopid = port->config.max_in_hop_id;
758 		ida = &port->in_hopids;
759 	} else {
760 		port_max_hopid = port->config.max_out_hop_id;
761 		ida = &port->out_hopids;
762 	}
763 
764 	/*
765 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
766 	 * reserved.
767 	 */
768 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
769 		min_hopid = TB_PATH_MIN_HOPID;
770 
771 	if (max_hopid < 0 || max_hopid > port_max_hopid)
772 		max_hopid = port_max_hopid;
773 
774 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
775 }
776 
777 /**
778  * tb_port_alloc_in_hopid() - Allocate input HopID from port
779  * @port: Port to allocate HopID for
780  * @min_hopid: Minimum acceptable input HopID
781  * @max_hopid: Maximum acceptable input HopID
782  *
783  * Return: HopID between @min_hopid and @max_hopid or negative errno in
784  * case of error.
785  */
786 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
787 {
788 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
789 }
790 
791 /**
792  * tb_port_alloc_out_hopid() - Allocate output HopID from port
793  * @port: Port to allocate HopID for
794  * @min_hopid: Minimum acceptable output HopID
795  * @max_hopid: Maximum acceptable output HopID
796  *
797  * Return: HopID between @min_hopid and @max_hopid or negative errno in
798  * case of error.
799  */
800 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
801 {
802 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
803 }
804 
805 /**
806  * tb_port_release_in_hopid() - Release allocated input HopID from port
807  * @port: Port whose HopID to release
808  * @hopid: HopID to release
809  */
810 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
811 {
812 	ida_simple_remove(&port->in_hopids, hopid);
813 }
814 
815 /**
816  * tb_port_release_out_hopid() - Release allocated output HopID from port
817  * @port: Port whose HopID to release
818  * @hopid: HopID to release
819  */
820 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
821 {
822 	ida_simple_remove(&port->out_hopids, hopid);
823 }
824 
825 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
826 					  const struct tb_switch *sw)
827 {
828 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
829 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
830 }
831 
832 /**
833  * tb_next_port_on_path() - Return next port for given port on a path
834  * @start: Start port of the walk
835  * @end: End port of the walk
836  * @prev: Previous port (%NULL if this is the first)
837  *
838  * This function can be used to walk from one port to another if they
839  * are connected through zero or more switches. If the @prev is dual
840  * link port, the function follows that link and returns another end on
841  * that same link.
842  *
843  * If the @end port has been reached, return %NULL.
844  *
845  * Domain tb->lock must be held when this function is called.
846  */
847 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
848 				     struct tb_port *prev)
849 {
850 	struct tb_port *next;
851 
852 	if (!prev)
853 		return start;
854 
855 	if (prev->sw == end->sw) {
856 		if (prev == end)
857 			return NULL;
858 		return end;
859 	}
860 
861 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
862 		next = tb_port_at(tb_route(end->sw), prev->sw);
863 		/* Walk down the topology if next == prev */
864 		if (prev->remote &&
865 		    (next == prev || next->dual_link_port == prev))
866 			next = prev->remote;
867 	} else {
868 		if (tb_is_upstream_port(prev)) {
869 			next = prev->remote;
870 		} else {
871 			next = tb_upstream_port(prev->sw);
872 			/*
873 			 * Keep the same link if prev and next are both
874 			 * dual link ports.
875 			 */
876 			if (next->dual_link_port &&
877 			    next->link_nr != prev->link_nr) {
878 				next = next->dual_link_port;
879 			}
880 		}
881 	}
882 
883 	return next != prev ? next : NULL;
884 }
885 
886 /**
887  * tb_port_get_link_speed() - Get current link speed
888  * @port: Port to check (USB4 or CIO)
889  *
890  * Returns link speed in Gb/s or negative errno in case of failure.
891  */
892 int tb_port_get_link_speed(struct tb_port *port)
893 {
894 	u32 val, speed;
895 	int ret;
896 
897 	if (!port->cap_phy)
898 		return -EINVAL;
899 
900 	ret = tb_port_read(port, &val, TB_CFG_PORT,
901 			   port->cap_phy + LANE_ADP_CS_1, 1);
902 	if (ret)
903 		return ret;
904 
905 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
906 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
907 
908 	switch (speed) {
909 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
910 		return 40;
911 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
912 		return 20;
913 	default:
914 		return 10;
915 	}
916 }
917 
918 /**
919  * tb_port_get_link_generation() - Returns link generation
920  * @port: Lane adapter
921  *
922  * Returns link generation as number or negative errno in case of
923  * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
924  * links so for those always returns 2.
925  */
926 int tb_port_get_link_generation(struct tb_port *port)
927 {
928 	int ret;
929 
930 	ret = tb_port_get_link_speed(port);
931 	if (ret < 0)
932 		return ret;
933 
934 	switch (ret) {
935 	case 40:
936 		return 4;
937 	case 20:
938 		return 3;
939 	default:
940 		return 2;
941 	}
942 }
943 
944 /**
945  * tb_port_get_link_width() - Get current link width
946  * @port: Port to check (USB4 or CIO)
947  *
948  * Returns link width. Return the link width as encoded in &enum
949  * tb_link_width or negative errno in case of failure.
950  */
951 int tb_port_get_link_width(struct tb_port *port)
952 {
953 	u32 val;
954 	int ret;
955 
956 	if (!port->cap_phy)
957 		return -EINVAL;
958 
959 	ret = tb_port_read(port, &val, TB_CFG_PORT,
960 			   port->cap_phy + LANE_ADP_CS_1, 1);
961 	if (ret)
962 		return ret;
963 
964 	/* Matches the values in enum tb_link_width */
965 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
966 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
967 }
968 
969 /**
970  * tb_port_width_supported() - Is the given link width supported
971  * @port: Port to check
972  * @width: Widths to check (bitmask)
973  *
974  * Can be called to any lane adapter. Checks if given @width is
975  * supported by the hardware and returns %true if it is.
976  */
977 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
978 {
979 	u32 phy, widths;
980 	int ret;
981 
982 	if (!port->cap_phy)
983 		return false;
984 
985 	if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
986 		if (tb_port_get_link_generation(port) < 4 ||
987 		    !usb4_port_asym_supported(port))
988 			return false;
989 	}
990 
991 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
992 			   port->cap_phy + LANE_ADP_CS_0, 1);
993 	if (ret)
994 		return false;
995 
996 	/*
997 	 * The field encoding is the same as &enum tb_link_width (which is
998 	 * passed to @width).
999 	 */
1000 	widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1001 	return widths & width;
1002 }
1003 
1004 /**
1005  * tb_port_set_link_width() - Set target link width of the lane adapter
1006  * @port: Lane adapter
1007  * @width: Target link width
1008  *
1009  * Sets the target link width of the lane adapter to @width. Does not
1010  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1011  *
1012  * Return: %0 in case of success and negative errno in case of error
1013  */
1014 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1015 {
1016 	u32 val;
1017 	int ret;
1018 
1019 	if (!port->cap_phy)
1020 		return -EINVAL;
1021 
1022 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1023 			   port->cap_phy + LANE_ADP_CS_1, 1);
1024 	if (ret)
1025 		return ret;
1026 
1027 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1028 	switch (width) {
1029 	case TB_LINK_WIDTH_SINGLE:
1030 		/* Gen 4 link cannot be single */
1031 		if (tb_port_get_link_generation(port) >= 4)
1032 			return -EOPNOTSUPP;
1033 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1034 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1035 		break;
1036 
1037 	case TB_LINK_WIDTH_DUAL:
1038 		if (tb_port_get_link_generation(port) >= 4)
1039 			return usb4_port_asym_set_link_width(port, width);
1040 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1041 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1042 		break;
1043 
1044 	case TB_LINK_WIDTH_ASYM_TX:
1045 	case TB_LINK_WIDTH_ASYM_RX:
1046 		return usb4_port_asym_set_link_width(port, width);
1047 
1048 	default:
1049 		return -EINVAL;
1050 	}
1051 
1052 	return tb_port_write(port, &val, TB_CFG_PORT,
1053 			     port->cap_phy + LANE_ADP_CS_1, 1);
1054 }
1055 
1056 /**
1057  * tb_port_set_lane_bonding() - Enable/disable lane bonding
1058  * @port: Lane adapter
1059  * @bonding: enable/disable bonding
1060  *
1061  * Enables or disables lane bonding. This should be called after target
1062  * link width has been set (tb_port_set_link_width()). Note in most
1063  * cases one should use tb_port_lane_bonding_enable() instead to enable
1064  * lane bonding.
1065  *
1066  * Return: %0 in case of success and negative errno in case of error
1067  */
1068 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1069 {
1070 	u32 val;
1071 	int ret;
1072 
1073 	if (!port->cap_phy)
1074 		return -EINVAL;
1075 
1076 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1077 			   port->cap_phy + LANE_ADP_CS_1, 1);
1078 	if (ret)
1079 		return ret;
1080 
1081 	if (bonding)
1082 		val |= LANE_ADP_CS_1_LB;
1083 	else
1084 		val &= ~LANE_ADP_CS_1_LB;
1085 
1086 	return tb_port_write(port, &val, TB_CFG_PORT,
1087 			     port->cap_phy + LANE_ADP_CS_1, 1);
1088 }
1089 
1090 /**
1091  * tb_port_lane_bonding_enable() - Enable bonding on port
1092  * @port: port to enable
1093  *
1094  * Enable bonding by setting the link width of the port and the other
1095  * port in case of dual link port. Does not wait for the link to
1096  * actually reach the bonded state so caller needs to call
1097  * tb_port_wait_for_link_width() before enabling any paths through the
1098  * link to make sure the link is in expected state.
1099  *
1100  * Return: %0 in case of success and negative errno in case of error
1101  */
1102 int tb_port_lane_bonding_enable(struct tb_port *port)
1103 {
1104 	enum tb_link_width width;
1105 	int ret;
1106 
1107 	/*
1108 	 * Enable lane bonding for both links if not already enabled by
1109 	 * for example the boot firmware.
1110 	 */
1111 	width = tb_port_get_link_width(port);
1112 	if (width == TB_LINK_WIDTH_SINGLE) {
1113 		ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1114 		if (ret)
1115 			goto err_lane0;
1116 	}
1117 
1118 	width = tb_port_get_link_width(port->dual_link_port);
1119 	if (width == TB_LINK_WIDTH_SINGLE) {
1120 		ret = tb_port_set_link_width(port->dual_link_port,
1121 					     TB_LINK_WIDTH_DUAL);
1122 		if (ret)
1123 			goto err_lane0;
1124 	}
1125 
1126 	/*
1127 	 * Only set bonding if the link was not already bonded. This
1128 	 * avoids the lane adapter to re-enter bonding state.
1129 	 */
1130 	if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1131 		ret = tb_port_set_lane_bonding(port, true);
1132 		if (ret)
1133 			goto err_lane1;
1134 	}
1135 
1136 	/*
1137 	 * When lane 0 bonding is set it will affect lane 1 too so
1138 	 * update both.
1139 	 */
1140 	port->bonded = true;
1141 	port->dual_link_port->bonded = true;
1142 
1143 	return 0;
1144 
1145 err_lane1:
1146 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1147 err_lane0:
1148 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1149 
1150 	return ret;
1151 }
1152 
1153 /**
1154  * tb_port_lane_bonding_disable() - Disable bonding on port
1155  * @port: port to disable
1156  *
1157  * Disable bonding by setting the link width of the port and the
1158  * other port in case of dual link port.
1159  */
1160 void tb_port_lane_bonding_disable(struct tb_port *port)
1161 {
1162 	tb_port_set_lane_bonding(port, false);
1163 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1164 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1165 	port->dual_link_port->bonded = false;
1166 	port->bonded = false;
1167 }
1168 
1169 /**
1170  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1171  * @port: Port to wait for
1172  * @width: Expected link width (bitmask)
1173  * @timeout_msec: Timeout in ms how long to wait
1174  *
1175  * Should be used after both ends of the link have been bonded (or
1176  * bonding has been disabled) to wait until the link actually reaches
1177  * the expected state. Returns %-ETIMEDOUT if the width was not reached
1178  * within the given timeout, %0 if it did. Can be passed a mask of
1179  * expected widths and succeeds if any of the widths is reached.
1180  */
1181 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1182 				int timeout_msec)
1183 {
1184 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1185 	int ret;
1186 
1187 	/* Gen 4 link does not support single lane */
1188 	if ((width & TB_LINK_WIDTH_SINGLE) &&
1189 	    tb_port_get_link_generation(port) >= 4)
1190 		return -EOPNOTSUPP;
1191 
1192 	do {
1193 		ret = tb_port_get_link_width(port);
1194 		if (ret < 0) {
1195 			/*
1196 			 * Sometimes we get port locked error when
1197 			 * polling the lanes so we can ignore it and
1198 			 * retry.
1199 			 */
1200 			if (ret != -EACCES)
1201 				return ret;
1202 		} else if (ret & width) {
1203 			return 0;
1204 		}
1205 
1206 		usleep_range(1000, 2000);
1207 	} while (ktime_before(ktime_get(), timeout));
1208 
1209 	return -ETIMEDOUT;
1210 }
1211 
1212 static int tb_port_do_update_credits(struct tb_port *port)
1213 {
1214 	u32 nfc_credits;
1215 	int ret;
1216 
1217 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1218 	if (ret)
1219 		return ret;
1220 
1221 	if (nfc_credits != port->config.nfc_credits) {
1222 		u32 total;
1223 
1224 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1225 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1226 
1227 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1228 			    port->total_credits, total);
1229 
1230 		port->config.nfc_credits = nfc_credits;
1231 		port->total_credits = total;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 /**
1238  * tb_port_update_credits() - Re-read port total credits
1239  * @port: Port to update
1240  *
1241  * After the link is bonded (or bonding was disabled) the port total
1242  * credits may change, so this function needs to be called to re-read
1243  * the credits. Updates also the second lane adapter.
1244  */
1245 int tb_port_update_credits(struct tb_port *port)
1246 {
1247 	int ret;
1248 
1249 	ret = tb_port_do_update_credits(port);
1250 	if (ret)
1251 		return ret;
1252 
1253 	if (!port->dual_link_port)
1254 		return 0;
1255 	return tb_port_do_update_credits(port->dual_link_port);
1256 }
1257 
1258 static int tb_port_start_lane_initialization(struct tb_port *port)
1259 {
1260 	int ret;
1261 
1262 	if (tb_switch_is_usb4(port->sw))
1263 		return 0;
1264 
1265 	ret = tb_lc_start_lane_initialization(port);
1266 	return ret == -EINVAL ? 0 : ret;
1267 }
1268 
1269 /*
1270  * Returns true if the port had something (router, XDomain) connected
1271  * before suspend.
1272  */
1273 static bool tb_port_resume(struct tb_port *port)
1274 {
1275 	bool has_remote = tb_port_has_remote(port);
1276 
1277 	if (port->usb4) {
1278 		usb4_port_device_resume(port->usb4);
1279 	} else if (!has_remote) {
1280 		/*
1281 		 * For disconnected downstream lane adapters start lane
1282 		 * initialization now so we detect future connects.
1283 		 *
1284 		 * For XDomain start the lane initialzation now so the
1285 		 * link gets re-established.
1286 		 *
1287 		 * This is only needed for non-USB4 ports.
1288 		 */
1289 		if (!tb_is_upstream_port(port) || port->xdomain)
1290 			tb_port_start_lane_initialization(port);
1291 	}
1292 
1293 	return has_remote || port->xdomain;
1294 }
1295 
1296 /**
1297  * tb_port_is_enabled() - Is the adapter port enabled
1298  * @port: Port to check
1299  */
1300 bool tb_port_is_enabled(struct tb_port *port)
1301 {
1302 	switch (port->config.type) {
1303 	case TB_TYPE_PCIE_UP:
1304 	case TB_TYPE_PCIE_DOWN:
1305 		return tb_pci_port_is_enabled(port);
1306 
1307 	case TB_TYPE_DP_HDMI_IN:
1308 	case TB_TYPE_DP_HDMI_OUT:
1309 		return tb_dp_port_is_enabled(port);
1310 
1311 	case TB_TYPE_USB3_UP:
1312 	case TB_TYPE_USB3_DOWN:
1313 		return tb_usb3_port_is_enabled(port);
1314 
1315 	default:
1316 		return false;
1317 	}
1318 }
1319 
1320 /**
1321  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1322  * @port: USB3 adapter port to check
1323  */
1324 bool tb_usb3_port_is_enabled(struct tb_port *port)
1325 {
1326 	u32 data;
1327 
1328 	if (tb_port_read(port, &data, TB_CFG_PORT,
1329 			 port->cap_adap + ADP_USB3_CS_0, 1))
1330 		return false;
1331 
1332 	return !!(data & ADP_USB3_CS_0_PE);
1333 }
1334 
1335 /**
1336  * tb_usb3_port_enable() - Enable USB3 adapter port
1337  * @port: USB3 adapter port to enable
1338  * @enable: Enable/disable the USB3 adapter
1339  */
1340 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1341 {
1342 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1343 			  : ADP_USB3_CS_0_V;
1344 
1345 	if (!port->cap_adap)
1346 		return -ENXIO;
1347 	return tb_port_write(port, &word, TB_CFG_PORT,
1348 			     port->cap_adap + ADP_USB3_CS_0, 1);
1349 }
1350 
1351 /**
1352  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1353  * @port: PCIe port to check
1354  */
1355 bool tb_pci_port_is_enabled(struct tb_port *port)
1356 {
1357 	u32 data;
1358 
1359 	if (tb_port_read(port, &data, TB_CFG_PORT,
1360 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1361 		return false;
1362 
1363 	return !!(data & ADP_PCIE_CS_0_PE);
1364 }
1365 
1366 /**
1367  * tb_pci_port_enable() - Enable PCIe adapter port
1368  * @port: PCIe port to enable
1369  * @enable: Enable/disable the PCIe adapter
1370  */
1371 int tb_pci_port_enable(struct tb_port *port, bool enable)
1372 {
1373 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1374 	if (!port->cap_adap)
1375 		return -ENXIO;
1376 	return tb_port_write(port, &word, TB_CFG_PORT,
1377 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1378 }
1379 
1380 /**
1381  * tb_dp_port_hpd_is_active() - Is HPD already active
1382  * @port: DP out port to check
1383  *
1384  * Checks if the DP OUT adapter port has HPD bit already set.
1385  */
1386 int tb_dp_port_hpd_is_active(struct tb_port *port)
1387 {
1388 	u32 data;
1389 	int ret;
1390 
1391 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1392 			   port->cap_adap + ADP_DP_CS_2, 1);
1393 	if (ret)
1394 		return ret;
1395 
1396 	return !!(data & ADP_DP_CS_2_HPD);
1397 }
1398 
1399 /**
1400  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1401  * @port: Port to clear HPD
1402  *
1403  * If the DP IN port has HPD set, this function can be used to clear it.
1404  */
1405 int tb_dp_port_hpd_clear(struct tb_port *port)
1406 {
1407 	u32 data;
1408 	int ret;
1409 
1410 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1411 			   port->cap_adap + ADP_DP_CS_3, 1);
1412 	if (ret)
1413 		return ret;
1414 
1415 	data |= ADP_DP_CS_3_HPDC;
1416 	return tb_port_write(port, &data, TB_CFG_PORT,
1417 			     port->cap_adap + ADP_DP_CS_3, 1);
1418 }
1419 
1420 /**
1421  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1422  * @port: DP IN/OUT port to set hops
1423  * @video: Video Hop ID
1424  * @aux_tx: AUX TX Hop ID
1425  * @aux_rx: AUX RX Hop ID
1426  *
1427  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1428  * router DP adapters too but does not program the values as the fields
1429  * are read-only.
1430  */
1431 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1432 			unsigned int aux_tx, unsigned int aux_rx)
1433 {
1434 	u32 data[2];
1435 	int ret;
1436 
1437 	if (tb_switch_is_usb4(port->sw))
1438 		return 0;
1439 
1440 	ret = tb_port_read(port, data, TB_CFG_PORT,
1441 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1442 	if (ret)
1443 		return ret;
1444 
1445 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1446 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1447 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1448 
1449 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1450 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1451 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1452 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1453 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1454 
1455 	return tb_port_write(port, data, TB_CFG_PORT,
1456 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1457 }
1458 
1459 /**
1460  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1461  * @port: DP adapter port to check
1462  */
1463 bool tb_dp_port_is_enabled(struct tb_port *port)
1464 {
1465 	u32 data[2];
1466 
1467 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1468 			 ARRAY_SIZE(data)))
1469 		return false;
1470 
1471 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1472 }
1473 
1474 /**
1475  * tb_dp_port_enable() - Enables/disables DP paths of a port
1476  * @port: DP IN/OUT port
1477  * @enable: Enable/disable DP path
1478  *
1479  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1480  * calling this function.
1481  */
1482 int tb_dp_port_enable(struct tb_port *port, bool enable)
1483 {
1484 	u32 data[2];
1485 	int ret;
1486 
1487 	ret = tb_port_read(port, data, TB_CFG_PORT,
1488 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1489 	if (ret)
1490 		return ret;
1491 
1492 	if (enable)
1493 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1494 	else
1495 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1496 
1497 	return tb_port_write(port, data, TB_CFG_PORT,
1498 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1499 }
1500 
1501 /* switch utility functions */
1502 
1503 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1504 {
1505 	switch (sw->generation) {
1506 	case 1:
1507 		return "Thunderbolt 1";
1508 	case 2:
1509 		return "Thunderbolt 2";
1510 	case 3:
1511 		return "Thunderbolt 3";
1512 	case 4:
1513 		return "USB4";
1514 	default:
1515 		return "Unknown";
1516 	}
1517 }
1518 
1519 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1520 {
1521 	const struct tb_regs_switch_header *regs = &sw->config;
1522 
1523 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1524 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1525 	       regs->revision, regs->thunderbolt_version);
1526 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1527 	tb_dbg(tb, "  Config:\n");
1528 	tb_dbg(tb,
1529 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1530 	       regs->upstream_port_number, regs->depth,
1531 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1532 	       regs->enabled, regs->plug_events_delay);
1533 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1534 	       regs->__unknown1, regs->__unknown4);
1535 }
1536 
1537 /**
1538  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1539  * @sw: Switch to reset
1540  *
1541  * Return: Returns 0 on success or an error code on failure.
1542  */
1543 int tb_switch_reset(struct tb_switch *sw)
1544 {
1545 	struct tb_cfg_result res;
1546 
1547 	if (sw->generation > 1)
1548 		return 0;
1549 
1550 	tb_sw_dbg(sw, "resetting switch\n");
1551 
1552 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1553 			      TB_CFG_SWITCH, 2, 2);
1554 	if (res.err)
1555 		return res.err;
1556 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1557 	if (res.err > 0)
1558 		return -EIO;
1559 	return res.err;
1560 }
1561 
1562 /**
1563  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1564  * @sw: Router to read the offset value from
1565  * @offset: Offset in the router config space to read from
1566  * @bit: Bit mask in the offset to wait for
1567  * @value: Value of the bits to wait for
1568  * @timeout_msec: Timeout in ms how long to wait
1569  *
1570  * Wait till the specified bits in specified offset reach specified value.
1571  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1572  * within the given timeout or a negative errno in case of failure.
1573  */
1574 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1575 			   u32 value, int timeout_msec)
1576 {
1577 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1578 
1579 	do {
1580 		u32 val;
1581 		int ret;
1582 
1583 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1584 		if (ret)
1585 			return ret;
1586 
1587 		if ((val & bit) == value)
1588 			return 0;
1589 
1590 		usleep_range(50, 100);
1591 	} while (ktime_before(ktime_get(), timeout));
1592 
1593 	return -ETIMEDOUT;
1594 }
1595 
1596 /*
1597  * tb_plug_events_active() - enable/disable plug events on a switch
1598  *
1599  * Also configures a sane plug_events_delay of 255ms.
1600  *
1601  * Return: Returns 0 on success or an error code on failure.
1602  */
1603 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1604 {
1605 	u32 data;
1606 	int res;
1607 
1608 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1609 		return 0;
1610 
1611 	sw->config.plug_events_delay = 0xff;
1612 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1613 	if (res)
1614 		return res;
1615 
1616 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1617 	if (res)
1618 		return res;
1619 
1620 	if (active) {
1621 		data = data & 0xFFFFFF83;
1622 		switch (sw->config.device_id) {
1623 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1624 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1625 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1626 			break;
1627 		default:
1628 			/*
1629 			 * Skip Alpine Ridge, it needs to have vendor
1630 			 * specific USB hotplug event enabled for the
1631 			 * internal xHCI to work.
1632 			 */
1633 			if (!tb_switch_is_alpine_ridge(sw))
1634 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1635 		}
1636 	} else {
1637 		data = data | 0x7c;
1638 	}
1639 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1640 			   sw->cap_plug_events + 1, 1);
1641 }
1642 
1643 static ssize_t authorized_show(struct device *dev,
1644 			       struct device_attribute *attr,
1645 			       char *buf)
1646 {
1647 	struct tb_switch *sw = tb_to_switch(dev);
1648 
1649 	return sysfs_emit(buf, "%u\n", sw->authorized);
1650 }
1651 
1652 static int disapprove_switch(struct device *dev, void *not_used)
1653 {
1654 	char *envp[] = { "AUTHORIZED=0", NULL };
1655 	struct tb_switch *sw;
1656 
1657 	sw = tb_to_switch(dev);
1658 	if (sw && sw->authorized) {
1659 		int ret;
1660 
1661 		/* First children */
1662 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1663 		if (ret)
1664 			return ret;
1665 
1666 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1667 		if (ret)
1668 			return ret;
1669 
1670 		sw->authorized = 0;
1671 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1678 {
1679 	char envp_string[13];
1680 	int ret = -EINVAL;
1681 	char *envp[] = { envp_string, NULL };
1682 
1683 	if (!mutex_trylock(&sw->tb->lock))
1684 		return restart_syscall();
1685 
1686 	if (!!sw->authorized == !!val)
1687 		goto unlock;
1688 
1689 	switch (val) {
1690 	/* Disapprove switch */
1691 	case 0:
1692 		if (tb_route(sw)) {
1693 			ret = disapprove_switch(&sw->dev, NULL);
1694 			goto unlock;
1695 		}
1696 		break;
1697 
1698 	/* Approve switch */
1699 	case 1:
1700 		if (sw->key)
1701 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1702 		else
1703 			ret = tb_domain_approve_switch(sw->tb, sw);
1704 		break;
1705 
1706 	/* Challenge switch */
1707 	case 2:
1708 		if (sw->key)
1709 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1710 		break;
1711 
1712 	default:
1713 		break;
1714 	}
1715 
1716 	if (!ret) {
1717 		sw->authorized = val;
1718 		/*
1719 		 * Notify status change to the userspace, informing the new
1720 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1721 		 */
1722 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1723 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1724 	}
1725 
1726 unlock:
1727 	mutex_unlock(&sw->tb->lock);
1728 	return ret;
1729 }
1730 
1731 static ssize_t authorized_store(struct device *dev,
1732 				struct device_attribute *attr,
1733 				const char *buf, size_t count)
1734 {
1735 	struct tb_switch *sw = tb_to_switch(dev);
1736 	unsigned int val;
1737 	ssize_t ret;
1738 
1739 	ret = kstrtouint(buf, 0, &val);
1740 	if (ret)
1741 		return ret;
1742 	if (val > 2)
1743 		return -EINVAL;
1744 
1745 	pm_runtime_get_sync(&sw->dev);
1746 	ret = tb_switch_set_authorized(sw, val);
1747 	pm_runtime_mark_last_busy(&sw->dev);
1748 	pm_runtime_put_autosuspend(&sw->dev);
1749 
1750 	return ret ? ret : count;
1751 }
1752 static DEVICE_ATTR_RW(authorized);
1753 
1754 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1755 			 char *buf)
1756 {
1757 	struct tb_switch *sw = tb_to_switch(dev);
1758 
1759 	return sysfs_emit(buf, "%u\n", sw->boot);
1760 }
1761 static DEVICE_ATTR_RO(boot);
1762 
1763 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1764 			   char *buf)
1765 {
1766 	struct tb_switch *sw = tb_to_switch(dev);
1767 
1768 	return sysfs_emit(buf, "%#x\n", sw->device);
1769 }
1770 static DEVICE_ATTR_RO(device);
1771 
1772 static ssize_t
1773 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1774 {
1775 	struct tb_switch *sw = tb_to_switch(dev);
1776 
1777 	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1778 }
1779 static DEVICE_ATTR_RO(device_name);
1780 
1781 static ssize_t
1782 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1783 {
1784 	struct tb_switch *sw = tb_to_switch(dev);
1785 
1786 	return sysfs_emit(buf, "%u\n", sw->generation);
1787 }
1788 static DEVICE_ATTR_RO(generation);
1789 
1790 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1791 			char *buf)
1792 {
1793 	struct tb_switch *sw = tb_to_switch(dev);
1794 	ssize_t ret;
1795 
1796 	if (!mutex_trylock(&sw->tb->lock))
1797 		return restart_syscall();
1798 
1799 	if (sw->key)
1800 		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1801 	else
1802 		ret = sysfs_emit(buf, "\n");
1803 
1804 	mutex_unlock(&sw->tb->lock);
1805 	return ret;
1806 }
1807 
1808 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1809 			 const char *buf, size_t count)
1810 {
1811 	struct tb_switch *sw = tb_to_switch(dev);
1812 	u8 key[TB_SWITCH_KEY_SIZE];
1813 	ssize_t ret = count;
1814 	bool clear = false;
1815 
1816 	if (!strcmp(buf, "\n"))
1817 		clear = true;
1818 	else if (hex2bin(key, buf, sizeof(key)))
1819 		return -EINVAL;
1820 
1821 	if (!mutex_trylock(&sw->tb->lock))
1822 		return restart_syscall();
1823 
1824 	if (sw->authorized) {
1825 		ret = -EBUSY;
1826 	} else {
1827 		kfree(sw->key);
1828 		if (clear) {
1829 			sw->key = NULL;
1830 		} else {
1831 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1832 			if (!sw->key)
1833 				ret = -ENOMEM;
1834 		}
1835 	}
1836 
1837 	mutex_unlock(&sw->tb->lock);
1838 	return ret;
1839 }
1840 static DEVICE_ATTR(key, 0600, key_show, key_store);
1841 
1842 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1843 			  char *buf)
1844 {
1845 	struct tb_switch *sw = tb_to_switch(dev);
1846 
1847 	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1848 }
1849 
1850 /*
1851  * Currently all lanes must run at the same speed but we expose here
1852  * both directions to allow possible asymmetric links in the future.
1853  */
1854 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1855 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1856 
1857 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1858 			     char *buf)
1859 {
1860 	struct tb_switch *sw = tb_to_switch(dev);
1861 	unsigned int width;
1862 
1863 	switch (sw->link_width) {
1864 	case TB_LINK_WIDTH_SINGLE:
1865 	case TB_LINK_WIDTH_ASYM_TX:
1866 		width = 1;
1867 		break;
1868 	case TB_LINK_WIDTH_DUAL:
1869 		width = 2;
1870 		break;
1871 	case TB_LINK_WIDTH_ASYM_RX:
1872 		width = 3;
1873 		break;
1874 	default:
1875 		WARN_ON_ONCE(1);
1876 		return -EINVAL;
1877 	}
1878 
1879 	return sysfs_emit(buf, "%u\n", width);
1880 }
1881 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1882 
1883 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1884 			     char *buf)
1885 {
1886 	struct tb_switch *sw = tb_to_switch(dev);
1887 	unsigned int width;
1888 
1889 	switch (sw->link_width) {
1890 	case TB_LINK_WIDTH_SINGLE:
1891 	case TB_LINK_WIDTH_ASYM_RX:
1892 		width = 1;
1893 		break;
1894 	case TB_LINK_WIDTH_DUAL:
1895 		width = 2;
1896 		break;
1897 	case TB_LINK_WIDTH_ASYM_TX:
1898 		width = 3;
1899 		break;
1900 	default:
1901 		WARN_ON_ONCE(1);
1902 		return -EINVAL;
1903 	}
1904 
1905 	return sysfs_emit(buf, "%u\n", width);
1906 }
1907 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1908 
1909 static ssize_t nvm_authenticate_show(struct device *dev,
1910 	struct device_attribute *attr, char *buf)
1911 {
1912 	struct tb_switch *sw = tb_to_switch(dev);
1913 	u32 status;
1914 
1915 	nvm_get_auth_status(sw, &status);
1916 	return sysfs_emit(buf, "%#x\n", status);
1917 }
1918 
1919 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1920 				      bool disconnect)
1921 {
1922 	struct tb_switch *sw = tb_to_switch(dev);
1923 	int val, ret;
1924 
1925 	pm_runtime_get_sync(&sw->dev);
1926 
1927 	if (!mutex_trylock(&sw->tb->lock)) {
1928 		ret = restart_syscall();
1929 		goto exit_rpm;
1930 	}
1931 
1932 	if (sw->no_nvm_upgrade) {
1933 		ret = -EOPNOTSUPP;
1934 		goto exit_unlock;
1935 	}
1936 
1937 	/* If NVMem devices are not yet added */
1938 	if (!sw->nvm) {
1939 		ret = -EAGAIN;
1940 		goto exit_unlock;
1941 	}
1942 
1943 	ret = kstrtoint(buf, 10, &val);
1944 	if (ret)
1945 		goto exit_unlock;
1946 
1947 	/* Always clear the authentication status */
1948 	nvm_clear_auth_status(sw);
1949 
1950 	if (val > 0) {
1951 		if (val == AUTHENTICATE_ONLY) {
1952 			if (disconnect)
1953 				ret = -EINVAL;
1954 			else
1955 				ret = nvm_authenticate(sw, true);
1956 		} else {
1957 			if (!sw->nvm->flushed) {
1958 				if (!sw->nvm->buf) {
1959 					ret = -EINVAL;
1960 					goto exit_unlock;
1961 				}
1962 
1963 				ret = nvm_validate_and_write(sw);
1964 				if (ret || val == WRITE_ONLY)
1965 					goto exit_unlock;
1966 			}
1967 			if (val == WRITE_AND_AUTHENTICATE) {
1968 				if (disconnect)
1969 					ret = tb_lc_force_power(sw);
1970 				else
1971 					ret = nvm_authenticate(sw, false);
1972 			}
1973 		}
1974 	}
1975 
1976 exit_unlock:
1977 	mutex_unlock(&sw->tb->lock);
1978 exit_rpm:
1979 	pm_runtime_mark_last_busy(&sw->dev);
1980 	pm_runtime_put_autosuspend(&sw->dev);
1981 
1982 	return ret;
1983 }
1984 
1985 static ssize_t nvm_authenticate_store(struct device *dev,
1986 	struct device_attribute *attr, const char *buf, size_t count)
1987 {
1988 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1989 	if (ret)
1990 		return ret;
1991 	return count;
1992 }
1993 static DEVICE_ATTR_RW(nvm_authenticate);
1994 
1995 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1996 	struct device_attribute *attr, char *buf)
1997 {
1998 	return nvm_authenticate_show(dev, attr, buf);
1999 }
2000 
2001 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2002 	struct device_attribute *attr, const char *buf, size_t count)
2003 {
2004 	int ret;
2005 
2006 	ret = nvm_authenticate_sysfs(dev, buf, true);
2007 	return ret ? ret : count;
2008 }
2009 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2010 
2011 static ssize_t nvm_version_show(struct device *dev,
2012 				struct device_attribute *attr, char *buf)
2013 {
2014 	struct tb_switch *sw = tb_to_switch(dev);
2015 	int ret;
2016 
2017 	if (!mutex_trylock(&sw->tb->lock))
2018 		return restart_syscall();
2019 
2020 	if (sw->safe_mode)
2021 		ret = -ENODATA;
2022 	else if (!sw->nvm)
2023 		ret = -EAGAIN;
2024 	else
2025 		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2026 
2027 	mutex_unlock(&sw->tb->lock);
2028 
2029 	return ret;
2030 }
2031 static DEVICE_ATTR_RO(nvm_version);
2032 
2033 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2034 			   char *buf)
2035 {
2036 	struct tb_switch *sw = tb_to_switch(dev);
2037 
2038 	return sysfs_emit(buf, "%#x\n", sw->vendor);
2039 }
2040 static DEVICE_ATTR_RO(vendor);
2041 
2042 static ssize_t
2043 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2044 {
2045 	struct tb_switch *sw = tb_to_switch(dev);
2046 
2047 	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2048 }
2049 static DEVICE_ATTR_RO(vendor_name);
2050 
2051 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2052 			      char *buf)
2053 {
2054 	struct tb_switch *sw = tb_to_switch(dev);
2055 
2056 	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2057 }
2058 static DEVICE_ATTR_RO(unique_id);
2059 
2060 static struct attribute *switch_attrs[] = {
2061 	&dev_attr_authorized.attr,
2062 	&dev_attr_boot.attr,
2063 	&dev_attr_device.attr,
2064 	&dev_attr_device_name.attr,
2065 	&dev_attr_generation.attr,
2066 	&dev_attr_key.attr,
2067 	&dev_attr_nvm_authenticate.attr,
2068 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2069 	&dev_attr_nvm_version.attr,
2070 	&dev_attr_rx_speed.attr,
2071 	&dev_attr_rx_lanes.attr,
2072 	&dev_attr_tx_speed.attr,
2073 	&dev_attr_tx_lanes.attr,
2074 	&dev_attr_vendor.attr,
2075 	&dev_attr_vendor_name.attr,
2076 	&dev_attr_unique_id.attr,
2077 	NULL,
2078 };
2079 
2080 static umode_t switch_attr_is_visible(struct kobject *kobj,
2081 				      struct attribute *attr, int n)
2082 {
2083 	struct device *dev = kobj_to_dev(kobj);
2084 	struct tb_switch *sw = tb_to_switch(dev);
2085 
2086 	if (attr == &dev_attr_authorized.attr) {
2087 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2088 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2089 			return 0;
2090 	} else if (attr == &dev_attr_device.attr) {
2091 		if (!sw->device)
2092 			return 0;
2093 	} else if (attr == &dev_attr_device_name.attr) {
2094 		if (!sw->device_name)
2095 			return 0;
2096 	} else if (attr == &dev_attr_vendor.attr)  {
2097 		if (!sw->vendor)
2098 			return 0;
2099 	} else if (attr == &dev_attr_vendor_name.attr)  {
2100 		if (!sw->vendor_name)
2101 			return 0;
2102 	} else if (attr == &dev_attr_key.attr) {
2103 		if (tb_route(sw) &&
2104 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2105 		    sw->security_level == TB_SECURITY_SECURE)
2106 			return attr->mode;
2107 		return 0;
2108 	} else if (attr == &dev_attr_rx_speed.attr ||
2109 		   attr == &dev_attr_rx_lanes.attr ||
2110 		   attr == &dev_attr_tx_speed.attr ||
2111 		   attr == &dev_attr_tx_lanes.attr) {
2112 		if (tb_route(sw))
2113 			return attr->mode;
2114 		return 0;
2115 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2116 		if (nvm_upgradeable(sw))
2117 			return attr->mode;
2118 		return 0;
2119 	} else if (attr == &dev_attr_nvm_version.attr) {
2120 		if (nvm_readable(sw))
2121 			return attr->mode;
2122 		return 0;
2123 	} else if (attr == &dev_attr_boot.attr) {
2124 		if (tb_route(sw))
2125 			return attr->mode;
2126 		return 0;
2127 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2128 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2129 			return attr->mode;
2130 		return 0;
2131 	}
2132 
2133 	return sw->safe_mode ? 0 : attr->mode;
2134 }
2135 
2136 static const struct attribute_group switch_group = {
2137 	.is_visible = switch_attr_is_visible,
2138 	.attrs = switch_attrs,
2139 };
2140 
2141 static const struct attribute_group *switch_groups[] = {
2142 	&switch_group,
2143 	NULL,
2144 };
2145 
2146 static void tb_switch_release(struct device *dev)
2147 {
2148 	struct tb_switch *sw = tb_to_switch(dev);
2149 	struct tb_port *port;
2150 
2151 	dma_port_free(sw->dma_port);
2152 
2153 	tb_switch_for_each_port(sw, port) {
2154 		ida_destroy(&port->in_hopids);
2155 		ida_destroy(&port->out_hopids);
2156 	}
2157 
2158 	kfree(sw->uuid);
2159 	kfree(sw->device_name);
2160 	kfree(sw->vendor_name);
2161 	kfree(sw->ports);
2162 	kfree(sw->drom);
2163 	kfree(sw->key);
2164 	kfree(sw);
2165 }
2166 
2167 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2168 {
2169 	const struct tb_switch *sw = tb_to_switch(dev);
2170 	const char *type;
2171 
2172 	if (tb_switch_is_usb4(sw)) {
2173 		if (add_uevent_var(env, "USB4_VERSION=%u.0",
2174 				   usb4_switch_version(sw)))
2175 			return -ENOMEM;
2176 	}
2177 
2178 	if (!tb_route(sw)) {
2179 		type = "host";
2180 	} else {
2181 		const struct tb_port *port;
2182 		bool hub = false;
2183 
2184 		/* Device is hub if it has any downstream ports */
2185 		tb_switch_for_each_port(sw, port) {
2186 			if (!port->disabled && !tb_is_upstream_port(port) &&
2187 			     tb_port_is_null(port)) {
2188 				hub = true;
2189 				break;
2190 			}
2191 		}
2192 
2193 		type = hub ? "hub" : "device";
2194 	}
2195 
2196 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2197 		return -ENOMEM;
2198 	return 0;
2199 }
2200 
2201 /*
2202  * Currently only need to provide the callbacks. Everything else is handled
2203  * in the connection manager.
2204  */
2205 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2206 {
2207 	struct tb_switch *sw = tb_to_switch(dev);
2208 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2209 
2210 	if (cm_ops->runtime_suspend_switch)
2211 		return cm_ops->runtime_suspend_switch(sw);
2212 
2213 	return 0;
2214 }
2215 
2216 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2217 {
2218 	struct tb_switch *sw = tb_to_switch(dev);
2219 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2220 
2221 	if (cm_ops->runtime_resume_switch)
2222 		return cm_ops->runtime_resume_switch(sw);
2223 	return 0;
2224 }
2225 
2226 static const struct dev_pm_ops tb_switch_pm_ops = {
2227 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2228 			   NULL)
2229 };
2230 
2231 struct device_type tb_switch_type = {
2232 	.name = "thunderbolt_device",
2233 	.release = tb_switch_release,
2234 	.uevent = tb_switch_uevent,
2235 	.pm = &tb_switch_pm_ops,
2236 };
2237 
2238 static int tb_switch_get_generation(struct tb_switch *sw)
2239 {
2240 	if (tb_switch_is_usb4(sw))
2241 		return 4;
2242 
2243 	if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2244 		switch (sw->config.device_id) {
2245 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2246 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2247 		case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2248 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2249 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2250 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2251 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2252 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2253 			return 1;
2254 
2255 		case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2256 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2257 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2258 			return 2;
2259 
2260 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2261 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2262 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2263 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2264 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2265 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2266 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2267 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2268 		case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2269 		case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2270 			return 3;
2271 		}
2272 	}
2273 
2274 	/*
2275 	 * For unknown switches assume generation to be 1 to be on the
2276 	 * safe side.
2277 	 */
2278 	tb_sw_warn(sw, "unsupported switch device id %#x\n",
2279 		   sw->config.device_id);
2280 	return 1;
2281 }
2282 
2283 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2284 {
2285 	int max_depth;
2286 
2287 	if (tb_switch_is_usb4(sw) ||
2288 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2289 		max_depth = USB4_SWITCH_MAX_DEPTH;
2290 	else
2291 		max_depth = TB_SWITCH_MAX_DEPTH;
2292 
2293 	return depth > max_depth;
2294 }
2295 
2296 /**
2297  * tb_switch_alloc() - allocate a switch
2298  * @tb: Pointer to the owning domain
2299  * @parent: Parent device for this switch
2300  * @route: Route string for this switch
2301  *
2302  * Allocates and initializes a switch. Will not upload configuration to
2303  * the switch. For that you need to call tb_switch_configure()
2304  * separately. The returned switch should be released by calling
2305  * tb_switch_put().
2306  *
2307  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2308  * failure.
2309  */
2310 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2311 				  u64 route)
2312 {
2313 	struct tb_switch *sw;
2314 	int upstream_port;
2315 	int i, ret, depth;
2316 
2317 	/* Unlock the downstream port so we can access the switch below */
2318 	if (route) {
2319 		struct tb_switch *parent_sw = tb_to_switch(parent);
2320 		struct tb_port *down;
2321 
2322 		down = tb_port_at(route, parent_sw);
2323 		tb_port_unlock(down);
2324 	}
2325 
2326 	depth = tb_route_length(route);
2327 
2328 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2329 	if (upstream_port < 0)
2330 		return ERR_PTR(upstream_port);
2331 
2332 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2333 	if (!sw)
2334 		return ERR_PTR(-ENOMEM);
2335 
2336 	sw->tb = tb;
2337 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2338 	if (ret)
2339 		goto err_free_sw_ports;
2340 
2341 	sw->generation = tb_switch_get_generation(sw);
2342 
2343 	tb_dbg(tb, "current switch config:\n");
2344 	tb_dump_switch(tb, sw);
2345 
2346 	/* configure switch */
2347 	sw->config.upstream_port_number = upstream_port;
2348 	sw->config.depth = depth;
2349 	sw->config.route_hi = upper_32_bits(route);
2350 	sw->config.route_lo = lower_32_bits(route);
2351 	sw->config.enabled = 0;
2352 
2353 	/* Make sure we do not exceed maximum topology limit */
2354 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2355 		ret = -EADDRNOTAVAIL;
2356 		goto err_free_sw_ports;
2357 	}
2358 
2359 	/* initialize ports */
2360 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2361 				GFP_KERNEL);
2362 	if (!sw->ports) {
2363 		ret = -ENOMEM;
2364 		goto err_free_sw_ports;
2365 	}
2366 
2367 	for (i = 0; i <= sw->config.max_port_number; i++) {
2368 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2369 		sw->ports[i].sw = sw;
2370 		sw->ports[i].port = i;
2371 
2372 		/* Control port does not need HopID allocation */
2373 		if (i) {
2374 			ida_init(&sw->ports[i].in_hopids);
2375 			ida_init(&sw->ports[i].out_hopids);
2376 		}
2377 	}
2378 
2379 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2380 	if (ret > 0)
2381 		sw->cap_plug_events = ret;
2382 
2383 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2384 	if (ret > 0)
2385 		sw->cap_vsec_tmu = ret;
2386 
2387 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2388 	if (ret > 0)
2389 		sw->cap_lc = ret;
2390 
2391 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2392 	if (ret > 0)
2393 		sw->cap_lp = ret;
2394 
2395 	/* Root switch is always authorized */
2396 	if (!route)
2397 		sw->authorized = true;
2398 
2399 	device_initialize(&sw->dev);
2400 	sw->dev.parent = parent;
2401 	sw->dev.bus = &tb_bus_type;
2402 	sw->dev.type = &tb_switch_type;
2403 	sw->dev.groups = switch_groups;
2404 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2405 
2406 	return sw;
2407 
2408 err_free_sw_ports:
2409 	kfree(sw->ports);
2410 	kfree(sw);
2411 
2412 	return ERR_PTR(ret);
2413 }
2414 
2415 /**
2416  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2417  * @tb: Pointer to the owning domain
2418  * @parent: Parent device for this switch
2419  * @route: Route string for this switch
2420  *
2421  * This creates a switch in safe mode. This means the switch pretty much
2422  * lacks all capabilities except DMA configuration port before it is
2423  * flashed with a valid NVM firmware.
2424  *
2425  * The returned switch must be released by calling tb_switch_put().
2426  *
2427  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2428  */
2429 struct tb_switch *
2430 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2431 {
2432 	struct tb_switch *sw;
2433 
2434 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2435 	if (!sw)
2436 		return ERR_PTR(-ENOMEM);
2437 
2438 	sw->tb = tb;
2439 	sw->config.depth = tb_route_length(route);
2440 	sw->config.route_hi = upper_32_bits(route);
2441 	sw->config.route_lo = lower_32_bits(route);
2442 	sw->safe_mode = true;
2443 
2444 	device_initialize(&sw->dev);
2445 	sw->dev.parent = parent;
2446 	sw->dev.bus = &tb_bus_type;
2447 	sw->dev.type = &tb_switch_type;
2448 	sw->dev.groups = switch_groups;
2449 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2450 
2451 	return sw;
2452 }
2453 
2454 /**
2455  * tb_switch_configure() - Uploads configuration to the switch
2456  * @sw: Switch to configure
2457  *
2458  * Call this function before the switch is added to the system. It will
2459  * upload configuration to the switch and makes it available for the
2460  * connection manager to use. Can be called to the switch again after
2461  * resume from low power states to re-initialize it.
2462  *
2463  * Return: %0 in case of success and negative errno in case of failure
2464  */
2465 int tb_switch_configure(struct tb_switch *sw)
2466 {
2467 	struct tb *tb = sw->tb;
2468 	u64 route;
2469 	int ret;
2470 
2471 	route = tb_route(sw);
2472 
2473 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2474 	       sw->config.enabled ? "restoring" : "initializing", route,
2475 	       tb_route_length(route), sw->config.upstream_port_number);
2476 
2477 	sw->config.enabled = 1;
2478 
2479 	if (tb_switch_is_usb4(sw)) {
2480 		/*
2481 		 * For USB4 devices, we need to program the CM version
2482 		 * accordingly so that it knows to expose all the
2483 		 * additional capabilities. Program it according to USB4
2484 		 * version to avoid changing existing (v1) routers behaviour.
2485 		 */
2486 		if (usb4_switch_version(sw) < 2)
2487 			sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2488 		else
2489 			sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2490 		sw->config.plug_events_delay = 0xa;
2491 
2492 		/* Enumerate the switch */
2493 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2494 				  ROUTER_CS_1, 4);
2495 		if (ret)
2496 			return ret;
2497 
2498 		ret = usb4_switch_setup(sw);
2499 	} else {
2500 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2501 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2502 				   sw->config.vendor_id);
2503 
2504 		if (!sw->cap_plug_events) {
2505 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2506 			return -ENODEV;
2507 		}
2508 
2509 		/* Enumerate the switch */
2510 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2511 				  ROUTER_CS_1, 3);
2512 	}
2513 	if (ret)
2514 		return ret;
2515 
2516 	return tb_plug_events_active(sw, true);
2517 }
2518 
2519 /**
2520  * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2521  * @sw: Router to configure
2522  *
2523  * Needs to be called before any tunnels can be setup through the
2524  * router. Can be called to any router.
2525  *
2526  * Returns %0 in success and negative errno otherwise.
2527  */
2528 int tb_switch_configuration_valid(struct tb_switch *sw)
2529 {
2530 	if (tb_switch_is_usb4(sw))
2531 		return usb4_switch_configuration_valid(sw);
2532 	return 0;
2533 }
2534 
2535 static int tb_switch_set_uuid(struct tb_switch *sw)
2536 {
2537 	bool uid = false;
2538 	u32 uuid[4];
2539 	int ret;
2540 
2541 	if (sw->uuid)
2542 		return 0;
2543 
2544 	if (tb_switch_is_usb4(sw)) {
2545 		ret = usb4_switch_read_uid(sw, &sw->uid);
2546 		if (ret)
2547 			return ret;
2548 		uid = true;
2549 	} else {
2550 		/*
2551 		 * The newer controllers include fused UUID as part of
2552 		 * link controller specific registers
2553 		 */
2554 		ret = tb_lc_read_uuid(sw, uuid);
2555 		if (ret) {
2556 			if (ret != -EINVAL)
2557 				return ret;
2558 			uid = true;
2559 		}
2560 	}
2561 
2562 	if (uid) {
2563 		/*
2564 		 * ICM generates UUID based on UID and fills the upper
2565 		 * two words with ones. This is not strictly following
2566 		 * UUID format but we want to be compatible with it so
2567 		 * we do the same here.
2568 		 */
2569 		uuid[0] = sw->uid & 0xffffffff;
2570 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2571 		uuid[2] = 0xffffffff;
2572 		uuid[3] = 0xffffffff;
2573 	}
2574 
2575 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2576 	if (!sw->uuid)
2577 		return -ENOMEM;
2578 	return 0;
2579 }
2580 
2581 static int tb_switch_add_dma_port(struct tb_switch *sw)
2582 {
2583 	u32 status;
2584 	int ret;
2585 
2586 	switch (sw->generation) {
2587 	case 2:
2588 		/* Only root switch can be upgraded */
2589 		if (tb_route(sw))
2590 			return 0;
2591 
2592 		fallthrough;
2593 	case 3:
2594 	case 4:
2595 		ret = tb_switch_set_uuid(sw);
2596 		if (ret)
2597 			return ret;
2598 		break;
2599 
2600 	default:
2601 		/*
2602 		 * DMA port is the only thing available when the switch
2603 		 * is in safe mode.
2604 		 */
2605 		if (!sw->safe_mode)
2606 			return 0;
2607 		break;
2608 	}
2609 
2610 	if (sw->no_nvm_upgrade)
2611 		return 0;
2612 
2613 	if (tb_switch_is_usb4(sw)) {
2614 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2615 		if (ret)
2616 			return ret;
2617 
2618 		if (status) {
2619 			tb_sw_info(sw, "switch flash authentication failed\n");
2620 			nvm_set_auth_status(sw, status);
2621 		}
2622 
2623 		return 0;
2624 	}
2625 
2626 	/* Root switch DMA port requires running firmware */
2627 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2628 		return 0;
2629 
2630 	sw->dma_port = dma_port_alloc(sw);
2631 	if (!sw->dma_port)
2632 		return 0;
2633 
2634 	/*
2635 	 * If there is status already set then authentication failed
2636 	 * when the dma_port_flash_update_auth() returned. Power cycling
2637 	 * is not needed (it was done already) so only thing we do here
2638 	 * is to unblock runtime PM of the root port.
2639 	 */
2640 	nvm_get_auth_status(sw, &status);
2641 	if (status) {
2642 		if (!tb_route(sw))
2643 			nvm_authenticate_complete_dma_port(sw);
2644 		return 0;
2645 	}
2646 
2647 	/*
2648 	 * Check status of the previous flash authentication. If there
2649 	 * is one we need to power cycle the switch in any case to make
2650 	 * it functional again.
2651 	 */
2652 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2653 	if (ret <= 0)
2654 		return ret;
2655 
2656 	/* Now we can allow root port to suspend again */
2657 	if (!tb_route(sw))
2658 		nvm_authenticate_complete_dma_port(sw);
2659 
2660 	if (status) {
2661 		tb_sw_info(sw, "switch flash authentication failed\n");
2662 		nvm_set_auth_status(sw, status);
2663 	}
2664 
2665 	tb_sw_info(sw, "power cycling the switch now\n");
2666 	dma_port_power_cycle(sw->dma_port);
2667 
2668 	/*
2669 	 * We return error here which causes the switch adding failure.
2670 	 * It should appear back after power cycle is complete.
2671 	 */
2672 	return -ESHUTDOWN;
2673 }
2674 
2675 static void tb_switch_default_link_ports(struct tb_switch *sw)
2676 {
2677 	int i;
2678 
2679 	for (i = 1; i <= sw->config.max_port_number; i++) {
2680 		struct tb_port *port = &sw->ports[i];
2681 		struct tb_port *subordinate;
2682 
2683 		if (!tb_port_is_null(port))
2684 			continue;
2685 
2686 		/* Check for the subordinate port */
2687 		if (i == sw->config.max_port_number ||
2688 		    !tb_port_is_null(&sw->ports[i + 1]))
2689 			continue;
2690 
2691 		/* Link them if not already done so (by DROM) */
2692 		subordinate = &sw->ports[i + 1];
2693 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2694 			port->link_nr = 0;
2695 			port->dual_link_port = subordinate;
2696 			subordinate->link_nr = 1;
2697 			subordinate->dual_link_port = port;
2698 
2699 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2700 				  port->port, subordinate->port);
2701 		}
2702 	}
2703 }
2704 
2705 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2706 {
2707 	const struct tb_port *up = tb_upstream_port(sw);
2708 
2709 	if (!up->dual_link_port || !up->dual_link_port->remote)
2710 		return false;
2711 
2712 	if (tb_switch_is_usb4(sw))
2713 		return usb4_switch_lane_bonding_possible(sw);
2714 	return tb_lc_lane_bonding_possible(sw);
2715 }
2716 
2717 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2718 {
2719 	struct tb_port *up;
2720 	bool change = false;
2721 	int ret;
2722 
2723 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2724 		return 0;
2725 
2726 	up = tb_upstream_port(sw);
2727 
2728 	ret = tb_port_get_link_speed(up);
2729 	if (ret < 0)
2730 		return ret;
2731 	if (sw->link_speed != ret)
2732 		change = true;
2733 	sw->link_speed = ret;
2734 
2735 	ret = tb_port_get_link_width(up);
2736 	if (ret < 0)
2737 		return ret;
2738 	if (sw->link_width != ret)
2739 		change = true;
2740 	sw->link_width = ret;
2741 
2742 	/* Notify userspace that there is possible link attribute change */
2743 	if (device_is_registered(&sw->dev) && change)
2744 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2745 
2746 	return 0;
2747 }
2748 
2749 /* Must be called after tb_switch_update_link_attributes() */
2750 static void tb_switch_link_init(struct tb_switch *sw)
2751 {
2752 	struct tb_port *up, *down;
2753 	bool bonded;
2754 
2755 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2756 		return;
2757 
2758 	tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2759 	tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2760 
2761 	bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2762 
2763 	/*
2764 	 * Gen 4 links come up as bonded so update the port structures
2765 	 * accordingly.
2766 	 */
2767 	up = tb_upstream_port(sw);
2768 	down = tb_switch_downstream_port(sw);
2769 
2770 	up->bonded = bonded;
2771 	if (up->dual_link_port)
2772 		up->dual_link_port->bonded = bonded;
2773 	tb_port_update_credits(up);
2774 
2775 	down->bonded = bonded;
2776 	if (down->dual_link_port)
2777 		down->dual_link_port->bonded = bonded;
2778 	tb_port_update_credits(down);
2779 
2780 	if (tb_port_get_link_generation(up) < 4)
2781 		return;
2782 
2783 	/*
2784 	 * Set the Gen 4 preferred link width. This is what the router
2785 	 * prefers when the link is brought up. If the router does not
2786 	 * support asymmetric link configuration, this also will be set
2787 	 * to TB_LINK_WIDTH_DUAL.
2788 	 */
2789 	sw->preferred_link_width = sw->link_width;
2790 	tb_sw_dbg(sw, "preferred link width %s\n",
2791 		  tb_width_name(sw->preferred_link_width));
2792 }
2793 
2794 /**
2795  * tb_switch_lane_bonding_enable() - Enable lane bonding
2796  * @sw: Switch to enable lane bonding
2797  *
2798  * Connection manager can call this function to enable lane bonding of a
2799  * switch. If conditions are correct and both switches support the feature,
2800  * lanes are bonded. It is safe to call this to any switch.
2801  */
2802 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2803 {
2804 	struct tb_port *up, *down;
2805 	unsigned int width;
2806 	int ret;
2807 
2808 	if (!tb_switch_lane_bonding_possible(sw))
2809 		return 0;
2810 
2811 	up = tb_upstream_port(sw);
2812 	down = tb_switch_downstream_port(sw);
2813 
2814 	if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2815 	    !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2816 		return 0;
2817 
2818 	/*
2819 	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2820 	 * CL0 and check just for lane 1.
2821 	 */
2822 	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2823 		return -ENOTCONN;
2824 
2825 	ret = tb_port_lane_bonding_enable(up);
2826 	if (ret) {
2827 		tb_port_warn(up, "failed to enable lane bonding\n");
2828 		return ret;
2829 	}
2830 
2831 	ret = tb_port_lane_bonding_enable(down);
2832 	if (ret) {
2833 		tb_port_warn(down, "failed to enable lane bonding\n");
2834 		tb_port_lane_bonding_disable(up);
2835 		return ret;
2836 	}
2837 
2838 	/* Any of the widths are all bonded */
2839 	width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2840 		TB_LINK_WIDTH_ASYM_RX;
2841 
2842 	return tb_port_wait_for_link_width(down, width, 100);
2843 }
2844 
2845 /**
2846  * tb_switch_lane_bonding_disable() - Disable lane bonding
2847  * @sw: Switch whose lane bonding to disable
2848  *
2849  * Disables lane bonding between @sw and parent. This can be called even
2850  * if lanes were not bonded originally.
2851  */
2852 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2853 {
2854 	struct tb_port *up, *down;
2855 	int ret;
2856 
2857 	up = tb_upstream_port(sw);
2858 	if (!up->bonded)
2859 		return 0;
2860 
2861 	/*
2862 	 * If the link is Gen 4 there is no way to switch the link to
2863 	 * two single lane links so avoid that here. Also don't bother
2864 	 * if the link is not up anymore (sw is unplugged).
2865 	 */
2866 	ret = tb_port_get_link_generation(up);
2867 	if (ret < 0)
2868 		return ret;
2869 	if (ret >= 4)
2870 		return -EOPNOTSUPP;
2871 
2872 	down = tb_switch_downstream_port(sw);
2873 	tb_port_lane_bonding_disable(up);
2874 	tb_port_lane_bonding_disable(down);
2875 
2876 	/*
2877 	 * It is fine if we get other errors as the router might have
2878 	 * been unplugged.
2879 	 */
2880 	return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2881 }
2882 
2883 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2884 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2885 {
2886 	struct tb_port *up, *down, *port;
2887 	enum tb_link_width down_width;
2888 	int ret;
2889 
2890 	up = tb_upstream_port(sw);
2891 	down = tb_switch_downstream_port(sw);
2892 
2893 	if (width == TB_LINK_WIDTH_ASYM_TX) {
2894 		down_width = TB_LINK_WIDTH_ASYM_RX;
2895 		port = down;
2896 	} else {
2897 		down_width = TB_LINK_WIDTH_ASYM_TX;
2898 		port = up;
2899 	}
2900 
2901 	ret = tb_port_set_link_width(up, width);
2902 	if (ret)
2903 		return ret;
2904 
2905 	ret = tb_port_set_link_width(down, down_width);
2906 	if (ret)
2907 		return ret;
2908 
2909 	/*
2910 	 * Initiate the change in the router that one of its TX lanes is
2911 	 * changing to RX but do so only if there is an actual change.
2912 	 */
2913 	if (sw->link_width != width) {
2914 		ret = usb4_port_asym_start(port);
2915 		if (ret)
2916 			return ret;
2917 
2918 		ret = tb_port_wait_for_link_width(up, width, 100);
2919 		if (ret)
2920 			return ret;
2921 	}
2922 
2923 	return 0;
2924 }
2925 
2926 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2927 static int tb_switch_asym_disable(struct tb_switch *sw)
2928 {
2929 	struct tb_port *up, *down;
2930 	int ret;
2931 
2932 	up = tb_upstream_port(sw);
2933 	down = tb_switch_downstream_port(sw);
2934 
2935 	ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
2936 	if (ret)
2937 		return ret;
2938 
2939 	ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
2940 	if (ret)
2941 		return ret;
2942 
2943 	/*
2944 	 * Initiate the change in the router that has three TX lanes and
2945 	 * is changing one of its TX lanes to RX but only if there is a
2946 	 * change in the link width.
2947 	 */
2948 	if (sw->link_width > TB_LINK_WIDTH_DUAL) {
2949 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
2950 			ret = usb4_port_asym_start(up);
2951 		else
2952 			ret = usb4_port_asym_start(down);
2953 		if (ret)
2954 			return ret;
2955 
2956 		ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
2957 		if (ret)
2958 			return ret;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 /**
2965  * tb_switch_set_link_width() - Configure router link width
2966  * @sw: Router to configure
2967  * @width: The new link width
2968  *
2969  * Set device router link width to @width from router upstream port
2970  * perspective. Supports also asymmetric links if the routers boths side
2971  * of the link supports it.
2972  *
2973  * Does nothing for host router.
2974  *
2975  * Returns %0 in case of success, negative errno otherwise.
2976  */
2977 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
2978 {
2979 	struct tb_port *up, *down;
2980 	int ret = 0;
2981 
2982 	if (!tb_route(sw))
2983 		return 0;
2984 
2985 	up = tb_upstream_port(sw);
2986 	down = tb_switch_downstream_port(sw);
2987 
2988 	switch (width) {
2989 	case TB_LINK_WIDTH_SINGLE:
2990 		ret = tb_switch_lane_bonding_disable(sw);
2991 		break;
2992 
2993 	case TB_LINK_WIDTH_DUAL:
2994 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
2995 		    sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
2996 			ret = tb_switch_asym_disable(sw);
2997 			if (ret)
2998 				break;
2999 		}
3000 		ret = tb_switch_lane_bonding_enable(sw);
3001 		break;
3002 
3003 	case TB_LINK_WIDTH_ASYM_TX:
3004 	case TB_LINK_WIDTH_ASYM_RX:
3005 		ret = tb_switch_asym_enable(sw, width);
3006 		break;
3007 	}
3008 
3009 	switch (ret) {
3010 	case 0:
3011 		break;
3012 
3013 	case -ETIMEDOUT:
3014 		tb_sw_warn(sw, "timeout changing link width\n");
3015 		return ret;
3016 
3017 	case -ENOTCONN:
3018 	case -EOPNOTSUPP:
3019 	case -ENODEV:
3020 		return ret;
3021 
3022 	default:
3023 		tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3024 		return ret;
3025 	}
3026 
3027 	tb_port_update_credits(down);
3028 	tb_port_update_credits(up);
3029 
3030 	tb_switch_update_link_attributes(sw);
3031 
3032 	tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3033 	return ret;
3034 }
3035 
3036 /**
3037  * tb_switch_configure_link() - Set link configured
3038  * @sw: Switch whose link is configured
3039  *
3040  * Sets the link upstream from @sw configured (from both ends) so that
3041  * it will not be disconnected when the domain exits sleep. Can be
3042  * called for any switch.
3043  *
3044  * It is recommended that this is called after lane bonding is enabled.
3045  *
3046  * Returns %0 on success and negative errno in case of error.
3047  */
3048 int tb_switch_configure_link(struct tb_switch *sw)
3049 {
3050 	struct tb_port *up, *down;
3051 	int ret;
3052 
3053 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3054 		return 0;
3055 
3056 	up = tb_upstream_port(sw);
3057 	if (tb_switch_is_usb4(up->sw))
3058 		ret = usb4_port_configure(up);
3059 	else
3060 		ret = tb_lc_configure_port(up);
3061 	if (ret)
3062 		return ret;
3063 
3064 	down = up->remote;
3065 	if (tb_switch_is_usb4(down->sw))
3066 		return usb4_port_configure(down);
3067 	return tb_lc_configure_port(down);
3068 }
3069 
3070 /**
3071  * tb_switch_unconfigure_link() - Unconfigure link
3072  * @sw: Switch whose link is unconfigured
3073  *
3074  * Sets the link unconfigured so the @sw will be disconnected if the
3075  * domain exists sleep.
3076  */
3077 void tb_switch_unconfigure_link(struct tb_switch *sw)
3078 {
3079 	struct tb_port *up, *down;
3080 
3081 	if (sw->is_unplugged)
3082 		return;
3083 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3084 		return;
3085 
3086 	up = tb_upstream_port(sw);
3087 	if (tb_switch_is_usb4(up->sw))
3088 		usb4_port_unconfigure(up);
3089 	else
3090 		tb_lc_unconfigure_port(up);
3091 
3092 	down = up->remote;
3093 	if (tb_switch_is_usb4(down->sw))
3094 		usb4_port_unconfigure(down);
3095 	else
3096 		tb_lc_unconfigure_port(down);
3097 }
3098 
3099 static void tb_switch_credits_init(struct tb_switch *sw)
3100 {
3101 	if (tb_switch_is_icm(sw))
3102 		return;
3103 	if (!tb_switch_is_usb4(sw))
3104 		return;
3105 	if (usb4_switch_credits_init(sw))
3106 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3107 }
3108 
3109 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3110 {
3111 	struct tb_port *port;
3112 
3113 	if (tb_switch_is_icm(sw))
3114 		return 0;
3115 
3116 	tb_switch_for_each_port(sw, port) {
3117 		int res;
3118 
3119 		if (!port->cap_usb4)
3120 			continue;
3121 
3122 		res = usb4_port_hotplug_enable(port);
3123 		if (res)
3124 			return res;
3125 	}
3126 	return 0;
3127 }
3128 
3129 /**
3130  * tb_switch_add() - Add a switch to the domain
3131  * @sw: Switch to add
3132  *
3133  * This is the last step in adding switch to the domain. It will read
3134  * identification information from DROM and initializes ports so that
3135  * they can be used to connect other switches. The switch will be
3136  * exposed to the userspace when this function successfully returns. To
3137  * remove and release the switch, call tb_switch_remove().
3138  *
3139  * Return: %0 in case of success and negative errno in case of failure
3140  */
3141 int tb_switch_add(struct tb_switch *sw)
3142 {
3143 	int i, ret;
3144 
3145 	/*
3146 	 * Initialize DMA control port now before we read DROM. Recent
3147 	 * host controllers have more complete DROM on NVM that includes
3148 	 * vendor and model identification strings which we then expose
3149 	 * to the userspace. NVM can be accessed through DMA
3150 	 * configuration based mailbox.
3151 	 */
3152 	ret = tb_switch_add_dma_port(sw);
3153 	if (ret) {
3154 		dev_err(&sw->dev, "failed to add DMA port\n");
3155 		return ret;
3156 	}
3157 
3158 	if (!sw->safe_mode) {
3159 		tb_switch_credits_init(sw);
3160 
3161 		/* read drom */
3162 		ret = tb_drom_read(sw);
3163 		if (ret)
3164 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3165 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3166 
3167 		ret = tb_switch_set_uuid(sw);
3168 		if (ret) {
3169 			dev_err(&sw->dev, "failed to set UUID\n");
3170 			return ret;
3171 		}
3172 
3173 		for (i = 0; i <= sw->config.max_port_number; i++) {
3174 			if (sw->ports[i].disabled) {
3175 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3176 				continue;
3177 			}
3178 			ret = tb_init_port(&sw->ports[i]);
3179 			if (ret) {
3180 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
3181 				return ret;
3182 			}
3183 		}
3184 
3185 		tb_check_quirks(sw);
3186 
3187 		tb_switch_default_link_ports(sw);
3188 
3189 		ret = tb_switch_update_link_attributes(sw);
3190 		if (ret)
3191 			return ret;
3192 
3193 		tb_switch_link_init(sw);
3194 
3195 		ret = tb_switch_clx_init(sw);
3196 		if (ret)
3197 			return ret;
3198 
3199 		ret = tb_switch_tmu_init(sw);
3200 		if (ret)
3201 			return ret;
3202 	}
3203 
3204 	ret = tb_switch_port_hotplug_enable(sw);
3205 	if (ret)
3206 		return ret;
3207 
3208 	ret = device_add(&sw->dev);
3209 	if (ret) {
3210 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3211 		return ret;
3212 	}
3213 
3214 	if (tb_route(sw)) {
3215 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3216 			 sw->vendor, sw->device);
3217 		if (sw->vendor_name && sw->device_name)
3218 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3219 				 sw->device_name);
3220 	}
3221 
3222 	ret = usb4_switch_add_ports(sw);
3223 	if (ret) {
3224 		dev_err(&sw->dev, "failed to add USB4 ports\n");
3225 		goto err_del;
3226 	}
3227 
3228 	ret = tb_switch_nvm_add(sw);
3229 	if (ret) {
3230 		dev_err(&sw->dev, "failed to add NVM devices\n");
3231 		goto err_ports;
3232 	}
3233 
3234 	/*
3235 	 * Thunderbolt routers do not generate wakeups themselves but
3236 	 * they forward wakeups from tunneled protocols, so enable it
3237 	 * here.
3238 	 */
3239 	device_init_wakeup(&sw->dev, true);
3240 
3241 	pm_runtime_set_active(&sw->dev);
3242 	if (sw->rpm) {
3243 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3244 		pm_runtime_use_autosuspend(&sw->dev);
3245 		pm_runtime_mark_last_busy(&sw->dev);
3246 		pm_runtime_enable(&sw->dev);
3247 		pm_request_autosuspend(&sw->dev);
3248 	}
3249 
3250 	tb_switch_debugfs_init(sw);
3251 	return 0;
3252 
3253 err_ports:
3254 	usb4_switch_remove_ports(sw);
3255 err_del:
3256 	device_del(&sw->dev);
3257 
3258 	return ret;
3259 }
3260 
3261 /**
3262  * tb_switch_remove() - Remove and release a switch
3263  * @sw: Switch to remove
3264  *
3265  * This will remove the switch from the domain and release it after last
3266  * reference count drops to zero. If there are switches connected below
3267  * this switch, they will be removed as well.
3268  */
3269 void tb_switch_remove(struct tb_switch *sw)
3270 {
3271 	struct tb_port *port;
3272 
3273 	tb_switch_debugfs_remove(sw);
3274 
3275 	if (sw->rpm) {
3276 		pm_runtime_get_sync(&sw->dev);
3277 		pm_runtime_disable(&sw->dev);
3278 	}
3279 
3280 	/* port 0 is the switch itself and never has a remote */
3281 	tb_switch_for_each_port(sw, port) {
3282 		if (tb_port_has_remote(port)) {
3283 			tb_switch_remove(port->remote->sw);
3284 			port->remote = NULL;
3285 		} else if (port->xdomain) {
3286 			tb_xdomain_remove(port->xdomain);
3287 			port->xdomain = NULL;
3288 		}
3289 
3290 		/* Remove any downstream retimers */
3291 		tb_retimer_remove_all(port);
3292 	}
3293 
3294 	if (!sw->is_unplugged)
3295 		tb_plug_events_active(sw, false);
3296 
3297 	tb_switch_nvm_remove(sw);
3298 	usb4_switch_remove_ports(sw);
3299 
3300 	if (tb_route(sw))
3301 		dev_info(&sw->dev, "device disconnected\n");
3302 	device_unregister(&sw->dev);
3303 }
3304 
3305 /**
3306  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3307  * @sw: Router to mark unplugged
3308  */
3309 void tb_sw_set_unplugged(struct tb_switch *sw)
3310 {
3311 	struct tb_port *port;
3312 
3313 	if (sw == sw->tb->root_switch) {
3314 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3315 		return;
3316 	}
3317 	if (sw->is_unplugged) {
3318 		tb_sw_WARN(sw, "is_unplugged already set\n");
3319 		return;
3320 	}
3321 	sw->is_unplugged = true;
3322 	tb_switch_for_each_port(sw, port) {
3323 		if (tb_port_has_remote(port))
3324 			tb_sw_set_unplugged(port->remote->sw);
3325 		else if (port->xdomain)
3326 			port->xdomain->is_unplugged = true;
3327 	}
3328 }
3329 
3330 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3331 {
3332 	if (flags)
3333 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3334 	else
3335 		tb_sw_dbg(sw, "disabling wakeup\n");
3336 
3337 	if (tb_switch_is_usb4(sw))
3338 		return usb4_switch_set_wake(sw, flags);
3339 	return tb_lc_set_wake(sw, flags);
3340 }
3341 
3342 int tb_switch_resume(struct tb_switch *sw)
3343 {
3344 	struct tb_port *port;
3345 	int err;
3346 
3347 	tb_sw_dbg(sw, "resuming switch\n");
3348 
3349 	/*
3350 	 * Check for UID of the connected switches except for root
3351 	 * switch which we assume cannot be removed.
3352 	 */
3353 	if (tb_route(sw)) {
3354 		u64 uid;
3355 
3356 		/*
3357 		 * Check first that we can still read the switch config
3358 		 * space. It may be that there is now another domain
3359 		 * connected.
3360 		 */
3361 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3362 		if (err < 0) {
3363 			tb_sw_info(sw, "switch not present anymore\n");
3364 			return err;
3365 		}
3366 
3367 		/* We don't have any way to confirm this was the same device */
3368 		if (!sw->uid)
3369 			return -ENODEV;
3370 
3371 		if (tb_switch_is_usb4(sw))
3372 			err = usb4_switch_read_uid(sw, &uid);
3373 		else
3374 			err = tb_drom_read_uid_only(sw, &uid);
3375 		if (err) {
3376 			tb_sw_warn(sw, "uid read failed\n");
3377 			return err;
3378 		}
3379 		if (sw->uid != uid) {
3380 			tb_sw_info(sw,
3381 				"changed while suspended (uid %#llx -> %#llx)\n",
3382 				sw->uid, uid);
3383 			return -ENODEV;
3384 		}
3385 	}
3386 
3387 	err = tb_switch_configure(sw);
3388 	if (err)
3389 		return err;
3390 
3391 	/* Disable wakes */
3392 	tb_switch_set_wake(sw, 0);
3393 
3394 	err = tb_switch_tmu_init(sw);
3395 	if (err)
3396 		return err;
3397 
3398 	/* check for surviving downstream switches */
3399 	tb_switch_for_each_port(sw, port) {
3400 		if (!tb_port_is_null(port))
3401 			continue;
3402 
3403 		if (!tb_port_resume(port))
3404 			continue;
3405 
3406 		if (tb_wait_for_port(port, true) <= 0) {
3407 			tb_port_warn(port,
3408 				     "lost during suspend, disconnecting\n");
3409 			if (tb_port_has_remote(port))
3410 				tb_sw_set_unplugged(port->remote->sw);
3411 			else if (port->xdomain)
3412 				port->xdomain->is_unplugged = true;
3413 		} else {
3414 			/*
3415 			 * Always unlock the port so the downstream
3416 			 * switch/domain is accessible.
3417 			 */
3418 			if (tb_port_unlock(port))
3419 				tb_port_warn(port, "failed to unlock port\n");
3420 			if (port->remote && tb_switch_resume(port->remote->sw)) {
3421 				tb_port_warn(port,
3422 					     "lost during suspend, disconnecting\n");
3423 				tb_sw_set_unplugged(port->remote->sw);
3424 			}
3425 		}
3426 	}
3427 	return 0;
3428 }
3429 
3430 /**
3431  * tb_switch_suspend() - Put a switch to sleep
3432  * @sw: Switch to suspend
3433  * @runtime: Is this runtime suspend or system sleep
3434  *
3435  * Suspends router and all its children. Enables wakes according to
3436  * value of @runtime and then sets sleep bit for the router. If @sw is
3437  * host router the domain is ready to go to sleep once this function
3438  * returns.
3439  */
3440 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3441 {
3442 	unsigned int flags = 0;
3443 	struct tb_port *port;
3444 	int err;
3445 
3446 	tb_sw_dbg(sw, "suspending switch\n");
3447 
3448 	/*
3449 	 * Actually only needed for Titan Ridge but for simplicity can be
3450 	 * done for USB4 device too as CLx is re-enabled at resume.
3451 	 */
3452 	tb_switch_clx_disable(sw);
3453 
3454 	err = tb_plug_events_active(sw, false);
3455 	if (err)
3456 		return;
3457 
3458 	tb_switch_for_each_port(sw, port) {
3459 		if (tb_port_has_remote(port))
3460 			tb_switch_suspend(port->remote->sw, runtime);
3461 	}
3462 
3463 	if (runtime) {
3464 		/* Trigger wake when something is plugged in/out */
3465 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3466 		flags |= TB_WAKE_ON_USB4;
3467 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3468 	} else if (device_may_wakeup(&sw->dev)) {
3469 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3470 	}
3471 
3472 	tb_switch_set_wake(sw, flags);
3473 
3474 	if (tb_switch_is_usb4(sw))
3475 		usb4_switch_set_sleep(sw);
3476 	else
3477 		tb_lc_set_sleep(sw);
3478 }
3479 
3480 /**
3481  * tb_switch_query_dp_resource() - Query availability of DP resource
3482  * @sw: Switch whose DP resource is queried
3483  * @in: DP IN port
3484  *
3485  * Queries availability of DP resource for DP tunneling using switch
3486  * specific means. Returns %true if resource is available.
3487  */
3488 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3489 {
3490 	if (tb_switch_is_usb4(sw))
3491 		return usb4_switch_query_dp_resource(sw, in);
3492 	return tb_lc_dp_sink_query(sw, in);
3493 }
3494 
3495 /**
3496  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3497  * @sw: Switch whose DP resource is allocated
3498  * @in: DP IN port
3499  *
3500  * Allocates DP resource for DP tunneling. The resource must be
3501  * available for this to succeed (see tb_switch_query_dp_resource()).
3502  * Returns %0 in success and negative errno otherwise.
3503  */
3504 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3505 {
3506 	int ret;
3507 
3508 	if (tb_switch_is_usb4(sw))
3509 		ret = usb4_switch_alloc_dp_resource(sw, in);
3510 	else
3511 		ret = tb_lc_dp_sink_alloc(sw, in);
3512 
3513 	if (ret)
3514 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3515 			   in->port);
3516 	else
3517 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3518 
3519 	return ret;
3520 }
3521 
3522 /**
3523  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3524  * @sw: Switch whose DP resource is de-allocated
3525  * @in: DP IN port
3526  *
3527  * De-allocates DP resource that was previously allocated for DP
3528  * tunneling.
3529  */
3530 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3531 {
3532 	int ret;
3533 
3534 	if (tb_switch_is_usb4(sw))
3535 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3536 	else
3537 		ret = tb_lc_dp_sink_dealloc(sw, in);
3538 
3539 	if (ret)
3540 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3541 			   in->port);
3542 	else
3543 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3544 }
3545 
3546 struct tb_sw_lookup {
3547 	struct tb *tb;
3548 	u8 link;
3549 	u8 depth;
3550 	const uuid_t *uuid;
3551 	u64 route;
3552 };
3553 
3554 static int tb_switch_match(struct device *dev, const void *data)
3555 {
3556 	struct tb_switch *sw = tb_to_switch(dev);
3557 	const struct tb_sw_lookup *lookup = data;
3558 
3559 	if (!sw)
3560 		return 0;
3561 	if (sw->tb != lookup->tb)
3562 		return 0;
3563 
3564 	if (lookup->uuid)
3565 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3566 
3567 	if (lookup->route) {
3568 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3569 		       sw->config.route_hi == upper_32_bits(lookup->route);
3570 	}
3571 
3572 	/* Root switch is matched only by depth */
3573 	if (!lookup->depth)
3574 		return !sw->depth;
3575 
3576 	return sw->link == lookup->link && sw->depth == lookup->depth;
3577 }
3578 
3579 /**
3580  * tb_switch_find_by_link_depth() - Find switch by link and depth
3581  * @tb: Domain the switch belongs
3582  * @link: Link number the switch is connected
3583  * @depth: Depth of the switch in link
3584  *
3585  * Returned switch has reference count increased so the caller needs to
3586  * call tb_switch_put() when done with the switch.
3587  */
3588 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3589 {
3590 	struct tb_sw_lookup lookup;
3591 	struct device *dev;
3592 
3593 	memset(&lookup, 0, sizeof(lookup));
3594 	lookup.tb = tb;
3595 	lookup.link = link;
3596 	lookup.depth = depth;
3597 
3598 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3599 	if (dev)
3600 		return tb_to_switch(dev);
3601 
3602 	return NULL;
3603 }
3604 
3605 /**
3606  * tb_switch_find_by_uuid() - Find switch by UUID
3607  * @tb: Domain the switch belongs
3608  * @uuid: UUID to look for
3609  *
3610  * Returned switch has reference count increased so the caller needs to
3611  * call tb_switch_put() when done with the switch.
3612  */
3613 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3614 {
3615 	struct tb_sw_lookup lookup;
3616 	struct device *dev;
3617 
3618 	memset(&lookup, 0, sizeof(lookup));
3619 	lookup.tb = tb;
3620 	lookup.uuid = uuid;
3621 
3622 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3623 	if (dev)
3624 		return tb_to_switch(dev);
3625 
3626 	return NULL;
3627 }
3628 
3629 /**
3630  * tb_switch_find_by_route() - Find switch by route string
3631  * @tb: Domain the switch belongs
3632  * @route: Route string to look for
3633  *
3634  * Returned switch has reference count increased so the caller needs to
3635  * call tb_switch_put() when done with the switch.
3636  */
3637 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3638 {
3639 	struct tb_sw_lookup lookup;
3640 	struct device *dev;
3641 
3642 	if (!route)
3643 		return tb_switch_get(tb->root_switch);
3644 
3645 	memset(&lookup, 0, sizeof(lookup));
3646 	lookup.tb = tb;
3647 	lookup.route = route;
3648 
3649 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3650 	if (dev)
3651 		return tb_to_switch(dev);
3652 
3653 	return NULL;
3654 }
3655 
3656 /**
3657  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3658  * @sw: Switch to find the port from
3659  * @type: Port type to look for
3660  */
3661 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3662 				    enum tb_port_type type)
3663 {
3664 	struct tb_port *port;
3665 
3666 	tb_switch_for_each_port(sw, port) {
3667 		if (port->config.type == type)
3668 			return port;
3669 	}
3670 
3671 	return NULL;
3672 }
3673 
3674 /*
3675  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3676  * device. For now used only for Titan Ridge.
3677  */
3678 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3679 				       unsigned int pcie_offset, u32 value)
3680 {
3681 	u32 offset, command, val;
3682 	int ret;
3683 
3684 	if (sw->generation != 3)
3685 		return -EOPNOTSUPP;
3686 
3687 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3688 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3689 	if (ret)
3690 		return ret;
3691 
3692 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3693 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3694 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3695 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3696 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3697 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3698 
3699 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3700 
3701 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3702 	if (ret)
3703 		return ret;
3704 
3705 	ret = tb_switch_wait_for_bit(sw, offset,
3706 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3707 	if (ret)
3708 		return ret;
3709 
3710 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3711 	if (ret)
3712 		return ret;
3713 
3714 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3715 		return -ETIMEDOUT;
3716 
3717 	return 0;
3718 }
3719 
3720 /**
3721  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3722  * @sw: Router to enable PCIe L1
3723  *
3724  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3725  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3726  * was configured. Due to Intel platforms limitation, shall be called only
3727  * for first hop switch.
3728  */
3729 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3730 {
3731 	struct tb_switch *parent = tb_switch_parent(sw);
3732 	int ret;
3733 
3734 	if (!tb_route(sw))
3735 		return 0;
3736 
3737 	if (!tb_switch_is_titan_ridge(sw))
3738 		return 0;
3739 
3740 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3741 	if (tb_route(parent))
3742 		return 0;
3743 
3744 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3745 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3746 	if (ret)
3747 		return ret;
3748 
3749 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3750 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3751 }
3752 
3753 /**
3754  * tb_switch_xhci_connect() - Connect internal xHCI
3755  * @sw: Router whose xHCI to connect
3756  *
3757  * Can be called to any router. For Alpine Ridge and Titan Ridge
3758  * performs special flows that bring the xHCI functional for any device
3759  * connected to the type-C port. Call only after PCIe tunnel has been
3760  * established. The function only does the connect if not done already
3761  * so can be called several times for the same router.
3762  */
3763 int tb_switch_xhci_connect(struct tb_switch *sw)
3764 {
3765 	struct tb_port *port1, *port3;
3766 	int ret;
3767 
3768 	if (sw->generation != 3)
3769 		return 0;
3770 
3771 	port1 = &sw->ports[1];
3772 	port3 = &sw->ports[3];
3773 
3774 	if (tb_switch_is_alpine_ridge(sw)) {
3775 		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3776 
3777 		usb_port1 = tb_lc_is_usb_plugged(port1);
3778 		usb_port3 = tb_lc_is_usb_plugged(port3);
3779 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3780 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3781 
3782 		/* Figure out correct USB port to connect */
3783 		if (usb_port1 && !xhci_port1) {
3784 			ret = tb_lc_xhci_connect(port1);
3785 			if (ret)
3786 				return ret;
3787 		}
3788 		if (usb_port3 && !xhci_port3)
3789 			return tb_lc_xhci_connect(port3);
3790 	} else if (tb_switch_is_titan_ridge(sw)) {
3791 		ret = tb_lc_xhci_connect(port1);
3792 		if (ret)
3793 			return ret;
3794 		return tb_lc_xhci_connect(port3);
3795 	}
3796 
3797 	return 0;
3798 }
3799 
3800 /**
3801  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3802  * @sw: Router whose xHCI to disconnect
3803  *
3804  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3805  * ports.
3806  */
3807 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3808 {
3809 	if (sw->generation == 3) {
3810 		struct tb_port *port1 = &sw->ports[1];
3811 		struct tb_port *port3 = &sw->ports[3];
3812 
3813 		tb_lc_xhci_disconnect(port1);
3814 		tb_port_dbg(port1, "disconnected xHCI\n");
3815 		tb_lc_xhci_disconnect(port3);
3816 		tb_port_dbg(port3, "disconnected xHCI\n");
3817 	}
3818 }
3819