xref: /linux/drivers/thunderbolt/switch.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18 
19 #include "tb.h"
20 
21 /* Switch NVM support */
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 /*
30  * Hold NVM authentication failure status per switch This information
31  * needs to stay around even when the switch gets power cycled so we
32  * keep it separately.
33  */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36 
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 	struct nvm_auth_status *st;
40 
41 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 		if (uuid_equal(&st->uuid, sw->uuid))
43 			return st;
44 	}
45 
46 	return NULL;
47 }
48 
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 	struct nvm_auth_status *st;
52 
53 	mutex_lock(&nvm_auth_status_lock);
54 	st = __nvm_get_auth_status(sw);
55 	mutex_unlock(&nvm_auth_status_lock);
56 
57 	*status = st ? st->status : 0;
58 }
59 
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	if (WARN_ON(!sw->uuid))
65 		return;
66 
67 	mutex_lock(&nvm_auth_status_lock);
68 	st = __nvm_get_auth_status(sw);
69 
70 	if (!st) {
71 		st = kzalloc(sizeof(*st), GFP_KERNEL);
72 		if (!st)
73 			goto unlock;
74 
75 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 		INIT_LIST_HEAD(&st->list);
77 		list_add_tail(&st->list, &nvm_auth_status_cache);
78 	}
79 
80 	st->status = status;
81 unlock:
82 	mutex_unlock(&nvm_auth_status_lock);
83 }
84 
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 	struct nvm_auth_status *st;
88 
89 	mutex_lock(&nvm_auth_status_lock);
90 	st = __nvm_get_auth_status(sw);
91 	if (st) {
92 		list_del(&st->list);
93 		kfree(st);
94 	}
95 	mutex_unlock(&nvm_auth_status_lock);
96 }
97 
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 	unsigned int image_size;
101 	const u8 *buf;
102 	int ret;
103 
104 	ret = tb_nvm_validate(sw->nvm);
105 	if (ret)
106 		return ret;
107 
108 	ret = tb_nvm_write_headers(sw->nvm);
109 	if (ret)
110 		return ret;
111 
112 	buf = sw->nvm->buf_data_start;
113 	image_size = sw->nvm->buf_data_size;
114 
115 	if (tb_switch_is_usb4(sw))
116 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 	else
118 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 	if (ret)
120 		return ret;
121 
122 	sw->nvm->flushed = true;
123 	return 0;
124 }
125 
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 	int ret = 0;
129 
130 	/*
131 	 * Root switch NVM upgrade requires that we disconnect the
132 	 * existing paths first (in case it is not in safe mode
133 	 * already).
134 	 */
135 	if (!sw->safe_mode) {
136 		u32 status;
137 
138 		ret = tb_domain_disconnect_all_paths(sw->tb);
139 		if (ret)
140 			return ret;
141 		/*
142 		 * The host controller goes away pretty soon after this if
143 		 * everything goes well so getting timeout is expected.
144 		 */
145 		ret = dma_port_flash_update_auth(sw->dma_port);
146 		if (!ret || ret == -ETIMEDOUT)
147 			return 0;
148 
149 		/*
150 		 * Any error from update auth operation requires power
151 		 * cycling of the host router.
152 		 */
153 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 			nvm_set_auth_status(sw, status);
156 	}
157 
158 	/*
159 	 * From safe mode we can get out by just power cycling the
160 	 * switch.
161 	 */
162 	dma_port_power_cycle(sw->dma_port);
163 	return ret;
164 }
165 
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 	int ret, retries = 10;
169 
170 	ret = dma_port_flash_update_auth(sw->dma_port);
171 	switch (ret) {
172 	case 0:
173 	case -ETIMEDOUT:
174 	case -EACCES:
175 	case -EINVAL:
176 		/* Power cycle is required */
177 		break;
178 	default:
179 		return ret;
180 	}
181 
182 	/*
183 	 * Poll here for the authentication status. It takes some time
184 	 * for the device to respond (we get timeout for a while). Once
185 	 * we get response the device needs to be power cycled in order
186 	 * to the new NVM to be taken into use.
187 	 */
188 	do {
189 		u32 status;
190 
191 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 		if (ret < 0 && ret != -ETIMEDOUT)
193 			return ret;
194 		if (ret > 0) {
195 			if (status) {
196 				tb_sw_warn(sw, "failed to authenticate NVM\n");
197 				nvm_set_auth_status(sw, status);
198 			}
199 
200 			tb_sw_info(sw, "power cycling the switch now\n");
201 			dma_port_power_cycle(sw->dma_port);
202 			return 0;
203 		}
204 
205 		msleep(500);
206 	} while (--retries);
207 
208 	return -ETIMEDOUT;
209 }
210 
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 	struct pci_dev *root_port;
214 
215 	/*
216 	 * During host router NVM upgrade we should not allow root port to
217 	 * go into D3cold because some root ports cannot trigger PME
218 	 * itself. To be on the safe side keep the root port in D0 during
219 	 * the whole upgrade process.
220 	 */
221 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 	if (root_port)
223 		pm_runtime_get_noresume(&root_port->dev);
224 }
225 
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 	struct pci_dev *root_port;
229 
230 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 	if (root_port)
232 		pm_runtime_put(&root_port->dev);
233 }
234 
235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 	if (tb_switch_is_usb4(sw)) {
238 		/*
239 		 * USB4 devices must support NVM operations but it is
240 		 * optional for hosts. Therefore we query the NVM sector
241 		 * size here and if it is supported assume NVM
242 		 * operations are implemented.
243 		 */
244 		return usb4_switch_nvm_sector_size(sw) > 0;
245 	}
246 
247 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 	return !!sw->dma_port;
249 }
250 
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 	if (sw->no_nvm_upgrade)
254 		return false;
255 	return nvm_readable(sw);
256 }
257 
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 	int ret;
261 
262 	if (tb_switch_is_usb4(sw)) {
263 		if (auth_only) {
264 			ret = usb4_switch_nvm_set_offset(sw, 0);
265 			if (ret)
266 				return ret;
267 		}
268 		sw->nvm->authenticating = true;
269 		return usb4_switch_nvm_authenticate(sw);
270 	}
271 	if (auth_only)
272 		return -EOPNOTSUPP;
273 
274 	sw->nvm->authenticating = true;
275 	if (!tb_route(sw)) {
276 		nvm_authenticate_start_dma_port(sw);
277 		ret = nvm_authenticate_host_dma_port(sw);
278 	} else {
279 		ret = nvm_authenticate_device_dma_port(sw);
280 	}
281 
282 	return ret;
283 }
284 
285 /**
286  * tb_switch_nvm_read() - Read router NVM
287  * @sw: Router whose NVM to read
288  * @address: Start address on the NVM
289  * @buf: Buffer where the read data is copied
290  * @size: Size of the buffer in bytes
291  *
292  * Reads from router NVM and returns the requested data in @buf. Locking
293  * is up to the caller. Returns %0 in success and negative errno in case
294  * of failure.
295  */
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 		       size_t size)
298 {
299 	if (tb_switch_is_usb4(sw))
300 		return usb4_switch_nvm_read(sw, address, buf, size);
301 	return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303 
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 	struct tb_nvm *nvm = priv;
307 	struct tb_switch *sw = tb_to_switch(nvm->dev);
308 	int ret;
309 
310 	pm_runtime_get_sync(&sw->dev);
311 
312 	if (!mutex_trylock(&sw->tb->lock)) {
313 		ret = restart_syscall();
314 		goto out;
315 	}
316 
317 	ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 	mutex_unlock(&sw->tb->lock);
319 
320 out:
321 	pm_runtime_mark_last_busy(&sw->dev);
322 	pm_runtime_put_autosuspend(&sw->dev);
323 
324 	return ret;
325 }
326 
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 	struct tb_nvm *nvm = priv;
330 	struct tb_switch *sw = tb_to_switch(nvm->dev);
331 	int ret;
332 
333 	if (!mutex_trylock(&sw->tb->lock))
334 		return restart_syscall();
335 
336 	/*
337 	 * Since writing the NVM image might require some special steps,
338 	 * for example when CSS headers are written, we cache the image
339 	 * locally here and handle the special cases when the user asks
340 	 * us to authenticate the image.
341 	 */
342 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 	return ret;
346 }
347 
348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 	struct tb_nvm *nvm;
351 	int ret;
352 
353 	if (!nvm_readable(sw))
354 		return 0;
355 
356 	nvm = tb_nvm_alloc(&sw->dev);
357 	if (IS_ERR(nvm)) {
358 		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 		goto err_nvm;
360 	}
361 
362 	ret = tb_nvm_read_version(nvm);
363 	if (ret)
364 		goto err_nvm;
365 
366 	/*
367 	 * If the switch is in safe-mode the only accessible portion of
368 	 * the NVM is the non-active one where userspace is expected to
369 	 * write new functional NVM.
370 	 */
371 	if (!sw->safe_mode) {
372 		ret = tb_nvm_add_active(nvm, nvm_read);
373 		if (ret)
374 			goto err_nvm;
375 		tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
376 	}
377 
378 	if (!sw->no_nvm_upgrade) {
379 		ret = tb_nvm_add_non_active(nvm, nvm_write);
380 		if (ret)
381 			goto err_nvm;
382 	}
383 
384 	sw->nvm = nvm;
385 	return 0;
386 
387 err_nvm:
388 	tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 	sw->no_nvm_upgrade = true;
390 	if (!IS_ERR(nvm))
391 		tb_nvm_free(nvm);
392 
393 	return ret;
394 }
395 
396 static void tb_switch_nvm_remove(struct tb_switch *sw)
397 {
398 	struct tb_nvm *nvm;
399 
400 	nvm = sw->nvm;
401 	sw->nvm = NULL;
402 
403 	if (!nvm)
404 		return;
405 
406 	/* Remove authentication status in case the switch is unplugged */
407 	if (!nvm->authenticating)
408 		nvm_clear_auth_status(sw);
409 
410 	tb_nvm_free(nvm);
411 }
412 
413 /* port utility functions */
414 
415 static const char *tb_port_type(const struct tb_regs_port_header *port)
416 {
417 	switch (port->type >> 16) {
418 	case 0:
419 		switch ((u8) port->type) {
420 		case 0:
421 			return "Inactive";
422 		case 1:
423 			return "Port";
424 		case 2:
425 			return "NHI";
426 		default:
427 			return "unknown";
428 		}
429 	case 0x2:
430 		return "Ethernet";
431 	case 0x8:
432 		return "SATA";
433 	case 0xe:
434 		return "DP/HDMI";
435 	case 0x10:
436 		return "PCIe";
437 	case 0x20:
438 		return "USB";
439 	default:
440 		return "unknown";
441 	}
442 }
443 
444 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
445 {
446 	const struct tb_regs_port_header *regs = &port->config;
447 
448 	tb_dbg(tb,
449 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 	       regs->port_number, regs->vendor_id, regs->device_id,
451 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
452 	       regs->type);
453 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
454 	       regs->max_in_hop_id, regs->max_out_hop_id);
455 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
456 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
457 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
458 	       port->ctl_credits);
459 }
460 
461 /**
462  * tb_port_state() - get connectedness state of a port
463  * @port: the port to check
464  *
465  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
466  *
467  * Return: Returns an enum tb_port_state on success or an error code on failure.
468  */
469 int tb_port_state(struct tb_port *port)
470 {
471 	struct tb_cap_phy phy;
472 	int res;
473 	if (port->cap_phy == 0) {
474 		tb_port_WARN(port, "does not have a PHY\n");
475 		return -EINVAL;
476 	}
477 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
478 	if (res)
479 		return res;
480 	return phy.state;
481 }
482 
483 /**
484  * tb_wait_for_port() - wait for a port to become ready
485  * @port: Port to wait
486  * @wait_if_unplugged: Wait also when port is unplugged
487  *
488  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489  * wait_if_unplugged is set then we also wait if the port is in state
490  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491  * switch resume). Otherwise we only wait if a device is registered but the link
492  * has not yet been established.
493  *
494  * Return: Returns an error code on failure. Returns 0 if the port is not
495  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496  * if the port is connected and in state TB_PORT_UP.
497  */
498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
499 {
500 	int retries = 10;
501 	int state;
502 	if (!port->cap_phy) {
503 		tb_port_WARN(port, "does not have PHY\n");
504 		return -EINVAL;
505 	}
506 	if (tb_is_upstream_port(port)) {
507 		tb_port_WARN(port, "is the upstream port\n");
508 		return -EINVAL;
509 	}
510 
511 	while (retries--) {
512 		state = tb_port_state(port);
513 		switch (state) {
514 		case TB_PORT_DISABLED:
515 			tb_port_dbg(port, "is disabled (state: 0)\n");
516 			return 0;
517 
518 		case TB_PORT_UNPLUGGED:
519 			if (wait_if_unplugged) {
520 				/* used during resume */
521 				tb_port_dbg(port,
522 					    "is unplugged (state: 7), retrying...\n");
523 				msleep(100);
524 				break;
525 			}
526 			tb_port_dbg(port, "is unplugged (state: 7)\n");
527 			return 0;
528 
529 		case TB_PORT_UP:
530 		case TB_PORT_TX_CL0S:
531 		case TB_PORT_RX_CL0S:
532 		case TB_PORT_CL1:
533 		case TB_PORT_CL2:
534 			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
535 			return 1;
536 
537 		default:
538 			if (state < 0)
539 				return state;
540 
541 			/*
542 			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 			 * time.
544 			 */
545 			tb_port_dbg(port,
546 				    "is connected, link is not up (state: %d), retrying...\n",
547 				    state);
548 			msleep(100);
549 		}
550 
551 	}
552 	tb_port_warn(port,
553 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
554 	return 0;
555 }
556 
557 /**
558  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559  * @port: Port to add/remove NFC credits
560  * @credits: Credits to add/remove
561  *
562  * Change the number of NFC credits allocated to @port by @credits. To remove
563  * NFC credits pass a negative amount of credits.
564  *
565  * Return: Returns 0 on success or an error code on failure.
566  */
567 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
568 {
569 	u32 nfc_credits;
570 
571 	if (credits == 0 || port->sw->is_unplugged)
572 		return 0;
573 
574 	/*
575 	 * USB4 restricts programming NFC buffers to lane adapters only
576 	 * so skip other ports.
577 	 */
578 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
579 		return 0;
580 
581 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
582 	if (credits < 0)
583 		credits = max_t(int, -nfc_credits, credits);
584 
585 	nfc_credits += credits;
586 
587 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
589 
590 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 	port->config.nfc_credits |= nfc_credits;
592 
593 	return tb_port_write(port, &port->config.nfc_credits,
594 			     TB_CFG_PORT, ADP_CS_4, 1);
595 }
596 
597 /**
598  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599  * @port: Port whose counters to clear
600  * @counter: Counter index to clear
601  *
602  * Return: Returns 0 on success or an error code on failure.
603  */
604 int tb_port_clear_counter(struct tb_port *port, int counter)
605 {
606 	u32 zero[3] = { 0, 0, 0 };
607 	tb_port_dbg(port, "clearing counter %d\n", counter);
608 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
609 }
610 
611 /**
612  * tb_port_unlock() - Unlock downstream port
613  * @port: Port to unlock
614  *
615  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616  * downstream router accessible for CM.
617  */
618 int tb_port_unlock(struct tb_port *port)
619 {
620 	if (tb_switch_is_icm(port->sw))
621 		return 0;
622 	if (!tb_port_is_null(port))
623 		return -EINVAL;
624 	if (tb_switch_is_usb4(port->sw))
625 		return usb4_port_unlock(port);
626 	return 0;
627 }
628 
629 static int __tb_port_enable(struct tb_port *port, bool enable)
630 {
631 	int ret;
632 	u32 phy;
633 
634 	if (!tb_port_is_null(port))
635 		return -EINVAL;
636 
637 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 			   port->cap_phy + LANE_ADP_CS_1, 1);
639 	if (ret)
640 		return ret;
641 
642 	if (enable)
643 		phy &= ~LANE_ADP_CS_1_LD;
644 	else
645 		phy |= LANE_ADP_CS_1_LD;
646 
647 
648 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 			    port->cap_phy + LANE_ADP_CS_1, 1);
650 	if (ret)
651 		return ret;
652 
653 	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
654 	return 0;
655 }
656 
657 /**
658  * tb_port_enable() - Enable lane adapter
659  * @port: Port to enable (can be %NULL)
660  *
661  * This is used for lane 0 and 1 adapters to enable it.
662  */
663 int tb_port_enable(struct tb_port *port)
664 {
665 	return __tb_port_enable(port, true);
666 }
667 
668 /**
669  * tb_port_disable() - Disable lane adapter
670  * @port: Port to disable (can be %NULL)
671  *
672  * This is used for lane 0 and 1 adapters to disable it.
673  */
674 int tb_port_disable(struct tb_port *port)
675 {
676 	return __tb_port_enable(port, false);
677 }
678 
679 /*
680  * tb_init_port() - initialize a port
681  *
682  * This is a helper method for tb_switch_alloc. Does not check or initialize
683  * any downstream switches.
684  *
685  * Return: Returns 0 on success or an error code on failure.
686  */
687 static int tb_init_port(struct tb_port *port)
688 {
689 	int res;
690 	int cap;
691 
692 	INIT_LIST_HEAD(&port->list);
693 
694 	/* Control adapter does not have configuration space */
695 	if (!port->port)
696 		return 0;
697 
698 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
699 	if (res) {
700 		if (res == -ENODEV) {
701 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
702 			       port->port);
703 			port->disabled = true;
704 			return 0;
705 		}
706 		return res;
707 	}
708 
709 	/* Port 0 is the switch itself and has no PHY. */
710 	if (port->config.type == TB_TYPE_PORT) {
711 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
712 
713 		if (cap > 0)
714 			port->cap_phy = cap;
715 		else
716 			tb_port_WARN(port, "non switch port without a PHY\n");
717 
718 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
719 		if (cap > 0)
720 			port->cap_usb4 = cap;
721 
722 		/*
723 		 * USB4 ports the buffers allocated for the control path
724 		 * can be read from the path config space. Legacy
725 		 * devices we use hard-coded value.
726 		 */
727 		if (port->cap_usb4) {
728 			struct tb_regs_hop hop;
729 
730 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
731 				port->ctl_credits = hop.initial_credits;
732 		}
733 		if (!port->ctl_credits)
734 			port->ctl_credits = 2;
735 
736 	} else {
737 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
738 		if (cap > 0)
739 			port->cap_adap = cap;
740 	}
741 
742 	port->total_credits =
743 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
744 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
745 
746 	tb_dump_port(port->sw->tb, port);
747 	return 0;
748 }
749 
750 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
751 			       int max_hopid)
752 {
753 	int port_max_hopid;
754 	struct ida *ida;
755 
756 	if (in) {
757 		port_max_hopid = port->config.max_in_hop_id;
758 		ida = &port->in_hopids;
759 	} else {
760 		port_max_hopid = port->config.max_out_hop_id;
761 		ida = &port->out_hopids;
762 	}
763 
764 	/*
765 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
766 	 * reserved.
767 	 */
768 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
769 		min_hopid = TB_PATH_MIN_HOPID;
770 
771 	if (max_hopid < 0 || max_hopid > port_max_hopid)
772 		max_hopid = port_max_hopid;
773 
774 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
775 }
776 
777 /**
778  * tb_port_alloc_in_hopid() - Allocate input HopID from port
779  * @port: Port to allocate HopID for
780  * @min_hopid: Minimum acceptable input HopID
781  * @max_hopid: Maximum acceptable input HopID
782  *
783  * Return: HopID between @min_hopid and @max_hopid or negative errno in
784  * case of error.
785  */
786 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
787 {
788 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
789 }
790 
791 /**
792  * tb_port_alloc_out_hopid() - Allocate output HopID from port
793  * @port: Port to allocate HopID for
794  * @min_hopid: Minimum acceptable output HopID
795  * @max_hopid: Maximum acceptable output HopID
796  *
797  * Return: HopID between @min_hopid and @max_hopid or negative errno in
798  * case of error.
799  */
800 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
801 {
802 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
803 }
804 
805 /**
806  * tb_port_release_in_hopid() - Release allocated input HopID from port
807  * @port: Port whose HopID to release
808  * @hopid: HopID to release
809  */
810 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
811 {
812 	ida_simple_remove(&port->in_hopids, hopid);
813 }
814 
815 /**
816  * tb_port_release_out_hopid() - Release allocated output HopID from port
817  * @port: Port whose HopID to release
818  * @hopid: HopID to release
819  */
820 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
821 {
822 	ida_simple_remove(&port->out_hopids, hopid);
823 }
824 
825 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
826 					  const struct tb_switch *sw)
827 {
828 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
829 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
830 }
831 
832 /**
833  * tb_next_port_on_path() - Return next port for given port on a path
834  * @start: Start port of the walk
835  * @end: End port of the walk
836  * @prev: Previous port (%NULL if this is the first)
837  *
838  * This function can be used to walk from one port to another if they
839  * are connected through zero or more switches. If the @prev is dual
840  * link port, the function follows that link and returns another end on
841  * that same link.
842  *
843  * If the @end port has been reached, return %NULL.
844  *
845  * Domain tb->lock must be held when this function is called.
846  */
847 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
848 				     struct tb_port *prev)
849 {
850 	struct tb_port *next;
851 
852 	if (!prev)
853 		return start;
854 
855 	if (prev->sw == end->sw) {
856 		if (prev == end)
857 			return NULL;
858 		return end;
859 	}
860 
861 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
862 		next = tb_port_at(tb_route(end->sw), prev->sw);
863 		/* Walk down the topology if next == prev */
864 		if (prev->remote &&
865 		    (next == prev || next->dual_link_port == prev))
866 			next = prev->remote;
867 	} else {
868 		if (tb_is_upstream_port(prev)) {
869 			next = prev->remote;
870 		} else {
871 			next = tb_upstream_port(prev->sw);
872 			/*
873 			 * Keep the same link if prev and next are both
874 			 * dual link ports.
875 			 */
876 			if (next->dual_link_port &&
877 			    next->link_nr != prev->link_nr) {
878 				next = next->dual_link_port;
879 			}
880 		}
881 	}
882 
883 	return next != prev ? next : NULL;
884 }
885 
886 /**
887  * tb_port_get_link_speed() - Get current link speed
888  * @port: Port to check (USB4 or CIO)
889  *
890  * Returns link speed in Gb/s or negative errno in case of failure.
891  */
892 int tb_port_get_link_speed(struct tb_port *port)
893 {
894 	u32 val, speed;
895 	int ret;
896 
897 	if (!port->cap_phy)
898 		return -EINVAL;
899 
900 	ret = tb_port_read(port, &val, TB_CFG_PORT,
901 			   port->cap_phy + LANE_ADP_CS_1, 1);
902 	if (ret)
903 		return ret;
904 
905 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
906 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
907 
908 	switch (speed) {
909 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
910 		return 40;
911 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
912 		return 20;
913 	default:
914 		return 10;
915 	}
916 }
917 
918 /**
919  * tb_port_get_link_generation() - Returns link generation
920  * @port: Lane adapter
921  *
922  * Returns link generation as number or negative errno in case of
923  * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
924  * links so for those always returns 2.
925  */
926 int tb_port_get_link_generation(struct tb_port *port)
927 {
928 	int ret;
929 
930 	ret = tb_port_get_link_speed(port);
931 	if (ret < 0)
932 		return ret;
933 
934 	switch (ret) {
935 	case 40:
936 		return 4;
937 	case 20:
938 		return 3;
939 	default:
940 		return 2;
941 	}
942 }
943 
944 /**
945  * tb_port_get_link_width() - Get current link width
946  * @port: Port to check (USB4 or CIO)
947  *
948  * Returns link width. Return the link width as encoded in &enum
949  * tb_link_width or negative errno in case of failure.
950  */
951 int tb_port_get_link_width(struct tb_port *port)
952 {
953 	u32 val;
954 	int ret;
955 
956 	if (!port->cap_phy)
957 		return -EINVAL;
958 
959 	ret = tb_port_read(port, &val, TB_CFG_PORT,
960 			   port->cap_phy + LANE_ADP_CS_1, 1);
961 	if (ret)
962 		return ret;
963 
964 	/* Matches the values in enum tb_link_width */
965 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
966 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
967 }
968 
969 /**
970  * tb_port_width_supported() - Is the given link width supported
971  * @port: Port to check
972  * @width: Widths to check (bitmask)
973  *
974  * Can be called to any lane adapter. Checks if given @width is
975  * supported by the hardware and returns %true if it is.
976  */
977 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
978 {
979 	u32 phy, widths;
980 	int ret;
981 
982 	if (!port->cap_phy)
983 		return false;
984 
985 	if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
986 		if (tb_port_get_link_generation(port) < 4 ||
987 		    !usb4_port_asym_supported(port))
988 			return false;
989 	}
990 
991 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
992 			   port->cap_phy + LANE_ADP_CS_0, 1);
993 	if (ret)
994 		return false;
995 
996 	/*
997 	 * The field encoding is the same as &enum tb_link_width (which is
998 	 * passed to @width).
999 	 */
1000 	widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1001 	return widths & width;
1002 }
1003 
1004 /**
1005  * tb_port_set_link_width() - Set target link width of the lane adapter
1006  * @port: Lane adapter
1007  * @width: Target link width
1008  *
1009  * Sets the target link width of the lane adapter to @width. Does not
1010  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1011  *
1012  * Return: %0 in case of success and negative errno in case of error
1013  */
1014 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1015 {
1016 	u32 val;
1017 	int ret;
1018 
1019 	if (!port->cap_phy)
1020 		return -EINVAL;
1021 
1022 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1023 			   port->cap_phy + LANE_ADP_CS_1, 1);
1024 	if (ret)
1025 		return ret;
1026 
1027 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1028 	switch (width) {
1029 	case TB_LINK_WIDTH_SINGLE:
1030 		/* Gen 4 link cannot be single */
1031 		if (tb_port_get_link_generation(port) >= 4)
1032 			return -EOPNOTSUPP;
1033 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1034 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1035 		break;
1036 
1037 	case TB_LINK_WIDTH_DUAL:
1038 		if (tb_port_get_link_generation(port) >= 4)
1039 			return usb4_port_asym_set_link_width(port, width);
1040 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1041 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1042 		break;
1043 
1044 	case TB_LINK_WIDTH_ASYM_TX:
1045 	case TB_LINK_WIDTH_ASYM_RX:
1046 		return usb4_port_asym_set_link_width(port, width);
1047 
1048 	default:
1049 		return -EINVAL;
1050 	}
1051 
1052 	return tb_port_write(port, &val, TB_CFG_PORT,
1053 			     port->cap_phy + LANE_ADP_CS_1, 1);
1054 }
1055 
1056 /**
1057  * tb_port_set_lane_bonding() - Enable/disable lane bonding
1058  * @port: Lane adapter
1059  * @bonding: enable/disable bonding
1060  *
1061  * Enables or disables lane bonding. This should be called after target
1062  * link width has been set (tb_port_set_link_width()). Note in most
1063  * cases one should use tb_port_lane_bonding_enable() instead to enable
1064  * lane bonding.
1065  *
1066  * Return: %0 in case of success and negative errno in case of error
1067  */
1068 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1069 {
1070 	u32 val;
1071 	int ret;
1072 
1073 	if (!port->cap_phy)
1074 		return -EINVAL;
1075 
1076 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1077 			   port->cap_phy + LANE_ADP_CS_1, 1);
1078 	if (ret)
1079 		return ret;
1080 
1081 	if (bonding)
1082 		val |= LANE_ADP_CS_1_LB;
1083 	else
1084 		val &= ~LANE_ADP_CS_1_LB;
1085 
1086 	return tb_port_write(port, &val, TB_CFG_PORT,
1087 			     port->cap_phy + LANE_ADP_CS_1, 1);
1088 }
1089 
1090 /**
1091  * tb_port_lane_bonding_enable() - Enable bonding on port
1092  * @port: port to enable
1093  *
1094  * Enable bonding by setting the link width of the port and the other
1095  * port in case of dual link port. Does not wait for the link to
1096  * actually reach the bonded state so caller needs to call
1097  * tb_port_wait_for_link_width() before enabling any paths through the
1098  * link to make sure the link is in expected state.
1099  *
1100  * Return: %0 in case of success and negative errno in case of error
1101  */
1102 int tb_port_lane_bonding_enable(struct tb_port *port)
1103 {
1104 	enum tb_link_width width;
1105 	int ret;
1106 
1107 	/*
1108 	 * Enable lane bonding for both links if not already enabled by
1109 	 * for example the boot firmware.
1110 	 */
1111 	width = tb_port_get_link_width(port);
1112 	if (width == TB_LINK_WIDTH_SINGLE) {
1113 		ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1114 		if (ret)
1115 			goto err_lane0;
1116 	}
1117 
1118 	width = tb_port_get_link_width(port->dual_link_port);
1119 	if (width == TB_LINK_WIDTH_SINGLE) {
1120 		ret = tb_port_set_link_width(port->dual_link_port,
1121 					     TB_LINK_WIDTH_DUAL);
1122 		if (ret)
1123 			goto err_lane0;
1124 	}
1125 
1126 	/*
1127 	 * Only set bonding if the link was not already bonded. This
1128 	 * avoids the lane adapter to re-enter bonding state.
1129 	 */
1130 	if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1131 		ret = tb_port_set_lane_bonding(port, true);
1132 		if (ret)
1133 			goto err_lane1;
1134 	}
1135 
1136 	/*
1137 	 * When lane 0 bonding is set it will affect lane 1 too so
1138 	 * update both.
1139 	 */
1140 	port->bonded = true;
1141 	port->dual_link_port->bonded = true;
1142 
1143 	return 0;
1144 
1145 err_lane1:
1146 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1147 err_lane0:
1148 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1149 
1150 	return ret;
1151 }
1152 
1153 /**
1154  * tb_port_lane_bonding_disable() - Disable bonding on port
1155  * @port: port to disable
1156  *
1157  * Disable bonding by setting the link width of the port and the
1158  * other port in case of dual link port.
1159  */
1160 void tb_port_lane_bonding_disable(struct tb_port *port)
1161 {
1162 	tb_port_set_lane_bonding(port, false);
1163 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1164 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1165 	port->dual_link_port->bonded = false;
1166 	port->bonded = false;
1167 }
1168 
1169 /**
1170  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1171  * @port: Port to wait for
1172  * @width: Expected link width (bitmask)
1173  * @timeout_msec: Timeout in ms how long to wait
1174  *
1175  * Should be used after both ends of the link have been bonded (or
1176  * bonding has been disabled) to wait until the link actually reaches
1177  * the expected state. Returns %-ETIMEDOUT if the width was not reached
1178  * within the given timeout, %0 if it did. Can be passed a mask of
1179  * expected widths and succeeds if any of the widths is reached.
1180  */
1181 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1182 				int timeout_msec)
1183 {
1184 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1185 	int ret;
1186 
1187 	/* Gen 4 link does not support single lane */
1188 	if ((width & TB_LINK_WIDTH_SINGLE) &&
1189 	    tb_port_get_link_generation(port) >= 4)
1190 		return -EOPNOTSUPP;
1191 
1192 	do {
1193 		ret = tb_port_get_link_width(port);
1194 		if (ret < 0) {
1195 			/*
1196 			 * Sometimes we get port locked error when
1197 			 * polling the lanes so we can ignore it and
1198 			 * retry.
1199 			 */
1200 			if (ret != -EACCES)
1201 				return ret;
1202 		} else if (ret & width) {
1203 			return 0;
1204 		}
1205 
1206 		usleep_range(1000, 2000);
1207 	} while (ktime_before(ktime_get(), timeout));
1208 
1209 	return -ETIMEDOUT;
1210 }
1211 
1212 static int tb_port_do_update_credits(struct tb_port *port)
1213 {
1214 	u32 nfc_credits;
1215 	int ret;
1216 
1217 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1218 	if (ret)
1219 		return ret;
1220 
1221 	if (nfc_credits != port->config.nfc_credits) {
1222 		u32 total;
1223 
1224 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1225 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1226 
1227 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1228 			    port->total_credits, total);
1229 
1230 		port->config.nfc_credits = nfc_credits;
1231 		port->total_credits = total;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 /**
1238  * tb_port_update_credits() - Re-read port total credits
1239  * @port: Port to update
1240  *
1241  * After the link is bonded (or bonding was disabled) the port total
1242  * credits may change, so this function needs to be called to re-read
1243  * the credits. Updates also the second lane adapter.
1244  */
1245 int tb_port_update_credits(struct tb_port *port)
1246 {
1247 	int ret;
1248 
1249 	ret = tb_port_do_update_credits(port);
1250 	if (ret)
1251 		return ret;
1252 	return tb_port_do_update_credits(port->dual_link_port);
1253 }
1254 
1255 static int tb_port_start_lane_initialization(struct tb_port *port)
1256 {
1257 	int ret;
1258 
1259 	if (tb_switch_is_usb4(port->sw))
1260 		return 0;
1261 
1262 	ret = tb_lc_start_lane_initialization(port);
1263 	return ret == -EINVAL ? 0 : ret;
1264 }
1265 
1266 /*
1267  * Returns true if the port had something (router, XDomain) connected
1268  * before suspend.
1269  */
1270 static bool tb_port_resume(struct tb_port *port)
1271 {
1272 	bool has_remote = tb_port_has_remote(port);
1273 
1274 	if (port->usb4) {
1275 		usb4_port_device_resume(port->usb4);
1276 	} else if (!has_remote) {
1277 		/*
1278 		 * For disconnected downstream lane adapters start lane
1279 		 * initialization now so we detect future connects.
1280 		 *
1281 		 * For XDomain start the lane initialzation now so the
1282 		 * link gets re-established.
1283 		 *
1284 		 * This is only needed for non-USB4 ports.
1285 		 */
1286 		if (!tb_is_upstream_port(port) || port->xdomain)
1287 			tb_port_start_lane_initialization(port);
1288 	}
1289 
1290 	return has_remote || port->xdomain;
1291 }
1292 
1293 /**
1294  * tb_port_is_enabled() - Is the adapter port enabled
1295  * @port: Port to check
1296  */
1297 bool tb_port_is_enabled(struct tb_port *port)
1298 {
1299 	switch (port->config.type) {
1300 	case TB_TYPE_PCIE_UP:
1301 	case TB_TYPE_PCIE_DOWN:
1302 		return tb_pci_port_is_enabled(port);
1303 
1304 	case TB_TYPE_DP_HDMI_IN:
1305 	case TB_TYPE_DP_HDMI_OUT:
1306 		return tb_dp_port_is_enabled(port);
1307 
1308 	case TB_TYPE_USB3_UP:
1309 	case TB_TYPE_USB3_DOWN:
1310 		return tb_usb3_port_is_enabled(port);
1311 
1312 	default:
1313 		return false;
1314 	}
1315 }
1316 
1317 /**
1318  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1319  * @port: USB3 adapter port to check
1320  */
1321 bool tb_usb3_port_is_enabled(struct tb_port *port)
1322 {
1323 	u32 data;
1324 
1325 	if (tb_port_read(port, &data, TB_CFG_PORT,
1326 			 port->cap_adap + ADP_USB3_CS_0, 1))
1327 		return false;
1328 
1329 	return !!(data & ADP_USB3_CS_0_PE);
1330 }
1331 
1332 /**
1333  * tb_usb3_port_enable() - Enable USB3 adapter port
1334  * @port: USB3 adapter port to enable
1335  * @enable: Enable/disable the USB3 adapter
1336  */
1337 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1338 {
1339 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1340 			  : ADP_USB3_CS_0_V;
1341 
1342 	if (!port->cap_adap)
1343 		return -ENXIO;
1344 	return tb_port_write(port, &word, TB_CFG_PORT,
1345 			     port->cap_adap + ADP_USB3_CS_0, 1);
1346 }
1347 
1348 /**
1349  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1350  * @port: PCIe port to check
1351  */
1352 bool tb_pci_port_is_enabled(struct tb_port *port)
1353 {
1354 	u32 data;
1355 
1356 	if (tb_port_read(port, &data, TB_CFG_PORT,
1357 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1358 		return false;
1359 
1360 	return !!(data & ADP_PCIE_CS_0_PE);
1361 }
1362 
1363 /**
1364  * tb_pci_port_enable() - Enable PCIe adapter port
1365  * @port: PCIe port to enable
1366  * @enable: Enable/disable the PCIe adapter
1367  */
1368 int tb_pci_port_enable(struct tb_port *port, bool enable)
1369 {
1370 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1371 	if (!port->cap_adap)
1372 		return -ENXIO;
1373 	return tb_port_write(port, &word, TB_CFG_PORT,
1374 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1375 }
1376 
1377 /**
1378  * tb_dp_port_hpd_is_active() - Is HPD already active
1379  * @port: DP out port to check
1380  *
1381  * Checks if the DP OUT adapter port has HPD bit already set.
1382  */
1383 int tb_dp_port_hpd_is_active(struct tb_port *port)
1384 {
1385 	u32 data;
1386 	int ret;
1387 
1388 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1389 			   port->cap_adap + ADP_DP_CS_2, 1);
1390 	if (ret)
1391 		return ret;
1392 
1393 	return !!(data & ADP_DP_CS_2_HPD);
1394 }
1395 
1396 /**
1397  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1398  * @port: Port to clear HPD
1399  *
1400  * If the DP IN port has HPD set, this function can be used to clear it.
1401  */
1402 int tb_dp_port_hpd_clear(struct tb_port *port)
1403 {
1404 	u32 data;
1405 	int ret;
1406 
1407 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1408 			   port->cap_adap + ADP_DP_CS_3, 1);
1409 	if (ret)
1410 		return ret;
1411 
1412 	data |= ADP_DP_CS_3_HPDC;
1413 	return tb_port_write(port, &data, TB_CFG_PORT,
1414 			     port->cap_adap + ADP_DP_CS_3, 1);
1415 }
1416 
1417 /**
1418  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1419  * @port: DP IN/OUT port to set hops
1420  * @video: Video Hop ID
1421  * @aux_tx: AUX TX Hop ID
1422  * @aux_rx: AUX RX Hop ID
1423  *
1424  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1425  * router DP adapters too but does not program the values as the fields
1426  * are read-only.
1427  */
1428 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1429 			unsigned int aux_tx, unsigned int aux_rx)
1430 {
1431 	u32 data[2];
1432 	int ret;
1433 
1434 	if (tb_switch_is_usb4(port->sw))
1435 		return 0;
1436 
1437 	ret = tb_port_read(port, data, TB_CFG_PORT,
1438 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1439 	if (ret)
1440 		return ret;
1441 
1442 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1443 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1444 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1445 
1446 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1447 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1448 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1449 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1450 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1451 
1452 	return tb_port_write(port, data, TB_CFG_PORT,
1453 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1454 }
1455 
1456 /**
1457  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1458  * @port: DP adapter port to check
1459  */
1460 bool tb_dp_port_is_enabled(struct tb_port *port)
1461 {
1462 	u32 data[2];
1463 
1464 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1465 			 ARRAY_SIZE(data)))
1466 		return false;
1467 
1468 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1469 }
1470 
1471 /**
1472  * tb_dp_port_enable() - Enables/disables DP paths of a port
1473  * @port: DP IN/OUT port
1474  * @enable: Enable/disable DP path
1475  *
1476  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1477  * calling this function.
1478  */
1479 int tb_dp_port_enable(struct tb_port *port, bool enable)
1480 {
1481 	u32 data[2];
1482 	int ret;
1483 
1484 	ret = tb_port_read(port, data, TB_CFG_PORT,
1485 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1486 	if (ret)
1487 		return ret;
1488 
1489 	if (enable)
1490 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1491 	else
1492 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1493 
1494 	return tb_port_write(port, data, TB_CFG_PORT,
1495 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1496 }
1497 
1498 /* switch utility functions */
1499 
1500 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1501 {
1502 	switch (sw->generation) {
1503 	case 1:
1504 		return "Thunderbolt 1";
1505 	case 2:
1506 		return "Thunderbolt 2";
1507 	case 3:
1508 		return "Thunderbolt 3";
1509 	case 4:
1510 		return "USB4";
1511 	default:
1512 		return "Unknown";
1513 	}
1514 }
1515 
1516 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1517 {
1518 	const struct tb_regs_switch_header *regs = &sw->config;
1519 
1520 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1521 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1522 	       regs->revision, regs->thunderbolt_version);
1523 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1524 	tb_dbg(tb, "  Config:\n");
1525 	tb_dbg(tb,
1526 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1527 	       regs->upstream_port_number, regs->depth,
1528 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1529 	       regs->enabled, regs->plug_events_delay);
1530 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1531 	       regs->__unknown1, regs->__unknown4);
1532 }
1533 
1534 /**
1535  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1536  * @sw: Switch to reset
1537  *
1538  * Return: Returns 0 on success or an error code on failure.
1539  */
1540 int tb_switch_reset(struct tb_switch *sw)
1541 {
1542 	struct tb_cfg_result res;
1543 
1544 	if (sw->generation > 1)
1545 		return 0;
1546 
1547 	tb_sw_dbg(sw, "resetting switch\n");
1548 
1549 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1550 			      TB_CFG_SWITCH, 2, 2);
1551 	if (res.err)
1552 		return res.err;
1553 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1554 	if (res.err > 0)
1555 		return -EIO;
1556 	return res.err;
1557 }
1558 
1559 /**
1560  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1561  * @sw: Router to read the offset value from
1562  * @offset: Offset in the router config space to read from
1563  * @bit: Bit mask in the offset to wait for
1564  * @value: Value of the bits to wait for
1565  * @timeout_msec: Timeout in ms how long to wait
1566  *
1567  * Wait till the specified bits in specified offset reach specified value.
1568  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1569  * within the given timeout or a negative errno in case of failure.
1570  */
1571 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1572 			   u32 value, int timeout_msec)
1573 {
1574 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1575 
1576 	do {
1577 		u32 val;
1578 		int ret;
1579 
1580 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1581 		if (ret)
1582 			return ret;
1583 
1584 		if ((val & bit) == value)
1585 			return 0;
1586 
1587 		usleep_range(50, 100);
1588 	} while (ktime_before(ktime_get(), timeout));
1589 
1590 	return -ETIMEDOUT;
1591 }
1592 
1593 /*
1594  * tb_plug_events_active() - enable/disable plug events on a switch
1595  *
1596  * Also configures a sane plug_events_delay of 255ms.
1597  *
1598  * Return: Returns 0 on success or an error code on failure.
1599  */
1600 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1601 {
1602 	u32 data;
1603 	int res;
1604 
1605 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1606 		return 0;
1607 
1608 	sw->config.plug_events_delay = 0xff;
1609 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1610 	if (res)
1611 		return res;
1612 
1613 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1614 	if (res)
1615 		return res;
1616 
1617 	if (active) {
1618 		data = data & 0xFFFFFF83;
1619 		switch (sw->config.device_id) {
1620 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1621 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1622 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1623 			break;
1624 		default:
1625 			/*
1626 			 * Skip Alpine Ridge, it needs to have vendor
1627 			 * specific USB hotplug event enabled for the
1628 			 * internal xHCI to work.
1629 			 */
1630 			if (!tb_switch_is_alpine_ridge(sw))
1631 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1632 		}
1633 	} else {
1634 		data = data | 0x7c;
1635 	}
1636 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1637 			   sw->cap_plug_events + 1, 1);
1638 }
1639 
1640 static ssize_t authorized_show(struct device *dev,
1641 			       struct device_attribute *attr,
1642 			       char *buf)
1643 {
1644 	struct tb_switch *sw = tb_to_switch(dev);
1645 
1646 	return sysfs_emit(buf, "%u\n", sw->authorized);
1647 }
1648 
1649 static int disapprove_switch(struct device *dev, void *not_used)
1650 {
1651 	char *envp[] = { "AUTHORIZED=0", NULL };
1652 	struct tb_switch *sw;
1653 
1654 	sw = tb_to_switch(dev);
1655 	if (sw && sw->authorized) {
1656 		int ret;
1657 
1658 		/* First children */
1659 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1660 		if (ret)
1661 			return ret;
1662 
1663 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1664 		if (ret)
1665 			return ret;
1666 
1667 		sw->authorized = 0;
1668 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1675 {
1676 	char envp_string[13];
1677 	int ret = -EINVAL;
1678 	char *envp[] = { envp_string, NULL };
1679 
1680 	if (!mutex_trylock(&sw->tb->lock))
1681 		return restart_syscall();
1682 
1683 	if (!!sw->authorized == !!val)
1684 		goto unlock;
1685 
1686 	switch (val) {
1687 	/* Disapprove switch */
1688 	case 0:
1689 		if (tb_route(sw)) {
1690 			ret = disapprove_switch(&sw->dev, NULL);
1691 			goto unlock;
1692 		}
1693 		break;
1694 
1695 	/* Approve switch */
1696 	case 1:
1697 		if (sw->key)
1698 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1699 		else
1700 			ret = tb_domain_approve_switch(sw->tb, sw);
1701 		break;
1702 
1703 	/* Challenge switch */
1704 	case 2:
1705 		if (sw->key)
1706 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1707 		break;
1708 
1709 	default:
1710 		break;
1711 	}
1712 
1713 	if (!ret) {
1714 		sw->authorized = val;
1715 		/*
1716 		 * Notify status change to the userspace, informing the new
1717 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1718 		 */
1719 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1720 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1721 	}
1722 
1723 unlock:
1724 	mutex_unlock(&sw->tb->lock);
1725 	return ret;
1726 }
1727 
1728 static ssize_t authorized_store(struct device *dev,
1729 				struct device_attribute *attr,
1730 				const char *buf, size_t count)
1731 {
1732 	struct tb_switch *sw = tb_to_switch(dev);
1733 	unsigned int val;
1734 	ssize_t ret;
1735 
1736 	ret = kstrtouint(buf, 0, &val);
1737 	if (ret)
1738 		return ret;
1739 	if (val > 2)
1740 		return -EINVAL;
1741 
1742 	pm_runtime_get_sync(&sw->dev);
1743 	ret = tb_switch_set_authorized(sw, val);
1744 	pm_runtime_mark_last_busy(&sw->dev);
1745 	pm_runtime_put_autosuspend(&sw->dev);
1746 
1747 	return ret ? ret : count;
1748 }
1749 static DEVICE_ATTR_RW(authorized);
1750 
1751 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1752 			 char *buf)
1753 {
1754 	struct tb_switch *sw = tb_to_switch(dev);
1755 
1756 	return sysfs_emit(buf, "%u\n", sw->boot);
1757 }
1758 static DEVICE_ATTR_RO(boot);
1759 
1760 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1761 			   char *buf)
1762 {
1763 	struct tb_switch *sw = tb_to_switch(dev);
1764 
1765 	return sysfs_emit(buf, "%#x\n", sw->device);
1766 }
1767 static DEVICE_ATTR_RO(device);
1768 
1769 static ssize_t
1770 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1771 {
1772 	struct tb_switch *sw = tb_to_switch(dev);
1773 
1774 	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1775 }
1776 static DEVICE_ATTR_RO(device_name);
1777 
1778 static ssize_t
1779 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1780 {
1781 	struct tb_switch *sw = tb_to_switch(dev);
1782 
1783 	return sysfs_emit(buf, "%u\n", sw->generation);
1784 }
1785 static DEVICE_ATTR_RO(generation);
1786 
1787 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1788 			char *buf)
1789 {
1790 	struct tb_switch *sw = tb_to_switch(dev);
1791 	ssize_t ret;
1792 
1793 	if (!mutex_trylock(&sw->tb->lock))
1794 		return restart_syscall();
1795 
1796 	if (sw->key)
1797 		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1798 	else
1799 		ret = sysfs_emit(buf, "\n");
1800 
1801 	mutex_unlock(&sw->tb->lock);
1802 	return ret;
1803 }
1804 
1805 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1806 			 const char *buf, size_t count)
1807 {
1808 	struct tb_switch *sw = tb_to_switch(dev);
1809 	u8 key[TB_SWITCH_KEY_SIZE];
1810 	ssize_t ret = count;
1811 	bool clear = false;
1812 
1813 	if (!strcmp(buf, "\n"))
1814 		clear = true;
1815 	else if (hex2bin(key, buf, sizeof(key)))
1816 		return -EINVAL;
1817 
1818 	if (!mutex_trylock(&sw->tb->lock))
1819 		return restart_syscall();
1820 
1821 	if (sw->authorized) {
1822 		ret = -EBUSY;
1823 	} else {
1824 		kfree(sw->key);
1825 		if (clear) {
1826 			sw->key = NULL;
1827 		} else {
1828 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1829 			if (!sw->key)
1830 				ret = -ENOMEM;
1831 		}
1832 	}
1833 
1834 	mutex_unlock(&sw->tb->lock);
1835 	return ret;
1836 }
1837 static DEVICE_ATTR(key, 0600, key_show, key_store);
1838 
1839 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1840 			  char *buf)
1841 {
1842 	struct tb_switch *sw = tb_to_switch(dev);
1843 
1844 	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1845 }
1846 
1847 /*
1848  * Currently all lanes must run at the same speed but we expose here
1849  * both directions to allow possible asymmetric links in the future.
1850  */
1851 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1852 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1853 
1854 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1855 			     char *buf)
1856 {
1857 	struct tb_switch *sw = tb_to_switch(dev);
1858 	unsigned int width;
1859 
1860 	switch (sw->link_width) {
1861 	case TB_LINK_WIDTH_SINGLE:
1862 	case TB_LINK_WIDTH_ASYM_TX:
1863 		width = 1;
1864 		break;
1865 	case TB_LINK_WIDTH_DUAL:
1866 		width = 2;
1867 		break;
1868 	case TB_LINK_WIDTH_ASYM_RX:
1869 		width = 3;
1870 		break;
1871 	default:
1872 		WARN_ON_ONCE(1);
1873 		return -EINVAL;
1874 	}
1875 
1876 	return sysfs_emit(buf, "%u\n", width);
1877 }
1878 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1879 
1880 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1881 			     char *buf)
1882 {
1883 	struct tb_switch *sw = tb_to_switch(dev);
1884 	unsigned int width;
1885 
1886 	switch (sw->link_width) {
1887 	case TB_LINK_WIDTH_SINGLE:
1888 	case TB_LINK_WIDTH_ASYM_RX:
1889 		width = 1;
1890 		break;
1891 	case TB_LINK_WIDTH_DUAL:
1892 		width = 2;
1893 		break;
1894 	case TB_LINK_WIDTH_ASYM_TX:
1895 		width = 3;
1896 		break;
1897 	default:
1898 		WARN_ON_ONCE(1);
1899 		return -EINVAL;
1900 	}
1901 
1902 	return sysfs_emit(buf, "%u\n", width);
1903 }
1904 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1905 
1906 static ssize_t nvm_authenticate_show(struct device *dev,
1907 	struct device_attribute *attr, char *buf)
1908 {
1909 	struct tb_switch *sw = tb_to_switch(dev);
1910 	u32 status;
1911 
1912 	nvm_get_auth_status(sw, &status);
1913 	return sysfs_emit(buf, "%#x\n", status);
1914 }
1915 
1916 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1917 				      bool disconnect)
1918 {
1919 	struct tb_switch *sw = tb_to_switch(dev);
1920 	int val, ret;
1921 
1922 	pm_runtime_get_sync(&sw->dev);
1923 
1924 	if (!mutex_trylock(&sw->tb->lock)) {
1925 		ret = restart_syscall();
1926 		goto exit_rpm;
1927 	}
1928 
1929 	if (sw->no_nvm_upgrade) {
1930 		ret = -EOPNOTSUPP;
1931 		goto exit_unlock;
1932 	}
1933 
1934 	/* If NVMem devices are not yet added */
1935 	if (!sw->nvm) {
1936 		ret = -EAGAIN;
1937 		goto exit_unlock;
1938 	}
1939 
1940 	ret = kstrtoint(buf, 10, &val);
1941 	if (ret)
1942 		goto exit_unlock;
1943 
1944 	/* Always clear the authentication status */
1945 	nvm_clear_auth_status(sw);
1946 
1947 	if (val > 0) {
1948 		if (val == AUTHENTICATE_ONLY) {
1949 			if (disconnect)
1950 				ret = -EINVAL;
1951 			else
1952 				ret = nvm_authenticate(sw, true);
1953 		} else {
1954 			if (!sw->nvm->flushed) {
1955 				if (!sw->nvm->buf) {
1956 					ret = -EINVAL;
1957 					goto exit_unlock;
1958 				}
1959 
1960 				ret = nvm_validate_and_write(sw);
1961 				if (ret || val == WRITE_ONLY)
1962 					goto exit_unlock;
1963 			}
1964 			if (val == WRITE_AND_AUTHENTICATE) {
1965 				if (disconnect)
1966 					ret = tb_lc_force_power(sw);
1967 				else
1968 					ret = nvm_authenticate(sw, false);
1969 			}
1970 		}
1971 	}
1972 
1973 exit_unlock:
1974 	mutex_unlock(&sw->tb->lock);
1975 exit_rpm:
1976 	pm_runtime_mark_last_busy(&sw->dev);
1977 	pm_runtime_put_autosuspend(&sw->dev);
1978 
1979 	return ret;
1980 }
1981 
1982 static ssize_t nvm_authenticate_store(struct device *dev,
1983 	struct device_attribute *attr, const char *buf, size_t count)
1984 {
1985 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1986 	if (ret)
1987 		return ret;
1988 	return count;
1989 }
1990 static DEVICE_ATTR_RW(nvm_authenticate);
1991 
1992 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1993 	struct device_attribute *attr, char *buf)
1994 {
1995 	return nvm_authenticate_show(dev, attr, buf);
1996 }
1997 
1998 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1999 	struct device_attribute *attr, const char *buf, size_t count)
2000 {
2001 	int ret;
2002 
2003 	ret = nvm_authenticate_sysfs(dev, buf, true);
2004 	return ret ? ret : count;
2005 }
2006 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2007 
2008 static ssize_t nvm_version_show(struct device *dev,
2009 				struct device_attribute *attr, char *buf)
2010 {
2011 	struct tb_switch *sw = tb_to_switch(dev);
2012 	int ret;
2013 
2014 	if (!mutex_trylock(&sw->tb->lock))
2015 		return restart_syscall();
2016 
2017 	if (sw->safe_mode)
2018 		ret = -ENODATA;
2019 	else if (!sw->nvm)
2020 		ret = -EAGAIN;
2021 	else
2022 		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2023 
2024 	mutex_unlock(&sw->tb->lock);
2025 
2026 	return ret;
2027 }
2028 static DEVICE_ATTR_RO(nvm_version);
2029 
2030 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2031 			   char *buf)
2032 {
2033 	struct tb_switch *sw = tb_to_switch(dev);
2034 
2035 	return sysfs_emit(buf, "%#x\n", sw->vendor);
2036 }
2037 static DEVICE_ATTR_RO(vendor);
2038 
2039 static ssize_t
2040 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2041 {
2042 	struct tb_switch *sw = tb_to_switch(dev);
2043 
2044 	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2045 }
2046 static DEVICE_ATTR_RO(vendor_name);
2047 
2048 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2049 			      char *buf)
2050 {
2051 	struct tb_switch *sw = tb_to_switch(dev);
2052 
2053 	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2054 }
2055 static DEVICE_ATTR_RO(unique_id);
2056 
2057 static struct attribute *switch_attrs[] = {
2058 	&dev_attr_authorized.attr,
2059 	&dev_attr_boot.attr,
2060 	&dev_attr_device.attr,
2061 	&dev_attr_device_name.attr,
2062 	&dev_attr_generation.attr,
2063 	&dev_attr_key.attr,
2064 	&dev_attr_nvm_authenticate.attr,
2065 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2066 	&dev_attr_nvm_version.attr,
2067 	&dev_attr_rx_speed.attr,
2068 	&dev_attr_rx_lanes.attr,
2069 	&dev_attr_tx_speed.attr,
2070 	&dev_attr_tx_lanes.attr,
2071 	&dev_attr_vendor.attr,
2072 	&dev_attr_vendor_name.attr,
2073 	&dev_attr_unique_id.attr,
2074 	NULL,
2075 };
2076 
2077 static umode_t switch_attr_is_visible(struct kobject *kobj,
2078 				      struct attribute *attr, int n)
2079 {
2080 	struct device *dev = kobj_to_dev(kobj);
2081 	struct tb_switch *sw = tb_to_switch(dev);
2082 
2083 	if (attr == &dev_attr_authorized.attr) {
2084 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2085 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2086 			return 0;
2087 	} else if (attr == &dev_attr_device.attr) {
2088 		if (!sw->device)
2089 			return 0;
2090 	} else if (attr == &dev_attr_device_name.attr) {
2091 		if (!sw->device_name)
2092 			return 0;
2093 	} else if (attr == &dev_attr_vendor.attr)  {
2094 		if (!sw->vendor)
2095 			return 0;
2096 	} else if (attr == &dev_attr_vendor_name.attr)  {
2097 		if (!sw->vendor_name)
2098 			return 0;
2099 	} else if (attr == &dev_attr_key.attr) {
2100 		if (tb_route(sw) &&
2101 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2102 		    sw->security_level == TB_SECURITY_SECURE)
2103 			return attr->mode;
2104 		return 0;
2105 	} else if (attr == &dev_attr_rx_speed.attr ||
2106 		   attr == &dev_attr_rx_lanes.attr ||
2107 		   attr == &dev_attr_tx_speed.attr ||
2108 		   attr == &dev_attr_tx_lanes.attr) {
2109 		if (tb_route(sw))
2110 			return attr->mode;
2111 		return 0;
2112 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2113 		if (nvm_upgradeable(sw))
2114 			return attr->mode;
2115 		return 0;
2116 	} else if (attr == &dev_attr_nvm_version.attr) {
2117 		if (nvm_readable(sw))
2118 			return attr->mode;
2119 		return 0;
2120 	} else if (attr == &dev_attr_boot.attr) {
2121 		if (tb_route(sw))
2122 			return attr->mode;
2123 		return 0;
2124 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2125 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2126 			return attr->mode;
2127 		return 0;
2128 	}
2129 
2130 	return sw->safe_mode ? 0 : attr->mode;
2131 }
2132 
2133 static const struct attribute_group switch_group = {
2134 	.is_visible = switch_attr_is_visible,
2135 	.attrs = switch_attrs,
2136 };
2137 
2138 static const struct attribute_group *switch_groups[] = {
2139 	&switch_group,
2140 	NULL,
2141 };
2142 
2143 static void tb_switch_release(struct device *dev)
2144 {
2145 	struct tb_switch *sw = tb_to_switch(dev);
2146 	struct tb_port *port;
2147 
2148 	dma_port_free(sw->dma_port);
2149 
2150 	tb_switch_for_each_port(sw, port) {
2151 		ida_destroy(&port->in_hopids);
2152 		ida_destroy(&port->out_hopids);
2153 	}
2154 
2155 	kfree(sw->uuid);
2156 	kfree(sw->device_name);
2157 	kfree(sw->vendor_name);
2158 	kfree(sw->ports);
2159 	kfree(sw->drom);
2160 	kfree(sw->key);
2161 	kfree(sw);
2162 }
2163 
2164 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2165 {
2166 	const struct tb_switch *sw = tb_to_switch(dev);
2167 	const char *type;
2168 
2169 	if (tb_switch_is_usb4(sw)) {
2170 		if (add_uevent_var(env, "USB4_VERSION=%u.0",
2171 				   usb4_switch_version(sw)))
2172 			return -ENOMEM;
2173 	}
2174 
2175 	if (!tb_route(sw)) {
2176 		type = "host";
2177 	} else {
2178 		const struct tb_port *port;
2179 		bool hub = false;
2180 
2181 		/* Device is hub if it has any downstream ports */
2182 		tb_switch_for_each_port(sw, port) {
2183 			if (!port->disabled && !tb_is_upstream_port(port) &&
2184 			     tb_port_is_null(port)) {
2185 				hub = true;
2186 				break;
2187 			}
2188 		}
2189 
2190 		type = hub ? "hub" : "device";
2191 	}
2192 
2193 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2194 		return -ENOMEM;
2195 	return 0;
2196 }
2197 
2198 /*
2199  * Currently only need to provide the callbacks. Everything else is handled
2200  * in the connection manager.
2201  */
2202 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2203 {
2204 	struct tb_switch *sw = tb_to_switch(dev);
2205 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2206 
2207 	if (cm_ops->runtime_suspend_switch)
2208 		return cm_ops->runtime_suspend_switch(sw);
2209 
2210 	return 0;
2211 }
2212 
2213 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2214 {
2215 	struct tb_switch *sw = tb_to_switch(dev);
2216 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2217 
2218 	if (cm_ops->runtime_resume_switch)
2219 		return cm_ops->runtime_resume_switch(sw);
2220 	return 0;
2221 }
2222 
2223 static const struct dev_pm_ops tb_switch_pm_ops = {
2224 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2225 			   NULL)
2226 };
2227 
2228 struct device_type tb_switch_type = {
2229 	.name = "thunderbolt_device",
2230 	.release = tb_switch_release,
2231 	.uevent = tb_switch_uevent,
2232 	.pm = &tb_switch_pm_ops,
2233 };
2234 
2235 static int tb_switch_get_generation(struct tb_switch *sw)
2236 {
2237 	if (tb_switch_is_usb4(sw))
2238 		return 4;
2239 
2240 	if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2241 		switch (sw->config.device_id) {
2242 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2243 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2244 		case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2245 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2246 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2247 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2248 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2249 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2250 			return 1;
2251 
2252 		case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2253 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2254 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2255 			return 2;
2256 
2257 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2258 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2259 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2260 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2261 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2262 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2263 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2264 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2265 		case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2266 		case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2267 			return 3;
2268 		}
2269 	}
2270 
2271 	/*
2272 	 * For unknown switches assume generation to be 1 to be on the
2273 	 * safe side.
2274 	 */
2275 	tb_sw_warn(sw, "unsupported switch device id %#x\n",
2276 		   sw->config.device_id);
2277 	return 1;
2278 }
2279 
2280 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2281 {
2282 	int max_depth;
2283 
2284 	if (tb_switch_is_usb4(sw) ||
2285 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2286 		max_depth = USB4_SWITCH_MAX_DEPTH;
2287 	else
2288 		max_depth = TB_SWITCH_MAX_DEPTH;
2289 
2290 	return depth > max_depth;
2291 }
2292 
2293 /**
2294  * tb_switch_alloc() - allocate a switch
2295  * @tb: Pointer to the owning domain
2296  * @parent: Parent device for this switch
2297  * @route: Route string for this switch
2298  *
2299  * Allocates and initializes a switch. Will not upload configuration to
2300  * the switch. For that you need to call tb_switch_configure()
2301  * separately. The returned switch should be released by calling
2302  * tb_switch_put().
2303  *
2304  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2305  * failure.
2306  */
2307 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2308 				  u64 route)
2309 {
2310 	struct tb_switch *sw;
2311 	int upstream_port;
2312 	int i, ret, depth;
2313 
2314 	/* Unlock the downstream port so we can access the switch below */
2315 	if (route) {
2316 		struct tb_switch *parent_sw = tb_to_switch(parent);
2317 		struct tb_port *down;
2318 
2319 		down = tb_port_at(route, parent_sw);
2320 		tb_port_unlock(down);
2321 	}
2322 
2323 	depth = tb_route_length(route);
2324 
2325 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2326 	if (upstream_port < 0)
2327 		return ERR_PTR(upstream_port);
2328 
2329 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2330 	if (!sw)
2331 		return ERR_PTR(-ENOMEM);
2332 
2333 	sw->tb = tb;
2334 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2335 	if (ret)
2336 		goto err_free_sw_ports;
2337 
2338 	sw->generation = tb_switch_get_generation(sw);
2339 
2340 	tb_dbg(tb, "current switch config:\n");
2341 	tb_dump_switch(tb, sw);
2342 
2343 	/* configure switch */
2344 	sw->config.upstream_port_number = upstream_port;
2345 	sw->config.depth = depth;
2346 	sw->config.route_hi = upper_32_bits(route);
2347 	sw->config.route_lo = lower_32_bits(route);
2348 	sw->config.enabled = 0;
2349 
2350 	/* Make sure we do not exceed maximum topology limit */
2351 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2352 		ret = -EADDRNOTAVAIL;
2353 		goto err_free_sw_ports;
2354 	}
2355 
2356 	/* initialize ports */
2357 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2358 				GFP_KERNEL);
2359 	if (!sw->ports) {
2360 		ret = -ENOMEM;
2361 		goto err_free_sw_ports;
2362 	}
2363 
2364 	for (i = 0; i <= sw->config.max_port_number; i++) {
2365 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2366 		sw->ports[i].sw = sw;
2367 		sw->ports[i].port = i;
2368 
2369 		/* Control port does not need HopID allocation */
2370 		if (i) {
2371 			ida_init(&sw->ports[i].in_hopids);
2372 			ida_init(&sw->ports[i].out_hopids);
2373 		}
2374 	}
2375 
2376 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2377 	if (ret > 0)
2378 		sw->cap_plug_events = ret;
2379 
2380 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2381 	if (ret > 0)
2382 		sw->cap_vsec_tmu = ret;
2383 
2384 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2385 	if (ret > 0)
2386 		sw->cap_lc = ret;
2387 
2388 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2389 	if (ret > 0)
2390 		sw->cap_lp = ret;
2391 
2392 	/* Root switch is always authorized */
2393 	if (!route)
2394 		sw->authorized = true;
2395 
2396 	device_initialize(&sw->dev);
2397 	sw->dev.parent = parent;
2398 	sw->dev.bus = &tb_bus_type;
2399 	sw->dev.type = &tb_switch_type;
2400 	sw->dev.groups = switch_groups;
2401 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2402 
2403 	return sw;
2404 
2405 err_free_sw_ports:
2406 	kfree(sw->ports);
2407 	kfree(sw);
2408 
2409 	return ERR_PTR(ret);
2410 }
2411 
2412 /**
2413  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2414  * @tb: Pointer to the owning domain
2415  * @parent: Parent device for this switch
2416  * @route: Route string for this switch
2417  *
2418  * This creates a switch in safe mode. This means the switch pretty much
2419  * lacks all capabilities except DMA configuration port before it is
2420  * flashed with a valid NVM firmware.
2421  *
2422  * The returned switch must be released by calling tb_switch_put().
2423  *
2424  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2425  */
2426 struct tb_switch *
2427 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2428 {
2429 	struct tb_switch *sw;
2430 
2431 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2432 	if (!sw)
2433 		return ERR_PTR(-ENOMEM);
2434 
2435 	sw->tb = tb;
2436 	sw->config.depth = tb_route_length(route);
2437 	sw->config.route_hi = upper_32_bits(route);
2438 	sw->config.route_lo = lower_32_bits(route);
2439 	sw->safe_mode = true;
2440 
2441 	device_initialize(&sw->dev);
2442 	sw->dev.parent = parent;
2443 	sw->dev.bus = &tb_bus_type;
2444 	sw->dev.type = &tb_switch_type;
2445 	sw->dev.groups = switch_groups;
2446 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2447 
2448 	return sw;
2449 }
2450 
2451 /**
2452  * tb_switch_configure() - Uploads configuration to the switch
2453  * @sw: Switch to configure
2454  *
2455  * Call this function before the switch is added to the system. It will
2456  * upload configuration to the switch and makes it available for the
2457  * connection manager to use. Can be called to the switch again after
2458  * resume from low power states to re-initialize it.
2459  *
2460  * Return: %0 in case of success and negative errno in case of failure
2461  */
2462 int tb_switch_configure(struct tb_switch *sw)
2463 {
2464 	struct tb *tb = sw->tb;
2465 	u64 route;
2466 	int ret;
2467 
2468 	route = tb_route(sw);
2469 
2470 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2471 	       sw->config.enabled ? "restoring" : "initializing", route,
2472 	       tb_route_length(route), sw->config.upstream_port_number);
2473 
2474 	sw->config.enabled = 1;
2475 
2476 	if (tb_switch_is_usb4(sw)) {
2477 		/*
2478 		 * For USB4 devices, we need to program the CM version
2479 		 * accordingly so that it knows to expose all the
2480 		 * additional capabilities. Program it according to USB4
2481 		 * version to avoid changing existing (v1) routers behaviour.
2482 		 */
2483 		if (usb4_switch_version(sw) < 2)
2484 			sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2485 		else
2486 			sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2487 		sw->config.plug_events_delay = 0xa;
2488 
2489 		/* Enumerate the switch */
2490 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2491 				  ROUTER_CS_1, 4);
2492 		if (ret)
2493 			return ret;
2494 
2495 		ret = usb4_switch_setup(sw);
2496 	} else {
2497 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2498 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2499 				   sw->config.vendor_id);
2500 
2501 		if (!sw->cap_plug_events) {
2502 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2503 			return -ENODEV;
2504 		}
2505 
2506 		/* Enumerate the switch */
2507 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2508 				  ROUTER_CS_1, 3);
2509 	}
2510 	if (ret)
2511 		return ret;
2512 
2513 	return tb_plug_events_active(sw, true);
2514 }
2515 
2516 /**
2517  * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2518  * @sw: Router to configure
2519  *
2520  * Needs to be called before any tunnels can be setup through the
2521  * router. Can be called to any router.
2522  *
2523  * Returns %0 in success and negative errno otherwise.
2524  */
2525 int tb_switch_configuration_valid(struct tb_switch *sw)
2526 {
2527 	if (tb_switch_is_usb4(sw))
2528 		return usb4_switch_configuration_valid(sw);
2529 	return 0;
2530 }
2531 
2532 static int tb_switch_set_uuid(struct tb_switch *sw)
2533 {
2534 	bool uid = false;
2535 	u32 uuid[4];
2536 	int ret;
2537 
2538 	if (sw->uuid)
2539 		return 0;
2540 
2541 	if (tb_switch_is_usb4(sw)) {
2542 		ret = usb4_switch_read_uid(sw, &sw->uid);
2543 		if (ret)
2544 			return ret;
2545 		uid = true;
2546 	} else {
2547 		/*
2548 		 * The newer controllers include fused UUID as part of
2549 		 * link controller specific registers
2550 		 */
2551 		ret = tb_lc_read_uuid(sw, uuid);
2552 		if (ret) {
2553 			if (ret != -EINVAL)
2554 				return ret;
2555 			uid = true;
2556 		}
2557 	}
2558 
2559 	if (uid) {
2560 		/*
2561 		 * ICM generates UUID based on UID and fills the upper
2562 		 * two words with ones. This is not strictly following
2563 		 * UUID format but we want to be compatible with it so
2564 		 * we do the same here.
2565 		 */
2566 		uuid[0] = sw->uid & 0xffffffff;
2567 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2568 		uuid[2] = 0xffffffff;
2569 		uuid[3] = 0xffffffff;
2570 	}
2571 
2572 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2573 	if (!sw->uuid)
2574 		return -ENOMEM;
2575 	return 0;
2576 }
2577 
2578 static int tb_switch_add_dma_port(struct tb_switch *sw)
2579 {
2580 	u32 status;
2581 	int ret;
2582 
2583 	switch (sw->generation) {
2584 	case 2:
2585 		/* Only root switch can be upgraded */
2586 		if (tb_route(sw))
2587 			return 0;
2588 
2589 		fallthrough;
2590 	case 3:
2591 	case 4:
2592 		ret = tb_switch_set_uuid(sw);
2593 		if (ret)
2594 			return ret;
2595 		break;
2596 
2597 	default:
2598 		/*
2599 		 * DMA port is the only thing available when the switch
2600 		 * is in safe mode.
2601 		 */
2602 		if (!sw->safe_mode)
2603 			return 0;
2604 		break;
2605 	}
2606 
2607 	if (sw->no_nvm_upgrade)
2608 		return 0;
2609 
2610 	if (tb_switch_is_usb4(sw)) {
2611 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2612 		if (ret)
2613 			return ret;
2614 
2615 		if (status) {
2616 			tb_sw_info(sw, "switch flash authentication failed\n");
2617 			nvm_set_auth_status(sw, status);
2618 		}
2619 
2620 		return 0;
2621 	}
2622 
2623 	/* Root switch DMA port requires running firmware */
2624 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2625 		return 0;
2626 
2627 	sw->dma_port = dma_port_alloc(sw);
2628 	if (!sw->dma_port)
2629 		return 0;
2630 
2631 	/*
2632 	 * If there is status already set then authentication failed
2633 	 * when the dma_port_flash_update_auth() returned. Power cycling
2634 	 * is not needed (it was done already) so only thing we do here
2635 	 * is to unblock runtime PM of the root port.
2636 	 */
2637 	nvm_get_auth_status(sw, &status);
2638 	if (status) {
2639 		if (!tb_route(sw))
2640 			nvm_authenticate_complete_dma_port(sw);
2641 		return 0;
2642 	}
2643 
2644 	/*
2645 	 * Check status of the previous flash authentication. If there
2646 	 * is one we need to power cycle the switch in any case to make
2647 	 * it functional again.
2648 	 */
2649 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2650 	if (ret <= 0)
2651 		return ret;
2652 
2653 	/* Now we can allow root port to suspend again */
2654 	if (!tb_route(sw))
2655 		nvm_authenticate_complete_dma_port(sw);
2656 
2657 	if (status) {
2658 		tb_sw_info(sw, "switch flash authentication failed\n");
2659 		nvm_set_auth_status(sw, status);
2660 	}
2661 
2662 	tb_sw_info(sw, "power cycling the switch now\n");
2663 	dma_port_power_cycle(sw->dma_port);
2664 
2665 	/*
2666 	 * We return error here which causes the switch adding failure.
2667 	 * It should appear back after power cycle is complete.
2668 	 */
2669 	return -ESHUTDOWN;
2670 }
2671 
2672 static void tb_switch_default_link_ports(struct tb_switch *sw)
2673 {
2674 	int i;
2675 
2676 	for (i = 1; i <= sw->config.max_port_number; i++) {
2677 		struct tb_port *port = &sw->ports[i];
2678 		struct tb_port *subordinate;
2679 
2680 		if (!tb_port_is_null(port))
2681 			continue;
2682 
2683 		/* Check for the subordinate port */
2684 		if (i == sw->config.max_port_number ||
2685 		    !tb_port_is_null(&sw->ports[i + 1]))
2686 			continue;
2687 
2688 		/* Link them if not already done so (by DROM) */
2689 		subordinate = &sw->ports[i + 1];
2690 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2691 			port->link_nr = 0;
2692 			port->dual_link_port = subordinate;
2693 			subordinate->link_nr = 1;
2694 			subordinate->dual_link_port = port;
2695 
2696 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2697 				  port->port, subordinate->port);
2698 		}
2699 	}
2700 }
2701 
2702 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2703 {
2704 	const struct tb_port *up = tb_upstream_port(sw);
2705 
2706 	if (!up->dual_link_port || !up->dual_link_port->remote)
2707 		return false;
2708 
2709 	if (tb_switch_is_usb4(sw))
2710 		return usb4_switch_lane_bonding_possible(sw);
2711 	return tb_lc_lane_bonding_possible(sw);
2712 }
2713 
2714 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2715 {
2716 	struct tb_port *up;
2717 	bool change = false;
2718 	int ret;
2719 
2720 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2721 		return 0;
2722 
2723 	up = tb_upstream_port(sw);
2724 
2725 	ret = tb_port_get_link_speed(up);
2726 	if (ret < 0)
2727 		return ret;
2728 	if (sw->link_speed != ret)
2729 		change = true;
2730 	sw->link_speed = ret;
2731 
2732 	ret = tb_port_get_link_width(up);
2733 	if (ret < 0)
2734 		return ret;
2735 	if (sw->link_width != ret)
2736 		change = true;
2737 	sw->link_width = ret;
2738 
2739 	/* Notify userspace that there is possible link attribute change */
2740 	if (device_is_registered(&sw->dev) && change)
2741 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2742 
2743 	return 0;
2744 }
2745 
2746 /* Must be called after tb_switch_update_link_attributes() */
2747 static void tb_switch_link_init(struct tb_switch *sw)
2748 {
2749 	struct tb_port *up, *down;
2750 	bool bonded;
2751 
2752 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2753 		return;
2754 
2755 	tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2756 	tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2757 
2758 	bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2759 
2760 	/*
2761 	 * Gen 4 links come up as bonded so update the port structures
2762 	 * accordingly.
2763 	 */
2764 	up = tb_upstream_port(sw);
2765 	down = tb_switch_downstream_port(sw);
2766 
2767 	up->bonded = bonded;
2768 	if (up->dual_link_port)
2769 		up->dual_link_port->bonded = bonded;
2770 	tb_port_update_credits(up);
2771 
2772 	down->bonded = bonded;
2773 	if (down->dual_link_port)
2774 		down->dual_link_port->bonded = bonded;
2775 	tb_port_update_credits(down);
2776 
2777 	if (tb_port_get_link_generation(up) < 4)
2778 		return;
2779 
2780 	/*
2781 	 * Set the Gen 4 preferred link width. This is what the router
2782 	 * prefers when the link is brought up. If the router does not
2783 	 * support asymmetric link configuration, this also will be set
2784 	 * to TB_LINK_WIDTH_DUAL.
2785 	 */
2786 	sw->preferred_link_width = sw->link_width;
2787 	tb_sw_dbg(sw, "preferred link width %s\n",
2788 		  tb_width_name(sw->preferred_link_width));
2789 }
2790 
2791 /**
2792  * tb_switch_lane_bonding_enable() - Enable lane bonding
2793  * @sw: Switch to enable lane bonding
2794  *
2795  * Connection manager can call this function to enable lane bonding of a
2796  * switch. If conditions are correct and both switches support the feature,
2797  * lanes are bonded. It is safe to call this to any switch.
2798  */
2799 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2800 {
2801 	struct tb_port *up, *down;
2802 	unsigned int width;
2803 	int ret;
2804 
2805 	if (!tb_switch_lane_bonding_possible(sw))
2806 		return 0;
2807 
2808 	up = tb_upstream_port(sw);
2809 	down = tb_switch_downstream_port(sw);
2810 
2811 	if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2812 	    !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2813 		return 0;
2814 
2815 	/*
2816 	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2817 	 * CL0 and check just for lane 1.
2818 	 */
2819 	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2820 		return -ENOTCONN;
2821 
2822 	ret = tb_port_lane_bonding_enable(up);
2823 	if (ret) {
2824 		tb_port_warn(up, "failed to enable lane bonding\n");
2825 		return ret;
2826 	}
2827 
2828 	ret = tb_port_lane_bonding_enable(down);
2829 	if (ret) {
2830 		tb_port_warn(down, "failed to enable lane bonding\n");
2831 		tb_port_lane_bonding_disable(up);
2832 		return ret;
2833 	}
2834 
2835 	/* Any of the widths are all bonded */
2836 	width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2837 		TB_LINK_WIDTH_ASYM_RX;
2838 
2839 	return tb_port_wait_for_link_width(down, width, 100);
2840 }
2841 
2842 /**
2843  * tb_switch_lane_bonding_disable() - Disable lane bonding
2844  * @sw: Switch whose lane bonding to disable
2845  *
2846  * Disables lane bonding between @sw and parent. This can be called even
2847  * if lanes were not bonded originally.
2848  */
2849 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2850 {
2851 	struct tb_port *up, *down;
2852 	int ret;
2853 
2854 	up = tb_upstream_port(sw);
2855 	if (!up->bonded)
2856 		return 0;
2857 
2858 	/*
2859 	 * If the link is Gen 4 there is no way to switch the link to
2860 	 * two single lane links so avoid that here. Also don't bother
2861 	 * if the link is not up anymore (sw is unplugged).
2862 	 */
2863 	ret = tb_port_get_link_generation(up);
2864 	if (ret < 0)
2865 		return ret;
2866 	if (ret >= 4)
2867 		return -EOPNOTSUPP;
2868 
2869 	down = tb_switch_downstream_port(sw);
2870 	tb_port_lane_bonding_disable(up);
2871 	tb_port_lane_bonding_disable(down);
2872 
2873 	/*
2874 	 * It is fine if we get other errors as the router might have
2875 	 * been unplugged.
2876 	 */
2877 	return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2878 }
2879 
2880 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2881 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2882 {
2883 	struct tb_port *up, *down, *port;
2884 	enum tb_link_width down_width;
2885 	int ret;
2886 
2887 	up = tb_upstream_port(sw);
2888 	down = tb_switch_downstream_port(sw);
2889 
2890 	if (width == TB_LINK_WIDTH_ASYM_TX) {
2891 		down_width = TB_LINK_WIDTH_ASYM_RX;
2892 		port = down;
2893 	} else {
2894 		down_width = TB_LINK_WIDTH_ASYM_TX;
2895 		port = up;
2896 	}
2897 
2898 	ret = tb_port_set_link_width(up, width);
2899 	if (ret)
2900 		return ret;
2901 
2902 	ret = tb_port_set_link_width(down, down_width);
2903 	if (ret)
2904 		return ret;
2905 
2906 	/*
2907 	 * Initiate the change in the router that one of its TX lanes is
2908 	 * changing to RX but do so only if there is an actual change.
2909 	 */
2910 	if (sw->link_width != width) {
2911 		ret = usb4_port_asym_start(port);
2912 		if (ret)
2913 			return ret;
2914 
2915 		ret = tb_port_wait_for_link_width(up, width, 100);
2916 		if (ret)
2917 			return ret;
2918 	}
2919 
2920 	return 0;
2921 }
2922 
2923 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2924 static int tb_switch_asym_disable(struct tb_switch *sw)
2925 {
2926 	struct tb_port *up, *down;
2927 	int ret;
2928 
2929 	up = tb_upstream_port(sw);
2930 	down = tb_switch_downstream_port(sw);
2931 
2932 	ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
2933 	if (ret)
2934 		return ret;
2935 
2936 	ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
2937 	if (ret)
2938 		return ret;
2939 
2940 	/*
2941 	 * Initiate the change in the router that has three TX lanes and
2942 	 * is changing one of its TX lanes to RX but only if there is a
2943 	 * change in the link width.
2944 	 */
2945 	if (sw->link_width > TB_LINK_WIDTH_DUAL) {
2946 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
2947 			ret = usb4_port_asym_start(up);
2948 		else
2949 			ret = usb4_port_asym_start(down);
2950 		if (ret)
2951 			return ret;
2952 
2953 		ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
2954 		if (ret)
2955 			return ret;
2956 	}
2957 
2958 	return 0;
2959 }
2960 
2961 /**
2962  * tb_switch_set_link_width() - Configure router link width
2963  * @sw: Router to configure
2964  * @width: The new link width
2965  *
2966  * Set device router link width to @width from router upstream port
2967  * perspective. Supports also asymmetric links if the routers boths side
2968  * of the link supports it.
2969  *
2970  * Does nothing for host router.
2971  *
2972  * Returns %0 in case of success, negative errno otherwise.
2973  */
2974 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
2975 {
2976 	struct tb_port *up, *down;
2977 	int ret = 0;
2978 
2979 	if (!tb_route(sw))
2980 		return 0;
2981 
2982 	up = tb_upstream_port(sw);
2983 	down = tb_switch_downstream_port(sw);
2984 
2985 	switch (width) {
2986 	case TB_LINK_WIDTH_SINGLE:
2987 		ret = tb_switch_lane_bonding_disable(sw);
2988 		break;
2989 
2990 	case TB_LINK_WIDTH_DUAL:
2991 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
2992 		    sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
2993 			ret = tb_switch_asym_disable(sw);
2994 			if (ret)
2995 				break;
2996 		}
2997 		ret = tb_switch_lane_bonding_enable(sw);
2998 		break;
2999 
3000 	case TB_LINK_WIDTH_ASYM_TX:
3001 	case TB_LINK_WIDTH_ASYM_RX:
3002 		ret = tb_switch_asym_enable(sw, width);
3003 		break;
3004 	}
3005 
3006 	switch (ret) {
3007 	case 0:
3008 		break;
3009 
3010 	case -ETIMEDOUT:
3011 		tb_sw_warn(sw, "timeout changing link width\n");
3012 		return ret;
3013 
3014 	case -ENOTCONN:
3015 	case -EOPNOTSUPP:
3016 	case -ENODEV:
3017 		return ret;
3018 
3019 	default:
3020 		tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3021 		return ret;
3022 	}
3023 
3024 	tb_port_update_credits(down);
3025 	tb_port_update_credits(up);
3026 
3027 	tb_switch_update_link_attributes(sw);
3028 
3029 	tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3030 	return ret;
3031 }
3032 
3033 /**
3034  * tb_switch_configure_link() - Set link configured
3035  * @sw: Switch whose link is configured
3036  *
3037  * Sets the link upstream from @sw configured (from both ends) so that
3038  * it will not be disconnected when the domain exits sleep. Can be
3039  * called for any switch.
3040  *
3041  * It is recommended that this is called after lane bonding is enabled.
3042  *
3043  * Returns %0 on success and negative errno in case of error.
3044  */
3045 int tb_switch_configure_link(struct tb_switch *sw)
3046 {
3047 	struct tb_port *up, *down;
3048 	int ret;
3049 
3050 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3051 		return 0;
3052 
3053 	up = tb_upstream_port(sw);
3054 	if (tb_switch_is_usb4(up->sw))
3055 		ret = usb4_port_configure(up);
3056 	else
3057 		ret = tb_lc_configure_port(up);
3058 	if (ret)
3059 		return ret;
3060 
3061 	down = up->remote;
3062 	if (tb_switch_is_usb4(down->sw))
3063 		return usb4_port_configure(down);
3064 	return tb_lc_configure_port(down);
3065 }
3066 
3067 /**
3068  * tb_switch_unconfigure_link() - Unconfigure link
3069  * @sw: Switch whose link is unconfigured
3070  *
3071  * Sets the link unconfigured so the @sw will be disconnected if the
3072  * domain exists sleep.
3073  */
3074 void tb_switch_unconfigure_link(struct tb_switch *sw)
3075 {
3076 	struct tb_port *up, *down;
3077 
3078 	if (sw->is_unplugged)
3079 		return;
3080 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3081 		return;
3082 
3083 	up = tb_upstream_port(sw);
3084 	if (tb_switch_is_usb4(up->sw))
3085 		usb4_port_unconfigure(up);
3086 	else
3087 		tb_lc_unconfigure_port(up);
3088 
3089 	down = up->remote;
3090 	if (tb_switch_is_usb4(down->sw))
3091 		usb4_port_unconfigure(down);
3092 	else
3093 		tb_lc_unconfigure_port(down);
3094 }
3095 
3096 static void tb_switch_credits_init(struct tb_switch *sw)
3097 {
3098 	if (tb_switch_is_icm(sw))
3099 		return;
3100 	if (!tb_switch_is_usb4(sw))
3101 		return;
3102 	if (usb4_switch_credits_init(sw))
3103 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3104 }
3105 
3106 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3107 {
3108 	struct tb_port *port;
3109 
3110 	if (tb_switch_is_icm(sw))
3111 		return 0;
3112 
3113 	tb_switch_for_each_port(sw, port) {
3114 		int res;
3115 
3116 		if (!port->cap_usb4)
3117 			continue;
3118 
3119 		res = usb4_port_hotplug_enable(port);
3120 		if (res)
3121 			return res;
3122 	}
3123 	return 0;
3124 }
3125 
3126 /**
3127  * tb_switch_add() - Add a switch to the domain
3128  * @sw: Switch to add
3129  *
3130  * This is the last step in adding switch to the domain. It will read
3131  * identification information from DROM and initializes ports so that
3132  * they can be used to connect other switches. The switch will be
3133  * exposed to the userspace when this function successfully returns. To
3134  * remove and release the switch, call tb_switch_remove().
3135  *
3136  * Return: %0 in case of success and negative errno in case of failure
3137  */
3138 int tb_switch_add(struct tb_switch *sw)
3139 {
3140 	int i, ret;
3141 
3142 	/*
3143 	 * Initialize DMA control port now before we read DROM. Recent
3144 	 * host controllers have more complete DROM on NVM that includes
3145 	 * vendor and model identification strings which we then expose
3146 	 * to the userspace. NVM can be accessed through DMA
3147 	 * configuration based mailbox.
3148 	 */
3149 	ret = tb_switch_add_dma_port(sw);
3150 	if (ret) {
3151 		dev_err(&sw->dev, "failed to add DMA port\n");
3152 		return ret;
3153 	}
3154 
3155 	if (!sw->safe_mode) {
3156 		tb_switch_credits_init(sw);
3157 
3158 		/* read drom */
3159 		ret = tb_drom_read(sw);
3160 		if (ret)
3161 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3162 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3163 
3164 		ret = tb_switch_set_uuid(sw);
3165 		if (ret) {
3166 			dev_err(&sw->dev, "failed to set UUID\n");
3167 			return ret;
3168 		}
3169 
3170 		for (i = 0; i <= sw->config.max_port_number; i++) {
3171 			if (sw->ports[i].disabled) {
3172 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3173 				continue;
3174 			}
3175 			ret = tb_init_port(&sw->ports[i]);
3176 			if (ret) {
3177 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
3178 				return ret;
3179 			}
3180 		}
3181 
3182 		tb_check_quirks(sw);
3183 
3184 		tb_switch_default_link_ports(sw);
3185 
3186 		ret = tb_switch_update_link_attributes(sw);
3187 		if (ret)
3188 			return ret;
3189 
3190 		tb_switch_link_init(sw);
3191 
3192 		ret = tb_switch_clx_init(sw);
3193 		if (ret)
3194 			return ret;
3195 
3196 		ret = tb_switch_tmu_init(sw);
3197 		if (ret)
3198 			return ret;
3199 	}
3200 
3201 	ret = tb_switch_port_hotplug_enable(sw);
3202 	if (ret)
3203 		return ret;
3204 
3205 	ret = device_add(&sw->dev);
3206 	if (ret) {
3207 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3208 		return ret;
3209 	}
3210 
3211 	if (tb_route(sw)) {
3212 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3213 			 sw->vendor, sw->device);
3214 		if (sw->vendor_name && sw->device_name)
3215 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3216 				 sw->device_name);
3217 	}
3218 
3219 	ret = usb4_switch_add_ports(sw);
3220 	if (ret) {
3221 		dev_err(&sw->dev, "failed to add USB4 ports\n");
3222 		goto err_del;
3223 	}
3224 
3225 	ret = tb_switch_nvm_add(sw);
3226 	if (ret) {
3227 		dev_err(&sw->dev, "failed to add NVM devices\n");
3228 		goto err_ports;
3229 	}
3230 
3231 	/*
3232 	 * Thunderbolt routers do not generate wakeups themselves but
3233 	 * they forward wakeups from tunneled protocols, so enable it
3234 	 * here.
3235 	 */
3236 	device_init_wakeup(&sw->dev, true);
3237 
3238 	pm_runtime_set_active(&sw->dev);
3239 	if (sw->rpm) {
3240 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3241 		pm_runtime_use_autosuspend(&sw->dev);
3242 		pm_runtime_mark_last_busy(&sw->dev);
3243 		pm_runtime_enable(&sw->dev);
3244 		pm_request_autosuspend(&sw->dev);
3245 	}
3246 
3247 	tb_switch_debugfs_init(sw);
3248 	return 0;
3249 
3250 err_ports:
3251 	usb4_switch_remove_ports(sw);
3252 err_del:
3253 	device_del(&sw->dev);
3254 
3255 	return ret;
3256 }
3257 
3258 /**
3259  * tb_switch_remove() - Remove and release a switch
3260  * @sw: Switch to remove
3261  *
3262  * This will remove the switch from the domain and release it after last
3263  * reference count drops to zero. If there are switches connected below
3264  * this switch, they will be removed as well.
3265  */
3266 void tb_switch_remove(struct tb_switch *sw)
3267 {
3268 	struct tb_port *port;
3269 
3270 	tb_switch_debugfs_remove(sw);
3271 
3272 	if (sw->rpm) {
3273 		pm_runtime_get_sync(&sw->dev);
3274 		pm_runtime_disable(&sw->dev);
3275 	}
3276 
3277 	/* port 0 is the switch itself and never has a remote */
3278 	tb_switch_for_each_port(sw, port) {
3279 		if (tb_port_has_remote(port)) {
3280 			tb_switch_remove(port->remote->sw);
3281 			port->remote = NULL;
3282 		} else if (port->xdomain) {
3283 			tb_xdomain_remove(port->xdomain);
3284 			port->xdomain = NULL;
3285 		}
3286 
3287 		/* Remove any downstream retimers */
3288 		tb_retimer_remove_all(port);
3289 	}
3290 
3291 	if (!sw->is_unplugged)
3292 		tb_plug_events_active(sw, false);
3293 
3294 	tb_switch_nvm_remove(sw);
3295 	usb4_switch_remove_ports(sw);
3296 
3297 	if (tb_route(sw))
3298 		dev_info(&sw->dev, "device disconnected\n");
3299 	device_unregister(&sw->dev);
3300 }
3301 
3302 /**
3303  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3304  * @sw: Router to mark unplugged
3305  */
3306 void tb_sw_set_unplugged(struct tb_switch *sw)
3307 {
3308 	struct tb_port *port;
3309 
3310 	if (sw == sw->tb->root_switch) {
3311 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3312 		return;
3313 	}
3314 	if (sw->is_unplugged) {
3315 		tb_sw_WARN(sw, "is_unplugged already set\n");
3316 		return;
3317 	}
3318 	sw->is_unplugged = true;
3319 	tb_switch_for_each_port(sw, port) {
3320 		if (tb_port_has_remote(port))
3321 			tb_sw_set_unplugged(port->remote->sw);
3322 		else if (port->xdomain)
3323 			port->xdomain->is_unplugged = true;
3324 	}
3325 }
3326 
3327 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3328 {
3329 	if (flags)
3330 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3331 	else
3332 		tb_sw_dbg(sw, "disabling wakeup\n");
3333 
3334 	if (tb_switch_is_usb4(sw))
3335 		return usb4_switch_set_wake(sw, flags);
3336 	return tb_lc_set_wake(sw, flags);
3337 }
3338 
3339 int tb_switch_resume(struct tb_switch *sw)
3340 {
3341 	struct tb_port *port;
3342 	int err;
3343 
3344 	tb_sw_dbg(sw, "resuming switch\n");
3345 
3346 	/*
3347 	 * Check for UID of the connected switches except for root
3348 	 * switch which we assume cannot be removed.
3349 	 */
3350 	if (tb_route(sw)) {
3351 		u64 uid;
3352 
3353 		/*
3354 		 * Check first that we can still read the switch config
3355 		 * space. It may be that there is now another domain
3356 		 * connected.
3357 		 */
3358 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3359 		if (err < 0) {
3360 			tb_sw_info(sw, "switch not present anymore\n");
3361 			return err;
3362 		}
3363 
3364 		/* We don't have any way to confirm this was the same device */
3365 		if (!sw->uid)
3366 			return -ENODEV;
3367 
3368 		if (tb_switch_is_usb4(sw))
3369 			err = usb4_switch_read_uid(sw, &uid);
3370 		else
3371 			err = tb_drom_read_uid_only(sw, &uid);
3372 		if (err) {
3373 			tb_sw_warn(sw, "uid read failed\n");
3374 			return err;
3375 		}
3376 		if (sw->uid != uid) {
3377 			tb_sw_info(sw,
3378 				"changed while suspended (uid %#llx -> %#llx)\n",
3379 				sw->uid, uid);
3380 			return -ENODEV;
3381 		}
3382 	}
3383 
3384 	err = tb_switch_configure(sw);
3385 	if (err)
3386 		return err;
3387 
3388 	/* Disable wakes */
3389 	tb_switch_set_wake(sw, 0);
3390 
3391 	err = tb_switch_tmu_init(sw);
3392 	if (err)
3393 		return err;
3394 
3395 	/* check for surviving downstream switches */
3396 	tb_switch_for_each_port(sw, port) {
3397 		if (!tb_port_is_null(port))
3398 			continue;
3399 
3400 		if (!tb_port_resume(port))
3401 			continue;
3402 
3403 		if (tb_wait_for_port(port, true) <= 0) {
3404 			tb_port_warn(port,
3405 				     "lost during suspend, disconnecting\n");
3406 			if (tb_port_has_remote(port))
3407 				tb_sw_set_unplugged(port->remote->sw);
3408 			else if (port->xdomain)
3409 				port->xdomain->is_unplugged = true;
3410 		} else {
3411 			/*
3412 			 * Always unlock the port so the downstream
3413 			 * switch/domain is accessible.
3414 			 */
3415 			if (tb_port_unlock(port))
3416 				tb_port_warn(port, "failed to unlock port\n");
3417 			if (port->remote && tb_switch_resume(port->remote->sw)) {
3418 				tb_port_warn(port,
3419 					     "lost during suspend, disconnecting\n");
3420 				tb_sw_set_unplugged(port->remote->sw);
3421 			}
3422 		}
3423 	}
3424 	return 0;
3425 }
3426 
3427 /**
3428  * tb_switch_suspend() - Put a switch to sleep
3429  * @sw: Switch to suspend
3430  * @runtime: Is this runtime suspend or system sleep
3431  *
3432  * Suspends router and all its children. Enables wakes according to
3433  * value of @runtime and then sets sleep bit for the router. If @sw is
3434  * host router the domain is ready to go to sleep once this function
3435  * returns.
3436  */
3437 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3438 {
3439 	unsigned int flags = 0;
3440 	struct tb_port *port;
3441 	int err;
3442 
3443 	tb_sw_dbg(sw, "suspending switch\n");
3444 
3445 	/*
3446 	 * Actually only needed for Titan Ridge but for simplicity can be
3447 	 * done for USB4 device too as CLx is re-enabled at resume.
3448 	 */
3449 	tb_switch_clx_disable(sw);
3450 
3451 	err = tb_plug_events_active(sw, false);
3452 	if (err)
3453 		return;
3454 
3455 	tb_switch_for_each_port(sw, port) {
3456 		if (tb_port_has_remote(port))
3457 			tb_switch_suspend(port->remote->sw, runtime);
3458 	}
3459 
3460 	if (runtime) {
3461 		/* Trigger wake when something is plugged in/out */
3462 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3463 		flags |= TB_WAKE_ON_USB4;
3464 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3465 	} else if (device_may_wakeup(&sw->dev)) {
3466 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3467 	}
3468 
3469 	tb_switch_set_wake(sw, flags);
3470 
3471 	if (tb_switch_is_usb4(sw))
3472 		usb4_switch_set_sleep(sw);
3473 	else
3474 		tb_lc_set_sleep(sw);
3475 }
3476 
3477 /**
3478  * tb_switch_query_dp_resource() - Query availability of DP resource
3479  * @sw: Switch whose DP resource is queried
3480  * @in: DP IN port
3481  *
3482  * Queries availability of DP resource for DP tunneling using switch
3483  * specific means. Returns %true if resource is available.
3484  */
3485 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3486 {
3487 	if (tb_switch_is_usb4(sw))
3488 		return usb4_switch_query_dp_resource(sw, in);
3489 	return tb_lc_dp_sink_query(sw, in);
3490 }
3491 
3492 /**
3493  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3494  * @sw: Switch whose DP resource is allocated
3495  * @in: DP IN port
3496  *
3497  * Allocates DP resource for DP tunneling. The resource must be
3498  * available for this to succeed (see tb_switch_query_dp_resource()).
3499  * Returns %0 in success and negative errno otherwise.
3500  */
3501 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3502 {
3503 	int ret;
3504 
3505 	if (tb_switch_is_usb4(sw))
3506 		ret = usb4_switch_alloc_dp_resource(sw, in);
3507 	else
3508 		ret = tb_lc_dp_sink_alloc(sw, in);
3509 
3510 	if (ret)
3511 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3512 			   in->port);
3513 	else
3514 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3515 
3516 	return ret;
3517 }
3518 
3519 /**
3520  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3521  * @sw: Switch whose DP resource is de-allocated
3522  * @in: DP IN port
3523  *
3524  * De-allocates DP resource that was previously allocated for DP
3525  * tunneling.
3526  */
3527 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3528 {
3529 	int ret;
3530 
3531 	if (tb_switch_is_usb4(sw))
3532 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3533 	else
3534 		ret = tb_lc_dp_sink_dealloc(sw, in);
3535 
3536 	if (ret)
3537 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3538 			   in->port);
3539 	else
3540 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3541 }
3542 
3543 struct tb_sw_lookup {
3544 	struct tb *tb;
3545 	u8 link;
3546 	u8 depth;
3547 	const uuid_t *uuid;
3548 	u64 route;
3549 };
3550 
3551 static int tb_switch_match(struct device *dev, const void *data)
3552 {
3553 	struct tb_switch *sw = tb_to_switch(dev);
3554 	const struct tb_sw_lookup *lookup = data;
3555 
3556 	if (!sw)
3557 		return 0;
3558 	if (sw->tb != lookup->tb)
3559 		return 0;
3560 
3561 	if (lookup->uuid)
3562 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3563 
3564 	if (lookup->route) {
3565 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3566 		       sw->config.route_hi == upper_32_bits(lookup->route);
3567 	}
3568 
3569 	/* Root switch is matched only by depth */
3570 	if (!lookup->depth)
3571 		return !sw->depth;
3572 
3573 	return sw->link == lookup->link && sw->depth == lookup->depth;
3574 }
3575 
3576 /**
3577  * tb_switch_find_by_link_depth() - Find switch by link and depth
3578  * @tb: Domain the switch belongs
3579  * @link: Link number the switch is connected
3580  * @depth: Depth of the switch in link
3581  *
3582  * Returned switch has reference count increased so the caller needs to
3583  * call tb_switch_put() when done with the switch.
3584  */
3585 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3586 {
3587 	struct tb_sw_lookup lookup;
3588 	struct device *dev;
3589 
3590 	memset(&lookup, 0, sizeof(lookup));
3591 	lookup.tb = tb;
3592 	lookup.link = link;
3593 	lookup.depth = depth;
3594 
3595 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3596 	if (dev)
3597 		return tb_to_switch(dev);
3598 
3599 	return NULL;
3600 }
3601 
3602 /**
3603  * tb_switch_find_by_uuid() - Find switch by UUID
3604  * @tb: Domain the switch belongs
3605  * @uuid: UUID to look for
3606  *
3607  * Returned switch has reference count increased so the caller needs to
3608  * call tb_switch_put() when done with the switch.
3609  */
3610 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3611 {
3612 	struct tb_sw_lookup lookup;
3613 	struct device *dev;
3614 
3615 	memset(&lookup, 0, sizeof(lookup));
3616 	lookup.tb = tb;
3617 	lookup.uuid = uuid;
3618 
3619 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3620 	if (dev)
3621 		return tb_to_switch(dev);
3622 
3623 	return NULL;
3624 }
3625 
3626 /**
3627  * tb_switch_find_by_route() - Find switch by route string
3628  * @tb: Domain the switch belongs
3629  * @route: Route string to look for
3630  *
3631  * Returned switch has reference count increased so the caller needs to
3632  * call tb_switch_put() when done with the switch.
3633  */
3634 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3635 {
3636 	struct tb_sw_lookup lookup;
3637 	struct device *dev;
3638 
3639 	if (!route)
3640 		return tb_switch_get(tb->root_switch);
3641 
3642 	memset(&lookup, 0, sizeof(lookup));
3643 	lookup.tb = tb;
3644 	lookup.route = route;
3645 
3646 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3647 	if (dev)
3648 		return tb_to_switch(dev);
3649 
3650 	return NULL;
3651 }
3652 
3653 /**
3654  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3655  * @sw: Switch to find the port from
3656  * @type: Port type to look for
3657  */
3658 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3659 				    enum tb_port_type type)
3660 {
3661 	struct tb_port *port;
3662 
3663 	tb_switch_for_each_port(sw, port) {
3664 		if (port->config.type == type)
3665 			return port;
3666 	}
3667 
3668 	return NULL;
3669 }
3670 
3671 /*
3672  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3673  * device. For now used only for Titan Ridge.
3674  */
3675 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3676 				       unsigned int pcie_offset, u32 value)
3677 {
3678 	u32 offset, command, val;
3679 	int ret;
3680 
3681 	if (sw->generation != 3)
3682 		return -EOPNOTSUPP;
3683 
3684 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3685 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3686 	if (ret)
3687 		return ret;
3688 
3689 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3690 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3691 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3692 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3693 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3694 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3695 
3696 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3697 
3698 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3699 	if (ret)
3700 		return ret;
3701 
3702 	ret = tb_switch_wait_for_bit(sw, offset,
3703 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3704 	if (ret)
3705 		return ret;
3706 
3707 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3708 	if (ret)
3709 		return ret;
3710 
3711 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3712 		return -ETIMEDOUT;
3713 
3714 	return 0;
3715 }
3716 
3717 /**
3718  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3719  * @sw: Router to enable PCIe L1
3720  *
3721  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3722  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3723  * was configured. Due to Intel platforms limitation, shall be called only
3724  * for first hop switch.
3725  */
3726 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3727 {
3728 	struct tb_switch *parent = tb_switch_parent(sw);
3729 	int ret;
3730 
3731 	if (!tb_route(sw))
3732 		return 0;
3733 
3734 	if (!tb_switch_is_titan_ridge(sw))
3735 		return 0;
3736 
3737 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3738 	if (tb_route(parent))
3739 		return 0;
3740 
3741 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3742 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3743 	if (ret)
3744 		return ret;
3745 
3746 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3747 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3748 }
3749 
3750 /**
3751  * tb_switch_xhci_connect() - Connect internal xHCI
3752  * @sw: Router whose xHCI to connect
3753  *
3754  * Can be called to any router. For Alpine Ridge and Titan Ridge
3755  * performs special flows that bring the xHCI functional for any device
3756  * connected to the type-C port. Call only after PCIe tunnel has been
3757  * established. The function only does the connect if not done already
3758  * so can be called several times for the same router.
3759  */
3760 int tb_switch_xhci_connect(struct tb_switch *sw)
3761 {
3762 	struct tb_port *port1, *port3;
3763 	int ret;
3764 
3765 	if (sw->generation != 3)
3766 		return 0;
3767 
3768 	port1 = &sw->ports[1];
3769 	port3 = &sw->ports[3];
3770 
3771 	if (tb_switch_is_alpine_ridge(sw)) {
3772 		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3773 
3774 		usb_port1 = tb_lc_is_usb_plugged(port1);
3775 		usb_port3 = tb_lc_is_usb_plugged(port3);
3776 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3777 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3778 
3779 		/* Figure out correct USB port to connect */
3780 		if (usb_port1 && !xhci_port1) {
3781 			ret = tb_lc_xhci_connect(port1);
3782 			if (ret)
3783 				return ret;
3784 		}
3785 		if (usb_port3 && !xhci_port3)
3786 			return tb_lc_xhci_connect(port3);
3787 	} else if (tb_switch_is_titan_ridge(sw)) {
3788 		ret = tb_lc_xhci_connect(port1);
3789 		if (ret)
3790 			return ret;
3791 		return tb_lc_xhci_connect(port3);
3792 	}
3793 
3794 	return 0;
3795 }
3796 
3797 /**
3798  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3799  * @sw: Router whose xHCI to disconnect
3800  *
3801  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3802  * ports.
3803  */
3804 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3805 {
3806 	if (sw->generation == 3) {
3807 		struct tb_port *port1 = &sw->ports[1];
3808 		struct tb_port *port3 = &sw->ports[3];
3809 
3810 		tb_lc_xhci_disconnect(port1);
3811 		tb_port_dbg(port1, "disconnected xHCI\n");
3812 		tb_lc_xhci_disconnect(port3);
3813 		tb_port_dbg(port3, "disconnected xHCI\n");
3814 	}
3815 }
3816