1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/module.h> 12 #include <linux/nvmem-provider.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/sched/signal.h> 15 #include <linux/sizes.h> 16 #include <linux/slab.h> 17 #include <linux/string_helpers.h> 18 19 #include "tb.h" 20 21 /* Switch NVM support */ 22 23 struct nvm_auth_status { 24 struct list_head list; 25 uuid_t uuid; 26 u32 status; 27 }; 28 29 /* 30 * Hold NVM authentication failure status per switch This information 31 * needs to stay around even when the switch gets power cycled so we 32 * keep it separately. 33 */ 34 static LIST_HEAD(nvm_auth_status_cache); 35 static DEFINE_MUTEX(nvm_auth_status_lock); 36 37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 38 { 39 struct nvm_auth_status *st; 40 41 list_for_each_entry(st, &nvm_auth_status_cache, list) { 42 if (uuid_equal(&st->uuid, sw->uuid)) 43 return st; 44 } 45 46 return NULL; 47 } 48 49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 50 { 51 struct nvm_auth_status *st; 52 53 mutex_lock(&nvm_auth_status_lock); 54 st = __nvm_get_auth_status(sw); 55 mutex_unlock(&nvm_auth_status_lock); 56 57 *status = st ? st->status : 0; 58 } 59 60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 61 { 62 struct nvm_auth_status *st; 63 64 if (WARN_ON(!sw->uuid)) 65 return; 66 67 mutex_lock(&nvm_auth_status_lock); 68 st = __nvm_get_auth_status(sw); 69 70 if (!st) { 71 st = kzalloc(sizeof(*st), GFP_KERNEL); 72 if (!st) 73 goto unlock; 74 75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 76 INIT_LIST_HEAD(&st->list); 77 list_add_tail(&st->list, &nvm_auth_status_cache); 78 } 79 80 st->status = status; 81 unlock: 82 mutex_unlock(&nvm_auth_status_lock); 83 } 84 85 static void nvm_clear_auth_status(const struct tb_switch *sw) 86 { 87 struct nvm_auth_status *st; 88 89 mutex_lock(&nvm_auth_status_lock); 90 st = __nvm_get_auth_status(sw); 91 if (st) { 92 list_del(&st->list); 93 kfree(st); 94 } 95 mutex_unlock(&nvm_auth_status_lock); 96 } 97 98 static int nvm_validate_and_write(struct tb_switch *sw) 99 { 100 unsigned int image_size; 101 const u8 *buf; 102 int ret; 103 104 ret = tb_nvm_validate(sw->nvm); 105 if (ret) 106 return ret; 107 108 ret = tb_nvm_write_headers(sw->nvm); 109 if (ret) 110 return ret; 111 112 buf = sw->nvm->buf_data_start; 113 image_size = sw->nvm->buf_data_size; 114 115 if (tb_switch_is_usb4(sw)) 116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size); 117 else 118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); 119 if (ret) 120 return ret; 121 122 sw->nvm->flushed = true; 123 return 0; 124 } 125 126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 127 { 128 int ret = 0; 129 130 /* 131 * Root switch NVM upgrade requires that we disconnect the 132 * existing paths first (in case it is not in safe mode 133 * already). 134 */ 135 if (!sw->safe_mode) { 136 u32 status; 137 138 ret = tb_domain_disconnect_all_paths(sw->tb); 139 if (ret) 140 return ret; 141 /* 142 * The host controller goes away pretty soon after this if 143 * everything goes well so getting timeout is expected. 144 */ 145 ret = dma_port_flash_update_auth(sw->dma_port); 146 if (!ret || ret == -ETIMEDOUT) 147 return 0; 148 149 /* 150 * Any error from update auth operation requires power 151 * cycling of the host router. 152 */ 153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 155 nvm_set_auth_status(sw, status); 156 } 157 158 /* 159 * From safe mode we can get out by just power cycling the 160 * switch. 161 */ 162 dma_port_power_cycle(sw->dma_port); 163 return ret; 164 } 165 166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 167 { 168 int ret, retries = 10; 169 170 ret = dma_port_flash_update_auth(sw->dma_port); 171 switch (ret) { 172 case 0: 173 case -ETIMEDOUT: 174 case -EACCES: 175 case -EINVAL: 176 /* Power cycle is required */ 177 break; 178 default: 179 return ret; 180 } 181 182 /* 183 * Poll here for the authentication status. It takes some time 184 * for the device to respond (we get timeout for a while). Once 185 * we get response the device needs to be power cycled in order 186 * to the new NVM to be taken into use. 187 */ 188 do { 189 u32 status; 190 191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 192 if (ret < 0 && ret != -ETIMEDOUT) 193 return ret; 194 if (ret > 0) { 195 if (status) { 196 tb_sw_warn(sw, "failed to authenticate NVM\n"); 197 nvm_set_auth_status(sw, status); 198 } 199 200 tb_sw_info(sw, "power cycling the switch now\n"); 201 dma_port_power_cycle(sw->dma_port); 202 return 0; 203 } 204 205 msleep(500); 206 } while (--retries); 207 208 return -ETIMEDOUT; 209 } 210 211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 212 { 213 struct pci_dev *root_port; 214 215 /* 216 * During host router NVM upgrade we should not allow root port to 217 * go into D3cold because some root ports cannot trigger PME 218 * itself. To be on the safe side keep the root port in D0 during 219 * the whole upgrade process. 220 */ 221 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 222 if (root_port) 223 pm_runtime_get_noresume(&root_port->dev); 224 } 225 226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 227 { 228 struct pci_dev *root_port; 229 230 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 231 if (root_port) 232 pm_runtime_put(&root_port->dev); 233 } 234 235 static inline bool nvm_readable(struct tb_switch *sw) 236 { 237 if (tb_switch_is_usb4(sw)) { 238 /* 239 * USB4 devices must support NVM operations but it is 240 * optional for hosts. Therefore we query the NVM sector 241 * size here and if it is supported assume NVM 242 * operations are implemented. 243 */ 244 return usb4_switch_nvm_sector_size(sw) > 0; 245 } 246 247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 248 return !!sw->dma_port; 249 } 250 251 static inline bool nvm_upgradeable(struct tb_switch *sw) 252 { 253 if (sw->no_nvm_upgrade) 254 return false; 255 return nvm_readable(sw); 256 } 257 258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only) 259 { 260 int ret; 261 262 if (tb_switch_is_usb4(sw)) { 263 if (auth_only) { 264 ret = usb4_switch_nvm_set_offset(sw, 0); 265 if (ret) 266 return ret; 267 } 268 sw->nvm->authenticating = true; 269 return usb4_switch_nvm_authenticate(sw); 270 } 271 if (auth_only) 272 return -EOPNOTSUPP; 273 274 sw->nvm->authenticating = true; 275 if (!tb_route(sw)) { 276 nvm_authenticate_start_dma_port(sw); 277 ret = nvm_authenticate_host_dma_port(sw); 278 } else { 279 ret = nvm_authenticate_device_dma_port(sw); 280 } 281 282 return ret; 283 } 284 285 /** 286 * tb_switch_nvm_read() - Read router NVM 287 * @sw: Router whose NVM to read 288 * @address: Start address on the NVM 289 * @buf: Buffer where the read data is copied 290 * @size: Size of the buffer in bytes 291 * 292 * Reads from router NVM and returns the requested data in @buf. Locking 293 * is up to the caller. Returns %0 in success and negative errno in case 294 * of failure. 295 */ 296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, 297 size_t size) 298 { 299 if (tb_switch_is_usb4(sw)) 300 return usb4_switch_nvm_read(sw, address, buf, size); 301 return dma_port_flash_read(sw->dma_port, address, buf, size); 302 } 303 304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes) 305 { 306 struct tb_nvm *nvm = priv; 307 struct tb_switch *sw = tb_to_switch(nvm->dev); 308 int ret; 309 310 pm_runtime_get_sync(&sw->dev); 311 312 if (!mutex_trylock(&sw->tb->lock)) { 313 ret = restart_syscall(); 314 goto out; 315 } 316 317 ret = tb_switch_nvm_read(sw, offset, val, bytes); 318 mutex_unlock(&sw->tb->lock); 319 320 out: 321 pm_runtime_mark_last_busy(&sw->dev); 322 pm_runtime_put_autosuspend(&sw->dev); 323 324 return ret; 325 } 326 327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes) 328 { 329 struct tb_nvm *nvm = priv; 330 struct tb_switch *sw = tb_to_switch(nvm->dev); 331 int ret; 332 333 if (!mutex_trylock(&sw->tb->lock)) 334 return restart_syscall(); 335 336 /* 337 * Since writing the NVM image might require some special steps, 338 * for example when CSS headers are written, we cache the image 339 * locally here and handle the special cases when the user asks 340 * us to authenticate the image. 341 */ 342 ret = tb_nvm_write_buf(nvm, offset, val, bytes); 343 mutex_unlock(&sw->tb->lock); 344 345 return ret; 346 } 347 348 static int tb_switch_nvm_add(struct tb_switch *sw) 349 { 350 struct tb_nvm *nvm; 351 int ret; 352 353 if (!nvm_readable(sw)) 354 return 0; 355 356 nvm = tb_nvm_alloc(&sw->dev); 357 if (IS_ERR(nvm)) { 358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm); 359 goto err_nvm; 360 } 361 362 ret = tb_nvm_read_version(nvm); 363 if (ret) 364 goto err_nvm; 365 366 /* 367 * If the switch is in safe-mode the only accessible portion of 368 * the NVM is the non-active one where userspace is expected to 369 * write new functional NVM. 370 */ 371 if (!sw->safe_mode) { 372 ret = tb_nvm_add_active(nvm, nvm_read); 373 if (ret) 374 goto err_nvm; 375 tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor); 376 } 377 378 if (!sw->no_nvm_upgrade) { 379 ret = tb_nvm_add_non_active(nvm, nvm_write); 380 if (ret) 381 goto err_nvm; 382 } 383 384 sw->nvm = nvm; 385 return 0; 386 387 err_nvm: 388 tb_sw_dbg(sw, "NVM upgrade disabled\n"); 389 sw->no_nvm_upgrade = true; 390 if (!IS_ERR(nvm)) 391 tb_nvm_free(nvm); 392 393 return ret; 394 } 395 396 static void tb_switch_nvm_remove(struct tb_switch *sw) 397 { 398 struct tb_nvm *nvm; 399 400 nvm = sw->nvm; 401 sw->nvm = NULL; 402 403 if (!nvm) 404 return; 405 406 /* Remove authentication status in case the switch is unplugged */ 407 if (!nvm->authenticating) 408 nvm_clear_auth_status(sw); 409 410 tb_nvm_free(nvm); 411 } 412 413 /* port utility functions */ 414 415 static const char *tb_port_type(const struct tb_regs_port_header *port) 416 { 417 switch (port->type >> 16) { 418 case 0: 419 switch ((u8) port->type) { 420 case 0: 421 return "Inactive"; 422 case 1: 423 return "Port"; 424 case 2: 425 return "NHI"; 426 default: 427 return "unknown"; 428 } 429 case 0x2: 430 return "Ethernet"; 431 case 0x8: 432 return "SATA"; 433 case 0xe: 434 return "DP/HDMI"; 435 case 0x10: 436 return "PCIe"; 437 case 0x20: 438 return "USB"; 439 default: 440 return "unknown"; 441 } 442 } 443 444 static void tb_dump_port(struct tb *tb, const struct tb_port *port) 445 { 446 const struct tb_regs_port_header *regs = &port->config; 447 448 tb_dbg(tb, 449 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 450 regs->port_number, regs->vendor_id, regs->device_id, 451 regs->revision, regs->thunderbolt_version, tb_port_type(regs), 452 regs->type); 453 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 454 regs->max_in_hop_id, regs->max_out_hop_id); 455 tb_dbg(tb, " Max counters: %d\n", regs->max_counters); 456 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits); 457 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits, 458 port->ctl_credits); 459 } 460 461 /** 462 * tb_port_state() - get connectedness state of a port 463 * @port: the port to check 464 * 465 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 466 * 467 * Return: Returns an enum tb_port_state on success or an error code on failure. 468 */ 469 int tb_port_state(struct tb_port *port) 470 { 471 struct tb_cap_phy phy; 472 int res; 473 if (port->cap_phy == 0) { 474 tb_port_WARN(port, "does not have a PHY\n"); 475 return -EINVAL; 476 } 477 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 478 if (res) 479 return res; 480 return phy.state; 481 } 482 483 /** 484 * tb_wait_for_port() - wait for a port to become ready 485 * @port: Port to wait 486 * @wait_if_unplugged: Wait also when port is unplugged 487 * 488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 489 * wait_if_unplugged is set then we also wait if the port is in state 490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 491 * switch resume). Otherwise we only wait if a device is registered but the link 492 * has not yet been established. 493 * 494 * Return: Returns an error code on failure. Returns 0 if the port is not 495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 496 * if the port is connected and in state TB_PORT_UP. 497 */ 498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 499 { 500 int retries = 10; 501 int state; 502 if (!port->cap_phy) { 503 tb_port_WARN(port, "does not have PHY\n"); 504 return -EINVAL; 505 } 506 if (tb_is_upstream_port(port)) { 507 tb_port_WARN(port, "is the upstream port\n"); 508 return -EINVAL; 509 } 510 511 while (retries--) { 512 state = tb_port_state(port); 513 switch (state) { 514 case TB_PORT_DISABLED: 515 tb_port_dbg(port, "is disabled (state: 0)\n"); 516 return 0; 517 518 case TB_PORT_UNPLUGGED: 519 if (wait_if_unplugged) { 520 /* used during resume */ 521 tb_port_dbg(port, 522 "is unplugged (state: 7), retrying...\n"); 523 msleep(100); 524 break; 525 } 526 tb_port_dbg(port, "is unplugged (state: 7)\n"); 527 return 0; 528 529 case TB_PORT_UP: 530 case TB_PORT_TX_CL0S: 531 case TB_PORT_RX_CL0S: 532 case TB_PORT_CL1: 533 case TB_PORT_CL2: 534 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state); 535 return 1; 536 537 default: 538 if (state < 0) 539 return state; 540 541 /* 542 * After plug-in the state is TB_PORT_CONNECTING. Give it some 543 * time. 544 */ 545 tb_port_dbg(port, 546 "is connected, link is not up (state: %d), retrying...\n", 547 state); 548 msleep(100); 549 } 550 551 } 552 tb_port_warn(port, 553 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 554 return 0; 555 } 556 557 /** 558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 559 * @port: Port to add/remove NFC credits 560 * @credits: Credits to add/remove 561 * 562 * Change the number of NFC credits allocated to @port by @credits. To remove 563 * NFC credits pass a negative amount of credits. 564 * 565 * Return: Returns 0 on success or an error code on failure. 566 */ 567 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 568 { 569 u32 nfc_credits; 570 571 if (credits == 0 || port->sw->is_unplugged) 572 return 0; 573 574 /* 575 * USB4 restricts programming NFC buffers to lane adapters only 576 * so skip other ports. 577 */ 578 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port)) 579 return 0; 580 581 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 582 if (credits < 0) 583 credits = max_t(int, -nfc_credits, credits); 584 585 nfc_credits += credits; 586 587 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 588 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 589 590 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 591 port->config.nfc_credits |= nfc_credits; 592 593 return tb_port_write(port, &port->config.nfc_credits, 594 TB_CFG_PORT, ADP_CS_4, 1); 595 } 596 597 /** 598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 599 * @port: Port whose counters to clear 600 * @counter: Counter index to clear 601 * 602 * Return: Returns 0 on success or an error code on failure. 603 */ 604 int tb_port_clear_counter(struct tb_port *port, int counter) 605 { 606 u32 zero[3] = { 0, 0, 0 }; 607 tb_port_dbg(port, "clearing counter %d\n", counter); 608 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 609 } 610 611 /** 612 * tb_port_unlock() - Unlock downstream port 613 * @port: Port to unlock 614 * 615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 616 * downstream router accessible for CM. 617 */ 618 int tb_port_unlock(struct tb_port *port) 619 { 620 if (tb_switch_is_icm(port->sw)) 621 return 0; 622 if (!tb_port_is_null(port)) 623 return -EINVAL; 624 if (tb_switch_is_usb4(port->sw)) 625 return usb4_port_unlock(port); 626 return 0; 627 } 628 629 static int __tb_port_enable(struct tb_port *port, bool enable) 630 { 631 int ret; 632 u32 phy; 633 634 if (!tb_port_is_null(port)) 635 return -EINVAL; 636 637 ret = tb_port_read(port, &phy, TB_CFG_PORT, 638 port->cap_phy + LANE_ADP_CS_1, 1); 639 if (ret) 640 return ret; 641 642 if (enable) 643 phy &= ~LANE_ADP_CS_1_LD; 644 else 645 phy |= LANE_ADP_CS_1_LD; 646 647 648 ret = tb_port_write(port, &phy, TB_CFG_PORT, 649 port->cap_phy + LANE_ADP_CS_1, 1); 650 if (ret) 651 return ret; 652 653 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable)); 654 return 0; 655 } 656 657 /** 658 * tb_port_enable() - Enable lane adapter 659 * @port: Port to enable (can be %NULL) 660 * 661 * This is used for lane 0 and 1 adapters to enable it. 662 */ 663 int tb_port_enable(struct tb_port *port) 664 { 665 return __tb_port_enable(port, true); 666 } 667 668 /** 669 * tb_port_disable() - Disable lane adapter 670 * @port: Port to disable (can be %NULL) 671 * 672 * This is used for lane 0 and 1 adapters to disable it. 673 */ 674 int tb_port_disable(struct tb_port *port) 675 { 676 return __tb_port_enable(port, false); 677 } 678 679 /* 680 * tb_init_port() - initialize a port 681 * 682 * This is a helper method for tb_switch_alloc. Does not check or initialize 683 * any downstream switches. 684 * 685 * Return: Returns 0 on success or an error code on failure. 686 */ 687 static int tb_init_port(struct tb_port *port) 688 { 689 int res; 690 int cap; 691 692 INIT_LIST_HEAD(&port->list); 693 694 /* Control adapter does not have configuration space */ 695 if (!port->port) 696 return 0; 697 698 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 699 if (res) { 700 if (res == -ENODEV) { 701 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 702 port->port); 703 port->disabled = true; 704 return 0; 705 } 706 return res; 707 } 708 709 /* Port 0 is the switch itself and has no PHY. */ 710 if (port->config.type == TB_TYPE_PORT) { 711 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 712 713 if (cap > 0) 714 port->cap_phy = cap; 715 else 716 tb_port_WARN(port, "non switch port without a PHY\n"); 717 718 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 719 if (cap > 0) 720 port->cap_usb4 = cap; 721 722 /* 723 * USB4 ports the buffers allocated for the control path 724 * can be read from the path config space. Legacy 725 * devices we use hard-coded value. 726 */ 727 if (port->cap_usb4) { 728 struct tb_regs_hop hop; 729 730 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2)) 731 port->ctl_credits = hop.initial_credits; 732 } 733 if (!port->ctl_credits) 734 port->ctl_credits = 2; 735 736 } else { 737 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 738 if (cap > 0) 739 port->cap_adap = cap; 740 } 741 742 port->total_credits = 743 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 744 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 745 746 tb_dump_port(port->sw->tb, port); 747 return 0; 748 } 749 750 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 751 int max_hopid) 752 { 753 int port_max_hopid; 754 struct ida *ida; 755 756 if (in) { 757 port_max_hopid = port->config.max_in_hop_id; 758 ida = &port->in_hopids; 759 } else { 760 port_max_hopid = port->config.max_out_hop_id; 761 ida = &port->out_hopids; 762 } 763 764 /* 765 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are 766 * reserved. 767 */ 768 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID) 769 min_hopid = TB_PATH_MIN_HOPID; 770 771 if (max_hopid < 0 || max_hopid > port_max_hopid) 772 max_hopid = port_max_hopid; 773 774 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 775 } 776 777 /** 778 * tb_port_alloc_in_hopid() - Allocate input HopID from port 779 * @port: Port to allocate HopID for 780 * @min_hopid: Minimum acceptable input HopID 781 * @max_hopid: Maximum acceptable input HopID 782 * 783 * Return: HopID between @min_hopid and @max_hopid or negative errno in 784 * case of error. 785 */ 786 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 787 { 788 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 789 } 790 791 /** 792 * tb_port_alloc_out_hopid() - Allocate output HopID from port 793 * @port: Port to allocate HopID for 794 * @min_hopid: Minimum acceptable output HopID 795 * @max_hopid: Maximum acceptable output HopID 796 * 797 * Return: HopID between @min_hopid and @max_hopid or negative errno in 798 * case of error. 799 */ 800 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 801 { 802 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 803 } 804 805 /** 806 * tb_port_release_in_hopid() - Release allocated input HopID from port 807 * @port: Port whose HopID to release 808 * @hopid: HopID to release 809 */ 810 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 811 { 812 ida_simple_remove(&port->in_hopids, hopid); 813 } 814 815 /** 816 * tb_port_release_out_hopid() - Release allocated output HopID from port 817 * @port: Port whose HopID to release 818 * @hopid: HopID to release 819 */ 820 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 821 { 822 ida_simple_remove(&port->out_hopids, hopid); 823 } 824 825 static inline bool tb_switch_is_reachable(const struct tb_switch *parent, 826 const struct tb_switch *sw) 827 { 828 u64 mask = (1ULL << parent->config.depth * 8) - 1; 829 return (tb_route(parent) & mask) == (tb_route(sw) & mask); 830 } 831 832 /** 833 * tb_next_port_on_path() - Return next port for given port on a path 834 * @start: Start port of the walk 835 * @end: End port of the walk 836 * @prev: Previous port (%NULL if this is the first) 837 * 838 * This function can be used to walk from one port to another if they 839 * are connected through zero or more switches. If the @prev is dual 840 * link port, the function follows that link and returns another end on 841 * that same link. 842 * 843 * If the @end port has been reached, return %NULL. 844 * 845 * Domain tb->lock must be held when this function is called. 846 */ 847 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 848 struct tb_port *prev) 849 { 850 struct tb_port *next; 851 852 if (!prev) 853 return start; 854 855 if (prev->sw == end->sw) { 856 if (prev == end) 857 return NULL; 858 return end; 859 } 860 861 if (tb_switch_is_reachable(prev->sw, end->sw)) { 862 next = tb_port_at(tb_route(end->sw), prev->sw); 863 /* Walk down the topology if next == prev */ 864 if (prev->remote && 865 (next == prev || next->dual_link_port == prev)) 866 next = prev->remote; 867 } else { 868 if (tb_is_upstream_port(prev)) { 869 next = prev->remote; 870 } else { 871 next = tb_upstream_port(prev->sw); 872 /* 873 * Keep the same link if prev and next are both 874 * dual link ports. 875 */ 876 if (next->dual_link_port && 877 next->link_nr != prev->link_nr) { 878 next = next->dual_link_port; 879 } 880 } 881 } 882 883 return next != prev ? next : NULL; 884 } 885 886 /** 887 * tb_port_get_link_speed() - Get current link speed 888 * @port: Port to check (USB4 or CIO) 889 * 890 * Returns link speed in Gb/s or negative errno in case of failure. 891 */ 892 int tb_port_get_link_speed(struct tb_port *port) 893 { 894 u32 val, speed; 895 int ret; 896 897 if (!port->cap_phy) 898 return -EINVAL; 899 900 ret = tb_port_read(port, &val, TB_CFG_PORT, 901 port->cap_phy + LANE_ADP_CS_1, 1); 902 if (ret) 903 return ret; 904 905 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 906 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 907 908 switch (speed) { 909 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4: 910 return 40; 911 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3: 912 return 20; 913 default: 914 return 10; 915 } 916 } 917 918 /** 919 * tb_port_get_link_generation() - Returns link generation 920 * @port: Lane adapter 921 * 922 * Returns link generation as number or negative errno in case of 923 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2 924 * links so for those always returns 2. 925 */ 926 int tb_port_get_link_generation(struct tb_port *port) 927 { 928 int ret; 929 930 ret = tb_port_get_link_speed(port); 931 if (ret < 0) 932 return ret; 933 934 switch (ret) { 935 case 40: 936 return 4; 937 case 20: 938 return 3; 939 default: 940 return 2; 941 } 942 } 943 944 /** 945 * tb_port_get_link_width() - Get current link width 946 * @port: Port to check (USB4 or CIO) 947 * 948 * Returns link width. Return the link width as encoded in &enum 949 * tb_link_width or negative errno in case of failure. 950 */ 951 int tb_port_get_link_width(struct tb_port *port) 952 { 953 u32 val; 954 int ret; 955 956 if (!port->cap_phy) 957 return -EINVAL; 958 959 ret = tb_port_read(port, &val, TB_CFG_PORT, 960 port->cap_phy + LANE_ADP_CS_1, 1); 961 if (ret) 962 return ret; 963 964 /* Matches the values in enum tb_link_width */ 965 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 966 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 967 } 968 969 /** 970 * tb_port_width_supported() - Is the given link width supported 971 * @port: Port to check 972 * @width: Widths to check (bitmask) 973 * 974 * Can be called to any lane adapter. Checks if given @width is 975 * supported by the hardware and returns %true if it is. 976 */ 977 bool tb_port_width_supported(struct tb_port *port, unsigned int width) 978 { 979 u32 phy, widths; 980 int ret; 981 982 if (!port->cap_phy) 983 return false; 984 985 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) { 986 if (tb_port_get_link_generation(port) < 4 || 987 !usb4_port_asym_supported(port)) 988 return false; 989 } 990 991 ret = tb_port_read(port, &phy, TB_CFG_PORT, 992 port->cap_phy + LANE_ADP_CS_0, 1); 993 if (ret) 994 return false; 995 996 /* 997 * The field encoding is the same as &enum tb_link_width (which is 998 * passed to @width). 999 */ 1000 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy); 1001 return widths & width; 1002 } 1003 1004 /** 1005 * tb_port_set_link_width() - Set target link width of the lane adapter 1006 * @port: Lane adapter 1007 * @width: Target link width 1008 * 1009 * Sets the target link width of the lane adapter to @width. Does not 1010 * enable/disable lane bonding. For that call tb_port_set_lane_bonding(). 1011 * 1012 * Return: %0 in case of success and negative errno in case of error 1013 */ 1014 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width) 1015 { 1016 u32 val; 1017 int ret; 1018 1019 if (!port->cap_phy) 1020 return -EINVAL; 1021 1022 ret = tb_port_read(port, &val, TB_CFG_PORT, 1023 port->cap_phy + LANE_ADP_CS_1, 1); 1024 if (ret) 1025 return ret; 1026 1027 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 1028 switch (width) { 1029 case TB_LINK_WIDTH_SINGLE: 1030 /* Gen 4 link cannot be single */ 1031 if (tb_port_get_link_generation(port) >= 4) 1032 return -EOPNOTSUPP; 1033 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 1034 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1035 break; 1036 1037 case TB_LINK_WIDTH_DUAL: 1038 if (tb_port_get_link_generation(port) >= 4) 1039 return usb4_port_asym_set_link_width(port, width); 1040 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 1041 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1042 break; 1043 1044 case TB_LINK_WIDTH_ASYM_TX: 1045 case TB_LINK_WIDTH_ASYM_RX: 1046 return usb4_port_asym_set_link_width(port, width); 1047 1048 default: 1049 return -EINVAL; 1050 } 1051 1052 return tb_port_write(port, &val, TB_CFG_PORT, 1053 port->cap_phy + LANE_ADP_CS_1, 1); 1054 } 1055 1056 /** 1057 * tb_port_set_lane_bonding() - Enable/disable lane bonding 1058 * @port: Lane adapter 1059 * @bonding: enable/disable bonding 1060 * 1061 * Enables or disables lane bonding. This should be called after target 1062 * link width has been set (tb_port_set_link_width()). Note in most 1063 * cases one should use tb_port_lane_bonding_enable() instead to enable 1064 * lane bonding. 1065 * 1066 * Return: %0 in case of success and negative errno in case of error 1067 */ 1068 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding) 1069 { 1070 u32 val; 1071 int ret; 1072 1073 if (!port->cap_phy) 1074 return -EINVAL; 1075 1076 ret = tb_port_read(port, &val, TB_CFG_PORT, 1077 port->cap_phy + LANE_ADP_CS_1, 1); 1078 if (ret) 1079 return ret; 1080 1081 if (bonding) 1082 val |= LANE_ADP_CS_1_LB; 1083 else 1084 val &= ~LANE_ADP_CS_1_LB; 1085 1086 return tb_port_write(port, &val, TB_CFG_PORT, 1087 port->cap_phy + LANE_ADP_CS_1, 1); 1088 } 1089 1090 /** 1091 * tb_port_lane_bonding_enable() - Enable bonding on port 1092 * @port: port to enable 1093 * 1094 * Enable bonding by setting the link width of the port and the other 1095 * port in case of dual link port. Does not wait for the link to 1096 * actually reach the bonded state so caller needs to call 1097 * tb_port_wait_for_link_width() before enabling any paths through the 1098 * link to make sure the link is in expected state. 1099 * 1100 * Return: %0 in case of success and negative errno in case of error 1101 */ 1102 int tb_port_lane_bonding_enable(struct tb_port *port) 1103 { 1104 enum tb_link_width width; 1105 int ret; 1106 1107 /* 1108 * Enable lane bonding for both links if not already enabled by 1109 * for example the boot firmware. 1110 */ 1111 width = tb_port_get_link_width(port); 1112 if (width == TB_LINK_WIDTH_SINGLE) { 1113 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL); 1114 if (ret) 1115 goto err_lane0; 1116 } 1117 1118 width = tb_port_get_link_width(port->dual_link_port); 1119 if (width == TB_LINK_WIDTH_SINGLE) { 1120 ret = tb_port_set_link_width(port->dual_link_port, 1121 TB_LINK_WIDTH_DUAL); 1122 if (ret) 1123 goto err_lane0; 1124 } 1125 1126 /* 1127 * Only set bonding if the link was not already bonded. This 1128 * avoids the lane adapter to re-enter bonding state. 1129 */ 1130 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) { 1131 ret = tb_port_set_lane_bonding(port, true); 1132 if (ret) 1133 goto err_lane1; 1134 } 1135 1136 /* 1137 * When lane 0 bonding is set it will affect lane 1 too so 1138 * update both. 1139 */ 1140 port->bonded = true; 1141 port->dual_link_port->bonded = true; 1142 1143 return 0; 1144 1145 err_lane1: 1146 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE); 1147 err_lane0: 1148 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE); 1149 1150 return ret; 1151 } 1152 1153 /** 1154 * tb_port_lane_bonding_disable() - Disable bonding on port 1155 * @port: port to disable 1156 * 1157 * Disable bonding by setting the link width of the port and the 1158 * other port in case of dual link port. 1159 */ 1160 void tb_port_lane_bonding_disable(struct tb_port *port) 1161 { 1162 tb_port_set_lane_bonding(port, false); 1163 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE); 1164 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE); 1165 port->dual_link_port->bonded = false; 1166 port->bonded = false; 1167 } 1168 1169 /** 1170 * tb_port_wait_for_link_width() - Wait until link reaches specific width 1171 * @port: Port to wait for 1172 * @width: Expected link width (bitmask) 1173 * @timeout_msec: Timeout in ms how long to wait 1174 * 1175 * Should be used after both ends of the link have been bonded (or 1176 * bonding has been disabled) to wait until the link actually reaches 1177 * the expected state. Returns %-ETIMEDOUT if the width was not reached 1178 * within the given timeout, %0 if it did. Can be passed a mask of 1179 * expected widths and succeeds if any of the widths is reached. 1180 */ 1181 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width, 1182 int timeout_msec) 1183 { 1184 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1185 int ret; 1186 1187 /* Gen 4 link does not support single lane */ 1188 if ((width & TB_LINK_WIDTH_SINGLE) && 1189 tb_port_get_link_generation(port) >= 4) 1190 return -EOPNOTSUPP; 1191 1192 do { 1193 ret = tb_port_get_link_width(port); 1194 if (ret < 0) { 1195 /* 1196 * Sometimes we get port locked error when 1197 * polling the lanes so we can ignore it and 1198 * retry. 1199 */ 1200 if (ret != -EACCES) 1201 return ret; 1202 } else if (ret & width) { 1203 return 0; 1204 } 1205 1206 usleep_range(1000, 2000); 1207 } while (ktime_before(ktime_get(), timeout)); 1208 1209 return -ETIMEDOUT; 1210 } 1211 1212 static int tb_port_do_update_credits(struct tb_port *port) 1213 { 1214 u32 nfc_credits; 1215 int ret; 1216 1217 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); 1218 if (ret) 1219 return ret; 1220 1221 if (nfc_credits != port->config.nfc_credits) { 1222 u32 total; 1223 1224 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 1225 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 1226 1227 tb_port_dbg(port, "total credits changed %u -> %u\n", 1228 port->total_credits, total); 1229 1230 port->config.nfc_credits = nfc_credits; 1231 port->total_credits = total; 1232 } 1233 1234 return 0; 1235 } 1236 1237 /** 1238 * tb_port_update_credits() - Re-read port total credits 1239 * @port: Port to update 1240 * 1241 * After the link is bonded (or bonding was disabled) the port total 1242 * credits may change, so this function needs to be called to re-read 1243 * the credits. Updates also the second lane adapter. 1244 */ 1245 int tb_port_update_credits(struct tb_port *port) 1246 { 1247 int ret; 1248 1249 ret = tb_port_do_update_credits(port); 1250 if (ret) 1251 return ret; 1252 return tb_port_do_update_credits(port->dual_link_port); 1253 } 1254 1255 static int tb_port_start_lane_initialization(struct tb_port *port) 1256 { 1257 int ret; 1258 1259 if (tb_switch_is_usb4(port->sw)) 1260 return 0; 1261 1262 ret = tb_lc_start_lane_initialization(port); 1263 return ret == -EINVAL ? 0 : ret; 1264 } 1265 1266 /* 1267 * Returns true if the port had something (router, XDomain) connected 1268 * before suspend. 1269 */ 1270 static bool tb_port_resume(struct tb_port *port) 1271 { 1272 bool has_remote = tb_port_has_remote(port); 1273 1274 if (port->usb4) { 1275 usb4_port_device_resume(port->usb4); 1276 } else if (!has_remote) { 1277 /* 1278 * For disconnected downstream lane adapters start lane 1279 * initialization now so we detect future connects. 1280 * 1281 * For XDomain start the lane initialzation now so the 1282 * link gets re-established. 1283 * 1284 * This is only needed for non-USB4 ports. 1285 */ 1286 if (!tb_is_upstream_port(port) || port->xdomain) 1287 tb_port_start_lane_initialization(port); 1288 } 1289 1290 return has_remote || port->xdomain; 1291 } 1292 1293 /** 1294 * tb_port_is_enabled() - Is the adapter port enabled 1295 * @port: Port to check 1296 */ 1297 bool tb_port_is_enabled(struct tb_port *port) 1298 { 1299 switch (port->config.type) { 1300 case TB_TYPE_PCIE_UP: 1301 case TB_TYPE_PCIE_DOWN: 1302 return tb_pci_port_is_enabled(port); 1303 1304 case TB_TYPE_DP_HDMI_IN: 1305 case TB_TYPE_DP_HDMI_OUT: 1306 return tb_dp_port_is_enabled(port); 1307 1308 case TB_TYPE_USB3_UP: 1309 case TB_TYPE_USB3_DOWN: 1310 return tb_usb3_port_is_enabled(port); 1311 1312 default: 1313 return false; 1314 } 1315 } 1316 1317 /** 1318 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1319 * @port: USB3 adapter port to check 1320 */ 1321 bool tb_usb3_port_is_enabled(struct tb_port *port) 1322 { 1323 u32 data; 1324 1325 if (tb_port_read(port, &data, TB_CFG_PORT, 1326 port->cap_adap + ADP_USB3_CS_0, 1)) 1327 return false; 1328 1329 return !!(data & ADP_USB3_CS_0_PE); 1330 } 1331 1332 /** 1333 * tb_usb3_port_enable() - Enable USB3 adapter port 1334 * @port: USB3 adapter port to enable 1335 * @enable: Enable/disable the USB3 adapter 1336 */ 1337 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1338 { 1339 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1340 : ADP_USB3_CS_0_V; 1341 1342 if (!port->cap_adap) 1343 return -ENXIO; 1344 return tb_port_write(port, &word, TB_CFG_PORT, 1345 port->cap_adap + ADP_USB3_CS_0, 1); 1346 } 1347 1348 /** 1349 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1350 * @port: PCIe port to check 1351 */ 1352 bool tb_pci_port_is_enabled(struct tb_port *port) 1353 { 1354 u32 data; 1355 1356 if (tb_port_read(port, &data, TB_CFG_PORT, 1357 port->cap_adap + ADP_PCIE_CS_0, 1)) 1358 return false; 1359 1360 return !!(data & ADP_PCIE_CS_0_PE); 1361 } 1362 1363 /** 1364 * tb_pci_port_enable() - Enable PCIe adapter port 1365 * @port: PCIe port to enable 1366 * @enable: Enable/disable the PCIe adapter 1367 */ 1368 int tb_pci_port_enable(struct tb_port *port, bool enable) 1369 { 1370 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1371 if (!port->cap_adap) 1372 return -ENXIO; 1373 return tb_port_write(port, &word, TB_CFG_PORT, 1374 port->cap_adap + ADP_PCIE_CS_0, 1); 1375 } 1376 1377 /** 1378 * tb_dp_port_hpd_is_active() - Is HPD already active 1379 * @port: DP out port to check 1380 * 1381 * Checks if the DP OUT adapter port has HPD bit already set. 1382 */ 1383 int tb_dp_port_hpd_is_active(struct tb_port *port) 1384 { 1385 u32 data; 1386 int ret; 1387 1388 ret = tb_port_read(port, &data, TB_CFG_PORT, 1389 port->cap_adap + ADP_DP_CS_2, 1); 1390 if (ret) 1391 return ret; 1392 1393 return !!(data & ADP_DP_CS_2_HPD); 1394 } 1395 1396 /** 1397 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1398 * @port: Port to clear HPD 1399 * 1400 * If the DP IN port has HPD set, this function can be used to clear it. 1401 */ 1402 int tb_dp_port_hpd_clear(struct tb_port *port) 1403 { 1404 u32 data; 1405 int ret; 1406 1407 ret = tb_port_read(port, &data, TB_CFG_PORT, 1408 port->cap_adap + ADP_DP_CS_3, 1); 1409 if (ret) 1410 return ret; 1411 1412 data |= ADP_DP_CS_3_HPDC; 1413 return tb_port_write(port, &data, TB_CFG_PORT, 1414 port->cap_adap + ADP_DP_CS_3, 1); 1415 } 1416 1417 /** 1418 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1419 * @port: DP IN/OUT port to set hops 1420 * @video: Video Hop ID 1421 * @aux_tx: AUX TX Hop ID 1422 * @aux_rx: AUX RX Hop ID 1423 * 1424 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4 1425 * router DP adapters too but does not program the values as the fields 1426 * are read-only. 1427 */ 1428 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1429 unsigned int aux_tx, unsigned int aux_rx) 1430 { 1431 u32 data[2]; 1432 int ret; 1433 1434 if (tb_switch_is_usb4(port->sw)) 1435 return 0; 1436 1437 ret = tb_port_read(port, data, TB_CFG_PORT, 1438 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1439 if (ret) 1440 return ret; 1441 1442 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1443 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1444 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1445 1446 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1447 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1448 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1449 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1450 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1451 1452 return tb_port_write(port, data, TB_CFG_PORT, 1453 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1454 } 1455 1456 /** 1457 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1458 * @port: DP adapter port to check 1459 */ 1460 bool tb_dp_port_is_enabled(struct tb_port *port) 1461 { 1462 u32 data[2]; 1463 1464 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1465 ARRAY_SIZE(data))) 1466 return false; 1467 1468 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1469 } 1470 1471 /** 1472 * tb_dp_port_enable() - Enables/disables DP paths of a port 1473 * @port: DP IN/OUT port 1474 * @enable: Enable/disable DP path 1475 * 1476 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1477 * calling this function. 1478 */ 1479 int tb_dp_port_enable(struct tb_port *port, bool enable) 1480 { 1481 u32 data[2]; 1482 int ret; 1483 1484 ret = tb_port_read(port, data, TB_CFG_PORT, 1485 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1486 if (ret) 1487 return ret; 1488 1489 if (enable) 1490 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1491 else 1492 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1493 1494 return tb_port_write(port, data, TB_CFG_PORT, 1495 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1496 } 1497 1498 /* switch utility functions */ 1499 1500 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1501 { 1502 switch (sw->generation) { 1503 case 1: 1504 return "Thunderbolt 1"; 1505 case 2: 1506 return "Thunderbolt 2"; 1507 case 3: 1508 return "Thunderbolt 3"; 1509 case 4: 1510 return "USB4"; 1511 default: 1512 return "Unknown"; 1513 } 1514 } 1515 1516 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1517 { 1518 const struct tb_regs_switch_header *regs = &sw->config; 1519 1520 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1521 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1522 regs->revision, regs->thunderbolt_version); 1523 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1524 tb_dbg(tb, " Config:\n"); 1525 tb_dbg(tb, 1526 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1527 regs->upstream_port_number, regs->depth, 1528 (((u64) regs->route_hi) << 32) | regs->route_lo, 1529 regs->enabled, regs->plug_events_delay); 1530 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1531 regs->__unknown1, regs->__unknown4); 1532 } 1533 1534 /** 1535 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET 1536 * @sw: Switch to reset 1537 * 1538 * Return: Returns 0 on success or an error code on failure. 1539 */ 1540 int tb_switch_reset(struct tb_switch *sw) 1541 { 1542 struct tb_cfg_result res; 1543 1544 if (sw->generation > 1) 1545 return 0; 1546 1547 tb_sw_dbg(sw, "resetting switch\n"); 1548 1549 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2, 1550 TB_CFG_SWITCH, 2, 2); 1551 if (res.err) 1552 return res.err; 1553 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw)); 1554 if (res.err > 0) 1555 return -EIO; 1556 return res.err; 1557 } 1558 1559 /** 1560 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset 1561 * @sw: Router to read the offset value from 1562 * @offset: Offset in the router config space to read from 1563 * @bit: Bit mask in the offset to wait for 1564 * @value: Value of the bits to wait for 1565 * @timeout_msec: Timeout in ms how long to wait 1566 * 1567 * Wait till the specified bits in specified offset reach specified value. 1568 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached 1569 * within the given timeout or a negative errno in case of failure. 1570 */ 1571 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, 1572 u32 value, int timeout_msec) 1573 { 1574 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1575 1576 do { 1577 u32 val; 1578 int ret; 1579 1580 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 1581 if (ret) 1582 return ret; 1583 1584 if ((val & bit) == value) 1585 return 0; 1586 1587 usleep_range(50, 100); 1588 } while (ktime_before(ktime_get(), timeout)); 1589 1590 return -ETIMEDOUT; 1591 } 1592 1593 /* 1594 * tb_plug_events_active() - enable/disable plug events on a switch 1595 * 1596 * Also configures a sane plug_events_delay of 255ms. 1597 * 1598 * Return: Returns 0 on success or an error code on failure. 1599 */ 1600 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1601 { 1602 u32 data; 1603 int res; 1604 1605 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw)) 1606 return 0; 1607 1608 sw->config.plug_events_delay = 0xff; 1609 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1610 if (res) 1611 return res; 1612 1613 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1614 if (res) 1615 return res; 1616 1617 if (active) { 1618 data = data & 0xFFFFFF83; 1619 switch (sw->config.device_id) { 1620 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1621 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1622 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1623 break; 1624 default: 1625 /* 1626 * Skip Alpine Ridge, it needs to have vendor 1627 * specific USB hotplug event enabled for the 1628 * internal xHCI to work. 1629 */ 1630 if (!tb_switch_is_alpine_ridge(sw)) 1631 data |= TB_PLUG_EVENTS_USB_DISABLE; 1632 } 1633 } else { 1634 data = data | 0x7c; 1635 } 1636 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1637 sw->cap_plug_events + 1, 1); 1638 } 1639 1640 static ssize_t authorized_show(struct device *dev, 1641 struct device_attribute *attr, 1642 char *buf) 1643 { 1644 struct tb_switch *sw = tb_to_switch(dev); 1645 1646 return sysfs_emit(buf, "%u\n", sw->authorized); 1647 } 1648 1649 static int disapprove_switch(struct device *dev, void *not_used) 1650 { 1651 char *envp[] = { "AUTHORIZED=0", NULL }; 1652 struct tb_switch *sw; 1653 1654 sw = tb_to_switch(dev); 1655 if (sw && sw->authorized) { 1656 int ret; 1657 1658 /* First children */ 1659 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch); 1660 if (ret) 1661 return ret; 1662 1663 ret = tb_domain_disapprove_switch(sw->tb, sw); 1664 if (ret) 1665 return ret; 1666 1667 sw->authorized = 0; 1668 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1669 } 1670 1671 return 0; 1672 } 1673 1674 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1675 { 1676 char envp_string[13]; 1677 int ret = -EINVAL; 1678 char *envp[] = { envp_string, NULL }; 1679 1680 if (!mutex_trylock(&sw->tb->lock)) 1681 return restart_syscall(); 1682 1683 if (!!sw->authorized == !!val) 1684 goto unlock; 1685 1686 switch (val) { 1687 /* Disapprove switch */ 1688 case 0: 1689 if (tb_route(sw)) { 1690 ret = disapprove_switch(&sw->dev, NULL); 1691 goto unlock; 1692 } 1693 break; 1694 1695 /* Approve switch */ 1696 case 1: 1697 if (sw->key) 1698 ret = tb_domain_approve_switch_key(sw->tb, sw); 1699 else 1700 ret = tb_domain_approve_switch(sw->tb, sw); 1701 break; 1702 1703 /* Challenge switch */ 1704 case 2: 1705 if (sw->key) 1706 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1707 break; 1708 1709 default: 1710 break; 1711 } 1712 1713 if (!ret) { 1714 sw->authorized = val; 1715 /* 1716 * Notify status change to the userspace, informing the new 1717 * value of /sys/bus/thunderbolt/devices/.../authorized. 1718 */ 1719 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized); 1720 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1721 } 1722 1723 unlock: 1724 mutex_unlock(&sw->tb->lock); 1725 return ret; 1726 } 1727 1728 static ssize_t authorized_store(struct device *dev, 1729 struct device_attribute *attr, 1730 const char *buf, size_t count) 1731 { 1732 struct tb_switch *sw = tb_to_switch(dev); 1733 unsigned int val; 1734 ssize_t ret; 1735 1736 ret = kstrtouint(buf, 0, &val); 1737 if (ret) 1738 return ret; 1739 if (val > 2) 1740 return -EINVAL; 1741 1742 pm_runtime_get_sync(&sw->dev); 1743 ret = tb_switch_set_authorized(sw, val); 1744 pm_runtime_mark_last_busy(&sw->dev); 1745 pm_runtime_put_autosuspend(&sw->dev); 1746 1747 return ret ? ret : count; 1748 } 1749 static DEVICE_ATTR_RW(authorized); 1750 1751 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1752 char *buf) 1753 { 1754 struct tb_switch *sw = tb_to_switch(dev); 1755 1756 return sysfs_emit(buf, "%u\n", sw->boot); 1757 } 1758 static DEVICE_ATTR_RO(boot); 1759 1760 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1761 char *buf) 1762 { 1763 struct tb_switch *sw = tb_to_switch(dev); 1764 1765 return sysfs_emit(buf, "%#x\n", sw->device); 1766 } 1767 static DEVICE_ATTR_RO(device); 1768 1769 static ssize_t 1770 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1771 { 1772 struct tb_switch *sw = tb_to_switch(dev); 1773 1774 return sysfs_emit(buf, "%s\n", sw->device_name ?: ""); 1775 } 1776 static DEVICE_ATTR_RO(device_name); 1777 1778 static ssize_t 1779 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1780 { 1781 struct tb_switch *sw = tb_to_switch(dev); 1782 1783 return sysfs_emit(buf, "%u\n", sw->generation); 1784 } 1785 static DEVICE_ATTR_RO(generation); 1786 1787 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1788 char *buf) 1789 { 1790 struct tb_switch *sw = tb_to_switch(dev); 1791 ssize_t ret; 1792 1793 if (!mutex_trylock(&sw->tb->lock)) 1794 return restart_syscall(); 1795 1796 if (sw->key) 1797 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1798 else 1799 ret = sysfs_emit(buf, "\n"); 1800 1801 mutex_unlock(&sw->tb->lock); 1802 return ret; 1803 } 1804 1805 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1806 const char *buf, size_t count) 1807 { 1808 struct tb_switch *sw = tb_to_switch(dev); 1809 u8 key[TB_SWITCH_KEY_SIZE]; 1810 ssize_t ret = count; 1811 bool clear = false; 1812 1813 if (!strcmp(buf, "\n")) 1814 clear = true; 1815 else if (hex2bin(key, buf, sizeof(key))) 1816 return -EINVAL; 1817 1818 if (!mutex_trylock(&sw->tb->lock)) 1819 return restart_syscall(); 1820 1821 if (sw->authorized) { 1822 ret = -EBUSY; 1823 } else { 1824 kfree(sw->key); 1825 if (clear) { 1826 sw->key = NULL; 1827 } else { 1828 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1829 if (!sw->key) 1830 ret = -ENOMEM; 1831 } 1832 } 1833 1834 mutex_unlock(&sw->tb->lock); 1835 return ret; 1836 } 1837 static DEVICE_ATTR(key, 0600, key_show, key_store); 1838 1839 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1840 char *buf) 1841 { 1842 struct tb_switch *sw = tb_to_switch(dev); 1843 1844 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed); 1845 } 1846 1847 /* 1848 * Currently all lanes must run at the same speed but we expose here 1849 * both directions to allow possible asymmetric links in the future. 1850 */ 1851 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1852 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1853 1854 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr, 1855 char *buf) 1856 { 1857 struct tb_switch *sw = tb_to_switch(dev); 1858 unsigned int width; 1859 1860 switch (sw->link_width) { 1861 case TB_LINK_WIDTH_SINGLE: 1862 case TB_LINK_WIDTH_ASYM_TX: 1863 width = 1; 1864 break; 1865 case TB_LINK_WIDTH_DUAL: 1866 width = 2; 1867 break; 1868 case TB_LINK_WIDTH_ASYM_RX: 1869 width = 3; 1870 break; 1871 default: 1872 WARN_ON_ONCE(1); 1873 return -EINVAL; 1874 } 1875 1876 return sysfs_emit(buf, "%u\n", width); 1877 } 1878 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL); 1879 1880 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr, 1881 char *buf) 1882 { 1883 struct tb_switch *sw = tb_to_switch(dev); 1884 unsigned int width; 1885 1886 switch (sw->link_width) { 1887 case TB_LINK_WIDTH_SINGLE: 1888 case TB_LINK_WIDTH_ASYM_RX: 1889 width = 1; 1890 break; 1891 case TB_LINK_WIDTH_DUAL: 1892 width = 2; 1893 break; 1894 case TB_LINK_WIDTH_ASYM_TX: 1895 width = 3; 1896 break; 1897 default: 1898 WARN_ON_ONCE(1); 1899 return -EINVAL; 1900 } 1901 1902 return sysfs_emit(buf, "%u\n", width); 1903 } 1904 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL); 1905 1906 static ssize_t nvm_authenticate_show(struct device *dev, 1907 struct device_attribute *attr, char *buf) 1908 { 1909 struct tb_switch *sw = tb_to_switch(dev); 1910 u32 status; 1911 1912 nvm_get_auth_status(sw, &status); 1913 return sysfs_emit(buf, "%#x\n", status); 1914 } 1915 1916 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, 1917 bool disconnect) 1918 { 1919 struct tb_switch *sw = tb_to_switch(dev); 1920 int val, ret; 1921 1922 pm_runtime_get_sync(&sw->dev); 1923 1924 if (!mutex_trylock(&sw->tb->lock)) { 1925 ret = restart_syscall(); 1926 goto exit_rpm; 1927 } 1928 1929 if (sw->no_nvm_upgrade) { 1930 ret = -EOPNOTSUPP; 1931 goto exit_unlock; 1932 } 1933 1934 /* If NVMem devices are not yet added */ 1935 if (!sw->nvm) { 1936 ret = -EAGAIN; 1937 goto exit_unlock; 1938 } 1939 1940 ret = kstrtoint(buf, 10, &val); 1941 if (ret) 1942 goto exit_unlock; 1943 1944 /* Always clear the authentication status */ 1945 nvm_clear_auth_status(sw); 1946 1947 if (val > 0) { 1948 if (val == AUTHENTICATE_ONLY) { 1949 if (disconnect) 1950 ret = -EINVAL; 1951 else 1952 ret = nvm_authenticate(sw, true); 1953 } else { 1954 if (!sw->nvm->flushed) { 1955 if (!sw->nvm->buf) { 1956 ret = -EINVAL; 1957 goto exit_unlock; 1958 } 1959 1960 ret = nvm_validate_and_write(sw); 1961 if (ret || val == WRITE_ONLY) 1962 goto exit_unlock; 1963 } 1964 if (val == WRITE_AND_AUTHENTICATE) { 1965 if (disconnect) 1966 ret = tb_lc_force_power(sw); 1967 else 1968 ret = nvm_authenticate(sw, false); 1969 } 1970 } 1971 } 1972 1973 exit_unlock: 1974 mutex_unlock(&sw->tb->lock); 1975 exit_rpm: 1976 pm_runtime_mark_last_busy(&sw->dev); 1977 pm_runtime_put_autosuspend(&sw->dev); 1978 1979 return ret; 1980 } 1981 1982 static ssize_t nvm_authenticate_store(struct device *dev, 1983 struct device_attribute *attr, const char *buf, size_t count) 1984 { 1985 int ret = nvm_authenticate_sysfs(dev, buf, false); 1986 if (ret) 1987 return ret; 1988 return count; 1989 } 1990 static DEVICE_ATTR_RW(nvm_authenticate); 1991 1992 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, 1993 struct device_attribute *attr, char *buf) 1994 { 1995 return nvm_authenticate_show(dev, attr, buf); 1996 } 1997 1998 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, 1999 struct device_attribute *attr, const char *buf, size_t count) 2000 { 2001 int ret; 2002 2003 ret = nvm_authenticate_sysfs(dev, buf, true); 2004 return ret ? ret : count; 2005 } 2006 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); 2007 2008 static ssize_t nvm_version_show(struct device *dev, 2009 struct device_attribute *attr, char *buf) 2010 { 2011 struct tb_switch *sw = tb_to_switch(dev); 2012 int ret; 2013 2014 if (!mutex_trylock(&sw->tb->lock)) 2015 return restart_syscall(); 2016 2017 if (sw->safe_mode) 2018 ret = -ENODATA; 2019 else if (!sw->nvm) 2020 ret = -EAGAIN; 2021 else 2022 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 2023 2024 mutex_unlock(&sw->tb->lock); 2025 2026 return ret; 2027 } 2028 static DEVICE_ATTR_RO(nvm_version); 2029 2030 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 2031 char *buf) 2032 { 2033 struct tb_switch *sw = tb_to_switch(dev); 2034 2035 return sysfs_emit(buf, "%#x\n", sw->vendor); 2036 } 2037 static DEVICE_ATTR_RO(vendor); 2038 2039 static ssize_t 2040 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 2041 { 2042 struct tb_switch *sw = tb_to_switch(dev); 2043 2044 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: ""); 2045 } 2046 static DEVICE_ATTR_RO(vendor_name); 2047 2048 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 2049 char *buf) 2050 { 2051 struct tb_switch *sw = tb_to_switch(dev); 2052 2053 return sysfs_emit(buf, "%pUb\n", sw->uuid); 2054 } 2055 static DEVICE_ATTR_RO(unique_id); 2056 2057 static struct attribute *switch_attrs[] = { 2058 &dev_attr_authorized.attr, 2059 &dev_attr_boot.attr, 2060 &dev_attr_device.attr, 2061 &dev_attr_device_name.attr, 2062 &dev_attr_generation.attr, 2063 &dev_attr_key.attr, 2064 &dev_attr_nvm_authenticate.attr, 2065 &dev_attr_nvm_authenticate_on_disconnect.attr, 2066 &dev_attr_nvm_version.attr, 2067 &dev_attr_rx_speed.attr, 2068 &dev_attr_rx_lanes.attr, 2069 &dev_attr_tx_speed.attr, 2070 &dev_attr_tx_lanes.attr, 2071 &dev_attr_vendor.attr, 2072 &dev_attr_vendor_name.attr, 2073 &dev_attr_unique_id.attr, 2074 NULL, 2075 }; 2076 2077 static umode_t switch_attr_is_visible(struct kobject *kobj, 2078 struct attribute *attr, int n) 2079 { 2080 struct device *dev = kobj_to_dev(kobj); 2081 struct tb_switch *sw = tb_to_switch(dev); 2082 2083 if (attr == &dev_attr_authorized.attr) { 2084 if (sw->tb->security_level == TB_SECURITY_NOPCIE || 2085 sw->tb->security_level == TB_SECURITY_DPONLY) 2086 return 0; 2087 } else if (attr == &dev_attr_device.attr) { 2088 if (!sw->device) 2089 return 0; 2090 } else if (attr == &dev_attr_device_name.attr) { 2091 if (!sw->device_name) 2092 return 0; 2093 } else if (attr == &dev_attr_vendor.attr) { 2094 if (!sw->vendor) 2095 return 0; 2096 } else if (attr == &dev_attr_vendor_name.attr) { 2097 if (!sw->vendor_name) 2098 return 0; 2099 } else if (attr == &dev_attr_key.attr) { 2100 if (tb_route(sw) && 2101 sw->tb->security_level == TB_SECURITY_SECURE && 2102 sw->security_level == TB_SECURITY_SECURE) 2103 return attr->mode; 2104 return 0; 2105 } else if (attr == &dev_attr_rx_speed.attr || 2106 attr == &dev_attr_rx_lanes.attr || 2107 attr == &dev_attr_tx_speed.attr || 2108 attr == &dev_attr_tx_lanes.attr) { 2109 if (tb_route(sw)) 2110 return attr->mode; 2111 return 0; 2112 } else if (attr == &dev_attr_nvm_authenticate.attr) { 2113 if (nvm_upgradeable(sw)) 2114 return attr->mode; 2115 return 0; 2116 } else if (attr == &dev_attr_nvm_version.attr) { 2117 if (nvm_readable(sw)) 2118 return attr->mode; 2119 return 0; 2120 } else if (attr == &dev_attr_boot.attr) { 2121 if (tb_route(sw)) 2122 return attr->mode; 2123 return 0; 2124 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { 2125 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) 2126 return attr->mode; 2127 return 0; 2128 } 2129 2130 return sw->safe_mode ? 0 : attr->mode; 2131 } 2132 2133 static const struct attribute_group switch_group = { 2134 .is_visible = switch_attr_is_visible, 2135 .attrs = switch_attrs, 2136 }; 2137 2138 static const struct attribute_group *switch_groups[] = { 2139 &switch_group, 2140 NULL, 2141 }; 2142 2143 static void tb_switch_release(struct device *dev) 2144 { 2145 struct tb_switch *sw = tb_to_switch(dev); 2146 struct tb_port *port; 2147 2148 dma_port_free(sw->dma_port); 2149 2150 tb_switch_for_each_port(sw, port) { 2151 ida_destroy(&port->in_hopids); 2152 ida_destroy(&port->out_hopids); 2153 } 2154 2155 kfree(sw->uuid); 2156 kfree(sw->device_name); 2157 kfree(sw->vendor_name); 2158 kfree(sw->ports); 2159 kfree(sw->drom); 2160 kfree(sw->key); 2161 kfree(sw); 2162 } 2163 2164 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env) 2165 { 2166 const struct tb_switch *sw = tb_to_switch(dev); 2167 const char *type; 2168 2169 if (tb_switch_is_usb4(sw)) { 2170 if (add_uevent_var(env, "USB4_VERSION=%u.0", 2171 usb4_switch_version(sw))) 2172 return -ENOMEM; 2173 } 2174 2175 if (!tb_route(sw)) { 2176 type = "host"; 2177 } else { 2178 const struct tb_port *port; 2179 bool hub = false; 2180 2181 /* Device is hub if it has any downstream ports */ 2182 tb_switch_for_each_port(sw, port) { 2183 if (!port->disabled && !tb_is_upstream_port(port) && 2184 tb_port_is_null(port)) { 2185 hub = true; 2186 break; 2187 } 2188 } 2189 2190 type = hub ? "hub" : "device"; 2191 } 2192 2193 if (add_uevent_var(env, "USB4_TYPE=%s", type)) 2194 return -ENOMEM; 2195 return 0; 2196 } 2197 2198 /* 2199 * Currently only need to provide the callbacks. Everything else is handled 2200 * in the connection manager. 2201 */ 2202 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 2203 { 2204 struct tb_switch *sw = tb_to_switch(dev); 2205 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2206 2207 if (cm_ops->runtime_suspend_switch) 2208 return cm_ops->runtime_suspend_switch(sw); 2209 2210 return 0; 2211 } 2212 2213 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 2214 { 2215 struct tb_switch *sw = tb_to_switch(dev); 2216 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2217 2218 if (cm_ops->runtime_resume_switch) 2219 return cm_ops->runtime_resume_switch(sw); 2220 return 0; 2221 } 2222 2223 static const struct dev_pm_ops tb_switch_pm_ops = { 2224 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 2225 NULL) 2226 }; 2227 2228 struct device_type tb_switch_type = { 2229 .name = "thunderbolt_device", 2230 .release = tb_switch_release, 2231 .uevent = tb_switch_uevent, 2232 .pm = &tb_switch_pm_ops, 2233 }; 2234 2235 static int tb_switch_get_generation(struct tb_switch *sw) 2236 { 2237 if (tb_switch_is_usb4(sw)) 2238 return 4; 2239 2240 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) { 2241 switch (sw->config.device_id) { 2242 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 2243 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 2244 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 2245 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 2246 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 2247 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 2248 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 2249 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 2250 return 1; 2251 2252 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 2253 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 2254 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 2255 return 2; 2256 2257 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 2258 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 2259 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 2260 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 2261 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 2262 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 2263 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 2264 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 2265 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 2266 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 2267 return 3; 2268 } 2269 } 2270 2271 /* 2272 * For unknown switches assume generation to be 1 to be on the 2273 * safe side. 2274 */ 2275 tb_sw_warn(sw, "unsupported switch device id %#x\n", 2276 sw->config.device_id); 2277 return 1; 2278 } 2279 2280 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 2281 { 2282 int max_depth; 2283 2284 if (tb_switch_is_usb4(sw) || 2285 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 2286 max_depth = USB4_SWITCH_MAX_DEPTH; 2287 else 2288 max_depth = TB_SWITCH_MAX_DEPTH; 2289 2290 return depth > max_depth; 2291 } 2292 2293 /** 2294 * tb_switch_alloc() - allocate a switch 2295 * @tb: Pointer to the owning domain 2296 * @parent: Parent device for this switch 2297 * @route: Route string for this switch 2298 * 2299 * Allocates and initializes a switch. Will not upload configuration to 2300 * the switch. For that you need to call tb_switch_configure() 2301 * separately. The returned switch should be released by calling 2302 * tb_switch_put(). 2303 * 2304 * Return: Pointer to the allocated switch or ERR_PTR() in case of 2305 * failure. 2306 */ 2307 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 2308 u64 route) 2309 { 2310 struct tb_switch *sw; 2311 int upstream_port; 2312 int i, ret, depth; 2313 2314 /* Unlock the downstream port so we can access the switch below */ 2315 if (route) { 2316 struct tb_switch *parent_sw = tb_to_switch(parent); 2317 struct tb_port *down; 2318 2319 down = tb_port_at(route, parent_sw); 2320 tb_port_unlock(down); 2321 } 2322 2323 depth = tb_route_length(route); 2324 2325 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 2326 if (upstream_port < 0) 2327 return ERR_PTR(upstream_port); 2328 2329 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2330 if (!sw) 2331 return ERR_PTR(-ENOMEM); 2332 2333 sw->tb = tb; 2334 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 2335 if (ret) 2336 goto err_free_sw_ports; 2337 2338 sw->generation = tb_switch_get_generation(sw); 2339 2340 tb_dbg(tb, "current switch config:\n"); 2341 tb_dump_switch(tb, sw); 2342 2343 /* configure switch */ 2344 sw->config.upstream_port_number = upstream_port; 2345 sw->config.depth = depth; 2346 sw->config.route_hi = upper_32_bits(route); 2347 sw->config.route_lo = lower_32_bits(route); 2348 sw->config.enabled = 0; 2349 2350 /* Make sure we do not exceed maximum topology limit */ 2351 if (tb_switch_exceeds_max_depth(sw, depth)) { 2352 ret = -EADDRNOTAVAIL; 2353 goto err_free_sw_ports; 2354 } 2355 2356 /* initialize ports */ 2357 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 2358 GFP_KERNEL); 2359 if (!sw->ports) { 2360 ret = -ENOMEM; 2361 goto err_free_sw_ports; 2362 } 2363 2364 for (i = 0; i <= sw->config.max_port_number; i++) { 2365 /* minimum setup for tb_find_cap and tb_drom_read to work */ 2366 sw->ports[i].sw = sw; 2367 sw->ports[i].port = i; 2368 2369 /* Control port does not need HopID allocation */ 2370 if (i) { 2371 ida_init(&sw->ports[i].in_hopids); 2372 ida_init(&sw->ports[i].out_hopids); 2373 } 2374 } 2375 2376 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 2377 if (ret > 0) 2378 sw->cap_plug_events = ret; 2379 2380 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2); 2381 if (ret > 0) 2382 sw->cap_vsec_tmu = ret; 2383 2384 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 2385 if (ret > 0) 2386 sw->cap_lc = ret; 2387 2388 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP); 2389 if (ret > 0) 2390 sw->cap_lp = ret; 2391 2392 /* Root switch is always authorized */ 2393 if (!route) 2394 sw->authorized = true; 2395 2396 device_initialize(&sw->dev); 2397 sw->dev.parent = parent; 2398 sw->dev.bus = &tb_bus_type; 2399 sw->dev.type = &tb_switch_type; 2400 sw->dev.groups = switch_groups; 2401 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2402 2403 return sw; 2404 2405 err_free_sw_ports: 2406 kfree(sw->ports); 2407 kfree(sw); 2408 2409 return ERR_PTR(ret); 2410 } 2411 2412 /** 2413 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 2414 * @tb: Pointer to the owning domain 2415 * @parent: Parent device for this switch 2416 * @route: Route string for this switch 2417 * 2418 * This creates a switch in safe mode. This means the switch pretty much 2419 * lacks all capabilities except DMA configuration port before it is 2420 * flashed with a valid NVM firmware. 2421 * 2422 * The returned switch must be released by calling tb_switch_put(). 2423 * 2424 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 2425 */ 2426 struct tb_switch * 2427 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 2428 { 2429 struct tb_switch *sw; 2430 2431 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2432 if (!sw) 2433 return ERR_PTR(-ENOMEM); 2434 2435 sw->tb = tb; 2436 sw->config.depth = tb_route_length(route); 2437 sw->config.route_hi = upper_32_bits(route); 2438 sw->config.route_lo = lower_32_bits(route); 2439 sw->safe_mode = true; 2440 2441 device_initialize(&sw->dev); 2442 sw->dev.parent = parent; 2443 sw->dev.bus = &tb_bus_type; 2444 sw->dev.type = &tb_switch_type; 2445 sw->dev.groups = switch_groups; 2446 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2447 2448 return sw; 2449 } 2450 2451 /** 2452 * tb_switch_configure() - Uploads configuration to the switch 2453 * @sw: Switch to configure 2454 * 2455 * Call this function before the switch is added to the system. It will 2456 * upload configuration to the switch and makes it available for the 2457 * connection manager to use. Can be called to the switch again after 2458 * resume from low power states to re-initialize it. 2459 * 2460 * Return: %0 in case of success and negative errno in case of failure 2461 */ 2462 int tb_switch_configure(struct tb_switch *sw) 2463 { 2464 struct tb *tb = sw->tb; 2465 u64 route; 2466 int ret; 2467 2468 route = tb_route(sw); 2469 2470 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 2471 sw->config.enabled ? "restoring" : "initializing", route, 2472 tb_route_length(route), sw->config.upstream_port_number); 2473 2474 sw->config.enabled = 1; 2475 2476 if (tb_switch_is_usb4(sw)) { 2477 /* 2478 * For USB4 devices, we need to program the CM version 2479 * accordingly so that it knows to expose all the 2480 * additional capabilities. Program it according to USB4 2481 * version to avoid changing existing (v1) routers behaviour. 2482 */ 2483 if (usb4_switch_version(sw) < 2) 2484 sw->config.cmuv = ROUTER_CS_4_CMUV_V1; 2485 else 2486 sw->config.cmuv = ROUTER_CS_4_CMUV_V2; 2487 sw->config.plug_events_delay = 0xa; 2488 2489 /* Enumerate the switch */ 2490 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2491 ROUTER_CS_1, 4); 2492 if (ret) 2493 return ret; 2494 2495 ret = usb4_switch_setup(sw); 2496 } else { 2497 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2498 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2499 sw->config.vendor_id); 2500 2501 if (!sw->cap_plug_events) { 2502 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2503 return -ENODEV; 2504 } 2505 2506 /* Enumerate the switch */ 2507 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2508 ROUTER_CS_1, 3); 2509 } 2510 if (ret) 2511 return ret; 2512 2513 return tb_plug_events_active(sw, true); 2514 } 2515 2516 /** 2517 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid 2518 * @sw: Router to configure 2519 * 2520 * Needs to be called before any tunnels can be setup through the 2521 * router. Can be called to any router. 2522 * 2523 * Returns %0 in success and negative errno otherwise. 2524 */ 2525 int tb_switch_configuration_valid(struct tb_switch *sw) 2526 { 2527 if (tb_switch_is_usb4(sw)) 2528 return usb4_switch_configuration_valid(sw); 2529 return 0; 2530 } 2531 2532 static int tb_switch_set_uuid(struct tb_switch *sw) 2533 { 2534 bool uid = false; 2535 u32 uuid[4]; 2536 int ret; 2537 2538 if (sw->uuid) 2539 return 0; 2540 2541 if (tb_switch_is_usb4(sw)) { 2542 ret = usb4_switch_read_uid(sw, &sw->uid); 2543 if (ret) 2544 return ret; 2545 uid = true; 2546 } else { 2547 /* 2548 * The newer controllers include fused UUID as part of 2549 * link controller specific registers 2550 */ 2551 ret = tb_lc_read_uuid(sw, uuid); 2552 if (ret) { 2553 if (ret != -EINVAL) 2554 return ret; 2555 uid = true; 2556 } 2557 } 2558 2559 if (uid) { 2560 /* 2561 * ICM generates UUID based on UID and fills the upper 2562 * two words with ones. This is not strictly following 2563 * UUID format but we want to be compatible with it so 2564 * we do the same here. 2565 */ 2566 uuid[0] = sw->uid & 0xffffffff; 2567 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2568 uuid[2] = 0xffffffff; 2569 uuid[3] = 0xffffffff; 2570 } 2571 2572 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2573 if (!sw->uuid) 2574 return -ENOMEM; 2575 return 0; 2576 } 2577 2578 static int tb_switch_add_dma_port(struct tb_switch *sw) 2579 { 2580 u32 status; 2581 int ret; 2582 2583 switch (sw->generation) { 2584 case 2: 2585 /* Only root switch can be upgraded */ 2586 if (tb_route(sw)) 2587 return 0; 2588 2589 fallthrough; 2590 case 3: 2591 case 4: 2592 ret = tb_switch_set_uuid(sw); 2593 if (ret) 2594 return ret; 2595 break; 2596 2597 default: 2598 /* 2599 * DMA port is the only thing available when the switch 2600 * is in safe mode. 2601 */ 2602 if (!sw->safe_mode) 2603 return 0; 2604 break; 2605 } 2606 2607 if (sw->no_nvm_upgrade) 2608 return 0; 2609 2610 if (tb_switch_is_usb4(sw)) { 2611 ret = usb4_switch_nvm_authenticate_status(sw, &status); 2612 if (ret) 2613 return ret; 2614 2615 if (status) { 2616 tb_sw_info(sw, "switch flash authentication failed\n"); 2617 nvm_set_auth_status(sw, status); 2618 } 2619 2620 return 0; 2621 } 2622 2623 /* Root switch DMA port requires running firmware */ 2624 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2625 return 0; 2626 2627 sw->dma_port = dma_port_alloc(sw); 2628 if (!sw->dma_port) 2629 return 0; 2630 2631 /* 2632 * If there is status already set then authentication failed 2633 * when the dma_port_flash_update_auth() returned. Power cycling 2634 * is not needed (it was done already) so only thing we do here 2635 * is to unblock runtime PM of the root port. 2636 */ 2637 nvm_get_auth_status(sw, &status); 2638 if (status) { 2639 if (!tb_route(sw)) 2640 nvm_authenticate_complete_dma_port(sw); 2641 return 0; 2642 } 2643 2644 /* 2645 * Check status of the previous flash authentication. If there 2646 * is one we need to power cycle the switch in any case to make 2647 * it functional again. 2648 */ 2649 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2650 if (ret <= 0) 2651 return ret; 2652 2653 /* Now we can allow root port to suspend again */ 2654 if (!tb_route(sw)) 2655 nvm_authenticate_complete_dma_port(sw); 2656 2657 if (status) { 2658 tb_sw_info(sw, "switch flash authentication failed\n"); 2659 nvm_set_auth_status(sw, status); 2660 } 2661 2662 tb_sw_info(sw, "power cycling the switch now\n"); 2663 dma_port_power_cycle(sw->dma_port); 2664 2665 /* 2666 * We return error here which causes the switch adding failure. 2667 * It should appear back after power cycle is complete. 2668 */ 2669 return -ESHUTDOWN; 2670 } 2671 2672 static void tb_switch_default_link_ports(struct tb_switch *sw) 2673 { 2674 int i; 2675 2676 for (i = 1; i <= sw->config.max_port_number; i++) { 2677 struct tb_port *port = &sw->ports[i]; 2678 struct tb_port *subordinate; 2679 2680 if (!tb_port_is_null(port)) 2681 continue; 2682 2683 /* Check for the subordinate port */ 2684 if (i == sw->config.max_port_number || 2685 !tb_port_is_null(&sw->ports[i + 1])) 2686 continue; 2687 2688 /* Link them if not already done so (by DROM) */ 2689 subordinate = &sw->ports[i + 1]; 2690 if (!port->dual_link_port && !subordinate->dual_link_port) { 2691 port->link_nr = 0; 2692 port->dual_link_port = subordinate; 2693 subordinate->link_nr = 1; 2694 subordinate->dual_link_port = port; 2695 2696 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2697 port->port, subordinate->port); 2698 } 2699 } 2700 } 2701 2702 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2703 { 2704 const struct tb_port *up = tb_upstream_port(sw); 2705 2706 if (!up->dual_link_port || !up->dual_link_port->remote) 2707 return false; 2708 2709 if (tb_switch_is_usb4(sw)) 2710 return usb4_switch_lane_bonding_possible(sw); 2711 return tb_lc_lane_bonding_possible(sw); 2712 } 2713 2714 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2715 { 2716 struct tb_port *up; 2717 bool change = false; 2718 int ret; 2719 2720 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2721 return 0; 2722 2723 up = tb_upstream_port(sw); 2724 2725 ret = tb_port_get_link_speed(up); 2726 if (ret < 0) 2727 return ret; 2728 if (sw->link_speed != ret) 2729 change = true; 2730 sw->link_speed = ret; 2731 2732 ret = tb_port_get_link_width(up); 2733 if (ret < 0) 2734 return ret; 2735 if (sw->link_width != ret) 2736 change = true; 2737 sw->link_width = ret; 2738 2739 /* Notify userspace that there is possible link attribute change */ 2740 if (device_is_registered(&sw->dev) && change) 2741 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2742 2743 return 0; 2744 } 2745 2746 /* Must be called after tb_switch_update_link_attributes() */ 2747 static void tb_switch_link_init(struct tb_switch *sw) 2748 { 2749 struct tb_port *up, *down; 2750 bool bonded; 2751 2752 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2753 return; 2754 2755 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed); 2756 tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width)); 2757 2758 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL; 2759 2760 /* 2761 * Gen 4 links come up as bonded so update the port structures 2762 * accordingly. 2763 */ 2764 up = tb_upstream_port(sw); 2765 down = tb_switch_downstream_port(sw); 2766 2767 up->bonded = bonded; 2768 if (up->dual_link_port) 2769 up->dual_link_port->bonded = bonded; 2770 tb_port_update_credits(up); 2771 2772 down->bonded = bonded; 2773 if (down->dual_link_port) 2774 down->dual_link_port->bonded = bonded; 2775 tb_port_update_credits(down); 2776 2777 if (tb_port_get_link_generation(up) < 4) 2778 return; 2779 2780 /* 2781 * Set the Gen 4 preferred link width. This is what the router 2782 * prefers when the link is brought up. If the router does not 2783 * support asymmetric link configuration, this also will be set 2784 * to TB_LINK_WIDTH_DUAL. 2785 */ 2786 sw->preferred_link_width = sw->link_width; 2787 tb_sw_dbg(sw, "preferred link width %s\n", 2788 tb_width_name(sw->preferred_link_width)); 2789 } 2790 2791 /** 2792 * tb_switch_lane_bonding_enable() - Enable lane bonding 2793 * @sw: Switch to enable lane bonding 2794 * 2795 * Connection manager can call this function to enable lane bonding of a 2796 * switch. If conditions are correct and both switches support the feature, 2797 * lanes are bonded. It is safe to call this to any switch. 2798 */ 2799 static int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2800 { 2801 struct tb_port *up, *down; 2802 unsigned int width; 2803 int ret; 2804 2805 if (!tb_switch_lane_bonding_possible(sw)) 2806 return 0; 2807 2808 up = tb_upstream_port(sw); 2809 down = tb_switch_downstream_port(sw); 2810 2811 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) || 2812 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL)) 2813 return 0; 2814 2815 /* 2816 * Both lanes need to be in CL0. Here we assume lane 0 already be in 2817 * CL0 and check just for lane 1. 2818 */ 2819 if (tb_wait_for_port(down->dual_link_port, false) <= 0) 2820 return -ENOTCONN; 2821 2822 ret = tb_port_lane_bonding_enable(up); 2823 if (ret) { 2824 tb_port_warn(up, "failed to enable lane bonding\n"); 2825 return ret; 2826 } 2827 2828 ret = tb_port_lane_bonding_enable(down); 2829 if (ret) { 2830 tb_port_warn(down, "failed to enable lane bonding\n"); 2831 tb_port_lane_bonding_disable(up); 2832 return ret; 2833 } 2834 2835 /* Any of the widths are all bonded */ 2836 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX | 2837 TB_LINK_WIDTH_ASYM_RX; 2838 2839 return tb_port_wait_for_link_width(down, width, 100); 2840 } 2841 2842 /** 2843 * tb_switch_lane_bonding_disable() - Disable lane bonding 2844 * @sw: Switch whose lane bonding to disable 2845 * 2846 * Disables lane bonding between @sw and parent. This can be called even 2847 * if lanes were not bonded originally. 2848 */ 2849 static int tb_switch_lane_bonding_disable(struct tb_switch *sw) 2850 { 2851 struct tb_port *up, *down; 2852 int ret; 2853 2854 up = tb_upstream_port(sw); 2855 if (!up->bonded) 2856 return 0; 2857 2858 /* 2859 * If the link is Gen 4 there is no way to switch the link to 2860 * two single lane links so avoid that here. Also don't bother 2861 * if the link is not up anymore (sw is unplugged). 2862 */ 2863 ret = tb_port_get_link_generation(up); 2864 if (ret < 0) 2865 return ret; 2866 if (ret >= 4) 2867 return -EOPNOTSUPP; 2868 2869 down = tb_switch_downstream_port(sw); 2870 tb_port_lane_bonding_disable(up); 2871 tb_port_lane_bonding_disable(down); 2872 2873 /* 2874 * It is fine if we get other errors as the router might have 2875 * been unplugged. 2876 */ 2877 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100); 2878 } 2879 2880 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */ 2881 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width) 2882 { 2883 struct tb_port *up, *down, *port; 2884 enum tb_link_width down_width; 2885 int ret; 2886 2887 up = tb_upstream_port(sw); 2888 down = tb_switch_downstream_port(sw); 2889 2890 if (width == TB_LINK_WIDTH_ASYM_TX) { 2891 down_width = TB_LINK_WIDTH_ASYM_RX; 2892 port = down; 2893 } else { 2894 down_width = TB_LINK_WIDTH_ASYM_TX; 2895 port = up; 2896 } 2897 2898 ret = tb_port_set_link_width(up, width); 2899 if (ret) 2900 return ret; 2901 2902 ret = tb_port_set_link_width(down, down_width); 2903 if (ret) 2904 return ret; 2905 2906 /* 2907 * Initiate the change in the router that one of its TX lanes is 2908 * changing to RX but do so only if there is an actual change. 2909 */ 2910 if (sw->link_width != width) { 2911 ret = usb4_port_asym_start(port); 2912 if (ret) 2913 return ret; 2914 2915 ret = tb_port_wait_for_link_width(up, width, 100); 2916 if (ret) 2917 return ret; 2918 } 2919 2920 return 0; 2921 } 2922 2923 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */ 2924 static int tb_switch_asym_disable(struct tb_switch *sw) 2925 { 2926 struct tb_port *up, *down; 2927 int ret; 2928 2929 up = tb_upstream_port(sw); 2930 down = tb_switch_downstream_port(sw); 2931 2932 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL); 2933 if (ret) 2934 return ret; 2935 2936 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL); 2937 if (ret) 2938 return ret; 2939 2940 /* 2941 * Initiate the change in the router that has three TX lanes and 2942 * is changing one of its TX lanes to RX but only if there is a 2943 * change in the link width. 2944 */ 2945 if (sw->link_width > TB_LINK_WIDTH_DUAL) { 2946 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX) 2947 ret = usb4_port_asym_start(up); 2948 else 2949 ret = usb4_port_asym_start(down); 2950 if (ret) 2951 return ret; 2952 2953 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100); 2954 if (ret) 2955 return ret; 2956 } 2957 2958 return 0; 2959 } 2960 2961 /** 2962 * tb_switch_set_link_width() - Configure router link width 2963 * @sw: Router to configure 2964 * @width: The new link width 2965 * 2966 * Set device router link width to @width from router upstream port 2967 * perspective. Supports also asymmetric links if the routers boths side 2968 * of the link supports it. 2969 * 2970 * Does nothing for host router. 2971 * 2972 * Returns %0 in case of success, negative errno otherwise. 2973 */ 2974 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width) 2975 { 2976 struct tb_port *up, *down; 2977 int ret = 0; 2978 2979 if (!tb_route(sw)) 2980 return 0; 2981 2982 up = tb_upstream_port(sw); 2983 down = tb_switch_downstream_port(sw); 2984 2985 switch (width) { 2986 case TB_LINK_WIDTH_SINGLE: 2987 ret = tb_switch_lane_bonding_disable(sw); 2988 break; 2989 2990 case TB_LINK_WIDTH_DUAL: 2991 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX || 2992 sw->link_width == TB_LINK_WIDTH_ASYM_RX) { 2993 ret = tb_switch_asym_disable(sw); 2994 if (ret) 2995 break; 2996 } 2997 ret = tb_switch_lane_bonding_enable(sw); 2998 break; 2999 3000 case TB_LINK_WIDTH_ASYM_TX: 3001 case TB_LINK_WIDTH_ASYM_RX: 3002 ret = tb_switch_asym_enable(sw, width); 3003 break; 3004 } 3005 3006 switch (ret) { 3007 case 0: 3008 break; 3009 3010 case -ETIMEDOUT: 3011 tb_sw_warn(sw, "timeout changing link width\n"); 3012 return ret; 3013 3014 case -ENOTCONN: 3015 case -EOPNOTSUPP: 3016 case -ENODEV: 3017 return ret; 3018 3019 default: 3020 tb_sw_dbg(sw, "failed to change link width: %d\n", ret); 3021 return ret; 3022 } 3023 3024 tb_port_update_credits(down); 3025 tb_port_update_credits(up); 3026 3027 tb_switch_update_link_attributes(sw); 3028 3029 tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width)); 3030 return ret; 3031 } 3032 3033 /** 3034 * tb_switch_configure_link() - Set link configured 3035 * @sw: Switch whose link is configured 3036 * 3037 * Sets the link upstream from @sw configured (from both ends) so that 3038 * it will not be disconnected when the domain exits sleep. Can be 3039 * called for any switch. 3040 * 3041 * It is recommended that this is called after lane bonding is enabled. 3042 * 3043 * Returns %0 on success and negative errno in case of error. 3044 */ 3045 int tb_switch_configure_link(struct tb_switch *sw) 3046 { 3047 struct tb_port *up, *down; 3048 int ret; 3049 3050 if (!tb_route(sw) || tb_switch_is_icm(sw)) 3051 return 0; 3052 3053 up = tb_upstream_port(sw); 3054 if (tb_switch_is_usb4(up->sw)) 3055 ret = usb4_port_configure(up); 3056 else 3057 ret = tb_lc_configure_port(up); 3058 if (ret) 3059 return ret; 3060 3061 down = up->remote; 3062 if (tb_switch_is_usb4(down->sw)) 3063 return usb4_port_configure(down); 3064 return tb_lc_configure_port(down); 3065 } 3066 3067 /** 3068 * tb_switch_unconfigure_link() - Unconfigure link 3069 * @sw: Switch whose link is unconfigured 3070 * 3071 * Sets the link unconfigured so the @sw will be disconnected if the 3072 * domain exists sleep. 3073 */ 3074 void tb_switch_unconfigure_link(struct tb_switch *sw) 3075 { 3076 struct tb_port *up, *down; 3077 3078 if (sw->is_unplugged) 3079 return; 3080 if (!tb_route(sw) || tb_switch_is_icm(sw)) 3081 return; 3082 3083 up = tb_upstream_port(sw); 3084 if (tb_switch_is_usb4(up->sw)) 3085 usb4_port_unconfigure(up); 3086 else 3087 tb_lc_unconfigure_port(up); 3088 3089 down = up->remote; 3090 if (tb_switch_is_usb4(down->sw)) 3091 usb4_port_unconfigure(down); 3092 else 3093 tb_lc_unconfigure_port(down); 3094 } 3095 3096 static void tb_switch_credits_init(struct tb_switch *sw) 3097 { 3098 if (tb_switch_is_icm(sw)) 3099 return; 3100 if (!tb_switch_is_usb4(sw)) 3101 return; 3102 if (usb4_switch_credits_init(sw)) 3103 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n"); 3104 } 3105 3106 static int tb_switch_port_hotplug_enable(struct tb_switch *sw) 3107 { 3108 struct tb_port *port; 3109 3110 if (tb_switch_is_icm(sw)) 3111 return 0; 3112 3113 tb_switch_for_each_port(sw, port) { 3114 int res; 3115 3116 if (!port->cap_usb4) 3117 continue; 3118 3119 res = usb4_port_hotplug_enable(port); 3120 if (res) 3121 return res; 3122 } 3123 return 0; 3124 } 3125 3126 /** 3127 * tb_switch_add() - Add a switch to the domain 3128 * @sw: Switch to add 3129 * 3130 * This is the last step in adding switch to the domain. It will read 3131 * identification information from DROM and initializes ports so that 3132 * they can be used to connect other switches. The switch will be 3133 * exposed to the userspace when this function successfully returns. To 3134 * remove and release the switch, call tb_switch_remove(). 3135 * 3136 * Return: %0 in case of success and negative errno in case of failure 3137 */ 3138 int tb_switch_add(struct tb_switch *sw) 3139 { 3140 int i, ret; 3141 3142 /* 3143 * Initialize DMA control port now before we read DROM. Recent 3144 * host controllers have more complete DROM on NVM that includes 3145 * vendor and model identification strings which we then expose 3146 * to the userspace. NVM can be accessed through DMA 3147 * configuration based mailbox. 3148 */ 3149 ret = tb_switch_add_dma_port(sw); 3150 if (ret) { 3151 dev_err(&sw->dev, "failed to add DMA port\n"); 3152 return ret; 3153 } 3154 3155 if (!sw->safe_mode) { 3156 tb_switch_credits_init(sw); 3157 3158 /* read drom */ 3159 ret = tb_drom_read(sw); 3160 if (ret) 3161 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret); 3162 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 3163 3164 ret = tb_switch_set_uuid(sw); 3165 if (ret) { 3166 dev_err(&sw->dev, "failed to set UUID\n"); 3167 return ret; 3168 } 3169 3170 for (i = 0; i <= sw->config.max_port_number; i++) { 3171 if (sw->ports[i].disabled) { 3172 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 3173 continue; 3174 } 3175 ret = tb_init_port(&sw->ports[i]); 3176 if (ret) { 3177 dev_err(&sw->dev, "failed to initialize port %d\n", i); 3178 return ret; 3179 } 3180 } 3181 3182 tb_check_quirks(sw); 3183 3184 tb_switch_default_link_ports(sw); 3185 3186 ret = tb_switch_update_link_attributes(sw); 3187 if (ret) 3188 return ret; 3189 3190 tb_switch_link_init(sw); 3191 3192 ret = tb_switch_clx_init(sw); 3193 if (ret) 3194 return ret; 3195 3196 ret = tb_switch_tmu_init(sw); 3197 if (ret) 3198 return ret; 3199 } 3200 3201 ret = tb_switch_port_hotplug_enable(sw); 3202 if (ret) 3203 return ret; 3204 3205 ret = device_add(&sw->dev); 3206 if (ret) { 3207 dev_err(&sw->dev, "failed to add device: %d\n", ret); 3208 return ret; 3209 } 3210 3211 if (tb_route(sw)) { 3212 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 3213 sw->vendor, sw->device); 3214 if (sw->vendor_name && sw->device_name) 3215 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 3216 sw->device_name); 3217 } 3218 3219 ret = usb4_switch_add_ports(sw); 3220 if (ret) { 3221 dev_err(&sw->dev, "failed to add USB4 ports\n"); 3222 goto err_del; 3223 } 3224 3225 ret = tb_switch_nvm_add(sw); 3226 if (ret) { 3227 dev_err(&sw->dev, "failed to add NVM devices\n"); 3228 goto err_ports; 3229 } 3230 3231 /* 3232 * Thunderbolt routers do not generate wakeups themselves but 3233 * they forward wakeups from tunneled protocols, so enable it 3234 * here. 3235 */ 3236 device_init_wakeup(&sw->dev, true); 3237 3238 pm_runtime_set_active(&sw->dev); 3239 if (sw->rpm) { 3240 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 3241 pm_runtime_use_autosuspend(&sw->dev); 3242 pm_runtime_mark_last_busy(&sw->dev); 3243 pm_runtime_enable(&sw->dev); 3244 pm_request_autosuspend(&sw->dev); 3245 } 3246 3247 tb_switch_debugfs_init(sw); 3248 return 0; 3249 3250 err_ports: 3251 usb4_switch_remove_ports(sw); 3252 err_del: 3253 device_del(&sw->dev); 3254 3255 return ret; 3256 } 3257 3258 /** 3259 * tb_switch_remove() - Remove and release a switch 3260 * @sw: Switch to remove 3261 * 3262 * This will remove the switch from the domain and release it after last 3263 * reference count drops to zero. If there are switches connected below 3264 * this switch, they will be removed as well. 3265 */ 3266 void tb_switch_remove(struct tb_switch *sw) 3267 { 3268 struct tb_port *port; 3269 3270 tb_switch_debugfs_remove(sw); 3271 3272 if (sw->rpm) { 3273 pm_runtime_get_sync(&sw->dev); 3274 pm_runtime_disable(&sw->dev); 3275 } 3276 3277 /* port 0 is the switch itself and never has a remote */ 3278 tb_switch_for_each_port(sw, port) { 3279 if (tb_port_has_remote(port)) { 3280 tb_switch_remove(port->remote->sw); 3281 port->remote = NULL; 3282 } else if (port->xdomain) { 3283 tb_xdomain_remove(port->xdomain); 3284 port->xdomain = NULL; 3285 } 3286 3287 /* Remove any downstream retimers */ 3288 tb_retimer_remove_all(port); 3289 } 3290 3291 if (!sw->is_unplugged) 3292 tb_plug_events_active(sw, false); 3293 3294 tb_switch_nvm_remove(sw); 3295 usb4_switch_remove_ports(sw); 3296 3297 if (tb_route(sw)) 3298 dev_info(&sw->dev, "device disconnected\n"); 3299 device_unregister(&sw->dev); 3300 } 3301 3302 /** 3303 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 3304 * @sw: Router to mark unplugged 3305 */ 3306 void tb_sw_set_unplugged(struct tb_switch *sw) 3307 { 3308 struct tb_port *port; 3309 3310 if (sw == sw->tb->root_switch) { 3311 tb_sw_WARN(sw, "cannot unplug root switch\n"); 3312 return; 3313 } 3314 if (sw->is_unplugged) { 3315 tb_sw_WARN(sw, "is_unplugged already set\n"); 3316 return; 3317 } 3318 sw->is_unplugged = true; 3319 tb_switch_for_each_port(sw, port) { 3320 if (tb_port_has_remote(port)) 3321 tb_sw_set_unplugged(port->remote->sw); 3322 else if (port->xdomain) 3323 port->xdomain->is_unplugged = true; 3324 } 3325 } 3326 3327 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags) 3328 { 3329 if (flags) 3330 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags); 3331 else 3332 tb_sw_dbg(sw, "disabling wakeup\n"); 3333 3334 if (tb_switch_is_usb4(sw)) 3335 return usb4_switch_set_wake(sw, flags); 3336 return tb_lc_set_wake(sw, flags); 3337 } 3338 3339 int tb_switch_resume(struct tb_switch *sw) 3340 { 3341 struct tb_port *port; 3342 int err; 3343 3344 tb_sw_dbg(sw, "resuming switch\n"); 3345 3346 /* 3347 * Check for UID of the connected switches except for root 3348 * switch which we assume cannot be removed. 3349 */ 3350 if (tb_route(sw)) { 3351 u64 uid; 3352 3353 /* 3354 * Check first that we can still read the switch config 3355 * space. It may be that there is now another domain 3356 * connected. 3357 */ 3358 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 3359 if (err < 0) { 3360 tb_sw_info(sw, "switch not present anymore\n"); 3361 return err; 3362 } 3363 3364 /* We don't have any way to confirm this was the same device */ 3365 if (!sw->uid) 3366 return -ENODEV; 3367 3368 if (tb_switch_is_usb4(sw)) 3369 err = usb4_switch_read_uid(sw, &uid); 3370 else 3371 err = tb_drom_read_uid_only(sw, &uid); 3372 if (err) { 3373 tb_sw_warn(sw, "uid read failed\n"); 3374 return err; 3375 } 3376 if (sw->uid != uid) { 3377 tb_sw_info(sw, 3378 "changed while suspended (uid %#llx -> %#llx)\n", 3379 sw->uid, uid); 3380 return -ENODEV; 3381 } 3382 } 3383 3384 err = tb_switch_configure(sw); 3385 if (err) 3386 return err; 3387 3388 /* Disable wakes */ 3389 tb_switch_set_wake(sw, 0); 3390 3391 err = tb_switch_tmu_init(sw); 3392 if (err) 3393 return err; 3394 3395 /* check for surviving downstream switches */ 3396 tb_switch_for_each_port(sw, port) { 3397 if (!tb_port_is_null(port)) 3398 continue; 3399 3400 if (!tb_port_resume(port)) 3401 continue; 3402 3403 if (tb_wait_for_port(port, true) <= 0) { 3404 tb_port_warn(port, 3405 "lost during suspend, disconnecting\n"); 3406 if (tb_port_has_remote(port)) 3407 tb_sw_set_unplugged(port->remote->sw); 3408 else if (port->xdomain) 3409 port->xdomain->is_unplugged = true; 3410 } else { 3411 /* 3412 * Always unlock the port so the downstream 3413 * switch/domain is accessible. 3414 */ 3415 if (tb_port_unlock(port)) 3416 tb_port_warn(port, "failed to unlock port\n"); 3417 if (port->remote && tb_switch_resume(port->remote->sw)) { 3418 tb_port_warn(port, 3419 "lost during suspend, disconnecting\n"); 3420 tb_sw_set_unplugged(port->remote->sw); 3421 } 3422 } 3423 } 3424 return 0; 3425 } 3426 3427 /** 3428 * tb_switch_suspend() - Put a switch to sleep 3429 * @sw: Switch to suspend 3430 * @runtime: Is this runtime suspend or system sleep 3431 * 3432 * Suspends router and all its children. Enables wakes according to 3433 * value of @runtime and then sets sleep bit for the router. If @sw is 3434 * host router the domain is ready to go to sleep once this function 3435 * returns. 3436 */ 3437 void tb_switch_suspend(struct tb_switch *sw, bool runtime) 3438 { 3439 unsigned int flags = 0; 3440 struct tb_port *port; 3441 int err; 3442 3443 tb_sw_dbg(sw, "suspending switch\n"); 3444 3445 /* 3446 * Actually only needed for Titan Ridge but for simplicity can be 3447 * done for USB4 device too as CLx is re-enabled at resume. 3448 */ 3449 tb_switch_clx_disable(sw); 3450 3451 err = tb_plug_events_active(sw, false); 3452 if (err) 3453 return; 3454 3455 tb_switch_for_each_port(sw, port) { 3456 if (tb_port_has_remote(port)) 3457 tb_switch_suspend(port->remote->sw, runtime); 3458 } 3459 3460 if (runtime) { 3461 /* Trigger wake when something is plugged in/out */ 3462 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT; 3463 flags |= TB_WAKE_ON_USB4; 3464 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP; 3465 } else if (device_may_wakeup(&sw->dev)) { 3466 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE; 3467 } 3468 3469 tb_switch_set_wake(sw, flags); 3470 3471 if (tb_switch_is_usb4(sw)) 3472 usb4_switch_set_sleep(sw); 3473 else 3474 tb_lc_set_sleep(sw); 3475 } 3476 3477 /** 3478 * tb_switch_query_dp_resource() - Query availability of DP resource 3479 * @sw: Switch whose DP resource is queried 3480 * @in: DP IN port 3481 * 3482 * Queries availability of DP resource for DP tunneling using switch 3483 * specific means. Returns %true if resource is available. 3484 */ 3485 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 3486 { 3487 if (tb_switch_is_usb4(sw)) 3488 return usb4_switch_query_dp_resource(sw, in); 3489 return tb_lc_dp_sink_query(sw, in); 3490 } 3491 3492 /** 3493 * tb_switch_alloc_dp_resource() - Allocate available DP resource 3494 * @sw: Switch whose DP resource is allocated 3495 * @in: DP IN port 3496 * 3497 * Allocates DP resource for DP tunneling. The resource must be 3498 * available for this to succeed (see tb_switch_query_dp_resource()). 3499 * Returns %0 in success and negative errno otherwise. 3500 */ 3501 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3502 { 3503 int ret; 3504 3505 if (tb_switch_is_usb4(sw)) 3506 ret = usb4_switch_alloc_dp_resource(sw, in); 3507 else 3508 ret = tb_lc_dp_sink_alloc(sw, in); 3509 3510 if (ret) 3511 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n", 3512 in->port); 3513 else 3514 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port); 3515 3516 return ret; 3517 } 3518 3519 /** 3520 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 3521 * @sw: Switch whose DP resource is de-allocated 3522 * @in: DP IN port 3523 * 3524 * De-allocates DP resource that was previously allocated for DP 3525 * tunneling. 3526 */ 3527 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3528 { 3529 int ret; 3530 3531 if (tb_switch_is_usb4(sw)) 3532 ret = usb4_switch_dealloc_dp_resource(sw, in); 3533 else 3534 ret = tb_lc_dp_sink_dealloc(sw, in); 3535 3536 if (ret) 3537 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 3538 in->port); 3539 else 3540 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port); 3541 } 3542 3543 struct tb_sw_lookup { 3544 struct tb *tb; 3545 u8 link; 3546 u8 depth; 3547 const uuid_t *uuid; 3548 u64 route; 3549 }; 3550 3551 static int tb_switch_match(struct device *dev, const void *data) 3552 { 3553 struct tb_switch *sw = tb_to_switch(dev); 3554 const struct tb_sw_lookup *lookup = data; 3555 3556 if (!sw) 3557 return 0; 3558 if (sw->tb != lookup->tb) 3559 return 0; 3560 3561 if (lookup->uuid) 3562 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 3563 3564 if (lookup->route) { 3565 return sw->config.route_lo == lower_32_bits(lookup->route) && 3566 sw->config.route_hi == upper_32_bits(lookup->route); 3567 } 3568 3569 /* Root switch is matched only by depth */ 3570 if (!lookup->depth) 3571 return !sw->depth; 3572 3573 return sw->link == lookup->link && sw->depth == lookup->depth; 3574 } 3575 3576 /** 3577 * tb_switch_find_by_link_depth() - Find switch by link and depth 3578 * @tb: Domain the switch belongs 3579 * @link: Link number the switch is connected 3580 * @depth: Depth of the switch in link 3581 * 3582 * Returned switch has reference count increased so the caller needs to 3583 * call tb_switch_put() when done with the switch. 3584 */ 3585 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 3586 { 3587 struct tb_sw_lookup lookup; 3588 struct device *dev; 3589 3590 memset(&lookup, 0, sizeof(lookup)); 3591 lookup.tb = tb; 3592 lookup.link = link; 3593 lookup.depth = depth; 3594 3595 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3596 if (dev) 3597 return tb_to_switch(dev); 3598 3599 return NULL; 3600 } 3601 3602 /** 3603 * tb_switch_find_by_uuid() - Find switch by UUID 3604 * @tb: Domain the switch belongs 3605 * @uuid: UUID to look for 3606 * 3607 * Returned switch has reference count increased so the caller needs to 3608 * call tb_switch_put() when done with the switch. 3609 */ 3610 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 3611 { 3612 struct tb_sw_lookup lookup; 3613 struct device *dev; 3614 3615 memset(&lookup, 0, sizeof(lookup)); 3616 lookup.tb = tb; 3617 lookup.uuid = uuid; 3618 3619 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3620 if (dev) 3621 return tb_to_switch(dev); 3622 3623 return NULL; 3624 } 3625 3626 /** 3627 * tb_switch_find_by_route() - Find switch by route string 3628 * @tb: Domain the switch belongs 3629 * @route: Route string to look for 3630 * 3631 * Returned switch has reference count increased so the caller needs to 3632 * call tb_switch_put() when done with the switch. 3633 */ 3634 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 3635 { 3636 struct tb_sw_lookup lookup; 3637 struct device *dev; 3638 3639 if (!route) 3640 return tb_switch_get(tb->root_switch); 3641 3642 memset(&lookup, 0, sizeof(lookup)); 3643 lookup.tb = tb; 3644 lookup.route = route; 3645 3646 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3647 if (dev) 3648 return tb_to_switch(dev); 3649 3650 return NULL; 3651 } 3652 3653 /** 3654 * tb_switch_find_port() - return the first port of @type on @sw or NULL 3655 * @sw: Switch to find the port from 3656 * @type: Port type to look for 3657 */ 3658 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 3659 enum tb_port_type type) 3660 { 3661 struct tb_port *port; 3662 3663 tb_switch_for_each_port(sw, port) { 3664 if (port->config.type == type) 3665 return port; 3666 } 3667 3668 return NULL; 3669 } 3670 3671 /* 3672 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3 3673 * device. For now used only for Titan Ridge. 3674 */ 3675 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge, 3676 unsigned int pcie_offset, u32 value) 3677 { 3678 u32 offset, command, val; 3679 int ret; 3680 3681 if (sw->generation != 3) 3682 return -EOPNOTSUPP; 3683 3684 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA; 3685 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1); 3686 if (ret) 3687 return ret; 3688 3689 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK; 3690 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT); 3691 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK; 3692 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL 3693 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT; 3694 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK; 3695 3696 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD; 3697 3698 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1); 3699 if (ret) 3700 return ret; 3701 3702 ret = tb_switch_wait_for_bit(sw, offset, 3703 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100); 3704 if (ret) 3705 return ret; 3706 3707 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 3708 if (ret) 3709 return ret; 3710 3711 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK) 3712 return -ETIMEDOUT; 3713 3714 return 0; 3715 } 3716 3717 /** 3718 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state 3719 * @sw: Router to enable PCIe L1 3720 * 3721 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable 3722 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel 3723 * was configured. Due to Intel platforms limitation, shall be called only 3724 * for first hop switch. 3725 */ 3726 int tb_switch_pcie_l1_enable(struct tb_switch *sw) 3727 { 3728 struct tb_switch *parent = tb_switch_parent(sw); 3729 int ret; 3730 3731 if (!tb_route(sw)) 3732 return 0; 3733 3734 if (!tb_switch_is_titan_ridge(sw)) 3735 return 0; 3736 3737 /* Enable PCIe L1 enable only for first hop router (depth = 1) */ 3738 if (tb_route(parent)) 3739 return 0; 3740 3741 /* Write to downstream PCIe bridge #5 aka Dn4 */ 3742 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1); 3743 if (ret) 3744 return ret; 3745 3746 /* Write to Upstream PCIe bridge #0 aka Up0 */ 3747 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1); 3748 } 3749 3750 /** 3751 * tb_switch_xhci_connect() - Connect internal xHCI 3752 * @sw: Router whose xHCI to connect 3753 * 3754 * Can be called to any router. For Alpine Ridge and Titan Ridge 3755 * performs special flows that bring the xHCI functional for any device 3756 * connected to the type-C port. Call only after PCIe tunnel has been 3757 * established. The function only does the connect if not done already 3758 * so can be called several times for the same router. 3759 */ 3760 int tb_switch_xhci_connect(struct tb_switch *sw) 3761 { 3762 struct tb_port *port1, *port3; 3763 int ret; 3764 3765 if (sw->generation != 3) 3766 return 0; 3767 3768 port1 = &sw->ports[1]; 3769 port3 = &sw->ports[3]; 3770 3771 if (tb_switch_is_alpine_ridge(sw)) { 3772 bool usb_port1, usb_port3, xhci_port1, xhci_port3; 3773 3774 usb_port1 = tb_lc_is_usb_plugged(port1); 3775 usb_port3 = tb_lc_is_usb_plugged(port3); 3776 xhci_port1 = tb_lc_is_xhci_connected(port1); 3777 xhci_port3 = tb_lc_is_xhci_connected(port3); 3778 3779 /* Figure out correct USB port to connect */ 3780 if (usb_port1 && !xhci_port1) { 3781 ret = tb_lc_xhci_connect(port1); 3782 if (ret) 3783 return ret; 3784 } 3785 if (usb_port3 && !xhci_port3) 3786 return tb_lc_xhci_connect(port3); 3787 } else if (tb_switch_is_titan_ridge(sw)) { 3788 ret = tb_lc_xhci_connect(port1); 3789 if (ret) 3790 return ret; 3791 return tb_lc_xhci_connect(port3); 3792 } 3793 3794 return 0; 3795 } 3796 3797 /** 3798 * tb_switch_xhci_disconnect() - Disconnect internal xHCI 3799 * @sw: Router whose xHCI to disconnect 3800 * 3801 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both 3802 * ports. 3803 */ 3804 void tb_switch_xhci_disconnect(struct tb_switch *sw) 3805 { 3806 if (sw->generation == 3) { 3807 struct tb_port *port1 = &sw->ports[1]; 3808 struct tb_port *port3 = &sw->ports[3]; 3809 3810 tb_lc_xhci_disconnect(port1); 3811 tb_port_dbg(port1, "disconnected xHCI\n"); 3812 tb_lc_xhci_disconnect(port3); 3813 tb_port_dbg(port3, "disconnected xHCI\n"); 3814 } 3815 } 3816