xref: /linux/drivers/thunderbolt/switch.c (revision c2dfe29f30d8850af324449f416491b171af19aa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18 
19 #include "tb.h"
20 
21 /* Switch NVM support */
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 /*
30  * Hold NVM authentication failure status per switch This information
31  * needs to stay around even when the switch gets power cycled so we
32  * keep it separately.
33  */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36 
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 	struct nvm_auth_status *st;
40 
41 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 		if (uuid_equal(&st->uuid, sw->uuid))
43 			return st;
44 	}
45 
46 	return NULL;
47 }
48 
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 	struct nvm_auth_status *st;
52 
53 	mutex_lock(&nvm_auth_status_lock);
54 	st = __nvm_get_auth_status(sw);
55 	mutex_unlock(&nvm_auth_status_lock);
56 
57 	*status = st ? st->status : 0;
58 }
59 
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	if (WARN_ON(!sw->uuid))
65 		return;
66 
67 	mutex_lock(&nvm_auth_status_lock);
68 	st = __nvm_get_auth_status(sw);
69 
70 	if (!st) {
71 		st = kzalloc(sizeof(*st), GFP_KERNEL);
72 		if (!st)
73 			goto unlock;
74 
75 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 		INIT_LIST_HEAD(&st->list);
77 		list_add_tail(&st->list, &nvm_auth_status_cache);
78 	}
79 
80 	st->status = status;
81 unlock:
82 	mutex_unlock(&nvm_auth_status_lock);
83 }
84 
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 	struct nvm_auth_status *st;
88 
89 	mutex_lock(&nvm_auth_status_lock);
90 	st = __nvm_get_auth_status(sw);
91 	if (st) {
92 		list_del(&st->list);
93 		kfree(st);
94 	}
95 	mutex_unlock(&nvm_auth_status_lock);
96 }
97 
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 	unsigned int image_size;
101 	const u8 *buf;
102 	int ret;
103 
104 	ret = tb_nvm_validate(sw->nvm);
105 	if (ret)
106 		return ret;
107 
108 	ret = tb_nvm_write_headers(sw->nvm);
109 	if (ret)
110 		return ret;
111 
112 	buf = sw->nvm->buf_data_start;
113 	image_size = sw->nvm->buf_data_size;
114 
115 	if (tb_switch_is_usb4(sw))
116 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 	else
118 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 	if (ret)
120 		return ret;
121 
122 	sw->nvm->flushed = true;
123 	return 0;
124 }
125 
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 	int ret = 0;
129 
130 	/*
131 	 * Root switch NVM upgrade requires that we disconnect the
132 	 * existing paths first (in case it is not in safe mode
133 	 * already).
134 	 */
135 	if (!sw->safe_mode) {
136 		u32 status;
137 
138 		ret = tb_domain_disconnect_all_paths(sw->tb);
139 		if (ret)
140 			return ret;
141 		/*
142 		 * The host controller goes away pretty soon after this if
143 		 * everything goes well so getting timeout is expected.
144 		 */
145 		ret = dma_port_flash_update_auth(sw->dma_port);
146 		if (!ret || ret == -ETIMEDOUT)
147 			return 0;
148 
149 		/*
150 		 * Any error from update auth operation requires power
151 		 * cycling of the host router.
152 		 */
153 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 			nvm_set_auth_status(sw, status);
156 	}
157 
158 	/*
159 	 * From safe mode we can get out by just power cycling the
160 	 * switch.
161 	 */
162 	dma_port_power_cycle(sw->dma_port);
163 	return ret;
164 }
165 
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 	int ret, retries = 10;
169 
170 	ret = dma_port_flash_update_auth(sw->dma_port);
171 	switch (ret) {
172 	case 0:
173 	case -ETIMEDOUT:
174 	case -EACCES:
175 	case -EINVAL:
176 		/* Power cycle is required */
177 		break;
178 	default:
179 		return ret;
180 	}
181 
182 	/*
183 	 * Poll here for the authentication status. It takes some time
184 	 * for the device to respond (we get timeout for a while). Once
185 	 * we get response the device needs to be power cycled in order
186 	 * to the new NVM to be taken into use.
187 	 */
188 	do {
189 		u32 status;
190 
191 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 		if (ret < 0 && ret != -ETIMEDOUT)
193 			return ret;
194 		if (ret > 0) {
195 			if (status) {
196 				tb_sw_warn(sw, "failed to authenticate NVM\n");
197 				nvm_set_auth_status(sw, status);
198 			}
199 
200 			tb_sw_info(sw, "power cycling the switch now\n");
201 			dma_port_power_cycle(sw->dma_port);
202 			return 0;
203 		}
204 
205 		msleep(500);
206 	} while (--retries);
207 
208 	return -ETIMEDOUT;
209 }
210 
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 	struct pci_dev *root_port;
214 
215 	/*
216 	 * During host router NVM upgrade we should not allow root port to
217 	 * go into D3cold because some root ports cannot trigger PME
218 	 * itself. To be on the safe side keep the root port in D0 during
219 	 * the whole upgrade process.
220 	 */
221 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 	if (root_port)
223 		pm_runtime_get_noresume(&root_port->dev);
224 }
225 
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 	struct pci_dev *root_port;
229 
230 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 	if (root_port)
232 		pm_runtime_put(&root_port->dev);
233 }
234 
235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 	if (tb_switch_is_usb4(sw)) {
238 		/*
239 		 * USB4 devices must support NVM operations but it is
240 		 * optional for hosts. Therefore we query the NVM sector
241 		 * size here and if it is supported assume NVM
242 		 * operations are implemented.
243 		 */
244 		return usb4_switch_nvm_sector_size(sw) > 0;
245 	}
246 
247 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 	return !!sw->dma_port;
249 }
250 
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 	if (sw->no_nvm_upgrade)
254 		return false;
255 	return nvm_readable(sw);
256 }
257 
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 	int ret;
261 
262 	if (tb_switch_is_usb4(sw)) {
263 		if (auth_only) {
264 			ret = usb4_switch_nvm_set_offset(sw, 0);
265 			if (ret)
266 				return ret;
267 		}
268 		sw->nvm->authenticating = true;
269 		return usb4_switch_nvm_authenticate(sw);
270 	}
271 	if (auth_only)
272 		return -EOPNOTSUPP;
273 
274 	sw->nvm->authenticating = true;
275 	if (!tb_route(sw)) {
276 		nvm_authenticate_start_dma_port(sw);
277 		ret = nvm_authenticate_host_dma_port(sw);
278 	} else {
279 		ret = nvm_authenticate_device_dma_port(sw);
280 	}
281 
282 	return ret;
283 }
284 
285 /**
286  * tb_switch_nvm_read() - Read router NVM
287  * @sw: Router whose NVM to read
288  * @address: Start address on the NVM
289  * @buf: Buffer where the read data is copied
290  * @size: Size of the buffer in bytes
291  *
292  * Reads from router NVM and returns the requested data in @buf. Locking
293  * is up to the caller. Returns %0 in success and negative errno in case
294  * of failure.
295  */
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 		       size_t size)
298 {
299 	if (tb_switch_is_usb4(sw))
300 		return usb4_switch_nvm_read(sw, address, buf, size);
301 	return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303 
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 	struct tb_nvm *nvm = priv;
307 	struct tb_switch *sw = tb_to_switch(nvm->dev);
308 	int ret;
309 
310 	pm_runtime_get_sync(&sw->dev);
311 
312 	if (!mutex_trylock(&sw->tb->lock)) {
313 		ret = restart_syscall();
314 		goto out;
315 	}
316 
317 	ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 	mutex_unlock(&sw->tb->lock);
319 
320 out:
321 	pm_runtime_mark_last_busy(&sw->dev);
322 	pm_runtime_put_autosuspend(&sw->dev);
323 
324 	return ret;
325 }
326 
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 	struct tb_nvm *nvm = priv;
330 	struct tb_switch *sw = tb_to_switch(nvm->dev);
331 	int ret;
332 
333 	if (!mutex_trylock(&sw->tb->lock))
334 		return restart_syscall();
335 
336 	/*
337 	 * Since writing the NVM image might require some special steps,
338 	 * for example when CSS headers are written, we cache the image
339 	 * locally here and handle the special cases when the user asks
340 	 * us to authenticate the image.
341 	 */
342 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 	return ret;
346 }
347 
348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 	struct tb_nvm *nvm;
351 	int ret;
352 
353 	if (!nvm_readable(sw))
354 		return 0;
355 
356 	nvm = tb_nvm_alloc(&sw->dev);
357 	if (IS_ERR(nvm)) {
358 		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 		goto err_nvm;
360 	}
361 
362 	ret = tb_nvm_read_version(nvm);
363 	if (ret)
364 		goto err_nvm;
365 
366 	/*
367 	 * If the switch is in safe-mode the only accessible portion of
368 	 * the NVM is the non-active one where userspace is expected to
369 	 * write new functional NVM.
370 	 */
371 	if (!sw->safe_mode) {
372 		ret = tb_nvm_add_active(nvm, nvm_read);
373 		if (ret)
374 			goto err_nvm;
375 		tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
376 	}
377 
378 	if (!sw->no_nvm_upgrade) {
379 		ret = tb_nvm_add_non_active(nvm, nvm_write);
380 		if (ret)
381 			goto err_nvm;
382 	}
383 
384 	sw->nvm = nvm;
385 	return 0;
386 
387 err_nvm:
388 	tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 	sw->no_nvm_upgrade = true;
390 	if (!IS_ERR(nvm))
391 		tb_nvm_free(nvm);
392 
393 	return ret;
394 }
395 
396 static void tb_switch_nvm_remove(struct tb_switch *sw)
397 {
398 	struct tb_nvm *nvm;
399 
400 	nvm = sw->nvm;
401 	sw->nvm = NULL;
402 
403 	if (!nvm)
404 		return;
405 
406 	/* Remove authentication status in case the switch is unplugged */
407 	if (!nvm->authenticating)
408 		nvm_clear_auth_status(sw);
409 
410 	tb_nvm_free(nvm);
411 }
412 
413 /* port utility functions */
414 
415 static const char *tb_port_type(const struct tb_regs_port_header *port)
416 {
417 	switch (port->type >> 16) {
418 	case 0:
419 		switch ((u8) port->type) {
420 		case 0:
421 			return "Inactive";
422 		case 1:
423 			return "Port";
424 		case 2:
425 			return "NHI";
426 		default:
427 			return "unknown";
428 		}
429 	case 0x2:
430 		return "Ethernet";
431 	case 0x8:
432 		return "SATA";
433 	case 0xe:
434 		return "DP/HDMI";
435 	case 0x10:
436 		return "PCIe";
437 	case 0x20:
438 		return "USB";
439 	default:
440 		return "unknown";
441 	}
442 }
443 
444 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
445 {
446 	const struct tb_regs_port_header *regs = &port->config;
447 
448 	tb_dbg(tb,
449 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 	       regs->port_number, regs->vendor_id, regs->device_id,
451 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
452 	       regs->type);
453 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
454 	       regs->max_in_hop_id, regs->max_out_hop_id);
455 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
456 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
457 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
458 	       port->ctl_credits);
459 }
460 
461 /**
462  * tb_port_state() - get connectedness state of a port
463  * @port: the port to check
464  *
465  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
466  *
467  * Return: Returns an enum tb_port_state on success or an error code on failure.
468  */
469 int tb_port_state(struct tb_port *port)
470 {
471 	struct tb_cap_phy phy;
472 	int res;
473 	if (port->cap_phy == 0) {
474 		tb_port_WARN(port, "does not have a PHY\n");
475 		return -EINVAL;
476 	}
477 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
478 	if (res)
479 		return res;
480 	return phy.state;
481 }
482 
483 /**
484  * tb_wait_for_port() - wait for a port to become ready
485  * @port: Port to wait
486  * @wait_if_unplugged: Wait also when port is unplugged
487  *
488  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489  * wait_if_unplugged is set then we also wait if the port is in state
490  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491  * switch resume). Otherwise we only wait if a device is registered but the link
492  * has not yet been established.
493  *
494  * Return: Returns an error code on failure. Returns 0 if the port is not
495  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496  * if the port is connected and in state TB_PORT_UP.
497  */
498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
499 {
500 	int retries = 10;
501 	int state;
502 	if (!port->cap_phy) {
503 		tb_port_WARN(port, "does not have PHY\n");
504 		return -EINVAL;
505 	}
506 	if (tb_is_upstream_port(port)) {
507 		tb_port_WARN(port, "is the upstream port\n");
508 		return -EINVAL;
509 	}
510 
511 	while (retries--) {
512 		state = tb_port_state(port);
513 		switch (state) {
514 		case TB_PORT_DISABLED:
515 			tb_port_dbg(port, "is disabled (state: 0)\n");
516 			return 0;
517 
518 		case TB_PORT_UNPLUGGED:
519 			if (wait_if_unplugged) {
520 				/* used during resume */
521 				tb_port_dbg(port,
522 					    "is unplugged (state: 7), retrying...\n");
523 				msleep(100);
524 				break;
525 			}
526 			tb_port_dbg(port, "is unplugged (state: 7)\n");
527 			return 0;
528 
529 		case TB_PORT_UP:
530 		case TB_PORT_TX_CL0S:
531 		case TB_PORT_RX_CL0S:
532 		case TB_PORT_CL1:
533 		case TB_PORT_CL2:
534 			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
535 			return 1;
536 
537 		default:
538 			if (state < 0)
539 				return state;
540 
541 			/*
542 			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 			 * time.
544 			 */
545 			tb_port_dbg(port,
546 				    "is connected, link is not up (state: %d), retrying...\n",
547 				    state);
548 			msleep(100);
549 		}
550 
551 	}
552 	tb_port_warn(port,
553 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
554 	return 0;
555 }
556 
557 /**
558  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559  * @port: Port to add/remove NFC credits
560  * @credits: Credits to add/remove
561  *
562  * Change the number of NFC credits allocated to @port by @credits. To remove
563  * NFC credits pass a negative amount of credits.
564  *
565  * Return: Returns 0 on success or an error code on failure.
566  */
567 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
568 {
569 	u32 nfc_credits;
570 
571 	if (credits == 0 || port->sw->is_unplugged)
572 		return 0;
573 
574 	/*
575 	 * USB4 restricts programming NFC buffers to lane adapters only
576 	 * so skip other ports.
577 	 */
578 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
579 		return 0;
580 
581 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
582 	if (credits < 0)
583 		credits = max_t(int, -nfc_credits, credits);
584 
585 	nfc_credits += credits;
586 
587 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
589 
590 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 	port->config.nfc_credits |= nfc_credits;
592 
593 	return tb_port_write(port, &port->config.nfc_credits,
594 			     TB_CFG_PORT, ADP_CS_4, 1);
595 }
596 
597 /**
598  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599  * @port: Port whose counters to clear
600  * @counter: Counter index to clear
601  *
602  * Return: Returns 0 on success or an error code on failure.
603  */
604 int tb_port_clear_counter(struct tb_port *port, int counter)
605 {
606 	u32 zero[3] = { 0, 0, 0 };
607 	tb_port_dbg(port, "clearing counter %d\n", counter);
608 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
609 }
610 
611 /**
612  * tb_port_unlock() - Unlock downstream port
613  * @port: Port to unlock
614  *
615  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616  * downstream router accessible for CM.
617  */
618 int tb_port_unlock(struct tb_port *port)
619 {
620 	if (tb_switch_is_icm(port->sw))
621 		return 0;
622 	if (!tb_port_is_null(port))
623 		return -EINVAL;
624 	if (tb_switch_is_usb4(port->sw))
625 		return usb4_port_unlock(port);
626 	return 0;
627 }
628 
629 static int __tb_port_enable(struct tb_port *port, bool enable)
630 {
631 	int ret;
632 	u32 phy;
633 
634 	if (!tb_port_is_null(port))
635 		return -EINVAL;
636 
637 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 			   port->cap_phy + LANE_ADP_CS_1, 1);
639 	if (ret)
640 		return ret;
641 
642 	if (enable)
643 		phy &= ~LANE_ADP_CS_1_LD;
644 	else
645 		phy |= LANE_ADP_CS_1_LD;
646 
647 
648 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 			    port->cap_phy + LANE_ADP_CS_1, 1);
650 	if (ret)
651 		return ret;
652 
653 	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
654 	return 0;
655 }
656 
657 /**
658  * tb_port_enable() - Enable lane adapter
659  * @port: Port to enable (can be %NULL)
660  *
661  * This is used for lane 0 and 1 adapters to enable it.
662  */
663 int tb_port_enable(struct tb_port *port)
664 {
665 	return __tb_port_enable(port, true);
666 }
667 
668 /**
669  * tb_port_disable() - Disable lane adapter
670  * @port: Port to disable (can be %NULL)
671  *
672  * This is used for lane 0 and 1 adapters to disable it.
673  */
674 int tb_port_disable(struct tb_port *port)
675 {
676 	return __tb_port_enable(port, false);
677 }
678 
679 /*
680  * tb_init_port() - initialize a port
681  *
682  * This is a helper method for tb_switch_alloc. Does not check or initialize
683  * any downstream switches.
684  *
685  * Return: Returns 0 on success or an error code on failure.
686  */
687 static int tb_init_port(struct tb_port *port)
688 {
689 	int res;
690 	int cap;
691 
692 	INIT_LIST_HEAD(&port->list);
693 
694 	/* Control adapter does not have configuration space */
695 	if (!port->port)
696 		return 0;
697 
698 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
699 	if (res) {
700 		if (res == -ENODEV) {
701 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
702 			       port->port);
703 			port->disabled = true;
704 			return 0;
705 		}
706 		return res;
707 	}
708 
709 	/* Port 0 is the switch itself and has no PHY. */
710 	if (port->config.type == TB_TYPE_PORT) {
711 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
712 
713 		if (cap > 0)
714 			port->cap_phy = cap;
715 		else
716 			tb_port_WARN(port, "non switch port without a PHY\n");
717 
718 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
719 		if (cap > 0)
720 			port->cap_usb4 = cap;
721 
722 		/*
723 		 * USB4 ports the buffers allocated for the control path
724 		 * can be read from the path config space. Legacy
725 		 * devices we use hard-coded value.
726 		 */
727 		if (port->cap_usb4) {
728 			struct tb_regs_hop hop;
729 
730 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
731 				port->ctl_credits = hop.initial_credits;
732 		}
733 		if (!port->ctl_credits)
734 			port->ctl_credits = 2;
735 
736 	} else {
737 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
738 		if (cap > 0)
739 			port->cap_adap = cap;
740 	}
741 
742 	port->total_credits =
743 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
744 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
745 
746 	tb_dump_port(port->sw->tb, port);
747 	return 0;
748 }
749 
750 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
751 			       int max_hopid)
752 {
753 	int port_max_hopid;
754 	struct ida *ida;
755 
756 	if (in) {
757 		port_max_hopid = port->config.max_in_hop_id;
758 		ida = &port->in_hopids;
759 	} else {
760 		port_max_hopid = port->config.max_out_hop_id;
761 		ida = &port->out_hopids;
762 	}
763 
764 	/*
765 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
766 	 * reserved.
767 	 */
768 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
769 		min_hopid = TB_PATH_MIN_HOPID;
770 
771 	if (max_hopid < 0 || max_hopid > port_max_hopid)
772 		max_hopid = port_max_hopid;
773 
774 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
775 }
776 
777 /**
778  * tb_port_alloc_in_hopid() - Allocate input HopID from port
779  * @port: Port to allocate HopID for
780  * @min_hopid: Minimum acceptable input HopID
781  * @max_hopid: Maximum acceptable input HopID
782  *
783  * Return: HopID between @min_hopid and @max_hopid or negative errno in
784  * case of error.
785  */
786 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
787 {
788 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
789 }
790 
791 /**
792  * tb_port_alloc_out_hopid() - Allocate output HopID from port
793  * @port: Port to allocate HopID for
794  * @min_hopid: Minimum acceptable output HopID
795  * @max_hopid: Maximum acceptable output HopID
796  *
797  * Return: HopID between @min_hopid and @max_hopid or negative errno in
798  * case of error.
799  */
800 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
801 {
802 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
803 }
804 
805 /**
806  * tb_port_release_in_hopid() - Release allocated input HopID from port
807  * @port: Port whose HopID to release
808  * @hopid: HopID to release
809  */
810 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
811 {
812 	ida_simple_remove(&port->in_hopids, hopid);
813 }
814 
815 /**
816  * tb_port_release_out_hopid() - Release allocated output HopID from port
817  * @port: Port whose HopID to release
818  * @hopid: HopID to release
819  */
820 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
821 {
822 	ida_simple_remove(&port->out_hopids, hopid);
823 }
824 
825 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
826 					  const struct tb_switch *sw)
827 {
828 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
829 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
830 }
831 
832 /**
833  * tb_next_port_on_path() - Return next port for given port on a path
834  * @start: Start port of the walk
835  * @end: End port of the walk
836  * @prev: Previous port (%NULL if this is the first)
837  *
838  * This function can be used to walk from one port to another if they
839  * are connected through zero or more switches. If the @prev is dual
840  * link port, the function follows that link and returns another end on
841  * that same link.
842  *
843  * If the @end port has been reached, return %NULL.
844  *
845  * Domain tb->lock must be held when this function is called.
846  */
847 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
848 				     struct tb_port *prev)
849 {
850 	struct tb_port *next;
851 
852 	if (!prev)
853 		return start;
854 
855 	if (prev->sw == end->sw) {
856 		if (prev == end)
857 			return NULL;
858 		return end;
859 	}
860 
861 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
862 		next = tb_port_at(tb_route(end->sw), prev->sw);
863 		/* Walk down the topology if next == prev */
864 		if (prev->remote &&
865 		    (next == prev || next->dual_link_port == prev))
866 			next = prev->remote;
867 	} else {
868 		if (tb_is_upstream_port(prev)) {
869 			next = prev->remote;
870 		} else {
871 			next = tb_upstream_port(prev->sw);
872 			/*
873 			 * Keep the same link if prev and next are both
874 			 * dual link ports.
875 			 */
876 			if (next->dual_link_port &&
877 			    next->link_nr != prev->link_nr) {
878 				next = next->dual_link_port;
879 			}
880 		}
881 	}
882 
883 	return next != prev ? next : NULL;
884 }
885 
886 /**
887  * tb_port_get_link_speed() - Get current link speed
888  * @port: Port to check (USB4 or CIO)
889  *
890  * Returns link speed in Gb/s or negative errno in case of failure.
891  */
892 int tb_port_get_link_speed(struct tb_port *port)
893 {
894 	u32 val, speed;
895 	int ret;
896 
897 	if (!port->cap_phy)
898 		return -EINVAL;
899 
900 	ret = tb_port_read(port, &val, TB_CFG_PORT,
901 			   port->cap_phy + LANE_ADP_CS_1, 1);
902 	if (ret)
903 		return ret;
904 
905 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
906 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
907 
908 	switch (speed) {
909 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
910 		return 40;
911 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
912 		return 20;
913 	default:
914 		return 10;
915 	}
916 }
917 
918 /**
919  * tb_port_get_link_generation() - Returns link generation
920  * @port: Lane adapter
921  *
922  * Returns link generation as number or negative errno in case of
923  * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
924  * links so for those always returns 2.
925  */
926 int tb_port_get_link_generation(struct tb_port *port)
927 {
928 	int ret;
929 
930 	ret = tb_port_get_link_speed(port);
931 	if (ret < 0)
932 		return ret;
933 
934 	switch (ret) {
935 	case 40:
936 		return 4;
937 	case 20:
938 		return 3;
939 	default:
940 		return 2;
941 	}
942 }
943 
944 static const char *width_name(enum tb_link_width width)
945 {
946 	switch (width) {
947 	case TB_LINK_WIDTH_SINGLE:
948 		return "symmetric, single lane";
949 	case TB_LINK_WIDTH_DUAL:
950 		return "symmetric, dual lanes";
951 	case TB_LINK_WIDTH_ASYM_TX:
952 		return "asymmetric, 3 transmitters, 1 receiver";
953 	case TB_LINK_WIDTH_ASYM_RX:
954 		return "asymmetric, 3 receivers, 1 transmitter";
955 	default:
956 		return "unknown";
957 	}
958 }
959 
960 /**
961  * tb_port_get_link_width() - Get current link width
962  * @port: Port to check (USB4 or CIO)
963  *
964  * Returns link width. Return the link width as encoded in &enum
965  * tb_link_width or negative errno in case of failure.
966  */
967 int tb_port_get_link_width(struct tb_port *port)
968 {
969 	u32 val;
970 	int ret;
971 
972 	if (!port->cap_phy)
973 		return -EINVAL;
974 
975 	ret = tb_port_read(port, &val, TB_CFG_PORT,
976 			   port->cap_phy + LANE_ADP_CS_1, 1);
977 	if (ret)
978 		return ret;
979 
980 	/* Matches the values in enum tb_link_width */
981 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
982 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
983 }
984 
985 /**
986  * tb_port_width_supported() - Is the given link width supported
987  * @port: Port to check
988  * @width: Widths to check (bitmask)
989  *
990  * Can be called to any lane adapter. Checks if given @width is
991  * supported by the hardware and returns %true if it is.
992  */
993 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
994 {
995 	u32 phy, widths;
996 	int ret;
997 
998 	if (!port->cap_phy)
999 		return false;
1000 
1001 	if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
1002 		if (tb_port_get_link_generation(port) < 4 ||
1003 		    !usb4_port_asym_supported(port))
1004 			return false;
1005 	}
1006 
1007 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
1008 			   port->cap_phy + LANE_ADP_CS_0, 1);
1009 	if (ret)
1010 		return false;
1011 
1012 	/*
1013 	 * The field encoding is the same as &enum tb_link_width (which is
1014 	 * passed to @width).
1015 	 */
1016 	widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1017 	return widths & width;
1018 }
1019 
1020 /**
1021  * tb_port_set_link_width() - Set target link width of the lane adapter
1022  * @port: Lane adapter
1023  * @width: Target link width
1024  *
1025  * Sets the target link width of the lane adapter to @width. Does not
1026  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1027  *
1028  * Return: %0 in case of success and negative errno in case of error
1029  */
1030 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1031 {
1032 	u32 val;
1033 	int ret;
1034 
1035 	if (!port->cap_phy)
1036 		return -EINVAL;
1037 
1038 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1039 			   port->cap_phy + LANE_ADP_CS_1, 1);
1040 	if (ret)
1041 		return ret;
1042 
1043 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1044 	switch (width) {
1045 	case TB_LINK_WIDTH_SINGLE:
1046 		/* Gen 4 link cannot be single */
1047 		if (tb_port_get_link_generation(port) >= 4)
1048 			return -EOPNOTSUPP;
1049 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1050 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1051 		break;
1052 
1053 	case TB_LINK_WIDTH_DUAL:
1054 		if (tb_port_get_link_generation(port) >= 4)
1055 			return usb4_port_asym_set_link_width(port, width);
1056 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1057 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1058 		break;
1059 
1060 	case TB_LINK_WIDTH_ASYM_TX:
1061 	case TB_LINK_WIDTH_ASYM_RX:
1062 		return usb4_port_asym_set_link_width(port, width);
1063 
1064 	default:
1065 		return -EINVAL;
1066 	}
1067 
1068 	return tb_port_write(port, &val, TB_CFG_PORT,
1069 			     port->cap_phy + LANE_ADP_CS_1, 1);
1070 }
1071 
1072 /**
1073  * tb_port_set_lane_bonding() - Enable/disable lane bonding
1074  * @port: Lane adapter
1075  * @bonding: enable/disable bonding
1076  *
1077  * Enables or disables lane bonding. This should be called after target
1078  * link width has been set (tb_port_set_link_width()). Note in most
1079  * cases one should use tb_port_lane_bonding_enable() instead to enable
1080  * lane bonding.
1081  *
1082  * Return: %0 in case of success and negative errno in case of error
1083  */
1084 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1085 {
1086 	u32 val;
1087 	int ret;
1088 
1089 	if (!port->cap_phy)
1090 		return -EINVAL;
1091 
1092 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1093 			   port->cap_phy + LANE_ADP_CS_1, 1);
1094 	if (ret)
1095 		return ret;
1096 
1097 	if (bonding)
1098 		val |= LANE_ADP_CS_1_LB;
1099 	else
1100 		val &= ~LANE_ADP_CS_1_LB;
1101 
1102 	return tb_port_write(port, &val, TB_CFG_PORT,
1103 			     port->cap_phy + LANE_ADP_CS_1, 1);
1104 }
1105 
1106 /**
1107  * tb_port_lane_bonding_enable() - Enable bonding on port
1108  * @port: port to enable
1109  *
1110  * Enable bonding by setting the link width of the port and the other
1111  * port in case of dual link port. Does not wait for the link to
1112  * actually reach the bonded state so caller needs to call
1113  * tb_port_wait_for_link_width() before enabling any paths through the
1114  * link to make sure the link is in expected state.
1115  *
1116  * Return: %0 in case of success and negative errno in case of error
1117  */
1118 int tb_port_lane_bonding_enable(struct tb_port *port)
1119 {
1120 	enum tb_link_width width;
1121 	int ret;
1122 
1123 	/*
1124 	 * Enable lane bonding for both links if not already enabled by
1125 	 * for example the boot firmware.
1126 	 */
1127 	width = tb_port_get_link_width(port);
1128 	if (width == TB_LINK_WIDTH_SINGLE) {
1129 		ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1130 		if (ret)
1131 			goto err_lane0;
1132 	}
1133 
1134 	width = tb_port_get_link_width(port->dual_link_port);
1135 	if (width == TB_LINK_WIDTH_SINGLE) {
1136 		ret = tb_port_set_link_width(port->dual_link_port,
1137 					     TB_LINK_WIDTH_DUAL);
1138 		if (ret)
1139 			goto err_lane0;
1140 	}
1141 
1142 	/*
1143 	 * Only set bonding if the link was not already bonded. This
1144 	 * avoids the lane adapter to re-enter bonding state.
1145 	 */
1146 	if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1147 		ret = tb_port_set_lane_bonding(port, true);
1148 		if (ret)
1149 			goto err_lane1;
1150 	}
1151 
1152 	/*
1153 	 * When lane 0 bonding is set it will affect lane 1 too so
1154 	 * update both.
1155 	 */
1156 	port->bonded = true;
1157 	port->dual_link_port->bonded = true;
1158 
1159 	return 0;
1160 
1161 err_lane1:
1162 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1163 err_lane0:
1164 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1165 
1166 	return ret;
1167 }
1168 
1169 /**
1170  * tb_port_lane_bonding_disable() - Disable bonding on port
1171  * @port: port to disable
1172  *
1173  * Disable bonding by setting the link width of the port and the
1174  * other port in case of dual link port.
1175  */
1176 void tb_port_lane_bonding_disable(struct tb_port *port)
1177 {
1178 	tb_port_set_lane_bonding(port, false);
1179 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1180 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1181 	port->dual_link_port->bonded = false;
1182 	port->bonded = false;
1183 }
1184 
1185 /**
1186  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1187  * @port: Port to wait for
1188  * @width: Expected link width (bitmask)
1189  * @timeout_msec: Timeout in ms how long to wait
1190  *
1191  * Should be used after both ends of the link have been bonded (or
1192  * bonding has been disabled) to wait until the link actually reaches
1193  * the expected state. Returns %-ETIMEDOUT if the width was not reached
1194  * within the given timeout, %0 if it did. Can be passed a mask of
1195  * expected widths and succeeds if any of the widths is reached.
1196  */
1197 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1198 				int timeout_msec)
1199 {
1200 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1201 	int ret;
1202 
1203 	/* Gen 4 link does not support single lane */
1204 	if ((width & TB_LINK_WIDTH_SINGLE) &&
1205 	    tb_port_get_link_generation(port) >= 4)
1206 		return -EOPNOTSUPP;
1207 
1208 	do {
1209 		ret = tb_port_get_link_width(port);
1210 		if (ret < 0) {
1211 			/*
1212 			 * Sometimes we get port locked error when
1213 			 * polling the lanes so we can ignore it and
1214 			 * retry.
1215 			 */
1216 			if (ret != -EACCES)
1217 				return ret;
1218 		} else if (ret & width) {
1219 			return 0;
1220 		}
1221 
1222 		usleep_range(1000, 2000);
1223 	} while (ktime_before(ktime_get(), timeout));
1224 
1225 	return -ETIMEDOUT;
1226 }
1227 
1228 static int tb_port_do_update_credits(struct tb_port *port)
1229 {
1230 	u32 nfc_credits;
1231 	int ret;
1232 
1233 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1234 	if (ret)
1235 		return ret;
1236 
1237 	if (nfc_credits != port->config.nfc_credits) {
1238 		u32 total;
1239 
1240 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1241 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1242 
1243 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1244 			    port->total_credits, total);
1245 
1246 		port->config.nfc_credits = nfc_credits;
1247 		port->total_credits = total;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  * tb_port_update_credits() - Re-read port total credits
1255  * @port: Port to update
1256  *
1257  * After the link is bonded (or bonding was disabled) the port total
1258  * credits may change, so this function needs to be called to re-read
1259  * the credits. Updates also the second lane adapter.
1260  */
1261 int tb_port_update_credits(struct tb_port *port)
1262 {
1263 	int ret;
1264 
1265 	ret = tb_port_do_update_credits(port);
1266 	if (ret)
1267 		return ret;
1268 	return tb_port_do_update_credits(port->dual_link_port);
1269 }
1270 
1271 static int tb_port_start_lane_initialization(struct tb_port *port)
1272 {
1273 	int ret;
1274 
1275 	if (tb_switch_is_usb4(port->sw))
1276 		return 0;
1277 
1278 	ret = tb_lc_start_lane_initialization(port);
1279 	return ret == -EINVAL ? 0 : ret;
1280 }
1281 
1282 /*
1283  * Returns true if the port had something (router, XDomain) connected
1284  * before suspend.
1285  */
1286 static bool tb_port_resume(struct tb_port *port)
1287 {
1288 	bool has_remote = tb_port_has_remote(port);
1289 
1290 	if (port->usb4) {
1291 		usb4_port_device_resume(port->usb4);
1292 	} else if (!has_remote) {
1293 		/*
1294 		 * For disconnected downstream lane adapters start lane
1295 		 * initialization now so we detect future connects.
1296 		 *
1297 		 * For XDomain start the lane initialzation now so the
1298 		 * link gets re-established.
1299 		 *
1300 		 * This is only needed for non-USB4 ports.
1301 		 */
1302 		if (!tb_is_upstream_port(port) || port->xdomain)
1303 			tb_port_start_lane_initialization(port);
1304 	}
1305 
1306 	return has_remote || port->xdomain;
1307 }
1308 
1309 /**
1310  * tb_port_is_enabled() - Is the adapter port enabled
1311  * @port: Port to check
1312  */
1313 bool tb_port_is_enabled(struct tb_port *port)
1314 {
1315 	switch (port->config.type) {
1316 	case TB_TYPE_PCIE_UP:
1317 	case TB_TYPE_PCIE_DOWN:
1318 		return tb_pci_port_is_enabled(port);
1319 
1320 	case TB_TYPE_DP_HDMI_IN:
1321 	case TB_TYPE_DP_HDMI_OUT:
1322 		return tb_dp_port_is_enabled(port);
1323 
1324 	case TB_TYPE_USB3_UP:
1325 	case TB_TYPE_USB3_DOWN:
1326 		return tb_usb3_port_is_enabled(port);
1327 
1328 	default:
1329 		return false;
1330 	}
1331 }
1332 
1333 /**
1334  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1335  * @port: USB3 adapter port to check
1336  */
1337 bool tb_usb3_port_is_enabled(struct tb_port *port)
1338 {
1339 	u32 data;
1340 
1341 	if (tb_port_read(port, &data, TB_CFG_PORT,
1342 			 port->cap_adap + ADP_USB3_CS_0, 1))
1343 		return false;
1344 
1345 	return !!(data & ADP_USB3_CS_0_PE);
1346 }
1347 
1348 /**
1349  * tb_usb3_port_enable() - Enable USB3 adapter port
1350  * @port: USB3 adapter port to enable
1351  * @enable: Enable/disable the USB3 adapter
1352  */
1353 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1354 {
1355 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1356 			  : ADP_USB3_CS_0_V;
1357 
1358 	if (!port->cap_adap)
1359 		return -ENXIO;
1360 	return tb_port_write(port, &word, TB_CFG_PORT,
1361 			     port->cap_adap + ADP_USB3_CS_0, 1);
1362 }
1363 
1364 /**
1365  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1366  * @port: PCIe port to check
1367  */
1368 bool tb_pci_port_is_enabled(struct tb_port *port)
1369 {
1370 	u32 data;
1371 
1372 	if (tb_port_read(port, &data, TB_CFG_PORT,
1373 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1374 		return false;
1375 
1376 	return !!(data & ADP_PCIE_CS_0_PE);
1377 }
1378 
1379 /**
1380  * tb_pci_port_enable() - Enable PCIe adapter port
1381  * @port: PCIe port to enable
1382  * @enable: Enable/disable the PCIe adapter
1383  */
1384 int tb_pci_port_enable(struct tb_port *port, bool enable)
1385 {
1386 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1387 	if (!port->cap_adap)
1388 		return -ENXIO;
1389 	return tb_port_write(port, &word, TB_CFG_PORT,
1390 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1391 }
1392 
1393 /**
1394  * tb_dp_port_hpd_is_active() - Is HPD already active
1395  * @port: DP out port to check
1396  *
1397  * Checks if the DP OUT adapter port has HPD bit already set.
1398  */
1399 int tb_dp_port_hpd_is_active(struct tb_port *port)
1400 {
1401 	u32 data;
1402 	int ret;
1403 
1404 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1405 			   port->cap_adap + ADP_DP_CS_2, 1);
1406 	if (ret)
1407 		return ret;
1408 
1409 	return !!(data & ADP_DP_CS_2_HPD);
1410 }
1411 
1412 /**
1413  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1414  * @port: Port to clear HPD
1415  *
1416  * If the DP IN port has HPD set, this function can be used to clear it.
1417  */
1418 int tb_dp_port_hpd_clear(struct tb_port *port)
1419 {
1420 	u32 data;
1421 	int ret;
1422 
1423 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1424 			   port->cap_adap + ADP_DP_CS_3, 1);
1425 	if (ret)
1426 		return ret;
1427 
1428 	data |= ADP_DP_CS_3_HPDC;
1429 	return tb_port_write(port, &data, TB_CFG_PORT,
1430 			     port->cap_adap + ADP_DP_CS_3, 1);
1431 }
1432 
1433 /**
1434  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1435  * @port: DP IN/OUT port to set hops
1436  * @video: Video Hop ID
1437  * @aux_tx: AUX TX Hop ID
1438  * @aux_rx: AUX RX Hop ID
1439  *
1440  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1441  * router DP adapters too but does not program the values as the fields
1442  * are read-only.
1443  */
1444 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1445 			unsigned int aux_tx, unsigned int aux_rx)
1446 {
1447 	u32 data[2];
1448 	int ret;
1449 
1450 	if (tb_switch_is_usb4(port->sw))
1451 		return 0;
1452 
1453 	ret = tb_port_read(port, data, TB_CFG_PORT,
1454 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1455 	if (ret)
1456 		return ret;
1457 
1458 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1459 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1460 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1461 
1462 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1463 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1464 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1465 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1466 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1467 
1468 	return tb_port_write(port, data, TB_CFG_PORT,
1469 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1470 }
1471 
1472 /**
1473  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1474  * @port: DP adapter port to check
1475  */
1476 bool tb_dp_port_is_enabled(struct tb_port *port)
1477 {
1478 	u32 data[2];
1479 
1480 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1481 			 ARRAY_SIZE(data)))
1482 		return false;
1483 
1484 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1485 }
1486 
1487 /**
1488  * tb_dp_port_enable() - Enables/disables DP paths of a port
1489  * @port: DP IN/OUT port
1490  * @enable: Enable/disable DP path
1491  *
1492  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1493  * calling this function.
1494  */
1495 int tb_dp_port_enable(struct tb_port *port, bool enable)
1496 {
1497 	u32 data[2];
1498 	int ret;
1499 
1500 	ret = tb_port_read(port, data, TB_CFG_PORT,
1501 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1502 	if (ret)
1503 		return ret;
1504 
1505 	if (enable)
1506 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1507 	else
1508 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1509 
1510 	return tb_port_write(port, data, TB_CFG_PORT,
1511 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1512 }
1513 
1514 /* switch utility functions */
1515 
1516 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1517 {
1518 	switch (sw->generation) {
1519 	case 1:
1520 		return "Thunderbolt 1";
1521 	case 2:
1522 		return "Thunderbolt 2";
1523 	case 3:
1524 		return "Thunderbolt 3";
1525 	case 4:
1526 		return "USB4";
1527 	default:
1528 		return "Unknown";
1529 	}
1530 }
1531 
1532 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1533 {
1534 	const struct tb_regs_switch_header *regs = &sw->config;
1535 
1536 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1537 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1538 	       regs->revision, regs->thunderbolt_version);
1539 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1540 	tb_dbg(tb, "  Config:\n");
1541 	tb_dbg(tb,
1542 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1543 	       regs->upstream_port_number, regs->depth,
1544 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1545 	       regs->enabled, regs->plug_events_delay);
1546 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1547 	       regs->__unknown1, regs->__unknown4);
1548 }
1549 
1550 /**
1551  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1552  * @sw: Switch to reset
1553  *
1554  * Return: Returns 0 on success or an error code on failure.
1555  */
1556 int tb_switch_reset(struct tb_switch *sw)
1557 {
1558 	struct tb_cfg_result res;
1559 
1560 	if (sw->generation > 1)
1561 		return 0;
1562 
1563 	tb_sw_dbg(sw, "resetting switch\n");
1564 
1565 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1566 			      TB_CFG_SWITCH, 2, 2);
1567 	if (res.err)
1568 		return res.err;
1569 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1570 	if (res.err > 0)
1571 		return -EIO;
1572 	return res.err;
1573 }
1574 
1575 /**
1576  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1577  * @sw: Router to read the offset value from
1578  * @offset: Offset in the router config space to read from
1579  * @bit: Bit mask in the offset to wait for
1580  * @value: Value of the bits to wait for
1581  * @timeout_msec: Timeout in ms how long to wait
1582  *
1583  * Wait till the specified bits in specified offset reach specified value.
1584  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1585  * within the given timeout or a negative errno in case of failure.
1586  */
1587 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1588 			   u32 value, int timeout_msec)
1589 {
1590 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1591 
1592 	do {
1593 		u32 val;
1594 		int ret;
1595 
1596 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1597 		if (ret)
1598 			return ret;
1599 
1600 		if ((val & bit) == value)
1601 			return 0;
1602 
1603 		usleep_range(50, 100);
1604 	} while (ktime_before(ktime_get(), timeout));
1605 
1606 	return -ETIMEDOUT;
1607 }
1608 
1609 /*
1610  * tb_plug_events_active() - enable/disable plug events on a switch
1611  *
1612  * Also configures a sane plug_events_delay of 255ms.
1613  *
1614  * Return: Returns 0 on success or an error code on failure.
1615  */
1616 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1617 {
1618 	u32 data;
1619 	int res;
1620 
1621 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1622 		return 0;
1623 
1624 	sw->config.plug_events_delay = 0xff;
1625 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1626 	if (res)
1627 		return res;
1628 
1629 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1630 	if (res)
1631 		return res;
1632 
1633 	if (active) {
1634 		data = data & 0xFFFFFF83;
1635 		switch (sw->config.device_id) {
1636 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1637 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1638 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1639 			break;
1640 		default:
1641 			/*
1642 			 * Skip Alpine Ridge, it needs to have vendor
1643 			 * specific USB hotplug event enabled for the
1644 			 * internal xHCI to work.
1645 			 */
1646 			if (!tb_switch_is_alpine_ridge(sw))
1647 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1648 		}
1649 	} else {
1650 		data = data | 0x7c;
1651 	}
1652 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1653 			   sw->cap_plug_events + 1, 1);
1654 }
1655 
1656 static ssize_t authorized_show(struct device *dev,
1657 			       struct device_attribute *attr,
1658 			       char *buf)
1659 {
1660 	struct tb_switch *sw = tb_to_switch(dev);
1661 
1662 	return sysfs_emit(buf, "%u\n", sw->authorized);
1663 }
1664 
1665 static int disapprove_switch(struct device *dev, void *not_used)
1666 {
1667 	char *envp[] = { "AUTHORIZED=0", NULL };
1668 	struct tb_switch *sw;
1669 
1670 	sw = tb_to_switch(dev);
1671 	if (sw && sw->authorized) {
1672 		int ret;
1673 
1674 		/* First children */
1675 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1676 		if (ret)
1677 			return ret;
1678 
1679 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1680 		if (ret)
1681 			return ret;
1682 
1683 		sw->authorized = 0;
1684 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1685 	}
1686 
1687 	return 0;
1688 }
1689 
1690 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1691 {
1692 	char envp_string[13];
1693 	int ret = -EINVAL;
1694 	char *envp[] = { envp_string, NULL };
1695 
1696 	if (!mutex_trylock(&sw->tb->lock))
1697 		return restart_syscall();
1698 
1699 	if (!!sw->authorized == !!val)
1700 		goto unlock;
1701 
1702 	switch (val) {
1703 	/* Disapprove switch */
1704 	case 0:
1705 		if (tb_route(sw)) {
1706 			ret = disapprove_switch(&sw->dev, NULL);
1707 			goto unlock;
1708 		}
1709 		break;
1710 
1711 	/* Approve switch */
1712 	case 1:
1713 		if (sw->key)
1714 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1715 		else
1716 			ret = tb_domain_approve_switch(sw->tb, sw);
1717 		break;
1718 
1719 	/* Challenge switch */
1720 	case 2:
1721 		if (sw->key)
1722 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1723 		break;
1724 
1725 	default:
1726 		break;
1727 	}
1728 
1729 	if (!ret) {
1730 		sw->authorized = val;
1731 		/*
1732 		 * Notify status change to the userspace, informing the new
1733 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1734 		 */
1735 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1736 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1737 	}
1738 
1739 unlock:
1740 	mutex_unlock(&sw->tb->lock);
1741 	return ret;
1742 }
1743 
1744 static ssize_t authorized_store(struct device *dev,
1745 				struct device_attribute *attr,
1746 				const char *buf, size_t count)
1747 {
1748 	struct tb_switch *sw = tb_to_switch(dev);
1749 	unsigned int val;
1750 	ssize_t ret;
1751 
1752 	ret = kstrtouint(buf, 0, &val);
1753 	if (ret)
1754 		return ret;
1755 	if (val > 2)
1756 		return -EINVAL;
1757 
1758 	pm_runtime_get_sync(&sw->dev);
1759 	ret = tb_switch_set_authorized(sw, val);
1760 	pm_runtime_mark_last_busy(&sw->dev);
1761 	pm_runtime_put_autosuspend(&sw->dev);
1762 
1763 	return ret ? ret : count;
1764 }
1765 static DEVICE_ATTR_RW(authorized);
1766 
1767 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1768 			 char *buf)
1769 {
1770 	struct tb_switch *sw = tb_to_switch(dev);
1771 
1772 	return sysfs_emit(buf, "%u\n", sw->boot);
1773 }
1774 static DEVICE_ATTR_RO(boot);
1775 
1776 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1777 			   char *buf)
1778 {
1779 	struct tb_switch *sw = tb_to_switch(dev);
1780 
1781 	return sysfs_emit(buf, "%#x\n", sw->device);
1782 }
1783 static DEVICE_ATTR_RO(device);
1784 
1785 static ssize_t
1786 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1787 {
1788 	struct tb_switch *sw = tb_to_switch(dev);
1789 
1790 	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1791 }
1792 static DEVICE_ATTR_RO(device_name);
1793 
1794 static ssize_t
1795 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1796 {
1797 	struct tb_switch *sw = tb_to_switch(dev);
1798 
1799 	return sysfs_emit(buf, "%u\n", sw->generation);
1800 }
1801 static DEVICE_ATTR_RO(generation);
1802 
1803 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1804 			char *buf)
1805 {
1806 	struct tb_switch *sw = tb_to_switch(dev);
1807 	ssize_t ret;
1808 
1809 	if (!mutex_trylock(&sw->tb->lock))
1810 		return restart_syscall();
1811 
1812 	if (sw->key)
1813 		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1814 	else
1815 		ret = sysfs_emit(buf, "\n");
1816 
1817 	mutex_unlock(&sw->tb->lock);
1818 	return ret;
1819 }
1820 
1821 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1822 			 const char *buf, size_t count)
1823 {
1824 	struct tb_switch *sw = tb_to_switch(dev);
1825 	u8 key[TB_SWITCH_KEY_SIZE];
1826 	ssize_t ret = count;
1827 	bool clear = false;
1828 
1829 	if (!strcmp(buf, "\n"))
1830 		clear = true;
1831 	else if (hex2bin(key, buf, sizeof(key)))
1832 		return -EINVAL;
1833 
1834 	if (!mutex_trylock(&sw->tb->lock))
1835 		return restart_syscall();
1836 
1837 	if (sw->authorized) {
1838 		ret = -EBUSY;
1839 	} else {
1840 		kfree(sw->key);
1841 		if (clear) {
1842 			sw->key = NULL;
1843 		} else {
1844 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1845 			if (!sw->key)
1846 				ret = -ENOMEM;
1847 		}
1848 	}
1849 
1850 	mutex_unlock(&sw->tb->lock);
1851 	return ret;
1852 }
1853 static DEVICE_ATTR(key, 0600, key_show, key_store);
1854 
1855 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1856 			  char *buf)
1857 {
1858 	struct tb_switch *sw = tb_to_switch(dev);
1859 
1860 	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1861 }
1862 
1863 /*
1864  * Currently all lanes must run at the same speed but we expose here
1865  * both directions to allow possible asymmetric links in the future.
1866  */
1867 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1868 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1869 
1870 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1871 			     char *buf)
1872 {
1873 	struct tb_switch *sw = tb_to_switch(dev);
1874 	unsigned int width;
1875 
1876 	switch (sw->link_width) {
1877 	case TB_LINK_WIDTH_SINGLE:
1878 	case TB_LINK_WIDTH_ASYM_TX:
1879 		width = 1;
1880 		break;
1881 	case TB_LINK_WIDTH_DUAL:
1882 		width = 2;
1883 		break;
1884 	case TB_LINK_WIDTH_ASYM_RX:
1885 		width = 3;
1886 		break;
1887 	default:
1888 		WARN_ON_ONCE(1);
1889 		return -EINVAL;
1890 	}
1891 
1892 	return sysfs_emit(buf, "%u\n", width);
1893 }
1894 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1895 
1896 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1897 			     char *buf)
1898 {
1899 	struct tb_switch *sw = tb_to_switch(dev);
1900 	unsigned int width;
1901 
1902 	switch (sw->link_width) {
1903 	case TB_LINK_WIDTH_SINGLE:
1904 	case TB_LINK_WIDTH_ASYM_RX:
1905 		width = 1;
1906 		break;
1907 	case TB_LINK_WIDTH_DUAL:
1908 		width = 2;
1909 		break;
1910 	case TB_LINK_WIDTH_ASYM_TX:
1911 		width = 3;
1912 		break;
1913 	default:
1914 		WARN_ON_ONCE(1);
1915 		return -EINVAL;
1916 	}
1917 
1918 	return sysfs_emit(buf, "%u\n", width);
1919 }
1920 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1921 
1922 static ssize_t nvm_authenticate_show(struct device *dev,
1923 	struct device_attribute *attr, char *buf)
1924 {
1925 	struct tb_switch *sw = tb_to_switch(dev);
1926 	u32 status;
1927 
1928 	nvm_get_auth_status(sw, &status);
1929 	return sysfs_emit(buf, "%#x\n", status);
1930 }
1931 
1932 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1933 				      bool disconnect)
1934 {
1935 	struct tb_switch *sw = tb_to_switch(dev);
1936 	int val, ret;
1937 
1938 	pm_runtime_get_sync(&sw->dev);
1939 
1940 	if (!mutex_trylock(&sw->tb->lock)) {
1941 		ret = restart_syscall();
1942 		goto exit_rpm;
1943 	}
1944 
1945 	if (sw->no_nvm_upgrade) {
1946 		ret = -EOPNOTSUPP;
1947 		goto exit_unlock;
1948 	}
1949 
1950 	/* If NVMem devices are not yet added */
1951 	if (!sw->nvm) {
1952 		ret = -EAGAIN;
1953 		goto exit_unlock;
1954 	}
1955 
1956 	ret = kstrtoint(buf, 10, &val);
1957 	if (ret)
1958 		goto exit_unlock;
1959 
1960 	/* Always clear the authentication status */
1961 	nvm_clear_auth_status(sw);
1962 
1963 	if (val > 0) {
1964 		if (val == AUTHENTICATE_ONLY) {
1965 			if (disconnect)
1966 				ret = -EINVAL;
1967 			else
1968 				ret = nvm_authenticate(sw, true);
1969 		} else {
1970 			if (!sw->nvm->flushed) {
1971 				if (!sw->nvm->buf) {
1972 					ret = -EINVAL;
1973 					goto exit_unlock;
1974 				}
1975 
1976 				ret = nvm_validate_and_write(sw);
1977 				if (ret || val == WRITE_ONLY)
1978 					goto exit_unlock;
1979 			}
1980 			if (val == WRITE_AND_AUTHENTICATE) {
1981 				if (disconnect)
1982 					ret = tb_lc_force_power(sw);
1983 				else
1984 					ret = nvm_authenticate(sw, false);
1985 			}
1986 		}
1987 	}
1988 
1989 exit_unlock:
1990 	mutex_unlock(&sw->tb->lock);
1991 exit_rpm:
1992 	pm_runtime_mark_last_busy(&sw->dev);
1993 	pm_runtime_put_autosuspend(&sw->dev);
1994 
1995 	return ret;
1996 }
1997 
1998 static ssize_t nvm_authenticate_store(struct device *dev,
1999 	struct device_attribute *attr, const char *buf, size_t count)
2000 {
2001 	int ret = nvm_authenticate_sysfs(dev, buf, false);
2002 	if (ret)
2003 		return ret;
2004 	return count;
2005 }
2006 static DEVICE_ATTR_RW(nvm_authenticate);
2007 
2008 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2009 	struct device_attribute *attr, char *buf)
2010 {
2011 	return nvm_authenticate_show(dev, attr, buf);
2012 }
2013 
2014 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2015 	struct device_attribute *attr, const char *buf, size_t count)
2016 {
2017 	int ret;
2018 
2019 	ret = nvm_authenticate_sysfs(dev, buf, true);
2020 	return ret ? ret : count;
2021 }
2022 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2023 
2024 static ssize_t nvm_version_show(struct device *dev,
2025 				struct device_attribute *attr, char *buf)
2026 {
2027 	struct tb_switch *sw = tb_to_switch(dev);
2028 	int ret;
2029 
2030 	if (!mutex_trylock(&sw->tb->lock))
2031 		return restart_syscall();
2032 
2033 	if (sw->safe_mode)
2034 		ret = -ENODATA;
2035 	else if (!sw->nvm)
2036 		ret = -EAGAIN;
2037 	else
2038 		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2039 
2040 	mutex_unlock(&sw->tb->lock);
2041 
2042 	return ret;
2043 }
2044 static DEVICE_ATTR_RO(nvm_version);
2045 
2046 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2047 			   char *buf)
2048 {
2049 	struct tb_switch *sw = tb_to_switch(dev);
2050 
2051 	return sysfs_emit(buf, "%#x\n", sw->vendor);
2052 }
2053 static DEVICE_ATTR_RO(vendor);
2054 
2055 static ssize_t
2056 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2057 {
2058 	struct tb_switch *sw = tb_to_switch(dev);
2059 
2060 	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2061 }
2062 static DEVICE_ATTR_RO(vendor_name);
2063 
2064 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2065 			      char *buf)
2066 {
2067 	struct tb_switch *sw = tb_to_switch(dev);
2068 
2069 	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2070 }
2071 static DEVICE_ATTR_RO(unique_id);
2072 
2073 static struct attribute *switch_attrs[] = {
2074 	&dev_attr_authorized.attr,
2075 	&dev_attr_boot.attr,
2076 	&dev_attr_device.attr,
2077 	&dev_attr_device_name.attr,
2078 	&dev_attr_generation.attr,
2079 	&dev_attr_key.attr,
2080 	&dev_attr_nvm_authenticate.attr,
2081 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2082 	&dev_attr_nvm_version.attr,
2083 	&dev_attr_rx_speed.attr,
2084 	&dev_attr_rx_lanes.attr,
2085 	&dev_attr_tx_speed.attr,
2086 	&dev_attr_tx_lanes.attr,
2087 	&dev_attr_vendor.attr,
2088 	&dev_attr_vendor_name.attr,
2089 	&dev_attr_unique_id.attr,
2090 	NULL,
2091 };
2092 
2093 static umode_t switch_attr_is_visible(struct kobject *kobj,
2094 				      struct attribute *attr, int n)
2095 {
2096 	struct device *dev = kobj_to_dev(kobj);
2097 	struct tb_switch *sw = tb_to_switch(dev);
2098 
2099 	if (attr == &dev_attr_authorized.attr) {
2100 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2101 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2102 			return 0;
2103 	} else if (attr == &dev_attr_device.attr) {
2104 		if (!sw->device)
2105 			return 0;
2106 	} else if (attr == &dev_attr_device_name.attr) {
2107 		if (!sw->device_name)
2108 			return 0;
2109 	} else if (attr == &dev_attr_vendor.attr)  {
2110 		if (!sw->vendor)
2111 			return 0;
2112 	} else if (attr == &dev_attr_vendor_name.attr)  {
2113 		if (!sw->vendor_name)
2114 			return 0;
2115 	} else if (attr == &dev_attr_key.attr) {
2116 		if (tb_route(sw) &&
2117 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2118 		    sw->security_level == TB_SECURITY_SECURE)
2119 			return attr->mode;
2120 		return 0;
2121 	} else if (attr == &dev_attr_rx_speed.attr ||
2122 		   attr == &dev_attr_rx_lanes.attr ||
2123 		   attr == &dev_attr_tx_speed.attr ||
2124 		   attr == &dev_attr_tx_lanes.attr) {
2125 		if (tb_route(sw))
2126 			return attr->mode;
2127 		return 0;
2128 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2129 		if (nvm_upgradeable(sw))
2130 			return attr->mode;
2131 		return 0;
2132 	} else if (attr == &dev_attr_nvm_version.attr) {
2133 		if (nvm_readable(sw))
2134 			return attr->mode;
2135 		return 0;
2136 	} else if (attr == &dev_attr_boot.attr) {
2137 		if (tb_route(sw))
2138 			return attr->mode;
2139 		return 0;
2140 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2141 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2142 			return attr->mode;
2143 		return 0;
2144 	}
2145 
2146 	return sw->safe_mode ? 0 : attr->mode;
2147 }
2148 
2149 static const struct attribute_group switch_group = {
2150 	.is_visible = switch_attr_is_visible,
2151 	.attrs = switch_attrs,
2152 };
2153 
2154 static const struct attribute_group *switch_groups[] = {
2155 	&switch_group,
2156 	NULL,
2157 };
2158 
2159 static void tb_switch_release(struct device *dev)
2160 {
2161 	struct tb_switch *sw = tb_to_switch(dev);
2162 	struct tb_port *port;
2163 
2164 	dma_port_free(sw->dma_port);
2165 
2166 	tb_switch_for_each_port(sw, port) {
2167 		ida_destroy(&port->in_hopids);
2168 		ida_destroy(&port->out_hopids);
2169 	}
2170 
2171 	kfree(sw->uuid);
2172 	kfree(sw->device_name);
2173 	kfree(sw->vendor_name);
2174 	kfree(sw->ports);
2175 	kfree(sw->drom);
2176 	kfree(sw->key);
2177 	kfree(sw);
2178 }
2179 
2180 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2181 {
2182 	const struct tb_switch *sw = tb_to_switch(dev);
2183 	const char *type;
2184 
2185 	if (tb_switch_is_usb4(sw)) {
2186 		if (add_uevent_var(env, "USB4_VERSION=%u.0",
2187 				   usb4_switch_version(sw)))
2188 			return -ENOMEM;
2189 	}
2190 
2191 	if (!tb_route(sw)) {
2192 		type = "host";
2193 	} else {
2194 		const struct tb_port *port;
2195 		bool hub = false;
2196 
2197 		/* Device is hub if it has any downstream ports */
2198 		tb_switch_for_each_port(sw, port) {
2199 			if (!port->disabled && !tb_is_upstream_port(port) &&
2200 			     tb_port_is_null(port)) {
2201 				hub = true;
2202 				break;
2203 			}
2204 		}
2205 
2206 		type = hub ? "hub" : "device";
2207 	}
2208 
2209 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2210 		return -ENOMEM;
2211 	return 0;
2212 }
2213 
2214 /*
2215  * Currently only need to provide the callbacks. Everything else is handled
2216  * in the connection manager.
2217  */
2218 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2219 {
2220 	struct tb_switch *sw = tb_to_switch(dev);
2221 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2222 
2223 	if (cm_ops->runtime_suspend_switch)
2224 		return cm_ops->runtime_suspend_switch(sw);
2225 
2226 	return 0;
2227 }
2228 
2229 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2230 {
2231 	struct tb_switch *sw = tb_to_switch(dev);
2232 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2233 
2234 	if (cm_ops->runtime_resume_switch)
2235 		return cm_ops->runtime_resume_switch(sw);
2236 	return 0;
2237 }
2238 
2239 static const struct dev_pm_ops tb_switch_pm_ops = {
2240 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2241 			   NULL)
2242 };
2243 
2244 struct device_type tb_switch_type = {
2245 	.name = "thunderbolt_device",
2246 	.release = tb_switch_release,
2247 	.uevent = tb_switch_uevent,
2248 	.pm = &tb_switch_pm_ops,
2249 };
2250 
2251 static int tb_switch_get_generation(struct tb_switch *sw)
2252 {
2253 	if (tb_switch_is_usb4(sw))
2254 		return 4;
2255 
2256 	if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2257 		switch (sw->config.device_id) {
2258 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2259 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2260 		case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2261 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2262 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2263 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2264 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2265 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2266 			return 1;
2267 
2268 		case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2269 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2270 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2271 			return 2;
2272 
2273 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2274 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2275 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2276 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2277 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2278 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2279 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2280 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2281 		case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2282 		case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2283 			return 3;
2284 		}
2285 	}
2286 
2287 	/*
2288 	 * For unknown switches assume generation to be 1 to be on the
2289 	 * safe side.
2290 	 */
2291 	tb_sw_warn(sw, "unsupported switch device id %#x\n",
2292 		   sw->config.device_id);
2293 	return 1;
2294 }
2295 
2296 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2297 {
2298 	int max_depth;
2299 
2300 	if (tb_switch_is_usb4(sw) ||
2301 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2302 		max_depth = USB4_SWITCH_MAX_DEPTH;
2303 	else
2304 		max_depth = TB_SWITCH_MAX_DEPTH;
2305 
2306 	return depth > max_depth;
2307 }
2308 
2309 /**
2310  * tb_switch_alloc() - allocate a switch
2311  * @tb: Pointer to the owning domain
2312  * @parent: Parent device for this switch
2313  * @route: Route string for this switch
2314  *
2315  * Allocates and initializes a switch. Will not upload configuration to
2316  * the switch. For that you need to call tb_switch_configure()
2317  * separately. The returned switch should be released by calling
2318  * tb_switch_put().
2319  *
2320  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2321  * failure.
2322  */
2323 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2324 				  u64 route)
2325 {
2326 	struct tb_switch *sw;
2327 	int upstream_port;
2328 	int i, ret, depth;
2329 
2330 	/* Unlock the downstream port so we can access the switch below */
2331 	if (route) {
2332 		struct tb_switch *parent_sw = tb_to_switch(parent);
2333 		struct tb_port *down;
2334 
2335 		down = tb_port_at(route, parent_sw);
2336 		tb_port_unlock(down);
2337 	}
2338 
2339 	depth = tb_route_length(route);
2340 
2341 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2342 	if (upstream_port < 0)
2343 		return ERR_PTR(upstream_port);
2344 
2345 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2346 	if (!sw)
2347 		return ERR_PTR(-ENOMEM);
2348 
2349 	sw->tb = tb;
2350 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2351 	if (ret)
2352 		goto err_free_sw_ports;
2353 
2354 	sw->generation = tb_switch_get_generation(sw);
2355 
2356 	tb_dbg(tb, "current switch config:\n");
2357 	tb_dump_switch(tb, sw);
2358 
2359 	/* configure switch */
2360 	sw->config.upstream_port_number = upstream_port;
2361 	sw->config.depth = depth;
2362 	sw->config.route_hi = upper_32_bits(route);
2363 	sw->config.route_lo = lower_32_bits(route);
2364 	sw->config.enabled = 0;
2365 
2366 	/* Make sure we do not exceed maximum topology limit */
2367 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2368 		ret = -EADDRNOTAVAIL;
2369 		goto err_free_sw_ports;
2370 	}
2371 
2372 	/* initialize ports */
2373 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2374 				GFP_KERNEL);
2375 	if (!sw->ports) {
2376 		ret = -ENOMEM;
2377 		goto err_free_sw_ports;
2378 	}
2379 
2380 	for (i = 0; i <= sw->config.max_port_number; i++) {
2381 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2382 		sw->ports[i].sw = sw;
2383 		sw->ports[i].port = i;
2384 
2385 		/* Control port does not need HopID allocation */
2386 		if (i) {
2387 			ida_init(&sw->ports[i].in_hopids);
2388 			ida_init(&sw->ports[i].out_hopids);
2389 		}
2390 	}
2391 
2392 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2393 	if (ret > 0)
2394 		sw->cap_plug_events = ret;
2395 
2396 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2397 	if (ret > 0)
2398 		sw->cap_vsec_tmu = ret;
2399 
2400 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2401 	if (ret > 0)
2402 		sw->cap_lc = ret;
2403 
2404 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2405 	if (ret > 0)
2406 		sw->cap_lp = ret;
2407 
2408 	/* Root switch is always authorized */
2409 	if (!route)
2410 		sw->authorized = true;
2411 
2412 	device_initialize(&sw->dev);
2413 	sw->dev.parent = parent;
2414 	sw->dev.bus = &tb_bus_type;
2415 	sw->dev.type = &tb_switch_type;
2416 	sw->dev.groups = switch_groups;
2417 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2418 
2419 	return sw;
2420 
2421 err_free_sw_ports:
2422 	kfree(sw->ports);
2423 	kfree(sw);
2424 
2425 	return ERR_PTR(ret);
2426 }
2427 
2428 /**
2429  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2430  * @tb: Pointer to the owning domain
2431  * @parent: Parent device for this switch
2432  * @route: Route string for this switch
2433  *
2434  * This creates a switch in safe mode. This means the switch pretty much
2435  * lacks all capabilities except DMA configuration port before it is
2436  * flashed with a valid NVM firmware.
2437  *
2438  * The returned switch must be released by calling tb_switch_put().
2439  *
2440  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2441  */
2442 struct tb_switch *
2443 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2444 {
2445 	struct tb_switch *sw;
2446 
2447 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2448 	if (!sw)
2449 		return ERR_PTR(-ENOMEM);
2450 
2451 	sw->tb = tb;
2452 	sw->config.depth = tb_route_length(route);
2453 	sw->config.route_hi = upper_32_bits(route);
2454 	sw->config.route_lo = lower_32_bits(route);
2455 	sw->safe_mode = true;
2456 
2457 	device_initialize(&sw->dev);
2458 	sw->dev.parent = parent;
2459 	sw->dev.bus = &tb_bus_type;
2460 	sw->dev.type = &tb_switch_type;
2461 	sw->dev.groups = switch_groups;
2462 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2463 
2464 	return sw;
2465 }
2466 
2467 /**
2468  * tb_switch_configure() - Uploads configuration to the switch
2469  * @sw: Switch to configure
2470  *
2471  * Call this function before the switch is added to the system. It will
2472  * upload configuration to the switch and makes it available for the
2473  * connection manager to use. Can be called to the switch again after
2474  * resume from low power states to re-initialize it.
2475  *
2476  * Return: %0 in case of success and negative errno in case of failure
2477  */
2478 int tb_switch_configure(struct tb_switch *sw)
2479 {
2480 	struct tb *tb = sw->tb;
2481 	u64 route;
2482 	int ret;
2483 
2484 	route = tb_route(sw);
2485 
2486 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2487 	       sw->config.enabled ? "restoring" : "initializing", route,
2488 	       tb_route_length(route), sw->config.upstream_port_number);
2489 
2490 	sw->config.enabled = 1;
2491 
2492 	if (tb_switch_is_usb4(sw)) {
2493 		/*
2494 		 * For USB4 devices, we need to program the CM version
2495 		 * accordingly so that it knows to expose all the
2496 		 * additional capabilities. Program it according to USB4
2497 		 * version to avoid changing existing (v1) routers behaviour.
2498 		 */
2499 		if (usb4_switch_version(sw) < 2)
2500 			sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2501 		else
2502 			sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2503 		sw->config.plug_events_delay = 0xa;
2504 
2505 		/* Enumerate the switch */
2506 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2507 				  ROUTER_CS_1, 4);
2508 		if (ret)
2509 			return ret;
2510 
2511 		ret = usb4_switch_setup(sw);
2512 	} else {
2513 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2514 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2515 				   sw->config.vendor_id);
2516 
2517 		if (!sw->cap_plug_events) {
2518 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2519 			return -ENODEV;
2520 		}
2521 
2522 		/* Enumerate the switch */
2523 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2524 				  ROUTER_CS_1, 3);
2525 	}
2526 	if (ret)
2527 		return ret;
2528 
2529 	return tb_plug_events_active(sw, true);
2530 }
2531 
2532 /**
2533  * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2534  * @sw: Router to configure
2535  *
2536  * Needs to be called before any tunnels can be setup through the
2537  * router. Can be called to any router.
2538  *
2539  * Returns %0 in success and negative errno otherwise.
2540  */
2541 int tb_switch_configuration_valid(struct tb_switch *sw)
2542 {
2543 	if (tb_switch_is_usb4(sw))
2544 		return usb4_switch_configuration_valid(sw);
2545 	return 0;
2546 }
2547 
2548 static int tb_switch_set_uuid(struct tb_switch *sw)
2549 {
2550 	bool uid = false;
2551 	u32 uuid[4];
2552 	int ret;
2553 
2554 	if (sw->uuid)
2555 		return 0;
2556 
2557 	if (tb_switch_is_usb4(sw)) {
2558 		ret = usb4_switch_read_uid(sw, &sw->uid);
2559 		if (ret)
2560 			return ret;
2561 		uid = true;
2562 	} else {
2563 		/*
2564 		 * The newer controllers include fused UUID as part of
2565 		 * link controller specific registers
2566 		 */
2567 		ret = tb_lc_read_uuid(sw, uuid);
2568 		if (ret) {
2569 			if (ret != -EINVAL)
2570 				return ret;
2571 			uid = true;
2572 		}
2573 	}
2574 
2575 	if (uid) {
2576 		/*
2577 		 * ICM generates UUID based on UID and fills the upper
2578 		 * two words with ones. This is not strictly following
2579 		 * UUID format but we want to be compatible with it so
2580 		 * we do the same here.
2581 		 */
2582 		uuid[0] = sw->uid & 0xffffffff;
2583 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2584 		uuid[2] = 0xffffffff;
2585 		uuid[3] = 0xffffffff;
2586 	}
2587 
2588 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2589 	if (!sw->uuid)
2590 		return -ENOMEM;
2591 	return 0;
2592 }
2593 
2594 static int tb_switch_add_dma_port(struct tb_switch *sw)
2595 {
2596 	u32 status;
2597 	int ret;
2598 
2599 	switch (sw->generation) {
2600 	case 2:
2601 		/* Only root switch can be upgraded */
2602 		if (tb_route(sw))
2603 			return 0;
2604 
2605 		fallthrough;
2606 	case 3:
2607 	case 4:
2608 		ret = tb_switch_set_uuid(sw);
2609 		if (ret)
2610 			return ret;
2611 		break;
2612 
2613 	default:
2614 		/*
2615 		 * DMA port is the only thing available when the switch
2616 		 * is in safe mode.
2617 		 */
2618 		if (!sw->safe_mode)
2619 			return 0;
2620 		break;
2621 	}
2622 
2623 	if (sw->no_nvm_upgrade)
2624 		return 0;
2625 
2626 	if (tb_switch_is_usb4(sw)) {
2627 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2628 		if (ret)
2629 			return ret;
2630 
2631 		if (status) {
2632 			tb_sw_info(sw, "switch flash authentication failed\n");
2633 			nvm_set_auth_status(sw, status);
2634 		}
2635 
2636 		return 0;
2637 	}
2638 
2639 	/* Root switch DMA port requires running firmware */
2640 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2641 		return 0;
2642 
2643 	sw->dma_port = dma_port_alloc(sw);
2644 	if (!sw->dma_port)
2645 		return 0;
2646 
2647 	/*
2648 	 * If there is status already set then authentication failed
2649 	 * when the dma_port_flash_update_auth() returned. Power cycling
2650 	 * is not needed (it was done already) so only thing we do here
2651 	 * is to unblock runtime PM of the root port.
2652 	 */
2653 	nvm_get_auth_status(sw, &status);
2654 	if (status) {
2655 		if (!tb_route(sw))
2656 			nvm_authenticate_complete_dma_port(sw);
2657 		return 0;
2658 	}
2659 
2660 	/*
2661 	 * Check status of the previous flash authentication. If there
2662 	 * is one we need to power cycle the switch in any case to make
2663 	 * it functional again.
2664 	 */
2665 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2666 	if (ret <= 0)
2667 		return ret;
2668 
2669 	/* Now we can allow root port to suspend again */
2670 	if (!tb_route(sw))
2671 		nvm_authenticate_complete_dma_port(sw);
2672 
2673 	if (status) {
2674 		tb_sw_info(sw, "switch flash authentication failed\n");
2675 		nvm_set_auth_status(sw, status);
2676 	}
2677 
2678 	tb_sw_info(sw, "power cycling the switch now\n");
2679 	dma_port_power_cycle(sw->dma_port);
2680 
2681 	/*
2682 	 * We return error here which causes the switch adding failure.
2683 	 * It should appear back after power cycle is complete.
2684 	 */
2685 	return -ESHUTDOWN;
2686 }
2687 
2688 static void tb_switch_default_link_ports(struct tb_switch *sw)
2689 {
2690 	int i;
2691 
2692 	for (i = 1; i <= sw->config.max_port_number; i++) {
2693 		struct tb_port *port = &sw->ports[i];
2694 		struct tb_port *subordinate;
2695 
2696 		if (!tb_port_is_null(port))
2697 			continue;
2698 
2699 		/* Check for the subordinate port */
2700 		if (i == sw->config.max_port_number ||
2701 		    !tb_port_is_null(&sw->ports[i + 1]))
2702 			continue;
2703 
2704 		/* Link them if not already done so (by DROM) */
2705 		subordinate = &sw->ports[i + 1];
2706 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2707 			port->link_nr = 0;
2708 			port->dual_link_port = subordinate;
2709 			subordinate->link_nr = 1;
2710 			subordinate->dual_link_port = port;
2711 
2712 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2713 				  port->port, subordinate->port);
2714 		}
2715 	}
2716 }
2717 
2718 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2719 {
2720 	const struct tb_port *up = tb_upstream_port(sw);
2721 
2722 	if (!up->dual_link_port || !up->dual_link_port->remote)
2723 		return false;
2724 
2725 	if (tb_switch_is_usb4(sw))
2726 		return usb4_switch_lane_bonding_possible(sw);
2727 	return tb_lc_lane_bonding_possible(sw);
2728 }
2729 
2730 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2731 {
2732 	struct tb_port *up;
2733 	bool change = false;
2734 	int ret;
2735 
2736 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2737 		return 0;
2738 
2739 	up = tb_upstream_port(sw);
2740 
2741 	ret = tb_port_get_link_speed(up);
2742 	if (ret < 0)
2743 		return ret;
2744 	if (sw->link_speed != ret)
2745 		change = true;
2746 	sw->link_speed = ret;
2747 
2748 	ret = tb_port_get_link_width(up);
2749 	if (ret < 0)
2750 		return ret;
2751 	if (sw->link_width != ret)
2752 		change = true;
2753 	sw->link_width = ret;
2754 
2755 	/* Notify userspace that there is possible link attribute change */
2756 	if (device_is_registered(&sw->dev) && change)
2757 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2758 
2759 	return 0;
2760 }
2761 
2762 /* Must be called after tb_switch_update_link_attributes() */
2763 static void tb_switch_link_init(struct tb_switch *sw)
2764 {
2765 	struct tb_port *up, *down;
2766 	bool bonded;
2767 
2768 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2769 		return;
2770 
2771 	tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2772 	tb_sw_dbg(sw, "current link width %s\n", width_name(sw->link_width));
2773 
2774 	bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2775 
2776 	/*
2777 	 * Gen 4 links come up as bonded so update the port structures
2778 	 * accordingly.
2779 	 */
2780 	up = tb_upstream_port(sw);
2781 	down = tb_switch_downstream_port(sw);
2782 
2783 	up->bonded = bonded;
2784 	if (up->dual_link_port)
2785 		up->dual_link_port->bonded = bonded;
2786 	tb_port_update_credits(up);
2787 
2788 	down->bonded = bonded;
2789 	if (down->dual_link_port)
2790 		down->dual_link_port->bonded = bonded;
2791 	tb_port_update_credits(down);
2792 }
2793 
2794 /**
2795  * tb_switch_lane_bonding_enable() - Enable lane bonding
2796  * @sw: Switch to enable lane bonding
2797  *
2798  * Connection manager can call this function to enable lane bonding of a
2799  * switch. If conditions are correct and both switches support the feature,
2800  * lanes are bonded. It is safe to call this to any switch.
2801  */
2802 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2803 {
2804 	struct tb_port *up, *down;
2805 	unsigned int width;
2806 	int ret;
2807 
2808 	if (!tb_switch_lane_bonding_possible(sw))
2809 		return 0;
2810 
2811 	up = tb_upstream_port(sw);
2812 	down = tb_switch_downstream_port(sw);
2813 
2814 	if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2815 	    !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2816 		return 0;
2817 
2818 	/*
2819 	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2820 	 * CL0 and check just for lane 1.
2821 	 */
2822 	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2823 		return -ENOTCONN;
2824 
2825 	ret = tb_port_lane_bonding_enable(up);
2826 	if (ret) {
2827 		tb_port_warn(up, "failed to enable lane bonding\n");
2828 		return ret;
2829 	}
2830 
2831 	ret = tb_port_lane_bonding_enable(down);
2832 	if (ret) {
2833 		tb_port_warn(down, "failed to enable lane bonding\n");
2834 		tb_port_lane_bonding_disable(up);
2835 		return ret;
2836 	}
2837 
2838 	/* Any of the widths are all bonded */
2839 	width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2840 		TB_LINK_WIDTH_ASYM_RX;
2841 
2842 	return tb_port_wait_for_link_width(down, width, 100);
2843 }
2844 
2845 /**
2846  * tb_switch_lane_bonding_disable() - Disable lane bonding
2847  * @sw: Switch whose lane bonding to disable
2848  *
2849  * Disables lane bonding between @sw and parent. This can be called even
2850  * if lanes were not bonded originally.
2851  */
2852 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2853 {
2854 	struct tb_port *up, *down;
2855 	int ret;
2856 
2857 	up = tb_upstream_port(sw);
2858 	if (!up->bonded)
2859 		return 0;
2860 
2861 	/*
2862 	 * If the link is Gen 4 there is no way to switch the link to
2863 	 * two single lane links so avoid that here. Also don't bother
2864 	 * if the link is not up anymore (sw is unplugged).
2865 	 */
2866 	ret = tb_port_get_link_generation(up);
2867 	if (ret < 0)
2868 		return ret;
2869 	if (ret >= 4)
2870 		return -EOPNOTSUPP;
2871 
2872 	down = tb_switch_downstream_port(sw);
2873 	tb_port_lane_bonding_disable(up);
2874 	tb_port_lane_bonding_disable(down);
2875 
2876 	/*
2877 	 * It is fine if we get other errors as the router might have
2878 	 * been unplugged.
2879 	 */
2880 	return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2881 }
2882 
2883 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2884 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2885 {
2886 	struct tb_port *up, *down, *port;
2887 	enum tb_link_width down_width;
2888 	int ret;
2889 
2890 	up = tb_upstream_port(sw);
2891 	down = tb_switch_downstream_port(sw);
2892 
2893 	if (width == TB_LINK_WIDTH_ASYM_TX) {
2894 		down_width = TB_LINK_WIDTH_ASYM_RX;
2895 		port = down;
2896 	} else {
2897 		down_width = TB_LINK_WIDTH_ASYM_TX;
2898 		port = up;
2899 	}
2900 
2901 	ret = tb_port_set_link_width(up, width);
2902 	if (ret)
2903 		return ret;
2904 
2905 	ret = tb_port_set_link_width(down, down_width);
2906 	if (ret)
2907 		return ret;
2908 
2909 	/*
2910 	 * Initiate the change in the router that one of its TX lanes is
2911 	 * changing to RX but do so only if there is an actual change.
2912 	 */
2913 	if (sw->link_width != width) {
2914 		ret = usb4_port_asym_start(port);
2915 		if (ret)
2916 			return ret;
2917 
2918 		ret = tb_port_wait_for_link_width(up, width, 100);
2919 		if (ret)
2920 			return ret;
2921 	}
2922 
2923 	return 0;
2924 }
2925 
2926 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2927 static int tb_switch_asym_disable(struct tb_switch *sw)
2928 {
2929 	struct tb_port *up, *down;
2930 	int ret;
2931 
2932 	up = tb_upstream_port(sw);
2933 	down = tb_switch_downstream_port(sw);
2934 
2935 	ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
2936 	if (ret)
2937 		return ret;
2938 
2939 	ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
2940 	if (ret)
2941 		return ret;
2942 
2943 	/*
2944 	 * Initiate the change in the router that has three TX lanes and
2945 	 * is changing one of its TX lanes to RX but only if there is a
2946 	 * change in the link width.
2947 	 */
2948 	if (sw->link_width > TB_LINK_WIDTH_DUAL) {
2949 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
2950 			ret = usb4_port_asym_start(up);
2951 		else
2952 			ret = usb4_port_asym_start(down);
2953 		if (ret)
2954 			return ret;
2955 
2956 		ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
2957 		if (ret)
2958 			return ret;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 /**
2965  * tb_switch_set_link_width() - Configure router link width
2966  * @sw: Router to configure
2967  * @width: The new link width
2968  *
2969  * Set device router link width to @width from router upstream port
2970  * perspective. Supports also asymmetric links if the routers boths side
2971  * of the link supports it.
2972  *
2973  * Does nothing for host router.
2974  *
2975  * Returns %0 in case of success, negative errno otherwise.
2976  */
2977 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
2978 {
2979 	struct tb_port *up, *down;
2980 	int ret = 0;
2981 
2982 	if (!tb_route(sw))
2983 		return 0;
2984 
2985 	up = tb_upstream_port(sw);
2986 	down = tb_switch_downstream_port(sw);
2987 
2988 	switch (width) {
2989 	case TB_LINK_WIDTH_SINGLE:
2990 		ret = tb_switch_lane_bonding_disable(sw);
2991 		break;
2992 
2993 	case TB_LINK_WIDTH_DUAL:
2994 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
2995 		    sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
2996 			ret = tb_switch_asym_disable(sw);
2997 			if (ret)
2998 				break;
2999 		}
3000 		ret = tb_switch_lane_bonding_enable(sw);
3001 		break;
3002 
3003 	case TB_LINK_WIDTH_ASYM_TX:
3004 	case TB_LINK_WIDTH_ASYM_RX:
3005 		ret = tb_switch_asym_enable(sw, width);
3006 		break;
3007 	}
3008 
3009 	switch (ret) {
3010 	case 0:
3011 		break;
3012 
3013 	case -ETIMEDOUT:
3014 		tb_sw_warn(sw, "timeout changing link width\n");
3015 		return ret;
3016 
3017 	case -ENOTCONN:
3018 	case -EOPNOTSUPP:
3019 	case -ENODEV:
3020 		return ret;
3021 
3022 	default:
3023 		tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3024 		return ret;
3025 	}
3026 
3027 	tb_port_update_credits(down);
3028 	tb_port_update_credits(up);
3029 
3030 	tb_switch_update_link_attributes(sw);
3031 
3032 	tb_sw_dbg(sw, "link width set to %s\n", width_name(width));
3033 	return ret;
3034 }
3035 
3036 /**
3037  * tb_switch_configure_link() - Set link configured
3038  * @sw: Switch whose link is configured
3039  *
3040  * Sets the link upstream from @sw configured (from both ends) so that
3041  * it will not be disconnected when the domain exits sleep. Can be
3042  * called for any switch.
3043  *
3044  * It is recommended that this is called after lane bonding is enabled.
3045  *
3046  * Returns %0 on success and negative errno in case of error.
3047  */
3048 int tb_switch_configure_link(struct tb_switch *sw)
3049 {
3050 	struct tb_port *up, *down;
3051 	int ret;
3052 
3053 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3054 		return 0;
3055 
3056 	up = tb_upstream_port(sw);
3057 	if (tb_switch_is_usb4(up->sw))
3058 		ret = usb4_port_configure(up);
3059 	else
3060 		ret = tb_lc_configure_port(up);
3061 	if (ret)
3062 		return ret;
3063 
3064 	down = up->remote;
3065 	if (tb_switch_is_usb4(down->sw))
3066 		return usb4_port_configure(down);
3067 	return tb_lc_configure_port(down);
3068 }
3069 
3070 /**
3071  * tb_switch_unconfigure_link() - Unconfigure link
3072  * @sw: Switch whose link is unconfigured
3073  *
3074  * Sets the link unconfigured so the @sw will be disconnected if the
3075  * domain exists sleep.
3076  */
3077 void tb_switch_unconfigure_link(struct tb_switch *sw)
3078 {
3079 	struct tb_port *up, *down;
3080 
3081 	if (sw->is_unplugged)
3082 		return;
3083 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3084 		return;
3085 
3086 	up = tb_upstream_port(sw);
3087 	if (tb_switch_is_usb4(up->sw))
3088 		usb4_port_unconfigure(up);
3089 	else
3090 		tb_lc_unconfigure_port(up);
3091 
3092 	down = up->remote;
3093 	if (tb_switch_is_usb4(down->sw))
3094 		usb4_port_unconfigure(down);
3095 	else
3096 		tb_lc_unconfigure_port(down);
3097 }
3098 
3099 static void tb_switch_credits_init(struct tb_switch *sw)
3100 {
3101 	if (tb_switch_is_icm(sw))
3102 		return;
3103 	if (!tb_switch_is_usb4(sw))
3104 		return;
3105 	if (usb4_switch_credits_init(sw))
3106 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3107 }
3108 
3109 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3110 {
3111 	struct tb_port *port;
3112 
3113 	if (tb_switch_is_icm(sw))
3114 		return 0;
3115 
3116 	tb_switch_for_each_port(sw, port) {
3117 		int res;
3118 
3119 		if (!port->cap_usb4)
3120 			continue;
3121 
3122 		res = usb4_port_hotplug_enable(port);
3123 		if (res)
3124 			return res;
3125 	}
3126 	return 0;
3127 }
3128 
3129 /**
3130  * tb_switch_add() - Add a switch to the domain
3131  * @sw: Switch to add
3132  *
3133  * This is the last step in adding switch to the domain. It will read
3134  * identification information from DROM and initializes ports so that
3135  * they can be used to connect other switches. The switch will be
3136  * exposed to the userspace when this function successfully returns. To
3137  * remove and release the switch, call tb_switch_remove().
3138  *
3139  * Return: %0 in case of success and negative errno in case of failure
3140  */
3141 int tb_switch_add(struct tb_switch *sw)
3142 {
3143 	int i, ret;
3144 
3145 	/*
3146 	 * Initialize DMA control port now before we read DROM. Recent
3147 	 * host controllers have more complete DROM on NVM that includes
3148 	 * vendor and model identification strings which we then expose
3149 	 * to the userspace. NVM can be accessed through DMA
3150 	 * configuration based mailbox.
3151 	 */
3152 	ret = tb_switch_add_dma_port(sw);
3153 	if (ret) {
3154 		dev_err(&sw->dev, "failed to add DMA port\n");
3155 		return ret;
3156 	}
3157 
3158 	if (!sw->safe_mode) {
3159 		tb_switch_credits_init(sw);
3160 
3161 		/* read drom */
3162 		ret = tb_drom_read(sw);
3163 		if (ret)
3164 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3165 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3166 
3167 		ret = tb_switch_set_uuid(sw);
3168 		if (ret) {
3169 			dev_err(&sw->dev, "failed to set UUID\n");
3170 			return ret;
3171 		}
3172 
3173 		for (i = 0; i <= sw->config.max_port_number; i++) {
3174 			if (sw->ports[i].disabled) {
3175 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3176 				continue;
3177 			}
3178 			ret = tb_init_port(&sw->ports[i]);
3179 			if (ret) {
3180 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
3181 				return ret;
3182 			}
3183 		}
3184 
3185 		tb_check_quirks(sw);
3186 
3187 		tb_switch_default_link_ports(sw);
3188 
3189 		ret = tb_switch_update_link_attributes(sw);
3190 		if (ret)
3191 			return ret;
3192 
3193 		tb_switch_link_init(sw);
3194 
3195 		ret = tb_switch_clx_init(sw);
3196 		if (ret)
3197 			return ret;
3198 
3199 		ret = tb_switch_tmu_init(sw);
3200 		if (ret)
3201 			return ret;
3202 	}
3203 
3204 	ret = tb_switch_port_hotplug_enable(sw);
3205 	if (ret)
3206 		return ret;
3207 
3208 	ret = device_add(&sw->dev);
3209 	if (ret) {
3210 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3211 		return ret;
3212 	}
3213 
3214 	if (tb_route(sw)) {
3215 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3216 			 sw->vendor, sw->device);
3217 		if (sw->vendor_name && sw->device_name)
3218 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3219 				 sw->device_name);
3220 	}
3221 
3222 	ret = usb4_switch_add_ports(sw);
3223 	if (ret) {
3224 		dev_err(&sw->dev, "failed to add USB4 ports\n");
3225 		goto err_del;
3226 	}
3227 
3228 	ret = tb_switch_nvm_add(sw);
3229 	if (ret) {
3230 		dev_err(&sw->dev, "failed to add NVM devices\n");
3231 		goto err_ports;
3232 	}
3233 
3234 	/*
3235 	 * Thunderbolt routers do not generate wakeups themselves but
3236 	 * they forward wakeups from tunneled protocols, so enable it
3237 	 * here.
3238 	 */
3239 	device_init_wakeup(&sw->dev, true);
3240 
3241 	pm_runtime_set_active(&sw->dev);
3242 	if (sw->rpm) {
3243 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3244 		pm_runtime_use_autosuspend(&sw->dev);
3245 		pm_runtime_mark_last_busy(&sw->dev);
3246 		pm_runtime_enable(&sw->dev);
3247 		pm_request_autosuspend(&sw->dev);
3248 	}
3249 
3250 	tb_switch_debugfs_init(sw);
3251 	return 0;
3252 
3253 err_ports:
3254 	usb4_switch_remove_ports(sw);
3255 err_del:
3256 	device_del(&sw->dev);
3257 
3258 	return ret;
3259 }
3260 
3261 /**
3262  * tb_switch_remove() - Remove and release a switch
3263  * @sw: Switch to remove
3264  *
3265  * This will remove the switch from the domain and release it after last
3266  * reference count drops to zero. If there are switches connected below
3267  * this switch, they will be removed as well.
3268  */
3269 void tb_switch_remove(struct tb_switch *sw)
3270 {
3271 	struct tb_port *port;
3272 
3273 	tb_switch_debugfs_remove(sw);
3274 
3275 	if (sw->rpm) {
3276 		pm_runtime_get_sync(&sw->dev);
3277 		pm_runtime_disable(&sw->dev);
3278 	}
3279 
3280 	/* port 0 is the switch itself and never has a remote */
3281 	tb_switch_for_each_port(sw, port) {
3282 		if (tb_port_has_remote(port)) {
3283 			tb_switch_remove(port->remote->sw);
3284 			port->remote = NULL;
3285 		} else if (port->xdomain) {
3286 			tb_xdomain_remove(port->xdomain);
3287 			port->xdomain = NULL;
3288 		}
3289 
3290 		/* Remove any downstream retimers */
3291 		tb_retimer_remove_all(port);
3292 	}
3293 
3294 	if (!sw->is_unplugged)
3295 		tb_plug_events_active(sw, false);
3296 
3297 	tb_switch_nvm_remove(sw);
3298 	usb4_switch_remove_ports(sw);
3299 
3300 	if (tb_route(sw))
3301 		dev_info(&sw->dev, "device disconnected\n");
3302 	device_unregister(&sw->dev);
3303 }
3304 
3305 /**
3306  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3307  * @sw: Router to mark unplugged
3308  */
3309 void tb_sw_set_unplugged(struct tb_switch *sw)
3310 {
3311 	struct tb_port *port;
3312 
3313 	if (sw == sw->tb->root_switch) {
3314 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3315 		return;
3316 	}
3317 	if (sw->is_unplugged) {
3318 		tb_sw_WARN(sw, "is_unplugged already set\n");
3319 		return;
3320 	}
3321 	sw->is_unplugged = true;
3322 	tb_switch_for_each_port(sw, port) {
3323 		if (tb_port_has_remote(port))
3324 			tb_sw_set_unplugged(port->remote->sw);
3325 		else if (port->xdomain)
3326 			port->xdomain->is_unplugged = true;
3327 	}
3328 }
3329 
3330 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3331 {
3332 	if (flags)
3333 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3334 	else
3335 		tb_sw_dbg(sw, "disabling wakeup\n");
3336 
3337 	if (tb_switch_is_usb4(sw))
3338 		return usb4_switch_set_wake(sw, flags);
3339 	return tb_lc_set_wake(sw, flags);
3340 }
3341 
3342 int tb_switch_resume(struct tb_switch *sw)
3343 {
3344 	struct tb_port *port;
3345 	int err;
3346 
3347 	tb_sw_dbg(sw, "resuming switch\n");
3348 
3349 	/*
3350 	 * Check for UID of the connected switches except for root
3351 	 * switch which we assume cannot be removed.
3352 	 */
3353 	if (tb_route(sw)) {
3354 		u64 uid;
3355 
3356 		/*
3357 		 * Check first that we can still read the switch config
3358 		 * space. It may be that there is now another domain
3359 		 * connected.
3360 		 */
3361 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3362 		if (err < 0) {
3363 			tb_sw_info(sw, "switch not present anymore\n");
3364 			return err;
3365 		}
3366 
3367 		/* We don't have any way to confirm this was the same device */
3368 		if (!sw->uid)
3369 			return -ENODEV;
3370 
3371 		if (tb_switch_is_usb4(sw))
3372 			err = usb4_switch_read_uid(sw, &uid);
3373 		else
3374 			err = tb_drom_read_uid_only(sw, &uid);
3375 		if (err) {
3376 			tb_sw_warn(sw, "uid read failed\n");
3377 			return err;
3378 		}
3379 		if (sw->uid != uid) {
3380 			tb_sw_info(sw,
3381 				"changed while suspended (uid %#llx -> %#llx)\n",
3382 				sw->uid, uid);
3383 			return -ENODEV;
3384 		}
3385 	}
3386 
3387 	err = tb_switch_configure(sw);
3388 	if (err)
3389 		return err;
3390 
3391 	/* Disable wakes */
3392 	tb_switch_set_wake(sw, 0);
3393 
3394 	err = tb_switch_tmu_init(sw);
3395 	if (err)
3396 		return err;
3397 
3398 	/* check for surviving downstream switches */
3399 	tb_switch_for_each_port(sw, port) {
3400 		if (!tb_port_is_null(port))
3401 			continue;
3402 
3403 		if (!tb_port_resume(port))
3404 			continue;
3405 
3406 		if (tb_wait_for_port(port, true) <= 0) {
3407 			tb_port_warn(port,
3408 				     "lost during suspend, disconnecting\n");
3409 			if (tb_port_has_remote(port))
3410 				tb_sw_set_unplugged(port->remote->sw);
3411 			else if (port->xdomain)
3412 				port->xdomain->is_unplugged = true;
3413 		} else {
3414 			/*
3415 			 * Always unlock the port so the downstream
3416 			 * switch/domain is accessible.
3417 			 */
3418 			if (tb_port_unlock(port))
3419 				tb_port_warn(port, "failed to unlock port\n");
3420 			if (port->remote && tb_switch_resume(port->remote->sw)) {
3421 				tb_port_warn(port,
3422 					     "lost during suspend, disconnecting\n");
3423 				tb_sw_set_unplugged(port->remote->sw);
3424 			}
3425 		}
3426 	}
3427 	return 0;
3428 }
3429 
3430 /**
3431  * tb_switch_suspend() - Put a switch to sleep
3432  * @sw: Switch to suspend
3433  * @runtime: Is this runtime suspend or system sleep
3434  *
3435  * Suspends router and all its children. Enables wakes according to
3436  * value of @runtime and then sets sleep bit for the router. If @sw is
3437  * host router the domain is ready to go to sleep once this function
3438  * returns.
3439  */
3440 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3441 {
3442 	unsigned int flags = 0;
3443 	struct tb_port *port;
3444 	int err;
3445 
3446 	tb_sw_dbg(sw, "suspending switch\n");
3447 
3448 	/*
3449 	 * Actually only needed for Titan Ridge but for simplicity can be
3450 	 * done for USB4 device too as CLx is re-enabled at resume.
3451 	 */
3452 	tb_switch_clx_disable(sw);
3453 
3454 	err = tb_plug_events_active(sw, false);
3455 	if (err)
3456 		return;
3457 
3458 	tb_switch_for_each_port(sw, port) {
3459 		if (tb_port_has_remote(port))
3460 			tb_switch_suspend(port->remote->sw, runtime);
3461 	}
3462 
3463 	if (runtime) {
3464 		/* Trigger wake when something is plugged in/out */
3465 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3466 		flags |= TB_WAKE_ON_USB4;
3467 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3468 	} else if (device_may_wakeup(&sw->dev)) {
3469 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3470 	}
3471 
3472 	tb_switch_set_wake(sw, flags);
3473 
3474 	if (tb_switch_is_usb4(sw))
3475 		usb4_switch_set_sleep(sw);
3476 	else
3477 		tb_lc_set_sleep(sw);
3478 }
3479 
3480 /**
3481  * tb_switch_query_dp_resource() - Query availability of DP resource
3482  * @sw: Switch whose DP resource is queried
3483  * @in: DP IN port
3484  *
3485  * Queries availability of DP resource for DP tunneling using switch
3486  * specific means. Returns %true if resource is available.
3487  */
3488 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3489 {
3490 	if (tb_switch_is_usb4(sw))
3491 		return usb4_switch_query_dp_resource(sw, in);
3492 	return tb_lc_dp_sink_query(sw, in);
3493 }
3494 
3495 /**
3496  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3497  * @sw: Switch whose DP resource is allocated
3498  * @in: DP IN port
3499  *
3500  * Allocates DP resource for DP tunneling. The resource must be
3501  * available for this to succeed (see tb_switch_query_dp_resource()).
3502  * Returns %0 in success and negative errno otherwise.
3503  */
3504 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3505 {
3506 	int ret;
3507 
3508 	if (tb_switch_is_usb4(sw))
3509 		ret = usb4_switch_alloc_dp_resource(sw, in);
3510 	else
3511 		ret = tb_lc_dp_sink_alloc(sw, in);
3512 
3513 	if (ret)
3514 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3515 			   in->port);
3516 	else
3517 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3518 
3519 	return ret;
3520 }
3521 
3522 /**
3523  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3524  * @sw: Switch whose DP resource is de-allocated
3525  * @in: DP IN port
3526  *
3527  * De-allocates DP resource that was previously allocated for DP
3528  * tunneling.
3529  */
3530 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3531 {
3532 	int ret;
3533 
3534 	if (tb_switch_is_usb4(sw))
3535 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3536 	else
3537 		ret = tb_lc_dp_sink_dealloc(sw, in);
3538 
3539 	if (ret)
3540 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3541 			   in->port);
3542 	else
3543 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3544 }
3545 
3546 struct tb_sw_lookup {
3547 	struct tb *tb;
3548 	u8 link;
3549 	u8 depth;
3550 	const uuid_t *uuid;
3551 	u64 route;
3552 };
3553 
3554 static int tb_switch_match(struct device *dev, const void *data)
3555 {
3556 	struct tb_switch *sw = tb_to_switch(dev);
3557 	const struct tb_sw_lookup *lookup = data;
3558 
3559 	if (!sw)
3560 		return 0;
3561 	if (sw->tb != lookup->tb)
3562 		return 0;
3563 
3564 	if (lookup->uuid)
3565 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3566 
3567 	if (lookup->route) {
3568 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3569 		       sw->config.route_hi == upper_32_bits(lookup->route);
3570 	}
3571 
3572 	/* Root switch is matched only by depth */
3573 	if (!lookup->depth)
3574 		return !sw->depth;
3575 
3576 	return sw->link == lookup->link && sw->depth == lookup->depth;
3577 }
3578 
3579 /**
3580  * tb_switch_find_by_link_depth() - Find switch by link and depth
3581  * @tb: Domain the switch belongs
3582  * @link: Link number the switch is connected
3583  * @depth: Depth of the switch in link
3584  *
3585  * Returned switch has reference count increased so the caller needs to
3586  * call tb_switch_put() when done with the switch.
3587  */
3588 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3589 {
3590 	struct tb_sw_lookup lookup;
3591 	struct device *dev;
3592 
3593 	memset(&lookup, 0, sizeof(lookup));
3594 	lookup.tb = tb;
3595 	lookup.link = link;
3596 	lookup.depth = depth;
3597 
3598 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3599 	if (dev)
3600 		return tb_to_switch(dev);
3601 
3602 	return NULL;
3603 }
3604 
3605 /**
3606  * tb_switch_find_by_uuid() - Find switch by UUID
3607  * @tb: Domain the switch belongs
3608  * @uuid: UUID to look for
3609  *
3610  * Returned switch has reference count increased so the caller needs to
3611  * call tb_switch_put() when done with the switch.
3612  */
3613 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3614 {
3615 	struct tb_sw_lookup lookup;
3616 	struct device *dev;
3617 
3618 	memset(&lookup, 0, sizeof(lookup));
3619 	lookup.tb = tb;
3620 	lookup.uuid = uuid;
3621 
3622 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3623 	if (dev)
3624 		return tb_to_switch(dev);
3625 
3626 	return NULL;
3627 }
3628 
3629 /**
3630  * tb_switch_find_by_route() - Find switch by route string
3631  * @tb: Domain the switch belongs
3632  * @route: Route string to look for
3633  *
3634  * Returned switch has reference count increased so the caller needs to
3635  * call tb_switch_put() when done with the switch.
3636  */
3637 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3638 {
3639 	struct tb_sw_lookup lookup;
3640 	struct device *dev;
3641 
3642 	if (!route)
3643 		return tb_switch_get(tb->root_switch);
3644 
3645 	memset(&lookup, 0, sizeof(lookup));
3646 	lookup.tb = tb;
3647 	lookup.route = route;
3648 
3649 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3650 	if (dev)
3651 		return tb_to_switch(dev);
3652 
3653 	return NULL;
3654 }
3655 
3656 /**
3657  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3658  * @sw: Switch to find the port from
3659  * @type: Port type to look for
3660  */
3661 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3662 				    enum tb_port_type type)
3663 {
3664 	struct tb_port *port;
3665 
3666 	tb_switch_for_each_port(sw, port) {
3667 		if (port->config.type == type)
3668 			return port;
3669 	}
3670 
3671 	return NULL;
3672 }
3673 
3674 /*
3675  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3676  * device. For now used only for Titan Ridge.
3677  */
3678 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3679 				       unsigned int pcie_offset, u32 value)
3680 {
3681 	u32 offset, command, val;
3682 	int ret;
3683 
3684 	if (sw->generation != 3)
3685 		return -EOPNOTSUPP;
3686 
3687 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3688 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3689 	if (ret)
3690 		return ret;
3691 
3692 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3693 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3694 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3695 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3696 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3697 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3698 
3699 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3700 
3701 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3702 	if (ret)
3703 		return ret;
3704 
3705 	ret = tb_switch_wait_for_bit(sw, offset,
3706 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3707 	if (ret)
3708 		return ret;
3709 
3710 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3711 	if (ret)
3712 		return ret;
3713 
3714 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3715 		return -ETIMEDOUT;
3716 
3717 	return 0;
3718 }
3719 
3720 /**
3721  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3722  * @sw: Router to enable PCIe L1
3723  *
3724  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3725  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3726  * was configured. Due to Intel platforms limitation, shall be called only
3727  * for first hop switch.
3728  */
3729 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3730 {
3731 	struct tb_switch *parent = tb_switch_parent(sw);
3732 	int ret;
3733 
3734 	if (!tb_route(sw))
3735 		return 0;
3736 
3737 	if (!tb_switch_is_titan_ridge(sw))
3738 		return 0;
3739 
3740 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3741 	if (tb_route(parent))
3742 		return 0;
3743 
3744 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3745 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3746 	if (ret)
3747 		return ret;
3748 
3749 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3750 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3751 }
3752 
3753 /**
3754  * tb_switch_xhci_connect() - Connect internal xHCI
3755  * @sw: Router whose xHCI to connect
3756  *
3757  * Can be called to any router. For Alpine Ridge and Titan Ridge
3758  * performs special flows that bring the xHCI functional for any device
3759  * connected to the type-C port. Call only after PCIe tunnel has been
3760  * established. The function only does the connect if not done already
3761  * so can be called several times for the same router.
3762  */
3763 int tb_switch_xhci_connect(struct tb_switch *sw)
3764 {
3765 	struct tb_port *port1, *port3;
3766 	int ret;
3767 
3768 	if (sw->generation != 3)
3769 		return 0;
3770 
3771 	port1 = &sw->ports[1];
3772 	port3 = &sw->ports[3];
3773 
3774 	if (tb_switch_is_alpine_ridge(sw)) {
3775 		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3776 
3777 		usb_port1 = tb_lc_is_usb_plugged(port1);
3778 		usb_port3 = tb_lc_is_usb_plugged(port3);
3779 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3780 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3781 
3782 		/* Figure out correct USB port to connect */
3783 		if (usb_port1 && !xhci_port1) {
3784 			ret = tb_lc_xhci_connect(port1);
3785 			if (ret)
3786 				return ret;
3787 		}
3788 		if (usb_port3 && !xhci_port3)
3789 			return tb_lc_xhci_connect(port3);
3790 	} else if (tb_switch_is_titan_ridge(sw)) {
3791 		ret = tb_lc_xhci_connect(port1);
3792 		if (ret)
3793 			return ret;
3794 		return tb_lc_xhci_connect(port3);
3795 	}
3796 
3797 	return 0;
3798 }
3799 
3800 /**
3801  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3802  * @sw: Router whose xHCI to disconnect
3803  *
3804  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3805  * ports.
3806  */
3807 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3808 {
3809 	if (sw->generation == 3) {
3810 		struct tb_port *port1 = &sw->ports[1];
3811 		struct tb_port *port3 = &sw->ports[3];
3812 
3813 		tb_lc_xhci_disconnect(port1);
3814 		tb_port_dbg(port1, "disconnected xHCI\n");
3815 		tb_lc_xhci_disconnect(port3);
3816 		tb_port_dbg(port3, "disconnected xHCI\n");
3817 	}
3818 }
3819