1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/module.h> 12 #include <linux/nvmem-provider.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/sched/signal.h> 15 #include <linux/sizes.h> 16 #include <linux/slab.h> 17 #include <linux/string_helpers.h> 18 19 #include "tb.h" 20 21 /* Switch NVM support */ 22 23 struct nvm_auth_status { 24 struct list_head list; 25 uuid_t uuid; 26 u32 status; 27 }; 28 29 /* 30 * Hold NVM authentication failure status per switch This information 31 * needs to stay around even when the switch gets power cycled so we 32 * keep it separately. 33 */ 34 static LIST_HEAD(nvm_auth_status_cache); 35 static DEFINE_MUTEX(nvm_auth_status_lock); 36 37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 38 { 39 struct nvm_auth_status *st; 40 41 list_for_each_entry(st, &nvm_auth_status_cache, list) { 42 if (uuid_equal(&st->uuid, sw->uuid)) 43 return st; 44 } 45 46 return NULL; 47 } 48 49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 50 { 51 struct nvm_auth_status *st; 52 53 mutex_lock(&nvm_auth_status_lock); 54 st = __nvm_get_auth_status(sw); 55 mutex_unlock(&nvm_auth_status_lock); 56 57 *status = st ? st->status : 0; 58 } 59 60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 61 { 62 struct nvm_auth_status *st; 63 64 if (WARN_ON(!sw->uuid)) 65 return; 66 67 mutex_lock(&nvm_auth_status_lock); 68 st = __nvm_get_auth_status(sw); 69 70 if (!st) { 71 st = kzalloc(sizeof(*st), GFP_KERNEL); 72 if (!st) 73 goto unlock; 74 75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 76 INIT_LIST_HEAD(&st->list); 77 list_add_tail(&st->list, &nvm_auth_status_cache); 78 } 79 80 st->status = status; 81 unlock: 82 mutex_unlock(&nvm_auth_status_lock); 83 } 84 85 static void nvm_clear_auth_status(const struct tb_switch *sw) 86 { 87 struct nvm_auth_status *st; 88 89 mutex_lock(&nvm_auth_status_lock); 90 st = __nvm_get_auth_status(sw); 91 if (st) { 92 list_del(&st->list); 93 kfree(st); 94 } 95 mutex_unlock(&nvm_auth_status_lock); 96 } 97 98 static int nvm_validate_and_write(struct tb_switch *sw) 99 { 100 unsigned int image_size; 101 const u8 *buf; 102 int ret; 103 104 ret = tb_nvm_validate(sw->nvm); 105 if (ret) 106 return ret; 107 108 ret = tb_nvm_write_headers(sw->nvm); 109 if (ret) 110 return ret; 111 112 buf = sw->nvm->buf_data_start; 113 image_size = sw->nvm->buf_data_size; 114 115 if (tb_switch_is_usb4(sw)) 116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size); 117 else 118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); 119 if (ret) 120 return ret; 121 122 sw->nvm->flushed = true; 123 return 0; 124 } 125 126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 127 { 128 int ret = 0; 129 130 /* 131 * Root switch NVM upgrade requires that we disconnect the 132 * existing paths first (in case it is not in safe mode 133 * already). 134 */ 135 if (!sw->safe_mode) { 136 u32 status; 137 138 ret = tb_domain_disconnect_all_paths(sw->tb); 139 if (ret) 140 return ret; 141 /* 142 * The host controller goes away pretty soon after this if 143 * everything goes well so getting timeout is expected. 144 */ 145 ret = dma_port_flash_update_auth(sw->dma_port); 146 if (!ret || ret == -ETIMEDOUT) 147 return 0; 148 149 /* 150 * Any error from update auth operation requires power 151 * cycling of the host router. 152 */ 153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 155 nvm_set_auth_status(sw, status); 156 } 157 158 /* 159 * From safe mode we can get out by just power cycling the 160 * switch. 161 */ 162 dma_port_power_cycle(sw->dma_port); 163 return ret; 164 } 165 166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 167 { 168 int ret, retries = 10; 169 170 ret = dma_port_flash_update_auth(sw->dma_port); 171 switch (ret) { 172 case 0: 173 case -ETIMEDOUT: 174 case -EACCES: 175 case -EINVAL: 176 /* Power cycle is required */ 177 break; 178 default: 179 return ret; 180 } 181 182 /* 183 * Poll here for the authentication status. It takes some time 184 * for the device to respond (we get timeout for a while). Once 185 * we get response the device needs to be power cycled in order 186 * to the new NVM to be taken into use. 187 */ 188 do { 189 u32 status; 190 191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 192 if (ret < 0 && ret != -ETIMEDOUT) 193 return ret; 194 if (ret > 0) { 195 if (status) { 196 tb_sw_warn(sw, "failed to authenticate NVM\n"); 197 nvm_set_auth_status(sw, status); 198 } 199 200 tb_sw_info(sw, "power cycling the switch now\n"); 201 dma_port_power_cycle(sw->dma_port); 202 return 0; 203 } 204 205 msleep(500); 206 } while (--retries); 207 208 return -ETIMEDOUT; 209 } 210 211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 212 { 213 struct pci_dev *root_port; 214 215 /* 216 * During host router NVM upgrade we should not allow root port to 217 * go into D3cold because some root ports cannot trigger PME 218 * itself. To be on the safe side keep the root port in D0 during 219 * the whole upgrade process. 220 */ 221 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 222 if (root_port) 223 pm_runtime_get_noresume(&root_port->dev); 224 } 225 226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 227 { 228 struct pci_dev *root_port; 229 230 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 231 if (root_port) 232 pm_runtime_put(&root_port->dev); 233 } 234 235 static inline bool nvm_readable(struct tb_switch *sw) 236 { 237 if (tb_switch_is_usb4(sw)) { 238 /* 239 * USB4 devices must support NVM operations but it is 240 * optional for hosts. Therefore we query the NVM sector 241 * size here and if it is supported assume NVM 242 * operations are implemented. 243 */ 244 return usb4_switch_nvm_sector_size(sw) > 0; 245 } 246 247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 248 return !!sw->dma_port; 249 } 250 251 static inline bool nvm_upgradeable(struct tb_switch *sw) 252 { 253 if (sw->no_nvm_upgrade) 254 return false; 255 return nvm_readable(sw); 256 } 257 258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only) 259 { 260 int ret; 261 262 if (tb_switch_is_usb4(sw)) { 263 if (auth_only) { 264 ret = usb4_switch_nvm_set_offset(sw, 0); 265 if (ret) 266 return ret; 267 } 268 sw->nvm->authenticating = true; 269 return usb4_switch_nvm_authenticate(sw); 270 } 271 if (auth_only) 272 return -EOPNOTSUPP; 273 274 sw->nvm->authenticating = true; 275 if (!tb_route(sw)) { 276 nvm_authenticate_start_dma_port(sw); 277 ret = nvm_authenticate_host_dma_port(sw); 278 } else { 279 ret = nvm_authenticate_device_dma_port(sw); 280 } 281 282 return ret; 283 } 284 285 /** 286 * tb_switch_nvm_read() - Read router NVM 287 * @sw: Router whose NVM to read 288 * @address: Start address on the NVM 289 * @buf: Buffer where the read data is copied 290 * @size: Size of the buffer in bytes 291 * 292 * Reads from router NVM and returns the requested data in @buf. Locking 293 * is up to the caller. Returns %0 in success and negative errno in case 294 * of failure. 295 */ 296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, 297 size_t size) 298 { 299 if (tb_switch_is_usb4(sw)) 300 return usb4_switch_nvm_read(sw, address, buf, size); 301 return dma_port_flash_read(sw->dma_port, address, buf, size); 302 } 303 304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes) 305 { 306 struct tb_nvm *nvm = priv; 307 struct tb_switch *sw = tb_to_switch(nvm->dev); 308 int ret; 309 310 pm_runtime_get_sync(&sw->dev); 311 312 if (!mutex_trylock(&sw->tb->lock)) { 313 ret = restart_syscall(); 314 goto out; 315 } 316 317 ret = tb_switch_nvm_read(sw, offset, val, bytes); 318 mutex_unlock(&sw->tb->lock); 319 320 out: 321 pm_runtime_mark_last_busy(&sw->dev); 322 pm_runtime_put_autosuspend(&sw->dev); 323 324 return ret; 325 } 326 327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes) 328 { 329 struct tb_nvm *nvm = priv; 330 struct tb_switch *sw = tb_to_switch(nvm->dev); 331 int ret; 332 333 if (!mutex_trylock(&sw->tb->lock)) 334 return restart_syscall(); 335 336 /* 337 * Since writing the NVM image might require some special steps, 338 * for example when CSS headers are written, we cache the image 339 * locally here and handle the special cases when the user asks 340 * us to authenticate the image. 341 */ 342 ret = tb_nvm_write_buf(nvm, offset, val, bytes); 343 mutex_unlock(&sw->tb->lock); 344 345 return ret; 346 } 347 348 static int tb_switch_nvm_add(struct tb_switch *sw) 349 { 350 struct tb_nvm *nvm; 351 int ret; 352 353 if (!nvm_readable(sw)) 354 return 0; 355 356 nvm = tb_nvm_alloc(&sw->dev); 357 if (IS_ERR(nvm)) { 358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm); 359 goto err_nvm; 360 } 361 362 ret = tb_nvm_read_version(nvm); 363 if (ret) 364 goto err_nvm; 365 366 /* 367 * If the switch is in safe-mode the only accessible portion of 368 * the NVM is the non-active one where userspace is expected to 369 * write new functional NVM. 370 */ 371 if (!sw->safe_mode) { 372 ret = tb_nvm_add_active(nvm, nvm_read); 373 if (ret) 374 goto err_nvm; 375 tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor); 376 } 377 378 if (!sw->no_nvm_upgrade) { 379 ret = tb_nvm_add_non_active(nvm, nvm_write); 380 if (ret) 381 goto err_nvm; 382 } 383 384 sw->nvm = nvm; 385 return 0; 386 387 err_nvm: 388 tb_sw_dbg(sw, "NVM upgrade disabled\n"); 389 sw->no_nvm_upgrade = true; 390 if (!IS_ERR(nvm)) 391 tb_nvm_free(nvm); 392 393 return ret; 394 } 395 396 static void tb_switch_nvm_remove(struct tb_switch *sw) 397 { 398 struct tb_nvm *nvm; 399 400 nvm = sw->nvm; 401 sw->nvm = NULL; 402 403 if (!nvm) 404 return; 405 406 /* Remove authentication status in case the switch is unplugged */ 407 if (!nvm->authenticating) 408 nvm_clear_auth_status(sw); 409 410 tb_nvm_free(nvm); 411 } 412 413 /* port utility functions */ 414 415 static const char *tb_port_type(const struct tb_regs_port_header *port) 416 { 417 switch (port->type >> 16) { 418 case 0: 419 switch ((u8) port->type) { 420 case 0: 421 return "Inactive"; 422 case 1: 423 return "Port"; 424 case 2: 425 return "NHI"; 426 default: 427 return "unknown"; 428 } 429 case 0x2: 430 return "Ethernet"; 431 case 0x8: 432 return "SATA"; 433 case 0xe: 434 return "DP/HDMI"; 435 case 0x10: 436 return "PCIe"; 437 case 0x20: 438 return "USB"; 439 default: 440 return "unknown"; 441 } 442 } 443 444 static void tb_dump_port(struct tb *tb, const struct tb_port *port) 445 { 446 const struct tb_regs_port_header *regs = &port->config; 447 448 tb_dbg(tb, 449 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 450 regs->port_number, regs->vendor_id, regs->device_id, 451 regs->revision, regs->thunderbolt_version, tb_port_type(regs), 452 regs->type); 453 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 454 regs->max_in_hop_id, regs->max_out_hop_id); 455 tb_dbg(tb, " Max counters: %d\n", regs->max_counters); 456 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits); 457 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits, 458 port->ctl_credits); 459 } 460 461 /** 462 * tb_port_state() - get connectedness state of a port 463 * @port: the port to check 464 * 465 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 466 * 467 * Return: Returns an enum tb_port_state on success or an error code on failure. 468 */ 469 int tb_port_state(struct tb_port *port) 470 { 471 struct tb_cap_phy phy; 472 int res; 473 if (port->cap_phy == 0) { 474 tb_port_WARN(port, "does not have a PHY\n"); 475 return -EINVAL; 476 } 477 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 478 if (res) 479 return res; 480 return phy.state; 481 } 482 483 /** 484 * tb_wait_for_port() - wait for a port to become ready 485 * @port: Port to wait 486 * @wait_if_unplugged: Wait also when port is unplugged 487 * 488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 489 * wait_if_unplugged is set then we also wait if the port is in state 490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 491 * switch resume). Otherwise we only wait if a device is registered but the link 492 * has not yet been established. 493 * 494 * Return: Returns an error code on failure. Returns 0 if the port is not 495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 496 * if the port is connected and in state TB_PORT_UP. 497 */ 498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 499 { 500 int retries = 10; 501 int state; 502 if (!port->cap_phy) { 503 tb_port_WARN(port, "does not have PHY\n"); 504 return -EINVAL; 505 } 506 if (tb_is_upstream_port(port)) { 507 tb_port_WARN(port, "is the upstream port\n"); 508 return -EINVAL; 509 } 510 511 while (retries--) { 512 state = tb_port_state(port); 513 switch (state) { 514 case TB_PORT_DISABLED: 515 tb_port_dbg(port, "is disabled (state: 0)\n"); 516 return 0; 517 518 case TB_PORT_UNPLUGGED: 519 if (wait_if_unplugged) { 520 /* used during resume */ 521 tb_port_dbg(port, 522 "is unplugged (state: 7), retrying...\n"); 523 msleep(100); 524 break; 525 } 526 tb_port_dbg(port, "is unplugged (state: 7)\n"); 527 return 0; 528 529 case TB_PORT_UP: 530 case TB_PORT_TX_CL0S: 531 case TB_PORT_RX_CL0S: 532 case TB_PORT_CL1: 533 case TB_PORT_CL2: 534 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state); 535 return 1; 536 537 default: 538 if (state < 0) 539 return state; 540 541 /* 542 * After plug-in the state is TB_PORT_CONNECTING. Give it some 543 * time. 544 */ 545 tb_port_dbg(port, 546 "is connected, link is not up (state: %d), retrying...\n", 547 state); 548 msleep(100); 549 } 550 551 } 552 tb_port_warn(port, 553 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 554 return 0; 555 } 556 557 /** 558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 559 * @port: Port to add/remove NFC credits 560 * @credits: Credits to add/remove 561 * 562 * Change the number of NFC credits allocated to @port by @credits. To remove 563 * NFC credits pass a negative amount of credits. 564 * 565 * Return: Returns 0 on success or an error code on failure. 566 */ 567 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 568 { 569 u32 nfc_credits; 570 571 if (credits == 0 || port->sw->is_unplugged) 572 return 0; 573 574 /* 575 * USB4 restricts programming NFC buffers to lane adapters only 576 * so skip other ports. 577 */ 578 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port)) 579 return 0; 580 581 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 582 if (credits < 0) 583 credits = max_t(int, -nfc_credits, credits); 584 585 nfc_credits += credits; 586 587 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 588 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 589 590 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 591 port->config.nfc_credits |= nfc_credits; 592 593 return tb_port_write(port, &port->config.nfc_credits, 594 TB_CFG_PORT, ADP_CS_4, 1); 595 } 596 597 /** 598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 599 * @port: Port whose counters to clear 600 * @counter: Counter index to clear 601 * 602 * Return: Returns 0 on success or an error code on failure. 603 */ 604 int tb_port_clear_counter(struct tb_port *port, int counter) 605 { 606 u32 zero[3] = { 0, 0, 0 }; 607 tb_port_dbg(port, "clearing counter %d\n", counter); 608 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 609 } 610 611 /** 612 * tb_port_unlock() - Unlock downstream port 613 * @port: Port to unlock 614 * 615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 616 * downstream router accessible for CM. 617 */ 618 int tb_port_unlock(struct tb_port *port) 619 { 620 if (tb_switch_is_icm(port->sw)) 621 return 0; 622 if (!tb_port_is_null(port)) 623 return -EINVAL; 624 if (tb_switch_is_usb4(port->sw)) 625 return usb4_port_unlock(port); 626 return 0; 627 } 628 629 static int __tb_port_enable(struct tb_port *port, bool enable) 630 { 631 int ret; 632 u32 phy; 633 634 if (!tb_port_is_null(port)) 635 return -EINVAL; 636 637 ret = tb_port_read(port, &phy, TB_CFG_PORT, 638 port->cap_phy + LANE_ADP_CS_1, 1); 639 if (ret) 640 return ret; 641 642 if (enable) 643 phy &= ~LANE_ADP_CS_1_LD; 644 else 645 phy |= LANE_ADP_CS_1_LD; 646 647 648 ret = tb_port_write(port, &phy, TB_CFG_PORT, 649 port->cap_phy + LANE_ADP_CS_1, 1); 650 if (ret) 651 return ret; 652 653 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable)); 654 return 0; 655 } 656 657 /** 658 * tb_port_enable() - Enable lane adapter 659 * @port: Port to enable (can be %NULL) 660 * 661 * This is used for lane 0 and 1 adapters to enable it. 662 */ 663 int tb_port_enable(struct tb_port *port) 664 { 665 return __tb_port_enable(port, true); 666 } 667 668 /** 669 * tb_port_disable() - Disable lane adapter 670 * @port: Port to disable (can be %NULL) 671 * 672 * This is used for lane 0 and 1 adapters to disable it. 673 */ 674 int tb_port_disable(struct tb_port *port) 675 { 676 return __tb_port_enable(port, false); 677 } 678 679 /* 680 * tb_init_port() - initialize a port 681 * 682 * This is a helper method for tb_switch_alloc. Does not check or initialize 683 * any downstream switches. 684 * 685 * Return: Returns 0 on success or an error code on failure. 686 */ 687 static int tb_init_port(struct tb_port *port) 688 { 689 int res; 690 int cap; 691 692 INIT_LIST_HEAD(&port->list); 693 694 /* Control adapter does not have configuration space */ 695 if (!port->port) 696 return 0; 697 698 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 699 if (res) { 700 if (res == -ENODEV) { 701 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 702 port->port); 703 port->disabled = true; 704 return 0; 705 } 706 return res; 707 } 708 709 /* Port 0 is the switch itself and has no PHY. */ 710 if (port->config.type == TB_TYPE_PORT) { 711 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 712 713 if (cap > 0) 714 port->cap_phy = cap; 715 else 716 tb_port_WARN(port, "non switch port without a PHY\n"); 717 718 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 719 if (cap > 0) 720 port->cap_usb4 = cap; 721 722 /* 723 * USB4 ports the buffers allocated for the control path 724 * can be read from the path config space. Legacy 725 * devices we use hard-coded value. 726 */ 727 if (port->cap_usb4) { 728 struct tb_regs_hop hop; 729 730 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2)) 731 port->ctl_credits = hop.initial_credits; 732 } 733 if (!port->ctl_credits) 734 port->ctl_credits = 2; 735 736 } else { 737 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 738 if (cap > 0) 739 port->cap_adap = cap; 740 } 741 742 port->total_credits = 743 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 744 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 745 746 tb_dump_port(port->sw->tb, port); 747 return 0; 748 } 749 750 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 751 int max_hopid) 752 { 753 int port_max_hopid; 754 struct ida *ida; 755 756 if (in) { 757 port_max_hopid = port->config.max_in_hop_id; 758 ida = &port->in_hopids; 759 } else { 760 port_max_hopid = port->config.max_out_hop_id; 761 ida = &port->out_hopids; 762 } 763 764 /* 765 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are 766 * reserved. 767 */ 768 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID) 769 min_hopid = TB_PATH_MIN_HOPID; 770 771 if (max_hopid < 0 || max_hopid > port_max_hopid) 772 max_hopid = port_max_hopid; 773 774 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 775 } 776 777 /** 778 * tb_port_alloc_in_hopid() - Allocate input HopID from port 779 * @port: Port to allocate HopID for 780 * @min_hopid: Minimum acceptable input HopID 781 * @max_hopid: Maximum acceptable input HopID 782 * 783 * Return: HopID between @min_hopid and @max_hopid or negative errno in 784 * case of error. 785 */ 786 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 787 { 788 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 789 } 790 791 /** 792 * tb_port_alloc_out_hopid() - Allocate output HopID from port 793 * @port: Port to allocate HopID for 794 * @min_hopid: Minimum acceptable output HopID 795 * @max_hopid: Maximum acceptable output HopID 796 * 797 * Return: HopID between @min_hopid and @max_hopid or negative errno in 798 * case of error. 799 */ 800 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 801 { 802 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 803 } 804 805 /** 806 * tb_port_release_in_hopid() - Release allocated input HopID from port 807 * @port: Port whose HopID to release 808 * @hopid: HopID to release 809 */ 810 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 811 { 812 ida_simple_remove(&port->in_hopids, hopid); 813 } 814 815 /** 816 * tb_port_release_out_hopid() - Release allocated output HopID from port 817 * @port: Port whose HopID to release 818 * @hopid: HopID to release 819 */ 820 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 821 { 822 ida_simple_remove(&port->out_hopids, hopid); 823 } 824 825 static inline bool tb_switch_is_reachable(const struct tb_switch *parent, 826 const struct tb_switch *sw) 827 { 828 u64 mask = (1ULL << parent->config.depth * 8) - 1; 829 return (tb_route(parent) & mask) == (tb_route(sw) & mask); 830 } 831 832 /** 833 * tb_next_port_on_path() - Return next port for given port on a path 834 * @start: Start port of the walk 835 * @end: End port of the walk 836 * @prev: Previous port (%NULL if this is the first) 837 * 838 * This function can be used to walk from one port to another if they 839 * are connected through zero or more switches. If the @prev is dual 840 * link port, the function follows that link and returns another end on 841 * that same link. 842 * 843 * If the @end port has been reached, return %NULL. 844 * 845 * Domain tb->lock must be held when this function is called. 846 */ 847 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 848 struct tb_port *prev) 849 { 850 struct tb_port *next; 851 852 if (!prev) 853 return start; 854 855 if (prev->sw == end->sw) { 856 if (prev == end) 857 return NULL; 858 return end; 859 } 860 861 if (tb_switch_is_reachable(prev->sw, end->sw)) { 862 next = tb_port_at(tb_route(end->sw), prev->sw); 863 /* Walk down the topology if next == prev */ 864 if (prev->remote && 865 (next == prev || next->dual_link_port == prev)) 866 next = prev->remote; 867 } else { 868 if (tb_is_upstream_port(prev)) { 869 next = prev->remote; 870 } else { 871 next = tb_upstream_port(prev->sw); 872 /* 873 * Keep the same link if prev and next are both 874 * dual link ports. 875 */ 876 if (next->dual_link_port && 877 next->link_nr != prev->link_nr) { 878 next = next->dual_link_port; 879 } 880 } 881 } 882 883 return next != prev ? next : NULL; 884 } 885 886 /** 887 * tb_port_get_link_speed() - Get current link speed 888 * @port: Port to check (USB4 or CIO) 889 * 890 * Returns link speed in Gb/s or negative errno in case of failure. 891 */ 892 int tb_port_get_link_speed(struct tb_port *port) 893 { 894 u32 val, speed; 895 int ret; 896 897 if (!port->cap_phy) 898 return -EINVAL; 899 900 ret = tb_port_read(port, &val, TB_CFG_PORT, 901 port->cap_phy + LANE_ADP_CS_1, 1); 902 if (ret) 903 return ret; 904 905 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 906 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 907 908 switch (speed) { 909 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4: 910 return 40; 911 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3: 912 return 20; 913 default: 914 return 10; 915 } 916 } 917 918 /** 919 * tb_port_get_link_generation() - Returns link generation 920 * @port: Lane adapter 921 * 922 * Returns link generation as number or negative errno in case of 923 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2 924 * links so for those always returns 2. 925 */ 926 int tb_port_get_link_generation(struct tb_port *port) 927 { 928 int ret; 929 930 ret = tb_port_get_link_speed(port); 931 if (ret < 0) 932 return ret; 933 934 switch (ret) { 935 case 40: 936 return 4; 937 case 20: 938 return 3; 939 default: 940 return 2; 941 } 942 } 943 944 static const char *width_name(enum tb_link_width width) 945 { 946 switch (width) { 947 case TB_LINK_WIDTH_SINGLE: 948 return "symmetric, single lane"; 949 case TB_LINK_WIDTH_DUAL: 950 return "symmetric, dual lanes"; 951 case TB_LINK_WIDTH_ASYM_TX: 952 return "asymmetric, 3 transmitters, 1 receiver"; 953 case TB_LINK_WIDTH_ASYM_RX: 954 return "asymmetric, 3 receivers, 1 transmitter"; 955 default: 956 return "unknown"; 957 } 958 } 959 960 /** 961 * tb_port_get_link_width() - Get current link width 962 * @port: Port to check (USB4 or CIO) 963 * 964 * Returns link width. Return the link width as encoded in &enum 965 * tb_link_width or negative errno in case of failure. 966 */ 967 int tb_port_get_link_width(struct tb_port *port) 968 { 969 u32 val; 970 int ret; 971 972 if (!port->cap_phy) 973 return -EINVAL; 974 975 ret = tb_port_read(port, &val, TB_CFG_PORT, 976 port->cap_phy + LANE_ADP_CS_1, 1); 977 if (ret) 978 return ret; 979 980 /* Matches the values in enum tb_link_width */ 981 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 982 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 983 } 984 985 /** 986 * tb_port_width_supported() - Is the given link width supported 987 * @port: Port to check 988 * @width: Widths to check (bitmask) 989 * 990 * Can be called to any lane adapter. Checks if given @width is 991 * supported by the hardware and returns %true if it is. 992 */ 993 bool tb_port_width_supported(struct tb_port *port, unsigned int width) 994 { 995 u32 phy, widths; 996 int ret; 997 998 if (!port->cap_phy) 999 return false; 1000 1001 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) { 1002 if (tb_port_get_link_generation(port) < 4 || 1003 !usb4_port_asym_supported(port)) 1004 return false; 1005 } 1006 1007 ret = tb_port_read(port, &phy, TB_CFG_PORT, 1008 port->cap_phy + LANE_ADP_CS_0, 1); 1009 if (ret) 1010 return false; 1011 1012 /* 1013 * The field encoding is the same as &enum tb_link_width (which is 1014 * passed to @width). 1015 */ 1016 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy); 1017 return widths & width; 1018 } 1019 1020 /** 1021 * tb_port_set_link_width() - Set target link width of the lane adapter 1022 * @port: Lane adapter 1023 * @width: Target link width 1024 * 1025 * Sets the target link width of the lane adapter to @width. Does not 1026 * enable/disable lane bonding. For that call tb_port_set_lane_bonding(). 1027 * 1028 * Return: %0 in case of success and negative errno in case of error 1029 */ 1030 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width) 1031 { 1032 u32 val; 1033 int ret; 1034 1035 if (!port->cap_phy) 1036 return -EINVAL; 1037 1038 ret = tb_port_read(port, &val, TB_CFG_PORT, 1039 port->cap_phy + LANE_ADP_CS_1, 1); 1040 if (ret) 1041 return ret; 1042 1043 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 1044 switch (width) { 1045 case TB_LINK_WIDTH_SINGLE: 1046 /* Gen 4 link cannot be single */ 1047 if (tb_port_get_link_generation(port) >= 4) 1048 return -EOPNOTSUPP; 1049 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 1050 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1051 break; 1052 1053 case TB_LINK_WIDTH_DUAL: 1054 if (tb_port_get_link_generation(port) >= 4) 1055 return usb4_port_asym_set_link_width(port, width); 1056 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 1057 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1058 break; 1059 1060 case TB_LINK_WIDTH_ASYM_TX: 1061 case TB_LINK_WIDTH_ASYM_RX: 1062 return usb4_port_asym_set_link_width(port, width); 1063 1064 default: 1065 return -EINVAL; 1066 } 1067 1068 return tb_port_write(port, &val, TB_CFG_PORT, 1069 port->cap_phy + LANE_ADP_CS_1, 1); 1070 } 1071 1072 /** 1073 * tb_port_set_lane_bonding() - Enable/disable lane bonding 1074 * @port: Lane adapter 1075 * @bonding: enable/disable bonding 1076 * 1077 * Enables or disables lane bonding. This should be called after target 1078 * link width has been set (tb_port_set_link_width()). Note in most 1079 * cases one should use tb_port_lane_bonding_enable() instead to enable 1080 * lane bonding. 1081 * 1082 * Return: %0 in case of success and negative errno in case of error 1083 */ 1084 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding) 1085 { 1086 u32 val; 1087 int ret; 1088 1089 if (!port->cap_phy) 1090 return -EINVAL; 1091 1092 ret = tb_port_read(port, &val, TB_CFG_PORT, 1093 port->cap_phy + LANE_ADP_CS_1, 1); 1094 if (ret) 1095 return ret; 1096 1097 if (bonding) 1098 val |= LANE_ADP_CS_1_LB; 1099 else 1100 val &= ~LANE_ADP_CS_1_LB; 1101 1102 return tb_port_write(port, &val, TB_CFG_PORT, 1103 port->cap_phy + LANE_ADP_CS_1, 1); 1104 } 1105 1106 /** 1107 * tb_port_lane_bonding_enable() - Enable bonding on port 1108 * @port: port to enable 1109 * 1110 * Enable bonding by setting the link width of the port and the other 1111 * port in case of dual link port. Does not wait for the link to 1112 * actually reach the bonded state so caller needs to call 1113 * tb_port_wait_for_link_width() before enabling any paths through the 1114 * link to make sure the link is in expected state. 1115 * 1116 * Return: %0 in case of success and negative errno in case of error 1117 */ 1118 int tb_port_lane_bonding_enable(struct tb_port *port) 1119 { 1120 enum tb_link_width width; 1121 int ret; 1122 1123 /* 1124 * Enable lane bonding for both links if not already enabled by 1125 * for example the boot firmware. 1126 */ 1127 width = tb_port_get_link_width(port); 1128 if (width == TB_LINK_WIDTH_SINGLE) { 1129 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL); 1130 if (ret) 1131 goto err_lane0; 1132 } 1133 1134 width = tb_port_get_link_width(port->dual_link_port); 1135 if (width == TB_LINK_WIDTH_SINGLE) { 1136 ret = tb_port_set_link_width(port->dual_link_port, 1137 TB_LINK_WIDTH_DUAL); 1138 if (ret) 1139 goto err_lane0; 1140 } 1141 1142 /* 1143 * Only set bonding if the link was not already bonded. This 1144 * avoids the lane adapter to re-enter bonding state. 1145 */ 1146 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) { 1147 ret = tb_port_set_lane_bonding(port, true); 1148 if (ret) 1149 goto err_lane1; 1150 } 1151 1152 /* 1153 * When lane 0 bonding is set it will affect lane 1 too so 1154 * update both. 1155 */ 1156 port->bonded = true; 1157 port->dual_link_port->bonded = true; 1158 1159 return 0; 1160 1161 err_lane1: 1162 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE); 1163 err_lane0: 1164 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE); 1165 1166 return ret; 1167 } 1168 1169 /** 1170 * tb_port_lane_bonding_disable() - Disable bonding on port 1171 * @port: port to disable 1172 * 1173 * Disable bonding by setting the link width of the port and the 1174 * other port in case of dual link port. 1175 */ 1176 void tb_port_lane_bonding_disable(struct tb_port *port) 1177 { 1178 tb_port_set_lane_bonding(port, false); 1179 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE); 1180 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE); 1181 port->dual_link_port->bonded = false; 1182 port->bonded = false; 1183 } 1184 1185 /** 1186 * tb_port_wait_for_link_width() - Wait until link reaches specific width 1187 * @port: Port to wait for 1188 * @width: Expected link width (bitmask) 1189 * @timeout_msec: Timeout in ms how long to wait 1190 * 1191 * Should be used after both ends of the link have been bonded (or 1192 * bonding has been disabled) to wait until the link actually reaches 1193 * the expected state. Returns %-ETIMEDOUT if the width was not reached 1194 * within the given timeout, %0 if it did. Can be passed a mask of 1195 * expected widths and succeeds if any of the widths is reached. 1196 */ 1197 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width, 1198 int timeout_msec) 1199 { 1200 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1201 int ret; 1202 1203 /* Gen 4 link does not support single lane */ 1204 if ((width & TB_LINK_WIDTH_SINGLE) && 1205 tb_port_get_link_generation(port) >= 4) 1206 return -EOPNOTSUPP; 1207 1208 do { 1209 ret = tb_port_get_link_width(port); 1210 if (ret < 0) { 1211 /* 1212 * Sometimes we get port locked error when 1213 * polling the lanes so we can ignore it and 1214 * retry. 1215 */ 1216 if (ret != -EACCES) 1217 return ret; 1218 } else if (ret & width) { 1219 return 0; 1220 } 1221 1222 usleep_range(1000, 2000); 1223 } while (ktime_before(ktime_get(), timeout)); 1224 1225 return -ETIMEDOUT; 1226 } 1227 1228 static int tb_port_do_update_credits(struct tb_port *port) 1229 { 1230 u32 nfc_credits; 1231 int ret; 1232 1233 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); 1234 if (ret) 1235 return ret; 1236 1237 if (nfc_credits != port->config.nfc_credits) { 1238 u32 total; 1239 1240 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 1241 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 1242 1243 tb_port_dbg(port, "total credits changed %u -> %u\n", 1244 port->total_credits, total); 1245 1246 port->config.nfc_credits = nfc_credits; 1247 port->total_credits = total; 1248 } 1249 1250 return 0; 1251 } 1252 1253 /** 1254 * tb_port_update_credits() - Re-read port total credits 1255 * @port: Port to update 1256 * 1257 * After the link is bonded (or bonding was disabled) the port total 1258 * credits may change, so this function needs to be called to re-read 1259 * the credits. Updates also the second lane adapter. 1260 */ 1261 int tb_port_update_credits(struct tb_port *port) 1262 { 1263 int ret; 1264 1265 ret = tb_port_do_update_credits(port); 1266 if (ret) 1267 return ret; 1268 return tb_port_do_update_credits(port->dual_link_port); 1269 } 1270 1271 static int tb_port_start_lane_initialization(struct tb_port *port) 1272 { 1273 int ret; 1274 1275 if (tb_switch_is_usb4(port->sw)) 1276 return 0; 1277 1278 ret = tb_lc_start_lane_initialization(port); 1279 return ret == -EINVAL ? 0 : ret; 1280 } 1281 1282 /* 1283 * Returns true if the port had something (router, XDomain) connected 1284 * before suspend. 1285 */ 1286 static bool tb_port_resume(struct tb_port *port) 1287 { 1288 bool has_remote = tb_port_has_remote(port); 1289 1290 if (port->usb4) { 1291 usb4_port_device_resume(port->usb4); 1292 } else if (!has_remote) { 1293 /* 1294 * For disconnected downstream lane adapters start lane 1295 * initialization now so we detect future connects. 1296 * 1297 * For XDomain start the lane initialzation now so the 1298 * link gets re-established. 1299 * 1300 * This is only needed for non-USB4 ports. 1301 */ 1302 if (!tb_is_upstream_port(port) || port->xdomain) 1303 tb_port_start_lane_initialization(port); 1304 } 1305 1306 return has_remote || port->xdomain; 1307 } 1308 1309 /** 1310 * tb_port_is_enabled() - Is the adapter port enabled 1311 * @port: Port to check 1312 */ 1313 bool tb_port_is_enabled(struct tb_port *port) 1314 { 1315 switch (port->config.type) { 1316 case TB_TYPE_PCIE_UP: 1317 case TB_TYPE_PCIE_DOWN: 1318 return tb_pci_port_is_enabled(port); 1319 1320 case TB_TYPE_DP_HDMI_IN: 1321 case TB_TYPE_DP_HDMI_OUT: 1322 return tb_dp_port_is_enabled(port); 1323 1324 case TB_TYPE_USB3_UP: 1325 case TB_TYPE_USB3_DOWN: 1326 return tb_usb3_port_is_enabled(port); 1327 1328 default: 1329 return false; 1330 } 1331 } 1332 1333 /** 1334 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1335 * @port: USB3 adapter port to check 1336 */ 1337 bool tb_usb3_port_is_enabled(struct tb_port *port) 1338 { 1339 u32 data; 1340 1341 if (tb_port_read(port, &data, TB_CFG_PORT, 1342 port->cap_adap + ADP_USB3_CS_0, 1)) 1343 return false; 1344 1345 return !!(data & ADP_USB3_CS_0_PE); 1346 } 1347 1348 /** 1349 * tb_usb3_port_enable() - Enable USB3 adapter port 1350 * @port: USB3 adapter port to enable 1351 * @enable: Enable/disable the USB3 adapter 1352 */ 1353 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1354 { 1355 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1356 : ADP_USB3_CS_0_V; 1357 1358 if (!port->cap_adap) 1359 return -ENXIO; 1360 return tb_port_write(port, &word, TB_CFG_PORT, 1361 port->cap_adap + ADP_USB3_CS_0, 1); 1362 } 1363 1364 /** 1365 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1366 * @port: PCIe port to check 1367 */ 1368 bool tb_pci_port_is_enabled(struct tb_port *port) 1369 { 1370 u32 data; 1371 1372 if (tb_port_read(port, &data, TB_CFG_PORT, 1373 port->cap_adap + ADP_PCIE_CS_0, 1)) 1374 return false; 1375 1376 return !!(data & ADP_PCIE_CS_0_PE); 1377 } 1378 1379 /** 1380 * tb_pci_port_enable() - Enable PCIe adapter port 1381 * @port: PCIe port to enable 1382 * @enable: Enable/disable the PCIe adapter 1383 */ 1384 int tb_pci_port_enable(struct tb_port *port, bool enable) 1385 { 1386 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1387 if (!port->cap_adap) 1388 return -ENXIO; 1389 return tb_port_write(port, &word, TB_CFG_PORT, 1390 port->cap_adap + ADP_PCIE_CS_0, 1); 1391 } 1392 1393 /** 1394 * tb_dp_port_hpd_is_active() - Is HPD already active 1395 * @port: DP out port to check 1396 * 1397 * Checks if the DP OUT adapter port has HPD bit already set. 1398 */ 1399 int tb_dp_port_hpd_is_active(struct tb_port *port) 1400 { 1401 u32 data; 1402 int ret; 1403 1404 ret = tb_port_read(port, &data, TB_CFG_PORT, 1405 port->cap_adap + ADP_DP_CS_2, 1); 1406 if (ret) 1407 return ret; 1408 1409 return !!(data & ADP_DP_CS_2_HPD); 1410 } 1411 1412 /** 1413 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1414 * @port: Port to clear HPD 1415 * 1416 * If the DP IN port has HPD set, this function can be used to clear it. 1417 */ 1418 int tb_dp_port_hpd_clear(struct tb_port *port) 1419 { 1420 u32 data; 1421 int ret; 1422 1423 ret = tb_port_read(port, &data, TB_CFG_PORT, 1424 port->cap_adap + ADP_DP_CS_3, 1); 1425 if (ret) 1426 return ret; 1427 1428 data |= ADP_DP_CS_3_HPDC; 1429 return tb_port_write(port, &data, TB_CFG_PORT, 1430 port->cap_adap + ADP_DP_CS_3, 1); 1431 } 1432 1433 /** 1434 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1435 * @port: DP IN/OUT port to set hops 1436 * @video: Video Hop ID 1437 * @aux_tx: AUX TX Hop ID 1438 * @aux_rx: AUX RX Hop ID 1439 * 1440 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4 1441 * router DP adapters too but does not program the values as the fields 1442 * are read-only. 1443 */ 1444 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1445 unsigned int aux_tx, unsigned int aux_rx) 1446 { 1447 u32 data[2]; 1448 int ret; 1449 1450 if (tb_switch_is_usb4(port->sw)) 1451 return 0; 1452 1453 ret = tb_port_read(port, data, TB_CFG_PORT, 1454 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1455 if (ret) 1456 return ret; 1457 1458 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1459 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1460 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1461 1462 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1463 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1464 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1465 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1466 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1467 1468 return tb_port_write(port, data, TB_CFG_PORT, 1469 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1470 } 1471 1472 /** 1473 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1474 * @port: DP adapter port to check 1475 */ 1476 bool tb_dp_port_is_enabled(struct tb_port *port) 1477 { 1478 u32 data[2]; 1479 1480 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1481 ARRAY_SIZE(data))) 1482 return false; 1483 1484 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1485 } 1486 1487 /** 1488 * tb_dp_port_enable() - Enables/disables DP paths of a port 1489 * @port: DP IN/OUT port 1490 * @enable: Enable/disable DP path 1491 * 1492 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1493 * calling this function. 1494 */ 1495 int tb_dp_port_enable(struct tb_port *port, bool enable) 1496 { 1497 u32 data[2]; 1498 int ret; 1499 1500 ret = tb_port_read(port, data, TB_CFG_PORT, 1501 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1502 if (ret) 1503 return ret; 1504 1505 if (enable) 1506 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1507 else 1508 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1509 1510 return tb_port_write(port, data, TB_CFG_PORT, 1511 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1512 } 1513 1514 /* switch utility functions */ 1515 1516 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1517 { 1518 switch (sw->generation) { 1519 case 1: 1520 return "Thunderbolt 1"; 1521 case 2: 1522 return "Thunderbolt 2"; 1523 case 3: 1524 return "Thunderbolt 3"; 1525 case 4: 1526 return "USB4"; 1527 default: 1528 return "Unknown"; 1529 } 1530 } 1531 1532 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1533 { 1534 const struct tb_regs_switch_header *regs = &sw->config; 1535 1536 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1537 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1538 regs->revision, regs->thunderbolt_version); 1539 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1540 tb_dbg(tb, " Config:\n"); 1541 tb_dbg(tb, 1542 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1543 regs->upstream_port_number, regs->depth, 1544 (((u64) regs->route_hi) << 32) | regs->route_lo, 1545 regs->enabled, regs->plug_events_delay); 1546 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1547 regs->__unknown1, regs->__unknown4); 1548 } 1549 1550 /** 1551 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET 1552 * @sw: Switch to reset 1553 * 1554 * Return: Returns 0 on success or an error code on failure. 1555 */ 1556 int tb_switch_reset(struct tb_switch *sw) 1557 { 1558 struct tb_cfg_result res; 1559 1560 if (sw->generation > 1) 1561 return 0; 1562 1563 tb_sw_dbg(sw, "resetting switch\n"); 1564 1565 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2, 1566 TB_CFG_SWITCH, 2, 2); 1567 if (res.err) 1568 return res.err; 1569 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw)); 1570 if (res.err > 0) 1571 return -EIO; 1572 return res.err; 1573 } 1574 1575 /** 1576 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset 1577 * @sw: Router to read the offset value from 1578 * @offset: Offset in the router config space to read from 1579 * @bit: Bit mask in the offset to wait for 1580 * @value: Value of the bits to wait for 1581 * @timeout_msec: Timeout in ms how long to wait 1582 * 1583 * Wait till the specified bits in specified offset reach specified value. 1584 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached 1585 * within the given timeout or a negative errno in case of failure. 1586 */ 1587 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, 1588 u32 value, int timeout_msec) 1589 { 1590 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1591 1592 do { 1593 u32 val; 1594 int ret; 1595 1596 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 1597 if (ret) 1598 return ret; 1599 1600 if ((val & bit) == value) 1601 return 0; 1602 1603 usleep_range(50, 100); 1604 } while (ktime_before(ktime_get(), timeout)); 1605 1606 return -ETIMEDOUT; 1607 } 1608 1609 /* 1610 * tb_plug_events_active() - enable/disable plug events on a switch 1611 * 1612 * Also configures a sane plug_events_delay of 255ms. 1613 * 1614 * Return: Returns 0 on success or an error code on failure. 1615 */ 1616 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1617 { 1618 u32 data; 1619 int res; 1620 1621 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw)) 1622 return 0; 1623 1624 sw->config.plug_events_delay = 0xff; 1625 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1626 if (res) 1627 return res; 1628 1629 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1630 if (res) 1631 return res; 1632 1633 if (active) { 1634 data = data & 0xFFFFFF83; 1635 switch (sw->config.device_id) { 1636 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1637 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1638 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1639 break; 1640 default: 1641 /* 1642 * Skip Alpine Ridge, it needs to have vendor 1643 * specific USB hotplug event enabled for the 1644 * internal xHCI to work. 1645 */ 1646 if (!tb_switch_is_alpine_ridge(sw)) 1647 data |= TB_PLUG_EVENTS_USB_DISABLE; 1648 } 1649 } else { 1650 data = data | 0x7c; 1651 } 1652 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1653 sw->cap_plug_events + 1, 1); 1654 } 1655 1656 static ssize_t authorized_show(struct device *dev, 1657 struct device_attribute *attr, 1658 char *buf) 1659 { 1660 struct tb_switch *sw = tb_to_switch(dev); 1661 1662 return sysfs_emit(buf, "%u\n", sw->authorized); 1663 } 1664 1665 static int disapprove_switch(struct device *dev, void *not_used) 1666 { 1667 char *envp[] = { "AUTHORIZED=0", NULL }; 1668 struct tb_switch *sw; 1669 1670 sw = tb_to_switch(dev); 1671 if (sw && sw->authorized) { 1672 int ret; 1673 1674 /* First children */ 1675 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch); 1676 if (ret) 1677 return ret; 1678 1679 ret = tb_domain_disapprove_switch(sw->tb, sw); 1680 if (ret) 1681 return ret; 1682 1683 sw->authorized = 0; 1684 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1685 } 1686 1687 return 0; 1688 } 1689 1690 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1691 { 1692 char envp_string[13]; 1693 int ret = -EINVAL; 1694 char *envp[] = { envp_string, NULL }; 1695 1696 if (!mutex_trylock(&sw->tb->lock)) 1697 return restart_syscall(); 1698 1699 if (!!sw->authorized == !!val) 1700 goto unlock; 1701 1702 switch (val) { 1703 /* Disapprove switch */ 1704 case 0: 1705 if (tb_route(sw)) { 1706 ret = disapprove_switch(&sw->dev, NULL); 1707 goto unlock; 1708 } 1709 break; 1710 1711 /* Approve switch */ 1712 case 1: 1713 if (sw->key) 1714 ret = tb_domain_approve_switch_key(sw->tb, sw); 1715 else 1716 ret = tb_domain_approve_switch(sw->tb, sw); 1717 break; 1718 1719 /* Challenge switch */ 1720 case 2: 1721 if (sw->key) 1722 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1723 break; 1724 1725 default: 1726 break; 1727 } 1728 1729 if (!ret) { 1730 sw->authorized = val; 1731 /* 1732 * Notify status change to the userspace, informing the new 1733 * value of /sys/bus/thunderbolt/devices/.../authorized. 1734 */ 1735 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized); 1736 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1737 } 1738 1739 unlock: 1740 mutex_unlock(&sw->tb->lock); 1741 return ret; 1742 } 1743 1744 static ssize_t authorized_store(struct device *dev, 1745 struct device_attribute *attr, 1746 const char *buf, size_t count) 1747 { 1748 struct tb_switch *sw = tb_to_switch(dev); 1749 unsigned int val; 1750 ssize_t ret; 1751 1752 ret = kstrtouint(buf, 0, &val); 1753 if (ret) 1754 return ret; 1755 if (val > 2) 1756 return -EINVAL; 1757 1758 pm_runtime_get_sync(&sw->dev); 1759 ret = tb_switch_set_authorized(sw, val); 1760 pm_runtime_mark_last_busy(&sw->dev); 1761 pm_runtime_put_autosuspend(&sw->dev); 1762 1763 return ret ? ret : count; 1764 } 1765 static DEVICE_ATTR_RW(authorized); 1766 1767 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1768 char *buf) 1769 { 1770 struct tb_switch *sw = tb_to_switch(dev); 1771 1772 return sysfs_emit(buf, "%u\n", sw->boot); 1773 } 1774 static DEVICE_ATTR_RO(boot); 1775 1776 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1777 char *buf) 1778 { 1779 struct tb_switch *sw = tb_to_switch(dev); 1780 1781 return sysfs_emit(buf, "%#x\n", sw->device); 1782 } 1783 static DEVICE_ATTR_RO(device); 1784 1785 static ssize_t 1786 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1787 { 1788 struct tb_switch *sw = tb_to_switch(dev); 1789 1790 return sysfs_emit(buf, "%s\n", sw->device_name ?: ""); 1791 } 1792 static DEVICE_ATTR_RO(device_name); 1793 1794 static ssize_t 1795 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1796 { 1797 struct tb_switch *sw = tb_to_switch(dev); 1798 1799 return sysfs_emit(buf, "%u\n", sw->generation); 1800 } 1801 static DEVICE_ATTR_RO(generation); 1802 1803 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1804 char *buf) 1805 { 1806 struct tb_switch *sw = tb_to_switch(dev); 1807 ssize_t ret; 1808 1809 if (!mutex_trylock(&sw->tb->lock)) 1810 return restart_syscall(); 1811 1812 if (sw->key) 1813 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1814 else 1815 ret = sysfs_emit(buf, "\n"); 1816 1817 mutex_unlock(&sw->tb->lock); 1818 return ret; 1819 } 1820 1821 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1822 const char *buf, size_t count) 1823 { 1824 struct tb_switch *sw = tb_to_switch(dev); 1825 u8 key[TB_SWITCH_KEY_SIZE]; 1826 ssize_t ret = count; 1827 bool clear = false; 1828 1829 if (!strcmp(buf, "\n")) 1830 clear = true; 1831 else if (hex2bin(key, buf, sizeof(key))) 1832 return -EINVAL; 1833 1834 if (!mutex_trylock(&sw->tb->lock)) 1835 return restart_syscall(); 1836 1837 if (sw->authorized) { 1838 ret = -EBUSY; 1839 } else { 1840 kfree(sw->key); 1841 if (clear) { 1842 sw->key = NULL; 1843 } else { 1844 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1845 if (!sw->key) 1846 ret = -ENOMEM; 1847 } 1848 } 1849 1850 mutex_unlock(&sw->tb->lock); 1851 return ret; 1852 } 1853 static DEVICE_ATTR(key, 0600, key_show, key_store); 1854 1855 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1856 char *buf) 1857 { 1858 struct tb_switch *sw = tb_to_switch(dev); 1859 1860 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed); 1861 } 1862 1863 /* 1864 * Currently all lanes must run at the same speed but we expose here 1865 * both directions to allow possible asymmetric links in the future. 1866 */ 1867 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1868 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1869 1870 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr, 1871 char *buf) 1872 { 1873 struct tb_switch *sw = tb_to_switch(dev); 1874 unsigned int width; 1875 1876 switch (sw->link_width) { 1877 case TB_LINK_WIDTH_SINGLE: 1878 case TB_LINK_WIDTH_ASYM_TX: 1879 width = 1; 1880 break; 1881 case TB_LINK_WIDTH_DUAL: 1882 width = 2; 1883 break; 1884 case TB_LINK_WIDTH_ASYM_RX: 1885 width = 3; 1886 break; 1887 default: 1888 WARN_ON_ONCE(1); 1889 return -EINVAL; 1890 } 1891 1892 return sysfs_emit(buf, "%u\n", width); 1893 } 1894 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL); 1895 1896 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr, 1897 char *buf) 1898 { 1899 struct tb_switch *sw = tb_to_switch(dev); 1900 unsigned int width; 1901 1902 switch (sw->link_width) { 1903 case TB_LINK_WIDTH_SINGLE: 1904 case TB_LINK_WIDTH_ASYM_RX: 1905 width = 1; 1906 break; 1907 case TB_LINK_WIDTH_DUAL: 1908 width = 2; 1909 break; 1910 case TB_LINK_WIDTH_ASYM_TX: 1911 width = 3; 1912 break; 1913 default: 1914 WARN_ON_ONCE(1); 1915 return -EINVAL; 1916 } 1917 1918 return sysfs_emit(buf, "%u\n", width); 1919 } 1920 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL); 1921 1922 static ssize_t nvm_authenticate_show(struct device *dev, 1923 struct device_attribute *attr, char *buf) 1924 { 1925 struct tb_switch *sw = tb_to_switch(dev); 1926 u32 status; 1927 1928 nvm_get_auth_status(sw, &status); 1929 return sysfs_emit(buf, "%#x\n", status); 1930 } 1931 1932 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, 1933 bool disconnect) 1934 { 1935 struct tb_switch *sw = tb_to_switch(dev); 1936 int val, ret; 1937 1938 pm_runtime_get_sync(&sw->dev); 1939 1940 if (!mutex_trylock(&sw->tb->lock)) { 1941 ret = restart_syscall(); 1942 goto exit_rpm; 1943 } 1944 1945 if (sw->no_nvm_upgrade) { 1946 ret = -EOPNOTSUPP; 1947 goto exit_unlock; 1948 } 1949 1950 /* If NVMem devices are not yet added */ 1951 if (!sw->nvm) { 1952 ret = -EAGAIN; 1953 goto exit_unlock; 1954 } 1955 1956 ret = kstrtoint(buf, 10, &val); 1957 if (ret) 1958 goto exit_unlock; 1959 1960 /* Always clear the authentication status */ 1961 nvm_clear_auth_status(sw); 1962 1963 if (val > 0) { 1964 if (val == AUTHENTICATE_ONLY) { 1965 if (disconnect) 1966 ret = -EINVAL; 1967 else 1968 ret = nvm_authenticate(sw, true); 1969 } else { 1970 if (!sw->nvm->flushed) { 1971 if (!sw->nvm->buf) { 1972 ret = -EINVAL; 1973 goto exit_unlock; 1974 } 1975 1976 ret = nvm_validate_and_write(sw); 1977 if (ret || val == WRITE_ONLY) 1978 goto exit_unlock; 1979 } 1980 if (val == WRITE_AND_AUTHENTICATE) { 1981 if (disconnect) 1982 ret = tb_lc_force_power(sw); 1983 else 1984 ret = nvm_authenticate(sw, false); 1985 } 1986 } 1987 } 1988 1989 exit_unlock: 1990 mutex_unlock(&sw->tb->lock); 1991 exit_rpm: 1992 pm_runtime_mark_last_busy(&sw->dev); 1993 pm_runtime_put_autosuspend(&sw->dev); 1994 1995 return ret; 1996 } 1997 1998 static ssize_t nvm_authenticate_store(struct device *dev, 1999 struct device_attribute *attr, const char *buf, size_t count) 2000 { 2001 int ret = nvm_authenticate_sysfs(dev, buf, false); 2002 if (ret) 2003 return ret; 2004 return count; 2005 } 2006 static DEVICE_ATTR_RW(nvm_authenticate); 2007 2008 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, 2009 struct device_attribute *attr, char *buf) 2010 { 2011 return nvm_authenticate_show(dev, attr, buf); 2012 } 2013 2014 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, 2015 struct device_attribute *attr, const char *buf, size_t count) 2016 { 2017 int ret; 2018 2019 ret = nvm_authenticate_sysfs(dev, buf, true); 2020 return ret ? ret : count; 2021 } 2022 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); 2023 2024 static ssize_t nvm_version_show(struct device *dev, 2025 struct device_attribute *attr, char *buf) 2026 { 2027 struct tb_switch *sw = tb_to_switch(dev); 2028 int ret; 2029 2030 if (!mutex_trylock(&sw->tb->lock)) 2031 return restart_syscall(); 2032 2033 if (sw->safe_mode) 2034 ret = -ENODATA; 2035 else if (!sw->nvm) 2036 ret = -EAGAIN; 2037 else 2038 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 2039 2040 mutex_unlock(&sw->tb->lock); 2041 2042 return ret; 2043 } 2044 static DEVICE_ATTR_RO(nvm_version); 2045 2046 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 2047 char *buf) 2048 { 2049 struct tb_switch *sw = tb_to_switch(dev); 2050 2051 return sysfs_emit(buf, "%#x\n", sw->vendor); 2052 } 2053 static DEVICE_ATTR_RO(vendor); 2054 2055 static ssize_t 2056 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 2057 { 2058 struct tb_switch *sw = tb_to_switch(dev); 2059 2060 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: ""); 2061 } 2062 static DEVICE_ATTR_RO(vendor_name); 2063 2064 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 2065 char *buf) 2066 { 2067 struct tb_switch *sw = tb_to_switch(dev); 2068 2069 return sysfs_emit(buf, "%pUb\n", sw->uuid); 2070 } 2071 static DEVICE_ATTR_RO(unique_id); 2072 2073 static struct attribute *switch_attrs[] = { 2074 &dev_attr_authorized.attr, 2075 &dev_attr_boot.attr, 2076 &dev_attr_device.attr, 2077 &dev_attr_device_name.attr, 2078 &dev_attr_generation.attr, 2079 &dev_attr_key.attr, 2080 &dev_attr_nvm_authenticate.attr, 2081 &dev_attr_nvm_authenticate_on_disconnect.attr, 2082 &dev_attr_nvm_version.attr, 2083 &dev_attr_rx_speed.attr, 2084 &dev_attr_rx_lanes.attr, 2085 &dev_attr_tx_speed.attr, 2086 &dev_attr_tx_lanes.attr, 2087 &dev_attr_vendor.attr, 2088 &dev_attr_vendor_name.attr, 2089 &dev_attr_unique_id.attr, 2090 NULL, 2091 }; 2092 2093 static umode_t switch_attr_is_visible(struct kobject *kobj, 2094 struct attribute *attr, int n) 2095 { 2096 struct device *dev = kobj_to_dev(kobj); 2097 struct tb_switch *sw = tb_to_switch(dev); 2098 2099 if (attr == &dev_attr_authorized.attr) { 2100 if (sw->tb->security_level == TB_SECURITY_NOPCIE || 2101 sw->tb->security_level == TB_SECURITY_DPONLY) 2102 return 0; 2103 } else if (attr == &dev_attr_device.attr) { 2104 if (!sw->device) 2105 return 0; 2106 } else if (attr == &dev_attr_device_name.attr) { 2107 if (!sw->device_name) 2108 return 0; 2109 } else if (attr == &dev_attr_vendor.attr) { 2110 if (!sw->vendor) 2111 return 0; 2112 } else if (attr == &dev_attr_vendor_name.attr) { 2113 if (!sw->vendor_name) 2114 return 0; 2115 } else if (attr == &dev_attr_key.attr) { 2116 if (tb_route(sw) && 2117 sw->tb->security_level == TB_SECURITY_SECURE && 2118 sw->security_level == TB_SECURITY_SECURE) 2119 return attr->mode; 2120 return 0; 2121 } else if (attr == &dev_attr_rx_speed.attr || 2122 attr == &dev_attr_rx_lanes.attr || 2123 attr == &dev_attr_tx_speed.attr || 2124 attr == &dev_attr_tx_lanes.attr) { 2125 if (tb_route(sw)) 2126 return attr->mode; 2127 return 0; 2128 } else if (attr == &dev_attr_nvm_authenticate.attr) { 2129 if (nvm_upgradeable(sw)) 2130 return attr->mode; 2131 return 0; 2132 } else if (attr == &dev_attr_nvm_version.attr) { 2133 if (nvm_readable(sw)) 2134 return attr->mode; 2135 return 0; 2136 } else if (attr == &dev_attr_boot.attr) { 2137 if (tb_route(sw)) 2138 return attr->mode; 2139 return 0; 2140 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { 2141 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) 2142 return attr->mode; 2143 return 0; 2144 } 2145 2146 return sw->safe_mode ? 0 : attr->mode; 2147 } 2148 2149 static const struct attribute_group switch_group = { 2150 .is_visible = switch_attr_is_visible, 2151 .attrs = switch_attrs, 2152 }; 2153 2154 static const struct attribute_group *switch_groups[] = { 2155 &switch_group, 2156 NULL, 2157 }; 2158 2159 static void tb_switch_release(struct device *dev) 2160 { 2161 struct tb_switch *sw = tb_to_switch(dev); 2162 struct tb_port *port; 2163 2164 dma_port_free(sw->dma_port); 2165 2166 tb_switch_for_each_port(sw, port) { 2167 ida_destroy(&port->in_hopids); 2168 ida_destroy(&port->out_hopids); 2169 } 2170 2171 kfree(sw->uuid); 2172 kfree(sw->device_name); 2173 kfree(sw->vendor_name); 2174 kfree(sw->ports); 2175 kfree(sw->drom); 2176 kfree(sw->key); 2177 kfree(sw); 2178 } 2179 2180 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env) 2181 { 2182 const struct tb_switch *sw = tb_to_switch(dev); 2183 const char *type; 2184 2185 if (tb_switch_is_usb4(sw)) { 2186 if (add_uevent_var(env, "USB4_VERSION=%u.0", 2187 usb4_switch_version(sw))) 2188 return -ENOMEM; 2189 } 2190 2191 if (!tb_route(sw)) { 2192 type = "host"; 2193 } else { 2194 const struct tb_port *port; 2195 bool hub = false; 2196 2197 /* Device is hub if it has any downstream ports */ 2198 tb_switch_for_each_port(sw, port) { 2199 if (!port->disabled && !tb_is_upstream_port(port) && 2200 tb_port_is_null(port)) { 2201 hub = true; 2202 break; 2203 } 2204 } 2205 2206 type = hub ? "hub" : "device"; 2207 } 2208 2209 if (add_uevent_var(env, "USB4_TYPE=%s", type)) 2210 return -ENOMEM; 2211 return 0; 2212 } 2213 2214 /* 2215 * Currently only need to provide the callbacks. Everything else is handled 2216 * in the connection manager. 2217 */ 2218 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 2219 { 2220 struct tb_switch *sw = tb_to_switch(dev); 2221 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2222 2223 if (cm_ops->runtime_suspend_switch) 2224 return cm_ops->runtime_suspend_switch(sw); 2225 2226 return 0; 2227 } 2228 2229 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 2230 { 2231 struct tb_switch *sw = tb_to_switch(dev); 2232 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2233 2234 if (cm_ops->runtime_resume_switch) 2235 return cm_ops->runtime_resume_switch(sw); 2236 return 0; 2237 } 2238 2239 static const struct dev_pm_ops tb_switch_pm_ops = { 2240 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 2241 NULL) 2242 }; 2243 2244 struct device_type tb_switch_type = { 2245 .name = "thunderbolt_device", 2246 .release = tb_switch_release, 2247 .uevent = tb_switch_uevent, 2248 .pm = &tb_switch_pm_ops, 2249 }; 2250 2251 static int tb_switch_get_generation(struct tb_switch *sw) 2252 { 2253 if (tb_switch_is_usb4(sw)) 2254 return 4; 2255 2256 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) { 2257 switch (sw->config.device_id) { 2258 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 2259 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 2260 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 2261 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 2262 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 2263 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 2264 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 2265 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 2266 return 1; 2267 2268 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 2269 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 2270 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 2271 return 2; 2272 2273 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 2274 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 2275 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 2276 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 2277 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 2278 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 2279 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 2280 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 2281 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 2282 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 2283 return 3; 2284 } 2285 } 2286 2287 /* 2288 * For unknown switches assume generation to be 1 to be on the 2289 * safe side. 2290 */ 2291 tb_sw_warn(sw, "unsupported switch device id %#x\n", 2292 sw->config.device_id); 2293 return 1; 2294 } 2295 2296 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 2297 { 2298 int max_depth; 2299 2300 if (tb_switch_is_usb4(sw) || 2301 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 2302 max_depth = USB4_SWITCH_MAX_DEPTH; 2303 else 2304 max_depth = TB_SWITCH_MAX_DEPTH; 2305 2306 return depth > max_depth; 2307 } 2308 2309 /** 2310 * tb_switch_alloc() - allocate a switch 2311 * @tb: Pointer to the owning domain 2312 * @parent: Parent device for this switch 2313 * @route: Route string for this switch 2314 * 2315 * Allocates and initializes a switch. Will not upload configuration to 2316 * the switch. For that you need to call tb_switch_configure() 2317 * separately. The returned switch should be released by calling 2318 * tb_switch_put(). 2319 * 2320 * Return: Pointer to the allocated switch or ERR_PTR() in case of 2321 * failure. 2322 */ 2323 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 2324 u64 route) 2325 { 2326 struct tb_switch *sw; 2327 int upstream_port; 2328 int i, ret, depth; 2329 2330 /* Unlock the downstream port so we can access the switch below */ 2331 if (route) { 2332 struct tb_switch *parent_sw = tb_to_switch(parent); 2333 struct tb_port *down; 2334 2335 down = tb_port_at(route, parent_sw); 2336 tb_port_unlock(down); 2337 } 2338 2339 depth = tb_route_length(route); 2340 2341 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 2342 if (upstream_port < 0) 2343 return ERR_PTR(upstream_port); 2344 2345 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2346 if (!sw) 2347 return ERR_PTR(-ENOMEM); 2348 2349 sw->tb = tb; 2350 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 2351 if (ret) 2352 goto err_free_sw_ports; 2353 2354 sw->generation = tb_switch_get_generation(sw); 2355 2356 tb_dbg(tb, "current switch config:\n"); 2357 tb_dump_switch(tb, sw); 2358 2359 /* configure switch */ 2360 sw->config.upstream_port_number = upstream_port; 2361 sw->config.depth = depth; 2362 sw->config.route_hi = upper_32_bits(route); 2363 sw->config.route_lo = lower_32_bits(route); 2364 sw->config.enabled = 0; 2365 2366 /* Make sure we do not exceed maximum topology limit */ 2367 if (tb_switch_exceeds_max_depth(sw, depth)) { 2368 ret = -EADDRNOTAVAIL; 2369 goto err_free_sw_ports; 2370 } 2371 2372 /* initialize ports */ 2373 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 2374 GFP_KERNEL); 2375 if (!sw->ports) { 2376 ret = -ENOMEM; 2377 goto err_free_sw_ports; 2378 } 2379 2380 for (i = 0; i <= sw->config.max_port_number; i++) { 2381 /* minimum setup for tb_find_cap and tb_drom_read to work */ 2382 sw->ports[i].sw = sw; 2383 sw->ports[i].port = i; 2384 2385 /* Control port does not need HopID allocation */ 2386 if (i) { 2387 ida_init(&sw->ports[i].in_hopids); 2388 ida_init(&sw->ports[i].out_hopids); 2389 } 2390 } 2391 2392 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 2393 if (ret > 0) 2394 sw->cap_plug_events = ret; 2395 2396 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2); 2397 if (ret > 0) 2398 sw->cap_vsec_tmu = ret; 2399 2400 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 2401 if (ret > 0) 2402 sw->cap_lc = ret; 2403 2404 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP); 2405 if (ret > 0) 2406 sw->cap_lp = ret; 2407 2408 /* Root switch is always authorized */ 2409 if (!route) 2410 sw->authorized = true; 2411 2412 device_initialize(&sw->dev); 2413 sw->dev.parent = parent; 2414 sw->dev.bus = &tb_bus_type; 2415 sw->dev.type = &tb_switch_type; 2416 sw->dev.groups = switch_groups; 2417 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2418 2419 return sw; 2420 2421 err_free_sw_ports: 2422 kfree(sw->ports); 2423 kfree(sw); 2424 2425 return ERR_PTR(ret); 2426 } 2427 2428 /** 2429 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 2430 * @tb: Pointer to the owning domain 2431 * @parent: Parent device for this switch 2432 * @route: Route string for this switch 2433 * 2434 * This creates a switch in safe mode. This means the switch pretty much 2435 * lacks all capabilities except DMA configuration port before it is 2436 * flashed with a valid NVM firmware. 2437 * 2438 * The returned switch must be released by calling tb_switch_put(). 2439 * 2440 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 2441 */ 2442 struct tb_switch * 2443 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 2444 { 2445 struct tb_switch *sw; 2446 2447 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2448 if (!sw) 2449 return ERR_PTR(-ENOMEM); 2450 2451 sw->tb = tb; 2452 sw->config.depth = tb_route_length(route); 2453 sw->config.route_hi = upper_32_bits(route); 2454 sw->config.route_lo = lower_32_bits(route); 2455 sw->safe_mode = true; 2456 2457 device_initialize(&sw->dev); 2458 sw->dev.parent = parent; 2459 sw->dev.bus = &tb_bus_type; 2460 sw->dev.type = &tb_switch_type; 2461 sw->dev.groups = switch_groups; 2462 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2463 2464 return sw; 2465 } 2466 2467 /** 2468 * tb_switch_configure() - Uploads configuration to the switch 2469 * @sw: Switch to configure 2470 * 2471 * Call this function before the switch is added to the system. It will 2472 * upload configuration to the switch and makes it available for the 2473 * connection manager to use. Can be called to the switch again after 2474 * resume from low power states to re-initialize it. 2475 * 2476 * Return: %0 in case of success and negative errno in case of failure 2477 */ 2478 int tb_switch_configure(struct tb_switch *sw) 2479 { 2480 struct tb *tb = sw->tb; 2481 u64 route; 2482 int ret; 2483 2484 route = tb_route(sw); 2485 2486 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 2487 sw->config.enabled ? "restoring" : "initializing", route, 2488 tb_route_length(route), sw->config.upstream_port_number); 2489 2490 sw->config.enabled = 1; 2491 2492 if (tb_switch_is_usb4(sw)) { 2493 /* 2494 * For USB4 devices, we need to program the CM version 2495 * accordingly so that it knows to expose all the 2496 * additional capabilities. Program it according to USB4 2497 * version to avoid changing existing (v1) routers behaviour. 2498 */ 2499 if (usb4_switch_version(sw) < 2) 2500 sw->config.cmuv = ROUTER_CS_4_CMUV_V1; 2501 else 2502 sw->config.cmuv = ROUTER_CS_4_CMUV_V2; 2503 sw->config.plug_events_delay = 0xa; 2504 2505 /* Enumerate the switch */ 2506 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2507 ROUTER_CS_1, 4); 2508 if (ret) 2509 return ret; 2510 2511 ret = usb4_switch_setup(sw); 2512 } else { 2513 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2514 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2515 sw->config.vendor_id); 2516 2517 if (!sw->cap_plug_events) { 2518 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2519 return -ENODEV; 2520 } 2521 2522 /* Enumerate the switch */ 2523 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2524 ROUTER_CS_1, 3); 2525 } 2526 if (ret) 2527 return ret; 2528 2529 return tb_plug_events_active(sw, true); 2530 } 2531 2532 /** 2533 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid 2534 * @sw: Router to configure 2535 * 2536 * Needs to be called before any tunnels can be setup through the 2537 * router. Can be called to any router. 2538 * 2539 * Returns %0 in success and negative errno otherwise. 2540 */ 2541 int tb_switch_configuration_valid(struct tb_switch *sw) 2542 { 2543 if (tb_switch_is_usb4(sw)) 2544 return usb4_switch_configuration_valid(sw); 2545 return 0; 2546 } 2547 2548 static int tb_switch_set_uuid(struct tb_switch *sw) 2549 { 2550 bool uid = false; 2551 u32 uuid[4]; 2552 int ret; 2553 2554 if (sw->uuid) 2555 return 0; 2556 2557 if (tb_switch_is_usb4(sw)) { 2558 ret = usb4_switch_read_uid(sw, &sw->uid); 2559 if (ret) 2560 return ret; 2561 uid = true; 2562 } else { 2563 /* 2564 * The newer controllers include fused UUID as part of 2565 * link controller specific registers 2566 */ 2567 ret = tb_lc_read_uuid(sw, uuid); 2568 if (ret) { 2569 if (ret != -EINVAL) 2570 return ret; 2571 uid = true; 2572 } 2573 } 2574 2575 if (uid) { 2576 /* 2577 * ICM generates UUID based on UID and fills the upper 2578 * two words with ones. This is not strictly following 2579 * UUID format but we want to be compatible with it so 2580 * we do the same here. 2581 */ 2582 uuid[0] = sw->uid & 0xffffffff; 2583 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2584 uuid[2] = 0xffffffff; 2585 uuid[3] = 0xffffffff; 2586 } 2587 2588 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2589 if (!sw->uuid) 2590 return -ENOMEM; 2591 return 0; 2592 } 2593 2594 static int tb_switch_add_dma_port(struct tb_switch *sw) 2595 { 2596 u32 status; 2597 int ret; 2598 2599 switch (sw->generation) { 2600 case 2: 2601 /* Only root switch can be upgraded */ 2602 if (tb_route(sw)) 2603 return 0; 2604 2605 fallthrough; 2606 case 3: 2607 case 4: 2608 ret = tb_switch_set_uuid(sw); 2609 if (ret) 2610 return ret; 2611 break; 2612 2613 default: 2614 /* 2615 * DMA port is the only thing available when the switch 2616 * is in safe mode. 2617 */ 2618 if (!sw->safe_mode) 2619 return 0; 2620 break; 2621 } 2622 2623 if (sw->no_nvm_upgrade) 2624 return 0; 2625 2626 if (tb_switch_is_usb4(sw)) { 2627 ret = usb4_switch_nvm_authenticate_status(sw, &status); 2628 if (ret) 2629 return ret; 2630 2631 if (status) { 2632 tb_sw_info(sw, "switch flash authentication failed\n"); 2633 nvm_set_auth_status(sw, status); 2634 } 2635 2636 return 0; 2637 } 2638 2639 /* Root switch DMA port requires running firmware */ 2640 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2641 return 0; 2642 2643 sw->dma_port = dma_port_alloc(sw); 2644 if (!sw->dma_port) 2645 return 0; 2646 2647 /* 2648 * If there is status already set then authentication failed 2649 * when the dma_port_flash_update_auth() returned. Power cycling 2650 * is not needed (it was done already) so only thing we do here 2651 * is to unblock runtime PM of the root port. 2652 */ 2653 nvm_get_auth_status(sw, &status); 2654 if (status) { 2655 if (!tb_route(sw)) 2656 nvm_authenticate_complete_dma_port(sw); 2657 return 0; 2658 } 2659 2660 /* 2661 * Check status of the previous flash authentication. If there 2662 * is one we need to power cycle the switch in any case to make 2663 * it functional again. 2664 */ 2665 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2666 if (ret <= 0) 2667 return ret; 2668 2669 /* Now we can allow root port to suspend again */ 2670 if (!tb_route(sw)) 2671 nvm_authenticate_complete_dma_port(sw); 2672 2673 if (status) { 2674 tb_sw_info(sw, "switch flash authentication failed\n"); 2675 nvm_set_auth_status(sw, status); 2676 } 2677 2678 tb_sw_info(sw, "power cycling the switch now\n"); 2679 dma_port_power_cycle(sw->dma_port); 2680 2681 /* 2682 * We return error here which causes the switch adding failure. 2683 * It should appear back after power cycle is complete. 2684 */ 2685 return -ESHUTDOWN; 2686 } 2687 2688 static void tb_switch_default_link_ports(struct tb_switch *sw) 2689 { 2690 int i; 2691 2692 for (i = 1; i <= sw->config.max_port_number; i++) { 2693 struct tb_port *port = &sw->ports[i]; 2694 struct tb_port *subordinate; 2695 2696 if (!tb_port_is_null(port)) 2697 continue; 2698 2699 /* Check for the subordinate port */ 2700 if (i == sw->config.max_port_number || 2701 !tb_port_is_null(&sw->ports[i + 1])) 2702 continue; 2703 2704 /* Link them if not already done so (by DROM) */ 2705 subordinate = &sw->ports[i + 1]; 2706 if (!port->dual_link_port && !subordinate->dual_link_port) { 2707 port->link_nr = 0; 2708 port->dual_link_port = subordinate; 2709 subordinate->link_nr = 1; 2710 subordinate->dual_link_port = port; 2711 2712 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2713 port->port, subordinate->port); 2714 } 2715 } 2716 } 2717 2718 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2719 { 2720 const struct tb_port *up = tb_upstream_port(sw); 2721 2722 if (!up->dual_link_port || !up->dual_link_port->remote) 2723 return false; 2724 2725 if (tb_switch_is_usb4(sw)) 2726 return usb4_switch_lane_bonding_possible(sw); 2727 return tb_lc_lane_bonding_possible(sw); 2728 } 2729 2730 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2731 { 2732 struct tb_port *up; 2733 bool change = false; 2734 int ret; 2735 2736 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2737 return 0; 2738 2739 up = tb_upstream_port(sw); 2740 2741 ret = tb_port_get_link_speed(up); 2742 if (ret < 0) 2743 return ret; 2744 if (sw->link_speed != ret) 2745 change = true; 2746 sw->link_speed = ret; 2747 2748 ret = tb_port_get_link_width(up); 2749 if (ret < 0) 2750 return ret; 2751 if (sw->link_width != ret) 2752 change = true; 2753 sw->link_width = ret; 2754 2755 /* Notify userspace that there is possible link attribute change */ 2756 if (device_is_registered(&sw->dev) && change) 2757 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2758 2759 return 0; 2760 } 2761 2762 /* Must be called after tb_switch_update_link_attributes() */ 2763 static void tb_switch_link_init(struct tb_switch *sw) 2764 { 2765 struct tb_port *up, *down; 2766 bool bonded; 2767 2768 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2769 return; 2770 2771 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed); 2772 tb_sw_dbg(sw, "current link width %s\n", width_name(sw->link_width)); 2773 2774 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL; 2775 2776 /* 2777 * Gen 4 links come up as bonded so update the port structures 2778 * accordingly. 2779 */ 2780 up = tb_upstream_port(sw); 2781 down = tb_switch_downstream_port(sw); 2782 2783 up->bonded = bonded; 2784 if (up->dual_link_port) 2785 up->dual_link_port->bonded = bonded; 2786 tb_port_update_credits(up); 2787 2788 down->bonded = bonded; 2789 if (down->dual_link_port) 2790 down->dual_link_port->bonded = bonded; 2791 tb_port_update_credits(down); 2792 } 2793 2794 /** 2795 * tb_switch_lane_bonding_enable() - Enable lane bonding 2796 * @sw: Switch to enable lane bonding 2797 * 2798 * Connection manager can call this function to enable lane bonding of a 2799 * switch. If conditions are correct and both switches support the feature, 2800 * lanes are bonded. It is safe to call this to any switch. 2801 */ 2802 static int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2803 { 2804 struct tb_port *up, *down; 2805 unsigned int width; 2806 int ret; 2807 2808 if (!tb_switch_lane_bonding_possible(sw)) 2809 return 0; 2810 2811 up = tb_upstream_port(sw); 2812 down = tb_switch_downstream_port(sw); 2813 2814 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) || 2815 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL)) 2816 return 0; 2817 2818 /* 2819 * Both lanes need to be in CL0. Here we assume lane 0 already be in 2820 * CL0 and check just for lane 1. 2821 */ 2822 if (tb_wait_for_port(down->dual_link_port, false) <= 0) 2823 return -ENOTCONN; 2824 2825 ret = tb_port_lane_bonding_enable(up); 2826 if (ret) { 2827 tb_port_warn(up, "failed to enable lane bonding\n"); 2828 return ret; 2829 } 2830 2831 ret = tb_port_lane_bonding_enable(down); 2832 if (ret) { 2833 tb_port_warn(down, "failed to enable lane bonding\n"); 2834 tb_port_lane_bonding_disable(up); 2835 return ret; 2836 } 2837 2838 /* Any of the widths are all bonded */ 2839 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX | 2840 TB_LINK_WIDTH_ASYM_RX; 2841 2842 return tb_port_wait_for_link_width(down, width, 100); 2843 } 2844 2845 /** 2846 * tb_switch_lane_bonding_disable() - Disable lane bonding 2847 * @sw: Switch whose lane bonding to disable 2848 * 2849 * Disables lane bonding between @sw and parent. This can be called even 2850 * if lanes were not bonded originally. 2851 */ 2852 static int tb_switch_lane_bonding_disable(struct tb_switch *sw) 2853 { 2854 struct tb_port *up, *down; 2855 int ret; 2856 2857 up = tb_upstream_port(sw); 2858 if (!up->bonded) 2859 return 0; 2860 2861 /* 2862 * If the link is Gen 4 there is no way to switch the link to 2863 * two single lane links so avoid that here. Also don't bother 2864 * if the link is not up anymore (sw is unplugged). 2865 */ 2866 ret = tb_port_get_link_generation(up); 2867 if (ret < 0) 2868 return ret; 2869 if (ret >= 4) 2870 return -EOPNOTSUPP; 2871 2872 down = tb_switch_downstream_port(sw); 2873 tb_port_lane_bonding_disable(up); 2874 tb_port_lane_bonding_disable(down); 2875 2876 /* 2877 * It is fine if we get other errors as the router might have 2878 * been unplugged. 2879 */ 2880 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100); 2881 } 2882 2883 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */ 2884 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width) 2885 { 2886 struct tb_port *up, *down, *port; 2887 enum tb_link_width down_width; 2888 int ret; 2889 2890 up = tb_upstream_port(sw); 2891 down = tb_switch_downstream_port(sw); 2892 2893 if (width == TB_LINK_WIDTH_ASYM_TX) { 2894 down_width = TB_LINK_WIDTH_ASYM_RX; 2895 port = down; 2896 } else { 2897 down_width = TB_LINK_WIDTH_ASYM_TX; 2898 port = up; 2899 } 2900 2901 ret = tb_port_set_link_width(up, width); 2902 if (ret) 2903 return ret; 2904 2905 ret = tb_port_set_link_width(down, down_width); 2906 if (ret) 2907 return ret; 2908 2909 /* 2910 * Initiate the change in the router that one of its TX lanes is 2911 * changing to RX but do so only if there is an actual change. 2912 */ 2913 if (sw->link_width != width) { 2914 ret = usb4_port_asym_start(port); 2915 if (ret) 2916 return ret; 2917 2918 ret = tb_port_wait_for_link_width(up, width, 100); 2919 if (ret) 2920 return ret; 2921 } 2922 2923 return 0; 2924 } 2925 2926 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */ 2927 static int tb_switch_asym_disable(struct tb_switch *sw) 2928 { 2929 struct tb_port *up, *down; 2930 int ret; 2931 2932 up = tb_upstream_port(sw); 2933 down = tb_switch_downstream_port(sw); 2934 2935 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL); 2936 if (ret) 2937 return ret; 2938 2939 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL); 2940 if (ret) 2941 return ret; 2942 2943 /* 2944 * Initiate the change in the router that has three TX lanes and 2945 * is changing one of its TX lanes to RX but only if there is a 2946 * change in the link width. 2947 */ 2948 if (sw->link_width > TB_LINK_WIDTH_DUAL) { 2949 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX) 2950 ret = usb4_port_asym_start(up); 2951 else 2952 ret = usb4_port_asym_start(down); 2953 if (ret) 2954 return ret; 2955 2956 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100); 2957 if (ret) 2958 return ret; 2959 } 2960 2961 return 0; 2962 } 2963 2964 /** 2965 * tb_switch_set_link_width() - Configure router link width 2966 * @sw: Router to configure 2967 * @width: The new link width 2968 * 2969 * Set device router link width to @width from router upstream port 2970 * perspective. Supports also asymmetric links if the routers boths side 2971 * of the link supports it. 2972 * 2973 * Does nothing for host router. 2974 * 2975 * Returns %0 in case of success, negative errno otherwise. 2976 */ 2977 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width) 2978 { 2979 struct tb_port *up, *down; 2980 int ret = 0; 2981 2982 if (!tb_route(sw)) 2983 return 0; 2984 2985 up = tb_upstream_port(sw); 2986 down = tb_switch_downstream_port(sw); 2987 2988 switch (width) { 2989 case TB_LINK_WIDTH_SINGLE: 2990 ret = tb_switch_lane_bonding_disable(sw); 2991 break; 2992 2993 case TB_LINK_WIDTH_DUAL: 2994 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX || 2995 sw->link_width == TB_LINK_WIDTH_ASYM_RX) { 2996 ret = tb_switch_asym_disable(sw); 2997 if (ret) 2998 break; 2999 } 3000 ret = tb_switch_lane_bonding_enable(sw); 3001 break; 3002 3003 case TB_LINK_WIDTH_ASYM_TX: 3004 case TB_LINK_WIDTH_ASYM_RX: 3005 ret = tb_switch_asym_enable(sw, width); 3006 break; 3007 } 3008 3009 switch (ret) { 3010 case 0: 3011 break; 3012 3013 case -ETIMEDOUT: 3014 tb_sw_warn(sw, "timeout changing link width\n"); 3015 return ret; 3016 3017 case -ENOTCONN: 3018 case -EOPNOTSUPP: 3019 case -ENODEV: 3020 return ret; 3021 3022 default: 3023 tb_sw_dbg(sw, "failed to change link width: %d\n", ret); 3024 return ret; 3025 } 3026 3027 tb_port_update_credits(down); 3028 tb_port_update_credits(up); 3029 3030 tb_switch_update_link_attributes(sw); 3031 3032 tb_sw_dbg(sw, "link width set to %s\n", width_name(width)); 3033 return ret; 3034 } 3035 3036 /** 3037 * tb_switch_configure_link() - Set link configured 3038 * @sw: Switch whose link is configured 3039 * 3040 * Sets the link upstream from @sw configured (from both ends) so that 3041 * it will not be disconnected when the domain exits sleep. Can be 3042 * called for any switch. 3043 * 3044 * It is recommended that this is called after lane bonding is enabled. 3045 * 3046 * Returns %0 on success and negative errno in case of error. 3047 */ 3048 int tb_switch_configure_link(struct tb_switch *sw) 3049 { 3050 struct tb_port *up, *down; 3051 int ret; 3052 3053 if (!tb_route(sw) || tb_switch_is_icm(sw)) 3054 return 0; 3055 3056 up = tb_upstream_port(sw); 3057 if (tb_switch_is_usb4(up->sw)) 3058 ret = usb4_port_configure(up); 3059 else 3060 ret = tb_lc_configure_port(up); 3061 if (ret) 3062 return ret; 3063 3064 down = up->remote; 3065 if (tb_switch_is_usb4(down->sw)) 3066 return usb4_port_configure(down); 3067 return tb_lc_configure_port(down); 3068 } 3069 3070 /** 3071 * tb_switch_unconfigure_link() - Unconfigure link 3072 * @sw: Switch whose link is unconfigured 3073 * 3074 * Sets the link unconfigured so the @sw will be disconnected if the 3075 * domain exists sleep. 3076 */ 3077 void tb_switch_unconfigure_link(struct tb_switch *sw) 3078 { 3079 struct tb_port *up, *down; 3080 3081 if (sw->is_unplugged) 3082 return; 3083 if (!tb_route(sw) || tb_switch_is_icm(sw)) 3084 return; 3085 3086 up = tb_upstream_port(sw); 3087 if (tb_switch_is_usb4(up->sw)) 3088 usb4_port_unconfigure(up); 3089 else 3090 tb_lc_unconfigure_port(up); 3091 3092 down = up->remote; 3093 if (tb_switch_is_usb4(down->sw)) 3094 usb4_port_unconfigure(down); 3095 else 3096 tb_lc_unconfigure_port(down); 3097 } 3098 3099 static void tb_switch_credits_init(struct tb_switch *sw) 3100 { 3101 if (tb_switch_is_icm(sw)) 3102 return; 3103 if (!tb_switch_is_usb4(sw)) 3104 return; 3105 if (usb4_switch_credits_init(sw)) 3106 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n"); 3107 } 3108 3109 static int tb_switch_port_hotplug_enable(struct tb_switch *sw) 3110 { 3111 struct tb_port *port; 3112 3113 if (tb_switch_is_icm(sw)) 3114 return 0; 3115 3116 tb_switch_for_each_port(sw, port) { 3117 int res; 3118 3119 if (!port->cap_usb4) 3120 continue; 3121 3122 res = usb4_port_hotplug_enable(port); 3123 if (res) 3124 return res; 3125 } 3126 return 0; 3127 } 3128 3129 /** 3130 * tb_switch_add() - Add a switch to the domain 3131 * @sw: Switch to add 3132 * 3133 * This is the last step in adding switch to the domain. It will read 3134 * identification information from DROM and initializes ports so that 3135 * they can be used to connect other switches. The switch will be 3136 * exposed to the userspace when this function successfully returns. To 3137 * remove and release the switch, call tb_switch_remove(). 3138 * 3139 * Return: %0 in case of success and negative errno in case of failure 3140 */ 3141 int tb_switch_add(struct tb_switch *sw) 3142 { 3143 int i, ret; 3144 3145 /* 3146 * Initialize DMA control port now before we read DROM. Recent 3147 * host controllers have more complete DROM on NVM that includes 3148 * vendor and model identification strings which we then expose 3149 * to the userspace. NVM can be accessed through DMA 3150 * configuration based mailbox. 3151 */ 3152 ret = tb_switch_add_dma_port(sw); 3153 if (ret) { 3154 dev_err(&sw->dev, "failed to add DMA port\n"); 3155 return ret; 3156 } 3157 3158 if (!sw->safe_mode) { 3159 tb_switch_credits_init(sw); 3160 3161 /* read drom */ 3162 ret = tb_drom_read(sw); 3163 if (ret) 3164 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret); 3165 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 3166 3167 ret = tb_switch_set_uuid(sw); 3168 if (ret) { 3169 dev_err(&sw->dev, "failed to set UUID\n"); 3170 return ret; 3171 } 3172 3173 for (i = 0; i <= sw->config.max_port_number; i++) { 3174 if (sw->ports[i].disabled) { 3175 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 3176 continue; 3177 } 3178 ret = tb_init_port(&sw->ports[i]); 3179 if (ret) { 3180 dev_err(&sw->dev, "failed to initialize port %d\n", i); 3181 return ret; 3182 } 3183 } 3184 3185 tb_check_quirks(sw); 3186 3187 tb_switch_default_link_ports(sw); 3188 3189 ret = tb_switch_update_link_attributes(sw); 3190 if (ret) 3191 return ret; 3192 3193 tb_switch_link_init(sw); 3194 3195 ret = tb_switch_clx_init(sw); 3196 if (ret) 3197 return ret; 3198 3199 ret = tb_switch_tmu_init(sw); 3200 if (ret) 3201 return ret; 3202 } 3203 3204 ret = tb_switch_port_hotplug_enable(sw); 3205 if (ret) 3206 return ret; 3207 3208 ret = device_add(&sw->dev); 3209 if (ret) { 3210 dev_err(&sw->dev, "failed to add device: %d\n", ret); 3211 return ret; 3212 } 3213 3214 if (tb_route(sw)) { 3215 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 3216 sw->vendor, sw->device); 3217 if (sw->vendor_name && sw->device_name) 3218 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 3219 sw->device_name); 3220 } 3221 3222 ret = usb4_switch_add_ports(sw); 3223 if (ret) { 3224 dev_err(&sw->dev, "failed to add USB4 ports\n"); 3225 goto err_del; 3226 } 3227 3228 ret = tb_switch_nvm_add(sw); 3229 if (ret) { 3230 dev_err(&sw->dev, "failed to add NVM devices\n"); 3231 goto err_ports; 3232 } 3233 3234 /* 3235 * Thunderbolt routers do not generate wakeups themselves but 3236 * they forward wakeups from tunneled protocols, so enable it 3237 * here. 3238 */ 3239 device_init_wakeup(&sw->dev, true); 3240 3241 pm_runtime_set_active(&sw->dev); 3242 if (sw->rpm) { 3243 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 3244 pm_runtime_use_autosuspend(&sw->dev); 3245 pm_runtime_mark_last_busy(&sw->dev); 3246 pm_runtime_enable(&sw->dev); 3247 pm_request_autosuspend(&sw->dev); 3248 } 3249 3250 tb_switch_debugfs_init(sw); 3251 return 0; 3252 3253 err_ports: 3254 usb4_switch_remove_ports(sw); 3255 err_del: 3256 device_del(&sw->dev); 3257 3258 return ret; 3259 } 3260 3261 /** 3262 * tb_switch_remove() - Remove and release a switch 3263 * @sw: Switch to remove 3264 * 3265 * This will remove the switch from the domain and release it after last 3266 * reference count drops to zero. If there are switches connected below 3267 * this switch, they will be removed as well. 3268 */ 3269 void tb_switch_remove(struct tb_switch *sw) 3270 { 3271 struct tb_port *port; 3272 3273 tb_switch_debugfs_remove(sw); 3274 3275 if (sw->rpm) { 3276 pm_runtime_get_sync(&sw->dev); 3277 pm_runtime_disable(&sw->dev); 3278 } 3279 3280 /* port 0 is the switch itself and never has a remote */ 3281 tb_switch_for_each_port(sw, port) { 3282 if (tb_port_has_remote(port)) { 3283 tb_switch_remove(port->remote->sw); 3284 port->remote = NULL; 3285 } else if (port->xdomain) { 3286 tb_xdomain_remove(port->xdomain); 3287 port->xdomain = NULL; 3288 } 3289 3290 /* Remove any downstream retimers */ 3291 tb_retimer_remove_all(port); 3292 } 3293 3294 if (!sw->is_unplugged) 3295 tb_plug_events_active(sw, false); 3296 3297 tb_switch_nvm_remove(sw); 3298 usb4_switch_remove_ports(sw); 3299 3300 if (tb_route(sw)) 3301 dev_info(&sw->dev, "device disconnected\n"); 3302 device_unregister(&sw->dev); 3303 } 3304 3305 /** 3306 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 3307 * @sw: Router to mark unplugged 3308 */ 3309 void tb_sw_set_unplugged(struct tb_switch *sw) 3310 { 3311 struct tb_port *port; 3312 3313 if (sw == sw->tb->root_switch) { 3314 tb_sw_WARN(sw, "cannot unplug root switch\n"); 3315 return; 3316 } 3317 if (sw->is_unplugged) { 3318 tb_sw_WARN(sw, "is_unplugged already set\n"); 3319 return; 3320 } 3321 sw->is_unplugged = true; 3322 tb_switch_for_each_port(sw, port) { 3323 if (tb_port_has_remote(port)) 3324 tb_sw_set_unplugged(port->remote->sw); 3325 else if (port->xdomain) 3326 port->xdomain->is_unplugged = true; 3327 } 3328 } 3329 3330 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags) 3331 { 3332 if (flags) 3333 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags); 3334 else 3335 tb_sw_dbg(sw, "disabling wakeup\n"); 3336 3337 if (tb_switch_is_usb4(sw)) 3338 return usb4_switch_set_wake(sw, flags); 3339 return tb_lc_set_wake(sw, flags); 3340 } 3341 3342 int tb_switch_resume(struct tb_switch *sw) 3343 { 3344 struct tb_port *port; 3345 int err; 3346 3347 tb_sw_dbg(sw, "resuming switch\n"); 3348 3349 /* 3350 * Check for UID of the connected switches except for root 3351 * switch which we assume cannot be removed. 3352 */ 3353 if (tb_route(sw)) { 3354 u64 uid; 3355 3356 /* 3357 * Check first that we can still read the switch config 3358 * space. It may be that there is now another domain 3359 * connected. 3360 */ 3361 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 3362 if (err < 0) { 3363 tb_sw_info(sw, "switch not present anymore\n"); 3364 return err; 3365 } 3366 3367 /* We don't have any way to confirm this was the same device */ 3368 if (!sw->uid) 3369 return -ENODEV; 3370 3371 if (tb_switch_is_usb4(sw)) 3372 err = usb4_switch_read_uid(sw, &uid); 3373 else 3374 err = tb_drom_read_uid_only(sw, &uid); 3375 if (err) { 3376 tb_sw_warn(sw, "uid read failed\n"); 3377 return err; 3378 } 3379 if (sw->uid != uid) { 3380 tb_sw_info(sw, 3381 "changed while suspended (uid %#llx -> %#llx)\n", 3382 sw->uid, uid); 3383 return -ENODEV; 3384 } 3385 } 3386 3387 err = tb_switch_configure(sw); 3388 if (err) 3389 return err; 3390 3391 /* Disable wakes */ 3392 tb_switch_set_wake(sw, 0); 3393 3394 err = tb_switch_tmu_init(sw); 3395 if (err) 3396 return err; 3397 3398 /* check for surviving downstream switches */ 3399 tb_switch_for_each_port(sw, port) { 3400 if (!tb_port_is_null(port)) 3401 continue; 3402 3403 if (!tb_port_resume(port)) 3404 continue; 3405 3406 if (tb_wait_for_port(port, true) <= 0) { 3407 tb_port_warn(port, 3408 "lost during suspend, disconnecting\n"); 3409 if (tb_port_has_remote(port)) 3410 tb_sw_set_unplugged(port->remote->sw); 3411 else if (port->xdomain) 3412 port->xdomain->is_unplugged = true; 3413 } else { 3414 /* 3415 * Always unlock the port so the downstream 3416 * switch/domain is accessible. 3417 */ 3418 if (tb_port_unlock(port)) 3419 tb_port_warn(port, "failed to unlock port\n"); 3420 if (port->remote && tb_switch_resume(port->remote->sw)) { 3421 tb_port_warn(port, 3422 "lost during suspend, disconnecting\n"); 3423 tb_sw_set_unplugged(port->remote->sw); 3424 } 3425 } 3426 } 3427 return 0; 3428 } 3429 3430 /** 3431 * tb_switch_suspend() - Put a switch to sleep 3432 * @sw: Switch to suspend 3433 * @runtime: Is this runtime suspend or system sleep 3434 * 3435 * Suspends router and all its children. Enables wakes according to 3436 * value of @runtime and then sets sleep bit for the router. If @sw is 3437 * host router the domain is ready to go to sleep once this function 3438 * returns. 3439 */ 3440 void tb_switch_suspend(struct tb_switch *sw, bool runtime) 3441 { 3442 unsigned int flags = 0; 3443 struct tb_port *port; 3444 int err; 3445 3446 tb_sw_dbg(sw, "suspending switch\n"); 3447 3448 /* 3449 * Actually only needed for Titan Ridge but for simplicity can be 3450 * done for USB4 device too as CLx is re-enabled at resume. 3451 */ 3452 tb_switch_clx_disable(sw); 3453 3454 err = tb_plug_events_active(sw, false); 3455 if (err) 3456 return; 3457 3458 tb_switch_for_each_port(sw, port) { 3459 if (tb_port_has_remote(port)) 3460 tb_switch_suspend(port->remote->sw, runtime); 3461 } 3462 3463 if (runtime) { 3464 /* Trigger wake when something is plugged in/out */ 3465 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT; 3466 flags |= TB_WAKE_ON_USB4; 3467 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP; 3468 } else if (device_may_wakeup(&sw->dev)) { 3469 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE; 3470 } 3471 3472 tb_switch_set_wake(sw, flags); 3473 3474 if (tb_switch_is_usb4(sw)) 3475 usb4_switch_set_sleep(sw); 3476 else 3477 tb_lc_set_sleep(sw); 3478 } 3479 3480 /** 3481 * tb_switch_query_dp_resource() - Query availability of DP resource 3482 * @sw: Switch whose DP resource is queried 3483 * @in: DP IN port 3484 * 3485 * Queries availability of DP resource for DP tunneling using switch 3486 * specific means. Returns %true if resource is available. 3487 */ 3488 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 3489 { 3490 if (tb_switch_is_usb4(sw)) 3491 return usb4_switch_query_dp_resource(sw, in); 3492 return tb_lc_dp_sink_query(sw, in); 3493 } 3494 3495 /** 3496 * tb_switch_alloc_dp_resource() - Allocate available DP resource 3497 * @sw: Switch whose DP resource is allocated 3498 * @in: DP IN port 3499 * 3500 * Allocates DP resource for DP tunneling. The resource must be 3501 * available for this to succeed (see tb_switch_query_dp_resource()). 3502 * Returns %0 in success and negative errno otherwise. 3503 */ 3504 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3505 { 3506 int ret; 3507 3508 if (tb_switch_is_usb4(sw)) 3509 ret = usb4_switch_alloc_dp_resource(sw, in); 3510 else 3511 ret = tb_lc_dp_sink_alloc(sw, in); 3512 3513 if (ret) 3514 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n", 3515 in->port); 3516 else 3517 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port); 3518 3519 return ret; 3520 } 3521 3522 /** 3523 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 3524 * @sw: Switch whose DP resource is de-allocated 3525 * @in: DP IN port 3526 * 3527 * De-allocates DP resource that was previously allocated for DP 3528 * tunneling. 3529 */ 3530 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3531 { 3532 int ret; 3533 3534 if (tb_switch_is_usb4(sw)) 3535 ret = usb4_switch_dealloc_dp_resource(sw, in); 3536 else 3537 ret = tb_lc_dp_sink_dealloc(sw, in); 3538 3539 if (ret) 3540 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 3541 in->port); 3542 else 3543 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port); 3544 } 3545 3546 struct tb_sw_lookup { 3547 struct tb *tb; 3548 u8 link; 3549 u8 depth; 3550 const uuid_t *uuid; 3551 u64 route; 3552 }; 3553 3554 static int tb_switch_match(struct device *dev, const void *data) 3555 { 3556 struct tb_switch *sw = tb_to_switch(dev); 3557 const struct tb_sw_lookup *lookup = data; 3558 3559 if (!sw) 3560 return 0; 3561 if (sw->tb != lookup->tb) 3562 return 0; 3563 3564 if (lookup->uuid) 3565 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 3566 3567 if (lookup->route) { 3568 return sw->config.route_lo == lower_32_bits(lookup->route) && 3569 sw->config.route_hi == upper_32_bits(lookup->route); 3570 } 3571 3572 /* Root switch is matched only by depth */ 3573 if (!lookup->depth) 3574 return !sw->depth; 3575 3576 return sw->link == lookup->link && sw->depth == lookup->depth; 3577 } 3578 3579 /** 3580 * tb_switch_find_by_link_depth() - Find switch by link and depth 3581 * @tb: Domain the switch belongs 3582 * @link: Link number the switch is connected 3583 * @depth: Depth of the switch in link 3584 * 3585 * Returned switch has reference count increased so the caller needs to 3586 * call tb_switch_put() when done with the switch. 3587 */ 3588 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 3589 { 3590 struct tb_sw_lookup lookup; 3591 struct device *dev; 3592 3593 memset(&lookup, 0, sizeof(lookup)); 3594 lookup.tb = tb; 3595 lookup.link = link; 3596 lookup.depth = depth; 3597 3598 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3599 if (dev) 3600 return tb_to_switch(dev); 3601 3602 return NULL; 3603 } 3604 3605 /** 3606 * tb_switch_find_by_uuid() - Find switch by UUID 3607 * @tb: Domain the switch belongs 3608 * @uuid: UUID to look for 3609 * 3610 * Returned switch has reference count increased so the caller needs to 3611 * call tb_switch_put() when done with the switch. 3612 */ 3613 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 3614 { 3615 struct tb_sw_lookup lookup; 3616 struct device *dev; 3617 3618 memset(&lookup, 0, sizeof(lookup)); 3619 lookup.tb = tb; 3620 lookup.uuid = uuid; 3621 3622 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3623 if (dev) 3624 return tb_to_switch(dev); 3625 3626 return NULL; 3627 } 3628 3629 /** 3630 * tb_switch_find_by_route() - Find switch by route string 3631 * @tb: Domain the switch belongs 3632 * @route: Route string to look for 3633 * 3634 * Returned switch has reference count increased so the caller needs to 3635 * call tb_switch_put() when done with the switch. 3636 */ 3637 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 3638 { 3639 struct tb_sw_lookup lookup; 3640 struct device *dev; 3641 3642 if (!route) 3643 return tb_switch_get(tb->root_switch); 3644 3645 memset(&lookup, 0, sizeof(lookup)); 3646 lookup.tb = tb; 3647 lookup.route = route; 3648 3649 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3650 if (dev) 3651 return tb_to_switch(dev); 3652 3653 return NULL; 3654 } 3655 3656 /** 3657 * tb_switch_find_port() - return the first port of @type on @sw or NULL 3658 * @sw: Switch to find the port from 3659 * @type: Port type to look for 3660 */ 3661 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 3662 enum tb_port_type type) 3663 { 3664 struct tb_port *port; 3665 3666 tb_switch_for_each_port(sw, port) { 3667 if (port->config.type == type) 3668 return port; 3669 } 3670 3671 return NULL; 3672 } 3673 3674 /* 3675 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3 3676 * device. For now used only for Titan Ridge. 3677 */ 3678 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge, 3679 unsigned int pcie_offset, u32 value) 3680 { 3681 u32 offset, command, val; 3682 int ret; 3683 3684 if (sw->generation != 3) 3685 return -EOPNOTSUPP; 3686 3687 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA; 3688 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1); 3689 if (ret) 3690 return ret; 3691 3692 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK; 3693 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT); 3694 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK; 3695 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL 3696 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT; 3697 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK; 3698 3699 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD; 3700 3701 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1); 3702 if (ret) 3703 return ret; 3704 3705 ret = tb_switch_wait_for_bit(sw, offset, 3706 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100); 3707 if (ret) 3708 return ret; 3709 3710 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 3711 if (ret) 3712 return ret; 3713 3714 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK) 3715 return -ETIMEDOUT; 3716 3717 return 0; 3718 } 3719 3720 /** 3721 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state 3722 * @sw: Router to enable PCIe L1 3723 * 3724 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable 3725 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel 3726 * was configured. Due to Intel platforms limitation, shall be called only 3727 * for first hop switch. 3728 */ 3729 int tb_switch_pcie_l1_enable(struct tb_switch *sw) 3730 { 3731 struct tb_switch *parent = tb_switch_parent(sw); 3732 int ret; 3733 3734 if (!tb_route(sw)) 3735 return 0; 3736 3737 if (!tb_switch_is_titan_ridge(sw)) 3738 return 0; 3739 3740 /* Enable PCIe L1 enable only for first hop router (depth = 1) */ 3741 if (tb_route(parent)) 3742 return 0; 3743 3744 /* Write to downstream PCIe bridge #5 aka Dn4 */ 3745 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1); 3746 if (ret) 3747 return ret; 3748 3749 /* Write to Upstream PCIe bridge #0 aka Up0 */ 3750 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1); 3751 } 3752 3753 /** 3754 * tb_switch_xhci_connect() - Connect internal xHCI 3755 * @sw: Router whose xHCI to connect 3756 * 3757 * Can be called to any router. For Alpine Ridge and Titan Ridge 3758 * performs special flows that bring the xHCI functional for any device 3759 * connected to the type-C port. Call only after PCIe tunnel has been 3760 * established. The function only does the connect if not done already 3761 * so can be called several times for the same router. 3762 */ 3763 int tb_switch_xhci_connect(struct tb_switch *sw) 3764 { 3765 struct tb_port *port1, *port3; 3766 int ret; 3767 3768 if (sw->generation != 3) 3769 return 0; 3770 3771 port1 = &sw->ports[1]; 3772 port3 = &sw->ports[3]; 3773 3774 if (tb_switch_is_alpine_ridge(sw)) { 3775 bool usb_port1, usb_port3, xhci_port1, xhci_port3; 3776 3777 usb_port1 = tb_lc_is_usb_plugged(port1); 3778 usb_port3 = tb_lc_is_usb_plugged(port3); 3779 xhci_port1 = tb_lc_is_xhci_connected(port1); 3780 xhci_port3 = tb_lc_is_xhci_connected(port3); 3781 3782 /* Figure out correct USB port to connect */ 3783 if (usb_port1 && !xhci_port1) { 3784 ret = tb_lc_xhci_connect(port1); 3785 if (ret) 3786 return ret; 3787 } 3788 if (usb_port3 && !xhci_port3) 3789 return tb_lc_xhci_connect(port3); 3790 } else if (tb_switch_is_titan_ridge(sw)) { 3791 ret = tb_lc_xhci_connect(port1); 3792 if (ret) 3793 return ret; 3794 return tb_lc_xhci_connect(port3); 3795 } 3796 3797 return 0; 3798 } 3799 3800 /** 3801 * tb_switch_xhci_disconnect() - Disconnect internal xHCI 3802 * @sw: Router whose xHCI to disconnect 3803 * 3804 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both 3805 * ports. 3806 */ 3807 void tb_switch_xhci_disconnect(struct tb_switch *sw) 3808 { 3809 if (sw->generation == 3) { 3810 struct tb_port *port1 = &sw->ports[1]; 3811 struct tb_port *port3 = &sw->ports[3]; 3812 3813 tb_lc_xhci_disconnect(port1); 3814 tb_port_dbg(port1, "disconnected xHCI\n"); 3815 tb_lc_xhci_disconnect(port3); 3816 tb_port_dbg(port3, "disconnected xHCI\n"); 3817 } 3818 } 3819