1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 18 #include "tb.h" 19 20 /* Switch NVM support */ 21 22 #define NVM_DEVID 0x05 23 #define NVM_VERSION 0x08 24 #define NVM_CSS 0x10 25 #define NVM_FLASH_SIZE 0x45 26 27 #define NVM_MIN_SIZE SZ_32K 28 #define NVM_MAX_SIZE SZ_512K 29 30 static DEFINE_IDA(nvm_ida); 31 32 struct nvm_auth_status { 33 struct list_head list; 34 uuid_t uuid; 35 u32 status; 36 }; 37 38 /* 39 * Hold NVM authentication failure status per switch This information 40 * needs to stay around even when the switch gets power cycled so we 41 * keep it separately. 42 */ 43 static LIST_HEAD(nvm_auth_status_cache); 44 static DEFINE_MUTEX(nvm_auth_status_lock); 45 46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 47 { 48 struct nvm_auth_status *st; 49 50 list_for_each_entry(st, &nvm_auth_status_cache, list) { 51 if (uuid_equal(&st->uuid, sw->uuid)) 52 return st; 53 } 54 55 return NULL; 56 } 57 58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 59 { 60 struct nvm_auth_status *st; 61 62 mutex_lock(&nvm_auth_status_lock); 63 st = __nvm_get_auth_status(sw); 64 mutex_unlock(&nvm_auth_status_lock); 65 66 *status = st ? st->status : 0; 67 } 68 69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 70 { 71 struct nvm_auth_status *st; 72 73 if (WARN_ON(!sw->uuid)) 74 return; 75 76 mutex_lock(&nvm_auth_status_lock); 77 st = __nvm_get_auth_status(sw); 78 79 if (!st) { 80 st = kzalloc(sizeof(*st), GFP_KERNEL); 81 if (!st) 82 goto unlock; 83 84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 85 INIT_LIST_HEAD(&st->list); 86 list_add_tail(&st->list, &nvm_auth_status_cache); 87 } 88 89 st->status = status; 90 unlock: 91 mutex_unlock(&nvm_auth_status_lock); 92 } 93 94 static void nvm_clear_auth_status(const struct tb_switch *sw) 95 { 96 struct nvm_auth_status *st; 97 98 mutex_lock(&nvm_auth_status_lock); 99 st = __nvm_get_auth_status(sw); 100 if (st) { 101 list_del(&st->list); 102 kfree(st); 103 } 104 mutex_unlock(&nvm_auth_status_lock); 105 } 106 107 static int nvm_validate_and_write(struct tb_switch *sw) 108 { 109 unsigned int image_size, hdr_size; 110 const u8 *buf = sw->nvm->buf; 111 u16 ds_size; 112 int ret; 113 114 if (!buf) 115 return -EINVAL; 116 117 image_size = sw->nvm->buf_data_size; 118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 119 return -EINVAL; 120 121 /* 122 * FARB pointer must point inside the image and must at least 123 * contain parts of the digital section we will be reading here. 124 */ 125 hdr_size = (*(u32 *)buf) & 0xffffff; 126 if (hdr_size + NVM_DEVID + 2 >= image_size) 127 return -EINVAL; 128 129 /* Digital section start should be aligned to 4k page */ 130 if (!IS_ALIGNED(hdr_size, SZ_4K)) 131 return -EINVAL; 132 133 /* 134 * Read digital section size and check that it also fits inside 135 * the image. 136 */ 137 ds_size = *(u16 *)(buf + hdr_size); 138 if (ds_size >= image_size) 139 return -EINVAL; 140 141 if (!sw->safe_mode) { 142 u16 device_id; 143 144 /* 145 * Make sure the device ID in the image matches the one 146 * we read from the switch config space. 147 */ 148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 149 if (device_id != sw->config.device_id) 150 return -EINVAL; 151 152 if (sw->generation < 3) { 153 /* Write CSS headers first */ 154 ret = dma_port_flash_write(sw->dma_port, 155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 156 DMA_PORT_CSS_MAX_SIZE); 157 if (ret) 158 return ret; 159 } 160 161 /* Skip headers in the image */ 162 buf += hdr_size; 163 image_size -= hdr_size; 164 } 165 166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 167 } 168 169 static int nvm_authenticate_host(struct tb_switch *sw) 170 { 171 int ret; 172 173 /* 174 * Root switch NVM upgrade requires that we disconnect the 175 * existing paths first (in case it is not in safe mode 176 * already). 177 */ 178 if (!sw->safe_mode) { 179 ret = tb_domain_disconnect_all_paths(sw->tb); 180 if (ret) 181 return ret; 182 /* 183 * The host controller goes away pretty soon after this if 184 * everything goes well so getting timeout is expected. 185 */ 186 ret = dma_port_flash_update_auth(sw->dma_port); 187 return ret == -ETIMEDOUT ? 0 : ret; 188 } 189 190 /* 191 * From safe mode we can get out by just power cycling the 192 * switch. 193 */ 194 dma_port_power_cycle(sw->dma_port); 195 return 0; 196 } 197 198 static int nvm_authenticate_device(struct tb_switch *sw) 199 { 200 int ret, retries = 10; 201 202 ret = dma_port_flash_update_auth(sw->dma_port); 203 if (ret && ret != -ETIMEDOUT) 204 return ret; 205 206 /* 207 * Poll here for the authentication status. It takes some time 208 * for the device to respond (we get timeout for a while). Once 209 * we get response the device needs to be power cycled in order 210 * to the new NVM to be taken into use. 211 */ 212 do { 213 u32 status; 214 215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 216 if (ret < 0 && ret != -ETIMEDOUT) 217 return ret; 218 if (ret > 0) { 219 if (status) { 220 tb_sw_warn(sw, "failed to authenticate NVM\n"); 221 nvm_set_auth_status(sw, status); 222 } 223 224 tb_sw_info(sw, "power cycling the switch now\n"); 225 dma_port_power_cycle(sw->dma_port); 226 return 0; 227 } 228 229 msleep(500); 230 } while (--retries); 231 232 return -ETIMEDOUT; 233 } 234 235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 236 size_t bytes) 237 { 238 struct tb_switch *sw = priv; 239 int ret; 240 241 pm_runtime_get_sync(&sw->dev); 242 243 if (!mutex_trylock(&sw->tb->lock)) { 244 ret = restart_syscall(); 245 goto out; 246 } 247 248 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes); 249 mutex_unlock(&sw->tb->lock); 250 251 out: 252 pm_runtime_mark_last_busy(&sw->dev); 253 pm_runtime_put_autosuspend(&sw->dev); 254 255 return ret; 256 } 257 258 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 259 size_t bytes) 260 { 261 struct tb_switch *sw = priv; 262 int ret = 0; 263 264 if (!mutex_trylock(&sw->tb->lock)) 265 return restart_syscall(); 266 267 /* 268 * Since writing the NVM image might require some special steps, 269 * for example when CSS headers are written, we cache the image 270 * locally here and handle the special cases when the user asks 271 * us to authenticate the image. 272 */ 273 if (!sw->nvm->buf) { 274 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 275 if (!sw->nvm->buf) { 276 ret = -ENOMEM; 277 goto unlock; 278 } 279 } 280 281 sw->nvm->buf_data_size = offset + bytes; 282 memcpy(sw->nvm->buf + offset, val, bytes); 283 284 unlock: 285 mutex_unlock(&sw->tb->lock); 286 287 return ret; 288 } 289 290 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 291 size_t size, bool active) 292 { 293 struct nvmem_config config; 294 295 memset(&config, 0, sizeof(config)); 296 297 if (active) { 298 config.name = "nvm_active"; 299 config.reg_read = tb_switch_nvm_read; 300 config.read_only = true; 301 } else { 302 config.name = "nvm_non_active"; 303 config.reg_write = tb_switch_nvm_write; 304 config.root_only = true; 305 } 306 307 config.id = id; 308 config.stride = 4; 309 config.word_size = 4; 310 config.size = size; 311 config.dev = &sw->dev; 312 config.owner = THIS_MODULE; 313 config.priv = sw; 314 315 return nvmem_register(&config); 316 } 317 318 static int tb_switch_nvm_add(struct tb_switch *sw) 319 { 320 struct nvmem_device *nvm_dev; 321 struct tb_switch_nvm *nvm; 322 u32 val; 323 int ret; 324 325 if (!sw->dma_port) 326 return 0; 327 328 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 329 if (!nvm) 330 return -ENOMEM; 331 332 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 333 334 /* 335 * If the switch is in safe-mode the only accessible portion of 336 * the NVM is the non-active one where userspace is expected to 337 * write new functional NVM. 338 */ 339 if (!sw->safe_mode) { 340 u32 nvm_size, hdr_size; 341 342 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 343 sizeof(val)); 344 if (ret) 345 goto err_ida; 346 347 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 348 nvm_size = (SZ_1M << (val & 7)) / 8; 349 nvm_size = (nvm_size - hdr_size) / 2; 350 351 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 352 sizeof(val)); 353 if (ret) 354 goto err_ida; 355 356 nvm->major = val >> 16; 357 nvm->minor = val >> 8; 358 359 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 360 if (IS_ERR(nvm_dev)) { 361 ret = PTR_ERR(nvm_dev); 362 goto err_ida; 363 } 364 nvm->active = nvm_dev; 365 } 366 367 if (!sw->no_nvm_upgrade) { 368 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 369 if (IS_ERR(nvm_dev)) { 370 ret = PTR_ERR(nvm_dev); 371 goto err_nvm_active; 372 } 373 nvm->non_active = nvm_dev; 374 } 375 376 sw->nvm = nvm; 377 return 0; 378 379 err_nvm_active: 380 if (nvm->active) 381 nvmem_unregister(nvm->active); 382 err_ida: 383 ida_simple_remove(&nvm_ida, nvm->id); 384 kfree(nvm); 385 386 return ret; 387 } 388 389 static void tb_switch_nvm_remove(struct tb_switch *sw) 390 { 391 struct tb_switch_nvm *nvm; 392 393 nvm = sw->nvm; 394 sw->nvm = NULL; 395 396 if (!nvm) 397 return; 398 399 /* Remove authentication status in case the switch is unplugged */ 400 if (!nvm->authenticating) 401 nvm_clear_auth_status(sw); 402 403 if (nvm->non_active) 404 nvmem_unregister(nvm->non_active); 405 if (nvm->active) 406 nvmem_unregister(nvm->active); 407 ida_simple_remove(&nvm_ida, nvm->id); 408 vfree(nvm->buf); 409 kfree(nvm); 410 } 411 412 /* port utility functions */ 413 414 static const char *tb_port_type(struct tb_regs_port_header *port) 415 { 416 switch (port->type >> 16) { 417 case 0: 418 switch ((u8) port->type) { 419 case 0: 420 return "Inactive"; 421 case 1: 422 return "Port"; 423 case 2: 424 return "NHI"; 425 default: 426 return "unknown"; 427 } 428 case 0x2: 429 return "Ethernet"; 430 case 0x8: 431 return "SATA"; 432 case 0xe: 433 return "DP/HDMI"; 434 case 0x10: 435 return "PCIe"; 436 case 0x20: 437 return "USB"; 438 default: 439 return "unknown"; 440 } 441 } 442 443 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 444 { 445 tb_dbg(tb, 446 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 447 port->port_number, port->vendor_id, port->device_id, 448 port->revision, port->thunderbolt_version, tb_port_type(port), 449 port->type); 450 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 451 port->max_in_hop_id, port->max_out_hop_id); 452 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 453 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 454 } 455 456 /** 457 * tb_port_state() - get connectedness state of a port 458 * 459 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 460 * 461 * Return: Returns an enum tb_port_state on success or an error code on failure. 462 */ 463 static int tb_port_state(struct tb_port *port) 464 { 465 struct tb_cap_phy phy; 466 int res; 467 if (port->cap_phy == 0) { 468 tb_port_WARN(port, "does not have a PHY\n"); 469 return -EINVAL; 470 } 471 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 472 if (res) 473 return res; 474 return phy.state; 475 } 476 477 /** 478 * tb_wait_for_port() - wait for a port to become ready 479 * 480 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 481 * wait_if_unplugged is set then we also wait if the port is in state 482 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 483 * switch resume). Otherwise we only wait if a device is registered but the link 484 * has not yet been established. 485 * 486 * Return: Returns an error code on failure. Returns 0 if the port is not 487 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 488 * if the port is connected and in state TB_PORT_UP. 489 */ 490 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 491 { 492 int retries = 10; 493 int state; 494 if (!port->cap_phy) { 495 tb_port_WARN(port, "does not have PHY\n"); 496 return -EINVAL; 497 } 498 if (tb_is_upstream_port(port)) { 499 tb_port_WARN(port, "is the upstream port\n"); 500 return -EINVAL; 501 } 502 503 while (retries--) { 504 state = tb_port_state(port); 505 if (state < 0) 506 return state; 507 if (state == TB_PORT_DISABLED) { 508 tb_port_dbg(port, "is disabled (state: 0)\n"); 509 return 0; 510 } 511 if (state == TB_PORT_UNPLUGGED) { 512 if (wait_if_unplugged) { 513 /* used during resume */ 514 tb_port_dbg(port, 515 "is unplugged (state: 7), retrying...\n"); 516 msleep(100); 517 continue; 518 } 519 tb_port_dbg(port, "is unplugged (state: 7)\n"); 520 return 0; 521 } 522 if (state == TB_PORT_UP) { 523 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 524 return 1; 525 } 526 527 /* 528 * After plug-in the state is TB_PORT_CONNECTING. Give it some 529 * time. 530 */ 531 tb_port_dbg(port, 532 "is connected, link is not up (state: %d), retrying...\n", 533 state); 534 msleep(100); 535 } 536 tb_port_warn(port, 537 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 538 return 0; 539 } 540 541 /** 542 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 543 * 544 * Change the number of NFC credits allocated to @port by @credits. To remove 545 * NFC credits pass a negative amount of credits. 546 * 547 * Return: Returns 0 on success or an error code on failure. 548 */ 549 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 550 { 551 u32 nfc_credits; 552 553 if (credits == 0 || port->sw->is_unplugged) 554 return 0; 555 556 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK; 557 nfc_credits += credits; 558 559 tb_port_dbg(port, "adding %d NFC credits to %lu", 560 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK); 561 562 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK; 563 port->config.nfc_credits |= nfc_credits; 564 565 return tb_port_write(port, &port->config.nfc_credits, 566 TB_CFG_PORT, 4, 1); 567 } 568 569 /** 570 * tb_port_set_initial_credits() - Set initial port link credits allocated 571 * @port: Port to set the initial credits 572 * @credits: Number of credits to to allocate 573 * 574 * Set initial credits value to be used for ingress shared buffering. 575 */ 576 int tb_port_set_initial_credits(struct tb_port *port, u32 credits) 577 { 578 u32 data; 579 int ret; 580 581 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1); 582 if (ret) 583 return ret; 584 585 data &= ~TB_PORT_LCA_MASK; 586 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK; 587 588 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1); 589 } 590 591 /** 592 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 593 * 594 * Return: Returns 0 on success or an error code on failure. 595 */ 596 int tb_port_clear_counter(struct tb_port *port, int counter) 597 { 598 u32 zero[3] = { 0, 0, 0 }; 599 tb_port_dbg(port, "clearing counter %d\n", counter); 600 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 601 } 602 603 /** 604 * tb_init_port() - initialize a port 605 * 606 * This is a helper method for tb_switch_alloc. Does not check or initialize 607 * any downstream switches. 608 * 609 * Return: Returns 0 on success or an error code on failure. 610 */ 611 static int tb_init_port(struct tb_port *port) 612 { 613 int res; 614 int cap; 615 616 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 617 if (res) { 618 if (res == -ENODEV) { 619 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 620 port->port); 621 return 0; 622 } 623 return res; 624 } 625 626 /* Port 0 is the switch itself and has no PHY. */ 627 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 628 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 629 630 if (cap > 0) 631 port->cap_phy = cap; 632 else 633 tb_port_WARN(port, "non switch port without a PHY\n"); 634 } else if (port->port != 0) { 635 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 636 if (cap > 0) 637 port->cap_adap = cap; 638 } 639 640 tb_dump_port(port->sw->tb, &port->config); 641 642 /* Control port does not need HopID allocation */ 643 if (port->port) { 644 ida_init(&port->in_hopids); 645 ida_init(&port->out_hopids); 646 } 647 648 return 0; 649 650 } 651 652 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 653 int max_hopid) 654 { 655 int port_max_hopid; 656 struct ida *ida; 657 658 if (in) { 659 port_max_hopid = port->config.max_in_hop_id; 660 ida = &port->in_hopids; 661 } else { 662 port_max_hopid = port->config.max_out_hop_id; 663 ida = &port->out_hopids; 664 } 665 666 /* HopIDs 0-7 are reserved */ 667 if (min_hopid < TB_PATH_MIN_HOPID) 668 min_hopid = TB_PATH_MIN_HOPID; 669 670 if (max_hopid < 0 || max_hopid > port_max_hopid) 671 max_hopid = port_max_hopid; 672 673 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 674 } 675 676 /** 677 * tb_port_alloc_in_hopid() - Allocate input HopID from port 678 * @port: Port to allocate HopID for 679 * @min_hopid: Minimum acceptable input HopID 680 * @max_hopid: Maximum acceptable input HopID 681 * 682 * Return: HopID between @min_hopid and @max_hopid or negative errno in 683 * case of error. 684 */ 685 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 686 { 687 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 688 } 689 690 /** 691 * tb_port_alloc_out_hopid() - Allocate output HopID from port 692 * @port: Port to allocate HopID for 693 * @min_hopid: Minimum acceptable output HopID 694 * @max_hopid: Maximum acceptable output HopID 695 * 696 * Return: HopID between @min_hopid and @max_hopid or negative errno in 697 * case of error. 698 */ 699 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 700 { 701 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 702 } 703 704 /** 705 * tb_port_release_in_hopid() - Release allocated input HopID from port 706 * @port: Port whose HopID to release 707 * @hopid: HopID to release 708 */ 709 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 710 { 711 ida_simple_remove(&port->in_hopids, hopid); 712 } 713 714 /** 715 * tb_port_release_out_hopid() - Release allocated output HopID from port 716 * @port: Port whose HopID to release 717 * @hopid: HopID to release 718 */ 719 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 720 { 721 ida_simple_remove(&port->out_hopids, hopid); 722 } 723 724 /** 725 * tb_next_port_on_path() - Return next port for given port on a path 726 * @start: Start port of the walk 727 * @end: End port of the walk 728 * @prev: Previous port (%NULL if this is the first) 729 * 730 * This function can be used to walk from one port to another if they 731 * are connected through zero or more switches. If the @prev is dual 732 * link port, the function follows that link and returns another end on 733 * that same link. 734 * 735 * If the @end port has been reached, return %NULL. 736 * 737 * Domain tb->lock must be held when this function is called. 738 */ 739 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 740 struct tb_port *prev) 741 { 742 struct tb_port *next; 743 744 if (!prev) 745 return start; 746 747 if (prev->sw == end->sw) { 748 if (prev == end) 749 return NULL; 750 return end; 751 } 752 753 if (start->sw->config.depth < end->sw->config.depth) { 754 if (prev->remote && 755 prev->remote->sw->config.depth > prev->sw->config.depth) 756 next = prev->remote; 757 else 758 next = tb_port_at(tb_route(end->sw), prev->sw); 759 } else { 760 if (tb_is_upstream_port(prev)) { 761 next = prev->remote; 762 } else { 763 next = tb_upstream_port(prev->sw); 764 /* 765 * Keep the same link if prev and next are both 766 * dual link ports. 767 */ 768 if (next->dual_link_port && 769 next->link_nr != prev->link_nr) { 770 next = next->dual_link_port; 771 } 772 } 773 } 774 775 return next; 776 } 777 778 /** 779 * tb_port_is_enabled() - Is the adapter port enabled 780 * @port: Port to check 781 */ 782 bool tb_port_is_enabled(struct tb_port *port) 783 { 784 switch (port->config.type) { 785 case TB_TYPE_PCIE_UP: 786 case TB_TYPE_PCIE_DOWN: 787 return tb_pci_port_is_enabled(port); 788 789 case TB_TYPE_DP_HDMI_IN: 790 case TB_TYPE_DP_HDMI_OUT: 791 return tb_dp_port_is_enabled(port); 792 793 default: 794 return false; 795 } 796 } 797 798 /** 799 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 800 * @port: PCIe port to check 801 */ 802 bool tb_pci_port_is_enabled(struct tb_port *port) 803 { 804 u32 data; 805 806 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1)) 807 return false; 808 809 return !!(data & TB_PCI_EN); 810 } 811 812 /** 813 * tb_pci_port_enable() - Enable PCIe adapter port 814 * @port: PCIe port to enable 815 * @enable: Enable/disable the PCIe adapter 816 */ 817 int tb_pci_port_enable(struct tb_port *port, bool enable) 818 { 819 u32 word = enable ? TB_PCI_EN : 0x0; 820 if (!port->cap_adap) 821 return -ENXIO; 822 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1); 823 } 824 825 /** 826 * tb_dp_port_hpd_is_active() - Is HPD already active 827 * @port: DP out port to check 828 * 829 * Checks if the DP OUT adapter port has HDP bit already set. 830 */ 831 int tb_dp_port_hpd_is_active(struct tb_port *port) 832 { 833 u32 data; 834 int ret; 835 836 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1); 837 if (ret) 838 return ret; 839 840 return !!(data & TB_DP_HDP); 841 } 842 843 /** 844 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 845 * @port: Port to clear HPD 846 * 847 * If the DP IN port has HDP set, this function can be used to clear it. 848 */ 849 int tb_dp_port_hpd_clear(struct tb_port *port) 850 { 851 u32 data; 852 int ret; 853 854 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1); 855 if (ret) 856 return ret; 857 858 data |= TB_DP_HPDC; 859 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1); 860 } 861 862 /** 863 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 864 * @port: DP IN/OUT port to set hops 865 * @video: Video Hop ID 866 * @aux_tx: AUX TX Hop ID 867 * @aux_rx: AUX RX Hop ID 868 * 869 * Programs specified Hop IDs for DP IN/OUT port. 870 */ 871 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 872 unsigned int aux_tx, unsigned int aux_rx) 873 { 874 u32 data[2]; 875 int ret; 876 877 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap, 878 ARRAY_SIZE(data)); 879 if (ret) 880 return ret; 881 882 data[0] &= ~TB_DP_VIDEO_HOPID_MASK; 883 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK); 884 885 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK; 886 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK; 887 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK; 888 889 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap, 890 ARRAY_SIZE(data)); 891 } 892 893 /** 894 * tb_dp_port_is_enabled() - Is DP adapter port enabled 895 * @port: DP adapter port to check 896 */ 897 bool tb_dp_port_is_enabled(struct tb_port *port) 898 { 899 u32 data[2]; 900 901 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap, 902 ARRAY_SIZE(data))) 903 return false; 904 905 return !!(data[0] & (TB_DP_VIDEO_EN | TB_DP_AUX_EN)); 906 } 907 908 /** 909 * tb_dp_port_enable() - Enables/disables DP paths of a port 910 * @port: DP IN/OUT port 911 * @enable: Enable/disable DP path 912 * 913 * Once Hop IDs are programmed DP paths can be enabled or disabled by 914 * calling this function. 915 */ 916 int tb_dp_port_enable(struct tb_port *port, bool enable) 917 { 918 u32 data[2]; 919 int ret; 920 921 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap, 922 ARRAY_SIZE(data)); 923 if (ret) 924 return ret; 925 926 if (enable) 927 data[0] |= TB_DP_VIDEO_EN | TB_DP_AUX_EN; 928 else 929 data[0] &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN); 930 931 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap, 932 ARRAY_SIZE(data)); 933 } 934 935 /* switch utility functions */ 936 937 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 938 { 939 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 940 sw->vendor_id, sw->device_id, sw->revision, 941 sw->thunderbolt_version); 942 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number); 943 tb_dbg(tb, " Config:\n"); 944 tb_dbg(tb, 945 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 946 sw->upstream_port_number, sw->depth, 947 (((u64) sw->route_hi) << 32) | sw->route_lo, 948 sw->enabled, sw->plug_events_delay); 949 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 950 sw->__unknown1, sw->__unknown4); 951 } 952 953 /** 954 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 955 * 956 * Return: Returns 0 on success or an error code on failure. 957 */ 958 int tb_switch_reset(struct tb *tb, u64 route) 959 { 960 struct tb_cfg_result res; 961 struct tb_regs_switch_header header = { 962 header.route_hi = route >> 32, 963 header.route_lo = route, 964 header.enabled = true, 965 }; 966 tb_dbg(tb, "resetting switch at %llx\n", route); 967 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 968 0, 2, 2, 2); 969 if (res.err) 970 return res.err; 971 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 972 if (res.err > 0) 973 return -EIO; 974 return res.err; 975 } 976 977 /** 978 * tb_plug_events_active() - enable/disable plug events on a switch 979 * 980 * Also configures a sane plug_events_delay of 255ms. 981 * 982 * Return: Returns 0 on success or an error code on failure. 983 */ 984 static int tb_plug_events_active(struct tb_switch *sw, bool active) 985 { 986 u32 data; 987 int res; 988 989 if (!sw->config.enabled) 990 return 0; 991 992 sw->config.plug_events_delay = 0xff; 993 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 994 if (res) 995 return res; 996 997 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 998 if (res) 999 return res; 1000 1001 if (active) { 1002 data = data & 0xFFFFFF83; 1003 switch (sw->config.device_id) { 1004 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1005 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1006 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1007 break; 1008 default: 1009 data |= 4; 1010 } 1011 } else { 1012 data = data | 0x7c; 1013 } 1014 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1015 sw->cap_plug_events + 1, 1); 1016 } 1017 1018 static ssize_t authorized_show(struct device *dev, 1019 struct device_attribute *attr, 1020 char *buf) 1021 { 1022 struct tb_switch *sw = tb_to_switch(dev); 1023 1024 return sprintf(buf, "%u\n", sw->authorized); 1025 } 1026 1027 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1028 { 1029 int ret = -EINVAL; 1030 1031 if (!mutex_trylock(&sw->tb->lock)) 1032 return restart_syscall(); 1033 1034 if (sw->authorized) 1035 goto unlock; 1036 1037 switch (val) { 1038 /* Approve switch */ 1039 case 1: 1040 if (sw->key) 1041 ret = tb_domain_approve_switch_key(sw->tb, sw); 1042 else 1043 ret = tb_domain_approve_switch(sw->tb, sw); 1044 break; 1045 1046 /* Challenge switch */ 1047 case 2: 1048 if (sw->key) 1049 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1050 break; 1051 1052 default: 1053 break; 1054 } 1055 1056 if (!ret) { 1057 sw->authorized = val; 1058 /* Notify status change to the userspace */ 1059 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1060 } 1061 1062 unlock: 1063 mutex_unlock(&sw->tb->lock); 1064 return ret; 1065 } 1066 1067 static ssize_t authorized_store(struct device *dev, 1068 struct device_attribute *attr, 1069 const char *buf, size_t count) 1070 { 1071 struct tb_switch *sw = tb_to_switch(dev); 1072 unsigned int val; 1073 ssize_t ret; 1074 1075 ret = kstrtouint(buf, 0, &val); 1076 if (ret) 1077 return ret; 1078 if (val > 2) 1079 return -EINVAL; 1080 1081 pm_runtime_get_sync(&sw->dev); 1082 ret = tb_switch_set_authorized(sw, val); 1083 pm_runtime_mark_last_busy(&sw->dev); 1084 pm_runtime_put_autosuspend(&sw->dev); 1085 1086 return ret ? ret : count; 1087 } 1088 static DEVICE_ATTR_RW(authorized); 1089 1090 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1091 char *buf) 1092 { 1093 struct tb_switch *sw = tb_to_switch(dev); 1094 1095 return sprintf(buf, "%u\n", sw->boot); 1096 } 1097 static DEVICE_ATTR_RO(boot); 1098 1099 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1100 char *buf) 1101 { 1102 struct tb_switch *sw = tb_to_switch(dev); 1103 1104 return sprintf(buf, "%#x\n", sw->device); 1105 } 1106 static DEVICE_ATTR_RO(device); 1107 1108 static ssize_t 1109 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1110 { 1111 struct tb_switch *sw = tb_to_switch(dev); 1112 1113 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1114 } 1115 static DEVICE_ATTR_RO(device_name); 1116 1117 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1118 char *buf) 1119 { 1120 struct tb_switch *sw = tb_to_switch(dev); 1121 ssize_t ret; 1122 1123 if (!mutex_trylock(&sw->tb->lock)) 1124 return restart_syscall(); 1125 1126 if (sw->key) 1127 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1128 else 1129 ret = sprintf(buf, "\n"); 1130 1131 mutex_unlock(&sw->tb->lock); 1132 return ret; 1133 } 1134 1135 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1136 const char *buf, size_t count) 1137 { 1138 struct tb_switch *sw = tb_to_switch(dev); 1139 u8 key[TB_SWITCH_KEY_SIZE]; 1140 ssize_t ret = count; 1141 bool clear = false; 1142 1143 if (!strcmp(buf, "\n")) 1144 clear = true; 1145 else if (hex2bin(key, buf, sizeof(key))) 1146 return -EINVAL; 1147 1148 if (!mutex_trylock(&sw->tb->lock)) 1149 return restart_syscall(); 1150 1151 if (sw->authorized) { 1152 ret = -EBUSY; 1153 } else { 1154 kfree(sw->key); 1155 if (clear) { 1156 sw->key = NULL; 1157 } else { 1158 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1159 if (!sw->key) 1160 ret = -ENOMEM; 1161 } 1162 } 1163 1164 mutex_unlock(&sw->tb->lock); 1165 return ret; 1166 } 1167 static DEVICE_ATTR(key, 0600, key_show, key_store); 1168 1169 static void nvm_authenticate_start(struct tb_switch *sw) 1170 { 1171 struct pci_dev *root_port; 1172 1173 /* 1174 * During host router NVM upgrade we should not allow root port to 1175 * go into D3cold because some root ports cannot trigger PME 1176 * itself. To be on the safe side keep the root port in D0 during 1177 * the whole upgrade process. 1178 */ 1179 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 1180 if (root_port) 1181 pm_runtime_get_noresume(&root_port->dev); 1182 } 1183 1184 static void nvm_authenticate_complete(struct tb_switch *sw) 1185 { 1186 struct pci_dev *root_port; 1187 1188 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 1189 if (root_port) 1190 pm_runtime_put(&root_port->dev); 1191 } 1192 1193 static ssize_t nvm_authenticate_show(struct device *dev, 1194 struct device_attribute *attr, char *buf) 1195 { 1196 struct tb_switch *sw = tb_to_switch(dev); 1197 u32 status; 1198 1199 nvm_get_auth_status(sw, &status); 1200 return sprintf(buf, "%#x\n", status); 1201 } 1202 1203 static ssize_t nvm_authenticate_store(struct device *dev, 1204 struct device_attribute *attr, const char *buf, size_t count) 1205 { 1206 struct tb_switch *sw = tb_to_switch(dev); 1207 bool val; 1208 int ret; 1209 1210 pm_runtime_get_sync(&sw->dev); 1211 1212 if (!mutex_trylock(&sw->tb->lock)) { 1213 ret = restart_syscall(); 1214 goto exit_rpm; 1215 } 1216 1217 /* If NVMem devices are not yet added */ 1218 if (!sw->nvm) { 1219 ret = -EAGAIN; 1220 goto exit_unlock; 1221 } 1222 1223 ret = kstrtobool(buf, &val); 1224 if (ret) 1225 goto exit_unlock; 1226 1227 /* Always clear the authentication status */ 1228 nvm_clear_auth_status(sw); 1229 1230 if (val) { 1231 if (!sw->nvm->buf) { 1232 ret = -EINVAL; 1233 goto exit_unlock; 1234 } 1235 1236 ret = nvm_validate_and_write(sw); 1237 if (ret) 1238 goto exit_unlock; 1239 1240 sw->nvm->authenticating = true; 1241 1242 if (!tb_route(sw)) { 1243 /* 1244 * Keep root port from suspending as long as the 1245 * NVM upgrade process is running. 1246 */ 1247 nvm_authenticate_start(sw); 1248 ret = nvm_authenticate_host(sw); 1249 if (ret) 1250 nvm_authenticate_complete(sw); 1251 } else { 1252 ret = nvm_authenticate_device(sw); 1253 } 1254 } 1255 1256 exit_unlock: 1257 mutex_unlock(&sw->tb->lock); 1258 exit_rpm: 1259 pm_runtime_mark_last_busy(&sw->dev); 1260 pm_runtime_put_autosuspend(&sw->dev); 1261 1262 if (ret) 1263 return ret; 1264 return count; 1265 } 1266 static DEVICE_ATTR_RW(nvm_authenticate); 1267 1268 static ssize_t nvm_version_show(struct device *dev, 1269 struct device_attribute *attr, char *buf) 1270 { 1271 struct tb_switch *sw = tb_to_switch(dev); 1272 int ret; 1273 1274 if (!mutex_trylock(&sw->tb->lock)) 1275 return restart_syscall(); 1276 1277 if (sw->safe_mode) 1278 ret = -ENODATA; 1279 else if (!sw->nvm) 1280 ret = -EAGAIN; 1281 else 1282 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1283 1284 mutex_unlock(&sw->tb->lock); 1285 1286 return ret; 1287 } 1288 static DEVICE_ATTR_RO(nvm_version); 1289 1290 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1291 char *buf) 1292 { 1293 struct tb_switch *sw = tb_to_switch(dev); 1294 1295 return sprintf(buf, "%#x\n", sw->vendor); 1296 } 1297 static DEVICE_ATTR_RO(vendor); 1298 1299 static ssize_t 1300 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1301 { 1302 struct tb_switch *sw = tb_to_switch(dev); 1303 1304 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1305 } 1306 static DEVICE_ATTR_RO(vendor_name); 1307 1308 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1309 char *buf) 1310 { 1311 struct tb_switch *sw = tb_to_switch(dev); 1312 1313 return sprintf(buf, "%pUb\n", sw->uuid); 1314 } 1315 static DEVICE_ATTR_RO(unique_id); 1316 1317 static struct attribute *switch_attrs[] = { 1318 &dev_attr_authorized.attr, 1319 &dev_attr_boot.attr, 1320 &dev_attr_device.attr, 1321 &dev_attr_device_name.attr, 1322 &dev_attr_key.attr, 1323 &dev_attr_nvm_authenticate.attr, 1324 &dev_attr_nvm_version.attr, 1325 &dev_attr_vendor.attr, 1326 &dev_attr_vendor_name.attr, 1327 &dev_attr_unique_id.attr, 1328 NULL, 1329 }; 1330 1331 static umode_t switch_attr_is_visible(struct kobject *kobj, 1332 struct attribute *attr, int n) 1333 { 1334 struct device *dev = container_of(kobj, struct device, kobj); 1335 struct tb_switch *sw = tb_to_switch(dev); 1336 1337 if (attr == &dev_attr_device.attr) { 1338 if (!sw->device) 1339 return 0; 1340 } else if (attr == &dev_attr_device_name.attr) { 1341 if (!sw->device_name) 1342 return 0; 1343 } else if (attr == &dev_attr_vendor.attr) { 1344 if (!sw->vendor) 1345 return 0; 1346 } else if (attr == &dev_attr_vendor_name.attr) { 1347 if (!sw->vendor_name) 1348 return 0; 1349 } else if (attr == &dev_attr_key.attr) { 1350 if (tb_route(sw) && 1351 sw->tb->security_level == TB_SECURITY_SECURE && 1352 sw->security_level == TB_SECURITY_SECURE) 1353 return attr->mode; 1354 return 0; 1355 } else if (attr == &dev_attr_nvm_authenticate.attr) { 1356 if (sw->dma_port && !sw->no_nvm_upgrade) 1357 return attr->mode; 1358 return 0; 1359 } else if (attr == &dev_attr_nvm_version.attr) { 1360 if (sw->dma_port) 1361 return attr->mode; 1362 return 0; 1363 } else if (attr == &dev_attr_boot.attr) { 1364 if (tb_route(sw)) 1365 return attr->mode; 1366 return 0; 1367 } 1368 1369 return sw->safe_mode ? 0 : attr->mode; 1370 } 1371 1372 static struct attribute_group switch_group = { 1373 .is_visible = switch_attr_is_visible, 1374 .attrs = switch_attrs, 1375 }; 1376 1377 static const struct attribute_group *switch_groups[] = { 1378 &switch_group, 1379 NULL, 1380 }; 1381 1382 static void tb_switch_release(struct device *dev) 1383 { 1384 struct tb_switch *sw = tb_to_switch(dev); 1385 int i; 1386 1387 dma_port_free(sw->dma_port); 1388 1389 for (i = 1; i <= sw->config.max_port_number; i++) { 1390 if (!sw->ports[i].disabled) { 1391 ida_destroy(&sw->ports[i].in_hopids); 1392 ida_destroy(&sw->ports[i].out_hopids); 1393 } 1394 } 1395 1396 kfree(sw->uuid); 1397 kfree(sw->device_name); 1398 kfree(sw->vendor_name); 1399 kfree(sw->ports); 1400 kfree(sw->drom); 1401 kfree(sw->key); 1402 kfree(sw); 1403 } 1404 1405 /* 1406 * Currently only need to provide the callbacks. Everything else is handled 1407 * in the connection manager. 1408 */ 1409 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1410 { 1411 struct tb_switch *sw = tb_to_switch(dev); 1412 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1413 1414 if (cm_ops->runtime_suspend_switch) 1415 return cm_ops->runtime_suspend_switch(sw); 1416 1417 return 0; 1418 } 1419 1420 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1421 { 1422 struct tb_switch *sw = tb_to_switch(dev); 1423 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1424 1425 if (cm_ops->runtime_resume_switch) 1426 return cm_ops->runtime_resume_switch(sw); 1427 return 0; 1428 } 1429 1430 static const struct dev_pm_ops tb_switch_pm_ops = { 1431 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1432 NULL) 1433 }; 1434 1435 struct device_type tb_switch_type = { 1436 .name = "thunderbolt_device", 1437 .release = tb_switch_release, 1438 .pm = &tb_switch_pm_ops, 1439 }; 1440 1441 static int tb_switch_get_generation(struct tb_switch *sw) 1442 { 1443 switch (sw->config.device_id) { 1444 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1445 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1446 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1447 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1448 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1449 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1450 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1451 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1452 return 1; 1453 1454 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1455 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1456 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1457 return 2; 1458 1459 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1460 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1461 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1462 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1463 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1464 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1465 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1466 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1467 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 1468 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 1469 return 3; 1470 1471 default: 1472 /* 1473 * For unknown switches assume generation to be 1 to be 1474 * on the safe side. 1475 */ 1476 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1477 sw->config.device_id); 1478 return 1; 1479 } 1480 } 1481 1482 /** 1483 * tb_switch_alloc() - allocate a switch 1484 * @tb: Pointer to the owning domain 1485 * @parent: Parent device for this switch 1486 * @route: Route string for this switch 1487 * 1488 * Allocates and initializes a switch. Will not upload configuration to 1489 * the switch. For that you need to call tb_switch_configure() 1490 * separately. The returned switch should be released by calling 1491 * tb_switch_put(). 1492 * 1493 * Return: Pointer to the allocated switch or ERR_PTR() in case of 1494 * failure. 1495 */ 1496 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1497 u64 route) 1498 { 1499 struct tb_switch *sw; 1500 int upstream_port; 1501 int i, ret, depth; 1502 1503 /* Make sure we do not exceed maximum topology limit */ 1504 depth = tb_route_length(route); 1505 if (depth > TB_SWITCH_MAX_DEPTH) 1506 return ERR_PTR(-EADDRNOTAVAIL); 1507 1508 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1509 if (upstream_port < 0) 1510 return ERR_PTR(upstream_port); 1511 1512 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1513 if (!sw) 1514 return ERR_PTR(-ENOMEM); 1515 1516 sw->tb = tb; 1517 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 1518 if (ret) 1519 goto err_free_sw_ports; 1520 1521 tb_dbg(tb, "current switch config:\n"); 1522 tb_dump_switch(tb, &sw->config); 1523 1524 /* configure switch */ 1525 sw->config.upstream_port_number = upstream_port; 1526 sw->config.depth = depth; 1527 sw->config.route_hi = upper_32_bits(route); 1528 sw->config.route_lo = lower_32_bits(route); 1529 sw->config.enabled = 0; 1530 1531 /* initialize ports */ 1532 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1533 GFP_KERNEL); 1534 if (!sw->ports) { 1535 ret = -ENOMEM; 1536 goto err_free_sw_ports; 1537 } 1538 1539 for (i = 0; i <= sw->config.max_port_number; i++) { 1540 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1541 sw->ports[i].sw = sw; 1542 sw->ports[i].port = i; 1543 } 1544 1545 sw->generation = tb_switch_get_generation(sw); 1546 1547 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1548 if (ret < 0) { 1549 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1550 goto err_free_sw_ports; 1551 } 1552 sw->cap_plug_events = ret; 1553 1554 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1555 if (ret > 0) 1556 sw->cap_lc = ret; 1557 1558 /* Root switch is always authorized */ 1559 if (!route) 1560 sw->authorized = true; 1561 1562 device_initialize(&sw->dev); 1563 sw->dev.parent = parent; 1564 sw->dev.bus = &tb_bus_type; 1565 sw->dev.type = &tb_switch_type; 1566 sw->dev.groups = switch_groups; 1567 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1568 1569 return sw; 1570 1571 err_free_sw_ports: 1572 kfree(sw->ports); 1573 kfree(sw); 1574 1575 return ERR_PTR(ret); 1576 } 1577 1578 /** 1579 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1580 * @tb: Pointer to the owning domain 1581 * @parent: Parent device for this switch 1582 * @route: Route string for this switch 1583 * 1584 * This creates a switch in safe mode. This means the switch pretty much 1585 * lacks all capabilities except DMA configuration port before it is 1586 * flashed with a valid NVM firmware. 1587 * 1588 * The returned switch must be released by calling tb_switch_put(). 1589 * 1590 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 1591 */ 1592 struct tb_switch * 1593 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1594 { 1595 struct tb_switch *sw; 1596 1597 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1598 if (!sw) 1599 return ERR_PTR(-ENOMEM); 1600 1601 sw->tb = tb; 1602 sw->config.depth = tb_route_length(route); 1603 sw->config.route_hi = upper_32_bits(route); 1604 sw->config.route_lo = lower_32_bits(route); 1605 sw->safe_mode = true; 1606 1607 device_initialize(&sw->dev); 1608 sw->dev.parent = parent; 1609 sw->dev.bus = &tb_bus_type; 1610 sw->dev.type = &tb_switch_type; 1611 sw->dev.groups = switch_groups; 1612 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1613 1614 return sw; 1615 } 1616 1617 /** 1618 * tb_switch_configure() - Uploads configuration to the switch 1619 * @sw: Switch to configure 1620 * 1621 * Call this function before the switch is added to the system. It will 1622 * upload configuration to the switch and makes it available for the 1623 * connection manager to use. 1624 * 1625 * Return: %0 in case of success and negative errno in case of failure 1626 */ 1627 int tb_switch_configure(struct tb_switch *sw) 1628 { 1629 struct tb *tb = sw->tb; 1630 u64 route; 1631 int ret; 1632 1633 route = tb_route(sw); 1634 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1635 route, tb_route_length(route), sw->config.upstream_port_number); 1636 1637 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1638 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1639 sw->config.vendor_id); 1640 1641 sw->config.enabled = 1; 1642 1643 /* upload configuration */ 1644 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1645 if (ret) 1646 return ret; 1647 1648 ret = tb_lc_configure_link(sw); 1649 if (ret) 1650 return ret; 1651 1652 return tb_plug_events_active(sw, true); 1653 } 1654 1655 static int tb_switch_set_uuid(struct tb_switch *sw) 1656 { 1657 u32 uuid[4]; 1658 int ret; 1659 1660 if (sw->uuid) 1661 return 0; 1662 1663 /* 1664 * The newer controllers include fused UUID as part of link 1665 * controller specific registers 1666 */ 1667 ret = tb_lc_read_uuid(sw, uuid); 1668 if (ret) { 1669 /* 1670 * ICM generates UUID based on UID and fills the upper 1671 * two words with ones. This is not strictly following 1672 * UUID format but we want to be compatible with it so 1673 * we do the same here. 1674 */ 1675 uuid[0] = sw->uid & 0xffffffff; 1676 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1677 uuid[2] = 0xffffffff; 1678 uuid[3] = 0xffffffff; 1679 } 1680 1681 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1682 if (!sw->uuid) 1683 return -ENOMEM; 1684 return 0; 1685 } 1686 1687 static int tb_switch_add_dma_port(struct tb_switch *sw) 1688 { 1689 u32 status; 1690 int ret; 1691 1692 switch (sw->generation) { 1693 case 3: 1694 break; 1695 1696 case 2: 1697 /* Only root switch can be upgraded */ 1698 if (tb_route(sw)) 1699 return 0; 1700 break; 1701 1702 default: 1703 /* 1704 * DMA port is the only thing available when the switch 1705 * is in safe mode. 1706 */ 1707 if (!sw->safe_mode) 1708 return 0; 1709 break; 1710 } 1711 1712 /* Root switch DMA port requires running firmware */ 1713 if (!tb_route(sw) && sw->config.enabled) 1714 return 0; 1715 1716 sw->dma_port = dma_port_alloc(sw); 1717 if (!sw->dma_port) 1718 return 0; 1719 1720 if (sw->no_nvm_upgrade) 1721 return 0; 1722 1723 /* 1724 * Check status of the previous flash authentication. If there 1725 * is one we need to power cycle the switch in any case to make 1726 * it functional again. 1727 */ 1728 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1729 if (ret <= 0) 1730 return ret; 1731 1732 /* Now we can allow root port to suspend again */ 1733 if (!tb_route(sw)) 1734 nvm_authenticate_complete(sw); 1735 1736 if (status) { 1737 tb_sw_info(sw, "switch flash authentication failed\n"); 1738 ret = tb_switch_set_uuid(sw); 1739 if (ret) 1740 return ret; 1741 nvm_set_auth_status(sw, status); 1742 } 1743 1744 tb_sw_info(sw, "power cycling the switch now\n"); 1745 dma_port_power_cycle(sw->dma_port); 1746 1747 /* 1748 * We return error here which causes the switch adding failure. 1749 * It should appear back after power cycle is complete. 1750 */ 1751 return -ESHUTDOWN; 1752 } 1753 1754 /** 1755 * tb_switch_add() - Add a switch to the domain 1756 * @sw: Switch to add 1757 * 1758 * This is the last step in adding switch to the domain. It will read 1759 * identification information from DROM and initializes ports so that 1760 * they can be used to connect other switches. The switch will be 1761 * exposed to the userspace when this function successfully returns. To 1762 * remove and release the switch, call tb_switch_remove(). 1763 * 1764 * Return: %0 in case of success and negative errno in case of failure 1765 */ 1766 int tb_switch_add(struct tb_switch *sw) 1767 { 1768 int i, ret; 1769 1770 /* 1771 * Initialize DMA control port now before we read DROM. Recent 1772 * host controllers have more complete DROM on NVM that includes 1773 * vendor and model identification strings which we then expose 1774 * to the userspace. NVM can be accessed through DMA 1775 * configuration based mailbox. 1776 */ 1777 ret = tb_switch_add_dma_port(sw); 1778 if (ret) 1779 return ret; 1780 1781 if (!sw->safe_mode) { 1782 /* read drom */ 1783 ret = tb_drom_read(sw); 1784 if (ret) { 1785 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1786 return ret; 1787 } 1788 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 1789 1790 ret = tb_switch_set_uuid(sw); 1791 if (ret) 1792 return ret; 1793 1794 for (i = 0; i <= sw->config.max_port_number; i++) { 1795 if (sw->ports[i].disabled) { 1796 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 1797 continue; 1798 } 1799 ret = tb_init_port(&sw->ports[i]); 1800 if (ret) 1801 return ret; 1802 } 1803 } 1804 1805 ret = device_add(&sw->dev); 1806 if (ret) 1807 return ret; 1808 1809 if (tb_route(sw)) { 1810 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 1811 sw->vendor, sw->device); 1812 if (sw->vendor_name && sw->device_name) 1813 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 1814 sw->device_name); 1815 } 1816 1817 ret = tb_switch_nvm_add(sw); 1818 if (ret) { 1819 device_del(&sw->dev); 1820 return ret; 1821 } 1822 1823 pm_runtime_set_active(&sw->dev); 1824 if (sw->rpm) { 1825 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 1826 pm_runtime_use_autosuspend(&sw->dev); 1827 pm_runtime_mark_last_busy(&sw->dev); 1828 pm_runtime_enable(&sw->dev); 1829 pm_request_autosuspend(&sw->dev); 1830 } 1831 1832 return 0; 1833 } 1834 1835 /** 1836 * tb_switch_remove() - Remove and release a switch 1837 * @sw: Switch to remove 1838 * 1839 * This will remove the switch from the domain and release it after last 1840 * reference count drops to zero. If there are switches connected below 1841 * this switch, they will be removed as well. 1842 */ 1843 void tb_switch_remove(struct tb_switch *sw) 1844 { 1845 int i; 1846 1847 if (sw->rpm) { 1848 pm_runtime_get_sync(&sw->dev); 1849 pm_runtime_disable(&sw->dev); 1850 } 1851 1852 /* port 0 is the switch itself and never has a remote */ 1853 for (i = 1; i <= sw->config.max_port_number; i++) { 1854 if (tb_port_has_remote(&sw->ports[i])) { 1855 tb_switch_remove(sw->ports[i].remote->sw); 1856 sw->ports[i].remote = NULL; 1857 } else if (sw->ports[i].xdomain) { 1858 tb_xdomain_remove(sw->ports[i].xdomain); 1859 sw->ports[i].xdomain = NULL; 1860 } 1861 } 1862 1863 if (!sw->is_unplugged) 1864 tb_plug_events_active(sw, false); 1865 tb_lc_unconfigure_link(sw); 1866 1867 tb_switch_nvm_remove(sw); 1868 1869 if (tb_route(sw)) 1870 dev_info(&sw->dev, "device disconnected\n"); 1871 device_unregister(&sw->dev); 1872 } 1873 1874 /** 1875 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1876 */ 1877 void tb_sw_set_unplugged(struct tb_switch *sw) 1878 { 1879 int i; 1880 if (sw == sw->tb->root_switch) { 1881 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1882 return; 1883 } 1884 if (sw->is_unplugged) { 1885 tb_sw_WARN(sw, "is_unplugged already set\n"); 1886 return; 1887 } 1888 sw->is_unplugged = true; 1889 for (i = 0; i <= sw->config.max_port_number; i++) { 1890 if (tb_port_has_remote(&sw->ports[i])) 1891 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1892 else if (sw->ports[i].xdomain) 1893 sw->ports[i].xdomain->is_unplugged = true; 1894 } 1895 } 1896 1897 int tb_switch_resume(struct tb_switch *sw) 1898 { 1899 int i, err; 1900 tb_sw_dbg(sw, "resuming switch\n"); 1901 1902 /* 1903 * Check for UID of the connected switches except for root 1904 * switch which we assume cannot be removed. 1905 */ 1906 if (tb_route(sw)) { 1907 u64 uid; 1908 1909 /* 1910 * Check first that we can still read the switch config 1911 * space. It may be that there is now another domain 1912 * connected. 1913 */ 1914 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 1915 if (err < 0) { 1916 tb_sw_info(sw, "switch not present anymore\n"); 1917 return err; 1918 } 1919 1920 err = tb_drom_read_uid_only(sw, &uid); 1921 if (err) { 1922 tb_sw_warn(sw, "uid read failed\n"); 1923 return err; 1924 } 1925 if (sw->uid != uid) { 1926 tb_sw_info(sw, 1927 "changed while suspended (uid %#llx -> %#llx)\n", 1928 sw->uid, uid); 1929 return -ENODEV; 1930 } 1931 } 1932 1933 /* upload configuration */ 1934 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1935 if (err) 1936 return err; 1937 1938 err = tb_lc_configure_link(sw); 1939 if (err) 1940 return err; 1941 1942 err = tb_plug_events_active(sw, true); 1943 if (err) 1944 return err; 1945 1946 /* check for surviving downstream switches */ 1947 for (i = 1; i <= sw->config.max_port_number; i++) { 1948 struct tb_port *port = &sw->ports[i]; 1949 1950 if (!tb_port_has_remote(port) && !port->xdomain) 1951 continue; 1952 1953 if (tb_wait_for_port(port, true) <= 0) { 1954 tb_port_warn(port, 1955 "lost during suspend, disconnecting\n"); 1956 if (tb_port_has_remote(port)) 1957 tb_sw_set_unplugged(port->remote->sw); 1958 else if (port->xdomain) 1959 port->xdomain->is_unplugged = true; 1960 } else if (tb_port_has_remote(port)) { 1961 if (tb_switch_resume(port->remote->sw)) { 1962 tb_port_warn(port, 1963 "lost during suspend, disconnecting\n"); 1964 tb_sw_set_unplugged(port->remote->sw); 1965 } 1966 } 1967 } 1968 return 0; 1969 } 1970 1971 void tb_switch_suspend(struct tb_switch *sw) 1972 { 1973 int i, err; 1974 err = tb_plug_events_active(sw, false); 1975 if (err) 1976 return; 1977 1978 for (i = 1; i <= sw->config.max_port_number; i++) { 1979 if (tb_port_has_remote(&sw->ports[i])) 1980 tb_switch_suspend(sw->ports[i].remote->sw); 1981 } 1982 1983 tb_lc_set_sleep(sw); 1984 } 1985 1986 struct tb_sw_lookup { 1987 struct tb *tb; 1988 u8 link; 1989 u8 depth; 1990 const uuid_t *uuid; 1991 u64 route; 1992 }; 1993 1994 static int tb_switch_match(struct device *dev, const void *data) 1995 { 1996 struct tb_switch *sw = tb_to_switch(dev); 1997 const struct tb_sw_lookup *lookup = data; 1998 1999 if (!sw) 2000 return 0; 2001 if (sw->tb != lookup->tb) 2002 return 0; 2003 2004 if (lookup->uuid) 2005 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 2006 2007 if (lookup->route) { 2008 return sw->config.route_lo == lower_32_bits(lookup->route) && 2009 sw->config.route_hi == upper_32_bits(lookup->route); 2010 } 2011 2012 /* Root switch is matched only by depth */ 2013 if (!lookup->depth) 2014 return !sw->depth; 2015 2016 return sw->link == lookup->link && sw->depth == lookup->depth; 2017 } 2018 2019 /** 2020 * tb_switch_find_by_link_depth() - Find switch by link and depth 2021 * @tb: Domain the switch belongs 2022 * @link: Link number the switch is connected 2023 * @depth: Depth of the switch in link 2024 * 2025 * Returned switch has reference count increased so the caller needs to 2026 * call tb_switch_put() when done with the switch. 2027 */ 2028 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 2029 { 2030 struct tb_sw_lookup lookup; 2031 struct device *dev; 2032 2033 memset(&lookup, 0, sizeof(lookup)); 2034 lookup.tb = tb; 2035 lookup.link = link; 2036 lookup.depth = depth; 2037 2038 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2039 if (dev) 2040 return tb_to_switch(dev); 2041 2042 return NULL; 2043 } 2044 2045 /** 2046 * tb_switch_find_by_uuid() - Find switch by UUID 2047 * @tb: Domain the switch belongs 2048 * @uuid: UUID to look for 2049 * 2050 * Returned switch has reference count increased so the caller needs to 2051 * call tb_switch_put() when done with the switch. 2052 */ 2053 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 2054 { 2055 struct tb_sw_lookup lookup; 2056 struct device *dev; 2057 2058 memset(&lookup, 0, sizeof(lookup)); 2059 lookup.tb = tb; 2060 lookup.uuid = uuid; 2061 2062 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2063 if (dev) 2064 return tb_to_switch(dev); 2065 2066 return NULL; 2067 } 2068 2069 /** 2070 * tb_switch_find_by_route() - Find switch by route string 2071 * @tb: Domain the switch belongs 2072 * @route: Route string to look for 2073 * 2074 * Returned switch has reference count increased so the caller needs to 2075 * call tb_switch_put() when done with the switch. 2076 */ 2077 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 2078 { 2079 struct tb_sw_lookup lookup; 2080 struct device *dev; 2081 2082 if (!route) 2083 return tb_switch_get(tb->root_switch); 2084 2085 memset(&lookup, 0, sizeof(lookup)); 2086 lookup.tb = tb; 2087 lookup.route = route; 2088 2089 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2090 if (dev) 2091 return tb_to_switch(dev); 2092 2093 return NULL; 2094 } 2095 2096 void tb_switch_exit(void) 2097 { 2098 ida_destroy(&nvm_ida); 2099 } 2100