xref: /linux/drivers/thunderbolt/switch.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 
17 #include "tb.h"
18 
19 /* Switch NVM support */
20 
21 #define NVM_CSS			0x10
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 /*
30  * Hold NVM authentication failure status per switch This information
31  * needs to stay around even when the switch gets power cycled so we
32  * keep it separately.
33  */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36 
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 	struct nvm_auth_status *st;
40 
41 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 		if (uuid_equal(&st->uuid, sw->uuid))
43 			return st;
44 	}
45 
46 	return NULL;
47 }
48 
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 	struct nvm_auth_status *st;
52 
53 	mutex_lock(&nvm_auth_status_lock);
54 	st = __nvm_get_auth_status(sw);
55 	mutex_unlock(&nvm_auth_status_lock);
56 
57 	*status = st ? st->status : 0;
58 }
59 
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	if (WARN_ON(!sw->uuid))
65 		return;
66 
67 	mutex_lock(&nvm_auth_status_lock);
68 	st = __nvm_get_auth_status(sw);
69 
70 	if (!st) {
71 		st = kzalloc(sizeof(*st), GFP_KERNEL);
72 		if (!st)
73 			goto unlock;
74 
75 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 		INIT_LIST_HEAD(&st->list);
77 		list_add_tail(&st->list, &nvm_auth_status_cache);
78 	}
79 
80 	st->status = status;
81 unlock:
82 	mutex_unlock(&nvm_auth_status_lock);
83 }
84 
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 	struct nvm_auth_status *st;
88 
89 	mutex_lock(&nvm_auth_status_lock);
90 	st = __nvm_get_auth_status(sw);
91 	if (st) {
92 		list_del(&st->list);
93 		kfree(st);
94 	}
95 	mutex_unlock(&nvm_auth_status_lock);
96 }
97 
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 	unsigned int image_size, hdr_size;
101 	const u8 *buf = sw->nvm->buf;
102 	u16 ds_size;
103 	int ret;
104 
105 	if (!buf)
106 		return -EINVAL;
107 
108 	image_size = sw->nvm->buf_data_size;
109 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
110 		return -EINVAL;
111 
112 	/*
113 	 * FARB pointer must point inside the image and must at least
114 	 * contain parts of the digital section we will be reading here.
115 	 */
116 	hdr_size = (*(u32 *)buf) & 0xffffff;
117 	if (hdr_size + NVM_DEVID + 2 >= image_size)
118 		return -EINVAL;
119 
120 	/* Digital section start should be aligned to 4k page */
121 	if (!IS_ALIGNED(hdr_size, SZ_4K))
122 		return -EINVAL;
123 
124 	/*
125 	 * Read digital section size and check that it also fits inside
126 	 * the image.
127 	 */
128 	ds_size = *(u16 *)(buf + hdr_size);
129 	if (ds_size >= image_size)
130 		return -EINVAL;
131 
132 	if (!sw->safe_mode) {
133 		u16 device_id;
134 
135 		/*
136 		 * Make sure the device ID in the image matches the one
137 		 * we read from the switch config space.
138 		 */
139 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
140 		if (device_id != sw->config.device_id)
141 			return -EINVAL;
142 
143 		if (sw->generation < 3) {
144 			/* Write CSS headers first */
145 			ret = dma_port_flash_write(sw->dma_port,
146 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
147 				DMA_PORT_CSS_MAX_SIZE);
148 			if (ret)
149 				return ret;
150 		}
151 
152 		/* Skip headers in the image */
153 		buf += hdr_size;
154 		image_size -= hdr_size;
155 	}
156 
157 	if (tb_switch_is_usb4(sw))
158 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
159 	else
160 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
161 	if (!ret)
162 		sw->nvm->flushed = true;
163 	return ret;
164 }
165 
166 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
167 {
168 	int ret = 0;
169 
170 	/*
171 	 * Root switch NVM upgrade requires that we disconnect the
172 	 * existing paths first (in case it is not in safe mode
173 	 * already).
174 	 */
175 	if (!sw->safe_mode) {
176 		u32 status;
177 
178 		ret = tb_domain_disconnect_all_paths(sw->tb);
179 		if (ret)
180 			return ret;
181 		/*
182 		 * The host controller goes away pretty soon after this if
183 		 * everything goes well so getting timeout is expected.
184 		 */
185 		ret = dma_port_flash_update_auth(sw->dma_port);
186 		if (!ret || ret == -ETIMEDOUT)
187 			return 0;
188 
189 		/*
190 		 * Any error from update auth operation requires power
191 		 * cycling of the host router.
192 		 */
193 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
194 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
195 			nvm_set_auth_status(sw, status);
196 	}
197 
198 	/*
199 	 * From safe mode we can get out by just power cycling the
200 	 * switch.
201 	 */
202 	dma_port_power_cycle(sw->dma_port);
203 	return ret;
204 }
205 
206 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
207 {
208 	int ret, retries = 10;
209 
210 	ret = dma_port_flash_update_auth(sw->dma_port);
211 	switch (ret) {
212 	case 0:
213 	case -ETIMEDOUT:
214 	case -EACCES:
215 	case -EINVAL:
216 		/* Power cycle is required */
217 		break;
218 	default:
219 		return ret;
220 	}
221 
222 	/*
223 	 * Poll here for the authentication status. It takes some time
224 	 * for the device to respond (we get timeout for a while). Once
225 	 * we get response the device needs to be power cycled in order
226 	 * to the new NVM to be taken into use.
227 	 */
228 	do {
229 		u32 status;
230 
231 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
232 		if (ret < 0 && ret != -ETIMEDOUT)
233 			return ret;
234 		if (ret > 0) {
235 			if (status) {
236 				tb_sw_warn(sw, "failed to authenticate NVM\n");
237 				nvm_set_auth_status(sw, status);
238 			}
239 
240 			tb_sw_info(sw, "power cycling the switch now\n");
241 			dma_port_power_cycle(sw->dma_port);
242 			return 0;
243 		}
244 
245 		msleep(500);
246 	} while (--retries);
247 
248 	return -ETIMEDOUT;
249 }
250 
251 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
252 {
253 	struct pci_dev *root_port;
254 
255 	/*
256 	 * During host router NVM upgrade we should not allow root port to
257 	 * go into D3cold because some root ports cannot trigger PME
258 	 * itself. To be on the safe side keep the root port in D0 during
259 	 * the whole upgrade process.
260 	 */
261 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
262 	if (root_port)
263 		pm_runtime_get_noresume(&root_port->dev);
264 }
265 
266 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
267 {
268 	struct pci_dev *root_port;
269 
270 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
271 	if (root_port)
272 		pm_runtime_put(&root_port->dev);
273 }
274 
275 static inline bool nvm_readable(struct tb_switch *sw)
276 {
277 	if (tb_switch_is_usb4(sw)) {
278 		/*
279 		 * USB4 devices must support NVM operations but it is
280 		 * optional for hosts. Therefore we query the NVM sector
281 		 * size here and if it is supported assume NVM
282 		 * operations are implemented.
283 		 */
284 		return usb4_switch_nvm_sector_size(sw) > 0;
285 	}
286 
287 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
288 	return !!sw->dma_port;
289 }
290 
291 static inline bool nvm_upgradeable(struct tb_switch *sw)
292 {
293 	if (sw->no_nvm_upgrade)
294 		return false;
295 	return nvm_readable(sw);
296 }
297 
298 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
299 			   void *buf, size_t size)
300 {
301 	if (tb_switch_is_usb4(sw))
302 		return usb4_switch_nvm_read(sw, address, buf, size);
303 	return dma_port_flash_read(sw->dma_port, address, buf, size);
304 }
305 
306 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
307 {
308 	int ret;
309 
310 	if (tb_switch_is_usb4(sw)) {
311 		if (auth_only) {
312 			ret = usb4_switch_nvm_set_offset(sw, 0);
313 			if (ret)
314 				return ret;
315 		}
316 		sw->nvm->authenticating = true;
317 		return usb4_switch_nvm_authenticate(sw);
318 	} else if (auth_only) {
319 		return -EOPNOTSUPP;
320 	}
321 
322 	sw->nvm->authenticating = true;
323 	if (!tb_route(sw)) {
324 		nvm_authenticate_start_dma_port(sw);
325 		ret = nvm_authenticate_host_dma_port(sw);
326 	} else {
327 		ret = nvm_authenticate_device_dma_port(sw);
328 	}
329 
330 	return ret;
331 }
332 
333 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
334 			      size_t bytes)
335 {
336 	struct tb_nvm *nvm = priv;
337 	struct tb_switch *sw = tb_to_switch(nvm->dev);
338 	int ret;
339 
340 	pm_runtime_get_sync(&sw->dev);
341 
342 	if (!mutex_trylock(&sw->tb->lock)) {
343 		ret = restart_syscall();
344 		goto out;
345 	}
346 
347 	ret = nvm_read(sw, offset, val, bytes);
348 	mutex_unlock(&sw->tb->lock);
349 
350 out:
351 	pm_runtime_mark_last_busy(&sw->dev);
352 	pm_runtime_put_autosuspend(&sw->dev);
353 
354 	return ret;
355 }
356 
357 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
358 			       size_t bytes)
359 {
360 	struct tb_nvm *nvm = priv;
361 	struct tb_switch *sw = tb_to_switch(nvm->dev);
362 	int ret;
363 
364 	if (!mutex_trylock(&sw->tb->lock))
365 		return restart_syscall();
366 
367 	/*
368 	 * Since writing the NVM image might require some special steps,
369 	 * for example when CSS headers are written, we cache the image
370 	 * locally here and handle the special cases when the user asks
371 	 * us to authenticate the image.
372 	 */
373 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
374 	mutex_unlock(&sw->tb->lock);
375 
376 	return ret;
377 }
378 
379 static int tb_switch_nvm_add(struct tb_switch *sw)
380 {
381 	struct tb_nvm *nvm;
382 	u32 val;
383 	int ret;
384 
385 	if (!nvm_readable(sw))
386 		return 0;
387 
388 	/*
389 	 * The NVM format of non-Intel hardware is not known so
390 	 * currently restrict NVM upgrade for Intel hardware. We may
391 	 * relax this in the future when we learn other NVM formats.
392 	 */
393 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
394 	    sw->config.vendor_id != 0x8087) {
395 		dev_info(&sw->dev,
396 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
397 			 sw->config.vendor_id);
398 		return 0;
399 	}
400 
401 	nvm = tb_nvm_alloc(&sw->dev);
402 	if (IS_ERR(nvm))
403 		return PTR_ERR(nvm);
404 
405 	/*
406 	 * If the switch is in safe-mode the only accessible portion of
407 	 * the NVM is the non-active one where userspace is expected to
408 	 * write new functional NVM.
409 	 */
410 	if (!sw->safe_mode) {
411 		u32 nvm_size, hdr_size;
412 
413 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
414 		if (ret)
415 			goto err_nvm;
416 
417 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
418 		nvm_size = (SZ_1M << (val & 7)) / 8;
419 		nvm_size = (nvm_size - hdr_size) / 2;
420 
421 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
422 		if (ret)
423 			goto err_nvm;
424 
425 		nvm->major = val >> 16;
426 		nvm->minor = val >> 8;
427 
428 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
429 		if (ret)
430 			goto err_nvm;
431 	}
432 
433 	if (!sw->no_nvm_upgrade) {
434 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
435 					    tb_switch_nvm_write);
436 		if (ret)
437 			goto err_nvm;
438 	}
439 
440 	sw->nvm = nvm;
441 	return 0;
442 
443 err_nvm:
444 	tb_nvm_free(nvm);
445 	return ret;
446 }
447 
448 static void tb_switch_nvm_remove(struct tb_switch *sw)
449 {
450 	struct tb_nvm *nvm;
451 
452 	nvm = sw->nvm;
453 	sw->nvm = NULL;
454 
455 	if (!nvm)
456 		return;
457 
458 	/* Remove authentication status in case the switch is unplugged */
459 	if (!nvm->authenticating)
460 		nvm_clear_auth_status(sw);
461 
462 	tb_nvm_free(nvm);
463 }
464 
465 /* port utility functions */
466 
467 static const char *tb_port_type(const struct tb_regs_port_header *port)
468 {
469 	switch (port->type >> 16) {
470 	case 0:
471 		switch ((u8) port->type) {
472 		case 0:
473 			return "Inactive";
474 		case 1:
475 			return "Port";
476 		case 2:
477 			return "NHI";
478 		default:
479 			return "unknown";
480 		}
481 	case 0x2:
482 		return "Ethernet";
483 	case 0x8:
484 		return "SATA";
485 	case 0xe:
486 		return "DP/HDMI";
487 	case 0x10:
488 		return "PCIe";
489 	case 0x20:
490 		return "USB";
491 	default:
492 		return "unknown";
493 	}
494 }
495 
496 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
497 {
498 	const struct tb_regs_port_header *regs = &port->config;
499 
500 	tb_dbg(tb,
501 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
502 	       regs->port_number, regs->vendor_id, regs->device_id,
503 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
504 	       regs->type);
505 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
506 	       regs->max_in_hop_id, regs->max_out_hop_id);
507 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
508 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
509 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
510 	       port->ctl_credits);
511 }
512 
513 /**
514  * tb_port_state() - get connectedness state of a port
515  * @port: the port to check
516  *
517  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
518  *
519  * Return: Returns an enum tb_port_state on success or an error code on failure.
520  */
521 int tb_port_state(struct tb_port *port)
522 {
523 	struct tb_cap_phy phy;
524 	int res;
525 	if (port->cap_phy == 0) {
526 		tb_port_WARN(port, "does not have a PHY\n");
527 		return -EINVAL;
528 	}
529 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
530 	if (res)
531 		return res;
532 	return phy.state;
533 }
534 
535 /**
536  * tb_wait_for_port() - wait for a port to become ready
537  * @port: Port to wait
538  * @wait_if_unplugged: Wait also when port is unplugged
539  *
540  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
541  * wait_if_unplugged is set then we also wait if the port is in state
542  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
543  * switch resume). Otherwise we only wait if a device is registered but the link
544  * has not yet been established.
545  *
546  * Return: Returns an error code on failure. Returns 0 if the port is not
547  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
548  * if the port is connected and in state TB_PORT_UP.
549  */
550 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
551 {
552 	int retries = 10;
553 	int state;
554 	if (!port->cap_phy) {
555 		tb_port_WARN(port, "does not have PHY\n");
556 		return -EINVAL;
557 	}
558 	if (tb_is_upstream_port(port)) {
559 		tb_port_WARN(port, "is the upstream port\n");
560 		return -EINVAL;
561 	}
562 
563 	while (retries--) {
564 		state = tb_port_state(port);
565 		if (state < 0)
566 			return state;
567 		if (state == TB_PORT_DISABLED) {
568 			tb_port_dbg(port, "is disabled (state: 0)\n");
569 			return 0;
570 		}
571 		if (state == TB_PORT_UNPLUGGED) {
572 			if (wait_if_unplugged) {
573 				/* used during resume */
574 				tb_port_dbg(port,
575 					    "is unplugged (state: 7), retrying...\n");
576 				msleep(100);
577 				continue;
578 			}
579 			tb_port_dbg(port, "is unplugged (state: 7)\n");
580 			return 0;
581 		}
582 		if (state == TB_PORT_UP) {
583 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
584 			return 1;
585 		}
586 
587 		/*
588 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
589 		 * time.
590 		 */
591 		tb_port_dbg(port,
592 			    "is connected, link is not up (state: %d), retrying...\n",
593 			    state);
594 		msleep(100);
595 	}
596 	tb_port_warn(port,
597 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
598 	return 0;
599 }
600 
601 /**
602  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
603  * @port: Port to add/remove NFC credits
604  * @credits: Credits to add/remove
605  *
606  * Change the number of NFC credits allocated to @port by @credits. To remove
607  * NFC credits pass a negative amount of credits.
608  *
609  * Return: Returns 0 on success or an error code on failure.
610  */
611 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
612 {
613 	u32 nfc_credits;
614 
615 	if (credits == 0 || port->sw->is_unplugged)
616 		return 0;
617 
618 	/*
619 	 * USB4 restricts programming NFC buffers to lane adapters only
620 	 * so skip other ports.
621 	 */
622 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
623 		return 0;
624 
625 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
626 	nfc_credits += credits;
627 
628 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
629 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
630 
631 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
632 	port->config.nfc_credits |= nfc_credits;
633 
634 	return tb_port_write(port, &port->config.nfc_credits,
635 			     TB_CFG_PORT, ADP_CS_4, 1);
636 }
637 
638 /**
639  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
640  * @port: Port whose counters to clear
641  * @counter: Counter index to clear
642  *
643  * Return: Returns 0 on success or an error code on failure.
644  */
645 int tb_port_clear_counter(struct tb_port *port, int counter)
646 {
647 	u32 zero[3] = { 0, 0, 0 };
648 	tb_port_dbg(port, "clearing counter %d\n", counter);
649 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
650 }
651 
652 /**
653  * tb_port_unlock() - Unlock downstream port
654  * @port: Port to unlock
655  *
656  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
657  * downstream router accessible for CM.
658  */
659 int tb_port_unlock(struct tb_port *port)
660 {
661 	if (tb_switch_is_icm(port->sw))
662 		return 0;
663 	if (!tb_port_is_null(port))
664 		return -EINVAL;
665 	if (tb_switch_is_usb4(port->sw))
666 		return usb4_port_unlock(port);
667 	return 0;
668 }
669 
670 static int __tb_port_enable(struct tb_port *port, bool enable)
671 {
672 	int ret;
673 	u32 phy;
674 
675 	if (!tb_port_is_null(port))
676 		return -EINVAL;
677 
678 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
679 			   port->cap_phy + LANE_ADP_CS_1, 1);
680 	if (ret)
681 		return ret;
682 
683 	if (enable)
684 		phy &= ~LANE_ADP_CS_1_LD;
685 	else
686 		phy |= LANE_ADP_CS_1_LD;
687 
688 	return tb_port_write(port, &phy, TB_CFG_PORT,
689 			     port->cap_phy + LANE_ADP_CS_1, 1);
690 }
691 
692 /**
693  * tb_port_enable() - Enable lane adapter
694  * @port: Port to enable (can be %NULL)
695  *
696  * This is used for lane 0 and 1 adapters to enable it.
697  */
698 int tb_port_enable(struct tb_port *port)
699 {
700 	return __tb_port_enable(port, true);
701 }
702 
703 /**
704  * tb_port_disable() - Disable lane adapter
705  * @port: Port to disable (can be %NULL)
706  *
707  * This is used for lane 0 and 1 adapters to disable it.
708  */
709 int tb_port_disable(struct tb_port *port)
710 {
711 	return __tb_port_enable(port, false);
712 }
713 
714 /*
715  * tb_init_port() - initialize a port
716  *
717  * This is a helper method for tb_switch_alloc. Does not check or initialize
718  * any downstream switches.
719  *
720  * Return: Returns 0 on success or an error code on failure.
721  */
722 static int tb_init_port(struct tb_port *port)
723 {
724 	int res;
725 	int cap;
726 
727 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
728 	if (res) {
729 		if (res == -ENODEV) {
730 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
731 			       port->port);
732 			port->disabled = true;
733 			return 0;
734 		}
735 		return res;
736 	}
737 
738 	/* Port 0 is the switch itself and has no PHY. */
739 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
740 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
741 
742 		if (cap > 0)
743 			port->cap_phy = cap;
744 		else
745 			tb_port_WARN(port, "non switch port without a PHY\n");
746 
747 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
748 		if (cap > 0)
749 			port->cap_usb4 = cap;
750 
751 		/*
752 		 * USB4 ports the buffers allocated for the control path
753 		 * can be read from the path config space. Legacy
754 		 * devices we use hard-coded value.
755 		 */
756 		if (tb_switch_is_usb4(port->sw)) {
757 			struct tb_regs_hop hop;
758 
759 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
760 				port->ctl_credits = hop.initial_credits;
761 		}
762 		if (!port->ctl_credits)
763 			port->ctl_credits = 2;
764 
765 	} else if (port->port != 0) {
766 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
767 		if (cap > 0)
768 			port->cap_adap = cap;
769 	}
770 
771 	port->total_credits =
772 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
773 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
774 
775 	tb_dump_port(port->sw->tb, port);
776 
777 	INIT_LIST_HEAD(&port->list);
778 	return 0;
779 
780 }
781 
782 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
783 			       int max_hopid)
784 {
785 	int port_max_hopid;
786 	struct ida *ida;
787 
788 	if (in) {
789 		port_max_hopid = port->config.max_in_hop_id;
790 		ida = &port->in_hopids;
791 	} else {
792 		port_max_hopid = port->config.max_out_hop_id;
793 		ida = &port->out_hopids;
794 	}
795 
796 	/*
797 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
798 	 * reserved.
799 	 */
800 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
801 		min_hopid = TB_PATH_MIN_HOPID;
802 
803 	if (max_hopid < 0 || max_hopid > port_max_hopid)
804 		max_hopid = port_max_hopid;
805 
806 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
807 }
808 
809 /**
810  * tb_port_alloc_in_hopid() - Allocate input HopID from port
811  * @port: Port to allocate HopID for
812  * @min_hopid: Minimum acceptable input HopID
813  * @max_hopid: Maximum acceptable input HopID
814  *
815  * Return: HopID between @min_hopid and @max_hopid or negative errno in
816  * case of error.
817  */
818 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
819 {
820 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
821 }
822 
823 /**
824  * tb_port_alloc_out_hopid() - Allocate output HopID from port
825  * @port: Port to allocate HopID for
826  * @min_hopid: Minimum acceptable output HopID
827  * @max_hopid: Maximum acceptable output HopID
828  *
829  * Return: HopID between @min_hopid and @max_hopid or negative errno in
830  * case of error.
831  */
832 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
833 {
834 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
835 }
836 
837 /**
838  * tb_port_release_in_hopid() - Release allocated input HopID from port
839  * @port: Port whose HopID to release
840  * @hopid: HopID to release
841  */
842 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
843 {
844 	ida_simple_remove(&port->in_hopids, hopid);
845 }
846 
847 /**
848  * tb_port_release_out_hopid() - Release allocated output HopID from port
849  * @port: Port whose HopID to release
850  * @hopid: HopID to release
851  */
852 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
853 {
854 	ida_simple_remove(&port->out_hopids, hopid);
855 }
856 
857 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
858 					  const struct tb_switch *sw)
859 {
860 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
861 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
862 }
863 
864 /**
865  * tb_next_port_on_path() - Return next port for given port on a path
866  * @start: Start port of the walk
867  * @end: End port of the walk
868  * @prev: Previous port (%NULL if this is the first)
869  *
870  * This function can be used to walk from one port to another if they
871  * are connected through zero or more switches. If the @prev is dual
872  * link port, the function follows that link and returns another end on
873  * that same link.
874  *
875  * If the @end port has been reached, return %NULL.
876  *
877  * Domain tb->lock must be held when this function is called.
878  */
879 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
880 				     struct tb_port *prev)
881 {
882 	struct tb_port *next;
883 
884 	if (!prev)
885 		return start;
886 
887 	if (prev->sw == end->sw) {
888 		if (prev == end)
889 			return NULL;
890 		return end;
891 	}
892 
893 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
894 		next = tb_port_at(tb_route(end->sw), prev->sw);
895 		/* Walk down the topology if next == prev */
896 		if (prev->remote &&
897 		    (next == prev || next->dual_link_port == prev))
898 			next = prev->remote;
899 	} else {
900 		if (tb_is_upstream_port(prev)) {
901 			next = prev->remote;
902 		} else {
903 			next = tb_upstream_port(prev->sw);
904 			/*
905 			 * Keep the same link if prev and next are both
906 			 * dual link ports.
907 			 */
908 			if (next->dual_link_port &&
909 			    next->link_nr != prev->link_nr) {
910 				next = next->dual_link_port;
911 			}
912 		}
913 	}
914 
915 	return next != prev ? next : NULL;
916 }
917 
918 /**
919  * tb_port_get_link_speed() - Get current link speed
920  * @port: Port to check (USB4 or CIO)
921  *
922  * Returns link speed in Gb/s or negative errno in case of failure.
923  */
924 int tb_port_get_link_speed(struct tb_port *port)
925 {
926 	u32 val, speed;
927 	int ret;
928 
929 	if (!port->cap_phy)
930 		return -EINVAL;
931 
932 	ret = tb_port_read(port, &val, TB_CFG_PORT,
933 			   port->cap_phy + LANE_ADP_CS_1, 1);
934 	if (ret)
935 		return ret;
936 
937 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
938 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
939 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
940 }
941 
942 /**
943  * tb_port_get_link_width() - Get current link width
944  * @port: Port to check (USB4 or CIO)
945  *
946  * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
947  * or negative errno in case of failure.
948  */
949 int tb_port_get_link_width(struct tb_port *port)
950 {
951 	u32 val;
952 	int ret;
953 
954 	if (!port->cap_phy)
955 		return -EINVAL;
956 
957 	ret = tb_port_read(port, &val, TB_CFG_PORT,
958 			   port->cap_phy + LANE_ADP_CS_1, 1);
959 	if (ret)
960 		return ret;
961 
962 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
963 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
964 }
965 
966 static bool tb_port_is_width_supported(struct tb_port *port, int width)
967 {
968 	u32 phy, widths;
969 	int ret;
970 
971 	if (!port->cap_phy)
972 		return false;
973 
974 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
975 			   port->cap_phy + LANE_ADP_CS_0, 1);
976 	if (ret)
977 		return false;
978 
979 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
980 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
981 
982 	return !!(widths & width);
983 }
984 
985 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
986 {
987 	u32 val;
988 	int ret;
989 
990 	if (!port->cap_phy)
991 		return -EINVAL;
992 
993 	ret = tb_port_read(port, &val, TB_CFG_PORT,
994 			   port->cap_phy + LANE_ADP_CS_1, 1);
995 	if (ret)
996 		return ret;
997 
998 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
999 	switch (width) {
1000 	case 1:
1001 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1002 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1003 		break;
1004 	case 2:
1005 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1006 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1007 		break;
1008 	default:
1009 		return -EINVAL;
1010 	}
1011 
1012 	val |= LANE_ADP_CS_1_LB;
1013 
1014 	return tb_port_write(port, &val, TB_CFG_PORT,
1015 			     port->cap_phy + LANE_ADP_CS_1, 1);
1016 }
1017 
1018 /**
1019  * tb_port_lane_bonding_enable() - Enable bonding on port
1020  * @port: port to enable
1021  *
1022  * Enable bonding by setting the link width of the port and the other
1023  * port in case of dual link port. Does not wait for the link to
1024  * actually reach the bonded state so caller needs to call
1025  * tb_port_wait_for_link_width() before enabling any paths through the
1026  * link to make sure the link is in expected state.
1027  *
1028  * Return: %0 in case of success and negative errno in case of error
1029  */
1030 int tb_port_lane_bonding_enable(struct tb_port *port)
1031 {
1032 	int ret;
1033 
1034 	/*
1035 	 * Enable lane bonding for both links if not already enabled by
1036 	 * for example the boot firmware.
1037 	 */
1038 	ret = tb_port_get_link_width(port);
1039 	if (ret == 1) {
1040 		ret = tb_port_set_link_width(port, 2);
1041 		if (ret)
1042 			return ret;
1043 	}
1044 
1045 	ret = tb_port_get_link_width(port->dual_link_port);
1046 	if (ret == 1) {
1047 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1048 		if (ret) {
1049 			tb_port_set_link_width(port, 1);
1050 			return ret;
1051 		}
1052 	}
1053 
1054 	port->bonded = true;
1055 	port->dual_link_port->bonded = true;
1056 
1057 	return 0;
1058 }
1059 
1060 /**
1061  * tb_port_lane_bonding_disable() - Disable bonding on port
1062  * @port: port to disable
1063  *
1064  * Disable bonding by setting the link width of the port and the
1065  * other port in case of dual link port.
1066  *
1067  */
1068 void tb_port_lane_bonding_disable(struct tb_port *port)
1069 {
1070 	port->dual_link_port->bonded = false;
1071 	port->bonded = false;
1072 
1073 	tb_port_set_link_width(port->dual_link_port, 1);
1074 	tb_port_set_link_width(port, 1);
1075 }
1076 
1077 /**
1078  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1079  * @port: Port to wait for
1080  * @width: Expected link width (%1 or %2)
1081  * @timeout_msec: Timeout in ms how long to wait
1082  *
1083  * Should be used after both ends of the link have been bonded (or
1084  * bonding has been disabled) to wait until the link actually reaches
1085  * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1086  * within the given timeout, %0 if it did.
1087  */
1088 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1089 				int timeout_msec)
1090 {
1091 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1092 	int ret;
1093 
1094 	do {
1095 		ret = tb_port_get_link_width(port);
1096 		if (ret < 0)
1097 			return ret;
1098 		else if (ret == width)
1099 			return 0;
1100 
1101 		usleep_range(1000, 2000);
1102 	} while (ktime_before(ktime_get(), timeout));
1103 
1104 	return -ETIMEDOUT;
1105 }
1106 
1107 static int tb_port_do_update_credits(struct tb_port *port)
1108 {
1109 	u32 nfc_credits;
1110 	int ret;
1111 
1112 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1113 	if (ret)
1114 		return ret;
1115 
1116 	if (nfc_credits != port->config.nfc_credits) {
1117 		u32 total;
1118 
1119 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1120 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1121 
1122 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1123 			    port->total_credits, total);
1124 
1125 		port->config.nfc_credits = nfc_credits;
1126 		port->total_credits = total;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 /**
1133  * tb_port_update_credits() - Re-read port total credits
1134  * @port: Port to update
1135  *
1136  * After the link is bonded (or bonding was disabled) the port total
1137  * credits may change, so this function needs to be called to re-read
1138  * the credits. Updates also the second lane adapter.
1139  */
1140 int tb_port_update_credits(struct tb_port *port)
1141 {
1142 	int ret;
1143 
1144 	ret = tb_port_do_update_credits(port);
1145 	if (ret)
1146 		return ret;
1147 	return tb_port_do_update_credits(port->dual_link_port);
1148 }
1149 
1150 static int tb_port_start_lane_initialization(struct tb_port *port)
1151 {
1152 	int ret;
1153 
1154 	if (tb_switch_is_usb4(port->sw))
1155 		return 0;
1156 
1157 	ret = tb_lc_start_lane_initialization(port);
1158 	return ret == -EINVAL ? 0 : ret;
1159 }
1160 
1161 /*
1162  * Returns true if the port had something (router, XDomain) connected
1163  * before suspend.
1164  */
1165 static bool tb_port_resume(struct tb_port *port)
1166 {
1167 	bool has_remote = tb_port_has_remote(port);
1168 
1169 	if (port->usb4) {
1170 		usb4_port_device_resume(port->usb4);
1171 	} else if (!has_remote) {
1172 		/*
1173 		 * For disconnected downstream lane adapters start lane
1174 		 * initialization now so we detect future connects.
1175 		 *
1176 		 * For XDomain start the lane initialzation now so the
1177 		 * link gets re-established.
1178 		 *
1179 		 * This is only needed for non-USB4 ports.
1180 		 */
1181 		if (!tb_is_upstream_port(port) || port->xdomain)
1182 			tb_port_start_lane_initialization(port);
1183 	}
1184 
1185 	return has_remote || port->xdomain;
1186 }
1187 
1188 /**
1189  * tb_port_is_enabled() - Is the adapter port enabled
1190  * @port: Port to check
1191  */
1192 bool tb_port_is_enabled(struct tb_port *port)
1193 {
1194 	switch (port->config.type) {
1195 	case TB_TYPE_PCIE_UP:
1196 	case TB_TYPE_PCIE_DOWN:
1197 		return tb_pci_port_is_enabled(port);
1198 
1199 	case TB_TYPE_DP_HDMI_IN:
1200 	case TB_TYPE_DP_HDMI_OUT:
1201 		return tb_dp_port_is_enabled(port);
1202 
1203 	case TB_TYPE_USB3_UP:
1204 	case TB_TYPE_USB3_DOWN:
1205 		return tb_usb3_port_is_enabled(port);
1206 
1207 	default:
1208 		return false;
1209 	}
1210 }
1211 
1212 /**
1213  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1214  * @port: USB3 adapter port to check
1215  */
1216 bool tb_usb3_port_is_enabled(struct tb_port *port)
1217 {
1218 	u32 data;
1219 
1220 	if (tb_port_read(port, &data, TB_CFG_PORT,
1221 			 port->cap_adap + ADP_USB3_CS_0, 1))
1222 		return false;
1223 
1224 	return !!(data & ADP_USB3_CS_0_PE);
1225 }
1226 
1227 /**
1228  * tb_usb3_port_enable() - Enable USB3 adapter port
1229  * @port: USB3 adapter port to enable
1230  * @enable: Enable/disable the USB3 adapter
1231  */
1232 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1233 {
1234 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1235 			  : ADP_USB3_CS_0_V;
1236 
1237 	if (!port->cap_adap)
1238 		return -ENXIO;
1239 	return tb_port_write(port, &word, TB_CFG_PORT,
1240 			     port->cap_adap + ADP_USB3_CS_0, 1);
1241 }
1242 
1243 /**
1244  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1245  * @port: PCIe port to check
1246  */
1247 bool tb_pci_port_is_enabled(struct tb_port *port)
1248 {
1249 	u32 data;
1250 
1251 	if (tb_port_read(port, &data, TB_CFG_PORT,
1252 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1253 		return false;
1254 
1255 	return !!(data & ADP_PCIE_CS_0_PE);
1256 }
1257 
1258 /**
1259  * tb_pci_port_enable() - Enable PCIe adapter port
1260  * @port: PCIe port to enable
1261  * @enable: Enable/disable the PCIe adapter
1262  */
1263 int tb_pci_port_enable(struct tb_port *port, bool enable)
1264 {
1265 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1266 	if (!port->cap_adap)
1267 		return -ENXIO;
1268 	return tb_port_write(port, &word, TB_CFG_PORT,
1269 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1270 }
1271 
1272 /**
1273  * tb_dp_port_hpd_is_active() - Is HPD already active
1274  * @port: DP out port to check
1275  *
1276  * Checks if the DP OUT adapter port has HDP bit already set.
1277  */
1278 int tb_dp_port_hpd_is_active(struct tb_port *port)
1279 {
1280 	u32 data;
1281 	int ret;
1282 
1283 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1284 			   port->cap_adap + ADP_DP_CS_2, 1);
1285 	if (ret)
1286 		return ret;
1287 
1288 	return !!(data & ADP_DP_CS_2_HDP);
1289 }
1290 
1291 /**
1292  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1293  * @port: Port to clear HPD
1294  *
1295  * If the DP IN port has HDP set, this function can be used to clear it.
1296  */
1297 int tb_dp_port_hpd_clear(struct tb_port *port)
1298 {
1299 	u32 data;
1300 	int ret;
1301 
1302 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1303 			   port->cap_adap + ADP_DP_CS_3, 1);
1304 	if (ret)
1305 		return ret;
1306 
1307 	data |= ADP_DP_CS_3_HDPC;
1308 	return tb_port_write(port, &data, TB_CFG_PORT,
1309 			     port->cap_adap + ADP_DP_CS_3, 1);
1310 }
1311 
1312 /**
1313  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1314  * @port: DP IN/OUT port to set hops
1315  * @video: Video Hop ID
1316  * @aux_tx: AUX TX Hop ID
1317  * @aux_rx: AUX RX Hop ID
1318  *
1319  * Programs specified Hop IDs for DP IN/OUT port.
1320  */
1321 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1322 			unsigned int aux_tx, unsigned int aux_rx)
1323 {
1324 	u32 data[2];
1325 	int ret;
1326 
1327 	ret = tb_port_read(port, data, TB_CFG_PORT,
1328 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1329 	if (ret)
1330 		return ret;
1331 
1332 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1333 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1334 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1335 
1336 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1337 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1338 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1339 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1340 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1341 
1342 	return tb_port_write(port, data, TB_CFG_PORT,
1343 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1344 }
1345 
1346 /**
1347  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1348  * @port: DP adapter port to check
1349  */
1350 bool tb_dp_port_is_enabled(struct tb_port *port)
1351 {
1352 	u32 data[2];
1353 
1354 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1355 			 ARRAY_SIZE(data)))
1356 		return false;
1357 
1358 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1359 }
1360 
1361 /**
1362  * tb_dp_port_enable() - Enables/disables DP paths of a port
1363  * @port: DP IN/OUT port
1364  * @enable: Enable/disable DP path
1365  *
1366  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1367  * calling this function.
1368  */
1369 int tb_dp_port_enable(struct tb_port *port, bool enable)
1370 {
1371 	u32 data[2];
1372 	int ret;
1373 
1374 	ret = tb_port_read(port, data, TB_CFG_PORT,
1375 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1376 	if (ret)
1377 		return ret;
1378 
1379 	if (enable)
1380 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1381 	else
1382 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1383 
1384 	return tb_port_write(port, data, TB_CFG_PORT,
1385 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1386 }
1387 
1388 /* switch utility functions */
1389 
1390 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1391 {
1392 	switch (sw->generation) {
1393 	case 1:
1394 		return "Thunderbolt 1";
1395 	case 2:
1396 		return "Thunderbolt 2";
1397 	case 3:
1398 		return "Thunderbolt 3";
1399 	case 4:
1400 		return "USB4";
1401 	default:
1402 		return "Unknown";
1403 	}
1404 }
1405 
1406 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1407 {
1408 	const struct tb_regs_switch_header *regs = &sw->config;
1409 
1410 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1411 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1412 	       regs->revision, regs->thunderbolt_version);
1413 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1414 	tb_dbg(tb, "  Config:\n");
1415 	tb_dbg(tb,
1416 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1417 	       regs->upstream_port_number, regs->depth,
1418 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1419 	       regs->enabled, regs->plug_events_delay);
1420 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1421 	       regs->__unknown1, regs->__unknown4);
1422 }
1423 
1424 /**
1425  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1426  * @sw: Switch to reset
1427  *
1428  * Return: Returns 0 on success or an error code on failure.
1429  */
1430 int tb_switch_reset(struct tb_switch *sw)
1431 {
1432 	struct tb_cfg_result res;
1433 
1434 	if (sw->generation > 1)
1435 		return 0;
1436 
1437 	tb_sw_dbg(sw, "resetting switch\n");
1438 
1439 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1440 			      TB_CFG_SWITCH, 2, 2);
1441 	if (res.err)
1442 		return res.err;
1443 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1444 	if (res.err > 0)
1445 		return -EIO;
1446 	return res.err;
1447 }
1448 
1449 /*
1450  * tb_plug_events_active() - enable/disable plug events on a switch
1451  *
1452  * Also configures a sane plug_events_delay of 255ms.
1453  *
1454  * Return: Returns 0 on success or an error code on failure.
1455  */
1456 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1457 {
1458 	u32 data;
1459 	int res;
1460 
1461 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1462 		return 0;
1463 
1464 	sw->config.plug_events_delay = 0xff;
1465 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1466 	if (res)
1467 		return res;
1468 
1469 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1470 	if (res)
1471 		return res;
1472 
1473 	if (active) {
1474 		data = data & 0xFFFFFF83;
1475 		switch (sw->config.device_id) {
1476 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1477 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1478 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1479 			break;
1480 		default:
1481 			data |= 4;
1482 		}
1483 	} else {
1484 		data = data | 0x7c;
1485 	}
1486 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1487 			   sw->cap_plug_events + 1, 1);
1488 }
1489 
1490 static ssize_t authorized_show(struct device *dev,
1491 			       struct device_attribute *attr,
1492 			       char *buf)
1493 {
1494 	struct tb_switch *sw = tb_to_switch(dev);
1495 
1496 	return sprintf(buf, "%u\n", sw->authorized);
1497 }
1498 
1499 static int disapprove_switch(struct device *dev, void *not_used)
1500 {
1501 	struct tb_switch *sw;
1502 
1503 	sw = tb_to_switch(dev);
1504 	if (sw && sw->authorized) {
1505 		int ret;
1506 
1507 		/* First children */
1508 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1509 		if (ret)
1510 			return ret;
1511 
1512 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1513 		if (ret)
1514 			return ret;
1515 
1516 		sw->authorized = 0;
1517 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1524 {
1525 	int ret = -EINVAL;
1526 
1527 	if (!mutex_trylock(&sw->tb->lock))
1528 		return restart_syscall();
1529 
1530 	if (!!sw->authorized == !!val)
1531 		goto unlock;
1532 
1533 	switch (val) {
1534 	/* Disapprove switch */
1535 	case 0:
1536 		if (tb_route(sw)) {
1537 			ret = disapprove_switch(&sw->dev, NULL);
1538 			goto unlock;
1539 		}
1540 		break;
1541 
1542 	/* Approve switch */
1543 	case 1:
1544 		if (sw->key)
1545 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1546 		else
1547 			ret = tb_domain_approve_switch(sw->tb, sw);
1548 		break;
1549 
1550 	/* Challenge switch */
1551 	case 2:
1552 		if (sw->key)
1553 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1554 		break;
1555 
1556 	default:
1557 		break;
1558 	}
1559 
1560 	if (!ret) {
1561 		sw->authorized = val;
1562 		/* Notify status change to the userspace */
1563 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1564 	}
1565 
1566 unlock:
1567 	mutex_unlock(&sw->tb->lock);
1568 	return ret;
1569 }
1570 
1571 static ssize_t authorized_store(struct device *dev,
1572 				struct device_attribute *attr,
1573 				const char *buf, size_t count)
1574 {
1575 	struct tb_switch *sw = tb_to_switch(dev);
1576 	unsigned int val;
1577 	ssize_t ret;
1578 
1579 	ret = kstrtouint(buf, 0, &val);
1580 	if (ret)
1581 		return ret;
1582 	if (val > 2)
1583 		return -EINVAL;
1584 
1585 	pm_runtime_get_sync(&sw->dev);
1586 	ret = tb_switch_set_authorized(sw, val);
1587 	pm_runtime_mark_last_busy(&sw->dev);
1588 	pm_runtime_put_autosuspend(&sw->dev);
1589 
1590 	return ret ? ret : count;
1591 }
1592 static DEVICE_ATTR_RW(authorized);
1593 
1594 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1595 			 char *buf)
1596 {
1597 	struct tb_switch *sw = tb_to_switch(dev);
1598 
1599 	return sprintf(buf, "%u\n", sw->boot);
1600 }
1601 static DEVICE_ATTR_RO(boot);
1602 
1603 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1604 			   char *buf)
1605 {
1606 	struct tb_switch *sw = tb_to_switch(dev);
1607 
1608 	return sprintf(buf, "%#x\n", sw->device);
1609 }
1610 static DEVICE_ATTR_RO(device);
1611 
1612 static ssize_t
1613 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1614 {
1615 	struct tb_switch *sw = tb_to_switch(dev);
1616 
1617 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1618 }
1619 static DEVICE_ATTR_RO(device_name);
1620 
1621 static ssize_t
1622 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1623 {
1624 	struct tb_switch *sw = tb_to_switch(dev);
1625 
1626 	return sprintf(buf, "%u\n", sw->generation);
1627 }
1628 static DEVICE_ATTR_RO(generation);
1629 
1630 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1631 			char *buf)
1632 {
1633 	struct tb_switch *sw = tb_to_switch(dev);
1634 	ssize_t ret;
1635 
1636 	if (!mutex_trylock(&sw->tb->lock))
1637 		return restart_syscall();
1638 
1639 	if (sw->key)
1640 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1641 	else
1642 		ret = sprintf(buf, "\n");
1643 
1644 	mutex_unlock(&sw->tb->lock);
1645 	return ret;
1646 }
1647 
1648 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1649 			 const char *buf, size_t count)
1650 {
1651 	struct tb_switch *sw = tb_to_switch(dev);
1652 	u8 key[TB_SWITCH_KEY_SIZE];
1653 	ssize_t ret = count;
1654 	bool clear = false;
1655 
1656 	if (!strcmp(buf, "\n"))
1657 		clear = true;
1658 	else if (hex2bin(key, buf, sizeof(key)))
1659 		return -EINVAL;
1660 
1661 	if (!mutex_trylock(&sw->tb->lock))
1662 		return restart_syscall();
1663 
1664 	if (sw->authorized) {
1665 		ret = -EBUSY;
1666 	} else {
1667 		kfree(sw->key);
1668 		if (clear) {
1669 			sw->key = NULL;
1670 		} else {
1671 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1672 			if (!sw->key)
1673 				ret = -ENOMEM;
1674 		}
1675 	}
1676 
1677 	mutex_unlock(&sw->tb->lock);
1678 	return ret;
1679 }
1680 static DEVICE_ATTR(key, 0600, key_show, key_store);
1681 
1682 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1683 			  char *buf)
1684 {
1685 	struct tb_switch *sw = tb_to_switch(dev);
1686 
1687 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1688 }
1689 
1690 /*
1691  * Currently all lanes must run at the same speed but we expose here
1692  * both directions to allow possible asymmetric links in the future.
1693  */
1694 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1695 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1696 
1697 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1698 			  char *buf)
1699 {
1700 	struct tb_switch *sw = tb_to_switch(dev);
1701 
1702 	return sprintf(buf, "%u\n", sw->link_width);
1703 }
1704 
1705 /*
1706  * Currently link has same amount of lanes both directions (1 or 2) but
1707  * expose them separately to allow possible asymmetric links in the future.
1708  */
1709 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1710 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1711 
1712 static ssize_t nvm_authenticate_show(struct device *dev,
1713 	struct device_attribute *attr, char *buf)
1714 {
1715 	struct tb_switch *sw = tb_to_switch(dev);
1716 	u32 status;
1717 
1718 	nvm_get_auth_status(sw, &status);
1719 	return sprintf(buf, "%#x\n", status);
1720 }
1721 
1722 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1723 				      bool disconnect)
1724 {
1725 	struct tb_switch *sw = tb_to_switch(dev);
1726 	int val, ret;
1727 
1728 	pm_runtime_get_sync(&sw->dev);
1729 
1730 	if (!mutex_trylock(&sw->tb->lock)) {
1731 		ret = restart_syscall();
1732 		goto exit_rpm;
1733 	}
1734 
1735 	/* If NVMem devices are not yet added */
1736 	if (!sw->nvm) {
1737 		ret = -EAGAIN;
1738 		goto exit_unlock;
1739 	}
1740 
1741 	ret = kstrtoint(buf, 10, &val);
1742 	if (ret)
1743 		goto exit_unlock;
1744 
1745 	/* Always clear the authentication status */
1746 	nvm_clear_auth_status(sw);
1747 
1748 	if (val > 0) {
1749 		if (val == AUTHENTICATE_ONLY) {
1750 			if (disconnect)
1751 				ret = -EINVAL;
1752 			else
1753 				ret = nvm_authenticate(sw, true);
1754 		} else {
1755 			if (!sw->nvm->flushed) {
1756 				if (!sw->nvm->buf) {
1757 					ret = -EINVAL;
1758 					goto exit_unlock;
1759 				}
1760 
1761 				ret = nvm_validate_and_write(sw);
1762 				if (ret || val == WRITE_ONLY)
1763 					goto exit_unlock;
1764 			}
1765 			if (val == WRITE_AND_AUTHENTICATE) {
1766 				if (disconnect)
1767 					ret = tb_lc_force_power(sw);
1768 				else
1769 					ret = nvm_authenticate(sw, false);
1770 			}
1771 		}
1772 	}
1773 
1774 exit_unlock:
1775 	mutex_unlock(&sw->tb->lock);
1776 exit_rpm:
1777 	pm_runtime_mark_last_busy(&sw->dev);
1778 	pm_runtime_put_autosuspend(&sw->dev);
1779 
1780 	return ret;
1781 }
1782 
1783 static ssize_t nvm_authenticate_store(struct device *dev,
1784 	struct device_attribute *attr, const char *buf, size_t count)
1785 {
1786 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1787 	if (ret)
1788 		return ret;
1789 	return count;
1790 }
1791 static DEVICE_ATTR_RW(nvm_authenticate);
1792 
1793 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1794 	struct device_attribute *attr, char *buf)
1795 {
1796 	return nvm_authenticate_show(dev, attr, buf);
1797 }
1798 
1799 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1800 	struct device_attribute *attr, const char *buf, size_t count)
1801 {
1802 	int ret;
1803 
1804 	ret = nvm_authenticate_sysfs(dev, buf, true);
1805 	return ret ? ret : count;
1806 }
1807 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1808 
1809 static ssize_t nvm_version_show(struct device *dev,
1810 				struct device_attribute *attr, char *buf)
1811 {
1812 	struct tb_switch *sw = tb_to_switch(dev);
1813 	int ret;
1814 
1815 	if (!mutex_trylock(&sw->tb->lock))
1816 		return restart_syscall();
1817 
1818 	if (sw->safe_mode)
1819 		ret = -ENODATA;
1820 	else if (!sw->nvm)
1821 		ret = -EAGAIN;
1822 	else
1823 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1824 
1825 	mutex_unlock(&sw->tb->lock);
1826 
1827 	return ret;
1828 }
1829 static DEVICE_ATTR_RO(nvm_version);
1830 
1831 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1832 			   char *buf)
1833 {
1834 	struct tb_switch *sw = tb_to_switch(dev);
1835 
1836 	return sprintf(buf, "%#x\n", sw->vendor);
1837 }
1838 static DEVICE_ATTR_RO(vendor);
1839 
1840 static ssize_t
1841 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1842 {
1843 	struct tb_switch *sw = tb_to_switch(dev);
1844 
1845 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1846 }
1847 static DEVICE_ATTR_RO(vendor_name);
1848 
1849 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1850 			      char *buf)
1851 {
1852 	struct tb_switch *sw = tb_to_switch(dev);
1853 
1854 	return sprintf(buf, "%pUb\n", sw->uuid);
1855 }
1856 static DEVICE_ATTR_RO(unique_id);
1857 
1858 static struct attribute *switch_attrs[] = {
1859 	&dev_attr_authorized.attr,
1860 	&dev_attr_boot.attr,
1861 	&dev_attr_device.attr,
1862 	&dev_attr_device_name.attr,
1863 	&dev_attr_generation.attr,
1864 	&dev_attr_key.attr,
1865 	&dev_attr_nvm_authenticate.attr,
1866 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1867 	&dev_attr_nvm_version.attr,
1868 	&dev_attr_rx_speed.attr,
1869 	&dev_attr_rx_lanes.attr,
1870 	&dev_attr_tx_speed.attr,
1871 	&dev_attr_tx_lanes.attr,
1872 	&dev_attr_vendor.attr,
1873 	&dev_attr_vendor_name.attr,
1874 	&dev_attr_unique_id.attr,
1875 	NULL,
1876 };
1877 
1878 static bool has_port(const struct tb_switch *sw, enum tb_port_type type)
1879 {
1880 	const struct tb_port *port;
1881 
1882 	tb_switch_for_each_port(sw, port) {
1883 		if (!port->disabled && port->config.type == type)
1884 			return true;
1885 	}
1886 
1887 	return false;
1888 }
1889 
1890 static umode_t switch_attr_is_visible(struct kobject *kobj,
1891 				      struct attribute *attr, int n)
1892 {
1893 	struct device *dev = kobj_to_dev(kobj);
1894 	struct tb_switch *sw = tb_to_switch(dev);
1895 
1896 	if (attr == &dev_attr_authorized.attr) {
1897 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
1898 		    sw->tb->security_level == TB_SECURITY_DPONLY ||
1899 		    !has_port(sw, TB_TYPE_PCIE_UP))
1900 			return 0;
1901 	} else if (attr == &dev_attr_device.attr) {
1902 		if (!sw->device)
1903 			return 0;
1904 	} else if (attr == &dev_attr_device_name.attr) {
1905 		if (!sw->device_name)
1906 			return 0;
1907 	} else if (attr == &dev_attr_vendor.attr)  {
1908 		if (!sw->vendor)
1909 			return 0;
1910 	} else if (attr == &dev_attr_vendor_name.attr)  {
1911 		if (!sw->vendor_name)
1912 			return 0;
1913 	} else if (attr == &dev_attr_key.attr) {
1914 		if (tb_route(sw) &&
1915 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1916 		    sw->security_level == TB_SECURITY_SECURE)
1917 			return attr->mode;
1918 		return 0;
1919 	} else if (attr == &dev_attr_rx_speed.attr ||
1920 		   attr == &dev_attr_rx_lanes.attr ||
1921 		   attr == &dev_attr_tx_speed.attr ||
1922 		   attr == &dev_attr_tx_lanes.attr) {
1923 		if (tb_route(sw))
1924 			return attr->mode;
1925 		return 0;
1926 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1927 		if (nvm_upgradeable(sw))
1928 			return attr->mode;
1929 		return 0;
1930 	} else if (attr == &dev_attr_nvm_version.attr) {
1931 		if (nvm_readable(sw))
1932 			return attr->mode;
1933 		return 0;
1934 	} else if (attr == &dev_attr_boot.attr) {
1935 		if (tb_route(sw))
1936 			return attr->mode;
1937 		return 0;
1938 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1939 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1940 			return attr->mode;
1941 		return 0;
1942 	}
1943 
1944 	return sw->safe_mode ? 0 : attr->mode;
1945 }
1946 
1947 static const struct attribute_group switch_group = {
1948 	.is_visible = switch_attr_is_visible,
1949 	.attrs = switch_attrs,
1950 };
1951 
1952 static const struct attribute_group *switch_groups[] = {
1953 	&switch_group,
1954 	NULL,
1955 };
1956 
1957 static void tb_switch_release(struct device *dev)
1958 {
1959 	struct tb_switch *sw = tb_to_switch(dev);
1960 	struct tb_port *port;
1961 
1962 	dma_port_free(sw->dma_port);
1963 
1964 	tb_switch_for_each_port(sw, port) {
1965 		ida_destroy(&port->in_hopids);
1966 		ida_destroy(&port->out_hopids);
1967 	}
1968 
1969 	kfree(sw->uuid);
1970 	kfree(sw->device_name);
1971 	kfree(sw->vendor_name);
1972 	kfree(sw->ports);
1973 	kfree(sw->drom);
1974 	kfree(sw->key);
1975 	kfree(sw);
1976 }
1977 
1978 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
1979 {
1980 	struct tb_switch *sw = tb_to_switch(dev);
1981 	const char *type;
1982 
1983 	if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
1984 		if (add_uevent_var(env, "USB4_VERSION=1.0"))
1985 			return -ENOMEM;
1986 	}
1987 
1988 	if (!tb_route(sw)) {
1989 		type = "host";
1990 	} else {
1991 		const struct tb_port *port;
1992 		bool hub = false;
1993 
1994 		/* Device is hub if it has any downstream ports */
1995 		tb_switch_for_each_port(sw, port) {
1996 			if (!port->disabled && !tb_is_upstream_port(port) &&
1997 			     tb_port_is_null(port)) {
1998 				hub = true;
1999 				break;
2000 			}
2001 		}
2002 
2003 		type = hub ? "hub" : "device";
2004 	}
2005 
2006 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2007 		return -ENOMEM;
2008 	return 0;
2009 }
2010 
2011 /*
2012  * Currently only need to provide the callbacks. Everything else is handled
2013  * in the connection manager.
2014  */
2015 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2016 {
2017 	struct tb_switch *sw = tb_to_switch(dev);
2018 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2019 
2020 	if (cm_ops->runtime_suspend_switch)
2021 		return cm_ops->runtime_suspend_switch(sw);
2022 
2023 	return 0;
2024 }
2025 
2026 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2027 {
2028 	struct tb_switch *sw = tb_to_switch(dev);
2029 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2030 
2031 	if (cm_ops->runtime_resume_switch)
2032 		return cm_ops->runtime_resume_switch(sw);
2033 	return 0;
2034 }
2035 
2036 static const struct dev_pm_ops tb_switch_pm_ops = {
2037 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2038 			   NULL)
2039 };
2040 
2041 struct device_type tb_switch_type = {
2042 	.name = "thunderbolt_device",
2043 	.release = tb_switch_release,
2044 	.uevent = tb_switch_uevent,
2045 	.pm = &tb_switch_pm_ops,
2046 };
2047 
2048 static int tb_switch_get_generation(struct tb_switch *sw)
2049 {
2050 	switch (sw->config.device_id) {
2051 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2052 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2053 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2054 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2055 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2056 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2057 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2058 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2059 		return 1;
2060 
2061 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2062 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2063 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2064 		return 2;
2065 
2066 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2067 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2068 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2069 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2070 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2071 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2072 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2073 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2074 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2075 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2076 		return 3;
2077 
2078 	default:
2079 		if (tb_switch_is_usb4(sw))
2080 			return 4;
2081 
2082 		/*
2083 		 * For unknown switches assume generation to be 1 to be
2084 		 * on the safe side.
2085 		 */
2086 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
2087 			   sw->config.device_id);
2088 		return 1;
2089 	}
2090 }
2091 
2092 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2093 {
2094 	int max_depth;
2095 
2096 	if (tb_switch_is_usb4(sw) ||
2097 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2098 		max_depth = USB4_SWITCH_MAX_DEPTH;
2099 	else
2100 		max_depth = TB_SWITCH_MAX_DEPTH;
2101 
2102 	return depth > max_depth;
2103 }
2104 
2105 /**
2106  * tb_switch_alloc() - allocate a switch
2107  * @tb: Pointer to the owning domain
2108  * @parent: Parent device for this switch
2109  * @route: Route string for this switch
2110  *
2111  * Allocates and initializes a switch. Will not upload configuration to
2112  * the switch. For that you need to call tb_switch_configure()
2113  * separately. The returned switch should be released by calling
2114  * tb_switch_put().
2115  *
2116  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2117  * failure.
2118  */
2119 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2120 				  u64 route)
2121 {
2122 	struct tb_switch *sw;
2123 	int upstream_port;
2124 	int i, ret, depth;
2125 
2126 	/* Unlock the downstream port so we can access the switch below */
2127 	if (route) {
2128 		struct tb_switch *parent_sw = tb_to_switch(parent);
2129 		struct tb_port *down;
2130 
2131 		down = tb_port_at(route, parent_sw);
2132 		tb_port_unlock(down);
2133 	}
2134 
2135 	depth = tb_route_length(route);
2136 
2137 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2138 	if (upstream_port < 0)
2139 		return ERR_PTR(upstream_port);
2140 
2141 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2142 	if (!sw)
2143 		return ERR_PTR(-ENOMEM);
2144 
2145 	sw->tb = tb;
2146 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2147 	if (ret)
2148 		goto err_free_sw_ports;
2149 
2150 	sw->generation = tb_switch_get_generation(sw);
2151 
2152 	tb_dbg(tb, "current switch config:\n");
2153 	tb_dump_switch(tb, sw);
2154 
2155 	/* configure switch */
2156 	sw->config.upstream_port_number = upstream_port;
2157 	sw->config.depth = depth;
2158 	sw->config.route_hi = upper_32_bits(route);
2159 	sw->config.route_lo = lower_32_bits(route);
2160 	sw->config.enabled = 0;
2161 
2162 	/* Make sure we do not exceed maximum topology limit */
2163 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2164 		ret = -EADDRNOTAVAIL;
2165 		goto err_free_sw_ports;
2166 	}
2167 
2168 	/* initialize ports */
2169 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2170 				GFP_KERNEL);
2171 	if (!sw->ports) {
2172 		ret = -ENOMEM;
2173 		goto err_free_sw_ports;
2174 	}
2175 
2176 	for (i = 0; i <= sw->config.max_port_number; i++) {
2177 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2178 		sw->ports[i].sw = sw;
2179 		sw->ports[i].port = i;
2180 
2181 		/* Control port does not need HopID allocation */
2182 		if (i) {
2183 			ida_init(&sw->ports[i].in_hopids);
2184 			ida_init(&sw->ports[i].out_hopids);
2185 		}
2186 	}
2187 
2188 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2189 	if (ret > 0)
2190 		sw->cap_plug_events = ret;
2191 
2192 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2193 	if (ret > 0)
2194 		sw->cap_lc = ret;
2195 
2196 	/* Root switch is always authorized */
2197 	if (!route)
2198 		sw->authorized = true;
2199 
2200 	device_initialize(&sw->dev);
2201 	sw->dev.parent = parent;
2202 	sw->dev.bus = &tb_bus_type;
2203 	sw->dev.type = &tb_switch_type;
2204 	sw->dev.groups = switch_groups;
2205 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2206 
2207 	return sw;
2208 
2209 err_free_sw_ports:
2210 	kfree(sw->ports);
2211 	kfree(sw);
2212 
2213 	return ERR_PTR(ret);
2214 }
2215 
2216 /**
2217  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2218  * @tb: Pointer to the owning domain
2219  * @parent: Parent device for this switch
2220  * @route: Route string for this switch
2221  *
2222  * This creates a switch in safe mode. This means the switch pretty much
2223  * lacks all capabilities except DMA configuration port before it is
2224  * flashed with a valid NVM firmware.
2225  *
2226  * The returned switch must be released by calling tb_switch_put().
2227  *
2228  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2229  */
2230 struct tb_switch *
2231 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2232 {
2233 	struct tb_switch *sw;
2234 
2235 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2236 	if (!sw)
2237 		return ERR_PTR(-ENOMEM);
2238 
2239 	sw->tb = tb;
2240 	sw->config.depth = tb_route_length(route);
2241 	sw->config.route_hi = upper_32_bits(route);
2242 	sw->config.route_lo = lower_32_bits(route);
2243 	sw->safe_mode = true;
2244 
2245 	device_initialize(&sw->dev);
2246 	sw->dev.parent = parent;
2247 	sw->dev.bus = &tb_bus_type;
2248 	sw->dev.type = &tb_switch_type;
2249 	sw->dev.groups = switch_groups;
2250 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2251 
2252 	return sw;
2253 }
2254 
2255 /**
2256  * tb_switch_configure() - Uploads configuration to the switch
2257  * @sw: Switch to configure
2258  *
2259  * Call this function before the switch is added to the system. It will
2260  * upload configuration to the switch and makes it available for the
2261  * connection manager to use. Can be called to the switch again after
2262  * resume from low power states to re-initialize it.
2263  *
2264  * Return: %0 in case of success and negative errno in case of failure
2265  */
2266 int tb_switch_configure(struct tb_switch *sw)
2267 {
2268 	struct tb *tb = sw->tb;
2269 	u64 route;
2270 	int ret;
2271 
2272 	route = tb_route(sw);
2273 
2274 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2275 	       sw->config.enabled ? "restoring" : "initializing", route,
2276 	       tb_route_length(route), sw->config.upstream_port_number);
2277 
2278 	sw->config.enabled = 1;
2279 
2280 	if (tb_switch_is_usb4(sw)) {
2281 		/*
2282 		 * For USB4 devices, we need to program the CM version
2283 		 * accordingly so that it knows to expose all the
2284 		 * additional capabilities.
2285 		 */
2286 		sw->config.cmuv = USB4_VERSION_1_0;
2287 
2288 		/* Enumerate the switch */
2289 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2290 				  ROUTER_CS_1, 4);
2291 		if (ret)
2292 			return ret;
2293 
2294 		ret = usb4_switch_setup(sw);
2295 	} else {
2296 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2297 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2298 				   sw->config.vendor_id);
2299 
2300 		if (!sw->cap_plug_events) {
2301 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2302 			return -ENODEV;
2303 		}
2304 
2305 		/* Enumerate the switch */
2306 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2307 				  ROUTER_CS_1, 3);
2308 	}
2309 	if (ret)
2310 		return ret;
2311 
2312 	return tb_plug_events_active(sw, true);
2313 }
2314 
2315 static int tb_switch_set_uuid(struct tb_switch *sw)
2316 {
2317 	bool uid = false;
2318 	u32 uuid[4];
2319 	int ret;
2320 
2321 	if (sw->uuid)
2322 		return 0;
2323 
2324 	if (tb_switch_is_usb4(sw)) {
2325 		ret = usb4_switch_read_uid(sw, &sw->uid);
2326 		if (ret)
2327 			return ret;
2328 		uid = true;
2329 	} else {
2330 		/*
2331 		 * The newer controllers include fused UUID as part of
2332 		 * link controller specific registers
2333 		 */
2334 		ret = tb_lc_read_uuid(sw, uuid);
2335 		if (ret) {
2336 			if (ret != -EINVAL)
2337 				return ret;
2338 			uid = true;
2339 		}
2340 	}
2341 
2342 	if (uid) {
2343 		/*
2344 		 * ICM generates UUID based on UID and fills the upper
2345 		 * two words with ones. This is not strictly following
2346 		 * UUID format but we want to be compatible with it so
2347 		 * we do the same here.
2348 		 */
2349 		uuid[0] = sw->uid & 0xffffffff;
2350 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2351 		uuid[2] = 0xffffffff;
2352 		uuid[3] = 0xffffffff;
2353 	}
2354 
2355 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2356 	if (!sw->uuid)
2357 		return -ENOMEM;
2358 	return 0;
2359 }
2360 
2361 static int tb_switch_add_dma_port(struct tb_switch *sw)
2362 {
2363 	u32 status;
2364 	int ret;
2365 
2366 	switch (sw->generation) {
2367 	case 2:
2368 		/* Only root switch can be upgraded */
2369 		if (tb_route(sw))
2370 			return 0;
2371 
2372 		fallthrough;
2373 	case 3:
2374 	case 4:
2375 		ret = tb_switch_set_uuid(sw);
2376 		if (ret)
2377 			return ret;
2378 		break;
2379 
2380 	default:
2381 		/*
2382 		 * DMA port is the only thing available when the switch
2383 		 * is in safe mode.
2384 		 */
2385 		if (!sw->safe_mode)
2386 			return 0;
2387 		break;
2388 	}
2389 
2390 	if (sw->no_nvm_upgrade)
2391 		return 0;
2392 
2393 	if (tb_switch_is_usb4(sw)) {
2394 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2395 		if (ret)
2396 			return ret;
2397 
2398 		if (status) {
2399 			tb_sw_info(sw, "switch flash authentication failed\n");
2400 			nvm_set_auth_status(sw, status);
2401 		}
2402 
2403 		return 0;
2404 	}
2405 
2406 	/* Root switch DMA port requires running firmware */
2407 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2408 		return 0;
2409 
2410 	sw->dma_port = dma_port_alloc(sw);
2411 	if (!sw->dma_port)
2412 		return 0;
2413 
2414 	/*
2415 	 * If there is status already set then authentication failed
2416 	 * when the dma_port_flash_update_auth() returned. Power cycling
2417 	 * is not needed (it was done already) so only thing we do here
2418 	 * is to unblock runtime PM of the root port.
2419 	 */
2420 	nvm_get_auth_status(sw, &status);
2421 	if (status) {
2422 		if (!tb_route(sw))
2423 			nvm_authenticate_complete_dma_port(sw);
2424 		return 0;
2425 	}
2426 
2427 	/*
2428 	 * Check status of the previous flash authentication. If there
2429 	 * is one we need to power cycle the switch in any case to make
2430 	 * it functional again.
2431 	 */
2432 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2433 	if (ret <= 0)
2434 		return ret;
2435 
2436 	/* Now we can allow root port to suspend again */
2437 	if (!tb_route(sw))
2438 		nvm_authenticate_complete_dma_port(sw);
2439 
2440 	if (status) {
2441 		tb_sw_info(sw, "switch flash authentication failed\n");
2442 		nvm_set_auth_status(sw, status);
2443 	}
2444 
2445 	tb_sw_info(sw, "power cycling the switch now\n");
2446 	dma_port_power_cycle(sw->dma_port);
2447 
2448 	/*
2449 	 * We return error here which causes the switch adding failure.
2450 	 * It should appear back after power cycle is complete.
2451 	 */
2452 	return -ESHUTDOWN;
2453 }
2454 
2455 static void tb_switch_default_link_ports(struct tb_switch *sw)
2456 {
2457 	int i;
2458 
2459 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2460 		struct tb_port *port = &sw->ports[i];
2461 		struct tb_port *subordinate;
2462 
2463 		if (!tb_port_is_null(port))
2464 			continue;
2465 
2466 		/* Check for the subordinate port */
2467 		if (i == sw->config.max_port_number ||
2468 		    !tb_port_is_null(&sw->ports[i + 1]))
2469 			continue;
2470 
2471 		/* Link them if not already done so (by DROM) */
2472 		subordinate = &sw->ports[i + 1];
2473 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2474 			port->link_nr = 0;
2475 			port->dual_link_port = subordinate;
2476 			subordinate->link_nr = 1;
2477 			subordinate->dual_link_port = port;
2478 
2479 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2480 				  port->port, subordinate->port);
2481 		}
2482 	}
2483 }
2484 
2485 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2486 {
2487 	const struct tb_port *up = tb_upstream_port(sw);
2488 
2489 	if (!up->dual_link_port || !up->dual_link_port->remote)
2490 		return false;
2491 
2492 	if (tb_switch_is_usb4(sw))
2493 		return usb4_switch_lane_bonding_possible(sw);
2494 	return tb_lc_lane_bonding_possible(sw);
2495 }
2496 
2497 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2498 {
2499 	struct tb_port *up;
2500 	bool change = false;
2501 	int ret;
2502 
2503 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2504 		return 0;
2505 
2506 	up = tb_upstream_port(sw);
2507 
2508 	ret = tb_port_get_link_speed(up);
2509 	if (ret < 0)
2510 		return ret;
2511 	if (sw->link_speed != ret)
2512 		change = true;
2513 	sw->link_speed = ret;
2514 
2515 	ret = tb_port_get_link_width(up);
2516 	if (ret < 0)
2517 		return ret;
2518 	if (sw->link_width != ret)
2519 		change = true;
2520 	sw->link_width = ret;
2521 
2522 	/* Notify userspace that there is possible link attribute change */
2523 	if (device_is_registered(&sw->dev) && change)
2524 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2525 
2526 	return 0;
2527 }
2528 
2529 /**
2530  * tb_switch_lane_bonding_enable() - Enable lane bonding
2531  * @sw: Switch to enable lane bonding
2532  *
2533  * Connection manager can call this function to enable lane bonding of a
2534  * switch. If conditions are correct and both switches support the feature,
2535  * lanes are bonded. It is safe to call this to any switch.
2536  */
2537 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2538 {
2539 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2540 	struct tb_port *up, *down;
2541 	u64 route = tb_route(sw);
2542 	int ret;
2543 
2544 	if (!route)
2545 		return 0;
2546 
2547 	if (!tb_switch_lane_bonding_possible(sw))
2548 		return 0;
2549 
2550 	up = tb_upstream_port(sw);
2551 	down = tb_port_at(route, parent);
2552 
2553 	if (!tb_port_is_width_supported(up, 2) ||
2554 	    !tb_port_is_width_supported(down, 2))
2555 		return 0;
2556 
2557 	ret = tb_port_lane_bonding_enable(up);
2558 	if (ret) {
2559 		tb_port_warn(up, "failed to enable lane bonding\n");
2560 		return ret;
2561 	}
2562 
2563 	ret = tb_port_lane_bonding_enable(down);
2564 	if (ret) {
2565 		tb_port_warn(down, "failed to enable lane bonding\n");
2566 		tb_port_lane_bonding_disable(up);
2567 		return ret;
2568 	}
2569 
2570 	ret = tb_port_wait_for_link_width(down, 2, 100);
2571 	if (ret) {
2572 		tb_port_warn(down, "timeout enabling lane bonding\n");
2573 		return ret;
2574 	}
2575 
2576 	tb_port_update_credits(down);
2577 	tb_port_update_credits(up);
2578 	tb_switch_update_link_attributes(sw);
2579 
2580 	tb_sw_dbg(sw, "lane bonding enabled\n");
2581 	return ret;
2582 }
2583 
2584 /**
2585  * tb_switch_lane_bonding_disable() - Disable lane bonding
2586  * @sw: Switch whose lane bonding to disable
2587  *
2588  * Disables lane bonding between @sw and parent. This can be called even
2589  * if lanes were not bonded originally.
2590  */
2591 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2592 {
2593 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2594 	struct tb_port *up, *down;
2595 
2596 	if (!tb_route(sw))
2597 		return;
2598 
2599 	up = tb_upstream_port(sw);
2600 	if (!up->bonded)
2601 		return;
2602 
2603 	down = tb_port_at(tb_route(sw), parent);
2604 
2605 	tb_port_lane_bonding_disable(up);
2606 	tb_port_lane_bonding_disable(down);
2607 
2608 	/*
2609 	 * It is fine if we get other errors as the router might have
2610 	 * been unplugged.
2611 	 */
2612 	if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2613 		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2614 
2615 	tb_port_update_credits(down);
2616 	tb_port_update_credits(up);
2617 	tb_switch_update_link_attributes(sw);
2618 
2619 	tb_sw_dbg(sw, "lane bonding disabled\n");
2620 }
2621 
2622 /**
2623  * tb_switch_configure_link() - Set link configured
2624  * @sw: Switch whose link is configured
2625  *
2626  * Sets the link upstream from @sw configured (from both ends) so that
2627  * it will not be disconnected when the domain exits sleep. Can be
2628  * called for any switch.
2629  *
2630  * It is recommended that this is called after lane bonding is enabled.
2631  *
2632  * Returns %0 on success and negative errno in case of error.
2633  */
2634 int tb_switch_configure_link(struct tb_switch *sw)
2635 {
2636 	struct tb_port *up, *down;
2637 	int ret;
2638 
2639 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2640 		return 0;
2641 
2642 	up = tb_upstream_port(sw);
2643 	if (tb_switch_is_usb4(up->sw))
2644 		ret = usb4_port_configure(up);
2645 	else
2646 		ret = tb_lc_configure_port(up);
2647 	if (ret)
2648 		return ret;
2649 
2650 	down = up->remote;
2651 	if (tb_switch_is_usb4(down->sw))
2652 		return usb4_port_configure(down);
2653 	return tb_lc_configure_port(down);
2654 }
2655 
2656 /**
2657  * tb_switch_unconfigure_link() - Unconfigure link
2658  * @sw: Switch whose link is unconfigured
2659  *
2660  * Sets the link unconfigured so the @sw will be disconnected if the
2661  * domain exists sleep.
2662  */
2663 void tb_switch_unconfigure_link(struct tb_switch *sw)
2664 {
2665 	struct tb_port *up, *down;
2666 
2667 	if (sw->is_unplugged)
2668 		return;
2669 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2670 		return;
2671 
2672 	up = tb_upstream_port(sw);
2673 	if (tb_switch_is_usb4(up->sw))
2674 		usb4_port_unconfigure(up);
2675 	else
2676 		tb_lc_unconfigure_port(up);
2677 
2678 	down = up->remote;
2679 	if (tb_switch_is_usb4(down->sw))
2680 		usb4_port_unconfigure(down);
2681 	else
2682 		tb_lc_unconfigure_port(down);
2683 }
2684 
2685 static void tb_switch_credits_init(struct tb_switch *sw)
2686 {
2687 	if (tb_switch_is_icm(sw))
2688 		return;
2689 	if (!tb_switch_is_usb4(sw))
2690 		return;
2691 	if (usb4_switch_credits_init(sw))
2692 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2693 }
2694 
2695 /**
2696  * tb_switch_add() - Add a switch to the domain
2697  * @sw: Switch to add
2698  *
2699  * This is the last step in adding switch to the domain. It will read
2700  * identification information from DROM and initializes ports so that
2701  * they can be used to connect other switches. The switch will be
2702  * exposed to the userspace when this function successfully returns. To
2703  * remove and release the switch, call tb_switch_remove().
2704  *
2705  * Return: %0 in case of success and negative errno in case of failure
2706  */
2707 int tb_switch_add(struct tb_switch *sw)
2708 {
2709 	int i, ret;
2710 
2711 	/*
2712 	 * Initialize DMA control port now before we read DROM. Recent
2713 	 * host controllers have more complete DROM on NVM that includes
2714 	 * vendor and model identification strings which we then expose
2715 	 * to the userspace. NVM can be accessed through DMA
2716 	 * configuration based mailbox.
2717 	 */
2718 	ret = tb_switch_add_dma_port(sw);
2719 	if (ret) {
2720 		dev_err(&sw->dev, "failed to add DMA port\n");
2721 		return ret;
2722 	}
2723 
2724 	if (!sw->safe_mode) {
2725 		tb_switch_credits_init(sw);
2726 
2727 		/* read drom */
2728 		ret = tb_drom_read(sw);
2729 		if (ret) {
2730 			dev_err(&sw->dev, "reading DROM failed\n");
2731 			return ret;
2732 		}
2733 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2734 
2735 		tb_check_quirks(sw);
2736 
2737 		ret = tb_switch_set_uuid(sw);
2738 		if (ret) {
2739 			dev_err(&sw->dev, "failed to set UUID\n");
2740 			return ret;
2741 		}
2742 
2743 		for (i = 0; i <= sw->config.max_port_number; i++) {
2744 			if (sw->ports[i].disabled) {
2745 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2746 				continue;
2747 			}
2748 			ret = tb_init_port(&sw->ports[i]);
2749 			if (ret) {
2750 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2751 				return ret;
2752 			}
2753 		}
2754 
2755 		tb_switch_default_link_ports(sw);
2756 
2757 		ret = tb_switch_update_link_attributes(sw);
2758 		if (ret)
2759 			return ret;
2760 
2761 		ret = tb_switch_tmu_init(sw);
2762 		if (ret)
2763 			return ret;
2764 	}
2765 
2766 	ret = device_add(&sw->dev);
2767 	if (ret) {
2768 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2769 		return ret;
2770 	}
2771 
2772 	if (tb_route(sw)) {
2773 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2774 			 sw->vendor, sw->device);
2775 		if (sw->vendor_name && sw->device_name)
2776 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2777 				 sw->device_name);
2778 	}
2779 
2780 	ret = usb4_switch_add_ports(sw);
2781 	if (ret) {
2782 		dev_err(&sw->dev, "failed to add USB4 ports\n");
2783 		goto err_del;
2784 	}
2785 
2786 	ret = tb_switch_nvm_add(sw);
2787 	if (ret) {
2788 		dev_err(&sw->dev, "failed to add NVM devices\n");
2789 		goto err_ports;
2790 	}
2791 
2792 	/*
2793 	 * Thunderbolt routers do not generate wakeups themselves but
2794 	 * they forward wakeups from tunneled protocols, so enable it
2795 	 * here.
2796 	 */
2797 	device_init_wakeup(&sw->dev, true);
2798 
2799 	pm_runtime_set_active(&sw->dev);
2800 	if (sw->rpm) {
2801 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2802 		pm_runtime_use_autosuspend(&sw->dev);
2803 		pm_runtime_mark_last_busy(&sw->dev);
2804 		pm_runtime_enable(&sw->dev);
2805 		pm_request_autosuspend(&sw->dev);
2806 	}
2807 
2808 	tb_switch_debugfs_init(sw);
2809 	return 0;
2810 
2811 err_ports:
2812 	usb4_switch_remove_ports(sw);
2813 err_del:
2814 	device_del(&sw->dev);
2815 
2816 	return ret;
2817 }
2818 
2819 /**
2820  * tb_switch_remove() - Remove and release a switch
2821  * @sw: Switch to remove
2822  *
2823  * This will remove the switch from the domain and release it after last
2824  * reference count drops to zero. If there are switches connected below
2825  * this switch, they will be removed as well.
2826  */
2827 void tb_switch_remove(struct tb_switch *sw)
2828 {
2829 	struct tb_port *port;
2830 
2831 	tb_switch_debugfs_remove(sw);
2832 
2833 	if (sw->rpm) {
2834 		pm_runtime_get_sync(&sw->dev);
2835 		pm_runtime_disable(&sw->dev);
2836 	}
2837 
2838 	/* port 0 is the switch itself and never has a remote */
2839 	tb_switch_for_each_port(sw, port) {
2840 		if (tb_port_has_remote(port)) {
2841 			tb_switch_remove(port->remote->sw);
2842 			port->remote = NULL;
2843 		} else if (port->xdomain) {
2844 			tb_xdomain_remove(port->xdomain);
2845 			port->xdomain = NULL;
2846 		}
2847 
2848 		/* Remove any downstream retimers */
2849 		tb_retimer_remove_all(port);
2850 	}
2851 
2852 	if (!sw->is_unplugged)
2853 		tb_plug_events_active(sw, false);
2854 
2855 	tb_switch_nvm_remove(sw);
2856 	usb4_switch_remove_ports(sw);
2857 
2858 	if (tb_route(sw))
2859 		dev_info(&sw->dev, "device disconnected\n");
2860 	device_unregister(&sw->dev);
2861 }
2862 
2863 /**
2864  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2865  * @sw: Router to mark unplugged
2866  */
2867 void tb_sw_set_unplugged(struct tb_switch *sw)
2868 {
2869 	struct tb_port *port;
2870 
2871 	if (sw == sw->tb->root_switch) {
2872 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2873 		return;
2874 	}
2875 	if (sw->is_unplugged) {
2876 		tb_sw_WARN(sw, "is_unplugged already set\n");
2877 		return;
2878 	}
2879 	sw->is_unplugged = true;
2880 	tb_switch_for_each_port(sw, port) {
2881 		if (tb_port_has_remote(port))
2882 			tb_sw_set_unplugged(port->remote->sw);
2883 		else if (port->xdomain)
2884 			port->xdomain->is_unplugged = true;
2885 	}
2886 }
2887 
2888 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2889 {
2890 	if (flags)
2891 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2892 	else
2893 		tb_sw_dbg(sw, "disabling wakeup\n");
2894 
2895 	if (tb_switch_is_usb4(sw))
2896 		return usb4_switch_set_wake(sw, flags);
2897 	return tb_lc_set_wake(sw, flags);
2898 }
2899 
2900 int tb_switch_resume(struct tb_switch *sw)
2901 {
2902 	struct tb_port *port;
2903 	int err;
2904 
2905 	tb_sw_dbg(sw, "resuming switch\n");
2906 
2907 	/*
2908 	 * Check for UID of the connected switches except for root
2909 	 * switch which we assume cannot be removed.
2910 	 */
2911 	if (tb_route(sw)) {
2912 		u64 uid;
2913 
2914 		/*
2915 		 * Check first that we can still read the switch config
2916 		 * space. It may be that there is now another domain
2917 		 * connected.
2918 		 */
2919 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2920 		if (err < 0) {
2921 			tb_sw_info(sw, "switch not present anymore\n");
2922 			return err;
2923 		}
2924 
2925 		if (tb_switch_is_usb4(sw))
2926 			err = usb4_switch_read_uid(sw, &uid);
2927 		else
2928 			err = tb_drom_read_uid_only(sw, &uid);
2929 		if (err) {
2930 			tb_sw_warn(sw, "uid read failed\n");
2931 			return err;
2932 		}
2933 		if (sw->uid != uid) {
2934 			tb_sw_info(sw,
2935 				"changed while suspended (uid %#llx -> %#llx)\n",
2936 				sw->uid, uid);
2937 			return -ENODEV;
2938 		}
2939 	}
2940 
2941 	err = tb_switch_configure(sw);
2942 	if (err)
2943 		return err;
2944 
2945 	/* Disable wakes */
2946 	tb_switch_set_wake(sw, 0);
2947 
2948 	err = tb_switch_tmu_init(sw);
2949 	if (err)
2950 		return err;
2951 
2952 	/* check for surviving downstream switches */
2953 	tb_switch_for_each_port(sw, port) {
2954 		if (!tb_port_is_null(port))
2955 			continue;
2956 
2957 		if (!tb_port_resume(port))
2958 			continue;
2959 
2960 		if (tb_wait_for_port(port, true) <= 0) {
2961 			tb_port_warn(port,
2962 				     "lost during suspend, disconnecting\n");
2963 			if (tb_port_has_remote(port))
2964 				tb_sw_set_unplugged(port->remote->sw);
2965 			else if (port->xdomain)
2966 				port->xdomain->is_unplugged = true;
2967 		} else {
2968 			/*
2969 			 * Always unlock the port so the downstream
2970 			 * switch/domain is accessible.
2971 			 */
2972 			if (tb_port_unlock(port))
2973 				tb_port_warn(port, "failed to unlock port\n");
2974 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2975 				tb_port_warn(port,
2976 					     "lost during suspend, disconnecting\n");
2977 				tb_sw_set_unplugged(port->remote->sw);
2978 			}
2979 		}
2980 	}
2981 	return 0;
2982 }
2983 
2984 /**
2985  * tb_switch_suspend() - Put a switch to sleep
2986  * @sw: Switch to suspend
2987  * @runtime: Is this runtime suspend or system sleep
2988  *
2989  * Suspends router and all its children. Enables wakes according to
2990  * value of @runtime and then sets sleep bit for the router. If @sw is
2991  * host router the domain is ready to go to sleep once this function
2992  * returns.
2993  */
2994 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2995 {
2996 	unsigned int flags = 0;
2997 	struct tb_port *port;
2998 	int err;
2999 
3000 	tb_sw_dbg(sw, "suspending switch\n");
3001 
3002 	err = tb_plug_events_active(sw, false);
3003 	if (err)
3004 		return;
3005 
3006 	tb_switch_for_each_port(sw, port) {
3007 		if (tb_port_has_remote(port))
3008 			tb_switch_suspend(port->remote->sw, runtime);
3009 	}
3010 
3011 	if (runtime) {
3012 		/* Trigger wake when something is plugged in/out */
3013 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3014 		flags |= TB_WAKE_ON_USB4;
3015 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3016 	} else if (device_may_wakeup(&sw->dev)) {
3017 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3018 	}
3019 
3020 	tb_switch_set_wake(sw, flags);
3021 
3022 	if (tb_switch_is_usb4(sw))
3023 		usb4_switch_set_sleep(sw);
3024 	else
3025 		tb_lc_set_sleep(sw);
3026 }
3027 
3028 /**
3029  * tb_switch_query_dp_resource() - Query availability of DP resource
3030  * @sw: Switch whose DP resource is queried
3031  * @in: DP IN port
3032  *
3033  * Queries availability of DP resource for DP tunneling using switch
3034  * specific means. Returns %true if resource is available.
3035  */
3036 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3037 {
3038 	if (tb_switch_is_usb4(sw))
3039 		return usb4_switch_query_dp_resource(sw, in);
3040 	return tb_lc_dp_sink_query(sw, in);
3041 }
3042 
3043 /**
3044  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3045  * @sw: Switch whose DP resource is allocated
3046  * @in: DP IN port
3047  *
3048  * Allocates DP resource for DP tunneling. The resource must be
3049  * available for this to succeed (see tb_switch_query_dp_resource()).
3050  * Returns %0 in success and negative errno otherwise.
3051  */
3052 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3053 {
3054 	if (tb_switch_is_usb4(sw))
3055 		return usb4_switch_alloc_dp_resource(sw, in);
3056 	return tb_lc_dp_sink_alloc(sw, in);
3057 }
3058 
3059 /**
3060  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3061  * @sw: Switch whose DP resource is de-allocated
3062  * @in: DP IN port
3063  *
3064  * De-allocates DP resource that was previously allocated for DP
3065  * tunneling.
3066  */
3067 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3068 {
3069 	int ret;
3070 
3071 	if (tb_switch_is_usb4(sw))
3072 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3073 	else
3074 		ret = tb_lc_dp_sink_dealloc(sw, in);
3075 
3076 	if (ret)
3077 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3078 			   in->port);
3079 }
3080 
3081 struct tb_sw_lookup {
3082 	struct tb *tb;
3083 	u8 link;
3084 	u8 depth;
3085 	const uuid_t *uuid;
3086 	u64 route;
3087 };
3088 
3089 static int tb_switch_match(struct device *dev, const void *data)
3090 {
3091 	struct tb_switch *sw = tb_to_switch(dev);
3092 	const struct tb_sw_lookup *lookup = data;
3093 
3094 	if (!sw)
3095 		return 0;
3096 	if (sw->tb != lookup->tb)
3097 		return 0;
3098 
3099 	if (lookup->uuid)
3100 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3101 
3102 	if (lookup->route) {
3103 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3104 		       sw->config.route_hi == upper_32_bits(lookup->route);
3105 	}
3106 
3107 	/* Root switch is matched only by depth */
3108 	if (!lookup->depth)
3109 		return !sw->depth;
3110 
3111 	return sw->link == lookup->link && sw->depth == lookup->depth;
3112 }
3113 
3114 /**
3115  * tb_switch_find_by_link_depth() - Find switch by link and depth
3116  * @tb: Domain the switch belongs
3117  * @link: Link number the switch is connected
3118  * @depth: Depth of the switch in link
3119  *
3120  * Returned switch has reference count increased so the caller needs to
3121  * call tb_switch_put() when done with the switch.
3122  */
3123 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3124 {
3125 	struct tb_sw_lookup lookup;
3126 	struct device *dev;
3127 
3128 	memset(&lookup, 0, sizeof(lookup));
3129 	lookup.tb = tb;
3130 	lookup.link = link;
3131 	lookup.depth = depth;
3132 
3133 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3134 	if (dev)
3135 		return tb_to_switch(dev);
3136 
3137 	return NULL;
3138 }
3139 
3140 /**
3141  * tb_switch_find_by_uuid() - Find switch by UUID
3142  * @tb: Domain the switch belongs
3143  * @uuid: UUID to look for
3144  *
3145  * Returned switch has reference count increased so the caller needs to
3146  * call tb_switch_put() when done with the switch.
3147  */
3148 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3149 {
3150 	struct tb_sw_lookup lookup;
3151 	struct device *dev;
3152 
3153 	memset(&lookup, 0, sizeof(lookup));
3154 	lookup.tb = tb;
3155 	lookup.uuid = uuid;
3156 
3157 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3158 	if (dev)
3159 		return tb_to_switch(dev);
3160 
3161 	return NULL;
3162 }
3163 
3164 /**
3165  * tb_switch_find_by_route() - Find switch by route string
3166  * @tb: Domain the switch belongs
3167  * @route: Route string to look for
3168  *
3169  * Returned switch has reference count increased so the caller needs to
3170  * call tb_switch_put() when done with the switch.
3171  */
3172 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3173 {
3174 	struct tb_sw_lookup lookup;
3175 	struct device *dev;
3176 
3177 	if (!route)
3178 		return tb_switch_get(tb->root_switch);
3179 
3180 	memset(&lookup, 0, sizeof(lookup));
3181 	lookup.tb = tb;
3182 	lookup.route = route;
3183 
3184 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3185 	if (dev)
3186 		return tb_to_switch(dev);
3187 
3188 	return NULL;
3189 }
3190 
3191 /**
3192  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3193  * @sw: Switch to find the port from
3194  * @type: Port type to look for
3195  */
3196 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3197 				    enum tb_port_type type)
3198 {
3199 	struct tb_port *port;
3200 
3201 	tb_switch_for_each_port(sw, port) {
3202 		if (port->config.type == type)
3203 			return port;
3204 	}
3205 
3206 	return NULL;
3207 }
3208