xref: /linux/drivers/thunderbolt/switch.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 #define NVM_CSS			0x10
23 
24 struct nvm_auth_status {
25 	struct list_head list;
26 	uuid_t uuid;
27 	u32 status;
28 };
29 
30 static bool clx_enabled = true;
31 module_param_named(clx, clx_enabled, bool, 0444);
32 MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)");
33 
34 /*
35  * Hold NVM authentication failure status per switch This information
36  * needs to stay around even when the switch gets power cycled so we
37  * keep it separately.
38  */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41 
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 	struct nvm_auth_status *st;
45 
46 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 		if (uuid_equal(&st->uuid, sw->uuid))
48 			return st;
49 	}
50 
51 	return NULL;
52 }
53 
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 	struct nvm_auth_status *st;
57 
58 	mutex_lock(&nvm_auth_status_lock);
59 	st = __nvm_get_auth_status(sw);
60 	mutex_unlock(&nvm_auth_status_lock);
61 
62 	*status = st ? st->status : 0;
63 }
64 
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 	struct nvm_auth_status *st;
68 
69 	if (WARN_ON(!sw->uuid))
70 		return;
71 
72 	mutex_lock(&nvm_auth_status_lock);
73 	st = __nvm_get_auth_status(sw);
74 
75 	if (!st) {
76 		st = kzalloc(sizeof(*st), GFP_KERNEL);
77 		if (!st)
78 			goto unlock;
79 
80 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 		INIT_LIST_HEAD(&st->list);
82 		list_add_tail(&st->list, &nvm_auth_status_cache);
83 	}
84 
85 	st->status = status;
86 unlock:
87 	mutex_unlock(&nvm_auth_status_lock);
88 }
89 
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 	struct nvm_auth_status *st;
93 
94 	mutex_lock(&nvm_auth_status_lock);
95 	st = __nvm_get_auth_status(sw);
96 	if (st) {
97 		list_del(&st->list);
98 		kfree(st);
99 	}
100 	mutex_unlock(&nvm_auth_status_lock);
101 }
102 
103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 	unsigned int image_size, hdr_size;
106 	const u8 *buf = sw->nvm->buf;
107 	u16 ds_size;
108 	int ret;
109 
110 	if (!buf)
111 		return -EINVAL;
112 
113 	image_size = sw->nvm->buf_data_size;
114 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 		return -EINVAL;
116 
117 	/*
118 	 * FARB pointer must point inside the image and must at least
119 	 * contain parts of the digital section we will be reading here.
120 	 */
121 	hdr_size = (*(u32 *)buf) & 0xffffff;
122 	if (hdr_size + NVM_DEVID + 2 >= image_size)
123 		return -EINVAL;
124 
125 	/* Digital section start should be aligned to 4k page */
126 	if (!IS_ALIGNED(hdr_size, SZ_4K))
127 		return -EINVAL;
128 
129 	/*
130 	 * Read digital section size and check that it also fits inside
131 	 * the image.
132 	 */
133 	ds_size = *(u16 *)(buf + hdr_size);
134 	if (ds_size >= image_size)
135 		return -EINVAL;
136 
137 	if (!sw->safe_mode) {
138 		u16 device_id;
139 
140 		/*
141 		 * Make sure the device ID in the image matches the one
142 		 * we read from the switch config space.
143 		 */
144 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 		if (device_id != sw->config.device_id)
146 			return -EINVAL;
147 
148 		if (sw->generation < 3) {
149 			/* Write CSS headers first */
150 			ret = dma_port_flash_write(sw->dma_port,
151 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 				DMA_PORT_CSS_MAX_SIZE);
153 			if (ret)
154 				return ret;
155 		}
156 
157 		/* Skip headers in the image */
158 		buf += hdr_size;
159 		image_size -= hdr_size;
160 	}
161 
162 	if (tb_switch_is_usb4(sw))
163 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 	else
165 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 	if (!ret)
167 		sw->nvm->flushed = true;
168 	return ret;
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw)) {
316 		if (auth_only) {
317 			ret = usb4_switch_nvm_set_offset(sw, 0);
318 			if (ret)
319 				return ret;
320 		}
321 		sw->nvm->authenticating = true;
322 		return usb4_switch_nvm_authenticate(sw);
323 	} else if (auth_only) {
324 		return -EOPNOTSUPP;
325 	}
326 
327 	sw->nvm->authenticating = true;
328 	if (!tb_route(sw)) {
329 		nvm_authenticate_start_dma_port(sw);
330 		ret = nvm_authenticate_host_dma_port(sw);
331 	} else {
332 		ret = nvm_authenticate_device_dma_port(sw);
333 	}
334 
335 	return ret;
336 }
337 
338 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
339 			      size_t bytes)
340 {
341 	struct tb_nvm *nvm = priv;
342 	struct tb_switch *sw = tb_to_switch(nvm->dev);
343 	int ret;
344 
345 	pm_runtime_get_sync(&sw->dev);
346 
347 	if (!mutex_trylock(&sw->tb->lock)) {
348 		ret = restart_syscall();
349 		goto out;
350 	}
351 
352 	ret = nvm_read(sw, offset, val, bytes);
353 	mutex_unlock(&sw->tb->lock);
354 
355 out:
356 	pm_runtime_mark_last_busy(&sw->dev);
357 	pm_runtime_put_autosuspend(&sw->dev);
358 
359 	return ret;
360 }
361 
362 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
363 			       size_t bytes)
364 {
365 	struct tb_nvm *nvm = priv;
366 	struct tb_switch *sw = tb_to_switch(nvm->dev);
367 	int ret;
368 
369 	if (!mutex_trylock(&sw->tb->lock))
370 		return restart_syscall();
371 
372 	/*
373 	 * Since writing the NVM image might require some special steps,
374 	 * for example when CSS headers are written, we cache the image
375 	 * locally here and handle the special cases when the user asks
376 	 * us to authenticate the image.
377 	 */
378 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
379 	mutex_unlock(&sw->tb->lock);
380 
381 	return ret;
382 }
383 
384 static int tb_switch_nvm_add(struct tb_switch *sw)
385 {
386 	struct tb_nvm *nvm;
387 	u32 val;
388 	int ret;
389 
390 	if (!nvm_readable(sw))
391 		return 0;
392 
393 	/*
394 	 * The NVM format of non-Intel hardware is not known so
395 	 * currently restrict NVM upgrade for Intel hardware. We may
396 	 * relax this in the future when we learn other NVM formats.
397 	 */
398 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
399 	    sw->config.vendor_id != 0x8087) {
400 		dev_info(&sw->dev,
401 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
402 			 sw->config.vendor_id);
403 		return 0;
404 	}
405 
406 	nvm = tb_nvm_alloc(&sw->dev);
407 	if (IS_ERR(nvm))
408 		return PTR_ERR(nvm);
409 
410 	/*
411 	 * If the switch is in safe-mode the only accessible portion of
412 	 * the NVM is the non-active one where userspace is expected to
413 	 * write new functional NVM.
414 	 */
415 	if (!sw->safe_mode) {
416 		u32 nvm_size, hdr_size;
417 
418 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
419 		if (ret)
420 			goto err_nvm;
421 
422 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
423 		nvm_size = (SZ_1M << (val & 7)) / 8;
424 		nvm_size = (nvm_size - hdr_size) / 2;
425 
426 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
427 		if (ret)
428 			goto err_nvm;
429 
430 		nvm->major = val >> 16;
431 		nvm->minor = val >> 8;
432 
433 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
434 		if (ret)
435 			goto err_nvm;
436 	}
437 
438 	if (!sw->no_nvm_upgrade) {
439 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
440 					    tb_switch_nvm_write);
441 		if (ret)
442 			goto err_nvm;
443 	}
444 
445 	sw->nvm = nvm;
446 	return 0;
447 
448 err_nvm:
449 	tb_nvm_free(nvm);
450 	return ret;
451 }
452 
453 static void tb_switch_nvm_remove(struct tb_switch *sw)
454 {
455 	struct tb_nvm *nvm;
456 
457 	nvm = sw->nvm;
458 	sw->nvm = NULL;
459 
460 	if (!nvm)
461 		return;
462 
463 	/* Remove authentication status in case the switch is unplugged */
464 	if (!nvm->authenticating)
465 		nvm_clear_auth_status(sw);
466 
467 	tb_nvm_free(nvm);
468 }
469 
470 /* port utility functions */
471 
472 static const char *tb_port_type(const struct tb_regs_port_header *port)
473 {
474 	switch (port->type >> 16) {
475 	case 0:
476 		switch ((u8) port->type) {
477 		case 0:
478 			return "Inactive";
479 		case 1:
480 			return "Port";
481 		case 2:
482 			return "NHI";
483 		default:
484 			return "unknown";
485 		}
486 	case 0x2:
487 		return "Ethernet";
488 	case 0x8:
489 		return "SATA";
490 	case 0xe:
491 		return "DP/HDMI";
492 	case 0x10:
493 		return "PCIe";
494 	case 0x20:
495 		return "USB";
496 	default:
497 		return "unknown";
498 	}
499 }
500 
501 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
502 {
503 	const struct tb_regs_port_header *regs = &port->config;
504 
505 	tb_dbg(tb,
506 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
507 	       regs->port_number, regs->vendor_id, regs->device_id,
508 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
509 	       regs->type);
510 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
511 	       regs->max_in_hop_id, regs->max_out_hop_id);
512 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
513 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
514 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
515 	       port->ctl_credits);
516 }
517 
518 /**
519  * tb_port_state() - get connectedness state of a port
520  * @port: the port to check
521  *
522  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
523  *
524  * Return: Returns an enum tb_port_state on success or an error code on failure.
525  */
526 int tb_port_state(struct tb_port *port)
527 {
528 	struct tb_cap_phy phy;
529 	int res;
530 	if (port->cap_phy == 0) {
531 		tb_port_WARN(port, "does not have a PHY\n");
532 		return -EINVAL;
533 	}
534 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
535 	if (res)
536 		return res;
537 	return phy.state;
538 }
539 
540 /**
541  * tb_wait_for_port() - wait for a port to become ready
542  * @port: Port to wait
543  * @wait_if_unplugged: Wait also when port is unplugged
544  *
545  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
546  * wait_if_unplugged is set then we also wait if the port is in state
547  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
548  * switch resume). Otherwise we only wait if a device is registered but the link
549  * has not yet been established.
550  *
551  * Return: Returns an error code on failure. Returns 0 if the port is not
552  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
553  * if the port is connected and in state TB_PORT_UP.
554  */
555 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
556 {
557 	int retries = 10;
558 	int state;
559 	if (!port->cap_phy) {
560 		tb_port_WARN(port, "does not have PHY\n");
561 		return -EINVAL;
562 	}
563 	if (tb_is_upstream_port(port)) {
564 		tb_port_WARN(port, "is the upstream port\n");
565 		return -EINVAL;
566 	}
567 
568 	while (retries--) {
569 		state = tb_port_state(port);
570 		if (state < 0)
571 			return state;
572 		if (state == TB_PORT_DISABLED) {
573 			tb_port_dbg(port, "is disabled (state: 0)\n");
574 			return 0;
575 		}
576 		if (state == TB_PORT_UNPLUGGED) {
577 			if (wait_if_unplugged) {
578 				/* used during resume */
579 				tb_port_dbg(port,
580 					    "is unplugged (state: 7), retrying...\n");
581 				msleep(100);
582 				continue;
583 			}
584 			tb_port_dbg(port, "is unplugged (state: 7)\n");
585 			return 0;
586 		}
587 		if (state == TB_PORT_UP) {
588 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
589 			return 1;
590 		}
591 
592 		/*
593 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
594 		 * time.
595 		 */
596 		tb_port_dbg(port,
597 			    "is connected, link is not up (state: %d), retrying...\n",
598 			    state);
599 		msleep(100);
600 	}
601 	tb_port_warn(port,
602 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
603 	return 0;
604 }
605 
606 /**
607  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
608  * @port: Port to add/remove NFC credits
609  * @credits: Credits to add/remove
610  *
611  * Change the number of NFC credits allocated to @port by @credits. To remove
612  * NFC credits pass a negative amount of credits.
613  *
614  * Return: Returns 0 on success or an error code on failure.
615  */
616 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
617 {
618 	u32 nfc_credits;
619 
620 	if (credits == 0 || port->sw->is_unplugged)
621 		return 0;
622 
623 	/*
624 	 * USB4 restricts programming NFC buffers to lane adapters only
625 	 * so skip other ports.
626 	 */
627 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
628 		return 0;
629 
630 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
631 	if (credits < 0)
632 		credits = max_t(int, -nfc_credits, credits);
633 
634 	nfc_credits += credits;
635 
636 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
637 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
638 
639 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
640 	port->config.nfc_credits |= nfc_credits;
641 
642 	return tb_port_write(port, &port->config.nfc_credits,
643 			     TB_CFG_PORT, ADP_CS_4, 1);
644 }
645 
646 /**
647  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
648  * @port: Port whose counters to clear
649  * @counter: Counter index to clear
650  *
651  * Return: Returns 0 on success or an error code on failure.
652  */
653 int tb_port_clear_counter(struct tb_port *port, int counter)
654 {
655 	u32 zero[3] = { 0, 0, 0 };
656 	tb_port_dbg(port, "clearing counter %d\n", counter);
657 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
658 }
659 
660 /**
661  * tb_port_unlock() - Unlock downstream port
662  * @port: Port to unlock
663  *
664  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
665  * downstream router accessible for CM.
666  */
667 int tb_port_unlock(struct tb_port *port)
668 {
669 	if (tb_switch_is_icm(port->sw))
670 		return 0;
671 	if (!tb_port_is_null(port))
672 		return -EINVAL;
673 	if (tb_switch_is_usb4(port->sw))
674 		return usb4_port_unlock(port);
675 	return 0;
676 }
677 
678 static int __tb_port_enable(struct tb_port *port, bool enable)
679 {
680 	int ret;
681 	u32 phy;
682 
683 	if (!tb_port_is_null(port))
684 		return -EINVAL;
685 
686 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
687 			   port->cap_phy + LANE_ADP_CS_1, 1);
688 	if (ret)
689 		return ret;
690 
691 	if (enable)
692 		phy &= ~LANE_ADP_CS_1_LD;
693 	else
694 		phy |= LANE_ADP_CS_1_LD;
695 
696 	return tb_port_write(port, &phy, TB_CFG_PORT,
697 			     port->cap_phy + LANE_ADP_CS_1, 1);
698 }
699 
700 /**
701  * tb_port_enable() - Enable lane adapter
702  * @port: Port to enable (can be %NULL)
703  *
704  * This is used for lane 0 and 1 adapters to enable it.
705  */
706 int tb_port_enable(struct tb_port *port)
707 {
708 	return __tb_port_enable(port, true);
709 }
710 
711 /**
712  * tb_port_disable() - Disable lane adapter
713  * @port: Port to disable (can be %NULL)
714  *
715  * This is used for lane 0 and 1 adapters to disable it.
716  */
717 int tb_port_disable(struct tb_port *port)
718 {
719 	return __tb_port_enable(port, false);
720 }
721 
722 /*
723  * tb_init_port() - initialize a port
724  *
725  * This is a helper method for tb_switch_alloc. Does not check or initialize
726  * any downstream switches.
727  *
728  * Return: Returns 0 on success or an error code on failure.
729  */
730 static int tb_init_port(struct tb_port *port)
731 {
732 	int res;
733 	int cap;
734 
735 	INIT_LIST_HEAD(&port->list);
736 
737 	/* Control adapter does not have configuration space */
738 	if (!port->port)
739 		return 0;
740 
741 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
742 	if (res) {
743 		if (res == -ENODEV) {
744 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
745 			       port->port);
746 			port->disabled = true;
747 			return 0;
748 		}
749 		return res;
750 	}
751 
752 	/* Port 0 is the switch itself and has no PHY. */
753 	if (port->config.type == TB_TYPE_PORT) {
754 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
755 
756 		if (cap > 0)
757 			port->cap_phy = cap;
758 		else
759 			tb_port_WARN(port, "non switch port without a PHY\n");
760 
761 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
762 		if (cap > 0)
763 			port->cap_usb4 = cap;
764 
765 		/*
766 		 * USB4 ports the buffers allocated for the control path
767 		 * can be read from the path config space. Legacy
768 		 * devices we use hard-coded value.
769 		 */
770 		if (tb_switch_is_usb4(port->sw)) {
771 			struct tb_regs_hop hop;
772 
773 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
774 				port->ctl_credits = hop.initial_credits;
775 		}
776 		if (!port->ctl_credits)
777 			port->ctl_credits = 2;
778 
779 	} else {
780 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
781 		if (cap > 0)
782 			port->cap_adap = cap;
783 	}
784 
785 	port->total_credits =
786 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
787 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
788 
789 	tb_dump_port(port->sw->tb, port);
790 	return 0;
791 }
792 
793 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
794 			       int max_hopid)
795 {
796 	int port_max_hopid;
797 	struct ida *ida;
798 
799 	if (in) {
800 		port_max_hopid = port->config.max_in_hop_id;
801 		ida = &port->in_hopids;
802 	} else {
803 		port_max_hopid = port->config.max_out_hop_id;
804 		ida = &port->out_hopids;
805 	}
806 
807 	/*
808 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
809 	 * reserved.
810 	 */
811 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
812 		min_hopid = TB_PATH_MIN_HOPID;
813 
814 	if (max_hopid < 0 || max_hopid > port_max_hopid)
815 		max_hopid = port_max_hopid;
816 
817 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
818 }
819 
820 /**
821  * tb_port_alloc_in_hopid() - Allocate input HopID from port
822  * @port: Port to allocate HopID for
823  * @min_hopid: Minimum acceptable input HopID
824  * @max_hopid: Maximum acceptable input HopID
825  *
826  * Return: HopID between @min_hopid and @max_hopid or negative errno in
827  * case of error.
828  */
829 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
830 {
831 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
832 }
833 
834 /**
835  * tb_port_alloc_out_hopid() - Allocate output HopID from port
836  * @port: Port to allocate HopID for
837  * @min_hopid: Minimum acceptable output HopID
838  * @max_hopid: Maximum acceptable output HopID
839  *
840  * Return: HopID between @min_hopid and @max_hopid or negative errno in
841  * case of error.
842  */
843 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
844 {
845 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
846 }
847 
848 /**
849  * tb_port_release_in_hopid() - Release allocated input HopID from port
850  * @port: Port whose HopID to release
851  * @hopid: HopID to release
852  */
853 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
854 {
855 	ida_simple_remove(&port->in_hopids, hopid);
856 }
857 
858 /**
859  * tb_port_release_out_hopid() - Release allocated output HopID from port
860  * @port: Port whose HopID to release
861  * @hopid: HopID to release
862  */
863 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
864 {
865 	ida_simple_remove(&port->out_hopids, hopid);
866 }
867 
868 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
869 					  const struct tb_switch *sw)
870 {
871 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
872 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
873 }
874 
875 /**
876  * tb_next_port_on_path() - Return next port for given port on a path
877  * @start: Start port of the walk
878  * @end: End port of the walk
879  * @prev: Previous port (%NULL if this is the first)
880  *
881  * This function can be used to walk from one port to another if they
882  * are connected through zero or more switches. If the @prev is dual
883  * link port, the function follows that link and returns another end on
884  * that same link.
885  *
886  * If the @end port has been reached, return %NULL.
887  *
888  * Domain tb->lock must be held when this function is called.
889  */
890 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
891 				     struct tb_port *prev)
892 {
893 	struct tb_port *next;
894 
895 	if (!prev)
896 		return start;
897 
898 	if (prev->sw == end->sw) {
899 		if (prev == end)
900 			return NULL;
901 		return end;
902 	}
903 
904 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
905 		next = tb_port_at(tb_route(end->sw), prev->sw);
906 		/* Walk down the topology if next == prev */
907 		if (prev->remote &&
908 		    (next == prev || next->dual_link_port == prev))
909 			next = prev->remote;
910 	} else {
911 		if (tb_is_upstream_port(prev)) {
912 			next = prev->remote;
913 		} else {
914 			next = tb_upstream_port(prev->sw);
915 			/*
916 			 * Keep the same link if prev and next are both
917 			 * dual link ports.
918 			 */
919 			if (next->dual_link_port &&
920 			    next->link_nr != prev->link_nr) {
921 				next = next->dual_link_port;
922 			}
923 		}
924 	}
925 
926 	return next != prev ? next : NULL;
927 }
928 
929 /**
930  * tb_port_get_link_speed() - Get current link speed
931  * @port: Port to check (USB4 or CIO)
932  *
933  * Returns link speed in Gb/s or negative errno in case of failure.
934  */
935 int tb_port_get_link_speed(struct tb_port *port)
936 {
937 	u32 val, speed;
938 	int ret;
939 
940 	if (!port->cap_phy)
941 		return -EINVAL;
942 
943 	ret = tb_port_read(port, &val, TB_CFG_PORT,
944 			   port->cap_phy + LANE_ADP_CS_1, 1);
945 	if (ret)
946 		return ret;
947 
948 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
949 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
950 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
951 }
952 
953 /**
954  * tb_port_get_link_width() - Get current link width
955  * @port: Port to check (USB4 or CIO)
956  *
957  * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
958  * or negative errno in case of failure.
959  */
960 int tb_port_get_link_width(struct tb_port *port)
961 {
962 	u32 val;
963 	int ret;
964 
965 	if (!port->cap_phy)
966 		return -EINVAL;
967 
968 	ret = tb_port_read(port, &val, TB_CFG_PORT,
969 			   port->cap_phy + LANE_ADP_CS_1, 1);
970 	if (ret)
971 		return ret;
972 
973 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
974 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
975 }
976 
977 static bool tb_port_is_width_supported(struct tb_port *port, int width)
978 {
979 	u32 phy, widths;
980 	int ret;
981 
982 	if (!port->cap_phy)
983 		return false;
984 
985 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
986 			   port->cap_phy + LANE_ADP_CS_0, 1);
987 	if (ret)
988 		return false;
989 
990 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
991 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
992 
993 	return !!(widths & width);
994 }
995 
996 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
997 {
998 	u32 val;
999 	int ret;
1000 
1001 	if (!port->cap_phy)
1002 		return -EINVAL;
1003 
1004 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1005 			   port->cap_phy + LANE_ADP_CS_1, 1);
1006 	if (ret)
1007 		return ret;
1008 
1009 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1010 	switch (width) {
1011 	case 1:
1012 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1013 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1014 		break;
1015 	case 2:
1016 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1017 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1018 		break;
1019 	default:
1020 		return -EINVAL;
1021 	}
1022 
1023 	val |= LANE_ADP_CS_1_LB;
1024 
1025 	return tb_port_write(port, &val, TB_CFG_PORT,
1026 			     port->cap_phy + LANE_ADP_CS_1, 1);
1027 }
1028 
1029 /**
1030  * tb_port_lane_bonding_enable() - Enable bonding on port
1031  * @port: port to enable
1032  *
1033  * Enable bonding by setting the link width of the port and the other
1034  * port in case of dual link port. Does not wait for the link to
1035  * actually reach the bonded state so caller needs to call
1036  * tb_port_wait_for_link_width() before enabling any paths through the
1037  * link to make sure the link is in expected state.
1038  *
1039  * Return: %0 in case of success and negative errno in case of error
1040  */
1041 int tb_port_lane_bonding_enable(struct tb_port *port)
1042 {
1043 	int ret;
1044 
1045 	/*
1046 	 * Enable lane bonding for both links if not already enabled by
1047 	 * for example the boot firmware.
1048 	 */
1049 	ret = tb_port_get_link_width(port);
1050 	if (ret == 1) {
1051 		ret = tb_port_set_link_width(port, 2);
1052 		if (ret)
1053 			return ret;
1054 	}
1055 
1056 	ret = tb_port_get_link_width(port->dual_link_port);
1057 	if (ret == 1) {
1058 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1059 		if (ret) {
1060 			tb_port_set_link_width(port, 1);
1061 			return ret;
1062 		}
1063 	}
1064 
1065 	port->bonded = true;
1066 	port->dual_link_port->bonded = true;
1067 
1068 	return 0;
1069 }
1070 
1071 /**
1072  * tb_port_lane_bonding_disable() - Disable bonding on port
1073  * @port: port to disable
1074  *
1075  * Disable bonding by setting the link width of the port and the
1076  * other port in case of dual link port.
1077  *
1078  */
1079 void tb_port_lane_bonding_disable(struct tb_port *port)
1080 {
1081 	port->dual_link_port->bonded = false;
1082 	port->bonded = false;
1083 
1084 	tb_port_set_link_width(port->dual_link_port, 1);
1085 	tb_port_set_link_width(port, 1);
1086 }
1087 
1088 /**
1089  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1090  * @port: Port to wait for
1091  * @width: Expected link width (%1 or %2)
1092  * @timeout_msec: Timeout in ms how long to wait
1093  *
1094  * Should be used after both ends of the link have been bonded (or
1095  * bonding has been disabled) to wait until the link actually reaches
1096  * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1097  * within the given timeout, %0 if it did.
1098  */
1099 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1100 				int timeout_msec)
1101 {
1102 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1103 	int ret;
1104 
1105 	do {
1106 		ret = tb_port_get_link_width(port);
1107 		if (ret < 0)
1108 			return ret;
1109 		else if (ret == width)
1110 			return 0;
1111 
1112 		usleep_range(1000, 2000);
1113 	} while (ktime_before(ktime_get(), timeout));
1114 
1115 	return -ETIMEDOUT;
1116 }
1117 
1118 static int tb_port_do_update_credits(struct tb_port *port)
1119 {
1120 	u32 nfc_credits;
1121 	int ret;
1122 
1123 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1124 	if (ret)
1125 		return ret;
1126 
1127 	if (nfc_credits != port->config.nfc_credits) {
1128 		u32 total;
1129 
1130 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1131 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1132 
1133 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1134 			    port->total_credits, total);
1135 
1136 		port->config.nfc_credits = nfc_credits;
1137 		port->total_credits = total;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  * tb_port_update_credits() - Re-read port total credits
1145  * @port: Port to update
1146  *
1147  * After the link is bonded (or bonding was disabled) the port total
1148  * credits may change, so this function needs to be called to re-read
1149  * the credits. Updates also the second lane adapter.
1150  */
1151 int tb_port_update_credits(struct tb_port *port)
1152 {
1153 	int ret;
1154 
1155 	ret = tb_port_do_update_credits(port);
1156 	if (ret)
1157 		return ret;
1158 	return tb_port_do_update_credits(port->dual_link_port);
1159 }
1160 
1161 static int tb_port_start_lane_initialization(struct tb_port *port)
1162 {
1163 	int ret;
1164 
1165 	if (tb_switch_is_usb4(port->sw))
1166 		return 0;
1167 
1168 	ret = tb_lc_start_lane_initialization(port);
1169 	return ret == -EINVAL ? 0 : ret;
1170 }
1171 
1172 /*
1173  * Returns true if the port had something (router, XDomain) connected
1174  * before suspend.
1175  */
1176 static bool tb_port_resume(struct tb_port *port)
1177 {
1178 	bool has_remote = tb_port_has_remote(port);
1179 
1180 	if (port->usb4) {
1181 		usb4_port_device_resume(port->usb4);
1182 	} else if (!has_remote) {
1183 		/*
1184 		 * For disconnected downstream lane adapters start lane
1185 		 * initialization now so we detect future connects.
1186 		 *
1187 		 * For XDomain start the lane initialzation now so the
1188 		 * link gets re-established.
1189 		 *
1190 		 * This is only needed for non-USB4 ports.
1191 		 */
1192 		if (!tb_is_upstream_port(port) || port->xdomain)
1193 			tb_port_start_lane_initialization(port);
1194 	}
1195 
1196 	return has_remote || port->xdomain;
1197 }
1198 
1199 /**
1200  * tb_port_is_enabled() - Is the adapter port enabled
1201  * @port: Port to check
1202  */
1203 bool tb_port_is_enabled(struct tb_port *port)
1204 {
1205 	switch (port->config.type) {
1206 	case TB_TYPE_PCIE_UP:
1207 	case TB_TYPE_PCIE_DOWN:
1208 		return tb_pci_port_is_enabled(port);
1209 
1210 	case TB_TYPE_DP_HDMI_IN:
1211 	case TB_TYPE_DP_HDMI_OUT:
1212 		return tb_dp_port_is_enabled(port);
1213 
1214 	case TB_TYPE_USB3_UP:
1215 	case TB_TYPE_USB3_DOWN:
1216 		return tb_usb3_port_is_enabled(port);
1217 
1218 	default:
1219 		return false;
1220 	}
1221 }
1222 
1223 /**
1224  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1225  * @port: USB3 adapter port to check
1226  */
1227 bool tb_usb3_port_is_enabled(struct tb_port *port)
1228 {
1229 	u32 data;
1230 
1231 	if (tb_port_read(port, &data, TB_CFG_PORT,
1232 			 port->cap_adap + ADP_USB3_CS_0, 1))
1233 		return false;
1234 
1235 	return !!(data & ADP_USB3_CS_0_PE);
1236 }
1237 
1238 /**
1239  * tb_usb3_port_enable() - Enable USB3 adapter port
1240  * @port: USB3 adapter port to enable
1241  * @enable: Enable/disable the USB3 adapter
1242  */
1243 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1244 {
1245 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1246 			  : ADP_USB3_CS_0_V;
1247 
1248 	if (!port->cap_adap)
1249 		return -ENXIO;
1250 	return tb_port_write(port, &word, TB_CFG_PORT,
1251 			     port->cap_adap + ADP_USB3_CS_0, 1);
1252 }
1253 
1254 /**
1255  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1256  * @port: PCIe port to check
1257  */
1258 bool tb_pci_port_is_enabled(struct tb_port *port)
1259 {
1260 	u32 data;
1261 
1262 	if (tb_port_read(port, &data, TB_CFG_PORT,
1263 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1264 		return false;
1265 
1266 	return !!(data & ADP_PCIE_CS_0_PE);
1267 }
1268 
1269 /**
1270  * tb_pci_port_enable() - Enable PCIe adapter port
1271  * @port: PCIe port to enable
1272  * @enable: Enable/disable the PCIe adapter
1273  */
1274 int tb_pci_port_enable(struct tb_port *port, bool enable)
1275 {
1276 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1277 	if (!port->cap_adap)
1278 		return -ENXIO;
1279 	return tb_port_write(port, &word, TB_CFG_PORT,
1280 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1281 }
1282 
1283 /**
1284  * tb_dp_port_hpd_is_active() - Is HPD already active
1285  * @port: DP out port to check
1286  *
1287  * Checks if the DP OUT adapter port has HDP bit already set.
1288  */
1289 int tb_dp_port_hpd_is_active(struct tb_port *port)
1290 {
1291 	u32 data;
1292 	int ret;
1293 
1294 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1295 			   port->cap_adap + ADP_DP_CS_2, 1);
1296 	if (ret)
1297 		return ret;
1298 
1299 	return !!(data & ADP_DP_CS_2_HDP);
1300 }
1301 
1302 /**
1303  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1304  * @port: Port to clear HPD
1305  *
1306  * If the DP IN port has HDP set, this function can be used to clear it.
1307  */
1308 int tb_dp_port_hpd_clear(struct tb_port *port)
1309 {
1310 	u32 data;
1311 	int ret;
1312 
1313 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1314 			   port->cap_adap + ADP_DP_CS_3, 1);
1315 	if (ret)
1316 		return ret;
1317 
1318 	data |= ADP_DP_CS_3_HDPC;
1319 	return tb_port_write(port, &data, TB_CFG_PORT,
1320 			     port->cap_adap + ADP_DP_CS_3, 1);
1321 }
1322 
1323 /**
1324  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1325  * @port: DP IN/OUT port to set hops
1326  * @video: Video Hop ID
1327  * @aux_tx: AUX TX Hop ID
1328  * @aux_rx: AUX RX Hop ID
1329  *
1330  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1331  * router DP adapters too but does not program the values as the fields
1332  * are read-only.
1333  */
1334 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1335 			unsigned int aux_tx, unsigned int aux_rx)
1336 {
1337 	u32 data[2];
1338 	int ret;
1339 
1340 	if (tb_switch_is_usb4(port->sw))
1341 		return 0;
1342 
1343 	ret = tb_port_read(port, data, TB_CFG_PORT,
1344 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1345 	if (ret)
1346 		return ret;
1347 
1348 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1349 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1350 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1351 
1352 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1353 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1354 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1355 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1356 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1357 
1358 	return tb_port_write(port, data, TB_CFG_PORT,
1359 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1360 }
1361 
1362 /**
1363  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1364  * @port: DP adapter port to check
1365  */
1366 bool tb_dp_port_is_enabled(struct tb_port *port)
1367 {
1368 	u32 data[2];
1369 
1370 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1371 			 ARRAY_SIZE(data)))
1372 		return false;
1373 
1374 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1375 }
1376 
1377 /**
1378  * tb_dp_port_enable() - Enables/disables DP paths of a port
1379  * @port: DP IN/OUT port
1380  * @enable: Enable/disable DP path
1381  *
1382  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1383  * calling this function.
1384  */
1385 int tb_dp_port_enable(struct tb_port *port, bool enable)
1386 {
1387 	u32 data[2];
1388 	int ret;
1389 
1390 	ret = tb_port_read(port, data, TB_CFG_PORT,
1391 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1392 	if (ret)
1393 		return ret;
1394 
1395 	if (enable)
1396 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1397 	else
1398 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1399 
1400 	return tb_port_write(port, data, TB_CFG_PORT,
1401 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1402 }
1403 
1404 /* switch utility functions */
1405 
1406 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1407 {
1408 	switch (sw->generation) {
1409 	case 1:
1410 		return "Thunderbolt 1";
1411 	case 2:
1412 		return "Thunderbolt 2";
1413 	case 3:
1414 		return "Thunderbolt 3";
1415 	case 4:
1416 		return "USB4";
1417 	default:
1418 		return "Unknown";
1419 	}
1420 }
1421 
1422 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1423 {
1424 	const struct tb_regs_switch_header *regs = &sw->config;
1425 
1426 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1427 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1428 	       regs->revision, regs->thunderbolt_version);
1429 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1430 	tb_dbg(tb, "  Config:\n");
1431 	tb_dbg(tb,
1432 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1433 	       regs->upstream_port_number, regs->depth,
1434 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1435 	       regs->enabled, regs->plug_events_delay);
1436 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1437 	       regs->__unknown1, regs->__unknown4);
1438 }
1439 
1440 /**
1441  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1442  * @sw: Switch to reset
1443  *
1444  * Return: Returns 0 on success or an error code on failure.
1445  */
1446 int tb_switch_reset(struct tb_switch *sw)
1447 {
1448 	struct tb_cfg_result res;
1449 
1450 	if (sw->generation > 1)
1451 		return 0;
1452 
1453 	tb_sw_dbg(sw, "resetting switch\n");
1454 
1455 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1456 			      TB_CFG_SWITCH, 2, 2);
1457 	if (res.err)
1458 		return res.err;
1459 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1460 	if (res.err > 0)
1461 		return -EIO;
1462 	return res.err;
1463 }
1464 
1465 /**
1466  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1467  * @sw: Router to read the offset value from
1468  * @offset: Offset in the router config space to read from
1469  * @bit: Bit mask in the offset to wait for
1470  * @value: Value of the bits to wait for
1471  * @timeout_msec: Timeout in ms how long to wait
1472  *
1473  * Wait till the specified bits in specified offset reach specified value.
1474  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1475  * within the given timeout or a negative errno in case of failure.
1476  */
1477 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1478 			   u32 value, int timeout_msec)
1479 {
1480 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1481 
1482 	do {
1483 		u32 val;
1484 		int ret;
1485 
1486 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1487 		if (ret)
1488 			return ret;
1489 
1490 		if ((val & bit) == value)
1491 			return 0;
1492 
1493 		usleep_range(50, 100);
1494 	} while (ktime_before(ktime_get(), timeout));
1495 
1496 	return -ETIMEDOUT;
1497 }
1498 
1499 /*
1500  * tb_plug_events_active() - enable/disable plug events on a switch
1501  *
1502  * Also configures a sane plug_events_delay of 255ms.
1503  *
1504  * Return: Returns 0 on success or an error code on failure.
1505  */
1506 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1507 {
1508 	u32 data;
1509 	int res;
1510 
1511 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1512 		return 0;
1513 
1514 	sw->config.plug_events_delay = 0xff;
1515 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1516 	if (res)
1517 		return res;
1518 
1519 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1520 	if (res)
1521 		return res;
1522 
1523 	if (active) {
1524 		data = data & 0xFFFFFF83;
1525 		switch (sw->config.device_id) {
1526 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1527 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1528 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1529 			break;
1530 		default:
1531 			/*
1532 			 * Skip Alpine Ridge, it needs to have vendor
1533 			 * specific USB hotplug event enabled for the
1534 			 * internal xHCI to work.
1535 			 */
1536 			if (!tb_switch_is_alpine_ridge(sw))
1537 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1538 		}
1539 	} else {
1540 		data = data | 0x7c;
1541 	}
1542 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1543 			   sw->cap_plug_events + 1, 1);
1544 }
1545 
1546 static ssize_t authorized_show(struct device *dev,
1547 			       struct device_attribute *attr,
1548 			       char *buf)
1549 {
1550 	struct tb_switch *sw = tb_to_switch(dev);
1551 
1552 	return sprintf(buf, "%u\n", sw->authorized);
1553 }
1554 
1555 static int disapprove_switch(struct device *dev, void *not_used)
1556 {
1557 	char *envp[] = { "AUTHORIZED=0", NULL };
1558 	struct tb_switch *sw;
1559 
1560 	sw = tb_to_switch(dev);
1561 	if (sw && sw->authorized) {
1562 		int ret;
1563 
1564 		/* First children */
1565 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1566 		if (ret)
1567 			return ret;
1568 
1569 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1570 		if (ret)
1571 			return ret;
1572 
1573 		sw->authorized = 0;
1574 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1581 {
1582 	char envp_string[13];
1583 	int ret = -EINVAL;
1584 	char *envp[] = { envp_string, NULL };
1585 
1586 	if (!mutex_trylock(&sw->tb->lock))
1587 		return restart_syscall();
1588 
1589 	if (!!sw->authorized == !!val)
1590 		goto unlock;
1591 
1592 	switch (val) {
1593 	/* Disapprove switch */
1594 	case 0:
1595 		if (tb_route(sw)) {
1596 			ret = disapprove_switch(&sw->dev, NULL);
1597 			goto unlock;
1598 		}
1599 		break;
1600 
1601 	/* Approve switch */
1602 	case 1:
1603 		if (sw->key)
1604 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1605 		else
1606 			ret = tb_domain_approve_switch(sw->tb, sw);
1607 		break;
1608 
1609 	/* Challenge switch */
1610 	case 2:
1611 		if (sw->key)
1612 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1613 		break;
1614 
1615 	default:
1616 		break;
1617 	}
1618 
1619 	if (!ret) {
1620 		sw->authorized = val;
1621 		/*
1622 		 * Notify status change to the userspace, informing the new
1623 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1624 		 */
1625 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1626 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1627 	}
1628 
1629 unlock:
1630 	mutex_unlock(&sw->tb->lock);
1631 	return ret;
1632 }
1633 
1634 static ssize_t authorized_store(struct device *dev,
1635 				struct device_attribute *attr,
1636 				const char *buf, size_t count)
1637 {
1638 	struct tb_switch *sw = tb_to_switch(dev);
1639 	unsigned int val;
1640 	ssize_t ret;
1641 
1642 	ret = kstrtouint(buf, 0, &val);
1643 	if (ret)
1644 		return ret;
1645 	if (val > 2)
1646 		return -EINVAL;
1647 
1648 	pm_runtime_get_sync(&sw->dev);
1649 	ret = tb_switch_set_authorized(sw, val);
1650 	pm_runtime_mark_last_busy(&sw->dev);
1651 	pm_runtime_put_autosuspend(&sw->dev);
1652 
1653 	return ret ? ret : count;
1654 }
1655 static DEVICE_ATTR_RW(authorized);
1656 
1657 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1658 			 char *buf)
1659 {
1660 	struct tb_switch *sw = tb_to_switch(dev);
1661 
1662 	return sprintf(buf, "%u\n", sw->boot);
1663 }
1664 static DEVICE_ATTR_RO(boot);
1665 
1666 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1667 			   char *buf)
1668 {
1669 	struct tb_switch *sw = tb_to_switch(dev);
1670 
1671 	return sprintf(buf, "%#x\n", sw->device);
1672 }
1673 static DEVICE_ATTR_RO(device);
1674 
1675 static ssize_t
1676 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1677 {
1678 	struct tb_switch *sw = tb_to_switch(dev);
1679 
1680 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1681 }
1682 static DEVICE_ATTR_RO(device_name);
1683 
1684 static ssize_t
1685 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1686 {
1687 	struct tb_switch *sw = tb_to_switch(dev);
1688 
1689 	return sprintf(buf, "%u\n", sw->generation);
1690 }
1691 static DEVICE_ATTR_RO(generation);
1692 
1693 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1694 			char *buf)
1695 {
1696 	struct tb_switch *sw = tb_to_switch(dev);
1697 	ssize_t ret;
1698 
1699 	if (!mutex_trylock(&sw->tb->lock))
1700 		return restart_syscall();
1701 
1702 	if (sw->key)
1703 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1704 	else
1705 		ret = sprintf(buf, "\n");
1706 
1707 	mutex_unlock(&sw->tb->lock);
1708 	return ret;
1709 }
1710 
1711 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1712 			 const char *buf, size_t count)
1713 {
1714 	struct tb_switch *sw = tb_to_switch(dev);
1715 	u8 key[TB_SWITCH_KEY_SIZE];
1716 	ssize_t ret = count;
1717 	bool clear = false;
1718 
1719 	if (!strcmp(buf, "\n"))
1720 		clear = true;
1721 	else if (hex2bin(key, buf, sizeof(key)))
1722 		return -EINVAL;
1723 
1724 	if (!mutex_trylock(&sw->tb->lock))
1725 		return restart_syscall();
1726 
1727 	if (sw->authorized) {
1728 		ret = -EBUSY;
1729 	} else {
1730 		kfree(sw->key);
1731 		if (clear) {
1732 			sw->key = NULL;
1733 		} else {
1734 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1735 			if (!sw->key)
1736 				ret = -ENOMEM;
1737 		}
1738 	}
1739 
1740 	mutex_unlock(&sw->tb->lock);
1741 	return ret;
1742 }
1743 static DEVICE_ATTR(key, 0600, key_show, key_store);
1744 
1745 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1746 			  char *buf)
1747 {
1748 	struct tb_switch *sw = tb_to_switch(dev);
1749 
1750 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1751 }
1752 
1753 /*
1754  * Currently all lanes must run at the same speed but we expose here
1755  * both directions to allow possible asymmetric links in the future.
1756  */
1757 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1758 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1759 
1760 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1761 			  char *buf)
1762 {
1763 	struct tb_switch *sw = tb_to_switch(dev);
1764 
1765 	return sprintf(buf, "%u\n", sw->link_width);
1766 }
1767 
1768 /*
1769  * Currently link has same amount of lanes both directions (1 or 2) but
1770  * expose them separately to allow possible asymmetric links in the future.
1771  */
1772 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1773 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1774 
1775 static ssize_t nvm_authenticate_show(struct device *dev,
1776 	struct device_attribute *attr, char *buf)
1777 {
1778 	struct tb_switch *sw = tb_to_switch(dev);
1779 	u32 status;
1780 
1781 	nvm_get_auth_status(sw, &status);
1782 	return sprintf(buf, "%#x\n", status);
1783 }
1784 
1785 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1786 				      bool disconnect)
1787 {
1788 	struct tb_switch *sw = tb_to_switch(dev);
1789 	int val, ret;
1790 
1791 	pm_runtime_get_sync(&sw->dev);
1792 
1793 	if (!mutex_trylock(&sw->tb->lock)) {
1794 		ret = restart_syscall();
1795 		goto exit_rpm;
1796 	}
1797 
1798 	/* If NVMem devices are not yet added */
1799 	if (!sw->nvm) {
1800 		ret = -EAGAIN;
1801 		goto exit_unlock;
1802 	}
1803 
1804 	ret = kstrtoint(buf, 10, &val);
1805 	if (ret)
1806 		goto exit_unlock;
1807 
1808 	/* Always clear the authentication status */
1809 	nvm_clear_auth_status(sw);
1810 
1811 	if (val > 0) {
1812 		if (val == AUTHENTICATE_ONLY) {
1813 			if (disconnect)
1814 				ret = -EINVAL;
1815 			else
1816 				ret = nvm_authenticate(sw, true);
1817 		} else {
1818 			if (!sw->nvm->flushed) {
1819 				if (!sw->nvm->buf) {
1820 					ret = -EINVAL;
1821 					goto exit_unlock;
1822 				}
1823 
1824 				ret = nvm_validate_and_write(sw);
1825 				if (ret || val == WRITE_ONLY)
1826 					goto exit_unlock;
1827 			}
1828 			if (val == WRITE_AND_AUTHENTICATE) {
1829 				if (disconnect)
1830 					ret = tb_lc_force_power(sw);
1831 				else
1832 					ret = nvm_authenticate(sw, false);
1833 			}
1834 		}
1835 	}
1836 
1837 exit_unlock:
1838 	mutex_unlock(&sw->tb->lock);
1839 exit_rpm:
1840 	pm_runtime_mark_last_busy(&sw->dev);
1841 	pm_runtime_put_autosuspend(&sw->dev);
1842 
1843 	return ret;
1844 }
1845 
1846 static ssize_t nvm_authenticate_store(struct device *dev,
1847 	struct device_attribute *attr, const char *buf, size_t count)
1848 {
1849 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1850 	if (ret)
1851 		return ret;
1852 	return count;
1853 }
1854 static DEVICE_ATTR_RW(nvm_authenticate);
1855 
1856 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1857 	struct device_attribute *attr, char *buf)
1858 {
1859 	return nvm_authenticate_show(dev, attr, buf);
1860 }
1861 
1862 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1863 	struct device_attribute *attr, const char *buf, size_t count)
1864 {
1865 	int ret;
1866 
1867 	ret = nvm_authenticate_sysfs(dev, buf, true);
1868 	return ret ? ret : count;
1869 }
1870 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1871 
1872 static ssize_t nvm_version_show(struct device *dev,
1873 				struct device_attribute *attr, char *buf)
1874 {
1875 	struct tb_switch *sw = tb_to_switch(dev);
1876 	int ret;
1877 
1878 	if (!mutex_trylock(&sw->tb->lock))
1879 		return restart_syscall();
1880 
1881 	if (sw->safe_mode)
1882 		ret = -ENODATA;
1883 	else if (!sw->nvm)
1884 		ret = -EAGAIN;
1885 	else
1886 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1887 
1888 	mutex_unlock(&sw->tb->lock);
1889 
1890 	return ret;
1891 }
1892 static DEVICE_ATTR_RO(nvm_version);
1893 
1894 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1895 			   char *buf)
1896 {
1897 	struct tb_switch *sw = tb_to_switch(dev);
1898 
1899 	return sprintf(buf, "%#x\n", sw->vendor);
1900 }
1901 static DEVICE_ATTR_RO(vendor);
1902 
1903 static ssize_t
1904 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1905 {
1906 	struct tb_switch *sw = tb_to_switch(dev);
1907 
1908 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1909 }
1910 static DEVICE_ATTR_RO(vendor_name);
1911 
1912 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1913 			      char *buf)
1914 {
1915 	struct tb_switch *sw = tb_to_switch(dev);
1916 
1917 	return sprintf(buf, "%pUb\n", sw->uuid);
1918 }
1919 static DEVICE_ATTR_RO(unique_id);
1920 
1921 static struct attribute *switch_attrs[] = {
1922 	&dev_attr_authorized.attr,
1923 	&dev_attr_boot.attr,
1924 	&dev_attr_device.attr,
1925 	&dev_attr_device_name.attr,
1926 	&dev_attr_generation.attr,
1927 	&dev_attr_key.attr,
1928 	&dev_attr_nvm_authenticate.attr,
1929 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1930 	&dev_attr_nvm_version.attr,
1931 	&dev_attr_rx_speed.attr,
1932 	&dev_attr_rx_lanes.attr,
1933 	&dev_attr_tx_speed.attr,
1934 	&dev_attr_tx_lanes.attr,
1935 	&dev_attr_vendor.attr,
1936 	&dev_attr_vendor_name.attr,
1937 	&dev_attr_unique_id.attr,
1938 	NULL,
1939 };
1940 
1941 static umode_t switch_attr_is_visible(struct kobject *kobj,
1942 				      struct attribute *attr, int n)
1943 {
1944 	struct device *dev = kobj_to_dev(kobj);
1945 	struct tb_switch *sw = tb_to_switch(dev);
1946 
1947 	if (attr == &dev_attr_authorized.attr) {
1948 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
1949 		    sw->tb->security_level == TB_SECURITY_DPONLY)
1950 			return 0;
1951 	} else if (attr == &dev_attr_device.attr) {
1952 		if (!sw->device)
1953 			return 0;
1954 	} else if (attr == &dev_attr_device_name.attr) {
1955 		if (!sw->device_name)
1956 			return 0;
1957 	} else if (attr == &dev_attr_vendor.attr)  {
1958 		if (!sw->vendor)
1959 			return 0;
1960 	} else if (attr == &dev_attr_vendor_name.attr)  {
1961 		if (!sw->vendor_name)
1962 			return 0;
1963 	} else if (attr == &dev_attr_key.attr) {
1964 		if (tb_route(sw) &&
1965 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1966 		    sw->security_level == TB_SECURITY_SECURE)
1967 			return attr->mode;
1968 		return 0;
1969 	} else if (attr == &dev_attr_rx_speed.attr ||
1970 		   attr == &dev_attr_rx_lanes.attr ||
1971 		   attr == &dev_attr_tx_speed.attr ||
1972 		   attr == &dev_attr_tx_lanes.attr) {
1973 		if (tb_route(sw))
1974 			return attr->mode;
1975 		return 0;
1976 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1977 		if (nvm_upgradeable(sw))
1978 			return attr->mode;
1979 		return 0;
1980 	} else if (attr == &dev_attr_nvm_version.attr) {
1981 		if (nvm_readable(sw))
1982 			return attr->mode;
1983 		return 0;
1984 	} else if (attr == &dev_attr_boot.attr) {
1985 		if (tb_route(sw))
1986 			return attr->mode;
1987 		return 0;
1988 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1989 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1990 			return attr->mode;
1991 		return 0;
1992 	}
1993 
1994 	return sw->safe_mode ? 0 : attr->mode;
1995 }
1996 
1997 static const struct attribute_group switch_group = {
1998 	.is_visible = switch_attr_is_visible,
1999 	.attrs = switch_attrs,
2000 };
2001 
2002 static const struct attribute_group *switch_groups[] = {
2003 	&switch_group,
2004 	NULL,
2005 };
2006 
2007 static void tb_switch_release(struct device *dev)
2008 {
2009 	struct tb_switch *sw = tb_to_switch(dev);
2010 	struct tb_port *port;
2011 
2012 	dma_port_free(sw->dma_port);
2013 
2014 	tb_switch_for_each_port(sw, port) {
2015 		ida_destroy(&port->in_hopids);
2016 		ida_destroy(&port->out_hopids);
2017 	}
2018 
2019 	kfree(sw->uuid);
2020 	kfree(sw->device_name);
2021 	kfree(sw->vendor_name);
2022 	kfree(sw->ports);
2023 	kfree(sw->drom);
2024 	kfree(sw->key);
2025 	kfree(sw);
2026 }
2027 
2028 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
2029 {
2030 	struct tb_switch *sw = tb_to_switch(dev);
2031 	const char *type;
2032 
2033 	if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
2034 		if (add_uevent_var(env, "USB4_VERSION=1.0"))
2035 			return -ENOMEM;
2036 	}
2037 
2038 	if (!tb_route(sw)) {
2039 		type = "host";
2040 	} else {
2041 		const struct tb_port *port;
2042 		bool hub = false;
2043 
2044 		/* Device is hub if it has any downstream ports */
2045 		tb_switch_for_each_port(sw, port) {
2046 			if (!port->disabled && !tb_is_upstream_port(port) &&
2047 			     tb_port_is_null(port)) {
2048 				hub = true;
2049 				break;
2050 			}
2051 		}
2052 
2053 		type = hub ? "hub" : "device";
2054 	}
2055 
2056 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2057 		return -ENOMEM;
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Currently only need to provide the callbacks. Everything else is handled
2063  * in the connection manager.
2064  */
2065 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2066 {
2067 	struct tb_switch *sw = tb_to_switch(dev);
2068 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2069 
2070 	if (cm_ops->runtime_suspend_switch)
2071 		return cm_ops->runtime_suspend_switch(sw);
2072 
2073 	return 0;
2074 }
2075 
2076 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2077 {
2078 	struct tb_switch *sw = tb_to_switch(dev);
2079 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2080 
2081 	if (cm_ops->runtime_resume_switch)
2082 		return cm_ops->runtime_resume_switch(sw);
2083 	return 0;
2084 }
2085 
2086 static const struct dev_pm_ops tb_switch_pm_ops = {
2087 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2088 			   NULL)
2089 };
2090 
2091 struct device_type tb_switch_type = {
2092 	.name = "thunderbolt_device",
2093 	.release = tb_switch_release,
2094 	.uevent = tb_switch_uevent,
2095 	.pm = &tb_switch_pm_ops,
2096 };
2097 
2098 static int tb_switch_get_generation(struct tb_switch *sw)
2099 {
2100 	switch (sw->config.device_id) {
2101 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2102 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2103 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2104 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2105 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2106 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2107 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2108 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2109 		return 1;
2110 
2111 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2112 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2113 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2114 		return 2;
2115 
2116 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2117 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2118 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2119 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2120 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2121 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2122 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2123 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2124 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2125 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2126 		return 3;
2127 
2128 	default:
2129 		if (tb_switch_is_usb4(sw))
2130 			return 4;
2131 
2132 		/*
2133 		 * For unknown switches assume generation to be 1 to be
2134 		 * on the safe side.
2135 		 */
2136 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
2137 			   sw->config.device_id);
2138 		return 1;
2139 	}
2140 }
2141 
2142 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2143 {
2144 	int max_depth;
2145 
2146 	if (tb_switch_is_usb4(sw) ||
2147 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2148 		max_depth = USB4_SWITCH_MAX_DEPTH;
2149 	else
2150 		max_depth = TB_SWITCH_MAX_DEPTH;
2151 
2152 	return depth > max_depth;
2153 }
2154 
2155 /**
2156  * tb_switch_alloc() - allocate a switch
2157  * @tb: Pointer to the owning domain
2158  * @parent: Parent device for this switch
2159  * @route: Route string for this switch
2160  *
2161  * Allocates and initializes a switch. Will not upload configuration to
2162  * the switch. For that you need to call tb_switch_configure()
2163  * separately. The returned switch should be released by calling
2164  * tb_switch_put().
2165  *
2166  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2167  * failure.
2168  */
2169 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2170 				  u64 route)
2171 {
2172 	struct tb_switch *sw;
2173 	int upstream_port;
2174 	int i, ret, depth;
2175 
2176 	/* Unlock the downstream port so we can access the switch below */
2177 	if (route) {
2178 		struct tb_switch *parent_sw = tb_to_switch(parent);
2179 		struct tb_port *down;
2180 
2181 		down = tb_port_at(route, parent_sw);
2182 		tb_port_unlock(down);
2183 	}
2184 
2185 	depth = tb_route_length(route);
2186 
2187 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2188 	if (upstream_port < 0)
2189 		return ERR_PTR(upstream_port);
2190 
2191 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2192 	if (!sw)
2193 		return ERR_PTR(-ENOMEM);
2194 
2195 	sw->tb = tb;
2196 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2197 	if (ret)
2198 		goto err_free_sw_ports;
2199 
2200 	sw->generation = tb_switch_get_generation(sw);
2201 
2202 	tb_dbg(tb, "current switch config:\n");
2203 	tb_dump_switch(tb, sw);
2204 
2205 	/* configure switch */
2206 	sw->config.upstream_port_number = upstream_port;
2207 	sw->config.depth = depth;
2208 	sw->config.route_hi = upper_32_bits(route);
2209 	sw->config.route_lo = lower_32_bits(route);
2210 	sw->config.enabled = 0;
2211 
2212 	/* Make sure we do not exceed maximum topology limit */
2213 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2214 		ret = -EADDRNOTAVAIL;
2215 		goto err_free_sw_ports;
2216 	}
2217 
2218 	/* initialize ports */
2219 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2220 				GFP_KERNEL);
2221 	if (!sw->ports) {
2222 		ret = -ENOMEM;
2223 		goto err_free_sw_ports;
2224 	}
2225 
2226 	for (i = 0; i <= sw->config.max_port_number; i++) {
2227 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2228 		sw->ports[i].sw = sw;
2229 		sw->ports[i].port = i;
2230 
2231 		/* Control port does not need HopID allocation */
2232 		if (i) {
2233 			ida_init(&sw->ports[i].in_hopids);
2234 			ida_init(&sw->ports[i].out_hopids);
2235 		}
2236 	}
2237 
2238 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2239 	if (ret > 0)
2240 		sw->cap_plug_events = ret;
2241 
2242 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2243 	if (ret > 0)
2244 		sw->cap_vsec_tmu = ret;
2245 
2246 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2247 	if (ret > 0)
2248 		sw->cap_lc = ret;
2249 
2250 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2251 	if (ret > 0)
2252 		sw->cap_lp = ret;
2253 
2254 	/* Root switch is always authorized */
2255 	if (!route)
2256 		sw->authorized = true;
2257 
2258 	device_initialize(&sw->dev);
2259 	sw->dev.parent = parent;
2260 	sw->dev.bus = &tb_bus_type;
2261 	sw->dev.type = &tb_switch_type;
2262 	sw->dev.groups = switch_groups;
2263 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2264 
2265 	return sw;
2266 
2267 err_free_sw_ports:
2268 	kfree(sw->ports);
2269 	kfree(sw);
2270 
2271 	return ERR_PTR(ret);
2272 }
2273 
2274 /**
2275  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2276  * @tb: Pointer to the owning domain
2277  * @parent: Parent device for this switch
2278  * @route: Route string for this switch
2279  *
2280  * This creates a switch in safe mode. This means the switch pretty much
2281  * lacks all capabilities except DMA configuration port before it is
2282  * flashed with a valid NVM firmware.
2283  *
2284  * The returned switch must be released by calling tb_switch_put().
2285  *
2286  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2287  */
2288 struct tb_switch *
2289 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2290 {
2291 	struct tb_switch *sw;
2292 
2293 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2294 	if (!sw)
2295 		return ERR_PTR(-ENOMEM);
2296 
2297 	sw->tb = tb;
2298 	sw->config.depth = tb_route_length(route);
2299 	sw->config.route_hi = upper_32_bits(route);
2300 	sw->config.route_lo = lower_32_bits(route);
2301 	sw->safe_mode = true;
2302 
2303 	device_initialize(&sw->dev);
2304 	sw->dev.parent = parent;
2305 	sw->dev.bus = &tb_bus_type;
2306 	sw->dev.type = &tb_switch_type;
2307 	sw->dev.groups = switch_groups;
2308 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2309 
2310 	return sw;
2311 }
2312 
2313 /**
2314  * tb_switch_configure() - Uploads configuration to the switch
2315  * @sw: Switch to configure
2316  *
2317  * Call this function before the switch is added to the system. It will
2318  * upload configuration to the switch and makes it available for the
2319  * connection manager to use. Can be called to the switch again after
2320  * resume from low power states to re-initialize it.
2321  *
2322  * Return: %0 in case of success and negative errno in case of failure
2323  */
2324 int tb_switch_configure(struct tb_switch *sw)
2325 {
2326 	struct tb *tb = sw->tb;
2327 	u64 route;
2328 	int ret;
2329 
2330 	route = tb_route(sw);
2331 
2332 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2333 	       sw->config.enabled ? "restoring" : "initializing", route,
2334 	       tb_route_length(route), sw->config.upstream_port_number);
2335 
2336 	sw->config.enabled = 1;
2337 
2338 	if (tb_switch_is_usb4(sw)) {
2339 		/*
2340 		 * For USB4 devices, we need to program the CM version
2341 		 * accordingly so that it knows to expose all the
2342 		 * additional capabilities.
2343 		 */
2344 		sw->config.cmuv = USB4_VERSION_1_0;
2345 
2346 		/* Enumerate the switch */
2347 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2348 				  ROUTER_CS_1, 4);
2349 		if (ret)
2350 			return ret;
2351 
2352 		ret = usb4_switch_setup(sw);
2353 	} else {
2354 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2355 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2356 				   sw->config.vendor_id);
2357 
2358 		if (!sw->cap_plug_events) {
2359 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2360 			return -ENODEV;
2361 		}
2362 
2363 		/* Enumerate the switch */
2364 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2365 				  ROUTER_CS_1, 3);
2366 	}
2367 	if (ret)
2368 		return ret;
2369 
2370 	return tb_plug_events_active(sw, true);
2371 }
2372 
2373 static int tb_switch_set_uuid(struct tb_switch *sw)
2374 {
2375 	bool uid = false;
2376 	u32 uuid[4];
2377 	int ret;
2378 
2379 	if (sw->uuid)
2380 		return 0;
2381 
2382 	if (tb_switch_is_usb4(sw)) {
2383 		ret = usb4_switch_read_uid(sw, &sw->uid);
2384 		if (ret)
2385 			return ret;
2386 		uid = true;
2387 	} else {
2388 		/*
2389 		 * The newer controllers include fused UUID as part of
2390 		 * link controller specific registers
2391 		 */
2392 		ret = tb_lc_read_uuid(sw, uuid);
2393 		if (ret) {
2394 			if (ret != -EINVAL)
2395 				return ret;
2396 			uid = true;
2397 		}
2398 	}
2399 
2400 	if (uid) {
2401 		/*
2402 		 * ICM generates UUID based on UID and fills the upper
2403 		 * two words with ones. This is not strictly following
2404 		 * UUID format but we want to be compatible with it so
2405 		 * we do the same here.
2406 		 */
2407 		uuid[0] = sw->uid & 0xffffffff;
2408 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2409 		uuid[2] = 0xffffffff;
2410 		uuid[3] = 0xffffffff;
2411 	}
2412 
2413 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2414 	if (!sw->uuid)
2415 		return -ENOMEM;
2416 	return 0;
2417 }
2418 
2419 static int tb_switch_add_dma_port(struct tb_switch *sw)
2420 {
2421 	u32 status;
2422 	int ret;
2423 
2424 	switch (sw->generation) {
2425 	case 2:
2426 		/* Only root switch can be upgraded */
2427 		if (tb_route(sw))
2428 			return 0;
2429 
2430 		fallthrough;
2431 	case 3:
2432 	case 4:
2433 		ret = tb_switch_set_uuid(sw);
2434 		if (ret)
2435 			return ret;
2436 		break;
2437 
2438 	default:
2439 		/*
2440 		 * DMA port is the only thing available when the switch
2441 		 * is in safe mode.
2442 		 */
2443 		if (!sw->safe_mode)
2444 			return 0;
2445 		break;
2446 	}
2447 
2448 	if (sw->no_nvm_upgrade)
2449 		return 0;
2450 
2451 	if (tb_switch_is_usb4(sw)) {
2452 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2453 		if (ret)
2454 			return ret;
2455 
2456 		if (status) {
2457 			tb_sw_info(sw, "switch flash authentication failed\n");
2458 			nvm_set_auth_status(sw, status);
2459 		}
2460 
2461 		return 0;
2462 	}
2463 
2464 	/* Root switch DMA port requires running firmware */
2465 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2466 		return 0;
2467 
2468 	sw->dma_port = dma_port_alloc(sw);
2469 	if (!sw->dma_port)
2470 		return 0;
2471 
2472 	/*
2473 	 * If there is status already set then authentication failed
2474 	 * when the dma_port_flash_update_auth() returned. Power cycling
2475 	 * is not needed (it was done already) so only thing we do here
2476 	 * is to unblock runtime PM of the root port.
2477 	 */
2478 	nvm_get_auth_status(sw, &status);
2479 	if (status) {
2480 		if (!tb_route(sw))
2481 			nvm_authenticate_complete_dma_port(sw);
2482 		return 0;
2483 	}
2484 
2485 	/*
2486 	 * Check status of the previous flash authentication. If there
2487 	 * is one we need to power cycle the switch in any case to make
2488 	 * it functional again.
2489 	 */
2490 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2491 	if (ret <= 0)
2492 		return ret;
2493 
2494 	/* Now we can allow root port to suspend again */
2495 	if (!tb_route(sw))
2496 		nvm_authenticate_complete_dma_port(sw);
2497 
2498 	if (status) {
2499 		tb_sw_info(sw, "switch flash authentication failed\n");
2500 		nvm_set_auth_status(sw, status);
2501 	}
2502 
2503 	tb_sw_info(sw, "power cycling the switch now\n");
2504 	dma_port_power_cycle(sw->dma_port);
2505 
2506 	/*
2507 	 * We return error here which causes the switch adding failure.
2508 	 * It should appear back after power cycle is complete.
2509 	 */
2510 	return -ESHUTDOWN;
2511 }
2512 
2513 static void tb_switch_default_link_ports(struct tb_switch *sw)
2514 {
2515 	int i;
2516 
2517 	for (i = 1; i <= sw->config.max_port_number; i++) {
2518 		struct tb_port *port = &sw->ports[i];
2519 		struct tb_port *subordinate;
2520 
2521 		if (!tb_port_is_null(port))
2522 			continue;
2523 
2524 		/* Check for the subordinate port */
2525 		if (i == sw->config.max_port_number ||
2526 		    !tb_port_is_null(&sw->ports[i + 1]))
2527 			continue;
2528 
2529 		/* Link them if not already done so (by DROM) */
2530 		subordinate = &sw->ports[i + 1];
2531 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2532 			port->link_nr = 0;
2533 			port->dual_link_port = subordinate;
2534 			subordinate->link_nr = 1;
2535 			subordinate->dual_link_port = port;
2536 
2537 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2538 				  port->port, subordinate->port);
2539 		}
2540 	}
2541 }
2542 
2543 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2544 {
2545 	const struct tb_port *up = tb_upstream_port(sw);
2546 
2547 	if (!up->dual_link_port || !up->dual_link_port->remote)
2548 		return false;
2549 
2550 	if (tb_switch_is_usb4(sw))
2551 		return usb4_switch_lane_bonding_possible(sw);
2552 	return tb_lc_lane_bonding_possible(sw);
2553 }
2554 
2555 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2556 {
2557 	struct tb_port *up;
2558 	bool change = false;
2559 	int ret;
2560 
2561 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2562 		return 0;
2563 
2564 	up = tb_upstream_port(sw);
2565 
2566 	ret = tb_port_get_link_speed(up);
2567 	if (ret < 0)
2568 		return ret;
2569 	if (sw->link_speed != ret)
2570 		change = true;
2571 	sw->link_speed = ret;
2572 
2573 	ret = tb_port_get_link_width(up);
2574 	if (ret < 0)
2575 		return ret;
2576 	if (sw->link_width != ret)
2577 		change = true;
2578 	sw->link_width = ret;
2579 
2580 	/* Notify userspace that there is possible link attribute change */
2581 	if (device_is_registered(&sw->dev) && change)
2582 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2583 
2584 	return 0;
2585 }
2586 
2587 /**
2588  * tb_switch_lane_bonding_enable() - Enable lane bonding
2589  * @sw: Switch to enable lane bonding
2590  *
2591  * Connection manager can call this function to enable lane bonding of a
2592  * switch. If conditions are correct and both switches support the feature,
2593  * lanes are bonded. It is safe to call this to any switch.
2594  */
2595 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2596 {
2597 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2598 	struct tb_port *up, *down;
2599 	u64 route = tb_route(sw);
2600 	int ret;
2601 
2602 	if (!route)
2603 		return 0;
2604 
2605 	if (!tb_switch_lane_bonding_possible(sw))
2606 		return 0;
2607 
2608 	up = tb_upstream_port(sw);
2609 	down = tb_port_at(route, parent);
2610 
2611 	if (!tb_port_is_width_supported(up, 2) ||
2612 	    !tb_port_is_width_supported(down, 2))
2613 		return 0;
2614 
2615 	ret = tb_port_lane_bonding_enable(up);
2616 	if (ret) {
2617 		tb_port_warn(up, "failed to enable lane bonding\n");
2618 		return ret;
2619 	}
2620 
2621 	ret = tb_port_lane_bonding_enable(down);
2622 	if (ret) {
2623 		tb_port_warn(down, "failed to enable lane bonding\n");
2624 		tb_port_lane_bonding_disable(up);
2625 		return ret;
2626 	}
2627 
2628 	ret = tb_port_wait_for_link_width(down, 2, 100);
2629 	if (ret) {
2630 		tb_port_warn(down, "timeout enabling lane bonding\n");
2631 		return ret;
2632 	}
2633 
2634 	tb_port_update_credits(down);
2635 	tb_port_update_credits(up);
2636 	tb_switch_update_link_attributes(sw);
2637 
2638 	tb_sw_dbg(sw, "lane bonding enabled\n");
2639 	return ret;
2640 }
2641 
2642 /**
2643  * tb_switch_lane_bonding_disable() - Disable lane bonding
2644  * @sw: Switch whose lane bonding to disable
2645  *
2646  * Disables lane bonding between @sw and parent. This can be called even
2647  * if lanes were not bonded originally.
2648  */
2649 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2650 {
2651 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2652 	struct tb_port *up, *down;
2653 
2654 	if (!tb_route(sw))
2655 		return;
2656 
2657 	up = tb_upstream_port(sw);
2658 	if (!up->bonded)
2659 		return;
2660 
2661 	down = tb_port_at(tb_route(sw), parent);
2662 
2663 	tb_port_lane_bonding_disable(up);
2664 	tb_port_lane_bonding_disable(down);
2665 
2666 	/*
2667 	 * It is fine if we get other errors as the router might have
2668 	 * been unplugged.
2669 	 */
2670 	if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2671 		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2672 
2673 	tb_port_update_credits(down);
2674 	tb_port_update_credits(up);
2675 	tb_switch_update_link_attributes(sw);
2676 
2677 	tb_sw_dbg(sw, "lane bonding disabled\n");
2678 }
2679 
2680 /**
2681  * tb_switch_configure_link() - Set link configured
2682  * @sw: Switch whose link is configured
2683  *
2684  * Sets the link upstream from @sw configured (from both ends) so that
2685  * it will not be disconnected when the domain exits sleep. Can be
2686  * called for any switch.
2687  *
2688  * It is recommended that this is called after lane bonding is enabled.
2689  *
2690  * Returns %0 on success and negative errno in case of error.
2691  */
2692 int tb_switch_configure_link(struct tb_switch *sw)
2693 {
2694 	struct tb_port *up, *down;
2695 	int ret;
2696 
2697 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2698 		return 0;
2699 
2700 	up = tb_upstream_port(sw);
2701 	if (tb_switch_is_usb4(up->sw))
2702 		ret = usb4_port_configure(up);
2703 	else
2704 		ret = tb_lc_configure_port(up);
2705 	if (ret)
2706 		return ret;
2707 
2708 	down = up->remote;
2709 	if (tb_switch_is_usb4(down->sw))
2710 		return usb4_port_configure(down);
2711 	return tb_lc_configure_port(down);
2712 }
2713 
2714 /**
2715  * tb_switch_unconfigure_link() - Unconfigure link
2716  * @sw: Switch whose link is unconfigured
2717  *
2718  * Sets the link unconfigured so the @sw will be disconnected if the
2719  * domain exists sleep.
2720  */
2721 void tb_switch_unconfigure_link(struct tb_switch *sw)
2722 {
2723 	struct tb_port *up, *down;
2724 
2725 	if (sw->is_unplugged)
2726 		return;
2727 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2728 		return;
2729 
2730 	up = tb_upstream_port(sw);
2731 	if (tb_switch_is_usb4(up->sw))
2732 		usb4_port_unconfigure(up);
2733 	else
2734 		tb_lc_unconfigure_port(up);
2735 
2736 	down = up->remote;
2737 	if (tb_switch_is_usb4(down->sw))
2738 		usb4_port_unconfigure(down);
2739 	else
2740 		tb_lc_unconfigure_port(down);
2741 }
2742 
2743 static void tb_switch_credits_init(struct tb_switch *sw)
2744 {
2745 	if (tb_switch_is_icm(sw))
2746 		return;
2747 	if (!tb_switch_is_usb4(sw))
2748 		return;
2749 	if (usb4_switch_credits_init(sw))
2750 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2751 }
2752 
2753 /**
2754  * tb_switch_add() - Add a switch to the domain
2755  * @sw: Switch to add
2756  *
2757  * This is the last step in adding switch to the domain. It will read
2758  * identification information from DROM and initializes ports so that
2759  * they can be used to connect other switches. The switch will be
2760  * exposed to the userspace when this function successfully returns. To
2761  * remove and release the switch, call tb_switch_remove().
2762  *
2763  * Return: %0 in case of success and negative errno in case of failure
2764  */
2765 int tb_switch_add(struct tb_switch *sw)
2766 {
2767 	int i, ret;
2768 
2769 	/*
2770 	 * Initialize DMA control port now before we read DROM. Recent
2771 	 * host controllers have more complete DROM on NVM that includes
2772 	 * vendor and model identification strings which we then expose
2773 	 * to the userspace. NVM can be accessed through DMA
2774 	 * configuration based mailbox.
2775 	 */
2776 	ret = tb_switch_add_dma_port(sw);
2777 	if (ret) {
2778 		dev_err(&sw->dev, "failed to add DMA port\n");
2779 		return ret;
2780 	}
2781 
2782 	if (!sw->safe_mode) {
2783 		tb_switch_credits_init(sw);
2784 
2785 		/* read drom */
2786 		ret = tb_drom_read(sw);
2787 		if (ret)
2788 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2789 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2790 
2791 		tb_check_quirks(sw);
2792 
2793 		ret = tb_switch_set_uuid(sw);
2794 		if (ret) {
2795 			dev_err(&sw->dev, "failed to set UUID\n");
2796 			return ret;
2797 		}
2798 
2799 		for (i = 0; i <= sw->config.max_port_number; i++) {
2800 			if (sw->ports[i].disabled) {
2801 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2802 				continue;
2803 			}
2804 			ret = tb_init_port(&sw->ports[i]);
2805 			if (ret) {
2806 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2807 				return ret;
2808 			}
2809 		}
2810 
2811 		tb_switch_default_link_ports(sw);
2812 
2813 		ret = tb_switch_update_link_attributes(sw);
2814 		if (ret)
2815 			return ret;
2816 
2817 		ret = tb_switch_tmu_init(sw);
2818 		if (ret)
2819 			return ret;
2820 	}
2821 
2822 	ret = device_add(&sw->dev);
2823 	if (ret) {
2824 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2825 		return ret;
2826 	}
2827 
2828 	if (tb_route(sw)) {
2829 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2830 			 sw->vendor, sw->device);
2831 		if (sw->vendor_name && sw->device_name)
2832 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2833 				 sw->device_name);
2834 	}
2835 
2836 	ret = usb4_switch_add_ports(sw);
2837 	if (ret) {
2838 		dev_err(&sw->dev, "failed to add USB4 ports\n");
2839 		goto err_del;
2840 	}
2841 
2842 	ret = tb_switch_nvm_add(sw);
2843 	if (ret) {
2844 		dev_err(&sw->dev, "failed to add NVM devices\n");
2845 		goto err_ports;
2846 	}
2847 
2848 	/*
2849 	 * Thunderbolt routers do not generate wakeups themselves but
2850 	 * they forward wakeups from tunneled protocols, so enable it
2851 	 * here.
2852 	 */
2853 	device_init_wakeup(&sw->dev, true);
2854 
2855 	pm_runtime_set_active(&sw->dev);
2856 	if (sw->rpm) {
2857 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2858 		pm_runtime_use_autosuspend(&sw->dev);
2859 		pm_runtime_mark_last_busy(&sw->dev);
2860 		pm_runtime_enable(&sw->dev);
2861 		pm_request_autosuspend(&sw->dev);
2862 	}
2863 
2864 	tb_switch_debugfs_init(sw);
2865 	return 0;
2866 
2867 err_ports:
2868 	usb4_switch_remove_ports(sw);
2869 err_del:
2870 	device_del(&sw->dev);
2871 
2872 	return ret;
2873 }
2874 
2875 /**
2876  * tb_switch_remove() - Remove and release a switch
2877  * @sw: Switch to remove
2878  *
2879  * This will remove the switch from the domain and release it after last
2880  * reference count drops to zero. If there are switches connected below
2881  * this switch, they will be removed as well.
2882  */
2883 void tb_switch_remove(struct tb_switch *sw)
2884 {
2885 	struct tb_port *port;
2886 
2887 	tb_switch_debugfs_remove(sw);
2888 
2889 	if (sw->rpm) {
2890 		pm_runtime_get_sync(&sw->dev);
2891 		pm_runtime_disable(&sw->dev);
2892 	}
2893 
2894 	/* port 0 is the switch itself and never has a remote */
2895 	tb_switch_for_each_port(sw, port) {
2896 		if (tb_port_has_remote(port)) {
2897 			tb_switch_remove(port->remote->sw);
2898 			port->remote = NULL;
2899 		} else if (port->xdomain) {
2900 			tb_xdomain_remove(port->xdomain);
2901 			port->xdomain = NULL;
2902 		}
2903 
2904 		/* Remove any downstream retimers */
2905 		tb_retimer_remove_all(port);
2906 	}
2907 
2908 	if (!sw->is_unplugged)
2909 		tb_plug_events_active(sw, false);
2910 
2911 	tb_switch_nvm_remove(sw);
2912 	usb4_switch_remove_ports(sw);
2913 
2914 	if (tb_route(sw))
2915 		dev_info(&sw->dev, "device disconnected\n");
2916 	device_unregister(&sw->dev);
2917 }
2918 
2919 /**
2920  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2921  * @sw: Router to mark unplugged
2922  */
2923 void tb_sw_set_unplugged(struct tb_switch *sw)
2924 {
2925 	struct tb_port *port;
2926 
2927 	if (sw == sw->tb->root_switch) {
2928 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2929 		return;
2930 	}
2931 	if (sw->is_unplugged) {
2932 		tb_sw_WARN(sw, "is_unplugged already set\n");
2933 		return;
2934 	}
2935 	sw->is_unplugged = true;
2936 	tb_switch_for_each_port(sw, port) {
2937 		if (tb_port_has_remote(port))
2938 			tb_sw_set_unplugged(port->remote->sw);
2939 		else if (port->xdomain)
2940 			port->xdomain->is_unplugged = true;
2941 	}
2942 }
2943 
2944 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2945 {
2946 	if (flags)
2947 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2948 	else
2949 		tb_sw_dbg(sw, "disabling wakeup\n");
2950 
2951 	if (tb_switch_is_usb4(sw))
2952 		return usb4_switch_set_wake(sw, flags);
2953 	return tb_lc_set_wake(sw, flags);
2954 }
2955 
2956 int tb_switch_resume(struct tb_switch *sw)
2957 {
2958 	struct tb_port *port;
2959 	int err;
2960 
2961 	tb_sw_dbg(sw, "resuming switch\n");
2962 
2963 	/*
2964 	 * Check for UID of the connected switches except for root
2965 	 * switch which we assume cannot be removed.
2966 	 */
2967 	if (tb_route(sw)) {
2968 		u64 uid;
2969 
2970 		/*
2971 		 * Check first that we can still read the switch config
2972 		 * space. It may be that there is now another domain
2973 		 * connected.
2974 		 */
2975 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2976 		if (err < 0) {
2977 			tb_sw_info(sw, "switch not present anymore\n");
2978 			return err;
2979 		}
2980 
2981 		/* We don't have any way to confirm this was the same device */
2982 		if (!sw->uid)
2983 			return -ENODEV;
2984 
2985 		if (tb_switch_is_usb4(sw))
2986 			err = usb4_switch_read_uid(sw, &uid);
2987 		else
2988 			err = tb_drom_read_uid_only(sw, &uid);
2989 		if (err) {
2990 			tb_sw_warn(sw, "uid read failed\n");
2991 			return err;
2992 		}
2993 		if (sw->uid != uid) {
2994 			tb_sw_info(sw,
2995 				"changed while suspended (uid %#llx -> %#llx)\n",
2996 				sw->uid, uid);
2997 			return -ENODEV;
2998 		}
2999 	}
3000 
3001 	err = tb_switch_configure(sw);
3002 	if (err)
3003 		return err;
3004 
3005 	/* Disable wakes */
3006 	tb_switch_set_wake(sw, 0);
3007 
3008 	err = tb_switch_tmu_init(sw);
3009 	if (err)
3010 		return err;
3011 
3012 	/* check for surviving downstream switches */
3013 	tb_switch_for_each_port(sw, port) {
3014 		if (!tb_port_is_null(port))
3015 			continue;
3016 
3017 		if (!tb_port_resume(port))
3018 			continue;
3019 
3020 		if (tb_wait_for_port(port, true) <= 0) {
3021 			tb_port_warn(port,
3022 				     "lost during suspend, disconnecting\n");
3023 			if (tb_port_has_remote(port))
3024 				tb_sw_set_unplugged(port->remote->sw);
3025 			else if (port->xdomain)
3026 				port->xdomain->is_unplugged = true;
3027 		} else {
3028 			/*
3029 			 * Always unlock the port so the downstream
3030 			 * switch/domain is accessible.
3031 			 */
3032 			if (tb_port_unlock(port))
3033 				tb_port_warn(port, "failed to unlock port\n");
3034 			if (port->remote && tb_switch_resume(port->remote->sw)) {
3035 				tb_port_warn(port,
3036 					     "lost during suspend, disconnecting\n");
3037 				tb_sw_set_unplugged(port->remote->sw);
3038 			}
3039 		}
3040 	}
3041 	return 0;
3042 }
3043 
3044 /**
3045  * tb_switch_suspend() - Put a switch to sleep
3046  * @sw: Switch to suspend
3047  * @runtime: Is this runtime suspend or system sleep
3048  *
3049  * Suspends router and all its children. Enables wakes according to
3050  * value of @runtime and then sets sleep bit for the router. If @sw is
3051  * host router the domain is ready to go to sleep once this function
3052  * returns.
3053  */
3054 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3055 {
3056 	unsigned int flags = 0;
3057 	struct tb_port *port;
3058 	int err;
3059 
3060 	tb_sw_dbg(sw, "suspending switch\n");
3061 
3062 	/*
3063 	 * Actually only needed for Titan Ridge but for simplicity can be
3064 	 * done for USB4 device too as CLx is re-enabled at resume.
3065 	 */
3066 	if (tb_switch_disable_clx(sw, TB_CL0S))
3067 		tb_sw_warn(sw, "failed to disable CLx on upstream port\n");
3068 
3069 	err = tb_plug_events_active(sw, false);
3070 	if (err)
3071 		return;
3072 
3073 	tb_switch_for_each_port(sw, port) {
3074 		if (tb_port_has_remote(port))
3075 			tb_switch_suspend(port->remote->sw, runtime);
3076 	}
3077 
3078 	if (runtime) {
3079 		/* Trigger wake when something is plugged in/out */
3080 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3081 		flags |= TB_WAKE_ON_USB4;
3082 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3083 	} else if (device_may_wakeup(&sw->dev)) {
3084 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3085 	}
3086 
3087 	tb_switch_set_wake(sw, flags);
3088 
3089 	if (tb_switch_is_usb4(sw))
3090 		usb4_switch_set_sleep(sw);
3091 	else
3092 		tb_lc_set_sleep(sw);
3093 }
3094 
3095 /**
3096  * tb_switch_query_dp_resource() - Query availability of DP resource
3097  * @sw: Switch whose DP resource is queried
3098  * @in: DP IN port
3099  *
3100  * Queries availability of DP resource for DP tunneling using switch
3101  * specific means. Returns %true if resource is available.
3102  */
3103 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3104 {
3105 	if (tb_switch_is_usb4(sw))
3106 		return usb4_switch_query_dp_resource(sw, in);
3107 	return tb_lc_dp_sink_query(sw, in);
3108 }
3109 
3110 /**
3111  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3112  * @sw: Switch whose DP resource is allocated
3113  * @in: DP IN port
3114  *
3115  * Allocates DP resource for DP tunneling. The resource must be
3116  * available for this to succeed (see tb_switch_query_dp_resource()).
3117  * Returns %0 in success and negative errno otherwise.
3118  */
3119 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3120 {
3121 	int ret;
3122 
3123 	if (tb_switch_is_usb4(sw))
3124 		ret = usb4_switch_alloc_dp_resource(sw, in);
3125 	else
3126 		ret = tb_lc_dp_sink_alloc(sw, in);
3127 
3128 	if (ret)
3129 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3130 			   in->port);
3131 	else
3132 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3133 
3134 	return ret;
3135 }
3136 
3137 /**
3138  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3139  * @sw: Switch whose DP resource is de-allocated
3140  * @in: DP IN port
3141  *
3142  * De-allocates DP resource that was previously allocated for DP
3143  * tunneling.
3144  */
3145 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3146 {
3147 	int ret;
3148 
3149 	if (tb_switch_is_usb4(sw))
3150 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3151 	else
3152 		ret = tb_lc_dp_sink_dealloc(sw, in);
3153 
3154 	if (ret)
3155 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3156 			   in->port);
3157 	else
3158 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3159 }
3160 
3161 struct tb_sw_lookup {
3162 	struct tb *tb;
3163 	u8 link;
3164 	u8 depth;
3165 	const uuid_t *uuid;
3166 	u64 route;
3167 };
3168 
3169 static int tb_switch_match(struct device *dev, const void *data)
3170 {
3171 	struct tb_switch *sw = tb_to_switch(dev);
3172 	const struct tb_sw_lookup *lookup = data;
3173 
3174 	if (!sw)
3175 		return 0;
3176 	if (sw->tb != lookup->tb)
3177 		return 0;
3178 
3179 	if (lookup->uuid)
3180 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3181 
3182 	if (lookup->route) {
3183 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3184 		       sw->config.route_hi == upper_32_bits(lookup->route);
3185 	}
3186 
3187 	/* Root switch is matched only by depth */
3188 	if (!lookup->depth)
3189 		return !sw->depth;
3190 
3191 	return sw->link == lookup->link && sw->depth == lookup->depth;
3192 }
3193 
3194 /**
3195  * tb_switch_find_by_link_depth() - Find switch by link and depth
3196  * @tb: Domain the switch belongs
3197  * @link: Link number the switch is connected
3198  * @depth: Depth of the switch in link
3199  *
3200  * Returned switch has reference count increased so the caller needs to
3201  * call tb_switch_put() when done with the switch.
3202  */
3203 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3204 {
3205 	struct tb_sw_lookup lookup;
3206 	struct device *dev;
3207 
3208 	memset(&lookup, 0, sizeof(lookup));
3209 	lookup.tb = tb;
3210 	lookup.link = link;
3211 	lookup.depth = depth;
3212 
3213 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3214 	if (dev)
3215 		return tb_to_switch(dev);
3216 
3217 	return NULL;
3218 }
3219 
3220 /**
3221  * tb_switch_find_by_uuid() - Find switch by UUID
3222  * @tb: Domain the switch belongs
3223  * @uuid: UUID to look for
3224  *
3225  * Returned switch has reference count increased so the caller needs to
3226  * call tb_switch_put() when done with the switch.
3227  */
3228 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3229 {
3230 	struct tb_sw_lookup lookup;
3231 	struct device *dev;
3232 
3233 	memset(&lookup, 0, sizeof(lookup));
3234 	lookup.tb = tb;
3235 	lookup.uuid = uuid;
3236 
3237 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3238 	if (dev)
3239 		return tb_to_switch(dev);
3240 
3241 	return NULL;
3242 }
3243 
3244 /**
3245  * tb_switch_find_by_route() - Find switch by route string
3246  * @tb: Domain the switch belongs
3247  * @route: Route string to look for
3248  *
3249  * Returned switch has reference count increased so the caller needs to
3250  * call tb_switch_put() when done with the switch.
3251  */
3252 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3253 {
3254 	struct tb_sw_lookup lookup;
3255 	struct device *dev;
3256 
3257 	if (!route)
3258 		return tb_switch_get(tb->root_switch);
3259 
3260 	memset(&lookup, 0, sizeof(lookup));
3261 	lookup.tb = tb;
3262 	lookup.route = route;
3263 
3264 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3265 	if (dev)
3266 		return tb_to_switch(dev);
3267 
3268 	return NULL;
3269 }
3270 
3271 /**
3272  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3273  * @sw: Switch to find the port from
3274  * @type: Port type to look for
3275  */
3276 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3277 				    enum tb_port_type type)
3278 {
3279 	struct tb_port *port;
3280 
3281 	tb_switch_for_each_port(sw, port) {
3282 		if (port->config.type == type)
3283 			return port;
3284 	}
3285 
3286 	return NULL;
3287 }
3288 
3289 static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary)
3290 {
3291 	u32 phy;
3292 	int ret;
3293 
3294 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
3295 			   port->cap_phy + LANE_ADP_CS_1, 1);
3296 	if (ret)
3297 		return ret;
3298 
3299 	if (secondary)
3300 		phy |= LANE_ADP_CS_1_PMS;
3301 	else
3302 		phy &= ~LANE_ADP_CS_1_PMS;
3303 
3304 	return tb_port_write(port, &phy, TB_CFG_PORT,
3305 			     port->cap_phy + LANE_ADP_CS_1, 1);
3306 }
3307 
3308 static int tb_port_pm_secondary_enable(struct tb_port *port)
3309 {
3310 	return __tb_port_pm_secondary_set(port, true);
3311 }
3312 
3313 static int tb_port_pm_secondary_disable(struct tb_port *port)
3314 {
3315 	return __tb_port_pm_secondary_set(port, false);
3316 }
3317 
3318 static int tb_switch_pm_secondary_resolve(struct tb_switch *sw)
3319 {
3320 	struct tb_switch *parent = tb_switch_parent(sw);
3321 	struct tb_port *up, *down;
3322 	int ret;
3323 
3324 	if (!tb_route(sw))
3325 		return 0;
3326 
3327 	up = tb_upstream_port(sw);
3328 	down = tb_port_at(tb_route(sw), parent);
3329 	ret = tb_port_pm_secondary_enable(up);
3330 	if (ret)
3331 		return ret;
3332 
3333 	return tb_port_pm_secondary_disable(down);
3334 }
3335 
3336 /* Called for USB4 or Titan Ridge routers only */
3337 static bool tb_port_clx_supported(struct tb_port *port, enum tb_clx clx)
3338 {
3339 	u32 mask, val;
3340 	bool ret;
3341 
3342 	/* Don't enable CLx in case of two single-lane links */
3343 	if (!port->bonded && port->dual_link_port)
3344 		return false;
3345 
3346 	/* Don't enable CLx in case of inter-domain link */
3347 	if (port->xdomain)
3348 		return false;
3349 
3350 	if (tb_switch_is_usb4(port->sw)) {
3351 		if (!usb4_port_clx_supported(port))
3352 			return false;
3353 	} else if (!tb_lc_is_clx_supported(port)) {
3354 		return false;
3355 	}
3356 
3357 	switch (clx) {
3358 	case TB_CL0S:
3359 		/* CL0s support requires also CL1 support */
3360 		mask = LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT;
3361 		break;
3362 
3363 	/* For now we support only CL0s. Not CL1, CL2 */
3364 	case TB_CL1:
3365 	case TB_CL2:
3366 	default:
3367 		return false;
3368 	}
3369 
3370 	ret = tb_port_read(port, &val, TB_CFG_PORT,
3371 			   port->cap_phy + LANE_ADP_CS_0, 1);
3372 	if (ret)
3373 		return false;
3374 
3375 	return !!(val & mask);
3376 }
3377 
3378 static inline bool tb_port_cl0s_supported(struct tb_port *port)
3379 {
3380 	return tb_port_clx_supported(port, TB_CL0S);
3381 }
3382 
3383 static int __tb_port_cl0s_set(struct tb_port *port, bool enable)
3384 {
3385 	u32 phy, mask;
3386 	int ret;
3387 
3388 	/* To enable CL0s also required to enable CL1 */
3389 	mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
3390 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
3391 			   port->cap_phy + LANE_ADP_CS_1, 1);
3392 	if (ret)
3393 		return ret;
3394 
3395 	if (enable)
3396 		phy |= mask;
3397 	else
3398 		phy &= ~mask;
3399 
3400 	return tb_port_write(port, &phy, TB_CFG_PORT,
3401 			     port->cap_phy + LANE_ADP_CS_1, 1);
3402 }
3403 
3404 static int tb_port_cl0s_disable(struct tb_port *port)
3405 {
3406 	return __tb_port_cl0s_set(port, false);
3407 }
3408 
3409 static int tb_port_cl0s_enable(struct tb_port *port)
3410 {
3411 	return __tb_port_cl0s_set(port, true);
3412 }
3413 
3414 static int tb_switch_enable_cl0s(struct tb_switch *sw)
3415 {
3416 	struct tb_switch *parent = tb_switch_parent(sw);
3417 	bool up_cl0s_support, down_cl0s_support;
3418 	struct tb_port *up, *down;
3419 	int ret;
3420 
3421 	if (!tb_switch_is_clx_supported(sw))
3422 		return 0;
3423 
3424 	/*
3425 	 * Enable CLx for host router's downstream port as part of the
3426 	 * downstream router enabling procedure.
3427 	 */
3428 	if (!tb_route(sw))
3429 		return 0;
3430 
3431 	/* Enable CLx only for first hop router (depth = 1) */
3432 	if (tb_route(parent))
3433 		return 0;
3434 
3435 	ret = tb_switch_pm_secondary_resolve(sw);
3436 	if (ret)
3437 		return ret;
3438 
3439 	up = tb_upstream_port(sw);
3440 	down = tb_port_at(tb_route(sw), parent);
3441 
3442 	up_cl0s_support = tb_port_cl0s_supported(up);
3443 	down_cl0s_support = tb_port_cl0s_supported(down);
3444 
3445 	tb_port_dbg(up, "CL0s %ssupported\n",
3446 		    up_cl0s_support ? "" : "not ");
3447 	tb_port_dbg(down, "CL0s %ssupported\n",
3448 		    down_cl0s_support ? "" : "not ");
3449 
3450 	if (!up_cl0s_support || !down_cl0s_support)
3451 		return -EOPNOTSUPP;
3452 
3453 	ret = tb_port_cl0s_enable(up);
3454 	if (ret)
3455 		return ret;
3456 
3457 	ret = tb_port_cl0s_enable(down);
3458 	if (ret) {
3459 		tb_port_cl0s_disable(up);
3460 		return ret;
3461 	}
3462 
3463 	ret = tb_switch_mask_clx_objections(sw);
3464 	if (ret) {
3465 		tb_port_cl0s_disable(up);
3466 		tb_port_cl0s_disable(down);
3467 		return ret;
3468 	}
3469 
3470 	sw->clx = TB_CL0S;
3471 
3472 	tb_port_dbg(up, "CL0s enabled\n");
3473 	return 0;
3474 }
3475 
3476 /**
3477  * tb_switch_enable_clx() - Enable CLx on upstream port of specified router
3478  * @sw: Router to enable CLx for
3479  * @clx: The CLx state to enable
3480  *
3481  * Enable CLx state only for first hop router. That is the most common
3482  * use-case, that is intended for better thermal management, and so helps
3483  * to improve performance. CLx is enabled only if both sides of the link
3484  * support CLx, and if both sides of the link are not configured as two
3485  * single lane links and only if the link is not inter-domain link. The
3486  * complete set of conditions is descibed in CM Guide 1.0 section 8.1.
3487  *
3488  * Return: Returns 0 on success or an error code on failure.
3489  */
3490 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3491 {
3492 	struct tb_switch *root_sw = sw->tb->root_switch;
3493 
3494 	if (!clx_enabled)
3495 		return 0;
3496 
3497 	/*
3498 	 * CLx is not enabled and validated on Intel USB4 platforms before
3499 	 * Alder Lake.
3500 	 */
3501 	if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw))
3502 		return 0;
3503 
3504 	switch (clx) {
3505 	case TB_CL0S:
3506 		return tb_switch_enable_cl0s(sw);
3507 
3508 	default:
3509 		return -EOPNOTSUPP;
3510 	}
3511 }
3512 
3513 static int tb_switch_disable_cl0s(struct tb_switch *sw)
3514 {
3515 	struct tb_switch *parent = tb_switch_parent(sw);
3516 	struct tb_port *up, *down;
3517 	int ret;
3518 
3519 	if (!tb_switch_is_clx_supported(sw))
3520 		return 0;
3521 
3522 	/*
3523 	 * Disable CLx for host router's downstream port as part of the
3524 	 * downstream router enabling procedure.
3525 	 */
3526 	if (!tb_route(sw))
3527 		return 0;
3528 
3529 	/* Disable CLx only for first hop router (depth = 1) */
3530 	if (tb_route(parent))
3531 		return 0;
3532 
3533 	up = tb_upstream_port(sw);
3534 	down = tb_port_at(tb_route(sw), parent);
3535 	ret = tb_port_cl0s_disable(up);
3536 	if (ret)
3537 		return ret;
3538 
3539 	ret = tb_port_cl0s_disable(down);
3540 	if (ret)
3541 		return ret;
3542 
3543 	sw->clx = TB_CLX_DISABLE;
3544 
3545 	tb_port_dbg(up, "CL0s disabled\n");
3546 	return 0;
3547 }
3548 
3549 /**
3550  * tb_switch_disable_clx() - Disable CLx on upstream port of specified router
3551  * @sw: Router to disable CLx for
3552  * @clx: The CLx state to disable
3553  *
3554  * Return: Returns 0 on success or an error code on failure.
3555  */
3556 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3557 {
3558 	if (!clx_enabled)
3559 		return 0;
3560 
3561 	switch (clx) {
3562 	case TB_CL0S:
3563 		return tb_switch_disable_cl0s(sw);
3564 
3565 	default:
3566 		return -EOPNOTSUPP;
3567 	}
3568 }
3569 
3570 /**
3571  * tb_switch_mask_clx_objections() - Mask CLx objections for a router
3572  * @sw: Router to mask objections for
3573  *
3574  * Mask the objections coming from the second depth routers in order to
3575  * stop these objections from interfering with the CLx states of the first
3576  * depth link.
3577  */
3578 int tb_switch_mask_clx_objections(struct tb_switch *sw)
3579 {
3580 	int up_port = sw->config.upstream_port_number;
3581 	u32 offset, val[2], mask_obj, unmask_obj;
3582 	int ret, i;
3583 
3584 	/* Only Titan Ridge of pre-USB4 devices support CLx states */
3585 	if (!tb_switch_is_titan_ridge(sw))
3586 		return 0;
3587 
3588 	if (!tb_route(sw))
3589 		return 0;
3590 
3591 	/*
3592 	 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports:
3593 	 * Port A consists of lane adapters 1,2 and
3594 	 * Port B consists of lane adapters 3,4
3595 	 * If upstream port is A, (lanes are 1,2), we mask objections from
3596 	 * port B (lanes 3,4) and unmask objections from Port A and vice-versa.
3597 	 */
3598 	if (up_port == 1) {
3599 		mask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3600 		unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3601 		offset = TB_LOW_PWR_C1_CL1;
3602 	} else {
3603 		mask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3604 		unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3605 		offset = TB_LOW_PWR_C3_CL1;
3606 	}
3607 
3608 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
3609 			 sw->cap_lp + offset, ARRAY_SIZE(val));
3610 	if (ret)
3611 		return ret;
3612 
3613 	for (i = 0; i < ARRAY_SIZE(val); i++) {
3614 		val[i] |= mask_obj;
3615 		val[i] &= ~unmask_obj;
3616 	}
3617 
3618 	return tb_sw_write(sw, &val, TB_CFG_SWITCH,
3619 			   sw->cap_lp + offset, ARRAY_SIZE(val));
3620 }
3621 
3622 /*
3623  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3624  * device. For now used only for Titan Ridge.
3625  */
3626 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3627 				       unsigned int pcie_offset, u32 value)
3628 {
3629 	u32 offset, command, val;
3630 	int ret;
3631 
3632 	if (sw->generation != 3)
3633 		return -EOPNOTSUPP;
3634 
3635 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3636 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3637 	if (ret)
3638 		return ret;
3639 
3640 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3641 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3642 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3643 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3644 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3645 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3646 
3647 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3648 
3649 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3650 	if (ret)
3651 		return ret;
3652 
3653 	ret = tb_switch_wait_for_bit(sw, offset,
3654 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3655 	if (ret)
3656 		return ret;
3657 
3658 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3659 	if (ret)
3660 		return ret;
3661 
3662 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3663 		return -ETIMEDOUT;
3664 
3665 	return 0;
3666 }
3667 
3668 /**
3669  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3670  * @sw: Router to enable PCIe L1
3671  *
3672  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3673  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3674  * was configured. Due to Intel platforms limitation, shall be called only
3675  * for first hop switch.
3676  */
3677 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3678 {
3679 	struct tb_switch *parent = tb_switch_parent(sw);
3680 	int ret;
3681 
3682 	if (!tb_route(sw))
3683 		return 0;
3684 
3685 	if (!tb_switch_is_titan_ridge(sw))
3686 		return 0;
3687 
3688 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3689 	if (tb_route(parent))
3690 		return 0;
3691 
3692 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3693 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3694 	if (ret)
3695 		return ret;
3696 
3697 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3698 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3699 }
3700 
3701 /**
3702  * tb_switch_xhci_connect() - Connect internal xHCI
3703  * @sw: Router whose xHCI to connect
3704  *
3705  * Can be called to any router. For Alpine Ridge and Titan Ridge
3706  * performs special flows that bring the xHCI functional for any device
3707  * connected to the type-C port. Call only after PCIe tunnel has been
3708  * established. The function only does the connect if not done already
3709  * so can be called several times for the same router.
3710  */
3711 int tb_switch_xhci_connect(struct tb_switch *sw)
3712 {
3713 	bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3714 	struct tb_port *port1, *port3;
3715 	int ret;
3716 
3717 	port1 = &sw->ports[1];
3718 	port3 = &sw->ports[3];
3719 
3720 	if (tb_switch_is_alpine_ridge(sw)) {
3721 		usb_port1 = tb_lc_is_usb_plugged(port1);
3722 		usb_port3 = tb_lc_is_usb_plugged(port3);
3723 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3724 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3725 
3726 		/* Figure out correct USB port to connect */
3727 		if (usb_port1 && !xhci_port1) {
3728 			ret = tb_lc_xhci_connect(port1);
3729 			if (ret)
3730 				return ret;
3731 		}
3732 		if (usb_port3 && !xhci_port3)
3733 			return tb_lc_xhci_connect(port3);
3734 	} else if (tb_switch_is_titan_ridge(sw)) {
3735 		ret = tb_lc_xhci_connect(port1);
3736 		if (ret)
3737 			return ret;
3738 		return tb_lc_xhci_connect(port3);
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 /**
3745  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3746  * @sw: Router whose xHCI to disconnect
3747  *
3748  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3749  * ports.
3750  */
3751 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3752 {
3753 	if (sw->generation == 3) {
3754 		struct tb_port *port1 = &sw->ports[1];
3755 		struct tb_port *port3 = &sw->ports[3];
3756 
3757 		tb_lc_xhci_disconnect(port1);
3758 		tb_port_dbg(port1, "disconnected xHCI\n");
3759 		tb_lc_xhci_disconnect(port3);
3760 		tb_port_dbg(port3, "disconnected xHCI\n");
3761 	}
3762 }
3763