1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 18 #include "tb.h" 19 20 /* Switch NVM support */ 21 22 #define NVM_DEVID 0x05 23 #define NVM_VERSION 0x08 24 #define NVM_CSS 0x10 25 #define NVM_FLASH_SIZE 0x45 26 27 #define NVM_MIN_SIZE SZ_32K 28 #define NVM_MAX_SIZE SZ_512K 29 30 static DEFINE_IDA(nvm_ida); 31 32 struct nvm_auth_status { 33 struct list_head list; 34 uuid_t uuid; 35 u32 status; 36 }; 37 38 /* 39 * Hold NVM authentication failure status per switch This information 40 * needs to stay around even when the switch gets power cycled so we 41 * keep it separately. 42 */ 43 static LIST_HEAD(nvm_auth_status_cache); 44 static DEFINE_MUTEX(nvm_auth_status_lock); 45 46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 47 { 48 struct nvm_auth_status *st; 49 50 list_for_each_entry(st, &nvm_auth_status_cache, list) { 51 if (uuid_equal(&st->uuid, sw->uuid)) 52 return st; 53 } 54 55 return NULL; 56 } 57 58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 59 { 60 struct nvm_auth_status *st; 61 62 mutex_lock(&nvm_auth_status_lock); 63 st = __nvm_get_auth_status(sw); 64 mutex_unlock(&nvm_auth_status_lock); 65 66 *status = st ? st->status : 0; 67 } 68 69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 70 { 71 struct nvm_auth_status *st; 72 73 if (WARN_ON(!sw->uuid)) 74 return; 75 76 mutex_lock(&nvm_auth_status_lock); 77 st = __nvm_get_auth_status(sw); 78 79 if (!st) { 80 st = kzalloc(sizeof(*st), GFP_KERNEL); 81 if (!st) 82 goto unlock; 83 84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 85 INIT_LIST_HEAD(&st->list); 86 list_add_tail(&st->list, &nvm_auth_status_cache); 87 } 88 89 st->status = status; 90 unlock: 91 mutex_unlock(&nvm_auth_status_lock); 92 } 93 94 static void nvm_clear_auth_status(const struct tb_switch *sw) 95 { 96 struct nvm_auth_status *st; 97 98 mutex_lock(&nvm_auth_status_lock); 99 st = __nvm_get_auth_status(sw); 100 if (st) { 101 list_del(&st->list); 102 kfree(st); 103 } 104 mutex_unlock(&nvm_auth_status_lock); 105 } 106 107 static int nvm_validate_and_write(struct tb_switch *sw) 108 { 109 unsigned int image_size, hdr_size; 110 const u8 *buf = sw->nvm->buf; 111 u16 ds_size; 112 int ret; 113 114 if (!buf) 115 return -EINVAL; 116 117 image_size = sw->nvm->buf_data_size; 118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 119 return -EINVAL; 120 121 /* 122 * FARB pointer must point inside the image and must at least 123 * contain parts of the digital section we will be reading here. 124 */ 125 hdr_size = (*(u32 *)buf) & 0xffffff; 126 if (hdr_size + NVM_DEVID + 2 >= image_size) 127 return -EINVAL; 128 129 /* Digital section start should be aligned to 4k page */ 130 if (!IS_ALIGNED(hdr_size, SZ_4K)) 131 return -EINVAL; 132 133 /* 134 * Read digital section size and check that it also fits inside 135 * the image. 136 */ 137 ds_size = *(u16 *)(buf + hdr_size); 138 if (ds_size >= image_size) 139 return -EINVAL; 140 141 if (!sw->safe_mode) { 142 u16 device_id; 143 144 /* 145 * Make sure the device ID in the image matches the one 146 * we read from the switch config space. 147 */ 148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 149 if (device_id != sw->config.device_id) 150 return -EINVAL; 151 152 if (sw->generation < 3) { 153 /* Write CSS headers first */ 154 ret = dma_port_flash_write(sw->dma_port, 155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 156 DMA_PORT_CSS_MAX_SIZE); 157 if (ret) 158 return ret; 159 } 160 161 /* Skip headers in the image */ 162 buf += hdr_size; 163 image_size -= hdr_size; 164 } 165 166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 167 } 168 169 static int nvm_authenticate_host(struct tb_switch *sw) 170 { 171 int ret; 172 173 /* 174 * Root switch NVM upgrade requires that we disconnect the 175 * existing paths first (in case it is not in safe mode 176 * already). 177 */ 178 if (!sw->safe_mode) { 179 ret = tb_domain_disconnect_all_paths(sw->tb); 180 if (ret) 181 return ret; 182 /* 183 * The host controller goes away pretty soon after this if 184 * everything goes well so getting timeout is expected. 185 */ 186 ret = dma_port_flash_update_auth(sw->dma_port); 187 return ret == -ETIMEDOUT ? 0 : ret; 188 } 189 190 /* 191 * From safe mode we can get out by just power cycling the 192 * switch. 193 */ 194 dma_port_power_cycle(sw->dma_port); 195 return 0; 196 } 197 198 static int nvm_authenticate_device(struct tb_switch *sw) 199 { 200 int ret, retries = 10; 201 202 ret = dma_port_flash_update_auth(sw->dma_port); 203 if (ret && ret != -ETIMEDOUT) 204 return ret; 205 206 /* 207 * Poll here for the authentication status. It takes some time 208 * for the device to respond (we get timeout for a while). Once 209 * we get response the device needs to be power cycled in order 210 * to the new NVM to be taken into use. 211 */ 212 do { 213 u32 status; 214 215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 216 if (ret < 0 && ret != -ETIMEDOUT) 217 return ret; 218 if (ret > 0) { 219 if (status) { 220 tb_sw_warn(sw, "failed to authenticate NVM\n"); 221 nvm_set_auth_status(sw, status); 222 } 223 224 tb_sw_info(sw, "power cycling the switch now\n"); 225 dma_port_power_cycle(sw->dma_port); 226 return 0; 227 } 228 229 msleep(500); 230 } while (--retries); 231 232 return -ETIMEDOUT; 233 } 234 235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 236 size_t bytes) 237 { 238 struct tb_switch *sw = priv; 239 int ret; 240 241 pm_runtime_get_sync(&sw->dev); 242 243 if (!mutex_trylock(&sw->tb->lock)) { 244 ret = restart_syscall(); 245 goto out; 246 } 247 248 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes); 249 mutex_unlock(&sw->tb->lock); 250 251 out: 252 pm_runtime_mark_last_busy(&sw->dev); 253 pm_runtime_put_autosuspend(&sw->dev); 254 255 return ret; 256 } 257 258 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 259 size_t bytes) 260 { 261 struct tb_switch *sw = priv; 262 int ret = 0; 263 264 if (!mutex_trylock(&sw->tb->lock)) 265 return restart_syscall(); 266 267 /* 268 * Since writing the NVM image might require some special steps, 269 * for example when CSS headers are written, we cache the image 270 * locally here and handle the special cases when the user asks 271 * us to authenticate the image. 272 */ 273 if (!sw->nvm->buf) { 274 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 275 if (!sw->nvm->buf) { 276 ret = -ENOMEM; 277 goto unlock; 278 } 279 } 280 281 sw->nvm->buf_data_size = offset + bytes; 282 memcpy(sw->nvm->buf + offset, val, bytes); 283 284 unlock: 285 mutex_unlock(&sw->tb->lock); 286 287 return ret; 288 } 289 290 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 291 size_t size, bool active) 292 { 293 struct nvmem_config config; 294 295 memset(&config, 0, sizeof(config)); 296 297 if (active) { 298 config.name = "nvm_active"; 299 config.reg_read = tb_switch_nvm_read; 300 config.read_only = true; 301 } else { 302 config.name = "nvm_non_active"; 303 config.reg_write = tb_switch_nvm_write; 304 config.root_only = true; 305 } 306 307 config.id = id; 308 config.stride = 4; 309 config.word_size = 4; 310 config.size = size; 311 config.dev = &sw->dev; 312 config.owner = THIS_MODULE; 313 config.priv = sw; 314 315 return nvmem_register(&config); 316 } 317 318 static int tb_switch_nvm_add(struct tb_switch *sw) 319 { 320 struct nvmem_device *nvm_dev; 321 struct tb_switch_nvm *nvm; 322 u32 val; 323 int ret; 324 325 if (!sw->dma_port) 326 return 0; 327 328 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 329 if (!nvm) 330 return -ENOMEM; 331 332 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 333 334 /* 335 * If the switch is in safe-mode the only accessible portion of 336 * the NVM is the non-active one where userspace is expected to 337 * write new functional NVM. 338 */ 339 if (!sw->safe_mode) { 340 u32 nvm_size, hdr_size; 341 342 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 343 sizeof(val)); 344 if (ret) 345 goto err_ida; 346 347 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 348 nvm_size = (SZ_1M << (val & 7)) / 8; 349 nvm_size = (nvm_size - hdr_size) / 2; 350 351 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 352 sizeof(val)); 353 if (ret) 354 goto err_ida; 355 356 nvm->major = val >> 16; 357 nvm->minor = val >> 8; 358 359 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 360 if (IS_ERR(nvm_dev)) { 361 ret = PTR_ERR(nvm_dev); 362 goto err_ida; 363 } 364 nvm->active = nvm_dev; 365 } 366 367 if (!sw->no_nvm_upgrade) { 368 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 369 if (IS_ERR(nvm_dev)) { 370 ret = PTR_ERR(nvm_dev); 371 goto err_nvm_active; 372 } 373 nvm->non_active = nvm_dev; 374 } 375 376 sw->nvm = nvm; 377 return 0; 378 379 err_nvm_active: 380 if (nvm->active) 381 nvmem_unregister(nvm->active); 382 err_ida: 383 ida_simple_remove(&nvm_ida, nvm->id); 384 kfree(nvm); 385 386 return ret; 387 } 388 389 static void tb_switch_nvm_remove(struct tb_switch *sw) 390 { 391 struct tb_switch_nvm *nvm; 392 393 nvm = sw->nvm; 394 sw->nvm = NULL; 395 396 if (!nvm) 397 return; 398 399 /* Remove authentication status in case the switch is unplugged */ 400 if (!nvm->authenticating) 401 nvm_clear_auth_status(sw); 402 403 if (nvm->non_active) 404 nvmem_unregister(nvm->non_active); 405 if (nvm->active) 406 nvmem_unregister(nvm->active); 407 ida_simple_remove(&nvm_ida, nvm->id); 408 vfree(nvm->buf); 409 kfree(nvm); 410 } 411 412 /* port utility functions */ 413 414 static const char *tb_port_type(struct tb_regs_port_header *port) 415 { 416 switch (port->type >> 16) { 417 case 0: 418 switch ((u8) port->type) { 419 case 0: 420 return "Inactive"; 421 case 1: 422 return "Port"; 423 case 2: 424 return "NHI"; 425 default: 426 return "unknown"; 427 } 428 case 0x2: 429 return "Ethernet"; 430 case 0x8: 431 return "SATA"; 432 case 0xe: 433 return "DP/HDMI"; 434 case 0x10: 435 return "PCIe"; 436 case 0x20: 437 return "USB"; 438 default: 439 return "unknown"; 440 } 441 } 442 443 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 444 { 445 tb_dbg(tb, 446 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 447 port->port_number, port->vendor_id, port->device_id, 448 port->revision, port->thunderbolt_version, tb_port_type(port), 449 port->type); 450 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 451 port->max_in_hop_id, port->max_out_hop_id); 452 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 453 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 454 } 455 456 /** 457 * tb_port_state() - get connectedness state of a port 458 * 459 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 460 * 461 * Return: Returns an enum tb_port_state on success or an error code on failure. 462 */ 463 static int tb_port_state(struct tb_port *port) 464 { 465 struct tb_cap_phy phy; 466 int res; 467 if (port->cap_phy == 0) { 468 tb_port_WARN(port, "does not have a PHY\n"); 469 return -EINVAL; 470 } 471 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 472 if (res) 473 return res; 474 return phy.state; 475 } 476 477 /** 478 * tb_wait_for_port() - wait for a port to become ready 479 * 480 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 481 * wait_if_unplugged is set then we also wait if the port is in state 482 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 483 * switch resume). Otherwise we only wait if a device is registered but the link 484 * has not yet been established. 485 * 486 * Return: Returns an error code on failure. Returns 0 if the port is not 487 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 488 * if the port is connected and in state TB_PORT_UP. 489 */ 490 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 491 { 492 int retries = 10; 493 int state; 494 if (!port->cap_phy) { 495 tb_port_WARN(port, "does not have PHY\n"); 496 return -EINVAL; 497 } 498 if (tb_is_upstream_port(port)) { 499 tb_port_WARN(port, "is the upstream port\n"); 500 return -EINVAL; 501 } 502 503 while (retries--) { 504 state = tb_port_state(port); 505 if (state < 0) 506 return state; 507 if (state == TB_PORT_DISABLED) { 508 tb_port_dbg(port, "is disabled (state: 0)\n"); 509 return 0; 510 } 511 if (state == TB_PORT_UNPLUGGED) { 512 if (wait_if_unplugged) { 513 /* used during resume */ 514 tb_port_dbg(port, 515 "is unplugged (state: 7), retrying...\n"); 516 msleep(100); 517 continue; 518 } 519 tb_port_dbg(port, "is unplugged (state: 7)\n"); 520 return 0; 521 } 522 if (state == TB_PORT_UP) { 523 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 524 return 1; 525 } 526 527 /* 528 * After plug-in the state is TB_PORT_CONNECTING. Give it some 529 * time. 530 */ 531 tb_port_dbg(port, 532 "is connected, link is not up (state: %d), retrying...\n", 533 state); 534 msleep(100); 535 } 536 tb_port_warn(port, 537 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 538 return 0; 539 } 540 541 /** 542 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 543 * 544 * Change the number of NFC credits allocated to @port by @credits. To remove 545 * NFC credits pass a negative amount of credits. 546 * 547 * Return: Returns 0 on success or an error code on failure. 548 */ 549 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 550 { 551 u32 nfc_credits; 552 553 if (credits == 0 || port->sw->is_unplugged) 554 return 0; 555 556 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK; 557 nfc_credits += credits; 558 559 tb_port_dbg(port, "adding %d NFC credits to %lu", 560 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK); 561 562 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK; 563 port->config.nfc_credits |= nfc_credits; 564 565 return tb_port_write(port, &port->config.nfc_credits, 566 TB_CFG_PORT, 4, 1); 567 } 568 569 /** 570 * tb_port_set_initial_credits() - Set initial port link credits allocated 571 * @port: Port to set the initial credits 572 * @credits: Number of credits to to allocate 573 * 574 * Set initial credits value to be used for ingress shared buffering. 575 */ 576 int tb_port_set_initial_credits(struct tb_port *port, u32 credits) 577 { 578 u32 data; 579 int ret; 580 581 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1); 582 if (ret) 583 return ret; 584 585 data &= ~TB_PORT_LCA_MASK; 586 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK; 587 588 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1); 589 } 590 591 /** 592 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 593 * 594 * Return: Returns 0 on success or an error code on failure. 595 */ 596 int tb_port_clear_counter(struct tb_port *port, int counter) 597 { 598 u32 zero[3] = { 0, 0, 0 }; 599 tb_port_dbg(port, "clearing counter %d\n", counter); 600 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 601 } 602 603 /** 604 * tb_init_port() - initialize a port 605 * 606 * This is a helper method for tb_switch_alloc. Does not check or initialize 607 * any downstream switches. 608 * 609 * Return: Returns 0 on success or an error code on failure. 610 */ 611 static int tb_init_port(struct tb_port *port) 612 { 613 int res; 614 int cap; 615 616 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 617 if (res) { 618 if (res == -ENODEV) { 619 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 620 port->port); 621 return 0; 622 } 623 return res; 624 } 625 626 /* Port 0 is the switch itself and has no PHY. */ 627 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 628 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 629 630 if (cap > 0) 631 port->cap_phy = cap; 632 else 633 tb_port_WARN(port, "non switch port without a PHY\n"); 634 } else if (port->port != 0) { 635 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 636 if (cap > 0) 637 port->cap_adap = cap; 638 } 639 640 tb_dump_port(port->sw->tb, &port->config); 641 642 /* Control port does not need HopID allocation */ 643 if (port->port) { 644 ida_init(&port->in_hopids); 645 ida_init(&port->out_hopids); 646 } 647 648 return 0; 649 650 } 651 652 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 653 int max_hopid) 654 { 655 int port_max_hopid; 656 struct ida *ida; 657 658 if (in) { 659 port_max_hopid = port->config.max_in_hop_id; 660 ida = &port->in_hopids; 661 } else { 662 port_max_hopid = port->config.max_out_hop_id; 663 ida = &port->out_hopids; 664 } 665 666 /* HopIDs 0-7 are reserved */ 667 if (min_hopid < TB_PATH_MIN_HOPID) 668 min_hopid = TB_PATH_MIN_HOPID; 669 670 if (max_hopid < 0 || max_hopid > port_max_hopid) 671 max_hopid = port_max_hopid; 672 673 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 674 } 675 676 /** 677 * tb_port_alloc_in_hopid() - Allocate input HopID from port 678 * @port: Port to allocate HopID for 679 * @min_hopid: Minimum acceptable input HopID 680 * @max_hopid: Maximum acceptable input HopID 681 * 682 * Return: HopID between @min_hopid and @max_hopid or negative errno in 683 * case of error. 684 */ 685 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 686 { 687 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 688 } 689 690 /** 691 * tb_port_alloc_out_hopid() - Allocate output HopID from port 692 * @port: Port to allocate HopID for 693 * @min_hopid: Minimum acceptable output HopID 694 * @max_hopid: Maximum acceptable output HopID 695 * 696 * Return: HopID between @min_hopid and @max_hopid or negative errno in 697 * case of error. 698 */ 699 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 700 { 701 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 702 } 703 704 /** 705 * tb_port_release_in_hopid() - Release allocated input HopID from port 706 * @port: Port whose HopID to release 707 * @hopid: HopID to release 708 */ 709 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 710 { 711 ida_simple_remove(&port->in_hopids, hopid); 712 } 713 714 /** 715 * tb_port_release_out_hopid() - Release allocated output HopID from port 716 * @port: Port whose HopID to release 717 * @hopid: HopID to release 718 */ 719 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 720 { 721 ida_simple_remove(&port->out_hopids, hopid); 722 } 723 724 /** 725 * tb_next_port_on_path() - Return next port for given port on a path 726 * @start: Start port of the walk 727 * @end: End port of the walk 728 * @prev: Previous port (%NULL if this is the first) 729 * 730 * This function can be used to walk from one port to another if they 731 * are connected through zero or more switches. If the @prev is dual 732 * link port, the function follows that link and returns another end on 733 * that same link. 734 * 735 * If the @end port has been reached, return %NULL. 736 * 737 * Domain tb->lock must be held when this function is called. 738 */ 739 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 740 struct tb_port *prev) 741 { 742 struct tb_port *next; 743 744 if (!prev) 745 return start; 746 747 if (prev->sw == end->sw) { 748 if (prev == end) 749 return NULL; 750 return end; 751 } 752 753 if (start->sw->config.depth < end->sw->config.depth) { 754 if (prev->remote && 755 prev->remote->sw->config.depth > prev->sw->config.depth) 756 next = prev->remote; 757 else 758 next = tb_port_at(tb_route(end->sw), prev->sw); 759 } else { 760 if (tb_is_upstream_port(prev)) { 761 next = prev->remote; 762 } else { 763 next = tb_upstream_port(prev->sw); 764 /* 765 * Keep the same link if prev and next are both 766 * dual link ports. 767 */ 768 if (next->dual_link_port && 769 next->link_nr != prev->link_nr) { 770 next = next->dual_link_port; 771 } 772 } 773 } 774 775 return next; 776 } 777 778 /** 779 * tb_port_is_enabled() - Is the adapter port enabled 780 * @port: Port to check 781 */ 782 bool tb_port_is_enabled(struct tb_port *port) 783 { 784 switch (port->config.type) { 785 case TB_TYPE_PCIE_UP: 786 case TB_TYPE_PCIE_DOWN: 787 return tb_pci_port_is_enabled(port); 788 789 case TB_TYPE_DP_HDMI_IN: 790 case TB_TYPE_DP_HDMI_OUT: 791 return tb_dp_port_is_enabled(port); 792 793 default: 794 return false; 795 } 796 } 797 798 /** 799 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 800 * @port: PCIe port to check 801 */ 802 bool tb_pci_port_is_enabled(struct tb_port *port) 803 { 804 u32 data; 805 806 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1)) 807 return false; 808 809 return !!(data & TB_PCI_EN); 810 } 811 812 /** 813 * tb_pci_port_enable() - Enable PCIe adapter port 814 * @port: PCIe port to enable 815 * @enable: Enable/disable the PCIe adapter 816 */ 817 int tb_pci_port_enable(struct tb_port *port, bool enable) 818 { 819 u32 word = enable ? TB_PCI_EN : 0x0; 820 if (!port->cap_adap) 821 return -ENXIO; 822 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1); 823 } 824 825 /** 826 * tb_dp_port_hpd_is_active() - Is HPD already active 827 * @port: DP out port to check 828 * 829 * Checks if the DP OUT adapter port has HDP bit already set. 830 */ 831 int tb_dp_port_hpd_is_active(struct tb_port *port) 832 { 833 u32 data; 834 int ret; 835 836 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1); 837 if (ret) 838 return ret; 839 840 return !!(data & TB_DP_HDP); 841 } 842 843 /** 844 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 845 * @port: Port to clear HPD 846 * 847 * If the DP IN port has HDP set, this function can be used to clear it. 848 */ 849 int tb_dp_port_hpd_clear(struct tb_port *port) 850 { 851 u32 data; 852 int ret; 853 854 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1); 855 if (ret) 856 return ret; 857 858 data |= TB_DP_HPDC; 859 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1); 860 } 861 862 /** 863 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 864 * @port: DP IN/OUT port to set hops 865 * @video: Video Hop ID 866 * @aux_tx: AUX TX Hop ID 867 * @aux_rx: AUX RX Hop ID 868 * 869 * Programs specified Hop IDs for DP IN/OUT port. 870 */ 871 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 872 unsigned int aux_tx, unsigned int aux_rx) 873 { 874 u32 data[2]; 875 int ret; 876 877 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap, 878 ARRAY_SIZE(data)); 879 if (ret) 880 return ret; 881 882 data[0] &= ~TB_DP_VIDEO_HOPID_MASK; 883 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK); 884 885 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK; 886 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK; 887 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK; 888 889 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap, 890 ARRAY_SIZE(data)); 891 } 892 893 /** 894 * tb_dp_port_is_enabled() - Is DP adapter port enabled 895 * @port: DP adapter port to check 896 */ 897 bool tb_dp_port_is_enabled(struct tb_port *port) 898 { 899 u32 data; 900 901 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1)) 902 return false; 903 904 return !!(data & (TB_DP_VIDEO_EN | TB_DP_AUX_EN)); 905 } 906 907 /** 908 * tb_dp_port_enable() - Enables/disables DP paths of a port 909 * @port: DP IN/OUT port 910 * @enable: Enable/disable DP path 911 * 912 * Once Hop IDs are programmed DP paths can be enabled or disabled by 913 * calling this function. 914 */ 915 int tb_dp_port_enable(struct tb_port *port, bool enable) 916 { 917 u32 data; 918 int ret; 919 920 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1); 921 if (ret) 922 return ret; 923 924 if (enable) 925 data |= TB_DP_VIDEO_EN | TB_DP_AUX_EN; 926 else 927 data &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN); 928 929 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap, 1); 930 } 931 932 /* switch utility functions */ 933 934 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 935 { 936 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 937 sw->vendor_id, sw->device_id, sw->revision, 938 sw->thunderbolt_version); 939 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number); 940 tb_dbg(tb, " Config:\n"); 941 tb_dbg(tb, 942 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 943 sw->upstream_port_number, sw->depth, 944 (((u64) sw->route_hi) << 32) | sw->route_lo, 945 sw->enabled, sw->plug_events_delay); 946 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 947 sw->__unknown1, sw->__unknown4); 948 } 949 950 /** 951 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 952 * 953 * Return: Returns 0 on success or an error code on failure. 954 */ 955 int tb_switch_reset(struct tb *tb, u64 route) 956 { 957 struct tb_cfg_result res; 958 struct tb_regs_switch_header header = { 959 header.route_hi = route >> 32, 960 header.route_lo = route, 961 header.enabled = true, 962 }; 963 tb_dbg(tb, "resetting switch at %llx\n", route); 964 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 965 0, 2, 2, 2); 966 if (res.err) 967 return res.err; 968 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 969 if (res.err > 0) 970 return -EIO; 971 return res.err; 972 } 973 974 /** 975 * tb_plug_events_active() - enable/disable plug events on a switch 976 * 977 * Also configures a sane plug_events_delay of 255ms. 978 * 979 * Return: Returns 0 on success or an error code on failure. 980 */ 981 static int tb_plug_events_active(struct tb_switch *sw, bool active) 982 { 983 u32 data; 984 int res; 985 986 if (!sw->config.enabled) 987 return 0; 988 989 sw->config.plug_events_delay = 0xff; 990 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 991 if (res) 992 return res; 993 994 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 995 if (res) 996 return res; 997 998 if (active) { 999 data = data & 0xFFFFFF83; 1000 switch (sw->config.device_id) { 1001 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1002 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1003 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1004 break; 1005 default: 1006 data |= 4; 1007 } 1008 } else { 1009 data = data | 0x7c; 1010 } 1011 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1012 sw->cap_plug_events + 1, 1); 1013 } 1014 1015 static ssize_t authorized_show(struct device *dev, 1016 struct device_attribute *attr, 1017 char *buf) 1018 { 1019 struct tb_switch *sw = tb_to_switch(dev); 1020 1021 return sprintf(buf, "%u\n", sw->authorized); 1022 } 1023 1024 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1025 { 1026 int ret = -EINVAL; 1027 1028 if (!mutex_trylock(&sw->tb->lock)) 1029 return restart_syscall(); 1030 1031 if (sw->authorized) 1032 goto unlock; 1033 1034 /* 1035 * Make sure there is no PCIe rescan ongoing when a new PCIe 1036 * tunnel is created. Otherwise the PCIe rescan code might find 1037 * the new tunnel too early. 1038 */ 1039 pci_lock_rescan_remove(); 1040 1041 switch (val) { 1042 /* Approve switch */ 1043 case 1: 1044 if (sw->key) 1045 ret = tb_domain_approve_switch_key(sw->tb, sw); 1046 else 1047 ret = tb_domain_approve_switch(sw->tb, sw); 1048 break; 1049 1050 /* Challenge switch */ 1051 case 2: 1052 if (sw->key) 1053 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1054 break; 1055 1056 default: 1057 break; 1058 } 1059 1060 pci_unlock_rescan_remove(); 1061 1062 if (!ret) { 1063 sw->authorized = val; 1064 /* Notify status change to the userspace */ 1065 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1066 } 1067 1068 unlock: 1069 mutex_unlock(&sw->tb->lock); 1070 return ret; 1071 } 1072 1073 static ssize_t authorized_store(struct device *dev, 1074 struct device_attribute *attr, 1075 const char *buf, size_t count) 1076 { 1077 struct tb_switch *sw = tb_to_switch(dev); 1078 unsigned int val; 1079 ssize_t ret; 1080 1081 ret = kstrtouint(buf, 0, &val); 1082 if (ret) 1083 return ret; 1084 if (val > 2) 1085 return -EINVAL; 1086 1087 pm_runtime_get_sync(&sw->dev); 1088 ret = tb_switch_set_authorized(sw, val); 1089 pm_runtime_mark_last_busy(&sw->dev); 1090 pm_runtime_put_autosuspend(&sw->dev); 1091 1092 return ret ? ret : count; 1093 } 1094 static DEVICE_ATTR_RW(authorized); 1095 1096 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1097 char *buf) 1098 { 1099 struct tb_switch *sw = tb_to_switch(dev); 1100 1101 return sprintf(buf, "%u\n", sw->boot); 1102 } 1103 static DEVICE_ATTR_RO(boot); 1104 1105 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1106 char *buf) 1107 { 1108 struct tb_switch *sw = tb_to_switch(dev); 1109 1110 return sprintf(buf, "%#x\n", sw->device); 1111 } 1112 static DEVICE_ATTR_RO(device); 1113 1114 static ssize_t 1115 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1116 { 1117 struct tb_switch *sw = tb_to_switch(dev); 1118 1119 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1120 } 1121 static DEVICE_ATTR_RO(device_name); 1122 1123 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1124 char *buf) 1125 { 1126 struct tb_switch *sw = tb_to_switch(dev); 1127 ssize_t ret; 1128 1129 if (!mutex_trylock(&sw->tb->lock)) 1130 return restart_syscall(); 1131 1132 if (sw->key) 1133 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1134 else 1135 ret = sprintf(buf, "\n"); 1136 1137 mutex_unlock(&sw->tb->lock); 1138 return ret; 1139 } 1140 1141 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1142 const char *buf, size_t count) 1143 { 1144 struct tb_switch *sw = tb_to_switch(dev); 1145 u8 key[TB_SWITCH_KEY_SIZE]; 1146 ssize_t ret = count; 1147 bool clear = false; 1148 1149 if (!strcmp(buf, "\n")) 1150 clear = true; 1151 else if (hex2bin(key, buf, sizeof(key))) 1152 return -EINVAL; 1153 1154 if (!mutex_trylock(&sw->tb->lock)) 1155 return restart_syscall(); 1156 1157 if (sw->authorized) { 1158 ret = -EBUSY; 1159 } else { 1160 kfree(sw->key); 1161 if (clear) { 1162 sw->key = NULL; 1163 } else { 1164 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1165 if (!sw->key) 1166 ret = -ENOMEM; 1167 } 1168 } 1169 1170 mutex_unlock(&sw->tb->lock); 1171 return ret; 1172 } 1173 static DEVICE_ATTR(key, 0600, key_show, key_store); 1174 1175 static void nvm_authenticate_start(struct tb_switch *sw) 1176 { 1177 struct pci_dev *root_port; 1178 1179 /* 1180 * During host router NVM upgrade we should not allow root port to 1181 * go into D3cold because some root ports cannot trigger PME 1182 * itself. To be on the safe side keep the root port in D0 during 1183 * the whole upgrade process. 1184 */ 1185 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 1186 if (root_port) 1187 pm_runtime_get_noresume(&root_port->dev); 1188 } 1189 1190 static void nvm_authenticate_complete(struct tb_switch *sw) 1191 { 1192 struct pci_dev *root_port; 1193 1194 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 1195 if (root_port) 1196 pm_runtime_put(&root_port->dev); 1197 } 1198 1199 static ssize_t nvm_authenticate_show(struct device *dev, 1200 struct device_attribute *attr, char *buf) 1201 { 1202 struct tb_switch *sw = tb_to_switch(dev); 1203 u32 status; 1204 1205 nvm_get_auth_status(sw, &status); 1206 return sprintf(buf, "%#x\n", status); 1207 } 1208 1209 static ssize_t nvm_authenticate_store(struct device *dev, 1210 struct device_attribute *attr, const char *buf, size_t count) 1211 { 1212 struct tb_switch *sw = tb_to_switch(dev); 1213 bool val; 1214 int ret; 1215 1216 pm_runtime_get_sync(&sw->dev); 1217 1218 if (!mutex_trylock(&sw->tb->lock)) { 1219 ret = restart_syscall(); 1220 goto exit_rpm; 1221 } 1222 1223 /* If NVMem devices are not yet added */ 1224 if (!sw->nvm) { 1225 ret = -EAGAIN; 1226 goto exit_unlock; 1227 } 1228 1229 ret = kstrtobool(buf, &val); 1230 if (ret) 1231 goto exit_unlock; 1232 1233 /* Always clear the authentication status */ 1234 nvm_clear_auth_status(sw); 1235 1236 if (val) { 1237 if (!sw->nvm->buf) { 1238 ret = -EINVAL; 1239 goto exit_unlock; 1240 } 1241 1242 ret = nvm_validate_and_write(sw); 1243 if (ret) 1244 goto exit_unlock; 1245 1246 sw->nvm->authenticating = true; 1247 1248 if (!tb_route(sw)) { 1249 /* 1250 * Keep root port from suspending as long as the 1251 * NVM upgrade process is running. 1252 */ 1253 nvm_authenticate_start(sw); 1254 ret = nvm_authenticate_host(sw); 1255 if (ret) 1256 nvm_authenticate_complete(sw); 1257 } else { 1258 ret = nvm_authenticate_device(sw); 1259 } 1260 } 1261 1262 exit_unlock: 1263 mutex_unlock(&sw->tb->lock); 1264 exit_rpm: 1265 pm_runtime_mark_last_busy(&sw->dev); 1266 pm_runtime_put_autosuspend(&sw->dev); 1267 1268 if (ret) 1269 return ret; 1270 return count; 1271 } 1272 static DEVICE_ATTR_RW(nvm_authenticate); 1273 1274 static ssize_t nvm_version_show(struct device *dev, 1275 struct device_attribute *attr, char *buf) 1276 { 1277 struct tb_switch *sw = tb_to_switch(dev); 1278 int ret; 1279 1280 if (!mutex_trylock(&sw->tb->lock)) 1281 return restart_syscall(); 1282 1283 if (sw->safe_mode) 1284 ret = -ENODATA; 1285 else if (!sw->nvm) 1286 ret = -EAGAIN; 1287 else 1288 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1289 1290 mutex_unlock(&sw->tb->lock); 1291 1292 return ret; 1293 } 1294 static DEVICE_ATTR_RO(nvm_version); 1295 1296 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1297 char *buf) 1298 { 1299 struct tb_switch *sw = tb_to_switch(dev); 1300 1301 return sprintf(buf, "%#x\n", sw->vendor); 1302 } 1303 static DEVICE_ATTR_RO(vendor); 1304 1305 static ssize_t 1306 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1307 { 1308 struct tb_switch *sw = tb_to_switch(dev); 1309 1310 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1311 } 1312 static DEVICE_ATTR_RO(vendor_name); 1313 1314 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1315 char *buf) 1316 { 1317 struct tb_switch *sw = tb_to_switch(dev); 1318 1319 return sprintf(buf, "%pUb\n", sw->uuid); 1320 } 1321 static DEVICE_ATTR_RO(unique_id); 1322 1323 static struct attribute *switch_attrs[] = { 1324 &dev_attr_authorized.attr, 1325 &dev_attr_boot.attr, 1326 &dev_attr_device.attr, 1327 &dev_attr_device_name.attr, 1328 &dev_attr_key.attr, 1329 &dev_attr_nvm_authenticate.attr, 1330 &dev_attr_nvm_version.attr, 1331 &dev_attr_vendor.attr, 1332 &dev_attr_vendor_name.attr, 1333 &dev_attr_unique_id.attr, 1334 NULL, 1335 }; 1336 1337 static umode_t switch_attr_is_visible(struct kobject *kobj, 1338 struct attribute *attr, int n) 1339 { 1340 struct device *dev = container_of(kobj, struct device, kobj); 1341 struct tb_switch *sw = tb_to_switch(dev); 1342 1343 if (attr == &dev_attr_device.attr) { 1344 if (!sw->device) 1345 return 0; 1346 } else if (attr == &dev_attr_device_name.attr) { 1347 if (!sw->device_name) 1348 return 0; 1349 } else if (attr == &dev_attr_vendor.attr) { 1350 if (!sw->vendor) 1351 return 0; 1352 } else if (attr == &dev_attr_vendor_name.attr) { 1353 if (!sw->vendor_name) 1354 return 0; 1355 } else if (attr == &dev_attr_key.attr) { 1356 if (tb_route(sw) && 1357 sw->tb->security_level == TB_SECURITY_SECURE && 1358 sw->security_level == TB_SECURITY_SECURE) 1359 return attr->mode; 1360 return 0; 1361 } else if (attr == &dev_attr_nvm_authenticate.attr) { 1362 if (sw->dma_port && !sw->no_nvm_upgrade) 1363 return attr->mode; 1364 return 0; 1365 } else if (attr == &dev_attr_nvm_version.attr) { 1366 if (sw->dma_port) 1367 return attr->mode; 1368 return 0; 1369 } else if (attr == &dev_attr_boot.attr) { 1370 if (tb_route(sw)) 1371 return attr->mode; 1372 return 0; 1373 } 1374 1375 return sw->safe_mode ? 0 : attr->mode; 1376 } 1377 1378 static struct attribute_group switch_group = { 1379 .is_visible = switch_attr_is_visible, 1380 .attrs = switch_attrs, 1381 }; 1382 1383 static const struct attribute_group *switch_groups[] = { 1384 &switch_group, 1385 NULL, 1386 }; 1387 1388 static void tb_switch_release(struct device *dev) 1389 { 1390 struct tb_switch *sw = tb_to_switch(dev); 1391 int i; 1392 1393 dma_port_free(sw->dma_port); 1394 1395 for (i = 1; i <= sw->config.max_port_number; i++) { 1396 if (!sw->ports[i].disabled) { 1397 ida_destroy(&sw->ports[i].in_hopids); 1398 ida_destroy(&sw->ports[i].out_hopids); 1399 } 1400 } 1401 1402 kfree(sw->uuid); 1403 kfree(sw->device_name); 1404 kfree(sw->vendor_name); 1405 kfree(sw->ports); 1406 kfree(sw->drom); 1407 kfree(sw->key); 1408 kfree(sw); 1409 } 1410 1411 /* 1412 * Currently only need to provide the callbacks. Everything else is handled 1413 * in the connection manager. 1414 */ 1415 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1416 { 1417 struct tb_switch *sw = tb_to_switch(dev); 1418 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1419 1420 if (cm_ops->runtime_suspend_switch) 1421 return cm_ops->runtime_suspend_switch(sw); 1422 1423 return 0; 1424 } 1425 1426 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1427 { 1428 struct tb_switch *sw = tb_to_switch(dev); 1429 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1430 1431 if (cm_ops->runtime_resume_switch) 1432 return cm_ops->runtime_resume_switch(sw); 1433 return 0; 1434 } 1435 1436 static const struct dev_pm_ops tb_switch_pm_ops = { 1437 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1438 NULL) 1439 }; 1440 1441 struct device_type tb_switch_type = { 1442 .name = "thunderbolt_device", 1443 .release = tb_switch_release, 1444 .pm = &tb_switch_pm_ops, 1445 }; 1446 1447 static int tb_switch_get_generation(struct tb_switch *sw) 1448 { 1449 switch (sw->config.device_id) { 1450 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1451 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1452 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1453 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1454 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1455 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1456 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1457 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1458 return 1; 1459 1460 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1461 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1462 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1463 return 2; 1464 1465 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1466 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1467 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1468 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1469 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1470 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1471 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1472 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1473 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 1474 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 1475 return 3; 1476 1477 default: 1478 /* 1479 * For unknown switches assume generation to be 1 to be 1480 * on the safe side. 1481 */ 1482 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1483 sw->config.device_id); 1484 return 1; 1485 } 1486 } 1487 1488 /** 1489 * tb_switch_alloc() - allocate a switch 1490 * @tb: Pointer to the owning domain 1491 * @parent: Parent device for this switch 1492 * @route: Route string for this switch 1493 * 1494 * Allocates and initializes a switch. Will not upload configuration to 1495 * the switch. For that you need to call tb_switch_configure() 1496 * separately. The returned switch should be released by calling 1497 * tb_switch_put(). 1498 * 1499 * Return: Pointer to the allocated switch or ERR_PTR() in case of 1500 * failure. 1501 */ 1502 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1503 u64 route) 1504 { 1505 struct tb_switch *sw; 1506 int upstream_port; 1507 int i, ret, depth; 1508 1509 /* Make sure we do not exceed maximum topology limit */ 1510 depth = tb_route_length(route); 1511 if (depth > TB_SWITCH_MAX_DEPTH) 1512 return ERR_PTR(-EADDRNOTAVAIL); 1513 1514 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1515 if (upstream_port < 0) 1516 return ERR_PTR(upstream_port); 1517 1518 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1519 if (!sw) 1520 return ERR_PTR(-ENOMEM); 1521 1522 sw->tb = tb; 1523 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 1524 if (ret) 1525 goto err_free_sw_ports; 1526 1527 tb_dbg(tb, "current switch config:\n"); 1528 tb_dump_switch(tb, &sw->config); 1529 1530 /* configure switch */ 1531 sw->config.upstream_port_number = upstream_port; 1532 sw->config.depth = depth; 1533 sw->config.route_hi = upper_32_bits(route); 1534 sw->config.route_lo = lower_32_bits(route); 1535 sw->config.enabled = 0; 1536 1537 /* initialize ports */ 1538 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1539 GFP_KERNEL); 1540 if (!sw->ports) { 1541 ret = -ENOMEM; 1542 goto err_free_sw_ports; 1543 } 1544 1545 for (i = 0; i <= sw->config.max_port_number; i++) { 1546 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1547 sw->ports[i].sw = sw; 1548 sw->ports[i].port = i; 1549 } 1550 1551 sw->generation = tb_switch_get_generation(sw); 1552 1553 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1554 if (ret < 0) { 1555 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1556 goto err_free_sw_ports; 1557 } 1558 sw->cap_plug_events = ret; 1559 1560 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1561 if (ret > 0) 1562 sw->cap_lc = ret; 1563 1564 /* Root switch is always authorized */ 1565 if (!route) 1566 sw->authorized = true; 1567 1568 device_initialize(&sw->dev); 1569 sw->dev.parent = parent; 1570 sw->dev.bus = &tb_bus_type; 1571 sw->dev.type = &tb_switch_type; 1572 sw->dev.groups = switch_groups; 1573 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1574 1575 return sw; 1576 1577 err_free_sw_ports: 1578 kfree(sw->ports); 1579 kfree(sw); 1580 1581 return ERR_PTR(ret); 1582 } 1583 1584 /** 1585 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1586 * @tb: Pointer to the owning domain 1587 * @parent: Parent device for this switch 1588 * @route: Route string for this switch 1589 * 1590 * This creates a switch in safe mode. This means the switch pretty much 1591 * lacks all capabilities except DMA configuration port before it is 1592 * flashed with a valid NVM firmware. 1593 * 1594 * The returned switch must be released by calling tb_switch_put(). 1595 * 1596 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 1597 */ 1598 struct tb_switch * 1599 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1600 { 1601 struct tb_switch *sw; 1602 1603 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1604 if (!sw) 1605 return ERR_PTR(-ENOMEM); 1606 1607 sw->tb = tb; 1608 sw->config.depth = tb_route_length(route); 1609 sw->config.route_hi = upper_32_bits(route); 1610 sw->config.route_lo = lower_32_bits(route); 1611 sw->safe_mode = true; 1612 1613 device_initialize(&sw->dev); 1614 sw->dev.parent = parent; 1615 sw->dev.bus = &tb_bus_type; 1616 sw->dev.type = &tb_switch_type; 1617 sw->dev.groups = switch_groups; 1618 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1619 1620 return sw; 1621 } 1622 1623 /** 1624 * tb_switch_configure() - Uploads configuration to the switch 1625 * @sw: Switch to configure 1626 * 1627 * Call this function before the switch is added to the system. It will 1628 * upload configuration to the switch and makes it available for the 1629 * connection manager to use. 1630 * 1631 * Return: %0 in case of success and negative errno in case of failure 1632 */ 1633 int tb_switch_configure(struct tb_switch *sw) 1634 { 1635 struct tb *tb = sw->tb; 1636 u64 route; 1637 int ret; 1638 1639 route = tb_route(sw); 1640 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1641 route, tb_route_length(route), sw->config.upstream_port_number); 1642 1643 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1644 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1645 sw->config.vendor_id); 1646 1647 sw->config.enabled = 1; 1648 1649 /* upload configuration */ 1650 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1651 if (ret) 1652 return ret; 1653 1654 ret = tb_lc_configure_link(sw); 1655 if (ret) 1656 return ret; 1657 1658 return tb_plug_events_active(sw, true); 1659 } 1660 1661 static int tb_switch_set_uuid(struct tb_switch *sw) 1662 { 1663 u32 uuid[4]; 1664 int ret; 1665 1666 if (sw->uuid) 1667 return 0; 1668 1669 /* 1670 * The newer controllers include fused UUID as part of link 1671 * controller specific registers 1672 */ 1673 ret = tb_lc_read_uuid(sw, uuid); 1674 if (ret) { 1675 /* 1676 * ICM generates UUID based on UID and fills the upper 1677 * two words with ones. This is not strictly following 1678 * UUID format but we want to be compatible with it so 1679 * we do the same here. 1680 */ 1681 uuid[0] = sw->uid & 0xffffffff; 1682 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1683 uuid[2] = 0xffffffff; 1684 uuid[3] = 0xffffffff; 1685 } 1686 1687 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1688 if (!sw->uuid) 1689 return -ENOMEM; 1690 return 0; 1691 } 1692 1693 static int tb_switch_add_dma_port(struct tb_switch *sw) 1694 { 1695 u32 status; 1696 int ret; 1697 1698 switch (sw->generation) { 1699 case 3: 1700 break; 1701 1702 case 2: 1703 /* Only root switch can be upgraded */ 1704 if (tb_route(sw)) 1705 return 0; 1706 break; 1707 1708 default: 1709 /* 1710 * DMA port is the only thing available when the switch 1711 * is in safe mode. 1712 */ 1713 if (!sw->safe_mode) 1714 return 0; 1715 break; 1716 } 1717 1718 /* Root switch DMA port requires running firmware */ 1719 if (!tb_route(sw) && sw->config.enabled) 1720 return 0; 1721 1722 sw->dma_port = dma_port_alloc(sw); 1723 if (!sw->dma_port) 1724 return 0; 1725 1726 if (sw->no_nvm_upgrade) 1727 return 0; 1728 1729 /* 1730 * Check status of the previous flash authentication. If there 1731 * is one we need to power cycle the switch in any case to make 1732 * it functional again. 1733 */ 1734 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1735 if (ret <= 0) 1736 return ret; 1737 1738 /* Now we can allow root port to suspend again */ 1739 if (!tb_route(sw)) 1740 nvm_authenticate_complete(sw); 1741 1742 if (status) { 1743 tb_sw_info(sw, "switch flash authentication failed\n"); 1744 ret = tb_switch_set_uuid(sw); 1745 if (ret) 1746 return ret; 1747 nvm_set_auth_status(sw, status); 1748 } 1749 1750 tb_sw_info(sw, "power cycling the switch now\n"); 1751 dma_port_power_cycle(sw->dma_port); 1752 1753 /* 1754 * We return error here which causes the switch adding failure. 1755 * It should appear back after power cycle is complete. 1756 */ 1757 return -ESHUTDOWN; 1758 } 1759 1760 /** 1761 * tb_switch_add() - Add a switch to the domain 1762 * @sw: Switch to add 1763 * 1764 * This is the last step in adding switch to the domain. It will read 1765 * identification information from DROM and initializes ports so that 1766 * they can be used to connect other switches. The switch will be 1767 * exposed to the userspace when this function successfully returns. To 1768 * remove and release the switch, call tb_switch_remove(). 1769 * 1770 * Return: %0 in case of success and negative errno in case of failure 1771 */ 1772 int tb_switch_add(struct tb_switch *sw) 1773 { 1774 int i, ret; 1775 1776 /* 1777 * Initialize DMA control port now before we read DROM. Recent 1778 * host controllers have more complete DROM on NVM that includes 1779 * vendor and model identification strings which we then expose 1780 * to the userspace. NVM can be accessed through DMA 1781 * configuration based mailbox. 1782 */ 1783 ret = tb_switch_add_dma_port(sw); 1784 if (ret) 1785 return ret; 1786 1787 if (!sw->safe_mode) { 1788 /* read drom */ 1789 ret = tb_drom_read(sw); 1790 if (ret) { 1791 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1792 return ret; 1793 } 1794 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 1795 1796 ret = tb_switch_set_uuid(sw); 1797 if (ret) 1798 return ret; 1799 1800 for (i = 0; i <= sw->config.max_port_number; i++) { 1801 if (sw->ports[i].disabled) { 1802 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 1803 continue; 1804 } 1805 ret = tb_init_port(&sw->ports[i]); 1806 if (ret) 1807 return ret; 1808 } 1809 } 1810 1811 ret = device_add(&sw->dev); 1812 if (ret) 1813 return ret; 1814 1815 if (tb_route(sw)) { 1816 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 1817 sw->vendor, sw->device); 1818 if (sw->vendor_name && sw->device_name) 1819 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 1820 sw->device_name); 1821 } 1822 1823 ret = tb_switch_nvm_add(sw); 1824 if (ret) { 1825 device_del(&sw->dev); 1826 return ret; 1827 } 1828 1829 pm_runtime_set_active(&sw->dev); 1830 if (sw->rpm) { 1831 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 1832 pm_runtime_use_autosuspend(&sw->dev); 1833 pm_runtime_mark_last_busy(&sw->dev); 1834 pm_runtime_enable(&sw->dev); 1835 pm_request_autosuspend(&sw->dev); 1836 } 1837 1838 return 0; 1839 } 1840 1841 /** 1842 * tb_switch_remove() - Remove and release a switch 1843 * @sw: Switch to remove 1844 * 1845 * This will remove the switch from the domain and release it after last 1846 * reference count drops to zero. If there are switches connected below 1847 * this switch, they will be removed as well. 1848 */ 1849 void tb_switch_remove(struct tb_switch *sw) 1850 { 1851 int i; 1852 1853 if (sw->rpm) { 1854 pm_runtime_get_sync(&sw->dev); 1855 pm_runtime_disable(&sw->dev); 1856 } 1857 1858 /* port 0 is the switch itself and never has a remote */ 1859 for (i = 1; i <= sw->config.max_port_number; i++) { 1860 if (tb_port_has_remote(&sw->ports[i])) { 1861 tb_switch_remove(sw->ports[i].remote->sw); 1862 sw->ports[i].remote = NULL; 1863 } else if (sw->ports[i].xdomain) { 1864 tb_xdomain_remove(sw->ports[i].xdomain); 1865 sw->ports[i].xdomain = NULL; 1866 } 1867 } 1868 1869 if (!sw->is_unplugged) 1870 tb_plug_events_active(sw, false); 1871 tb_lc_unconfigure_link(sw); 1872 1873 tb_switch_nvm_remove(sw); 1874 1875 if (tb_route(sw)) 1876 dev_info(&sw->dev, "device disconnected\n"); 1877 device_unregister(&sw->dev); 1878 } 1879 1880 /** 1881 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1882 */ 1883 void tb_sw_set_unplugged(struct tb_switch *sw) 1884 { 1885 int i; 1886 if (sw == sw->tb->root_switch) { 1887 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1888 return; 1889 } 1890 if (sw->is_unplugged) { 1891 tb_sw_WARN(sw, "is_unplugged already set\n"); 1892 return; 1893 } 1894 sw->is_unplugged = true; 1895 for (i = 0; i <= sw->config.max_port_number; i++) { 1896 if (tb_port_has_remote(&sw->ports[i])) 1897 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1898 else if (sw->ports[i].xdomain) 1899 sw->ports[i].xdomain->is_unplugged = true; 1900 } 1901 } 1902 1903 int tb_switch_resume(struct tb_switch *sw) 1904 { 1905 int i, err; 1906 tb_sw_dbg(sw, "resuming switch\n"); 1907 1908 /* 1909 * Check for UID of the connected switches except for root 1910 * switch which we assume cannot be removed. 1911 */ 1912 if (tb_route(sw)) { 1913 u64 uid; 1914 1915 /* 1916 * Check first that we can still read the switch config 1917 * space. It may be that there is now another domain 1918 * connected. 1919 */ 1920 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 1921 if (err < 0) { 1922 tb_sw_info(sw, "switch not present anymore\n"); 1923 return err; 1924 } 1925 1926 err = tb_drom_read_uid_only(sw, &uid); 1927 if (err) { 1928 tb_sw_warn(sw, "uid read failed\n"); 1929 return err; 1930 } 1931 if (sw->uid != uid) { 1932 tb_sw_info(sw, 1933 "changed while suspended (uid %#llx -> %#llx)\n", 1934 sw->uid, uid); 1935 return -ENODEV; 1936 } 1937 } 1938 1939 /* upload configuration */ 1940 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1941 if (err) 1942 return err; 1943 1944 err = tb_lc_configure_link(sw); 1945 if (err) 1946 return err; 1947 1948 err = tb_plug_events_active(sw, true); 1949 if (err) 1950 return err; 1951 1952 /* check for surviving downstream switches */ 1953 for (i = 1; i <= sw->config.max_port_number; i++) { 1954 struct tb_port *port = &sw->ports[i]; 1955 1956 if (!tb_port_has_remote(port) && !port->xdomain) 1957 continue; 1958 1959 if (tb_wait_for_port(port, true) <= 0) { 1960 tb_port_warn(port, 1961 "lost during suspend, disconnecting\n"); 1962 if (tb_port_has_remote(port)) 1963 tb_sw_set_unplugged(port->remote->sw); 1964 else if (port->xdomain) 1965 port->xdomain->is_unplugged = true; 1966 } else if (tb_port_has_remote(port)) { 1967 if (tb_switch_resume(port->remote->sw)) { 1968 tb_port_warn(port, 1969 "lost during suspend, disconnecting\n"); 1970 tb_sw_set_unplugged(port->remote->sw); 1971 } 1972 } 1973 } 1974 return 0; 1975 } 1976 1977 void tb_switch_suspend(struct tb_switch *sw) 1978 { 1979 int i, err; 1980 err = tb_plug_events_active(sw, false); 1981 if (err) 1982 return; 1983 1984 for (i = 1; i <= sw->config.max_port_number; i++) { 1985 if (tb_port_has_remote(&sw->ports[i])) 1986 tb_switch_suspend(sw->ports[i].remote->sw); 1987 } 1988 1989 tb_lc_set_sleep(sw); 1990 } 1991 1992 struct tb_sw_lookup { 1993 struct tb *tb; 1994 u8 link; 1995 u8 depth; 1996 const uuid_t *uuid; 1997 u64 route; 1998 }; 1999 2000 static int tb_switch_match(struct device *dev, const void *data) 2001 { 2002 struct tb_switch *sw = tb_to_switch(dev); 2003 const struct tb_sw_lookup *lookup = data; 2004 2005 if (!sw) 2006 return 0; 2007 if (sw->tb != lookup->tb) 2008 return 0; 2009 2010 if (lookup->uuid) 2011 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 2012 2013 if (lookup->route) { 2014 return sw->config.route_lo == lower_32_bits(lookup->route) && 2015 sw->config.route_hi == upper_32_bits(lookup->route); 2016 } 2017 2018 /* Root switch is matched only by depth */ 2019 if (!lookup->depth) 2020 return !sw->depth; 2021 2022 return sw->link == lookup->link && sw->depth == lookup->depth; 2023 } 2024 2025 /** 2026 * tb_switch_find_by_link_depth() - Find switch by link and depth 2027 * @tb: Domain the switch belongs 2028 * @link: Link number the switch is connected 2029 * @depth: Depth of the switch in link 2030 * 2031 * Returned switch has reference count increased so the caller needs to 2032 * call tb_switch_put() when done with the switch. 2033 */ 2034 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 2035 { 2036 struct tb_sw_lookup lookup; 2037 struct device *dev; 2038 2039 memset(&lookup, 0, sizeof(lookup)); 2040 lookup.tb = tb; 2041 lookup.link = link; 2042 lookup.depth = depth; 2043 2044 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2045 if (dev) 2046 return tb_to_switch(dev); 2047 2048 return NULL; 2049 } 2050 2051 /** 2052 * tb_switch_find_by_uuid() - Find switch by UUID 2053 * @tb: Domain the switch belongs 2054 * @uuid: UUID to look for 2055 * 2056 * Returned switch has reference count increased so the caller needs to 2057 * call tb_switch_put() when done with the switch. 2058 */ 2059 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 2060 { 2061 struct tb_sw_lookup lookup; 2062 struct device *dev; 2063 2064 memset(&lookup, 0, sizeof(lookup)); 2065 lookup.tb = tb; 2066 lookup.uuid = uuid; 2067 2068 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2069 if (dev) 2070 return tb_to_switch(dev); 2071 2072 return NULL; 2073 } 2074 2075 /** 2076 * tb_switch_find_by_route() - Find switch by route string 2077 * @tb: Domain the switch belongs 2078 * @route: Route string to look for 2079 * 2080 * Returned switch has reference count increased so the caller needs to 2081 * call tb_switch_put() when done with the switch. 2082 */ 2083 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 2084 { 2085 struct tb_sw_lookup lookup; 2086 struct device *dev; 2087 2088 if (!route) 2089 return tb_switch_get(tb->root_switch); 2090 2091 memset(&lookup, 0, sizeof(lookup)); 2092 lookup.tb = tb; 2093 lookup.route = route; 2094 2095 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2096 if (dev) 2097 return tb_to_switch(dev); 2098 2099 return NULL; 2100 } 2101 2102 void tb_switch_exit(void) 2103 { 2104 ida_destroy(&nvm_ida); 2105 } 2106