xref: /linux/drivers/thunderbolt/switch.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 
17 #include "tb.h"
18 
19 /* Switch NVM support */
20 
21 #define NVM_CSS			0x10
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 enum nvm_write_ops {
30 	WRITE_AND_AUTHENTICATE = 1,
31 	WRITE_ONLY = 2,
32 };
33 
34 /*
35  * Hold NVM authentication failure status per switch This information
36  * needs to stay around even when the switch gets power cycled so we
37  * keep it separately.
38  */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41 
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 	struct nvm_auth_status *st;
45 
46 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 		if (uuid_equal(&st->uuid, sw->uuid))
48 			return st;
49 	}
50 
51 	return NULL;
52 }
53 
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 	struct nvm_auth_status *st;
57 
58 	mutex_lock(&nvm_auth_status_lock);
59 	st = __nvm_get_auth_status(sw);
60 	mutex_unlock(&nvm_auth_status_lock);
61 
62 	*status = st ? st->status : 0;
63 }
64 
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 	struct nvm_auth_status *st;
68 
69 	if (WARN_ON(!sw->uuid))
70 		return;
71 
72 	mutex_lock(&nvm_auth_status_lock);
73 	st = __nvm_get_auth_status(sw);
74 
75 	if (!st) {
76 		st = kzalloc(sizeof(*st), GFP_KERNEL);
77 		if (!st)
78 			goto unlock;
79 
80 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 		INIT_LIST_HEAD(&st->list);
82 		list_add_tail(&st->list, &nvm_auth_status_cache);
83 	}
84 
85 	st->status = status;
86 unlock:
87 	mutex_unlock(&nvm_auth_status_lock);
88 }
89 
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 	struct nvm_auth_status *st;
93 
94 	mutex_lock(&nvm_auth_status_lock);
95 	st = __nvm_get_auth_status(sw);
96 	if (st) {
97 		list_del(&st->list);
98 		kfree(st);
99 	}
100 	mutex_unlock(&nvm_auth_status_lock);
101 }
102 
103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 	unsigned int image_size, hdr_size;
106 	const u8 *buf = sw->nvm->buf;
107 	u16 ds_size;
108 	int ret;
109 
110 	if (!buf)
111 		return -EINVAL;
112 
113 	image_size = sw->nvm->buf_data_size;
114 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 		return -EINVAL;
116 
117 	/*
118 	 * FARB pointer must point inside the image and must at least
119 	 * contain parts of the digital section we will be reading here.
120 	 */
121 	hdr_size = (*(u32 *)buf) & 0xffffff;
122 	if (hdr_size + NVM_DEVID + 2 >= image_size)
123 		return -EINVAL;
124 
125 	/* Digital section start should be aligned to 4k page */
126 	if (!IS_ALIGNED(hdr_size, SZ_4K))
127 		return -EINVAL;
128 
129 	/*
130 	 * Read digital section size and check that it also fits inside
131 	 * the image.
132 	 */
133 	ds_size = *(u16 *)(buf + hdr_size);
134 	if (ds_size >= image_size)
135 		return -EINVAL;
136 
137 	if (!sw->safe_mode) {
138 		u16 device_id;
139 
140 		/*
141 		 * Make sure the device ID in the image matches the one
142 		 * we read from the switch config space.
143 		 */
144 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 		if (device_id != sw->config.device_id)
146 			return -EINVAL;
147 
148 		if (sw->generation < 3) {
149 			/* Write CSS headers first */
150 			ret = dma_port_flash_write(sw->dma_port,
151 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 				DMA_PORT_CSS_MAX_SIZE);
153 			if (ret)
154 				return ret;
155 		}
156 
157 		/* Skip headers in the image */
158 		buf += hdr_size;
159 		image_size -= hdr_size;
160 	}
161 
162 	if (tb_switch_is_usb4(sw))
163 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 	else
165 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 	if (!ret)
167 		sw->nvm->flushed = true;
168 	return ret;
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw))
316 		return usb4_switch_nvm_authenticate(sw);
317 
318 	if (!tb_route(sw)) {
319 		nvm_authenticate_start_dma_port(sw);
320 		ret = nvm_authenticate_host_dma_port(sw);
321 	} else {
322 		ret = nvm_authenticate_device_dma_port(sw);
323 	}
324 
325 	return ret;
326 }
327 
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 			      size_t bytes)
330 {
331 	struct tb_nvm *nvm = priv;
332 	struct tb_switch *sw = tb_to_switch(nvm->dev);
333 	int ret;
334 
335 	pm_runtime_get_sync(&sw->dev);
336 
337 	if (!mutex_trylock(&sw->tb->lock)) {
338 		ret = restart_syscall();
339 		goto out;
340 	}
341 
342 	ret = nvm_read(sw, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 out:
346 	pm_runtime_mark_last_busy(&sw->dev);
347 	pm_runtime_put_autosuspend(&sw->dev);
348 
349 	return ret;
350 }
351 
352 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 			       size_t bytes)
354 {
355 	struct tb_nvm *nvm = priv;
356 	struct tb_switch *sw = tb_to_switch(nvm->dev);
357 	int ret;
358 
359 	if (!mutex_trylock(&sw->tb->lock))
360 		return restart_syscall();
361 
362 	/*
363 	 * Since writing the NVM image might require some special steps,
364 	 * for example when CSS headers are written, we cache the image
365 	 * locally here and handle the special cases when the user asks
366 	 * us to authenticate the image.
367 	 */
368 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 	mutex_unlock(&sw->tb->lock);
370 
371 	return ret;
372 }
373 
374 static int tb_switch_nvm_add(struct tb_switch *sw)
375 {
376 	struct tb_nvm *nvm;
377 	u32 val;
378 	int ret;
379 
380 	if (!nvm_readable(sw))
381 		return 0;
382 
383 	/*
384 	 * The NVM format of non-Intel hardware is not known so
385 	 * currently restrict NVM upgrade for Intel hardware. We may
386 	 * relax this in the future when we learn other NVM formats.
387 	 */
388 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 	    sw->config.vendor_id != 0x8087) {
390 		dev_info(&sw->dev,
391 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 			 sw->config.vendor_id);
393 		return 0;
394 	}
395 
396 	nvm = tb_nvm_alloc(&sw->dev);
397 	if (IS_ERR(nvm))
398 		return PTR_ERR(nvm);
399 
400 	/*
401 	 * If the switch is in safe-mode the only accessible portion of
402 	 * the NVM is the non-active one where userspace is expected to
403 	 * write new functional NVM.
404 	 */
405 	if (!sw->safe_mode) {
406 		u32 nvm_size, hdr_size;
407 
408 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 		if (ret)
410 			goto err_nvm;
411 
412 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 		nvm_size = (SZ_1M << (val & 7)) / 8;
414 		nvm_size = (nvm_size - hdr_size) / 2;
415 
416 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 		if (ret)
418 			goto err_nvm;
419 
420 		nvm->major = val >> 16;
421 		nvm->minor = val >> 8;
422 
423 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 		if (ret)
425 			goto err_nvm;
426 	}
427 
428 	if (!sw->no_nvm_upgrade) {
429 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 					    tb_switch_nvm_write);
431 		if (ret)
432 			goto err_nvm;
433 	}
434 
435 	sw->nvm = nvm;
436 	return 0;
437 
438 err_nvm:
439 	tb_nvm_free(nvm);
440 	return ret;
441 }
442 
443 static void tb_switch_nvm_remove(struct tb_switch *sw)
444 {
445 	struct tb_nvm *nvm;
446 
447 	nvm = sw->nvm;
448 	sw->nvm = NULL;
449 
450 	if (!nvm)
451 		return;
452 
453 	/* Remove authentication status in case the switch is unplugged */
454 	if (!nvm->authenticating)
455 		nvm_clear_auth_status(sw);
456 
457 	tb_nvm_free(nvm);
458 }
459 
460 /* port utility functions */
461 
462 static const char *tb_port_type(struct tb_regs_port_header *port)
463 {
464 	switch (port->type >> 16) {
465 	case 0:
466 		switch ((u8) port->type) {
467 		case 0:
468 			return "Inactive";
469 		case 1:
470 			return "Port";
471 		case 2:
472 			return "NHI";
473 		default:
474 			return "unknown";
475 		}
476 	case 0x2:
477 		return "Ethernet";
478 	case 0x8:
479 		return "SATA";
480 	case 0xe:
481 		return "DP/HDMI";
482 	case 0x10:
483 		return "PCIe";
484 	case 0x20:
485 		return "USB";
486 	default:
487 		return "unknown";
488 	}
489 }
490 
491 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492 {
493 	tb_dbg(tb,
494 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 	       port->port_number, port->vendor_id, port->device_id,
496 	       port->revision, port->thunderbolt_version, tb_port_type(port),
497 	       port->type);
498 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
499 	       port->max_in_hop_id, port->max_out_hop_id);
500 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
501 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
502 }
503 
504 /**
505  * tb_port_state() - get connectedness state of a port
506  *
507  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
508  *
509  * Return: Returns an enum tb_port_state on success or an error code on failure.
510  */
511 static int tb_port_state(struct tb_port *port)
512 {
513 	struct tb_cap_phy phy;
514 	int res;
515 	if (port->cap_phy == 0) {
516 		tb_port_WARN(port, "does not have a PHY\n");
517 		return -EINVAL;
518 	}
519 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
520 	if (res)
521 		return res;
522 	return phy.state;
523 }
524 
525 /**
526  * tb_wait_for_port() - wait for a port to become ready
527  *
528  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
529  * wait_if_unplugged is set then we also wait if the port is in state
530  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
531  * switch resume). Otherwise we only wait if a device is registered but the link
532  * has not yet been established.
533  *
534  * Return: Returns an error code on failure. Returns 0 if the port is not
535  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
536  * if the port is connected and in state TB_PORT_UP.
537  */
538 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
539 {
540 	int retries = 10;
541 	int state;
542 	if (!port->cap_phy) {
543 		tb_port_WARN(port, "does not have PHY\n");
544 		return -EINVAL;
545 	}
546 	if (tb_is_upstream_port(port)) {
547 		tb_port_WARN(port, "is the upstream port\n");
548 		return -EINVAL;
549 	}
550 
551 	while (retries--) {
552 		state = tb_port_state(port);
553 		if (state < 0)
554 			return state;
555 		if (state == TB_PORT_DISABLED) {
556 			tb_port_dbg(port, "is disabled (state: 0)\n");
557 			return 0;
558 		}
559 		if (state == TB_PORT_UNPLUGGED) {
560 			if (wait_if_unplugged) {
561 				/* used during resume */
562 				tb_port_dbg(port,
563 					    "is unplugged (state: 7), retrying...\n");
564 				msleep(100);
565 				continue;
566 			}
567 			tb_port_dbg(port, "is unplugged (state: 7)\n");
568 			return 0;
569 		}
570 		if (state == TB_PORT_UP) {
571 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
572 			return 1;
573 		}
574 
575 		/*
576 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
577 		 * time.
578 		 */
579 		tb_port_dbg(port,
580 			    "is connected, link is not up (state: %d), retrying...\n",
581 			    state);
582 		msleep(100);
583 	}
584 	tb_port_warn(port,
585 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
586 	return 0;
587 }
588 
589 /**
590  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
591  *
592  * Change the number of NFC credits allocated to @port by @credits. To remove
593  * NFC credits pass a negative amount of credits.
594  *
595  * Return: Returns 0 on success or an error code on failure.
596  */
597 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
598 {
599 	u32 nfc_credits;
600 
601 	if (credits == 0 || port->sw->is_unplugged)
602 		return 0;
603 
604 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
605 	nfc_credits += credits;
606 
607 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
608 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
609 
610 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
611 	port->config.nfc_credits |= nfc_credits;
612 
613 	return tb_port_write(port, &port->config.nfc_credits,
614 			     TB_CFG_PORT, ADP_CS_4, 1);
615 }
616 
617 /**
618  * tb_port_set_initial_credits() - Set initial port link credits allocated
619  * @port: Port to set the initial credits
620  * @credits: Number of credits to to allocate
621  *
622  * Set initial credits value to be used for ingress shared buffering.
623  */
624 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
625 {
626 	u32 data;
627 	int ret;
628 
629 	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
630 	if (ret)
631 		return ret;
632 
633 	data &= ~ADP_CS_5_LCA_MASK;
634 	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
635 
636 	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
637 }
638 
639 /**
640  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
641  *
642  * Return: Returns 0 on success or an error code on failure.
643  */
644 int tb_port_clear_counter(struct tb_port *port, int counter)
645 {
646 	u32 zero[3] = { 0, 0, 0 };
647 	tb_port_dbg(port, "clearing counter %d\n", counter);
648 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
649 }
650 
651 /**
652  * tb_port_unlock() - Unlock downstream port
653  * @port: Port to unlock
654  *
655  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
656  * downstream router accessible for CM.
657  */
658 int tb_port_unlock(struct tb_port *port)
659 {
660 	if (tb_switch_is_icm(port->sw))
661 		return 0;
662 	if (!tb_port_is_null(port))
663 		return -EINVAL;
664 	if (tb_switch_is_usb4(port->sw))
665 		return usb4_port_unlock(port);
666 	return 0;
667 }
668 
669 /**
670  * tb_init_port() - initialize a port
671  *
672  * This is a helper method for tb_switch_alloc. Does not check or initialize
673  * any downstream switches.
674  *
675  * Return: Returns 0 on success or an error code on failure.
676  */
677 static int tb_init_port(struct tb_port *port)
678 {
679 	int res;
680 	int cap;
681 
682 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
683 	if (res) {
684 		if (res == -ENODEV) {
685 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
686 			       port->port);
687 			return 0;
688 		}
689 		return res;
690 	}
691 
692 	/* Port 0 is the switch itself and has no PHY. */
693 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
694 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
695 
696 		if (cap > 0)
697 			port->cap_phy = cap;
698 		else
699 			tb_port_WARN(port, "non switch port without a PHY\n");
700 
701 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
702 		if (cap > 0)
703 			port->cap_usb4 = cap;
704 	} else if (port->port != 0) {
705 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
706 		if (cap > 0)
707 			port->cap_adap = cap;
708 	}
709 
710 	tb_dump_port(port->sw->tb, &port->config);
711 
712 	/* Control port does not need HopID allocation */
713 	if (port->port) {
714 		ida_init(&port->in_hopids);
715 		ida_init(&port->out_hopids);
716 	}
717 
718 	INIT_LIST_HEAD(&port->list);
719 	return 0;
720 
721 }
722 
723 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
724 			       int max_hopid)
725 {
726 	int port_max_hopid;
727 	struct ida *ida;
728 
729 	if (in) {
730 		port_max_hopid = port->config.max_in_hop_id;
731 		ida = &port->in_hopids;
732 	} else {
733 		port_max_hopid = port->config.max_out_hop_id;
734 		ida = &port->out_hopids;
735 	}
736 
737 	/*
738 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
739 	 * reserved.
740 	 */
741 	if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID)
742 		min_hopid = TB_PATH_MIN_HOPID;
743 
744 	if (max_hopid < 0 || max_hopid > port_max_hopid)
745 		max_hopid = port_max_hopid;
746 
747 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
748 }
749 
750 /**
751  * tb_port_alloc_in_hopid() - Allocate input HopID from port
752  * @port: Port to allocate HopID for
753  * @min_hopid: Minimum acceptable input HopID
754  * @max_hopid: Maximum acceptable input HopID
755  *
756  * Return: HopID between @min_hopid and @max_hopid or negative errno in
757  * case of error.
758  */
759 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
760 {
761 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
762 }
763 
764 /**
765  * tb_port_alloc_out_hopid() - Allocate output HopID from port
766  * @port: Port to allocate HopID for
767  * @min_hopid: Minimum acceptable output HopID
768  * @max_hopid: Maximum acceptable output HopID
769  *
770  * Return: HopID between @min_hopid and @max_hopid or negative errno in
771  * case of error.
772  */
773 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
774 {
775 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
776 }
777 
778 /**
779  * tb_port_release_in_hopid() - Release allocated input HopID from port
780  * @port: Port whose HopID to release
781  * @hopid: HopID to release
782  */
783 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
784 {
785 	ida_simple_remove(&port->in_hopids, hopid);
786 }
787 
788 /**
789  * tb_port_release_out_hopid() - Release allocated output HopID from port
790  * @port: Port whose HopID to release
791  * @hopid: HopID to release
792  */
793 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
794 {
795 	ida_simple_remove(&port->out_hopids, hopid);
796 }
797 
798 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
799 					  const struct tb_switch *sw)
800 {
801 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
802 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
803 }
804 
805 /**
806  * tb_next_port_on_path() - Return next port for given port on a path
807  * @start: Start port of the walk
808  * @end: End port of the walk
809  * @prev: Previous port (%NULL if this is the first)
810  *
811  * This function can be used to walk from one port to another if they
812  * are connected through zero or more switches. If the @prev is dual
813  * link port, the function follows that link and returns another end on
814  * that same link.
815  *
816  * If the @end port has been reached, return %NULL.
817  *
818  * Domain tb->lock must be held when this function is called.
819  */
820 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
821 				     struct tb_port *prev)
822 {
823 	struct tb_port *next;
824 
825 	if (!prev)
826 		return start;
827 
828 	if (prev->sw == end->sw) {
829 		if (prev == end)
830 			return NULL;
831 		return end;
832 	}
833 
834 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
835 		next = tb_port_at(tb_route(end->sw), prev->sw);
836 		/* Walk down the topology if next == prev */
837 		if (prev->remote &&
838 		    (next == prev || next->dual_link_port == prev))
839 			next = prev->remote;
840 	} else {
841 		if (tb_is_upstream_port(prev)) {
842 			next = prev->remote;
843 		} else {
844 			next = tb_upstream_port(prev->sw);
845 			/*
846 			 * Keep the same link if prev and next are both
847 			 * dual link ports.
848 			 */
849 			if (next->dual_link_port &&
850 			    next->link_nr != prev->link_nr) {
851 				next = next->dual_link_port;
852 			}
853 		}
854 	}
855 
856 	return next != prev ? next : NULL;
857 }
858 
859 /**
860  * tb_port_get_link_speed() - Get current link speed
861  * @port: Port to check (USB4 or CIO)
862  *
863  * Returns link speed in Gb/s or negative errno in case of failure.
864  */
865 int tb_port_get_link_speed(struct tb_port *port)
866 {
867 	u32 val, speed;
868 	int ret;
869 
870 	if (!port->cap_phy)
871 		return -EINVAL;
872 
873 	ret = tb_port_read(port, &val, TB_CFG_PORT,
874 			   port->cap_phy + LANE_ADP_CS_1, 1);
875 	if (ret)
876 		return ret;
877 
878 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
879 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
880 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
881 }
882 
883 static int tb_port_get_link_width(struct tb_port *port)
884 {
885 	u32 val;
886 	int ret;
887 
888 	if (!port->cap_phy)
889 		return -EINVAL;
890 
891 	ret = tb_port_read(port, &val, TB_CFG_PORT,
892 			   port->cap_phy + LANE_ADP_CS_1, 1);
893 	if (ret)
894 		return ret;
895 
896 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
897 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
898 }
899 
900 static bool tb_port_is_width_supported(struct tb_port *port, int width)
901 {
902 	u32 phy, widths;
903 	int ret;
904 
905 	if (!port->cap_phy)
906 		return false;
907 
908 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
909 			   port->cap_phy + LANE_ADP_CS_0, 1);
910 	if (ret)
911 		return false;
912 
913 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
914 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
915 
916 	return !!(widths & width);
917 }
918 
919 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
920 {
921 	u32 val;
922 	int ret;
923 
924 	if (!port->cap_phy)
925 		return -EINVAL;
926 
927 	ret = tb_port_read(port, &val, TB_CFG_PORT,
928 			   port->cap_phy + LANE_ADP_CS_1, 1);
929 	if (ret)
930 		return ret;
931 
932 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
933 	switch (width) {
934 	case 1:
935 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
936 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
937 		break;
938 	case 2:
939 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
940 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
941 		break;
942 	default:
943 		return -EINVAL;
944 	}
945 
946 	val |= LANE_ADP_CS_1_LB;
947 
948 	return tb_port_write(port, &val, TB_CFG_PORT,
949 			     port->cap_phy + LANE_ADP_CS_1, 1);
950 }
951 
952 static int tb_port_lane_bonding_enable(struct tb_port *port)
953 {
954 	int ret;
955 
956 	/*
957 	 * Enable lane bonding for both links if not already enabled by
958 	 * for example the boot firmware.
959 	 */
960 	ret = tb_port_get_link_width(port);
961 	if (ret == 1) {
962 		ret = tb_port_set_link_width(port, 2);
963 		if (ret)
964 			return ret;
965 	}
966 
967 	ret = tb_port_get_link_width(port->dual_link_port);
968 	if (ret == 1) {
969 		ret = tb_port_set_link_width(port->dual_link_port, 2);
970 		if (ret) {
971 			tb_port_set_link_width(port, 1);
972 			return ret;
973 		}
974 	}
975 
976 	port->bonded = true;
977 	port->dual_link_port->bonded = true;
978 
979 	return 0;
980 }
981 
982 static void tb_port_lane_bonding_disable(struct tb_port *port)
983 {
984 	port->dual_link_port->bonded = false;
985 	port->bonded = false;
986 
987 	tb_port_set_link_width(port->dual_link_port, 1);
988 	tb_port_set_link_width(port, 1);
989 }
990 
991 /**
992  * tb_port_is_enabled() - Is the adapter port enabled
993  * @port: Port to check
994  */
995 bool tb_port_is_enabled(struct tb_port *port)
996 {
997 	switch (port->config.type) {
998 	case TB_TYPE_PCIE_UP:
999 	case TB_TYPE_PCIE_DOWN:
1000 		return tb_pci_port_is_enabled(port);
1001 
1002 	case TB_TYPE_DP_HDMI_IN:
1003 	case TB_TYPE_DP_HDMI_OUT:
1004 		return tb_dp_port_is_enabled(port);
1005 
1006 	case TB_TYPE_USB3_UP:
1007 	case TB_TYPE_USB3_DOWN:
1008 		return tb_usb3_port_is_enabled(port);
1009 
1010 	default:
1011 		return false;
1012 	}
1013 }
1014 
1015 /**
1016  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1017  * @port: USB3 adapter port to check
1018  */
1019 bool tb_usb3_port_is_enabled(struct tb_port *port)
1020 {
1021 	u32 data;
1022 
1023 	if (tb_port_read(port, &data, TB_CFG_PORT,
1024 			 port->cap_adap + ADP_USB3_CS_0, 1))
1025 		return false;
1026 
1027 	return !!(data & ADP_USB3_CS_0_PE);
1028 }
1029 
1030 /**
1031  * tb_usb3_port_enable() - Enable USB3 adapter port
1032  * @port: USB3 adapter port to enable
1033  * @enable: Enable/disable the USB3 adapter
1034  */
1035 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1036 {
1037 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1038 			  : ADP_USB3_CS_0_V;
1039 
1040 	if (!port->cap_adap)
1041 		return -ENXIO;
1042 	return tb_port_write(port, &word, TB_CFG_PORT,
1043 			     port->cap_adap + ADP_USB3_CS_0, 1);
1044 }
1045 
1046 /**
1047  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1048  * @port: PCIe port to check
1049  */
1050 bool tb_pci_port_is_enabled(struct tb_port *port)
1051 {
1052 	u32 data;
1053 
1054 	if (tb_port_read(port, &data, TB_CFG_PORT,
1055 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1056 		return false;
1057 
1058 	return !!(data & ADP_PCIE_CS_0_PE);
1059 }
1060 
1061 /**
1062  * tb_pci_port_enable() - Enable PCIe adapter port
1063  * @port: PCIe port to enable
1064  * @enable: Enable/disable the PCIe adapter
1065  */
1066 int tb_pci_port_enable(struct tb_port *port, bool enable)
1067 {
1068 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1069 	if (!port->cap_adap)
1070 		return -ENXIO;
1071 	return tb_port_write(port, &word, TB_CFG_PORT,
1072 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1073 }
1074 
1075 /**
1076  * tb_dp_port_hpd_is_active() - Is HPD already active
1077  * @port: DP out port to check
1078  *
1079  * Checks if the DP OUT adapter port has HDP bit already set.
1080  */
1081 int tb_dp_port_hpd_is_active(struct tb_port *port)
1082 {
1083 	u32 data;
1084 	int ret;
1085 
1086 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1087 			   port->cap_adap + ADP_DP_CS_2, 1);
1088 	if (ret)
1089 		return ret;
1090 
1091 	return !!(data & ADP_DP_CS_2_HDP);
1092 }
1093 
1094 /**
1095  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1096  * @port: Port to clear HPD
1097  *
1098  * If the DP IN port has HDP set, this function can be used to clear it.
1099  */
1100 int tb_dp_port_hpd_clear(struct tb_port *port)
1101 {
1102 	u32 data;
1103 	int ret;
1104 
1105 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1106 			   port->cap_adap + ADP_DP_CS_3, 1);
1107 	if (ret)
1108 		return ret;
1109 
1110 	data |= ADP_DP_CS_3_HDPC;
1111 	return tb_port_write(port, &data, TB_CFG_PORT,
1112 			     port->cap_adap + ADP_DP_CS_3, 1);
1113 }
1114 
1115 /**
1116  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1117  * @port: DP IN/OUT port to set hops
1118  * @video: Video Hop ID
1119  * @aux_tx: AUX TX Hop ID
1120  * @aux_rx: AUX RX Hop ID
1121  *
1122  * Programs specified Hop IDs for DP IN/OUT port.
1123  */
1124 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1125 			unsigned int aux_tx, unsigned int aux_rx)
1126 {
1127 	u32 data[2];
1128 	int ret;
1129 
1130 	ret = tb_port_read(port, data, TB_CFG_PORT,
1131 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1132 	if (ret)
1133 		return ret;
1134 
1135 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1136 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1137 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1138 
1139 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1140 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1141 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1142 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1143 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1144 
1145 	return tb_port_write(port, data, TB_CFG_PORT,
1146 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1147 }
1148 
1149 /**
1150  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1151  * @port: DP adapter port to check
1152  */
1153 bool tb_dp_port_is_enabled(struct tb_port *port)
1154 {
1155 	u32 data[2];
1156 
1157 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1158 			 ARRAY_SIZE(data)))
1159 		return false;
1160 
1161 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1162 }
1163 
1164 /**
1165  * tb_dp_port_enable() - Enables/disables DP paths of a port
1166  * @port: DP IN/OUT port
1167  * @enable: Enable/disable DP path
1168  *
1169  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1170  * calling this function.
1171  */
1172 int tb_dp_port_enable(struct tb_port *port, bool enable)
1173 {
1174 	u32 data[2];
1175 	int ret;
1176 
1177 	ret = tb_port_read(port, data, TB_CFG_PORT,
1178 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1179 	if (ret)
1180 		return ret;
1181 
1182 	if (enable)
1183 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1184 	else
1185 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1186 
1187 	return tb_port_write(port, data, TB_CFG_PORT,
1188 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1189 }
1190 
1191 /* switch utility functions */
1192 
1193 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1194 {
1195 	switch (sw->generation) {
1196 	case 1:
1197 		return "Thunderbolt 1";
1198 	case 2:
1199 		return "Thunderbolt 2";
1200 	case 3:
1201 		return "Thunderbolt 3";
1202 	case 4:
1203 		return "USB4";
1204 	default:
1205 		return "Unknown";
1206 	}
1207 }
1208 
1209 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1210 {
1211 	const struct tb_regs_switch_header *regs = &sw->config;
1212 
1213 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1214 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1215 	       regs->revision, regs->thunderbolt_version);
1216 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1217 	tb_dbg(tb, "  Config:\n");
1218 	tb_dbg(tb,
1219 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1220 	       regs->upstream_port_number, regs->depth,
1221 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1222 	       regs->enabled, regs->plug_events_delay);
1223 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1224 	       regs->__unknown1, regs->__unknown4);
1225 }
1226 
1227 /**
1228  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1229  *
1230  * Return: Returns 0 on success or an error code on failure.
1231  */
1232 int tb_switch_reset(struct tb *tb, u64 route)
1233 {
1234 	struct tb_cfg_result res;
1235 	struct tb_regs_switch_header header = {
1236 		header.route_hi = route >> 32,
1237 		header.route_lo = route,
1238 		header.enabled = true,
1239 	};
1240 	tb_dbg(tb, "resetting switch at %llx\n", route);
1241 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1242 			0, 2, 2, 2);
1243 	if (res.err)
1244 		return res.err;
1245 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1246 	if (res.err > 0)
1247 		return -EIO;
1248 	return res.err;
1249 }
1250 
1251 /**
1252  * tb_plug_events_active() - enable/disable plug events on a switch
1253  *
1254  * Also configures a sane plug_events_delay of 255ms.
1255  *
1256  * Return: Returns 0 on success or an error code on failure.
1257  */
1258 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1259 {
1260 	u32 data;
1261 	int res;
1262 
1263 	if (tb_switch_is_icm(sw))
1264 		return 0;
1265 
1266 	sw->config.plug_events_delay = 0xff;
1267 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1268 	if (res)
1269 		return res;
1270 
1271 	/* Plug events are always enabled in USB4 */
1272 	if (tb_switch_is_usb4(sw))
1273 		return 0;
1274 
1275 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1276 	if (res)
1277 		return res;
1278 
1279 	if (active) {
1280 		data = data & 0xFFFFFF83;
1281 		switch (sw->config.device_id) {
1282 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1283 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1284 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1285 			break;
1286 		default:
1287 			data |= 4;
1288 		}
1289 	} else {
1290 		data = data | 0x7c;
1291 	}
1292 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1293 			   sw->cap_plug_events + 1, 1);
1294 }
1295 
1296 static ssize_t authorized_show(struct device *dev,
1297 			       struct device_attribute *attr,
1298 			       char *buf)
1299 {
1300 	struct tb_switch *sw = tb_to_switch(dev);
1301 
1302 	return sprintf(buf, "%u\n", sw->authorized);
1303 }
1304 
1305 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1306 {
1307 	int ret = -EINVAL;
1308 
1309 	if (!mutex_trylock(&sw->tb->lock))
1310 		return restart_syscall();
1311 
1312 	if (sw->authorized)
1313 		goto unlock;
1314 
1315 	switch (val) {
1316 	/* Approve switch */
1317 	case 1:
1318 		if (sw->key)
1319 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1320 		else
1321 			ret = tb_domain_approve_switch(sw->tb, sw);
1322 		break;
1323 
1324 	/* Challenge switch */
1325 	case 2:
1326 		if (sw->key)
1327 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1328 		break;
1329 
1330 	default:
1331 		break;
1332 	}
1333 
1334 	if (!ret) {
1335 		sw->authorized = val;
1336 		/* Notify status change to the userspace */
1337 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1338 	}
1339 
1340 unlock:
1341 	mutex_unlock(&sw->tb->lock);
1342 	return ret;
1343 }
1344 
1345 static ssize_t authorized_store(struct device *dev,
1346 				struct device_attribute *attr,
1347 				const char *buf, size_t count)
1348 {
1349 	struct tb_switch *sw = tb_to_switch(dev);
1350 	unsigned int val;
1351 	ssize_t ret;
1352 
1353 	ret = kstrtouint(buf, 0, &val);
1354 	if (ret)
1355 		return ret;
1356 	if (val > 2)
1357 		return -EINVAL;
1358 
1359 	pm_runtime_get_sync(&sw->dev);
1360 	ret = tb_switch_set_authorized(sw, val);
1361 	pm_runtime_mark_last_busy(&sw->dev);
1362 	pm_runtime_put_autosuspend(&sw->dev);
1363 
1364 	return ret ? ret : count;
1365 }
1366 static DEVICE_ATTR_RW(authorized);
1367 
1368 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1369 			 char *buf)
1370 {
1371 	struct tb_switch *sw = tb_to_switch(dev);
1372 
1373 	return sprintf(buf, "%u\n", sw->boot);
1374 }
1375 static DEVICE_ATTR_RO(boot);
1376 
1377 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1378 			   char *buf)
1379 {
1380 	struct tb_switch *sw = tb_to_switch(dev);
1381 
1382 	return sprintf(buf, "%#x\n", sw->device);
1383 }
1384 static DEVICE_ATTR_RO(device);
1385 
1386 static ssize_t
1387 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1388 {
1389 	struct tb_switch *sw = tb_to_switch(dev);
1390 
1391 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1392 }
1393 static DEVICE_ATTR_RO(device_name);
1394 
1395 static ssize_t
1396 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1397 {
1398 	struct tb_switch *sw = tb_to_switch(dev);
1399 
1400 	return sprintf(buf, "%u\n", sw->generation);
1401 }
1402 static DEVICE_ATTR_RO(generation);
1403 
1404 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1405 			char *buf)
1406 {
1407 	struct tb_switch *sw = tb_to_switch(dev);
1408 	ssize_t ret;
1409 
1410 	if (!mutex_trylock(&sw->tb->lock))
1411 		return restart_syscall();
1412 
1413 	if (sw->key)
1414 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1415 	else
1416 		ret = sprintf(buf, "\n");
1417 
1418 	mutex_unlock(&sw->tb->lock);
1419 	return ret;
1420 }
1421 
1422 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1423 			 const char *buf, size_t count)
1424 {
1425 	struct tb_switch *sw = tb_to_switch(dev);
1426 	u8 key[TB_SWITCH_KEY_SIZE];
1427 	ssize_t ret = count;
1428 	bool clear = false;
1429 
1430 	if (!strcmp(buf, "\n"))
1431 		clear = true;
1432 	else if (hex2bin(key, buf, sizeof(key)))
1433 		return -EINVAL;
1434 
1435 	if (!mutex_trylock(&sw->tb->lock))
1436 		return restart_syscall();
1437 
1438 	if (sw->authorized) {
1439 		ret = -EBUSY;
1440 	} else {
1441 		kfree(sw->key);
1442 		if (clear) {
1443 			sw->key = NULL;
1444 		} else {
1445 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1446 			if (!sw->key)
1447 				ret = -ENOMEM;
1448 		}
1449 	}
1450 
1451 	mutex_unlock(&sw->tb->lock);
1452 	return ret;
1453 }
1454 static DEVICE_ATTR(key, 0600, key_show, key_store);
1455 
1456 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1457 			  char *buf)
1458 {
1459 	struct tb_switch *sw = tb_to_switch(dev);
1460 
1461 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1462 }
1463 
1464 /*
1465  * Currently all lanes must run at the same speed but we expose here
1466  * both directions to allow possible asymmetric links in the future.
1467  */
1468 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1469 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1470 
1471 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1472 			  char *buf)
1473 {
1474 	struct tb_switch *sw = tb_to_switch(dev);
1475 
1476 	return sprintf(buf, "%u\n", sw->link_width);
1477 }
1478 
1479 /*
1480  * Currently link has same amount of lanes both directions (1 or 2) but
1481  * expose them separately to allow possible asymmetric links in the future.
1482  */
1483 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1484 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1485 
1486 static ssize_t nvm_authenticate_show(struct device *dev,
1487 	struct device_attribute *attr, char *buf)
1488 {
1489 	struct tb_switch *sw = tb_to_switch(dev);
1490 	u32 status;
1491 
1492 	nvm_get_auth_status(sw, &status);
1493 	return sprintf(buf, "%#x\n", status);
1494 }
1495 
1496 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1497 				      bool disconnect)
1498 {
1499 	struct tb_switch *sw = tb_to_switch(dev);
1500 	int val;
1501 	int ret;
1502 
1503 	pm_runtime_get_sync(&sw->dev);
1504 
1505 	if (!mutex_trylock(&sw->tb->lock)) {
1506 		ret = restart_syscall();
1507 		goto exit_rpm;
1508 	}
1509 
1510 	/* If NVMem devices are not yet added */
1511 	if (!sw->nvm) {
1512 		ret = -EAGAIN;
1513 		goto exit_unlock;
1514 	}
1515 
1516 	ret = kstrtoint(buf, 10, &val);
1517 	if (ret)
1518 		goto exit_unlock;
1519 
1520 	/* Always clear the authentication status */
1521 	nvm_clear_auth_status(sw);
1522 
1523 	if (val > 0) {
1524 		if (!sw->nvm->flushed) {
1525 			if (!sw->nvm->buf) {
1526 				ret = -EINVAL;
1527 				goto exit_unlock;
1528 			}
1529 
1530 			ret = nvm_validate_and_write(sw);
1531 			if (ret || val == WRITE_ONLY)
1532 				goto exit_unlock;
1533 		}
1534 		if (val == WRITE_AND_AUTHENTICATE) {
1535 			if (disconnect) {
1536 				ret = tb_lc_force_power(sw);
1537 			} else {
1538 				sw->nvm->authenticating = true;
1539 				ret = nvm_authenticate(sw);
1540 			}
1541 		}
1542 	}
1543 
1544 exit_unlock:
1545 	mutex_unlock(&sw->tb->lock);
1546 exit_rpm:
1547 	pm_runtime_mark_last_busy(&sw->dev);
1548 	pm_runtime_put_autosuspend(&sw->dev);
1549 
1550 	return ret;
1551 }
1552 
1553 static ssize_t nvm_authenticate_store(struct device *dev,
1554 	struct device_attribute *attr, const char *buf, size_t count)
1555 {
1556 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1557 	if (ret)
1558 		return ret;
1559 	return count;
1560 }
1561 static DEVICE_ATTR_RW(nvm_authenticate);
1562 
1563 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1564 	struct device_attribute *attr, char *buf)
1565 {
1566 	return nvm_authenticate_show(dev, attr, buf);
1567 }
1568 
1569 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1570 	struct device_attribute *attr, const char *buf, size_t count)
1571 {
1572 	int ret;
1573 
1574 	ret = nvm_authenticate_sysfs(dev, buf, true);
1575 	return ret ? ret : count;
1576 }
1577 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1578 
1579 static ssize_t nvm_version_show(struct device *dev,
1580 				struct device_attribute *attr, char *buf)
1581 {
1582 	struct tb_switch *sw = tb_to_switch(dev);
1583 	int ret;
1584 
1585 	if (!mutex_trylock(&sw->tb->lock))
1586 		return restart_syscall();
1587 
1588 	if (sw->safe_mode)
1589 		ret = -ENODATA;
1590 	else if (!sw->nvm)
1591 		ret = -EAGAIN;
1592 	else
1593 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1594 
1595 	mutex_unlock(&sw->tb->lock);
1596 
1597 	return ret;
1598 }
1599 static DEVICE_ATTR_RO(nvm_version);
1600 
1601 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1602 			   char *buf)
1603 {
1604 	struct tb_switch *sw = tb_to_switch(dev);
1605 
1606 	return sprintf(buf, "%#x\n", sw->vendor);
1607 }
1608 static DEVICE_ATTR_RO(vendor);
1609 
1610 static ssize_t
1611 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1612 {
1613 	struct tb_switch *sw = tb_to_switch(dev);
1614 
1615 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1616 }
1617 static DEVICE_ATTR_RO(vendor_name);
1618 
1619 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1620 			      char *buf)
1621 {
1622 	struct tb_switch *sw = tb_to_switch(dev);
1623 
1624 	return sprintf(buf, "%pUb\n", sw->uuid);
1625 }
1626 static DEVICE_ATTR_RO(unique_id);
1627 
1628 static struct attribute *switch_attrs[] = {
1629 	&dev_attr_authorized.attr,
1630 	&dev_attr_boot.attr,
1631 	&dev_attr_device.attr,
1632 	&dev_attr_device_name.attr,
1633 	&dev_attr_generation.attr,
1634 	&dev_attr_key.attr,
1635 	&dev_attr_nvm_authenticate.attr,
1636 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1637 	&dev_attr_nvm_version.attr,
1638 	&dev_attr_rx_speed.attr,
1639 	&dev_attr_rx_lanes.attr,
1640 	&dev_attr_tx_speed.attr,
1641 	&dev_attr_tx_lanes.attr,
1642 	&dev_attr_vendor.attr,
1643 	&dev_attr_vendor_name.attr,
1644 	&dev_attr_unique_id.attr,
1645 	NULL,
1646 };
1647 
1648 static umode_t switch_attr_is_visible(struct kobject *kobj,
1649 				      struct attribute *attr, int n)
1650 {
1651 	struct device *dev = container_of(kobj, struct device, kobj);
1652 	struct tb_switch *sw = tb_to_switch(dev);
1653 
1654 	if (attr == &dev_attr_device.attr) {
1655 		if (!sw->device)
1656 			return 0;
1657 	} else if (attr == &dev_attr_device_name.attr) {
1658 		if (!sw->device_name)
1659 			return 0;
1660 	} else if (attr == &dev_attr_vendor.attr)  {
1661 		if (!sw->vendor)
1662 			return 0;
1663 	} else if (attr == &dev_attr_vendor_name.attr)  {
1664 		if (!sw->vendor_name)
1665 			return 0;
1666 	} else if (attr == &dev_attr_key.attr) {
1667 		if (tb_route(sw) &&
1668 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1669 		    sw->security_level == TB_SECURITY_SECURE)
1670 			return attr->mode;
1671 		return 0;
1672 	} else if (attr == &dev_attr_rx_speed.attr ||
1673 		   attr == &dev_attr_rx_lanes.attr ||
1674 		   attr == &dev_attr_tx_speed.attr ||
1675 		   attr == &dev_attr_tx_lanes.attr) {
1676 		if (tb_route(sw))
1677 			return attr->mode;
1678 		return 0;
1679 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1680 		if (nvm_upgradeable(sw))
1681 			return attr->mode;
1682 		return 0;
1683 	} else if (attr == &dev_attr_nvm_version.attr) {
1684 		if (nvm_readable(sw))
1685 			return attr->mode;
1686 		return 0;
1687 	} else if (attr == &dev_attr_boot.attr) {
1688 		if (tb_route(sw))
1689 			return attr->mode;
1690 		return 0;
1691 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1692 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1693 			return attr->mode;
1694 		return 0;
1695 	}
1696 
1697 	return sw->safe_mode ? 0 : attr->mode;
1698 }
1699 
1700 static struct attribute_group switch_group = {
1701 	.is_visible = switch_attr_is_visible,
1702 	.attrs = switch_attrs,
1703 };
1704 
1705 static const struct attribute_group *switch_groups[] = {
1706 	&switch_group,
1707 	NULL,
1708 };
1709 
1710 static void tb_switch_release(struct device *dev)
1711 {
1712 	struct tb_switch *sw = tb_to_switch(dev);
1713 	struct tb_port *port;
1714 
1715 	dma_port_free(sw->dma_port);
1716 
1717 	tb_switch_for_each_port(sw, port) {
1718 		if (!port->disabled) {
1719 			ida_destroy(&port->in_hopids);
1720 			ida_destroy(&port->out_hopids);
1721 		}
1722 	}
1723 
1724 	kfree(sw->uuid);
1725 	kfree(sw->device_name);
1726 	kfree(sw->vendor_name);
1727 	kfree(sw->ports);
1728 	kfree(sw->drom);
1729 	kfree(sw->key);
1730 	kfree(sw);
1731 }
1732 
1733 /*
1734  * Currently only need to provide the callbacks. Everything else is handled
1735  * in the connection manager.
1736  */
1737 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1738 {
1739 	struct tb_switch *sw = tb_to_switch(dev);
1740 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1741 
1742 	if (cm_ops->runtime_suspend_switch)
1743 		return cm_ops->runtime_suspend_switch(sw);
1744 
1745 	return 0;
1746 }
1747 
1748 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1749 {
1750 	struct tb_switch *sw = tb_to_switch(dev);
1751 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1752 
1753 	if (cm_ops->runtime_resume_switch)
1754 		return cm_ops->runtime_resume_switch(sw);
1755 	return 0;
1756 }
1757 
1758 static const struct dev_pm_ops tb_switch_pm_ops = {
1759 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1760 			   NULL)
1761 };
1762 
1763 struct device_type tb_switch_type = {
1764 	.name = "thunderbolt_device",
1765 	.release = tb_switch_release,
1766 	.pm = &tb_switch_pm_ops,
1767 };
1768 
1769 static int tb_switch_get_generation(struct tb_switch *sw)
1770 {
1771 	switch (sw->config.device_id) {
1772 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1773 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1774 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1775 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1776 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1777 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1778 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1779 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1780 		return 1;
1781 
1782 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1783 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1784 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1785 		return 2;
1786 
1787 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1788 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1789 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1790 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1791 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1792 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1793 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1794 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1795 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1796 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1797 		return 3;
1798 
1799 	default:
1800 		if (tb_switch_is_usb4(sw))
1801 			return 4;
1802 
1803 		/*
1804 		 * For unknown switches assume generation to be 1 to be
1805 		 * on the safe side.
1806 		 */
1807 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1808 			   sw->config.device_id);
1809 		return 1;
1810 	}
1811 }
1812 
1813 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1814 {
1815 	int max_depth;
1816 
1817 	if (tb_switch_is_usb4(sw) ||
1818 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1819 		max_depth = USB4_SWITCH_MAX_DEPTH;
1820 	else
1821 		max_depth = TB_SWITCH_MAX_DEPTH;
1822 
1823 	return depth > max_depth;
1824 }
1825 
1826 /**
1827  * tb_switch_alloc() - allocate a switch
1828  * @tb: Pointer to the owning domain
1829  * @parent: Parent device for this switch
1830  * @route: Route string for this switch
1831  *
1832  * Allocates and initializes a switch. Will not upload configuration to
1833  * the switch. For that you need to call tb_switch_configure()
1834  * separately. The returned switch should be released by calling
1835  * tb_switch_put().
1836  *
1837  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1838  * failure.
1839  */
1840 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1841 				  u64 route)
1842 {
1843 	struct tb_switch *sw;
1844 	int upstream_port;
1845 	int i, ret, depth;
1846 
1847 	/* Unlock the downstream port so we can access the switch below */
1848 	if (route) {
1849 		struct tb_switch *parent_sw = tb_to_switch(parent);
1850 		struct tb_port *down;
1851 
1852 		down = tb_port_at(route, parent_sw);
1853 		tb_port_unlock(down);
1854 	}
1855 
1856 	depth = tb_route_length(route);
1857 
1858 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1859 	if (upstream_port < 0)
1860 		return ERR_PTR(upstream_port);
1861 
1862 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1863 	if (!sw)
1864 		return ERR_PTR(-ENOMEM);
1865 
1866 	sw->tb = tb;
1867 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1868 	if (ret)
1869 		goto err_free_sw_ports;
1870 
1871 	sw->generation = tb_switch_get_generation(sw);
1872 
1873 	tb_dbg(tb, "current switch config:\n");
1874 	tb_dump_switch(tb, sw);
1875 
1876 	/* configure switch */
1877 	sw->config.upstream_port_number = upstream_port;
1878 	sw->config.depth = depth;
1879 	sw->config.route_hi = upper_32_bits(route);
1880 	sw->config.route_lo = lower_32_bits(route);
1881 	sw->config.enabled = 0;
1882 
1883 	/* Make sure we do not exceed maximum topology limit */
1884 	if (tb_switch_exceeds_max_depth(sw, depth)) {
1885 		ret = -EADDRNOTAVAIL;
1886 		goto err_free_sw_ports;
1887 	}
1888 
1889 	/* initialize ports */
1890 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1891 				GFP_KERNEL);
1892 	if (!sw->ports) {
1893 		ret = -ENOMEM;
1894 		goto err_free_sw_ports;
1895 	}
1896 
1897 	for (i = 0; i <= sw->config.max_port_number; i++) {
1898 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1899 		sw->ports[i].sw = sw;
1900 		sw->ports[i].port = i;
1901 	}
1902 
1903 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1904 	if (ret > 0)
1905 		sw->cap_plug_events = ret;
1906 
1907 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1908 	if (ret > 0)
1909 		sw->cap_lc = ret;
1910 
1911 	/* Root switch is always authorized */
1912 	if (!route)
1913 		sw->authorized = true;
1914 
1915 	device_initialize(&sw->dev);
1916 	sw->dev.parent = parent;
1917 	sw->dev.bus = &tb_bus_type;
1918 	sw->dev.type = &tb_switch_type;
1919 	sw->dev.groups = switch_groups;
1920 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1921 
1922 	return sw;
1923 
1924 err_free_sw_ports:
1925 	kfree(sw->ports);
1926 	kfree(sw);
1927 
1928 	return ERR_PTR(ret);
1929 }
1930 
1931 /**
1932  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1933  * @tb: Pointer to the owning domain
1934  * @parent: Parent device for this switch
1935  * @route: Route string for this switch
1936  *
1937  * This creates a switch in safe mode. This means the switch pretty much
1938  * lacks all capabilities except DMA configuration port before it is
1939  * flashed with a valid NVM firmware.
1940  *
1941  * The returned switch must be released by calling tb_switch_put().
1942  *
1943  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1944  */
1945 struct tb_switch *
1946 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1947 {
1948 	struct tb_switch *sw;
1949 
1950 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1951 	if (!sw)
1952 		return ERR_PTR(-ENOMEM);
1953 
1954 	sw->tb = tb;
1955 	sw->config.depth = tb_route_length(route);
1956 	sw->config.route_hi = upper_32_bits(route);
1957 	sw->config.route_lo = lower_32_bits(route);
1958 	sw->safe_mode = true;
1959 
1960 	device_initialize(&sw->dev);
1961 	sw->dev.parent = parent;
1962 	sw->dev.bus = &tb_bus_type;
1963 	sw->dev.type = &tb_switch_type;
1964 	sw->dev.groups = switch_groups;
1965 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1966 
1967 	return sw;
1968 }
1969 
1970 /**
1971  * tb_switch_configure() - Uploads configuration to the switch
1972  * @sw: Switch to configure
1973  *
1974  * Call this function before the switch is added to the system. It will
1975  * upload configuration to the switch and makes it available for the
1976  * connection manager to use. Can be called to the switch again after
1977  * resume from low power states to re-initialize it.
1978  *
1979  * Return: %0 in case of success and negative errno in case of failure
1980  */
1981 int tb_switch_configure(struct tb_switch *sw)
1982 {
1983 	struct tb *tb = sw->tb;
1984 	u64 route;
1985 	int ret;
1986 
1987 	route = tb_route(sw);
1988 
1989 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1990 	       sw->config.enabled ? "restoring " : "initializing", route,
1991 	       tb_route_length(route), sw->config.upstream_port_number);
1992 
1993 	sw->config.enabled = 1;
1994 
1995 	if (tb_switch_is_usb4(sw)) {
1996 		/*
1997 		 * For USB4 devices, we need to program the CM version
1998 		 * accordingly so that it knows to expose all the
1999 		 * additional capabilities.
2000 		 */
2001 		sw->config.cmuv = USB4_VERSION_1_0;
2002 
2003 		/* Enumerate the switch */
2004 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2005 				  ROUTER_CS_1, 4);
2006 		if (ret)
2007 			return ret;
2008 
2009 		ret = usb4_switch_setup(sw);
2010 		if (ret)
2011 			return ret;
2012 
2013 		ret = usb4_switch_configure_link(sw);
2014 	} else {
2015 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2016 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2017 				   sw->config.vendor_id);
2018 
2019 		if (!sw->cap_plug_events) {
2020 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2021 			return -ENODEV;
2022 		}
2023 
2024 		/* Enumerate the switch */
2025 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2026 				  ROUTER_CS_1, 3);
2027 		if (ret)
2028 			return ret;
2029 
2030 		ret = tb_lc_configure_link(sw);
2031 	}
2032 	if (ret)
2033 		return ret;
2034 
2035 	return tb_plug_events_active(sw, true);
2036 }
2037 
2038 static int tb_switch_set_uuid(struct tb_switch *sw)
2039 {
2040 	bool uid = false;
2041 	u32 uuid[4];
2042 	int ret;
2043 
2044 	if (sw->uuid)
2045 		return 0;
2046 
2047 	if (tb_switch_is_usb4(sw)) {
2048 		ret = usb4_switch_read_uid(sw, &sw->uid);
2049 		if (ret)
2050 			return ret;
2051 		uid = true;
2052 	} else {
2053 		/*
2054 		 * The newer controllers include fused UUID as part of
2055 		 * link controller specific registers
2056 		 */
2057 		ret = tb_lc_read_uuid(sw, uuid);
2058 		if (ret) {
2059 			if (ret != -EINVAL)
2060 				return ret;
2061 			uid = true;
2062 		}
2063 	}
2064 
2065 	if (uid) {
2066 		/*
2067 		 * ICM generates UUID based on UID and fills the upper
2068 		 * two words with ones. This is not strictly following
2069 		 * UUID format but we want to be compatible with it so
2070 		 * we do the same here.
2071 		 */
2072 		uuid[0] = sw->uid & 0xffffffff;
2073 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2074 		uuid[2] = 0xffffffff;
2075 		uuid[3] = 0xffffffff;
2076 	}
2077 
2078 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2079 	if (!sw->uuid)
2080 		return -ENOMEM;
2081 	return 0;
2082 }
2083 
2084 static int tb_switch_add_dma_port(struct tb_switch *sw)
2085 {
2086 	u32 status;
2087 	int ret;
2088 
2089 	switch (sw->generation) {
2090 	case 2:
2091 		/* Only root switch can be upgraded */
2092 		if (tb_route(sw))
2093 			return 0;
2094 
2095 		/* fallthrough */
2096 	case 3:
2097 		ret = tb_switch_set_uuid(sw);
2098 		if (ret)
2099 			return ret;
2100 		break;
2101 
2102 	default:
2103 		/*
2104 		 * DMA port is the only thing available when the switch
2105 		 * is in safe mode.
2106 		 */
2107 		if (!sw->safe_mode)
2108 			return 0;
2109 		break;
2110 	}
2111 
2112 	/* Root switch DMA port requires running firmware */
2113 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2114 		return 0;
2115 
2116 	sw->dma_port = dma_port_alloc(sw);
2117 	if (!sw->dma_port)
2118 		return 0;
2119 
2120 	if (sw->no_nvm_upgrade)
2121 		return 0;
2122 
2123 	/*
2124 	 * If there is status already set then authentication failed
2125 	 * when the dma_port_flash_update_auth() returned. Power cycling
2126 	 * is not needed (it was done already) so only thing we do here
2127 	 * is to unblock runtime PM of the root port.
2128 	 */
2129 	nvm_get_auth_status(sw, &status);
2130 	if (status) {
2131 		if (!tb_route(sw))
2132 			nvm_authenticate_complete_dma_port(sw);
2133 		return 0;
2134 	}
2135 
2136 	/*
2137 	 * Check status of the previous flash authentication. If there
2138 	 * is one we need to power cycle the switch in any case to make
2139 	 * it functional again.
2140 	 */
2141 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2142 	if (ret <= 0)
2143 		return ret;
2144 
2145 	/* Now we can allow root port to suspend again */
2146 	if (!tb_route(sw))
2147 		nvm_authenticate_complete_dma_port(sw);
2148 
2149 	if (status) {
2150 		tb_sw_info(sw, "switch flash authentication failed\n");
2151 		nvm_set_auth_status(sw, status);
2152 	}
2153 
2154 	tb_sw_info(sw, "power cycling the switch now\n");
2155 	dma_port_power_cycle(sw->dma_port);
2156 
2157 	/*
2158 	 * We return error here which causes the switch adding failure.
2159 	 * It should appear back after power cycle is complete.
2160 	 */
2161 	return -ESHUTDOWN;
2162 }
2163 
2164 static void tb_switch_default_link_ports(struct tb_switch *sw)
2165 {
2166 	int i;
2167 
2168 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2169 		struct tb_port *port = &sw->ports[i];
2170 		struct tb_port *subordinate;
2171 
2172 		if (!tb_port_is_null(port))
2173 			continue;
2174 
2175 		/* Check for the subordinate port */
2176 		if (i == sw->config.max_port_number ||
2177 		    !tb_port_is_null(&sw->ports[i + 1]))
2178 			continue;
2179 
2180 		/* Link them if not already done so (by DROM) */
2181 		subordinate = &sw->ports[i + 1];
2182 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2183 			port->link_nr = 0;
2184 			port->dual_link_port = subordinate;
2185 			subordinate->link_nr = 1;
2186 			subordinate->dual_link_port = port;
2187 
2188 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2189 				  port->port, subordinate->port);
2190 		}
2191 	}
2192 }
2193 
2194 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2195 {
2196 	const struct tb_port *up = tb_upstream_port(sw);
2197 
2198 	if (!up->dual_link_port || !up->dual_link_port->remote)
2199 		return false;
2200 
2201 	if (tb_switch_is_usb4(sw))
2202 		return usb4_switch_lane_bonding_possible(sw);
2203 	return tb_lc_lane_bonding_possible(sw);
2204 }
2205 
2206 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2207 {
2208 	struct tb_port *up;
2209 	bool change = false;
2210 	int ret;
2211 
2212 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2213 		return 0;
2214 
2215 	up = tb_upstream_port(sw);
2216 
2217 	ret = tb_port_get_link_speed(up);
2218 	if (ret < 0)
2219 		return ret;
2220 	if (sw->link_speed != ret)
2221 		change = true;
2222 	sw->link_speed = ret;
2223 
2224 	ret = tb_port_get_link_width(up);
2225 	if (ret < 0)
2226 		return ret;
2227 	if (sw->link_width != ret)
2228 		change = true;
2229 	sw->link_width = ret;
2230 
2231 	/* Notify userspace that there is possible link attribute change */
2232 	if (device_is_registered(&sw->dev) && change)
2233 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2234 
2235 	return 0;
2236 }
2237 
2238 /**
2239  * tb_switch_lane_bonding_enable() - Enable lane bonding
2240  * @sw: Switch to enable lane bonding
2241  *
2242  * Connection manager can call this function to enable lane bonding of a
2243  * switch. If conditions are correct and both switches support the feature,
2244  * lanes are bonded. It is safe to call this to any switch.
2245  */
2246 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2247 {
2248 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2249 	struct tb_port *up, *down;
2250 	u64 route = tb_route(sw);
2251 	int ret;
2252 
2253 	if (!route)
2254 		return 0;
2255 
2256 	if (!tb_switch_lane_bonding_possible(sw))
2257 		return 0;
2258 
2259 	up = tb_upstream_port(sw);
2260 	down = tb_port_at(route, parent);
2261 
2262 	if (!tb_port_is_width_supported(up, 2) ||
2263 	    !tb_port_is_width_supported(down, 2))
2264 		return 0;
2265 
2266 	ret = tb_port_lane_bonding_enable(up);
2267 	if (ret) {
2268 		tb_port_warn(up, "failed to enable lane bonding\n");
2269 		return ret;
2270 	}
2271 
2272 	ret = tb_port_lane_bonding_enable(down);
2273 	if (ret) {
2274 		tb_port_warn(down, "failed to enable lane bonding\n");
2275 		tb_port_lane_bonding_disable(up);
2276 		return ret;
2277 	}
2278 
2279 	tb_switch_update_link_attributes(sw);
2280 
2281 	tb_sw_dbg(sw, "lane bonding enabled\n");
2282 	return ret;
2283 }
2284 
2285 /**
2286  * tb_switch_lane_bonding_disable() - Disable lane bonding
2287  * @sw: Switch whose lane bonding to disable
2288  *
2289  * Disables lane bonding between @sw and parent. This can be called even
2290  * if lanes were not bonded originally.
2291  */
2292 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2293 {
2294 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2295 	struct tb_port *up, *down;
2296 
2297 	if (!tb_route(sw))
2298 		return;
2299 
2300 	up = tb_upstream_port(sw);
2301 	if (!up->bonded)
2302 		return;
2303 
2304 	down = tb_port_at(tb_route(sw), parent);
2305 
2306 	tb_port_lane_bonding_disable(up);
2307 	tb_port_lane_bonding_disable(down);
2308 
2309 	tb_switch_update_link_attributes(sw);
2310 	tb_sw_dbg(sw, "lane bonding disabled\n");
2311 }
2312 
2313 /**
2314  * tb_switch_add() - Add a switch to the domain
2315  * @sw: Switch to add
2316  *
2317  * This is the last step in adding switch to the domain. It will read
2318  * identification information from DROM and initializes ports so that
2319  * they can be used to connect other switches. The switch will be
2320  * exposed to the userspace when this function successfully returns. To
2321  * remove and release the switch, call tb_switch_remove().
2322  *
2323  * Return: %0 in case of success and negative errno in case of failure
2324  */
2325 int tb_switch_add(struct tb_switch *sw)
2326 {
2327 	int i, ret;
2328 
2329 	/*
2330 	 * Initialize DMA control port now before we read DROM. Recent
2331 	 * host controllers have more complete DROM on NVM that includes
2332 	 * vendor and model identification strings which we then expose
2333 	 * to the userspace. NVM can be accessed through DMA
2334 	 * configuration based mailbox.
2335 	 */
2336 	ret = tb_switch_add_dma_port(sw);
2337 	if (ret) {
2338 		dev_err(&sw->dev, "failed to add DMA port\n");
2339 		return ret;
2340 	}
2341 
2342 	if (!sw->safe_mode) {
2343 		/* read drom */
2344 		ret = tb_drom_read(sw);
2345 		if (ret) {
2346 			dev_err(&sw->dev, "reading DROM failed\n");
2347 			return ret;
2348 		}
2349 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2350 
2351 		ret = tb_switch_set_uuid(sw);
2352 		if (ret) {
2353 			dev_err(&sw->dev, "failed to set UUID\n");
2354 			return ret;
2355 		}
2356 
2357 		for (i = 0; i <= sw->config.max_port_number; i++) {
2358 			if (sw->ports[i].disabled) {
2359 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2360 				continue;
2361 			}
2362 			ret = tb_init_port(&sw->ports[i]);
2363 			if (ret) {
2364 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2365 				return ret;
2366 			}
2367 		}
2368 
2369 		tb_switch_default_link_ports(sw);
2370 
2371 		ret = tb_switch_update_link_attributes(sw);
2372 		if (ret)
2373 			return ret;
2374 
2375 		ret = tb_switch_tmu_init(sw);
2376 		if (ret)
2377 			return ret;
2378 	}
2379 
2380 	ret = device_add(&sw->dev);
2381 	if (ret) {
2382 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2383 		return ret;
2384 	}
2385 
2386 	if (tb_route(sw)) {
2387 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2388 			 sw->vendor, sw->device);
2389 		if (sw->vendor_name && sw->device_name)
2390 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2391 				 sw->device_name);
2392 	}
2393 
2394 	ret = tb_switch_nvm_add(sw);
2395 	if (ret) {
2396 		dev_err(&sw->dev, "failed to add NVM devices\n");
2397 		device_del(&sw->dev);
2398 		return ret;
2399 	}
2400 
2401 	pm_runtime_set_active(&sw->dev);
2402 	if (sw->rpm) {
2403 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2404 		pm_runtime_use_autosuspend(&sw->dev);
2405 		pm_runtime_mark_last_busy(&sw->dev);
2406 		pm_runtime_enable(&sw->dev);
2407 		pm_request_autosuspend(&sw->dev);
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 /**
2414  * tb_switch_remove() - Remove and release a switch
2415  * @sw: Switch to remove
2416  *
2417  * This will remove the switch from the domain and release it after last
2418  * reference count drops to zero. If there are switches connected below
2419  * this switch, they will be removed as well.
2420  */
2421 void tb_switch_remove(struct tb_switch *sw)
2422 {
2423 	struct tb_port *port;
2424 
2425 	if (sw->rpm) {
2426 		pm_runtime_get_sync(&sw->dev);
2427 		pm_runtime_disable(&sw->dev);
2428 	}
2429 
2430 	/* port 0 is the switch itself and never has a remote */
2431 	tb_switch_for_each_port(sw, port) {
2432 		if (tb_port_has_remote(port)) {
2433 			tb_switch_remove(port->remote->sw);
2434 			port->remote = NULL;
2435 		} else if (port->xdomain) {
2436 			tb_xdomain_remove(port->xdomain);
2437 			port->xdomain = NULL;
2438 		}
2439 
2440 		/* Remove any downstream retimers */
2441 		tb_retimer_remove_all(port);
2442 	}
2443 
2444 	if (!sw->is_unplugged)
2445 		tb_plug_events_active(sw, false);
2446 
2447 	if (tb_switch_is_usb4(sw))
2448 		usb4_switch_unconfigure_link(sw);
2449 	else
2450 		tb_lc_unconfigure_link(sw);
2451 
2452 	tb_switch_nvm_remove(sw);
2453 
2454 	if (tb_route(sw))
2455 		dev_info(&sw->dev, "device disconnected\n");
2456 	device_unregister(&sw->dev);
2457 }
2458 
2459 /**
2460  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2461  */
2462 void tb_sw_set_unplugged(struct tb_switch *sw)
2463 {
2464 	struct tb_port *port;
2465 
2466 	if (sw == sw->tb->root_switch) {
2467 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2468 		return;
2469 	}
2470 	if (sw->is_unplugged) {
2471 		tb_sw_WARN(sw, "is_unplugged already set\n");
2472 		return;
2473 	}
2474 	sw->is_unplugged = true;
2475 	tb_switch_for_each_port(sw, port) {
2476 		if (tb_port_has_remote(port))
2477 			tb_sw_set_unplugged(port->remote->sw);
2478 		else if (port->xdomain)
2479 			port->xdomain->is_unplugged = true;
2480 	}
2481 }
2482 
2483 int tb_switch_resume(struct tb_switch *sw)
2484 {
2485 	struct tb_port *port;
2486 	int err;
2487 
2488 	tb_sw_dbg(sw, "resuming switch\n");
2489 
2490 	/*
2491 	 * Check for UID of the connected switches except for root
2492 	 * switch which we assume cannot be removed.
2493 	 */
2494 	if (tb_route(sw)) {
2495 		u64 uid;
2496 
2497 		/*
2498 		 * Check first that we can still read the switch config
2499 		 * space. It may be that there is now another domain
2500 		 * connected.
2501 		 */
2502 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2503 		if (err < 0) {
2504 			tb_sw_info(sw, "switch not present anymore\n");
2505 			return err;
2506 		}
2507 
2508 		if (tb_switch_is_usb4(sw))
2509 			err = usb4_switch_read_uid(sw, &uid);
2510 		else
2511 			err = tb_drom_read_uid_only(sw, &uid);
2512 		if (err) {
2513 			tb_sw_warn(sw, "uid read failed\n");
2514 			return err;
2515 		}
2516 		if (sw->uid != uid) {
2517 			tb_sw_info(sw,
2518 				"changed while suspended (uid %#llx -> %#llx)\n",
2519 				sw->uid, uid);
2520 			return -ENODEV;
2521 		}
2522 	}
2523 
2524 	err = tb_switch_configure(sw);
2525 	if (err)
2526 		return err;
2527 
2528 	/* check for surviving downstream switches */
2529 	tb_switch_for_each_port(sw, port) {
2530 		if (!tb_port_has_remote(port) && !port->xdomain)
2531 			continue;
2532 
2533 		if (tb_wait_for_port(port, true) <= 0) {
2534 			tb_port_warn(port,
2535 				     "lost during suspend, disconnecting\n");
2536 			if (tb_port_has_remote(port))
2537 				tb_sw_set_unplugged(port->remote->sw);
2538 			else if (port->xdomain)
2539 				port->xdomain->is_unplugged = true;
2540 		} else if (tb_port_has_remote(port) || port->xdomain) {
2541 			/*
2542 			 * Always unlock the port so the downstream
2543 			 * switch/domain is accessible.
2544 			 */
2545 			if (tb_port_unlock(port))
2546 				tb_port_warn(port, "failed to unlock port\n");
2547 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2548 				tb_port_warn(port,
2549 					     "lost during suspend, disconnecting\n");
2550 				tb_sw_set_unplugged(port->remote->sw);
2551 			}
2552 		}
2553 	}
2554 	return 0;
2555 }
2556 
2557 void tb_switch_suspend(struct tb_switch *sw)
2558 {
2559 	struct tb_port *port;
2560 	int err;
2561 
2562 	err = tb_plug_events_active(sw, false);
2563 	if (err)
2564 		return;
2565 
2566 	tb_switch_for_each_port(sw, port) {
2567 		if (tb_port_has_remote(port))
2568 			tb_switch_suspend(port->remote->sw);
2569 	}
2570 
2571 	if (tb_switch_is_usb4(sw))
2572 		usb4_switch_set_sleep(sw);
2573 	else
2574 		tb_lc_set_sleep(sw);
2575 }
2576 
2577 /**
2578  * tb_switch_query_dp_resource() - Query availability of DP resource
2579  * @sw: Switch whose DP resource is queried
2580  * @in: DP IN port
2581  *
2582  * Queries availability of DP resource for DP tunneling using switch
2583  * specific means. Returns %true if resource is available.
2584  */
2585 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2586 {
2587 	if (tb_switch_is_usb4(sw))
2588 		return usb4_switch_query_dp_resource(sw, in);
2589 	return tb_lc_dp_sink_query(sw, in);
2590 }
2591 
2592 /**
2593  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2594  * @sw: Switch whose DP resource is allocated
2595  * @in: DP IN port
2596  *
2597  * Allocates DP resource for DP tunneling. The resource must be
2598  * available for this to succeed (see tb_switch_query_dp_resource()).
2599  * Returns %0 in success and negative errno otherwise.
2600  */
2601 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2602 {
2603 	if (tb_switch_is_usb4(sw))
2604 		return usb4_switch_alloc_dp_resource(sw, in);
2605 	return tb_lc_dp_sink_alloc(sw, in);
2606 }
2607 
2608 /**
2609  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2610  * @sw: Switch whose DP resource is de-allocated
2611  * @in: DP IN port
2612  *
2613  * De-allocates DP resource that was previously allocated for DP
2614  * tunneling.
2615  */
2616 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2617 {
2618 	int ret;
2619 
2620 	if (tb_switch_is_usb4(sw))
2621 		ret = usb4_switch_dealloc_dp_resource(sw, in);
2622 	else
2623 		ret = tb_lc_dp_sink_dealloc(sw, in);
2624 
2625 	if (ret)
2626 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2627 			   in->port);
2628 }
2629 
2630 struct tb_sw_lookup {
2631 	struct tb *tb;
2632 	u8 link;
2633 	u8 depth;
2634 	const uuid_t *uuid;
2635 	u64 route;
2636 };
2637 
2638 static int tb_switch_match(struct device *dev, const void *data)
2639 {
2640 	struct tb_switch *sw = tb_to_switch(dev);
2641 	const struct tb_sw_lookup *lookup = data;
2642 
2643 	if (!sw)
2644 		return 0;
2645 	if (sw->tb != lookup->tb)
2646 		return 0;
2647 
2648 	if (lookup->uuid)
2649 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2650 
2651 	if (lookup->route) {
2652 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2653 		       sw->config.route_hi == upper_32_bits(lookup->route);
2654 	}
2655 
2656 	/* Root switch is matched only by depth */
2657 	if (!lookup->depth)
2658 		return !sw->depth;
2659 
2660 	return sw->link == lookup->link && sw->depth == lookup->depth;
2661 }
2662 
2663 /**
2664  * tb_switch_find_by_link_depth() - Find switch by link and depth
2665  * @tb: Domain the switch belongs
2666  * @link: Link number the switch is connected
2667  * @depth: Depth of the switch in link
2668  *
2669  * Returned switch has reference count increased so the caller needs to
2670  * call tb_switch_put() when done with the switch.
2671  */
2672 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2673 {
2674 	struct tb_sw_lookup lookup;
2675 	struct device *dev;
2676 
2677 	memset(&lookup, 0, sizeof(lookup));
2678 	lookup.tb = tb;
2679 	lookup.link = link;
2680 	lookup.depth = depth;
2681 
2682 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2683 	if (dev)
2684 		return tb_to_switch(dev);
2685 
2686 	return NULL;
2687 }
2688 
2689 /**
2690  * tb_switch_find_by_uuid() - Find switch by UUID
2691  * @tb: Domain the switch belongs
2692  * @uuid: UUID to look for
2693  *
2694  * Returned switch has reference count increased so the caller needs to
2695  * call tb_switch_put() when done with the switch.
2696  */
2697 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2698 {
2699 	struct tb_sw_lookup lookup;
2700 	struct device *dev;
2701 
2702 	memset(&lookup, 0, sizeof(lookup));
2703 	lookup.tb = tb;
2704 	lookup.uuid = uuid;
2705 
2706 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2707 	if (dev)
2708 		return tb_to_switch(dev);
2709 
2710 	return NULL;
2711 }
2712 
2713 /**
2714  * tb_switch_find_by_route() - Find switch by route string
2715  * @tb: Domain the switch belongs
2716  * @route: Route string to look for
2717  *
2718  * Returned switch has reference count increased so the caller needs to
2719  * call tb_switch_put() when done with the switch.
2720  */
2721 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2722 {
2723 	struct tb_sw_lookup lookup;
2724 	struct device *dev;
2725 
2726 	if (!route)
2727 		return tb_switch_get(tb->root_switch);
2728 
2729 	memset(&lookup, 0, sizeof(lookup));
2730 	lookup.tb = tb;
2731 	lookup.route = route;
2732 
2733 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2734 	if (dev)
2735 		return tb_to_switch(dev);
2736 
2737 	return NULL;
2738 }
2739 
2740 /**
2741  * tb_switch_find_port() - return the first port of @type on @sw or NULL
2742  * @sw: Switch to find the port from
2743  * @type: Port type to look for
2744  */
2745 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2746 				    enum tb_port_type type)
2747 {
2748 	struct tb_port *port;
2749 
2750 	tb_switch_for_each_port(sw, port) {
2751 		if (port->config.type == type)
2752 			return port;
2753 	}
2754 
2755 	return NULL;
2756 }
2757